Sample records for system section model

  1. Modeling the Earth system in the Mission to Planet Earth era

    NASA Technical Reports Server (NTRS)

    Unninayar, Sushel; Bergman, Kenneth H.

    1993-01-01

    A broad overview is made of global earth system modeling in the Mission to Planet Earth (MTPE) era for the multidisciplinary audience encompassed by the Global Change Research Program (GCRP). Time scales of global system fluctuation and change are described in Section 2. Section 3 provides a rubric for modeling the global earth system, as presently understood. The ability of models to predict the future state of the global earth system and the extent to which their predictions are reliable are covered in Sections 4 and 5. The 'engineering' use of global system models (and predictions) is covered in Section 6. Section 7 covers aspects of an increasing need for improved transform algorithms and better methods to assimilate this information into global models. Future monitoring and data requirements are detailed in Section 8. Section 9 covers the NASA-initiated concept 'Mission to Planet Earth,' which employs space and ground based measurement systems to provide the scientific basis for understanding global change. Section 10 concludes this review with general remarks concerning the state of global system modeling and observing technology and the need for future research.

  2. A Comprehension Based Analysis of Autoflight System Interfaces

    NASA Technical Reports Server (NTRS)

    Palmer, Everett (Technical Monitor); Polson, Peter G.

    2003-01-01

    This cooperative agreement supported Dr. Peter Polson's participation in two interrelated research programs. The first was the development of the Situation-Goal-Behavior (SGB) Model that is both a formal description of an avionics system's logic and behavior and a representation of a system that can be understood by avionics designers, pilots, and training developers. The second was the development of a usability inspection method based on an approximate model, RAFIV, of pilot interactions with the Flight Management System (FMS). The main purpose of this report is to integrate the two models and provide a context in order to better characterize the accomplishments of this research program. A major focus of both the previous and this Cooperative Agreement was the development of usability evaluation methods that can be effectively utilized during all phases of the design, development, and certification process of modern avionics systems. The current efforts to validate these methods have involved showing that they generate useful analyses of known operational and training problems with the current generation of avionics systems in modern commercial airliners. This report is organized into seven sections. Following the overview, the second section describes the Goal-Situation-Behavior model and its applications. The next section summarizes the foundations of the RAFIV model and describes the model in some detail. The contents of both these sections are derived from previous reports referenced in footnotes. The fourth section integrates these two models into a complete design evaluation and training development framework. The fifth section contains conclusions and possible future directions for research. References are in Section 6. Section 7 contains the titles and abstracts of the papers paper describing in more detail the results of this research program.

  3. Evaluation of NASA's end-to-end data systems using DSDS+

    NASA Technical Reports Server (NTRS)

    Rouff, Christopher; Davenport, William; Message, Philip

    1994-01-01

    The Data Systems Dynamic Simulator (DSDS+) is a software tool being developed by the authors to evaluate candidate architectures for NASA's end-to-end data systems. Via modeling and simulation, we are able to quickly predict the performance characteristics of each architecture, to evaluate 'what-if' scenarios, and to perform sensitivity analyses. As such, we are using modeling and simulation to help NASA select the optimal system configuration, and to quantify the performance characteristics of this system prior to its delivery. This paper is divided into the following six sections: (1) The role of modeling and simulation in the systems engineering process. In this section, we briefly describe the different types of results obtained by modeling each phase of the systems engineering life cycle, from concept definition through operations and maintenance; (2) Recent applications of DSDS+. In this section, we describe ongoing applications of DSDS+ in support of the Earth Observing System (EOS), and we present some of the simulation results generated of candidate system designs. So far, we have modeled individual EOS subsystems (e.g. the Solid State Recorders used onboard the spacecraft), and we have also developed an integrated model of the EOS end-to-end data processing and data communications systems (from the payloads onboard to the principle investigator facilities on the ground); (3) Overview of DSDS+. In this section we define what a discrete-event model is, and how it works. The discussion is presented relative to the DSDS+ simulation tool that we have developed, including it's run-time optimization algorithms that enables DSDS+ to execute substantially faster than comparable discrete-event simulation tools; (4) Summary. In this section, we summarize our findings and 'lessons learned' during the development and application of DSDS+ to model NASA's data systems; (5) Further Information; and (6) Acknowledgements.

  4. Intelligent Engine Systems Work Element 1.3: Sub System Health Management

    NASA Technical Reports Server (NTRS)

    Ashby, Malcolm; Simpson, Jeffrey; Singh, Anant; Ferguson, Emily; Frontera, mark

    2005-01-01

    The objectives of this program were to develop health monitoring systems and physics-based fault detection models for engine sub-systems including the start, lubrication, and fuel. These models will ultimately be used to provide more effective sub-system fault identification and isolation to reduce engine maintenance costs and engine down-time. Additionally, the bearing sub-system health is addressed in this program through identification of sensing requirements, a review of available technologies and a demonstration of a demonstration of a conceptual monitoring system for a differential roller bearing. This report is divided into four sections; one for each of the subtasks. The start system subtask is documented in section 2.0, the oil system is covered in section 3.0, bearing in section 4.0, and the fuel system is presented in section 5.0.

  5. Adaptive Automation Design and Implementation

    DTIC Science & Technology

    2015-09-17

    Study : Space Navigator This section demonstrates the player modeling paradigm, focusing specifically on the response generation section of the player ...human-machine system, a real-time player modeling framework for imitating a specific person’s task performance, and the Adaptive Automation System...Model . . . . . . . . . . . . . . . . . . . . . . . 13 Clustering-Based Real-Time Player Modeling . . . . . . . . . . . . . . . . . . . . . . 15 An

  6. 24 CFR 3285.604 - Drainage system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Drainage system. 3285.604 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one section...

  7. 24 CFR 3285.604 - Drainage system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Drainage system. 3285.604 Section... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems § 3285.604 Drainage system. (a) Crossovers. Multi-section homes with plumbing in more than one section...

  8. Families with Noncompliant Children: Applications of the Systemic Model.

    ERIC Educational Resources Information Center

    Neilans, Thomas H.; And Others

    This paper describes the application of a systems approach model to assessing families with a labeled noncompliant child. The first section describes and comments on the applied methodology for the model. The second section describes the classification of 61 families containing a child labeled by the family as noncompliant. An analysis of data…

  9. A Comparative Study of the Proposed Models for the Components of the National Health Information System

    PubMed Central

    Ahmadi, Maryam; Damanabi, Shahla; Sadoughi, Farahnaz

    2014-01-01

    Introduction: National Health Information System plays an important role in ensuring timely and reliable access to Health information, which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system – for better planning and management influential factors of performanceseems necessary, therefore, in this study different attitudes towards components of this system are explored comparatively. Methods: This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process and output. In this context, search for information using library resources and internet search were conducted, and data analysis was expressed using comparative tables and qualitative data. Results: The findings showed that there are three different perspectives presenting the components of national health information system Lippeveld and Sauerborn and Bodart model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008, and Gattini’s 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities and equipment. Plus, in the “process” section from three models, we pointed up the actions ensuring the quality of health information system, and in output section, except for Lippeveld Model, two other models consider information products and use and distribution of information as components of the national health information system. Conclusion: the results showed that all the three models have had a brief discussion about the components of health information in input section. But Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process and output. PMID:24825937

  10. A comparative study of the proposed models for the components of the national health information system.

    PubMed

    Ahmadi, Maryam; Damanabi, Shahla; Sadoughi, Farahnaz

    2014-04-01

    National Health Information System plays an important role in ensuring timely and reliable access to Health information, which is essential for strategic and operational decisions that improve health, quality and effectiveness of health care. In other words, using the National Health information system you can improve the quality of health data, information and knowledge used to support decision making at all levels and areas of the health sector. Since full identification of the components of this system - for better planning and management influential factors of performanceseems necessary, therefore, in this study different attitudes towards components of this system are explored comparatively. This is a descriptive and comparative kind of study. The society includes printed and electronic documents containing components of the national health information system in three parts: input, process and output. In this context, search for information using library resources and internet search were conducted, and data analysis was expressed using comparative tables and qualitative data. The findings showed that there are three different perspectives presenting the components of national health information system Lippeveld and Sauerborn and Bodart model in 2000, Health Metrics Network (HMN) model from World Health Organization in 2008, and Gattini's 2009 model. All three models outlined above in the input (resources and structure) require components of management and leadership, planning and design programs, supply of staff, software and hardware facilities and equipment. Plus, in the "process" section from three models, we pointed up the actions ensuring the quality of health information system, and in output section, except for Lippeveld Model, two other models consider information products and use and distribution of information as components of the national health information system. the results showed that all the three models have had a brief discussion about the components of health information in input section. But Lippeveld model has overlooked the components of national health information in process and output sections. Therefore, it seems that the health measurement model of network has a comprehensive presentation for the components of health system in all three sections-input, process and output.

  11. International Space Station Modal Correction Analysis

    NASA Technical Reports Server (NTRS)

    Fotz[atrocl. Lrostom; Grugoer. < ocjae; Laible, Michael; Sugavanam, Sujatha

    2012-01-01

    This paper summarizes the on-orbit modal test and the related modal analysis, model validation and correlation performed for the ISS Stage ULF4, DTF S4-1A, October 11,2010, GMT 284/06:13:00.00. The objective of this analysis is to validate and correlate analytical models with the intent to verify the ISS critical interface dynamic loads and improve fatigue life prediction. For the ISS configurations under consideration, on-orbit dynamic responses were collected with Russian vehicles attached and without the Orbiter attached to the ISS. ISS instrumentation systems that were used to collect the dynamic responses during the DTF S4-1A included the Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS), Structural Dynamic Measurement System (SDMS), Space Acceleration Measurement System (SAMS), Inertial Measurement Unit (IMU) and ISS External Cameras. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping and mode shape information. Correlation and comparisons between test and analytical modal parameters were performed to assess the accuracy of models for the ISS configuration under consideration. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. Section 2.0 of this report presents the math model used in the analysis. This section also describes the ISS configuration under consideration and summarizes the associated primary modes of interest along with the fundamental appendage modes. Section 3.0 discusses the details of the ISS Stage ULF4 DTF S4-1A test. Section 4.0 discusses the on-orbit instrumentation systems that were used in the collection of the data analyzed in this paper. The modal analysis approach and results used in the analysis of the collected data are summarized in Section 5.0. The model correlation and validation effort is reported in Section 6.0. Conclusions and recommendations drawn from this analysis are included in Section 7.0.

  12. The Co-Sb-Ga System: Isoplethal Section and Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Gierlotka, Wojciech; Chen, Sinn-wen; Chen, Wei-an; Chang, Jui-shen; Snyder, G. Jeffrey; Tang, Yinglu

    2015-04-01

    The Co-Sb-Ga ternary system is an important thermoelectric material system, and its phase equilibria are in need of further understanding. The CoSb3-GaSb isoplethal section is experimentally determined in this study. Phase equilibria of the ternary Co-Sb-Ga system are assessed, and the system's thermodynamic models are developed. In addition to the terminal phases and liquid phase, there are six binary intermediate phases and a ternary Co3Sb2Ga4 phase. The Ga solution in the CoSb3 compound is described by a dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model. Phase diagrams are calculated using the developed thermodynamic models, and a reaction scheme is proposed based on the calculation results. The calculated results are in good agreement with the experimentally determined phase diagrams, including the CoSb3-GaSb isoplethal section, the liquidus projection, and an isothermal section at 923 K (650 °C). The dual-site occupation (GaVF) x Co4Sb12- x/2(GaSb) x/2 model gives good descriptions of both phase equilibria and thermoelectric properties of the CoSb3 phase with Ga doping.

  13. Accurate universal parameterization of absorption cross sections III--light systems

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, F. A.; Wilson, J. W.

    1999-01-01

    Our prior nuclear absorption cross sections model [R.K. Tripathi, F.A. Cucinotta, J.W. Wilson, Nucl. Instr. and Meth. B 117 (1996) 347; R.K. Tripathi, J.W. Wilson, F.A. Cucinotta, Nucl. Instr. and Meth. B 129 (1997) 11] is extended for light systems (A < or = 4) where either both projectile and target are light particles or one is light particle and the other is medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium and heavy systems. As a result the extended model can reliably be used in all studies where there is a need for absorption cross sections.

  14. Atmospheric and wind modeling for ATC

    NASA Technical Reports Server (NTRS)

    Slater, Gary L.

    1990-01-01

    The section on atmospheric modeling covers the following topics: the standard atmosphere, atmospheric variations, atmosphere requirements for ATC, and implementation of a software model for Center/Tracon Advisory System (CTAS). The section on wind modeling covers the following topics: wind data -- NOAA profiler system; wind profile estimation; incorporation of various data types into filtering scheme; spatial and temporal variation; and software implementation into CTAS. The appendices contain Matlab codes for atmospheric routines and for wind estimation.

  15. Predictive Models of Duration of Ground Delay Programs in New York Area Airports

    NASA Technical Reports Server (NTRS)

    Kulkarni, Deepak

    2011-01-01

    Initially planned GDP duration often turns out to be an underestimate or an overestimate of the actual GDP duration. This, in turn, results in avoidable airborne or ground delays in the system. Therefore, better models of actual duration have the potential of reducing delays in the system. The overall objective of this study is to develop such models based on logs of GDPs. In a previous report, we described descriptive models of Ground Delay Programs. These models were defined in terms of initial planned duration and in terms of categorical variables. These descriptive models are good at characterizing the historical errors in planned GDP durations. This paper focuses on developing predictive models of GDP duration. Traffic Management Initiatives (TMI) are logged by Air Traffic Control facilities with The National Traffic Management Log (NTML) which is a single system for automated recoding, coordination, and distribution of relevant information about TMIs throughout the National Airspace System. (Brickman, 2004 Yuditsky, 2007) We use 2008-2009 GDP data from the NTML database for the study reported in this paper. NTML information about a GDP includes the initial specification, possibly one or more revisions, and the cancellation. In the next section, we describe general characteristics of Ground Delay Programs. In the third section, we develop models of actual duration. In the fourth section, we compare predictive performance of these models. The final section is a conclusion.

  16. Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion

    PubMed Central

    Ochsner, Kevin N.; Silvers, Jennifer A.; Buhle, Jason T.

    2014-01-01

    This paper reviews and synthesizes functional imaging research that over the past decade has begun to offer new insights into the brain mechanisms underlying emotion regulation. Towards that end, the first section of the paper outlines a model of the processes and neural systems involved in emotion generation and regulation. The second section surveys recent research supporting and elaborating the model, focusing primarily on studies of the most commonly investigated strategy, which is known as reappraisal. At its core, the model specifies how prefrontal and cingulate control systems modulate activity in perceptual, semantic and affect systems as a function of one's regulatory goals, tactics, and the nature of the stimuli and emotions being regulated. This section also shows how the model can be generalized to understand the brain mechanisms underlying other emotion regulation strategies as well as a range of other allied phenomena. The third and last section considers directions for future research, including how basic models of emotion regulation can be translated to understand changes in emotion across the lifespan and in clinical disorders. PMID:23025352

  17. Automation of closed environments in space for human comfort and safety

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This report culminates the work accomplished during a three year design project on the automation of an Environmental Control and Life Support System (ECLSS) suitable for space travel and colonization. The system would provide a comfortable living environment in space that is fully functional with limited human supervision. A completely automated ECLSS would increase astronaut productivity while contributing to their safety and comfort. The first section of this report, section 1.0, briefly explains the project, its goals, and the scheduling used by the team in meeting these goals. Section 2.0 presents an in-depth look at each of the component subsystems. Each subsection describes the mathematical modeling and computer simulation used to represent that portion of the system. The individual models have been integrated into a complete computer simulation of the CO2 removal process. In section 3.0, the two simulation control schemes are described. The classical control approach uses traditional methods to control the mechanical equipment. The expert control system uses fuzzy logic and artificial intelligence to control the system. By integrating the two control systems with the mathematical computer simulation, the effectiveness of the two schemes can be compared. The results are then used as proof of concept in considering new control schemes for the entire ECLSS. Section 4.0 covers the results and trends observed when the model was subjected to different test situations. These results provide insight into the operating procedures of the model and the different control schemes. The appendix, section 5.0, contains summaries of lectures presented during the past year, homework assignments, and the completed source code used for the computer simulation and control system.

  18. A Proposed Resource Cost Model Grant-in-Aid System in Illinois: Equity Considerations and Other Observations.

    ERIC Educational Resources Information Center

    Hickrod, G. Alan; Chaudhari, Ramesh B.

    This paper evaluates the equity dimensions of a grant-in-aid system based on the Resource Cost Model (RCM), as proposed by the Illinois State Board of Education. The first section is an independent evaluation of the conceptual and legal aspects of the RCM, focusing on both the weaknesses and the strengths of the model. In the second section, an…

  19. 42 CFR § 414.1305 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... Payment System and Alternative Payment Model Incentive § 414.1305 Definitions. As used in this section... additional MIPS payment adjustment factors for exceptional performance. Advanced Alternative Payment Model.... Alternative Payment Model (APM) means any of the following: (1) A model under section 1115A of the Act (other...

  20. Applying Modeling Tools to Ground System Procedures

    NASA Technical Reports Server (NTRS)

    Di Pasquale, Peter

    2012-01-01

    As part of a long-term effort to revitalize the Ground Systems (GS) Engineering Section practices, Systems Modeling Language (SysML) and Business Process Model and Notation (BPMN) have been used to model existing GS products and the procedures GS engineers use to produce them.

  1. Divergence analysis report for the bodies of revolution model support systems

    NASA Technical Reports Server (NTRS)

    Rash, Larry C.

    1983-01-01

    This report documents the sting divergence analyses of nine different model and model support systems that were performed in preparation for a series of wind tunnel tests at the National Transonic Facility at NASA Langley Research Center in Hampton, Virginia. The models were missile shaped bodies of revolution and the model support systems included a force and moment balance and tapered sting sections. The sting divergence results were obtained from a computer program that solved a two-point boundary value problem which used a second order Runge-Kutta integration technique. The computer solution was based on constant section properties between discrete stations along the sting sections, a procedure was developed and included to evaluate the properties for the minimum number of stations along the tapered sections that would produce no more than one half of one percent error in the divergence results. Also included in the report are development of the aerodynamic input data, listings of all input and output computer data, and summary sheets that highlight the input and the critical sting divergence dynamic pressure for each respective configuration.

  2. EIA model documentation: World oil refining logistics demand model,``WORLD`` reference manual. Version 1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-04-11

    This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detailmore » the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections.« less

  3. Experimental analysis of bidirectional reflectance distribution function cross section conversion term in direction cosine space.

    PubMed

    Butler, Samuel D; Nauyoks, Stephen E; Marciniak, Michael A

    2015-06-01

    Of the many classes of bidirectional reflectance distribution function (BRDF) models, two popular classes of models are the microfacet model and the linear systems diffraction model. The microfacet model has the benefit of speed and simplicity, as it uses geometric optics approximations, while linear systems theory uses a diffraction approach to compute the BRDF, at the expense of greater computational complexity. In this Letter, nongrazing BRDF measurements of rough and polished surface-reflecting materials at multiple incident angles are scaled by the microfacet cross section conversion term, but in the linear systems direction cosine space, resulting in great alignment of BRDF data at various incident angles in this space. This results in a predictive BRDF model for surface-reflecting materials at nongrazing angles, while avoiding some of the computational complexities in the linear systems diffraction model.

  4. Universal Parameterization of Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1999-01-01

    Our prior nuclear absorption cross sections model is extended for light systems (A less than or equal to 4) where either both projectile and target are light particles or one is a light particle and the other is a medium or heavy nucleus. The agreement with experiment is excellent for these cases as well. Present work in combination with our original model provides a comprehensive picture of absorption cross sections for light, medium, and heavy systems, a very valuable input for radiation protection studies.

  5. Foreword for the Special Section on Power System Planning and Operation Towards a Low-Carbon Economy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yi; Kang, Chongqing; Wang, Jianhui

    2015-03-01

    The nine papers in this special section on power system planning and operation towards a low-cost economy cover the following topics: power system planning models; power system operation methods and market behavior analysis; and risk assessment and emission management.

  6. Systems Measures of Water Distribution System Resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Murray, Regan; Walker, La Tonya Nicole

    2015-01-01

    Resilience is a concept that is being used increasingly to refer to the capacity of infrastructure systems to be prepared for and able to respond effectively and rapidly to hazardous events. In Section 2 of this report, drinking water hazards, resilience literature, and available resilience tools are presented. Broader definitions, attributes and methods for measuring resilience are presented in Section 3. In Section 4, quantitative systems performance measures for water distribution systems are presented. Finally, in Section 5, the performance measures and their relevance to measuring the resilience of water systems to hazards is discussed along with needed improvements tomore » water distribution system modeling tools.« less

  7. 24 CFR 3285.604 - Drainage system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... require drainage system crossover connections to join all sections of the home. The crossover design... all sections of the home and designed to be located underneath the home, they must be installed and... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems...

  8. Statistical investigation of avalanches of three-dimensional small-world networks and their boundary and bulk cross-sections

    NASA Astrophysics Data System (ADS)

    Najafi, M. N.; Dashti-Naserabadi, H.

    2018-03-01

    In many situations we are interested in the propagation of energy in some portions of a three-dimensional system with dilute long-range links. In this paper, a sandpile model is defined on the three-dimensional small-world network with real dissipative boundaries and the energy propagation is studied in three dimensions as well as the two-dimensional cross-sections. Two types of cross-sections are defined in the system, one in the bulk and another in the system boundary. The motivation of this is to make clear how the statistics of the avalanches in the bulk cross-section tend to the statistics of the dissipative avalanches, defined in the boundaries as the concentration of long-range links (α ) increases. This trend is numerically shown to be a power law in a manner described in the paper. Two regimes of α are considered in this work. For sufficiently small α s the dominant behavior of the system is just like that of the regular BTW, whereas for the intermediate values the behavior is nontrivial with some exponents that are reported in the paper. It is shown that the spatial extent up to which the statistics is similar to the regular BTW model scales with α just like the dissipative BTW model with the dissipation factor (mass in the corresponding ghost model) m2˜α for the three-dimensional system as well as its two-dimensional cross-sections.

  9. Content Model Use and Development to Redeem Thin Section Records

    NASA Astrophysics Data System (ADS)

    Hills, D. J.

    2014-12-01

    The National Geothermal Data System (NGDS) is a catalog of documents and datasets that provide information about geothermal resources located primarily within the United States. The goal of NGDS is to make large quantities of geothermal-relevant geoscience data available to the public by creating a national, sustainable, distributed, and interoperable network of data providers. The Geological Survey of Alabama (GSA) has been a data provider in the initial phase of NGDS. One method by which NGDS facilitates interoperability is through the use of content models. Content models provide a schema (structure) for submitted data. Schemas dictate where and how data should be entered. Content models use templates that simplify data formatting to expedite use by data providers. These methodologies implemented by NGDS can extend beyond geothermal data to all geoscience data. The GSA, using the NGDS physical samples content model, has tested and refined a content model for thin sections and thin section photos. Countless thin sections have been taken from oil and gas well cores housed at the GSA, and many of those thin sections have related photomicrographs. Record keeping for these thin sections has been scattered at best, and it is critical to capture their metadata while the content creators are still available. A next step will be to register the GSA's thin sections with SESAR (System for Earth Sample Registration) and assign an IGSN (International Geo Sample Number) to each thin section. Additionally, the thin section records will be linked to the GSA's online record database. When complete, the GSA's thin sections will be more readily discoverable and have greater interoperability. Moving forward, the GSA is implementing use of NGDS-like content models and registration with SESAR and IGSN to improve collection maintenance and management of additional physical samples.

  10. Model Children's Code.

    ERIC Educational Resources Information Center

    New Mexico Univ., Albuquerque. American Indian Law Center.

    The Model Children's Code was developed to provide a legally correct model code that American Indian tribes can use to enact children's codes that fulfill their legal, cultural and economic needs. Code sections cover the court system, jurisdiction, juvenile offender procedures, minor-in-need-of-care, and termination. Almost every Code section is…

  11. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David; Schoenenberger, Mark

    2017-01-01

    A feasibility study is in progress at NASA Glenn Research Center to implement a magnetic suspension and balance system in the 225 sq cm Supersonic Wind Tunnel for the purpose of testing the dynamic stability of blunt bodies. An important area of investigation in this study was determining the optimum size of the model and the iron spherical core inside of it. In order to minimize the required magnetic field and thus the size of the magnetic suspension system, it was determined that the test model should be as large as possible. Blockage tests were conducted to determine the largest possible model that would allow for tunnel start at Mach 2, 2.5, and 3. Three different forebody model geometries were tested at different Mach numbers, axial locations in the tunnel, and in both a square and axisymmetric test section. Experimental results showed that different model geometries produced more varied results at higher Mach Numbers. It was also shown that testing closer to the nozzle allowed larger models to start compared with testing near the end of the test section. Finally, allowable model blockage was larger in the axisymmetric test section compared with the square test section at the same Mach number. This testing answered key questions posed by the feasibility study and will be used in the future to dictate model size and performance required from the magnetic suspension system.

  12. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  13. A Systems Approach to High Performance Buildings: A Computational Systems Engineering R&D Program to Increase DoD Energy Efficiency

    DTIC Science & Technology

    2012-02-01

    for Low Energy Building Ventilation and Space Conditioning Systems...Building Energy Models ................... 162 APPENDIX D: Reduced-Order Modeling and Control Design for Low Energy Building Systems .... 172 D.1...Design for Low Energy Building Ventilation and Space Conditioning Systems This section focuses on the modeling and control of airflow in buildings

  14. Spatial resolution of transport parameters in a subtropical karst conduit system during dry and wet seasons

    NASA Astrophysics Data System (ADS)

    Ender, Anna; Goeppert, Nadine; Goldscheider, Nico

    2018-04-01

    Karst aquifers are characterized by a high degree of hydrologic variability and spatial heterogeneity of transport parameters. Tracer tests allow the quantification of these parameters, but conventional point-to-point experiments fail to capture spatiotemporal variations of flow and transport. The goal of this study was to elucidate the spatial distribution of transport parameters in a karst conduit system at different flow conditions. Therefore, six tracer tests were conducted in an active and accessible cave system in Vietnam during dry and wet seasons. Injections and monitoring were done at five sites along the flow system: a swallow hole, two sites inside the cave, and two springs draining the system. Breakthrough curves (BTCs) were modeled with CXTFIT software using the one-dimensional advection-dispersion model and the two-region nonequilibrium model. In order to obtain transport parameters in the individual sections of the system, a multi-pulse injection approach was used, which was realized by using the BTCs from one section as input functions for the next section. Major findings include: (1) In the entire system, mean flow velocities increase from 183 to 1,043 m/h with increasing discharge, while (2) the proportion of immobile fluid regions decrease; (3) the lowest dispersivity was found at intermediate discharge; (4) in the individual cave sections, flow velocities decrease along the flow direction, related to decreasing gradients, while (5) dispersivity is highest in the middle section of the cave. The obtained results provide a valuable basis for the development of an adapted water management strategy for a projected water-supply system.

  15. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas,more » and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.« less

  16. 77 FR 38239 - Partial Approval and Disapproval of Air Quality Implementation Plans; Arizona; Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-27

    ... anonymous access system, and EPA will not know your identity or contact information unless you provide it in... control measures. Section 110(a)(2)(B): Ambient air quality monitoring/data system. Section 110(a)(2)(C... significant deterioration (PSD) and visibility protection. Section 110(a)(2)(K): Air quality modeling and...

  17. A Web-based Visualization System for Three Dimensional Geological Model using Open GIS

    NASA Astrophysics Data System (ADS)

    Nemoto, T.; Masumoto, S.; Nonogaki, S.

    2017-12-01

    A three dimensional geological model is an important information in various fields such as environmental assessment, urban planning, resource development, waste management and disaster mitigation. In this study, we have developed a web-based visualization system for 3D geological model using free and open source software. The system has been successfully implemented by integrating web mapping engine MapServer and geographic information system GRASS. MapServer plays a role of mapping horizontal cross sections of 3D geological model and a topographic map. GRASS provides the core components for management, analysis and image processing of the geological model. Online access to GRASS functions has been enabled using PyWPS that is an implementation of WPS (Web Processing Service) Open Geospatial Consortium (OGC) standard. The system has two main functions. Two dimensional visualization function allows users to generate horizontal and vertical cross sections of 3D geological model. These images are delivered via WMS (Web Map Service) and WPS OGC standards. Horizontal cross sections are overlaid on the topographic map. A vertical cross section is generated by clicking a start point and an end point on the map. Three dimensional visualization function allows users to visualize geological boundary surfaces and a panel diagram. The user can visualize them from various angles by mouse operation. WebGL is utilized for 3D visualization. WebGL is a web technology that brings hardware-accelerated 3D graphics to the browser without installing additional software. The geological boundary surfaces can be downloaded to incorporate the geologic structure in a design on CAD and model for various simulations. This study was supported by JSPS KAKENHI Grant Number JP16K00158.

  18. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  19. The Reconstruction of Three-Dimensional Morphological and Electrical Paraneters from Two-Dimensional Sections of Neurones

    NASA Astrophysics Data System (ADS)

    Brawn, A. D.; Wheal, H. V.

    1986-07-01

    A system is described which can be used to create a three-dimensional model of a neurone from the central nervous system. This model can then be used to obtain quantitative data on the physical and electrical pro, perties of the neurone. Living neurones are either raised in culture, or taken from in vitro preparations of brain tissue and optically sectioned. These two-dimensional sections are digitised, and input to a 68008-based microcomputer. The system reconstructs the three-dimensional structure of the neurone, both geanetrically and electrically. The user can a) View the structure fran any point at any angle b) "Move through" the structure along any given vector c) Nave through" the structure following a neurone process d) Fire the neurone at any point, and "watch" the action potentials propagate e) Vary the parameters of the electrical model of a process element. The system is targeted to a research programme on epilepsy, which makes frequent use of both geometric and electrical neurone modelling. Current techniques which may involve crude histology and two-dimensional drawings have considerable short camings.

  20. View west of load dispatch model board; section covers substations ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west of load dispatch model board; section covers substations from edgerly (right) to thorndale and west yard (left). Instruments at bottom of center board section formerly monitored energy usage and were replaced by a computerized monitoring system. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  1. Concentration data and dimensionality in groundwater models: evaluation using inverse modelling

    USGS Publications Warehouse

    Barlebo, H.C.; Hill, M.C.; Rosbjerg, D.; Jensen, K.H.

    1998-01-01

    A three-dimensional inverse groundwater flow and transport model that fits hydraulic-head and concentration data simultaneously using nonlinear regression is presented and applied to a layered sand and silt groundwater system beneath the Grindsted Landfill in Denmark. The aquifer is composed of rather homogeneous hydrogeologic layers. Two issues common to groundwater flow and transport modelling are investigated: 1) The accuracy of simulated concentrations in the case of calibration with head data alone; and 2) The advantages and disadvantages of using a two-dimensional cross-sectional model instead of a three-dimensional model to simulate contaminant transport when the source is at the land surface. Results show that using only hydraulic heads in the nonlinear regression produces a simulated plume that is profoundly different from what is obtained in a calibration using both hydraulic-head and concentration data. The present study provides a well-documented example of the differences that can occur. Representing the system as a two-dimensional cross-section obviously omits some of the system dynamics. It was, however, possible to obtain a simulated plume cross-section that matched the actual plume cross-section well. The two-dimensional model execution times were about a seventh of those for the three-dimensional model, but some difficulties were encountered in representing the spatially variable source concentrations and less precise simulated concentrations were calculated by the two-dimensional model compared to the three-dimensional model. Summed up, the present study indicates that three dimensional modelling using both hydraulic heads and concentrations in the calibration should be preferred in the considered type of transport studies.

  2. A Mathematical Model for an Educational System.

    ERIC Educational Resources Information Center

    McReynolds, William Peter

    The document contents divide into (1) the basic flow model of an educational system and its application to the secondary school system of Ontario and (2) a group of interrelated submodels that describe the entrance to higher education in considerably finer detail. In the first section, the principal variable of the model--the transition…

  3. Metric half-span model support system

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Dollyhigh, S. M.; Shaw, D. S. (Inventor)

    1982-01-01

    A model support system used to support a model in a wind tunnel test section is described. The model comprises a metric, or measured, half-span supported by a nonmetric, or nonmeasured half-span which is connected to a sting support. Moments and forces acting on the metric half-span are measured without interference from the support system during a wind tunnel test.

  4. Calculation and analysis of cross-sections for p+184W reactions up to 200 MeV

    NASA Astrophysics Data System (ADS)

    Sun, Jian-Ping; Zhang, Zheng-Jun; Han, Yin-Lu

    2015-08-01

    A set of optimal proton optical potential parameters for p+ 184W reactions are obtained at incident proton energy up to 250 MeV. Based on these parameters, the reaction cross-sections, elastic scattering angular distributions, energy spectra and double differential cross sections of proton-induced reactions on 184W are calculated and analyzed by using theoretical models which integrate the optical model, distorted Born wave approximation theory, intra-nuclear cascade model, exciton model, Hauser-Feshbach theory and evaporation model. The calculated results are compared with existing experimental data and good agreement is achieved. Supported by National Basic Research Program of China, Technology Research of Accelerator Driven Sub-critical System for Nuclear Waste Transmutation (2007CB209903) and Strategic Priority Research Program of Chinese Academy of Sciences, Thorium Molten Salt Reactor Nuclear Energy System (XDA02010100)

  5. Space Launch System Base Heating Test: Sub-Scale Rocket Engine/Motor Design, Development and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Mehta, Manish; Seaford, Mark; Kovarik, Brian; Dufrene, Aaron; Solly, Nathan; Kirchner, Robert; Engel, Carl D.

    2014-01-01

    The Space Launch System (SLS) base heating test is broken down into two test programs: (1) Pathfinder and (2) Main Test. The Pathfinder Test Program focuses on the design, development, hot-fire test and performance analyses of the 2% sub-scale SLS core-stage and booster element propulsion systems. The core-stage propulsion system is composed of four gaseous oxygen/hydrogen RS-25D model engines and the booster element is composed of two aluminum-based model solid rocket motors (SRMs). The first section of the paper discusses the motivation and test facility specifications for the test program. The second section briefly investigates the internal flow path of the design. The third section briefly shows the performance of the model RS-25D engines and SRMs for the conducted short duration hot-fire tests. Good agreement is observed based on design prediction analysis and test data. This program is a challenging research and development effort that has not been attempted in 40+ years for a NASA vehicle.

  6. System for generating two-dimensional masks from a three-dimensional model using topological analysis

    DOEpatents

    Schiek, Richard [Albuquerque, NM

    2006-06-20

    A method of generating two-dimensional masks from a three-dimensional model comprises providing a three-dimensional model representing a micro-electro-mechanical structure for manufacture and a description of process mask requirements, reducing the three-dimensional model to a topological description of unique cross sections, and selecting candidate masks from the unique cross sections and the cross section topology. The method further can comprise reconciling the candidate masks based on the process mask requirements description to produce two-dimensional process masks.

  7. The study of production performance of water heater manufacturing by using simulation method

    NASA Astrophysics Data System (ADS)

    Iqbal, M.; Bamatraf, OAA; Tadjuddin, M.

    2018-02-01

    In industrial companies, as demand increases, decision-making to increase production becomes difficult due to the complexity of the model systems. Companies are trying to find the optimum methods to tackle such problems so that resources are utilized and production is increased. One line system of a manufacturing company in Malaysia was considered in this research. The Company produces several types of water heater and each type went into many processes, which was divided into twenty six sections. Each section has several operations. The main type of the product was 10G water heater which is produced most compare to other types, hence it was taken under consideration to be studied in this research. It was difficult to find the critical section that could improve the productions of the company. This research paper employed Delmia Quest software, Distribution Analyser software and Design of Experiment (DOE software) to simulate one model system taken from the company to be studied and to find the critical section that will improve the production system. As a result, assembly of inner and outer tank section were found to be the bottleneck section. Adding one section to the bottleneck increases the production rate by four products a day. The buffer size is determined by the experiment was six items.

  8. Modeling the depth-sectioning effect in reflection-mode dynamic speckle-field interferometric microscopy

    PubMed Central

    Zhou, Renjie; Jin, Di; Hosseini, Poorya; Singh, Vijay Raj; Kim, Yang-hyo; Kuang, Cuifang; Dasari, Ramachandra R.; Yaqoob, Zahid; So, Peter T. C.

    2017-01-01

    Unlike most optical coherence microscopy (OCM) systems, dynamic speckle-field interferometric microscopy (DSIM) achieves depth sectioning through the spatial-coherence gating effect. Under high numerical aperture (NA) speckle-field illumination, our previous experiments have demonstrated less than 1 μm depth resolution in reflection-mode DSIM, while doubling the diffraction limited resolution as under structured illumination. However, there has not been a physical model to rigorously describe the speckle imaging process, in particular explaining the sectioning effect under high illumination and imaging NA settings in DSIM. In this paper, we develop such a model based on the diffraction tomography theory and the speckle statistics. Using this model, we calculate the system response function, which is used to further obtain the depth resolution limit in reflection-mode DSIM. Theoretically calculated depth resolution limit is in an excellent agreement with experiment results. We envision that our physical model will not only help in understanding the imaging process in DSIM, but also enable better designing such systems for depth-resolved measurements in biological cells and tissues. PMID:28085800

  9. [Establishing ward-independent, intensive treatment concept in a psychiatric hospital : A model project within the new German remuneration system].

    PubMed

    Noeker, M; Juckel, G

    2017-03-01

    Model projects according to § 64b of the Social Code V in the context of the new remuneration system in psychiatry and psychosomatics, offer great possibilities to improve the treatment of people with mental illnesses. This article presents the model project of the University Hospital Bochum, which is essentially characterized by improved transition through the internal hospital sections so that patients can be quickly transferred from inpatient and daycare sections to high frequency outpatient sections with ward-independent therapies (SUL), including outreach home treatment. The SUL is also intended to facilitate preadmission crises, to significantly reduce duration of inpatient treatment and to maximize post-inpatient continuity of treatment.

  10. Spin-dependence of the electron scattering cross section by a magnetic layer system and the magneto-resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.T.; Tang, F.; Brown, W.D.

    1998-12-20

    The authors present a theoretical model for calculating the spin-dependent cross section of the scattering of electrons by a magnetic layer system. The model demonstrates that the cross sections of the scattering are different for spin up and spin down electrons. The model assumes that the electrical resistivity in a conductor is proportional to the scattering cross section of the electron in it. It is believed to support the two channel mechanism in interpreting magneto-resistance (MR). Based on the model without considering the scattering due to the interfacial roughness and the spin flipping scattering, the authors have established a relationshipmore » between MR and the square of the magnetic moment in the bulk sample without considering the scattering due to the interfacial roughness and the spin flipping scattering. It can also qualitatively explain the MR difference between the current in plane (CIP) and current perpendicular to the plane (CPP) configurations. The predictions by the model agree well with the experimental findings.« less

  11. Intubation simulation with a cross-sectional visual guidance.

    PubMed

    Rhee, Chi-Hyoung; Kang, Chul Won; Lee, Chang Ha

    2013-01-01

    We present an intubation simulation with deformable objects and a cross-sectional visual guidance using a general haptic device. Our method deforms the tube model when it collides with the human model. Mass-Spring model with the Euler integration is used for the tube deformation. For the trainee's more effective understanding of the intubation process, we provide a cross-sectional view of the oral cavity and the tube. Our system also applies a stereoscopic rendering to improve the depth perception and the reality of the simulation.

  12. Evaporation residue cross-section measurements for 48Ti-induced reactions

    NASA Astrophysics Data System (ADS)

    Sharma, Priya; Behera, B. R.; Mahajan, Ruchi; Thakur, Meenu; Kaur, Gurpreet; Kapoor, Kushal; Rani, Kavita; Madhavan, N.; Nath, S.; Gehlot, J.; Dubey, R.; Mazumdar, I.; Patel, S. M.; Dhibar, M.; Hosamani, M. M.; Khushboo, Kumar, Neeraj; Shamlath, A.; Mohanto, G.; Pal, Santanu

    2017-09-01

    Background: A significant research effort is currently aimed at understanding the synthesis of heavy elements. For this purpose, heavy ion induced fusion reactions are used and various experimental observations have indicated the influence of shell and deformation effects in the compound nucleus (CN) formation. There is a need to understand these two effects. Purpose: To investigate the effect of proton shell closure and deformation through the comparison of evaporation residue (ER) cross sections for the systems involving heavy compound nuclei around the ZCN=82 region. Methods: A systematic study of ER cross-section measurements was carried out for the 48Ti+Nd,150142 , 144Sm systems in the energy range of 140 -205 MeV . The measurement has been performed using the gas-filled mode of the hybrid recoil mass analyzer present at the Inter University Accelerator Centre (IUAC), New Delhi. Theoretical calculations based on a statistical model were carried out incorporating an adjustable barrier scaling factor to fit the experimental ER cross section. Coupled-channel calculations were also performed using the ccfull code to obtain the spin distribution of the CN, which was used as an input in the calculations. Results: Experimental ER cross sections for 48Ti+Nd,150142 were found to be considerably smaller than the statistical model predictions whereas experimental and statistical model predictions for 48Ti+144Sm were of comparable magnitudes. Conclusion: Though comparison of experimental ER cross sections with statistical model predictions indicate considerable non-compound-nuclear processes for 48Ti+Nd,150142 reactions, no such evidence is found for the 48Ti+144Sm system. Further investigations are required to understand the difference in fusion probabilities of 48Ti+142Nd and 48Ti+144Sm systems.

  13. The Hindlimb Unloading Rat Model: Literature Overview, Comparison with Spaceflight Data, and Technique Update

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina

    2004-01-01

    The hindlimb unloading (HU) rodent model is used extensively to study the response of many physiological systems to certain aspects of spaceflight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of HU, and is divided into three sections. The first section examines the characteristics of 1063 articles using or reviewing the HU model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and Hu animals from the 14-day Cosmos 2044 mission. The final section describes modifications to HU required by different experimental paradigms and a method to protect the tail harness for long duration studies. HU in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human spaceflight and disuse on Earth.

  14. Multiple Fan-Beam Optical Tomography: Modelling Techniques

    PubMed Central

    Rahim, Ruzairi Abdul; Chen, Leong Lai; San, Chan Kok; Rahiman, Mohd Hafiz Fazalul; Fea, Pang Jon

    2009-01-01

    This paper explains in detail the solution to the forward and inverse problem faced in this research. In the forward problem section, the projection geometry and the sensor modelling are discussed. The dimensions, distributions and arrangements of the optical fibre sensors are determined based on the real hardware constructed and these are explained in the projection geometry section. The general idea in sensor modelling is to simulate an artificial environment, but with similar system properties, to predict the actual sensor values for various flow models in the hardware system. The sensitivity maps produced from the solution of the forward problems are important in reconstructing the tomographic image. PMID:22291523

  15. NCAR CSM ocean model by the NCAR oceanography section. Technical note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This technical note documents the ocean component of the NCAR Climate System Model (CSM). The ocean code has been developed from the Modular Ocean Model (version 1.1) which was developed and maintained at the NOAA Geophysical Fluid Dynamics Laboratory in Princeton. As a tribute to Mike Cox, and because the material is still relevant, the first four sections of this technical note are a straight reproduction from the GFDL Technical Report that Mike wrote in 1984. The remaining sections document how the NCAR Oceanography Section members have developed the MOM 1.1 code, and how it is forced, in order tomore » produce the NCAR CSM Ocean Model.« less

  16. The hospital incident command system: modified model for hospitals in iran.

    PubMed

    Djalali, Ahmadreza; Hosseinijenab, Vahid; Peyravi, Mahmoudreza; Nekoei-Moghadam, Mahmood; Hosseini, Bashir; Schoenthal, Lisa; Koenig, Kristi L

    2015-03-27

    Effectiveness of hospital management of disasters requires a well-defined and rehearsed system. The Hospital Incident Command System (HICS), as a standardized method for command and control, was established in Iranian hospitals, but it has performed fairly during disaster exercises. This paper describes the process for, and modifications to HICS undertaken to optimize disaster management in hospitals in Iran. In 2013, a group of 11 subject matter experts participated in an expert consensus modified Delphi to develop modifications to the 2006 version of HICS. The following changes were recommended by the expert panel and subsequently implemented: 1) A Quality Control Officer was added to the Command group; 2) Security was defined as a new section; 3) Infrastructure and Business Continuity Branches were moved from the Operations Section to the Logistics and the Administration Sections, respectively; and 4) the Planning Section was merged within the Finance/Administration Section. An expert consensus group developed a modified HICS that is more feasible to implement given the managerial organization of hospitals in Iran. This new model may enhance hospital performance in managing disasters. Additional studies are needed to test the feasibility and efficacy of the modified HICS in Iran, both during simulations and actual disasters. This process may be a useful model for other countries desiring to improve disaster incident management systems for their hospitals.

  17. A System Dynamics Model of the Departmental Deployment of Instructional Resources.

    ERIC Educational Resources Information Center

    Beck, Bruce D.

    This paper reports on the development and testing of a system dynamics model of the departmental deployment of instructional resources at the University of Wisconsin-Madison. A model was developed using the Stella II computer software package. The model describes describes how departments keep student enrollments, number of course sections, and…

  18. Analysis of multi-fragmentation reactions induced by relativistic heavy ions using the statistical multi-fragmentation model

    NASA Astrophysics Data System (ADS)

    Ogawa, T.; Sato, T.; Hashimoto, S.; Niita, K.

    2013-09-01

    The fragmentation cross-sections of relativistic energy nucleus-nucleus collisions were analyzed using the statistical multi-fragmentation model (SMM) incorporated with the Monte-Carlo radiation transport simulation code particle and heavy ion transport code system (PHITS). Comparison with the literature data showed that PHITS-SMM reproduces fragmentation cross-sections of heavy nuclei at relativistic energies better than the original PHITS by up to two orders of magnitude. It was also found that SMM does not degrade the neutron production cross-sections in heavy ion collisions or the fragmentation cross-sections of light nuclei, for which SMM has not been benchmarked. Therefore, SMM is a robust model that can supplement conventional nucleus-nucleus reaction models, enabling more accurate prediction of fragmentation cross-sections.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. A. Wasiolek

    The purpose of this report is to document the biosphere model, the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), which describes radionuclide transport processes in the biosphere and associated human exposure that may arise as the result of radionuclide release from the geologic repository at Yucca Mountain. The biosphere model is one of the process models that support the Yucca Mountain Project (YMP) Total System Performance Assessment (TSPA) for the license application (LA), the TSPA-LA. The ERMYN model provides the capability of performing human radiation dose assessments. This report documents the biosphere model, which includes: (1) Describing the referencemore » biosphere, human receptor, exposure scenarios, and primary radionuclides for each exposure scenario (Section 6.1); (2) Developing a biosphere conceptual model using site-specific features, events, and processes (FEPs), the reference biosphere, the human receptor, and assumptions (Section 6.2 and Section 6.3); (3) Building a mathematical model using the biosphere conceptual model and published biosphere models (Sections 6.4 and 6.5); (4) Summarizing input parameters for the mathematical model, including the uncertainty associated with input values (Section 6.6); (5) Identifying improvements in the ERMYN model compared with the model used in previous biosphere modeling (Section 6.7); (6) Constructing an ERMYN implementation tool (model) based on the biosphere mathematical model using GoldSim stochastic simulation software (Sections 6.8 and 6.9); (7) Verifying the ERMYN model by comparing output from the software with hand calculations to ensure that the GoldSim implementation is correct (Section 6.10); and (8) Validating the ERMYN model by corroborating it with published biosphere models; comparing conceptual models, mathematical models, and numerical results (Section 7).« less

  20. Computational algebraic geometry for statistical modeling FY09Q2 progress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, David C.; Rojas, Joseph Maurice; Pebay, Philippe Pierre

    2009-03-01

    This is a progress report on polynomial system solving for statistical modeling. This is a progress report on polynomial system solving for statistical modeling. This quarter we have developed our first model of shock response data and an algorithm for identifying the chamber cone containing a polynomial system in n variables with n+k terms within polynomial time - a significant improvement over previous algorithms, all having exponential worst-case complexity. We have implemented and verified the chamber cone algorithm for n+3 and are working to extend the implementation to handle arbitrary k. Later sections of this report explain chamber cones inmore » more detail; the next section provides an overview of the project and how the current progress fits into it.« less

  1. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Xubin; Troch, Peter; Pelletier, Jon

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discussesmore » the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels« less

  2. ACOSS Eight (Active Control of Space Structures), Phase 2

    DTIC Science & Technology

    1981-09-01

    A-2 A-2 Nominal Model - Equipment Section and Solar Panels ....... A-3 A-3 Nominal Model - Upper Support .-uss ...... ............ A-4 A...sensitivity analysis technique ef selecting critical system parameters is applied tc the Diaper tetrahedral truss structure (See Section 4-2...and solar panels are omitted. The precision section is mounted on isolators to inertially r•" I fixed rigid support. The mode frequencies of this

  3. Modeling of composite coupling technology for oil-gas pipeline section resource-saving repair

    NASA Astrophysics Data System (ADS)

    Donkova, Irina; Yakubovskiy, Yuriy; Kruglov, Mikhail

    2017-10-01

    The article presents a variant of modeling and calculation of a main pipeline repair section with a composite coupling installation. This section is presented in a shape of a composite cylindrical shell. The aim of this work is mathematical modeling and study of main pipeline reconstruction section stress-strain state (SSS). There has been given a description of a structure deformation mathematical model. Based on physical relations of elasticity, integral characteristics of rigidity for each layer of a two-layer pipe section have been obtained. With the help of the systems of forces and moments which affect the layers differential equations for the first and second layer (pipeline and coupling) have been obtained. The study of the SSS has been conducted using the statements and hypotheses of the composite structures deformation theory with consideration of interlayer joint stresses. The relations to describe the work of the joint have been stated. Boundary conditions for each layer have been formulated. To describe the deformation of the composite coupling with consideration of the composite cylindrical shells theory a mathematical model in the form of a system of differential equations in displacements and boundary conditions has been obtained. Calculation of a two-layer cylindrical shell under the action of an axisymmetric load has been accomplished.

  4. EFFECTS OF NUCLEAR INDUCED BREAKUP ON THE FUSION OF 6Li+12C AND 6He+12C SYSTEMS AROUND BARRIER ENERGIES

    NASA Astrophysics Data System (ADS)

    Duhan, Sukhvinder S.; Singh, Manjeet; Kharab, Rajesh

    2012-06-01

    We have studied the effects of nuclear induced breakup channel coupling on the fusion cross-section for 6Li+12C and 6He+12C systems in the near barrier energy regime using the dynamic polarization potential (DPP) approach. It has been found that there is enhancement in the fusion cross-section with respect to standard one-dimensional barrier penetration model in the below barrier energy regime while at energies above the barrier there is suppression of fusion cross-section with respect to simple barrier penetration model is observed. The agreement between data and predictions for 6Li+12C system improves significantly as a result of the inclusion of nuclear induced DPP.

  5. Virtual Libraries: Interactive Support Software and an Application in Chaotic Models.

    ERIC Educational Resources Information Center

    Katsirikou, Anthi; Skiadas, Christos; Apostolou, Apostolos; Rompogiannakis, Giannis

    This paper begins with a discussion of the characteristics and the singularity of chaotic systems, including dynamic systems theory, chaotic orbit, fractals, chaotic attractors, and characteristics of chaotic systems. The second section addresses the digital libraries (DL) concept and the appropriateness of chaotic models, including definition and…

  6. Three-dimensional object surface identification

    NASA Astrophysics Data System (ADS)

    Celenk, Mehmet

    1995-03-01

    This paper describes a computationally efficient matching method for inspecting 3D objects using their serial cross sections. Object regions of interest in cross-sectional binary images of successive slices are aligned with those of the models. Cross-sectional differences between the object and the models are measured in the direction of the gradient of the cross section boundary. This is repeated in all the cross-sectional images. The model with minimum average cross-sectional difference is selected as the best match to the given object (i.e., no defect). The method is tested using various computer generated surfaces and matching results are presented. It is also demonstrated using Symult S-2010 16-node system that the method is suitable for parallel implementation in massage passing processors with the maximum attainable speedup (close to 16 for S-2010).

  7. Development of a Pavement Maintenance Management System. Volume 9. Development of Airfield Pavement Performance Prediction Models.

    DTIC Science & Technology

    1984-05-01

    materials, traffic, and climate, were used to develop PCI and key distress prediction models for both asphalt-concrete- and jointed-concrete- surfaced...Predicted PCI for PCC and AC/PCC Pavements Using Model Presented in Section III ...... 35 31 Effect of PCC Thickness on the PCI as a Function of Age...of Corner Breaking Observed vs Predicted Percent of Corner Breaking Using Model Presented in Section III

  8. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  9. Computer models of complex multiloop branched pipeline systems

    NASA Astrophysics Data System (ADS)

    Kudinov, I. V.; Kolesnikov, S. V.; Eremin, A. V.; Branfileva, A. N.

    2013-11-01

    This paper describes the principal theoretical concepts of the method used for constructing computer models of complex multiloop branched pipeline networks, and this method is based on the theory of graphs and two Kirchhoff's laws applied to electrical circuits. The models make it possible to calculate velocities, flow rates, and pressures of a fluid medium in any section of pipeline networks, when the latter are considered as single hydraulic systems. On the basis of multivariant calculations the reasons for existing problems can be identified, the least costly methods of their elimination can be proposed, and recommendations for planning the modernization of pipeline systems and construction of their new sections can be made. The results obtained can be applied to complex pipeline systems intended for various purposes (water pipelines, petroleum pipelines, etc.). The operability of the model has been verified on an example of designing a unified computer model of the heat network for centralized heat supply of the city of Samara.

  10. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require... installation instructions. ...

  11. Unified continuum damage model for matrix cracking in composite rotor blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollayi, Hemaraju; Harursampath, Dineshkumar

    This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less

  12. Observation of three-dimensional internal structure of steel materials by means of serial sectioning with ultrasonic elliptical vibration cutting.

    PubMed

    Fujisaki, K; Yokota, H; Nakatsuchi, H; Yamagata, Y; Nishikawa, T; Udagawa, T; Makinouchi, A

    2010-01-01

    A three-dimensional (3D) internal structure observation system based on serial sectioning was developed from an ultrasonic elliptical vibration cutting device and an optical microscope combined with a high-precision positioning device. For bearing steel samples, the cutting device created mirrored surfaces suitable for optical metallography, even for long-cutting distances during serial sectioning of these ferrous materials. Serial sectioning progressed automatically by means of numerical control. The system was used to observe inclusions in steel materials on a scale of several tens of micrometers. Three specimens containing inclusions were prepared from bearing steels. These inclusions could be detected as two-dimensional (2D) sectional images with resolution better than 1 mum. A three-dimensional (3D) model of each inclusion was reconstructed from the 2D serial images. The microscopic 3D models had sharp edges and complicated surfaces.

  13. 75 FR 28463 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Model BAe 146 Airplanes and Model Avro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-21

    ... Section (ALS) of the Instructions for Continued Airworthiness to incorporate life limits for certain items... proposed to continue to require revising the Airworthiness Limitations Section (ALS) of the Instructions... Cost per U.S.- Action Work hours labor rate Parts airplane registered Fleet cost per hour airplanes ALS...

  14. 75 FR 10701 - Airworthiness Directives; BAE SYSTEMS (Operations) Limited Model BAe 146 Airplanes and Model Avro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-09

    ... Limitations Section (ALS) of the Instructions for Continued Airworthiness to incorporate life limits for... existing AD to continue to require revising the Airworthiness Limitations Section (ALS) of the Instructions... fatigue cracking in certain structures. The original NPRM also proposed to require revising the ALS of the...

  15. Cognitive Radio Application for Evaluating Coexistence with Cognitive Radars: A Software User’s Guide

    DTIC Science & Technology

    2017-10-01

    with both conventional wireless systems as well as other types of cognitive RF systems (e.g., cognitive radar). The radio hardware for this...WBX daughtercard. This technical report begins with a system -level overview in Section 1. Then, the remaining sections explain the configuration and...Approved for public release; distribution is unlimited. 1 1. Introduction and Theory of Operation The system model has 2 kinds of cognitive radio

  16. Definition of Pluviometric Thresholds For A Real Time Flood Forecasting System In The Arno Watershed

    NASA Astrophysics Data System (ADS)

    Amadio, P.; Mancini, M.; Mazzetti, P.; Menduni, G.; Nativi, S.; Rabuffetti, D.; Ravazzani, G.; Rosso, R.

    The pluviometric flood forecasting thresholds are an easy method that helps river flood emergency management collecting data from limited area meteorologic model or telemetric raingauges. The thresholds represent the cumulated rainfall depth which generate critic discharge for a particular section. The thresholds were calculated for different sections of Arno river and for different antecedent moisture condition using the flood event distributed hydrologic model FEST. The model inputs were syntethic hietographs with different shape and duration. The system realibility has been verified by generating 500 year syntethic rainfall for 3 important subwatersheds of the studied area. A new technique to consider spatial variability of rainfall and soil properties effects on hydrograph has been investigated. The "Geomorphologic Weights" were so calculated. The alarm system has been implemented in a dedicated software (MIMI) that gets measured and forecast rainfall data from Autorità di Bacino and defines the state of the alert of the river sections.

  17. [Simulation and data analysis of stereological modeling based on virtual slices].

    PubMed

    Wang, Hao; Shen, Hong; Bai, Xiao-yan

    2008-05-01

    To establish a computer-assisted stereological model for simulating the process of slice section and evaluate the relationship between section surface and estimated three-dimensional structure. The model was designed by mathematic method as a win32 software based on the MFC using Microsoft visual studio as IDE for simulating the infinite process of sections and analysis of the data derived from the model. The linearity of the fitting of the model was evaluated by comparison with the traditional formula. The win32 software based on this algorithm allowed random sectioning of the particles distributed randomly in an ideal virtual cube. The stereological parameters showed very high throughput (>94.5% and 92%) in homogeneity and independence tests. The data of density, shape and size of the section were tested to conform to normal distribution. The output of the model and that from the image analysis system showed statistical correlation and consistency. The algorithm we described can be used for evaluating the stereologic parameters of the structure of tissue slices.

  18. New insight on petroleum system modeling of Ghadames basin, Libya

    NASA Astrophysics Data System (ADS)

    Bora, Deepender; Dubey, Siddharth

    2015-12-01

    Underdown and Redfern (2008) performed a detailed petroleum system modeling of the Ghadames basin along an E-W section. However, hydrocarbon generation, migration and accumulation changes significantly across the basin due to complex geological history. Therefore, a single section can't be considered representative for the whole basin. This study aims at bridging this gap by performing petroleum system modeling along a N-S section and provides new insights on source rock maturation, generation and migration of the hydrocarbons using 2D basin modeling. This study in conjunction with earlier work provides a 3D context of petroleum system modeling in the Ghadames basin. Hydrocarbon generation from the lower Silurian Tanezzuft formation and the Upper Devonian Aouinet Ouenine started during the late Carboniferous. However, high subsidence rate during middle to late Cretaceous and elevated heat flow in Cenozoic had maximum impact on source rock transformation and hydrocarbon generation whereas large-scale uplift and erosion during Alpine orogeny has significant impact on migration and accumulation. Visible migration observed along faults, which reactivated during Austrian unconformity. Peak hydrocarbon expulsion reached during Oligocene for both the Tanezzuft and the Aouinet Ouenine source rocks. Based on modeling results, capillary entry pressure driven downward expulsion of hydrocarbons from the lower Silurian Tanezzuft formation to the underlying Bir Tlacsin formation observed during middle Cretaceous. Kinetic modeling has helped to model hydrocarbon composition and distribution of generated hydrocarbons from both the source rocks. Application of source to reservoir tracking technology suggest some accumulations at shallow stratigraphic level has received hydrocarbons from both the Tanezzuft and Aouinet Ouenine source rocks, implying charge mixing. Five petroleum systems identified based on source to reservoir correlation technology in Petromod*. This Study builds upon the original work of Underdown and Redfern, 2008 and offers new insights and interpretation of the data.

  19. Neutron total cross-section of hydrogenous and deuterated 1- and 2-propanol and n-butanol measured using the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Rodríguez Palomino, L. A.; Dawidowski, J.; Márquez Damián, J. I.; Cuello, G. J.; Romanelli, G.; Krzystyniak, M.

    2017-10-01

    This work presents the total cross sections of a set of normal and deuterated alcohols (hydrogenous 1- and 2-propanol and n-butanol, 1-propanol(OD) and fully deuterated 2-propanol and n-butanol), measured at spectrometer VESUVIO (ISIS spallation neutron source, United Kingdom). Granada's Synthetic Model was applied to describe those systems and a satisfactory agreement with the measured total cross section was achieved in the range of energies from 10-3 to 100 eV. The input parameters of the model were determined from the essential features of the vibrational spectra of the atoms that compose the systems, which were studied using Molecular Dynamics.

  20. Visualizing along-strike change in deformation style using analog modeling and digital visualization software

    NASA Astrophysics Data System (ADS)

    Burberry, C. M.

    2012-12-01

    It is a well-known phenomenon that deformation style varies in space; both along the strike of a deformed belt and along the strike of individual structures within that belt. This variation in deformation style is traditionally visualized with a series of closely spaced 2D cross-sections. However, the use of 2D section lines implies plane strain along those lines, and the true 3D nature of the deformation is not necessarily captured. By using a combination of remotely sensed data, analog modeling of field datasets and this remote data, and numerical and digital visualization of the finished model, a 3D understanding and restoration of the deformation style within the region can be achieved. The workflow used for this study begins by considering the variation in deformation style which can be observed from satellite images and combining this data with traditional field data, in order to understand the deformation in the region under consideration. The conceptual model developed at this stage is then modeled using a sand and silicone modeling system, where the kinematics and dynamics of the deformation processes can be examined. A series of closely-spaced cross-sections, as well as 3D images of the deformation, are created from the analog model, and input into a digital visualization and modeling system for restoration. In this fashion, a valid 3D model is created where the internal structure of the deformed system can be visualized and mined for information. The region used in the study is the Sawtooth Range, Montana. The region forms part of the Montana Disturbed Belt in the Front Ranges of the Rocky Mountains, along strike from the Alberta Syncline in the Canadian Rocky Mountains. Interpretation of satellite data indicates that the deformation front structures include both folds and thrust structures. The thrust structures vary from hinterland-verging triangle zones to foreland-verging imbricate thrusts along strike, and the folds also vary in geometry along strike. The analog models, constrained by data from exploration wells, indicate that this change in geometry is related to a change in mechanical stratigraphy along the strike of the belt. Results from the kinematic and dynamic analysis of the digital model will also be presented. Additional implications of such a workflow and visualization system include the possibility of creating and viewing multiple cross-sections, including sections created at oblique angles to the original model. This allows the analysis of the non-plane strain component of the models and thus a more complete analysis, understanding and visualization of the deformed region. This workflow and visualization system is applicable to any region where traditional field methods must be coupled with remote data, intensely processed depth data, or analog modeling systems in order to generate valid geologic or geophsyical models.

  1. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data

    NASA Technical Reports Server (NTRS)

    Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina

    2005-01-01

    The hindlimb unloading rodent model is used extensively to study the response of many physiological systems to certain aspects of space flight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of hindlimb unloading, and is divided into three sections. The first section examines the characteristics of 1064 articles using or reviewing the hindlimb unloading model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and hindlimb unloading animals from the 14-day Cosmos 2044 mission. The final section describes modifications to hindlimb unloading required by different experimental paradigms and a method to protect the tail harness for long duration studies. Hindlimb unloading in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human space flight and disuse on Earth.

  2. Forecasting staffing needs for productivity management in hospital laboratories.

    PubMed

    Pang, C Y; Swint, J M

    1985-12-01

    Daily and weekly prediction models are developed to help forecast hospital laboratory work load for the entire laboratory and individual sections of the laboratory. The models are tested using historical data obtained from hospital census and laboratory log books of a 90-bed southwestern hospital. The results indicate that the predictor variables account for 50%, 81%, 56%, and 82% of the daily work load variation for chemistry, hematology, and microbiology sections, and for the entire laboratory, respectively. Equivalent results for the weekly model are 53%, 72%, 12%, and 78% for the same respective sections. On the basis of the predicted work load, staffing assessment is made and a productivity monitoring system constructed. The purpose of such a system is to assist laboratory management in efforts to utilize laboratory manpower in a more efficient and cost-effective manner.

  3. Challenges & Roadmap for Beyond CMOS Computing Simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, Arun F.; Frank, Michael P.

    Simulating HPC systems is a difficult task and the emergence of “Beyond CMOS” architectures and execution models will increase that difficulty. This document presents a “tutorial” on some of the simulation challenges faced by conventional and non-conventional architectures (Section 1) and goals and requirements for simulating Beyond CMOS systems (Section 2). These provide background for proposed short- and long-term roadmaps for simulation efforts at Sandia (Sections 3 and 4). Additionally, a brief explanation of a proof-of-concept integration of a Beyond CMOS architectural simulator is presented (Section 2.3).

  4. Literature Review and Assessment of Plant and Animal Transfer Factors Used in Performance Assessment Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, David E.; Cataldo, Dominic A.; Napier, Bruce A.

    2003-07-20

    A literature review and assessment was conducted by Pacific Northwest National Laboratory (PNNL) to update information on plant and animal radionuclide transfer factors used in performance-assessment modeling. A group of 15 radionuclides was included in this review and assessment. The review is composed of four main sections, not including the Introduction. Section 2.0 provides a review of the critically important issue of physicochemical speciation and geochemistry of the radionuclides in natural soil-water systems as it relates to the bioavailability of the radionuclides. Section 3.0 provides an updated review of the parameters of importance in the uptake of radionuclides by plants,more » including root uptake via the soil-groundwater system and foliar uptake due to overhead irrigation. Section 3.0 also provides a compilation of concentration ratios (CRs) for soil-to-plant uptake for the 15 selected radionuclides. Section 4.0 provides an updated review on radionuclide uptake data for animal products related to absorption, homeostatic control, approach to equilibration, chemical and physical form, diet, and age. Compiled transfer coefficients are provided for cow’s milk, sheep’s milk, goat’s milk, beef, goat meat, pork, poultry, and eggs. Section 5.0 discusses the use of transfer coefficients in soil, plant, and animal modeling using regulatory models for evaluating radioactive waste disposal or decommissioned sites. Each section makes specific suggestions for future research in its area.« less

  5. NASA Glenn 1-by 1-Foot Supersonic Wind Tunnel User Manual

    NASA Technical Reports Server (NTRS)

    Seablom, Kirk D.; Soeder, Ronald H.; Stark, David E.; Leone, John F. X.; Henry, Michael W.

    1999-01-01

    This manual describes the NASA Glenn Research Center's 1 - by 1 -Foot Supersonic Wind Tunnel and provides information for customers who wish to conduct experiments in this facility. Tunnel performance envelopes of total pressure, total temperature, and dynamic pressure as a function of test section Mach number are presented. For each Mach number, maps are presented of Reynolds number per foot as a function of the total air temperature at the test section inlet for constant total air pressure at the inlet. General support systems-such as the service air, combustion air, altitude exhaust system, auxiliary bleed system, model hydraulic system, schlieren system, model pressure-sensitive paint, and laser sheet system are discussed. In addition, instrumentation and data processing, acquisition systems are described, pretest meeting formats and schedules are outlined, and customer responsibilities and personnel safety are addressed.

  6. A Preliminary Data Model for Orbital Flight Dynamics in Shuttle Mission Control

    NASA Technical Reports Server (NTRS)

    ONeill, John; Shalin, Valerie L.

    2000-01-01

    The Orbital Flight Dynamics group in Shuttle Mission Control is investigating new user interfaces in a project called RIOTS [RIOTS 2000]. Traditionally, the individual functions of hardware and software guide the design of displays, which results in an aggregated, if not integrated interface. The human work system has then been designed and trained to navigate, operate and integrate the processors and displays. The aim of RIOTS is to reduce the cognitive demands of the flight controllers by redesigning the user interface to support the work of the flight controller. This document supports the RIOTS project by defining a preliminary data model for Orbital Flight Dynamics. Section 2 defines an information-centric perspective. An information-centric approach aims to reduce the cognitive workload of the flight controllers by reducing the need for manual integration of information across processors and displays. Section 3 describes the Orbital Flight Dynamics domain. Section 4 defines the preliminary data model for Orbital Flight Dynamics. Section 5 examines the implications of mapping the data model to Orbital Flight Dynamics current information systems. Two recurring patterns are identified in the Orbital Flight Dynamics work the iteration/rework cycle and the decision-making/information integration/mirroring role relationship. Section 6 identifies new requirements on Orbital Flight Dynamics work and makes recommendations based on changing the information environment, changing the implementation of the data model, and changing the two recurring patterns.

  7. An Immunized Aircraft Maneuver Selection System

    NASA Technical Reports Server (NTRS)

    Karr, Charles L.

    2003-01-01

    The objective of this project, as stated in the original proposal, was to develop an immunized aircraft maneuver selection (IAMS) system. The IAMS system was to be composed of computational and informational building blocks that resemble structures in natural immune systems. The ultimate goal of the project was to develop a software package that could be flight tested on aircraft models. This report describes the work performed in the first year of what was to have been a two year project. This report also describes efforts that would have been made in the final year to have completed the project, had it been continued for the final year. After introductory material is provided in Section 2, the end-of-year-one status of the effort is discussed in Section 3. The remainder of the report provides an accounting of first year efforts. Section 4 provides background information on natural immune systems while Section 5 describes a generic ar&itecture developed for use in the IAMS. Section 6 describes the application of the architecture to a system identification problem. Finally, Section 7 describes steps necessary for completing the project.

  8. Regional Precipitation Forecast with Atmospheric InfraRed Sounder (AIRS) Profile Assimilation

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    Advanced technology in hyperspectral sensors such as the Atmospheric InfraRed Sounder (AIRS; Aumann et al. 2003) on NASA's polar orbiting Aqua satellite retrieve higher vertical resolution thermodynamic profiles than their predecessors due to increased spectral resolution. Although these capabilities do not replace the robust vertical resolution provided by radiosondes, they can serve as a complement to radiosondes in both space and time. These retrieved soundings can have a significant impact on weather forecasts if properly assimilated into prediction models. Several recent studies have evaluated the performance of specific operational weather forecast models when AIRS data are included in the assimilation process. LeMarshall et al. (2006) concluded that AIRS radiances significantly improved 500 hPa anomaly correlations in medium-range forecasts of the Global Forecast System (GFS) model. McCarty et al. (2009) demonstrated similar forecast improvement in 0-48 hour forecasts in an offline version of the operational North American Mesoscale (NAM) model when AIRS radiances were assimilated at the regional scale. Reale et al. (2008) showed improvements to Northern Hemisphere 500 hPa height anomaly correlations in NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5) global system with the inclusion of partly cloudy AIRS temperature profiles. Singh et al. (2008) assimilated AIRS temperature and moisture profiles into a regional modeling system for a study of a heavy rainfall event during the summer monsoon season in Mumbai, India. This paper describes an approach to assimilate AIRS temperature and moisture profiles into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimensional variational (3DVAR) assimilation system (WRF-Var; Barker et al. 2004). Section 2 describes the AIRS instrument and how the quality indicators are used to intelligently select the highest-quality data for assimilation. Section 3 presents an overall precipitation improvement with AIRS assimilation during a 37-day case study period, and Section 4 focuses on a single case study to further investigate the meteorological impact of AIRS profiles on synoptic scale models. Finally, Section 5 provides a summary of the paper.

  9. DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni

    This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary andmore » tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed mechanistic Parachor models. In the decane-CO{sub 2} binary system, Parachor model was found to be sufficient for interfacial tension calculations. The predicted miscibility from the Parachor model deviated only by about 2.5% from the measured VIT miscibility. However, in multicomponent live decane-CO{sub 2} system, the performance of the Parachor model was poor, while good match of interfacial tension predictions has been obtained experimentally using the proposed mechanistic Parachor model. The predicted miscibility from the mechanistic Parachor model accurately matched with the measured VIT miscibility in live decane-CO2 system, which indicates the suitability of this model to predict miscibility in complex multicomponent hydrocarbon systems. In the previous reports to the DOE (15323R07, Oct 2004; 15323R08, Jan 2005; 15323R09, Apr 2005; 15323R10, July 2005 and 154323, Oct 2005), the 1-D experimental results from dimensionally scaled GAGD and WAG corefloods were reported for Section III. Additionally, since Section I reports the experimental results from 2-D physical model experiments; this section attempts to extend this 2-D GAGD study to 3-D (4-phase) flow through porous media and evaluate the performance of these processes using reservoir simulation. Section IV includes the technology transfer efforts undertaken during the quarter. This research work resulted in one international paper presentation in Tulsa, OK; one journal publication; three pending abstracts for SCA 2006 Annual Conference and an invitation to present at the Independents Day session at the IOR Symposium 2006.« less

  10. Enhancements to the SSME transfer function modeling code

    NASA Technical Reports Server (NTRS)

    Irwin, R. Dennis; Mitchell, Jerrel R.; Bartholomew, David L.; Glenn, Russell D.

    1995-01-01

    This report details the results of a one year effort by Ohio University to apply the transfer function modeling and analysis tools developed under NASA Grant NAG8-167 (Irwin, 1992), (Bartholomew, 1992) to attempt the generation of Space Shuttle Main Engine High Pressure Turbopump transfer functions from time domain data. In addition, new enhancements to the transfer function modeling codes which enhance the code functionality are presented, along with some ideas for improved modeling methods and future work. Section 2 contains a review of the analytical background used to generate transfer functions with the SSME transfer function modeling software. Section 2.1 presents the 'ratio method' developed for obtaining models of systems that are subject to single unmeasured excitation sources and have two or more measured output signals. Since most of the models developed during the investigation use the Eigensystem Realization Algorithm (ERA) for model generation, Section 2.2 presents an introduction of ERA, and Section 2.3 describes how it can be used to model spectral quantities. Section 2.4 details the Residue Identification Algorithm (RID) including the use of Constrained Least Squares (CLS) and Total Least Squares (TLS). Most of this information can be found in the report (and is repeated for convenience). Section 3 chronicles the effort of applying the SSME transfer function modeling codes to the a51p394.dat and a51p1294.dat time data files to generate transfer functions from the unmeasured input to the 129.4 degree sensor output. Included are transfer function modeling attempts using five methods. The first method is a direct application of the SSME codes to the data files and the second method uses the underlying trends in the spectral density estimates to form transfer function models with less clustering of poles and zeros than the models obtained by the direct method. In the third approach, the time data is low pass filtered prior to the modeling process in an effort to filter out high frequency characteristics. The fourth method removes the presumed system excitation and its harmonics in order to investigate the effects of the excitation on the modeling process. The fifth method is an attempt to apply constrained RID to obtain better transfer functions through more accurate modeling over certain frequency ranges. Section 4 presents some new C main files which were created to round out the functionality of the existing SSME transfer function modeling code. It is now possible to go from time data to transfer function models using only the C codes; it is not necessary to rely on external software. The new C main files and instructions for their use are included. Section 5 presents current and future enhancements to the XPLOT graphics program which was delivered with the initial software. Several new features which have been added to the program are detailed in the first part of this section. The remainder of Section 5 then lists some possible features which may be added in the future. Section 6 contains the conclusion section of this report. Section 6.1 is an overview of the work including a summary and observations relating to finding transfer functions with the SSME code. Section 6.2 contains information relating to future work on the project.

  11. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A)

    NASA Technical Reports Server (NTRS)

    Mullooly, William

    1995-01-01

    This is the thirty-first monthly report for the Earth Observing System (EOS)/Advanced Microwave Sounding Unit- A (AMSU-A), Contract NAS5-32314, and covers the period from 1 July 1995 through 31 July 1995. This period is the nineteenth month of the Implementation Phase which provides for the design, fabrication, assembly, and test of the first EOS/AMSU-A, the Protoflight Model. Included in this report is the Master Program Schedule (Section 2), a report from the Product Team Leaders on the status of all major program elements (Section 3), Drawing status (Section 4), Weight and Power Budgets (CDRL) 503 (Section 5), Performance Assurance (CDRL 204) (Section 6), Configuration Management Status Report (CDRL 203) (Section 7), Documentation/Data Management Status Report (Section 8), and Contract Status (Section 9).

  12. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study.

    PubMed

    Souza, J P; Betran, A P; Dumont, A; de Mucio, B; Gibbs Pickens, C M; Deneux-Tharaux, C; Ortiz-Panozo, E; Sullivan, E; Ota, E; Togoobaatar, G; Carroli, G; Knight, H; Zhang, J; Cecatti, J G; Vogel, J P; Jayaratne, K; Leal, M C; Gissler, M; Morisaki, N; Lack, N; Oladapo, O T; Tunçalp, Ö; Lumbiganon, P; Mori, R; Quintana, S; Costa Passos, A D; Marcolin, A C; Zongo, A; Blondel, B; Hernández, B; Hogue, C J; Prunet, C; Landman, C; Ochir, C; Cuesta, C; Pileggi-Castro, C; Walker, D; Alves, D; Abalos, E; Moises, Ecd; Vieira, E M; Duarte, G; Perdona, G; Gurol-Urganci, I; Takahiko, K; Moscovici, L; Campodonico, L; Oliveira-Ciabati, L; Laopaiboon, M; Danansuriya, M; Nakamura-Pereira, M; Costa, M L; Torloni, M R; Kramer, M R; Borges, P; Olkhanud, P B; Pérez-Cuevas, R; Agampodi, S B; Mittal, S; Serruya, S; Bataglia, V; Li, Z; Temmerman, M; Gülmezoglu, A M

    2016-02-01

    To generate a global reference for caesarean section (CS) rates at health facilities. Cross-sectional study. Health facilities from 43 countries. Thirty eight thousand three hundred and twenty-four women giving birth from 22 countries for model building and 10,045,875 women giving birth from 43 countries for model testing. We hypothesised that mathematical models could determine the relationship between clinical-obstetric characteristics and CS. These models generated probabilities of CS that could be compared with the observed CS rates. We devised a three-step approach to generate the global benchmark of CS rates at health facilities: creation of a multi-country reference population, building mathematical models, and testing these models. Area under the ROC curves, diagnostic odds ratio, expected CS rate, observed CS rate. According to the different versions of the model, areas under the ROC curves suggested a good discriminatory capacity of C-Model, with summary estimates ranging from 0.832 to 0.844. The C-Model was able to generate expected CS rates adjusted for the case-mix of the obstetric population. We have also prepared an e-calculator to facilitate use of C-Model (www.who.int/reproductivehealth/publications/maternal_perinatal_health/c-model/en/). This article describes the development of a global reference for CS rates. Based on maternal characteristics, this tool was able to generate an individualised expected CS rate for health facilities or groups of health facilities. With C-Model, obstetric teams, health system managers, health facilities, health insurance companies, and governments can produce a customised reference CS rate for assessing use (and overuse) of CS. The C-Model provides a customized benchmark for caesarean section rates in health facilities and systems. © 2015 World Health Organization; licensed by John Wiley & Sons Ltd on behalf of Royal College of Obstetricians and Gynaecologists.

  13. An implementation of cellular automaton model for single-line train working diagram

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Liu, Jun

    2006-04-01

    According to the railway transportation system's characteristics, a new cellular automaton model for the single-line railway system is presented in this paper. Based on this model, several simulations were done to imitate the train operation under three working diagrams. From a different angle the results show how the organization of train operation impacts on the railway carrying capacity. By using the non-parallel train working diagram the influence of fast-train on slow-train is found to be the strongest. Many slow-trains have to wait in-between neighbouring stations to let the fast-train(s) pass through first. So the slow-train will advance like a wave propagating from the departure station to the arrival station. This also resembles the situation of a highway jammed traffic flow. Furthermore, the nonuniformity of travel times between the sections also greatly limits the railway carrying capacity. After converting the nonuniform sections into the sections with uniform travel times while the total travel time is kept unchanged, all three carrying capacities are improved greatly as shown by simulation. It also shows that the cellular automaton model is an effective and feasible way to investigate the railway transportation system.

  14. 75 FR 25785 - Airworthiness Directives; BAE Systems (Operations) Limited Model 4101 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-10

    ... Airworthiness Directives; BAE Systems (Operations) Limited Model 4101 Airplanes AGENCY: Federal Aviation... the propeller blades, which can result in dangerous blade cracks. The European Aviation Safety Agency... issue rules on aviation safety. Subtitle I, section 106, describes the authority of the FAA...

  15. Photoelastic Analysis of Three-dimensional Stress Systems Using Scattered Light

    NASA Technical Reports Server (NTRS)

    Weller, R; Bussey, J K

    1939-01-01

    A method has been developed for making photoelastic analyses of three-dimensional stress systems by utilizing the polarization phenomena associated with the scattering of light. By this method, the maximum shear and the directions of the three principal stresses at any point within a model can be determined, and the two principal stresses at a free-bounding surface can be separately evaluated. Polarized light is projected into the model through a slit so that it illuminates a plane section. The light is continuously analyzed along its path by scattering and the state of stress in the illuminated section is obtained. By means of a series of such sections, the entire stress field may be explored. The method was used to analyze the stress system of a simple beam in bending. The results were found to be in good agreement with those expected from elementary theory.

  16. Relating DSM-5 section II and section III personality disorder diagnostic classification systems to treatment planning.

    PubMed

    Morey, Leslie C; Benson, Kathryn T

    2016-07-01

    Beginning with DSM-III, the inclusion of a "personality" axis was designed to encourage awareness of personality disorders and the treatment-related implications of individual differences, but since that time there is little accumulated evidence that the personality disorder categories provide substantial treatment-related guidance. The DSM-5 Personality and Personality Disorders Work Group sought to develop an Alternative Model for personality disorder, and this study examined whether this model is more closely related to clinicians' decision-making processes than the traditional categorical personality disorder diagnoses. A national sample of 337 clinicians provided complete personality disorder diagnostic information and several treatment-related clinical judgments about one of their patients. The dimensional concepts of the DSM-5 Alternative Model for personality disorders demonstrated stronger relationships than categorical DSM-IV/DSM-5 Section II diagnoses to 10 of 11 clinical judgments regarding differential treatment planning, optimal treatment intensity, and long-term prognosis. The constructs of the DSM-5 Alternative Model for personality disorders may provide more clinically useful information for treatment planning than the official categorical personality disorder diagnostic system retained in DSM-5 Section II. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. New Evaluated Semi-Empirical Formula Using Optical Model for 14-15 MeV ( n, t) Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Tel, E.; Durgu, C.; Aydın, A.; Bölükdemir, M. H.; Kaplan, A.; Okuducu, Ş.

    2009-12-01

    In the next century the world will face the need for new energy sources. Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Fusion will not produce CO2 or SO2 and thus will not contribute to global warming or acid rain. Achieving acceptable performance for a fusion power system in the areas of economics, safety and environmental acceptability, is critically dependent on performance of the blanket and diverter systems which are the primary heat recovery, plasma purification, and tritium breeding systems. Tritium self-sufficiency must be maintained for a commercial power plant. The hybrid reactor is a combination of the fusion and fission processes. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So working out the systematics of ( n, t) reaction cross-sections are of great importance for the definition of the excitation function character for the given reaction taking place on various nuclei at energies up to 20 MeV. In this study, we have calculated non-elastic cross-sections by using optical model for ( n, t) reactions at 14-15 MeV energy. We have investigated the excitation function character and reaction Q-values depending on the asymmetry term effect for the ( n, t) reaction cross-sections. We have obtained new coefficients for the ( n, t) reaction cross-sections. We have suggested semi-empirical formulas including optical model nonelastic effects by fitting two parameters for the ( n, t) reaction cross-sections at 14-15 MeV. We have discussed the odd-even effect and the pairing effect considering binding energy systematic of the nuclear shell model for the new experimental data and new cross-sections formulas ( n, t) reactions developed by Tel et al. We have determined a different parameter groups by the classification of nuclei into even-even, even-odd and odd-even for ( n, t) reactions cross-sections. The obtained cross-section formulas with new coefficients have been discussed and compared with the available experimental data.

  18. Nambe Pueblo Water Budget and Forecasting model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Watermore » Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.« less

  19. Production of heavy neutron-rich nuclei in transfer reactions within the dinuclear system model

    NASA Astrophysics Data System (ADS)

    Zhu, Long; Feng, Zhao-Qing; Zhang, Feng-Shou

    2015-08-01

    The dynamics of nucleon transfer processes in heavy-ion collisions is investigated within the dinuclear system model. The production cross sections of nuclei in the reactions 136Xe+208Pb and 238U+248Cm are calculated, and the calculations are in good agreement with the experimental data. The transfer cross sections for the 58Ni+208Pb reaction are calculated and compared with the experimental data. We predict the production cross sections of neutron-rich nuclei 165-168 Eu, 169-173 Tb, 173-178 Ho, and 181-185Yb based on the reaction 176Yb+238U. It can be seen that the production cross sections of the neutron-rich nuclei 165Eu, 169Tb, 173Ho, and 181Yb are 2.84 μb, 6.90 μb, 46.24 μb, and 53.61 μb, respectively, which could be synthesized in experiment.

  20. A Thermoelastic Damping Model for the Cone Microcantilever Resonator with Circular Cross-section

    NASA Astrophysics Data System (ADS)

    Li, Pu; Zhou, Hongyue

    2017-07-01

    Microbeams with variable cross-section have been applied in Microelectromechanical Systems (MEMS) resonators. Quality factor (Q-factor) is an important factor evaluating the performance of MEMS resonators, and high Q-factor stands for the excellent performance. Thermoelastic damping (TED), which has been verified as a fundamental energy lost mechanism for microresonators, determines the upper limit of Q-factor. TED can be calculated by the Zener’s model and Lifshits and Roukes (LR) model. However, for microbeam resonators with variable cross-sections, these two models become invalid in some cases. In this work, we derived the TED model for cone microcantilever with circular cross-section that is a representative non-uniform microbeam. The comparison of results obtained by the present model and Finite Element Method (FEM) model proves that the present model is valid for predicting TED value for cone microcantilever with circular cross-section. The results suggest that the first-order natural frequencies and TED values of cone microcantilever are larger than those of uniform microbeam for large aspect ratios (l/r 0). In addition, the Debye peak value of a uniform microcantilever is equal to 0.5ΔE, while that of cone microcantilever is about 0.438ΔE.

  1. Spectrophotometric Determination of the Characteristics of Stromal and Parenchymal Components of Colon Tumors

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Shulha, A. V.; Maskevich, S. A.

    2016-05-01

    We consider the dependence of the spectral properties of eosin and hematoxylin (dyes routinely used in histology as contrast agents) on their localization in biological tissues with different levels of pathology: benign and malignant neoplasms and sigmoid colonic crypts. We have analyzed the fluorescent images and fluorescence spectra of the parenchyma and stromal elements. We have established that on going from physiologically normal cells to tumor cells, the contribution to the absorption cross section of histologic sections due to hematoxylin increases. In pathologically altered cells in a colonic crypt, we observe a hypsochromic effect in the fluorescence spectra of the samples with appreciable quenching of the fluorescence, while in the model systems the reverse effect occurs: a shift of the fluorescence maximum toward the red region. We discuss the influence on the indicated effects from local pH and the polarity of the dye environment in the model systems and histologic sections. As the systems modeling the polarity and acidity of the biological media, we use aqueous solutions of the dyes with different pH values and synthetic polyelectrolytes.

  2. 75 FR 47184 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model EMB-135ER...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-05

    ... is revising the Airworthiness Limitations Section (ALS) of the Instructions for Continued... is revising the Airworthiness Limitations Section (ALS) of the Instructions for Continued... 16, 2008, revise the ALS of the ICA to incorporate Section A2.5.2, Fuel System Limitation Items, of...

  3. A hierarchy for modeling high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  4. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark

    2017-01-01

    The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.

  5. Job Aid Manuals for Phase II--DESIGN of the Instructional Systems Development Model.

    ERIC Educational Resources Information Center

    Schulz, Russel E.; Farrell, Jean R.

    Designed to supplement the descriptive authoring flowcharts presented in a companion volume, this manual includes specific guidance, examples, and other information referred to in the flowcharts for the implementation of the second phase of the Instructional Systems Development Model (ISD). The introductory section includes definitions;…

  6. Job Aid Manuals for Phase I--ANALYZE of the Instructional Systems Development Model.

    ERIC Educational Resources Information Center

    Schulz, Russel E.; Farrell, Jean R.

    Designed to supplement the descriptive authoring flowcharts in a companion volume, this manual includes specific guidance, examples, and other information referred to in the flowcharts for the implementation of the first phase of the Instructional Systems Development Model (ISD). The introductory section includes definitions; descriptions of…

  7. Job Aid Manuals for Phase III--DEVELOP of the Instructional Systems Development Model.

    ERIC Educational Resources Information Center

    Schulz, Russel E.; Farrell, Jean R.

    Designed to supplement the descriptive authoring flowcharts presented in a companion volume, this manual includes specific guidance, examples, and other information referred to in the flowcharts for the implementation of the third phase of the Instructional Systems Development Model (ISD). The introductory section includes definitions;…

  8. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.

    PubMed

    Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang

    2013-09-01

    Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.

  9. Single High Fidelity Geometric Data Sets for LCM - Model Requirements

    DTIC Science & Technology

    2006-11-01

    are extensive single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems, which make...single 3D CAD data models incorporating hull structure, propulsion, steering, piping , electrical, HVAC and other systems. During this same period...be sufficiently flexible to accommodate the diverse requirements of various types of structural analyses. Section Properties & Material Data

  10. Interactive computer aided technology, evolution in the design/manufacturing process

    NASA Technical Reports Server (NTRS)

    English, C. H.

    1975-01-01

    A powerful computer-operated three dimensional graphic system and associated auxiliary computer equipment used in advanced design, production design, and manufacturing was described. This system has made these activities more productive than when using older and more conventional methods to design and build aerospace vehicles. With the use of this graphic system, designers are now able to define parts using a wide variety of geometric entities, define parts as fully surface 3-dimensional models as well as "wire-frame" models. Once geometrically defined, the designer is able to take section cuts of the surfaced model and automatically determine all of the section properties of the planar cut, lightpen detect all of the surface patches and automatically determine the volume and weight of the part. Further, his designs are defined mathematically at a degree of accuracy never before achievable.

  11. Modelling heat transfer during flow through a random packed bed of spheres

    NASA Astrophysics Data System (ADS)

    Burström, Per E. C.; Frishfelds, Vilnis; Ljung, Anna-Lena; Lundström, T. Staffan; Marjavaara, B. Daniel

    2018-04-01

    Heat transfer in a random packed bed of monosized iron ore pellets is modelled with both a discrete three-dimensional system of spheres and a continuous Computational Fluid Dynamics (CFD) model. Results show a good agreement between the two models for average values over a cross section of the bed for an even temperature profiles at the inlet. The advantage with the discrete model is that it captures local effects such as decreased heat transfer in sections with low speed. The disadvantage is that it is computationally heavy for larger systems of pellets. If averaged values are sufficient, the CFD model is an attractive alternative that is easy to couple to the physics up- and downstream the packed bed. The good agreement between the discrete and continuous model furthermore indicates that the discrete model may be used also on non-Stokian flow in the transitional region between laminar and turbulent flow, as turbulent effects show little influence of the overall heat transfer rates in the continuous model.

  12. Automated clustering-based workload characterization

    NASA Technical Reports Server (NTRS)

    Pentakalos, Odysseas I.; Menasce, Daniel A.; Yesha, Yelena

    1996-01-01

    The demands placed on the mass storage systems at various federal agencies and national laboratories are continuously increasing in intensity. This forces system managers to constantly monitor the system, evaluate the demand placed on it, and tune it appropriately using either heuristics based on experience or analytic models. Performance models require an accurate workload characterization. This can be a laborious and time consuming process. It became evident from our experience that a tool is necessary to automate the workload characterization process. This paper presents the design and discusses the implementation of a tool for workload characterization of mass storage systems. The main features of the tool discussed here are: (1)Automatic support for peak-period determination. Histograms of system activity are generated and presented to the user for peak-period determination; (2) Automatic clustering analysis. The data collected from the mass storage system logs is clustered using clustering algorithms and tightness measures to limit the number of generated clusters; (3) Reporting of varied file statistics. The tool computes several statistics on file sizes such as average, standard deviation, minimum, maximum, frequency, as well as average transfer time. These statistics are given on a per cluster basis; (4) Portability. The tool can easily be used to characterize the workload in mass storage systems of different vendors. The user needs to specify through a simple log description language how the a specific log should be interpreted. The rest of this paper is organized as follows. Section two presents basic concepts in workload characterization as they apply to mass storage systems. Section three describes clustering algorithms and tightness measures. The following section presents the architecture of the tool. Section five presents some results of workload characterization using the tool.Finally, section six presents some concluding remarks.

  13. Inverse problems in 1D hemodynamics on systemic networks: a sequential approach.

    PubMed

    Lombardi, D

    2014-02-01

    In this work, a sequential approach based on the unscented Kalman filter is applied to solve inverse problems in 1D hemodynamics, on a systemic network. For instance, the arterial stiffness is estimated by exploiting cross-sectional area and mean speed observations in several locations of the arteries. The results are compared with those ones obtained by estimating the pulse wave velocity and the Moens-Korteweg formula. In the last section, a perspective concerning the identification of the terminal models parameters and peripheral circulation (modeled by a Windkessel circuit) is presented. Copyright © 2013 John Wiley & Sons, Ltd.

  14. AutoRoute Rapid Flood Inundation Model

    DTIC Science & Technology

    2013-03-01

    Res. 33(2): 309-319. U.S. Army Engineer Hydrologic Engineering Center. 2010. “ HEC - RAS : River Analysis System, User’s Manual, Version 4.1.” Davis...cross-section data does not exist. As such, the AutoRoute model is not meant to be as accurate as models such as HEC - RAS (U.S. Army Engineer...such as HEC - RAS assume that the defined low point of cross sections must be connected. However, in this approach the channel is assumed to be defined

  15. New V and V Tools for Diagnostic Modeling Environment (DME)

    NASA Technical Reports Server (NTRS)

    Pecheur, Charles; Nelson, Stacy; Merriam, Marshall (Technical Monitor)

    2002-01-01

    The purpose of this report is to provide correctness and reliability criteria for verification and validation (V&V) of Second Generation Reusable Launch Vehicle (RLV) Diagnostic Modeling Environment, describe current NASA Ames Research Center tools for V&V of Model Based Reasoning systems, and discuss the applicability of Advanced V&V to DME. This report is divided into the following three sections: (1) correctness and reliability criteria; (2) tools for V&V of Model Based Reasoning; and (3) advanced V&V applicable to DME. The Executive Summary includes an overview of the main points from each section. Supporting details, diagrams, figures, and other information are included in subsequent sections. A glossary, acronym list, appendices, and references are included at the end of this report.

  16. Section-constrained local geological interface dynamic updating method based on the HRBF surface

    NASA Astrophysics Data System (ADS)

    Guo, Jiateng; Wu, Lixin; Zhou, Wenhui; Li, Chaoling; Li, Fengdan

    2018-02-01

    Boundaries, attitudes and sections are the most common data acquired from regional field geological surveys, and they are used for three-dimensional (3D) geological modelling. However, constructing topologically consistent 3D geological models from rapid and automatic regional modelling with convenient local modifications remains unresolved. In previous works, the Hermite radial basis function (HRBF) surface was introduced for the simulation of geological interfaces from geological boundaries and attitudes, which allows 3D geological models to be automatically extracted from the modelling area by the interfaces. However, the reasonability and accuracy of non-supervised subsurface modelling is limited without further modifications generated through explanations and analyses performed by geology experts. In this paper, we provide flexible and convenient manual interactive manipulation tools for geologists to sketch constraint lines, and these tools may help geologists transform and apply their expert knowledge to the models. In the modified modelling workflow, the geological sections were treated as auxiliary constraints to construct more reasonable 3D geological models. The geometric characteristics of section lines were abstracted to coordinates and normal vectors, and along with the transformed coordinates and vectors from boundaries and attitudes, these characteristics were adopted to co-calculate the implicit geological surface function parameters of the HRBF equations and form constrained geological interfaces from topographic (boundaries and attitudes) and subsurface data (sketched sections). Based on this new modelling method, a prototype system was developed, in which the section lines could be imported from databases or interactively sketched, and the models could be immediately updated after the new constraints were added. Experimental comparisons showed that all boundary, attitude and section data are well represented in the constrained models, which are consistent with expert explanations and help improve the quality of the models.

  17. 76 FR 437 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model EMB-135BJ Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-05

    ... corrective action is revising the Airworthiness Limitations Section (ALS) of the Instructions for Continued... corrective action is revising the Airworthiness Limitations Section (ALS) of the Instructions for Continued... 16, 2008, revise the ALS of the ICA to incorporate Section A2.5.2, Fuel System Limitation Items, of...

  18. The Nuclear Energy Advanced Modeling and Simulation Safeguards and Separations Reprocessing Plant Toolkit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaskey, Alex; Billings, Jay Jay; de Almeida, Valmor F

    2011-08-01

    This report details the progress made in the development of the Reprocessing Plant Toolkit (RPTk) for the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. RPTk is an ongoing development effort intended to provide users with an extensible, integrated, and scalable software framework for the modeling and simulation of spent nuclear fuel reprocessing plants by enabling the insertion and coupling of user-developed physicochemical modules of variable fidelity. The NEAMS Safeguards and Separations IPSC (SafeSeps) and the Enabling Computational Technologies (ECT) supporting program element have partnered to release an initial version of the RPTk with a focus on software usabilitymore » and utility. RPTk implements a data flow architecture that is the source of the system's extensibility and scalability. Data flows through physicochemical modules sequentially, with each module importing data, evolving it, and exporting the updated data to the next downstream module. This is accomplished through various architectural abstractions designed to give RPTk true plug-and-play capabilities. A simple application of this architecture, as well as RPTk data flow and evolution, is demonstrated in Section 6 with an application consisting of two coupled physicochemical modules. The remaining sections describe this ongoing work in full, from system vision and design inception to full implementation. Section 3 describes the relevant software development processes used by the RPTk development team. These processes allow the team to manage system complexity and ensure stakeholder satisfaction. This section also details the work done on the RPTk ``black box'' and ``white box'' models, with a special focus on the separation of concerns between the RPTk user interface and application runtime. Section 4 and 5 discuss that application runtime component in more detail, and describe the dependencies, behavior, and rigorous testing of its constituent components.« less

  19. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  20. Brief Strategic Family Therapy: Implementing evidence-based models in community settings

    PubMed Central

    Szapocznik, José; Muir, Joan A.; Duff, Johnathan H.; Schwartz, Seth J.; Brown, C. Hendricks

    2014-01-01

    Reflecting a nearly 40-year collaborative partnership between clinical researchers and clinicians, the present article reviews the authors’ experience in developing, investigating, and implementing the Brief Strategic Family Therapy (BSFT) model. The first section of the article focuses on the theory, practice, and studies related to this evidence-based family therapy intervention targeting adolescent drug abuse and delinquency. The second section focuses on the implementation model created for the BSFT intervention– a model that parallels many of the recommendations furthered within the implementation science literature. Specific challenges encountered during the BSFT implementation process are reviewed, along with ways of conceptualizing and addressing these challenges from a systemic perspective. The implementation approach that we employ uses the same systemic principles and intervention techniques as those that underlie the BSFT model itself. Recommendations for advancing the field of implementation science, based on our on-the-ground experiences, are proposed. PMID:24274187

  1. Motion of an Articulated Vehicle with Two-Dimensional Sections Subject to Lateral Obstacles

    NASA Astrophysics Data System (ADS)

    Antonyuk, E. Ya.; Zabuga, A. T.

    2016-07-01

    Some aspects of the geometry, kinematics, and dynamics of a three-section robotic vehicle with a front steerable wheel are studied. The constraints between the wheels and the flat ground are assumed nonholonomic. The vehicle moves in a narrow L-shaped corridor. A path for the characteristic points of the sections of the robot is designed. A dynamic model of the system is developed. The maximum possible dimensions of the robot that allow its unimpeded and non-stop motion are determined. The kinetostatic analysis of the load on a three-section vehicle moving along a planned path is modeled. The holonomic and nonholonomic constraint reactions between the wheels and the ground and in the joints between the sections are determined

  2. Reliable High Performance Peta- and Exa-Scale Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronevetsky, G

    2012-04-02

    As supercomputers become larger and more powerful, they are growing increasingly complex. This is reflected both in the exponentially increasing numbers of components in HPC systems (LLNL is currently installing the 1.6 million core Sequoia system) as well as the wide variety of software and hardware components that a typical system includes. At this scale it becomes infeasible to make each component sufficiently reliable to prevent regular faults somewhere in the system or to account for all possible cross-component interactions. The resulting faults and instability cause HPC applications to crash, perform sub-optimally or even produce erroneous results. As supercomputers continuemore » to approach Exascale performance and full system reliability becomes prohibitively expensive, we will require novel techniques to bridge the gap between the lower reliability provided by hardware systems and users unchanging need for consistent performance and reliable results. Previous research on HPC system reliability has developed various techniques for tolerating and detecting various types of faults. However, these techniques have seen very limited real applicability because of our poor understanding of how real systems are affected by complex faults such as soft fault-induced bit flips or performance degradations. Prior work on such techniques has had very limited practical utility because it has generally focused on analyzing the behavior of entire software/hardware systems both during normal operation and in the face of faults. Because such behaviors are extremely complex, such studies have only produced coarse behavioral models of limited sets of software/hardware system stacks. Since this provides little insight into the many different system stacks and applications used in practice, this work has had little real-world impact. My project addresses this problem by developing a modular methodology to analyze the behavior of applications and systems during both normal and faulty operation. By synthesizing models of individual components into a whole-system behavior models my work is making it possible to automatically understand the behavior of arbitrary real-world systems to enable them to tolerate a wide range of system faults. My project is following a multi-pronged research strategy. Section II discusses my work on modeling the behavior of existing applications and systems. Section II.A discusses resilience in the face of soft faults and Section II.B looks at techniques to tolerate performance faults. Finally Section III presents an alternative approach that studies how a system should be designed from the ground up to make resilience natural and easy.« less

  3. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...

  4. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...

  5. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...

  6. 24 CFR 3285.701 - Electrical crossovers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...

  7. Experimental evaluation of blockage ratio and plenum evacuation system flow effects on pressure distribution for bodies of revolution in 0.1 scale model test section of NASA Lewis Research Center's proposed altitude wind tunnel

    NASA Technical Reports Server (NTRS)

    Burley, Richard R.; Harrington, Douglas E.

    1987-01-01

    An experimental investigation was conducted in the slotted test section of the 0.1-scale model of the proposed Altitude Wind Tunnel to evaluate wall interference effects at tunnel Mach numbers from 0.70 to 0.95 on bodies of revolution with blockage rates of 0.43, 3, 6, and 12 percent. The amount of flow that had to be removed from the plenum chamber (which surrounded the slotted test section) by the plenum evacuation system (PES) to eliminate wall interference effects was determined. The effectiveness of tunnel reentry flaps in removing flow from the plenum chamber was examined. The 0.43-percent blockage model was the only one free of wall interference effects with no PES flow. Surface pressures on the forward part of the other models were greater than interference-free results and were not influenced by PES flow. Interference-free results were achieved on the aft part of the 3- and 6-percent blockage models with the proper amount of PES flow. The required PES flow was substantially reduced by opening the reentry flaps.

  8. Towards Artificial Speech Therapy: A Neural System for Impaired Speech Segmentation.

    PubMed

    Iliya, Sunday; Neri, Ferrante

    2016-09-01

    This paper presents a neural system-based technique for segmenting short impaired speech utterances into silent, unvoiced, and voiced sections. Moreover, the proposed technique identifies those points of the (voiced) speech where the spectrum becomes steady. The resulting technique thus aims at detecting that limited section of the speech which contains the information about the potential impairment of the speech. This section is of interest to the speech therapist as it corresponds to the possibly incorrect movements of speech organs (lower lip and tongue with respect to the vocal tract). Two segmentation models to detect and identify the various sections of the disordered (impaired) speech signals have been developed and compared. The first makes use of a combination of four artificial neural networks. The second is based on a support vector machine (SVM). The SVM has been trained by means of an ad hoc nested algorithm whose outer layer is a metaheuristic while the inner layer is a convex optimization algorithm. Several metaheuristics have been tested and compared leading to the conclusion that some variants of the compact differential evolution (CDE) algorithm appears to be well-suited to address this problem. Numerical results show that the SVM model with a radial basis function is capable of effective detection of the portion of speech that is of interest to a therapist. The best performance has been achieved when the system is trained by the nested algorithm whose outer layer is hybrid-population-based/CDE. A population-based approach displays the best performance for the isolation of silence/noise sections, and the detection of unvoiced sections. On the other hand, a compact approach appears to be clearly well-suited to detect the beginning of the steady state of the voiced signal. Both the proposed segmentation models display outperformed two modern segmentation techniques based on Gaussian mixture model and deep learning.

  9. Design of catalytic monoliths for closed-cycle carbon dioxide lasers

    NASA Technical Reports Server (NTRS)

    Herz, R. K.; Guinn, K.; Goldblum, S.; Noskowski, E.

    1989-01-01

    Pulsed carbon dioxide (CO2) lasers have many applications in aeronautics, space research, weather monitoring and other areas. Full exploitation of the potential of these lasers in hampered by the dissociation of CO2 that occurs during laser operation. The development of closed-cycle CO2 lasers requires active CO-O2 recombination (CO oxidation) catalyst and design methods for implementation of catalysts in CO2 laser systems. A monolith catalyst section model and associated design computer program, LASCAT, are presented to assist in the design of a monolith catalyst section of a closed cycle CO2 laser system. Using LASCAT,the designer is able to specify a number of system parameters and determine the monolith section performance. Trade-offs between the catalyst activity, catalyst dimensions, monolith dimensions, pressure drop, O2 conversion, and other variables can be explored and adjusted to meet system design specifications. An introduction describes a typical closed-cycle CO2 system, and indicates some advantages of a closed cycle laser system over an open cycle system and some advantages of monolith support over other types of supports. The development and use of a monolith catalyst model is presented. The results of a design study and a discussion of general design rules are given.

  10. Nonlinear and non-Hermitian optical systems applied to the development of filters and optical sensors

    NASA Astrophysics Data System (ADS)

    Amaro de Faria Júnior, A. C.

    2015-09-01

    In this work we present a method of investigation of nonlinear optical beams generated from non-Hermitian optical systems1 . This method can be applied in the development of optical filters and optical sensors to process, analyze and choose the passband of the propagation modes of an optical pulse from an non-Hermitian optical system. Non-Hermitian optical systems can be used to develop optical fiber sensors that suppress certain propagation modes of optical pulses that eventually behave as quantum noise. Such systems are described by the Nonlinear Schrödinger-like Equation with Parity-Time (PT) Symmetric Optical Potentials. There are optical fiber sensors that due to high laser intensity and frequency can produce quantum noise, such as Raman and Brillouin scattering. However, the optical fiber, for example, can be designed so that its geometry suppress certain propagation modes of the beam. We apply some results of non- Hermitian optical systems with PT symmetry to simulate optical lattice by a appropriate potential function, which among other applications, can naturally suppress certain propagation modes of an optical beam propagating through a waveguide. In other words, the optical system is modeled by a potential function in the Nonlinear Schrödinger-like Equation that one relates with the geometric aspects of the wave guides and with the optical beam interacting with the waveguide material. The paper is organized as follows: sections 1 and 2 present a brief description about nonlinear optical systems and non-Hermitian optical systems with PT symmetry. Section 3 presents a description of the dynamics of nonlinear optical pulses propagating through optical networks described by a optical potential non-Hermitian. Sections 4 and 5 present a general description of this non-Hermitian optical systems and how to get them from a more general model. Section 6 presents some conclusions and comment and the final section presents the references. Begin the abstract two lines below author names and addresses.

  11. Microwave Signatures of Melting/Refreezing Snow: Observations and Modeling Using Dense Medium Radiative Transfer Theory

    NASA Technical Reports Server (NTRS)

    Tedesco, Marco; Kim, Edward J.; England, Anthony; deRoo, Roger; Hardy, Janet

    2005-01-01

    Microwave brightness temperatures of snow covered terrains can be modeled by means of the Dense Radiative Transfer Medium Theory (DMRT). In a dense medium, such as snow, the assumption of independent scattering is no longer valid and the scattering of correlated scatterers must be considered. In the DMRT, this is done considering a pair distribution function of the particles position. In the electromagnetic model, the snowpack is simulated as a homogeneous layer having effective permittivity and albedo calculated through the DMRT. In order to account for clustering of snow crystals, a model of cohesive particles can be applied, where the cohesion between the particles is described by means of a dimensionless parameters called stickiness (z), representing a measure of the inversion of the attraction of the particles. The lower the z the higher the stickiness. In this study, microwave signatures of melting and refreezing cycles of seasonal snowpacks at high altitudes are studied by means of both experimental and modeling tools. Radiometric data were collected 24 hours per day by the University of Michigan Tower Mounted Radiometer System (TMRS). The brightness temperatures collected by means of the TMRS are simulated by means of a multi-layer electromagnetic model based on the dense medium theory with the inputs to the model derived from the data collected at the snow pits and from the meteorological station. The paper is structured as follows: in the first Section the temperature profiles recorded by the meteorological station and the snow pit data are presented and analyzed; in the second Section, the characteristics of the radiometric system used to collect the brightness temperatures are reported together with the temporal behavior of the recorded brightness temperatures; in the successive Section the multi-layer DMRT-based electromagnetic model is described; in the fourth Section the comparison between modeled and measured brightness temperatures is discussed. We dedicate the last Section to the conclusions and future works.

  12. Using surface creep rate to infer fraction locked for sections of the San Andreas fault system in northern California from alignment array and GPS data

    USGS Publications Warehouse

    Lienkaemper, James J.; McFarland, Forrest S.; Simpson, Robert W.; Caskey, S. John

    2014-01-01

    Surface creep rate, observed along five branches of the dextral San Andreas fault system in northern California, varies considerably from one section to the next, indicating that so too may the depth at which the faults are locked. We model locking on 29 fault sections using each section’s mean long‐term creep rate and the consensus values of fault width and geologic slip rate. Surface creep rate observations from 111 short‐range alignment and trilateration arrays and 48 near‐fault, Global Positioning System station pairs are used to estimate depth of creep, assuming an elastic half‐space model and adjusting depth of creep iteratively by trial and error to match the creep observations along fault sections. Fault sections are delineated either by geometric discontinuities between them or by distinctly different creeping behaviors. We remove transient rate changes associated with five large (M≥5.5) regional earthquakes. Estimates of fraction locked, the ratio of moment accumulation rate to loading rate, on each section of the fault system provide a uniform means to inform source parameters relevant to seismic‐hazard assessment. From its mean creep rates, we infer the main branch (the San Andreas fault) ranges from only 20%±10% locked on its central creeping section to 99%–100% on the north coast. From mean accumulation rates, we infer that four urban faults appear to have accumulated enough seismic moment to produce major earthquakes: the northern Calaveras (M 6.8), Hayward (M 6.8), Rodgers Creek (M 7.1), and Green Valley (M 7.1). The latter three faults are nearing or past their mean recurrence interval.

  13. Morphology and three-dimensional reconstruction of the digestive system of Periplaneta americana.

    PubMed

    Ma, Hui; Liu, Zhi-Gang; Bao, Ying; Ran, Pi-Xin; Zhong, Nan-Shan

    2009-01-01

    A three-dimensional (3-D) model of the digestive system of Periplaneta americana was built for the first time based on hematoxylin and eosin (H&E) staining, the study of multiple cross-sections of the larval cockroach, and 3-D reconstruction technology. The digestive system of P. americana includes the foregut, midgut, and hindgut and takes up most of the celom. The foregut comprises almost one half of the digestive system (43.57%). The midgut, the critical region for digestion and absorption, has the second highest volume ratio (35.21%). The hindgut, with the lowest volume ratio (21.22%), includes the ileum, colon, and rectum. After the ileal valve is the colon. The 3-D model presented in this paper provides a stereoscopic view for studying the adjacent relationship and arrangement of different gut sections of P. americana.

  14. Users guide for the hydroacoustic coverage assessment model (HydroCAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, T., LLNL

    1997-12-01

    A model for predicting the detection and localization performance of hydroacoustic monitoring networks has been developed. The model accounts for major factors affecting global-scale acoustic propagation in the ocean. including horizontal refraction, travel time variability due to spatial and temporal fluctuations in the ocean, and detailed characteristics of the source. Graphical user interfaces are provided to setup the models and visualize the results. The model produces maps of network detection coverage and localization area of uncertainty, as well as intermediate results such as predicted path amplitudes, travel time and travel time variance. This Users Guide for the model is organizedmore » into three sections. First a summary of functionality available in the model is presented, including example output products. The second section provides detailed descriptions of each of models contained in the system. The last section describes how to run the model, including a summary of each data input form in the user interface.« less

  15. Secondary neutron-production cross sections from heavy-ioninteractions in composite targets.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilbronn, L.; Iwata, Y.; Iwase,H.

    Secondary neutron-production cross-sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 and 80 deg in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion, neutron production experiments; namely, a peak at forward angles near the energy corresponding to the beam velocity, withmore » the remaining spectra generated by pre-equilibrium and equilibrium processes. The double differential cross sections are fitted with a moving-source parameterization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials, and for neutron production in non-target materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well, but, on average, underestimate the magnitudes of the cross sections.« less

  16. Secondary neutron-production cross sections from heavy-ion interactions in composite targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heilbronn, L.; Iwata, Y.; Murakami, T.

    Secondary neutron-production cross sections have been measured from interactions of 290 MeV/nucleon C and 600 MeV/nucleon Ne in a target composed of simulated Martian regolith and polyethylene, and from 400 MeV/nucleon Ne interactions in wall material from the International Space Station. The data were measured between 5 deg. and 80 deg. in the laboratory. We report the double-differential cross sections, angular distributions, and total neutron-production cross sections from all three systems. The spectra from all three systems exhibit behavior previously reported in other heavy-ion neutron-production experiments, namely, a peak at forward angles near the energy corresponding to the beam velocity,more » with the remaining spectra generated by pre-equilibrium and equilibrium processes. The double-differential cross sections are fitted with a moving-source parametrization. Also reported are the data without corrections for neutron flux attenuation in the target and other intervening materials and for neutron production in nontarget materials near the target position. These uncorrected spectra are compared with SHIELD-HIT and PHITS transport model calculations. The transport model calculations reproduce the spectral shapes well but, on average, underestimate the magnitudes of the cross sections.« less

  17. Systematic investigations of deep sub-barrier fusion reactions using an adiabatic approach

    NASA Astrophysics Data System (ADS)

    Ichikawa, Takatoshi

    2015-12-01

    Background: At extremely low incident energies, unexpected decreases in fusion cross sections, compared to the standard coupled-channels (CC) calculations, have been observed in a wide range of fusion reactions. These significant reductions of the fusion cross sections are often referred to as the fusion hindrance. However, the physical origin of the fusion hindrance is still unclear. Purpose: To describe the fusion hindrance based on an adiabatic approach, I propose a novel extension of the standard CC model by introducing a damping factor that describes a smooth transition from sudden to adiabatic processes, that is, the transition from the separated two-body to the united dinuclear system. I demonstrate the performance of this model by systematically investigating various deep sub-barrier fusion reactions. Method: I extend the standard CC model by introducing a damping factor into the coupling matrix elements in the standard CC model. This avoids double counting of the CC effects, when two colliding nuclei overlap one another. I adopt the Yukawa-plus-exponential (YPE) model as a basic heavy ion-ion potential, which is advantageous for a unified description of the one- and two-body potentials. For the purpose of these systematic investigations, I approximate the one-body potential with a third-order polynomial function based on the YPE model. Results: Calculated fusion cross sections for the medium-heavy mass systems of 64Ni+64Ni , 58Ni+58Ni , and 58Ni+54Fe , the medium-light mass systems of 40Ca+40Ca , 48Ca+48Ca , and 24Mg+30Si , and the mass-asymmetric systems of 48Ca+96Zr and 16O+208Pb are consistent with the experimental data. The astrophysical S factor and logarithmic derivative representations of these are also in good agreement with the experimental data. The values obtained for the individual radius and diffuseness parameters in the damping factor, which reproduce the fusion cross sections well, are nearly equal to the average value for all the systems. Conclusions: Since the results calculated with the damping factor are in excellent agreement with the experimental data in all systems, I conclude that a coordinate-dependent coupling strength is responsible for the fusion hindrance. In all systems, the potential energies at the touching point VTouch strongly correlate with the incident threshold energies for which the fusion hindrance starts to emerge, except for the medium-light mass systems.

  18. Detonation engine fed by acetylene-oxygen mixture

    NASA Astrophysics Data System (ADS)

    Smirnov, N. N.; Betelin, V. B.; Nikitin, V. F.; Phylippov, Yu. G.; Koo, Jaye

    2014-11-01

    The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman-Jouguet detonation parameters.

  19. 42 CFR § 414.1300 - Basis and scope.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... Incentive Payment System and Alternative Payment Model Incentive § 414.1300 Basis and scope. (a) Basis. This... Participation in Eligible Alternative Payment Models. (2) Section 1848(a)—Payment for Physicians' Services Based... to QPs. (10) Criteria for Physician-Focused Payment Models (PFPMs). ...

  20. Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section

    DTIC Science & Technology

    1983-02-01

    experimental data desired. Internal strain gage balances covering a range of sizes and load capabilities are available for static force and moment tests...tunnel. Both sting and side wall model mounts are available which can be adapted to a variety of internal strain gage balance systems for force and...model components or liquids in the test section. A selection of internal and external strain gage balances and associated mounting fixtures are

  1. National Ignition Facility main laser stray light analysis and control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    English, R E; Miller, J L; Peterson, G

    1998-06-26

    Stray light analysis has been carried out for the main laser section of the National Ignition Facility main laser section using a comprehensive non-sequential ray trace model supplemented with additional ray trace and diffraction propagation modeling. This paper describes the analysis and control methodology, gives examples of ghost paths and required tilted lenses, baffles, absorbers, and beam dumps, and discusses analysis of stray light "pencil beams" in the system.

  2. Fusion and direct reactions around the barrier for the systems {sup 7,9}Be,{sup 7}Li+{sup 238}U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raabe, R.; Angulo, C.; Charvet, J. L.

    2006-10-15

    We present new cross section data for the complete fusion of the weakly bound systems {sup 7,9}Be and {sup 7}Li on {sup 238}U at energies around the Coulomb barrier. In the same measurement, yields for direct processes and incomplete fusion are detected. For all systems, a suppression of the complete fusion cross section around and above the barrier is observed. At energies below the barrier, the fusion of the {sup 7}Be+{sup 238}U system shows no enhancement with respect to simple model predictions.

  3. Asynchronous discrete control of continuous processes

    NASA Astrophysics Data System (ADS)

    Kaliski, M. E.; Johnson, T. L.

    1984-07-01

    The research during this second contract year continued to deal with the development of sound theoretical models for asynchronous systems. Two criteria served to shape the research pursued: the first, that the developed models extend and generalize previously developed research for synchronous discrete control; the second, that the models explicitly address the question of how to incorporate system transition times into themselves. The following sections of this report concisely delineate this year's work. Our original proposal for this research identified four general tasks of investigation: (1.1) Analysis of Qualitative Properties of Asynchronous Hybrid Systems; (1.2) Acceptance and Control for Asynchronous Hybrid Systems.

  4. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    NASA Astrophysics Data System (ADS)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  5. Development of a hybrid (numerical-hydraulic) circulatory model: prototype testing and its response to IABP assistance.

    PubMed

    Ferrari, G; Kozarski, M; De Lazzari, C; Górczyńska, K; Tosti, G; Darowski, M

    2005-07-01

    Merging numerical and physical models of the circulation makes it possible to develop a new class of circulatory models defined as hybrid. This solution reduces the costs, enhances the flexibility and opens the way to many applications ranging from research to education and heart assist devices testing. In the prototype described in this paper, a hydraulic model of systemic arterial tree is connected to a lumped parameters numerical model including pulmonary circulation and the remaining parts of systemic circulation. The hydraulic model consists of a characteristic resistance, of a silicon rubber tube to allow the insertion of an Intra-Aortic Balloon Pump (IABP) and of a lumped parameters compliance. Two electro-hydraulic interfaces, realized by means of gear pumps driven by DC motors, connect the numerical section with both terminals of the hydraulic section. The lumped parameters numerical model and the control system (including analog to digital and digital to analog converters)are developed in LabVIEW environment. The behavior of the model is analyzed by means of the ventricular pressure-volume loops and the time courses of arterial and ventricular pressures and flows in different circulatory conditions. A simulated pathological condition was set to test the IABP and verify the response of the system to this type of mechanical circulatory assistance. The results show that the model can represent hemodynamic relationships in different ventricular and circulatory conditions and is able to react to the IABP assistance.

  6. Ada Compiler Validation Summary Report. Certificate Number: 900726W1. 11017, Verdix Corporation VADS IBM RISC System/6000, AIX 3.1, VAda-110-7171, Version 6.0 IBM RISC System/6000 Model 530 = IBM RISC System/6000 Model 530

    DTIC Science & Technology

    1991-01-22

    Customer Agreement Number: 90-05-29- VRX See Section 3.1 for any additional information about the testing environment. As a result of this validation...22 January 1991 90-05-29- VRX Ada COMPILER VALIDATION SUMMARY REPORT: Certificate Number: 900726W1.11017 Verdix Corporation VADS IBM RISC System/6000

  7. Testing Composites

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A device for testing composites for strength characteristics has been developed by Acoustic Emission Technology Corporation. Called the Model 206AU, the system is lightweight and portable. It is comprised of three sections. The "pulser" section injects ultrasonic waves into the material under test. A receiver picks up the simulated stress waves as they pass through the material and relays the signals to the acoustic emission section, where they are electronically analyzed.

  8. Semantic Importance Sampling for Statistical Model Checking

    DTIC Science & Technology

    2014-10-18

    we implement SIS in a tool called osmosis and use it to verify a number of stochastic systems with rare events. Our results indicate that SIS reduces...background definitions and concepts. Section 4 presents SIS, and Section 5 presents our tool osmosis . In Section 6, we present our experiments and results...Syntactic Extraction ∗( ) dReal + Refinement ∗ |∗| , Monte-Carlo , Fig. 5. Architecture of osmosis

  9. 78 FR 27246 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ...; Modeling and Analysis of Biological Systems Study Section. Date: June 6-7, 2013. Time: 8:00 a.m. to 5:00 p...; Psychosocial Development, Risk and Prevention Study Section. Date: June 6-7, 2013. Time: 8:00 a.m. to 6:00 p.m... Review Group; Behavioral Genetics and Epidemiology Study Section. Date: June 6, 2013. Time: 8:00 a.m. to...

  10. Modeling of the aorta artery aneurysms and renal artery stenosis using cardiovascular electronic system

    PubMed Central

    Hassani, Kamran; Navidbakhsh, Mahdi; Rostami, Mostafa

    2007-01-01

    Background The aortic aneurysm is a dilatation of the aortic wall which occurs in the saccular and fusiform types. The aortic aneurysms can rupture, if left untreated. The renal stenosis occurs when the flow of blood from the arteries leading to the kidneys is constricted by atherosclerotic plaque. This narrowing may lead to the renal failure. Previous works have shown that, modelling is a useful tool for understanding of cardiovascular system functioning and pathophysiology of the system. The present study is concerned with the modelling of aortic aneurysms and renal artery stenosis using the cardiovascular electronic system. Methods The geometrical models of the aortic aneurysms and renal artery stenosis, with different rates, were constructed based on the original anatomical data. The pressure drop of each section due to the aneurysms or stenosis was computed by means of computational fluid dynamics method. The compliance of each section with the aneurysms or stenosis is also calculated using the mathematical method. An electrical system representing the cardiovascular circulation was used to study the effects of these pressure drops and the compliance variations on this system. Results The results showed the decreasing of pressure along the aorta and renal arteries lengths, due to the aneurysms and stenosis, at the peak systole. The mathematical method demonstrated that compliances of the aorta sections and renal increased with the expansion rate of the aneurysms and stenosis. The results of the modelling, such as electrical pressure graphs, exhibited the features of the pathologies such as hypertension and were compared with the relevant experimental data. Conclusion We conclude from the study that the aortic aneurysms as well as renal artery stenosis may be the most important determinant of the arteries rupture and failure. Furthermore, these pathologies play important rules in increase of the cardiovascular pulse pressure which leads to the hypertension. PMID:17559685

  11. Modeling a maintenance simulation of the geosynchronous platform

    NASA Technical Reports Server (NTRS)

    Kleiner, A. F., Jr.

    1980-01-01

    A modeling technique used to conduct a simulation study comparing various maintenance routines for a space platform is dicussed. A system model is described and illustrated, the basic concepts of a simulation pass are detailed, and sections on failures and maintenance are included. The operation of the system across time is best modeled by a discrete event approach with two basic events - failure and maintenance of the system. Each overall simulation run consists of introducing a particular model of the physical system, together with a maintenance policy, demand function, and mission lifetime. The system is then run through many passes, each pass corresponding to one mission and the model is re-initialized before each pass. Statistics are compiled at the end of each pass and after the last pass a report is printed. Items of interest typically include the time to first maintenance, total number of maintenance trips for each pass, average capability of the system, etc.

  12. Aspects regarding at 13C isotope separation column control using Petri nets system

    NASA Astrophysics Data System (ADS)

    Boca, M. L.; Ciortea, M. E.

    2015-11-01

    This paper is intended to show that Petri nets can be also applicable in the chemical industry. It used linear programming, modeling underlying Petri nets, especially discrete event systems for isotopic separation, the purpose of considering and control events in real-time through graphical representations. In this paper it is simulate the control of 13C Isotope Separation column using Petri nets. The major problem with 13C comes from the difficulty of obtaining it and raising its natural fraction. Carbon isotopes can be obtained using many methods, one of them being the cryogenic distillation of carbon monoxide. Some few aspects regarding operating conditions and the construction of such cryogenic plants are known today, and even less information are available as far as the separation process modeling and control are concerned. In fact, the efficient control of the carbon monoxide distillation process represents a necessity for large-scale 13C production. Referring to a classic distillation process, some models for carbon isotope separation have been proposed, some based on mass, component and energy balance equations, some on the nonlinear wave theory or the Cohen equations. For modeling the system it was used Petri nets because in this case it is deal with discrete event systems. In use of the non-timed and with auxiliary times Petri model, the transport stream was divided into sections and these sections will be analyzed successively. Because of the complexity of the system and the large amount of calculations required it was not possible to analyze the system as a unitary whole. A first attempt to model the system as a unitary whole led to the blocking of the model during simulation, because of the large processing times.

  13. An integrated 3D log processing optimization system for small sawmills in central Appalachia

    Treesearch

    Wenshu Lin; Jingxin Wang

    2013-01-01

    An integrated 3D log processing optimization system was developed to perform 3D log generation, opening face determination, headrig log sawing simulation, fl itch edging and trimming simulation, cant resawing, and lumber grading. A circular cross-section model, together with 3D modeling techniques, was used to reconstruct 3D virtual logs. Internal log defects (knots)...

  14. Applying the Dynamic Social Systems Model to HIV Prevention in a Rural African Context: The Maasai and the "Esoto" Dance

    ERIC Educational Resources Information Center

    Siegler, Aaron J.; Mbwambo, Jessie K.; DiClemente, Ralph J.

    2013-01-01

    This study applied the Dynamic Social Systems Model (DSSM) to the issue of HIV risk among the Maasai tribe of Tanzania, using data from a cross-sectional, cluster survey among 370 randomly selected participants from Ngorongoro and Siha Districts. A culturally appropriate survey instrument was developed to explore traditions reportedly coadunate…

  15. Robust control of accelerators

    NASA Astrophysics Data System (ADS)

    Joel, W.; Johnson, D.; Chaouki, Abdallah T.

    1991-07-01

    The problem of controlling the variations in the rf power system can be effectively cast as an application of modern control theory. Two components of this theory are obtaining a model and a feedback structure. The model inaccuracies influence the choice of a particular controller structure. Because of the modelling uncertainty, one has to design either a variable, adaptive controller or a fixed, robust controller to achieve the desired objective. The adaptive control scheme usually results in very complex hardware; and, therefore, shall not be pursued in this research. In contrast, the robust control method leads to simpler hardware. However, robust control requires a more accurate mathematical model of the physical process than is required by adaptive control. Our research at the Los Alamos National Laboratory (LANL) and the University of New Mexico (UNM) has led to the development and implementation of a new robust rf power feedback system. In this article, we report on our research progress. In section 1, the robust control problem for the rf power system and the philosophy adopted for the beginning phase of our research is presented. In section 2, the results of our proof-of-principle experiments are presented. In section 3, we describe the actual controller configuration that is used in LANL FEL physics experiments. The novelty of our approach is that the control hardware is implemented directly in rf. without demodulating, compensating, and then remodulating.

  16. Advanced Technology Multiple Criteria Decision Model.

    DTIC Science & Technology

    1981-11-01

    ratings of the sys- tem parameters; and (3), HEADER which contains information on the structure of the problem and titles. Two supporting programs develop...in these files are given in Section V.2. 2. DATA STRUCTURE TABLES This section describes the data files used in the system selection model program ...the supporting program PPP and an input file to UPPP and SSMP. Figure 13 shows the structure of this file. b. User’s preference package (UPP) UPP is

  17. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and correlate the behavior of these structural composites under uniaxial tension and flexural loading responses. Development and use of analytical models enables optimal design for application of these materials in structural applications. Another area of immediate focus is the development of new construction products from SHCC laminates such as angles, channels, hat sections, closed sections with optimized cross sections. Sandwich composites with stress skin-cellular core concept were also developed to utilize strength and ductility of fabric reinforced skin in addition to thickness, ductility, and thermal benefits of cellular core materials. The proposed structurally efficient and durable sections promise to compete with wood and light gage steel based sections for lightweight construction and panel application.

  18. Predicting indoor pollutant concentrations, and applications to air quality management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzetti, David M.

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptomsmore » such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.« less

  19. The NASA Langley 16-Foot Transonic Tunnel: Historical Overview, Facility Description, Calibration, Flow Characteristics, and Test Capabilities

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Bangert, Linda S.; Asbury, Scott C.; Mills, Charles T. L.; Bare, E. Ann

    1995-01-01

    The Langley 16-Foot Transonic Tunnel is a closed-circuit single-return atmospheric wind tunnel that has a slotted octagonal test section with continuous air exchange. The wind tunnel speed can be varied continuously over a Mach number range from 0.1 to 1.3. Test-section plenum suction is used for speeds above a Mach number of 1.05. Over a period of some 40 years, the wind tunnel has undergone many modifications. During the modifications completed in 1990, a new model support system that increased blockage, new fan blades, a catcher screen for the first set of turning vanes, and process controllers for tunnel speed, model attitude, and jet flow for powered models were installed. This report presents a complete description of the Langley 16-Foot Transonic Tunnel and auxiliary equipment, the calibration procedures, and the results of the 1977 and the 1990 wind tunnel calibration with test section air removal. Comparisons with previous calibrations showed that the modifications made to the wind tunnel had little or no effect on the aerodynamic characteristics of the tunnel. Information required for planning experimental investigations and the use of test hardware and model support systems is also provided.

  20. Heavy residues from very mass asymmetric heavy ion reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanold, Karl Alan

    1994-08-01

    The isotopic production cross sections and momenta of all residues with nuclear charge (Z) greater than 39 from the reaction of 26, 40, and 50 MeV/nucleon 129Xe + Be, C, and Al were measured. The isotopic cross sections, the momentum distribution for each isotope, and the cross section as a function of nuclear charge and momentum are presented here. The new cross sections are consistent with previous measurements of the cross sections from similar reaction systems. The shape of the cross section distribution, when considered as a function of Z and velocity, was found to be qualitatively consistent with thatmore » expected from an incomplete fusion reaction mechanism. An incomplete fusion model coupled to a statistical decay model is able to reproduce many features of these reactions: the shapes of the elemental cross section distributions, the emission velocity distributions for the intermediate mass fragments, and the Z versus velocity distributions. This model gives a less satisfactory prediction of the momentum distribution for each isotope. A very different model based on the Boltzman-Nordheim-Vlasov equation and which was also coupled to a statistical decay model reproduces many features of these reactions: the shapes of the elemental cross section distributions, the intermediate mass fragment emission velocity distributions, and the Z versus momentum distributions. Both model calculations over-estimate the average mass for each element by two mass units and underestimate the isotopic and isobaric widths of the experimental distributions. It is shown that the predicted average mass for each element can be brought into agreement with the data by small, but systematic, variation of the particle emission barriers used in the statistical model. The predicted isotopic and isobaric widths of the cross section distributions can not be brought into agreement with the experimental data using reasonable parameters for the statistical model.« less

  1. FOX: A Fault-Oblivious Extreme-Scale Execution Environment Boston University Final Report Project Number: DE-SC0005365

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appavoo, Jonathan

    Exascale computing systems will provide a thousand-fold increase in parallelism and a proportional increase in failure rate relative to today's machines. Systems software for exascale machines must provide the infrastructure to support existing applications while simultaneously enabling efficient execution of new programming models that naturally express dynamic, adaptive, irregular computation; coupled simulations; and massive data analysis in a highly unreliable hardware environment with billions of threads of execution. The FOX project explored systems software and runtime support for a new approach to the data and work distribution for fault oblivious application execution. Our major OS work at Boston University focusedmore » on developing a new light-weight operating systems model that provides an appropriate context for both multi-core and multi-node application development. This work is discussed in section 1. Early on in the FOX project BU developed infrastructure for prototyping dynamic HPC environments in which the sets of nodes that an application is run on can be dynamically grown or shrunk. This work was an extension of the Kittyhawk project and is discussed in section 2. Section 3 documents the publications and software repositories that we have produced. To put our work in context of the complete FOX project contribution we include in section 4 an extended version of a paper that documents the complete work of the FOX team.« less

  2. System capacity and economic modeling computer tool for satellite mobile communications systems

    NASA Technical Reports Server (NTRS)

    Wiedeman, Robert A.; Wen, Doong; Mccracken, Albert G.

    1988-01-01

    A unique computer modeling tool that combines an engineering tool with a financial analysis program is described. The resulting combination yields a flexible economic model that can predict the cost effectiveness of various mobile systems. Cost modeling is necessary in order to ascertain if a given system with a finite satellite resource is capable of supporting itself financially and to determine what services can be supported. Personal computer techniques using Lotus 123 are used for the model in order to provide as universal an application as possible such that the model can be used and modified to fit many situations and conditions. The output of the engineering portion of the model consists of a channel capacity analysis and link calculations for several qualities of service using up to 16 types of earth terminal configurations. The outputs of the financial model are a revenue analysis, an income statement, and a cost model validation section.

  3. Field test of an alternative longwall gate road design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, R.M.; Vandergrift, T.L.; McDonnell, J.P.

    1994-01-01

    The US Bureau of Mines (USBM) MULSIM/ML modeling technique has been used to analyze anticipated stress distributions for a proposed alternative longwall gate road design for a western Colorado coal mine. The model analyses indicated that the alternative gate road design would reduce stresses in the headgate entry. To test the validity of the alternative gate road design under actual mining conditions, a test section of the alternative system was incorporated into a subsequent set of gate roads developed at the mine. The alternative gate road test section was instrumented with borehole pressure cells, as part of an ongoing USBMmore » research project to monitor ground pressure changes as longwall mining progressed. During the excavation of the adjacent longwall panels, the behavior of the alternative gate road system was monitored continuously using the USBM computer-assisted Ground Control Management System. During these field tests, the alternative gate road system was first monitored and evaluated as a headgate, and later monitored and evaluated as a tailgate. The results of the field tests confirmed the validity of using the MULSIM/NL modeling technique to evaluate mine designs.« less

  4. 0.4 Percent Scale Space Launch System Wind Tunnel Test

    NASA Image and Video Library

    2011-11-15

    0.4 Percent Scale Space Launch System Wind Tunnel Test 0.4 Percent Scale SLS model installed in the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 1 for aerodynamic force and movement testing.

  5. 77 FR 296 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-04

    ..., (301) 435- 1153, [email protected] . Name of Committee: Digestive, Kidney and Urological Systems..., Modeling and Analysis of Biological Systems Study Section. Date: February 8-9, 2012. Time: 8 a.m. to 5 p.m...

  6. Broadband Spectral-Polarimetric BRDF Scan System and Data for Spacecraft Materials

    DTIC Science & Technology

    2011-09-01

    Function ( BRDF ) measurement system from 350nm to 2500nm with 1nm wavelength resolution is providing data for satellite radiance modeling and specifically...multilayer insulation (MLI) and solar cells is presented. The continuum nature of the data indicates that either dedicated BRDF models or a method for...but the BRDFs will be difficult to model . Judgments whether to use texturing, or an average BRDF , or perhaps optical cross section (OCS) values, or

  7. A study of model deflection measurement techniques applicable within the national transonic facility

    NASA Technical Reports Server (NTRS)

    Hildebrand, B. P.; Doty, J. L.

    1982-01-01

    Moire contouring, scanning interferometry, and holographic contouring were examined to determine their practicality and potential to meet performance requirements for a model deflection sensor. The system envisioned is to be nonintrusive, and is to be capable of mapping or contouring the surface of a 1-meter by 1-meter model with a resolution of 50 to 100 points. The available literature was surveyed, and computations and analyses were performed to establish specific performance requirements, as well as the capabilities and limitations of such a sensor within the geometry of the NTF section test section. Of the three systems examined, holographic contouring offers the most promise. Unlike Moire, it is not hampered by limited contour spacing and extraneous fringes. Its transverse resolution can far exceed the limited point sampling resolution of scanning heterodyne interferometry. The availability of the ruby laser as a high power, pulsed, multiple wavelength source makes such a system feasible within the NTF.

  8. Cross-section fluctuations in chaotic scattering systems.

    PubMed

    Ericson, Torleif E O; Dietz, Barbara; Richter, Achim

    2016-10-01

    Exact analytical expressions for the cross-section correlation functions of chaotic scattering systems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyond these restrictions. The derivation is based on a statistical model of Breit-Wigner type for chaotic scattering amplitudes which has been shown to describe the exact analytical results for the scattering (S)-matrix correlation functions accurately. Our results are given in the energy and in the time representations and apply in the whole range from isolated to overlapping resonances. The S-matrix contributions to the cross-section correlations are obtained in terms of explicit irreducible and reducible correlation functions. Consequently, the model can be used for a detailed exploration of the key features of the cross-section correlations and the underlying physical mechanisms. In the region of isolated resonances, the cross-section correlations contain a dominant contribution from the self-correlation term. For narrow states the self-correlations originate predominantly from widely spaced states with exceptionally large partial width. In the asymptotic region of well-overlapping resonances, the cross-section autocorrelation functions are given in terms of the S-matrix autocorrelation functions. For inelastic correlations, in particular, the Ericson fluctuations rapidly dominate in that region. Agreement with known analytical and experimental results is excellent.

  9. Ada (Trademark) Reusability Guidelines.

    DTIC Science & Technology

    1985-04-01

    generators. Neighbors discusses another approach to reusable software using models. He describes a particular modeling technique using the Draco System ...experience with the Draco system . Is Fx~~~~flP7 7. 4 .~-’ b.r SECTION 4 DESIGN GUIDEUiNES As noted earlier, reusability is first and foremost a design issue...to be reused in another system that had a different type of physical data storage device, only this layer needs to be changed to deal with the new

  10. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging.

    PubMed

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio; Ntziachristos, Vasilis; Rosenthal, Amir

    2015-09-01

    With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. The optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV-L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. In all cases, model-based TV-L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV-L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV-L1 inversion yielded sharper images and weaker streak artifact. The results herein show that TV-L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV-L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.

  11. 76 FR 31456 - Special Conditions: Gulfstream Model GVI Airplane; Electronic Flight Control System: Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Control System: Control Surface Position Awareness AGENCY: Federal Aviation Administration (FAA), DOT... electronic flight control system. The applicable airworthiness regulations do not contain adequate or... regulatory adequacy pursuant to section 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The FAA...

  12. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  13. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  14. 40 CFR 60.1720 - What continuous emission monitoring systems must I install for gaseous pollutants?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems must I install for gaseous pollutants? 60.1720 Section 60.1720 Protection of Environment... or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1720 What continuous..., maintain, and operate continuous emission monitoring systems for oxygen (or carbon dioxide), sulfur dioxide...

  15. Investigation of the Three-Nucleon System Dynamics in the Deuteron-Proton Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Ciepał, I.; Kłos, B.; Kistryn, St.; Stephan, E.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Zejma, J.

    2014-08-01

    Precise and large sets of cross section, vector A x , A y and tensor A xx , A xy , A yy analyzing power data for the 1 H( d, pp) n breakup reactions were measured at 100 and 130 MeV deuteron beam energies with the SALAD and BINA detectors at KVI and the Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which model the three-nucleon system dynamics. The cross section data reveal a sizable three-nucleon force (3NF) and Coulomb force influence. In case of the analyzing powers very low sensitivity to these effects was found and the data are well describe by 2N models only. For A xy at 130 MeV, serious disagreements were observed when 3NF models are included in the calculations.

  16. Potential effects of deepening the St. Johns River navigation channel on saltwater intrusion in the surficial aquifer system, Jacksonville, Florida

    USGS Publications Warehouse

    Bellino, Jason C.; Spechler, Rick M.

    2013-01-01

    The U.S. Army Corps of Engineers (USACE) has proposed dredging a 13-mile reach of the St. Johns River navigation channel in Jacksonville, Florida, deepening it to depths between 50 and 54 feet below North American Vertical Datum of 1988. The dredging operation will remove about 10 feet of sediments from the surficial aquifer system, including limestone in some locations. The limestone unit, which is in the lowermost part of the surficial aquifer system, supplies water to domestic wells in the Jacksonville area. Because of density-driven hydrodynamics of the St. Johns River, saline water from the Atlantic Ocean travels upstream as a saltwater “wedge” along the bottom of the channel, where the limestone is most likely to be exposed by the proposed dredging. A study was conducted to determine the potential effects of navigation channel deepening in the St. Johns River on salinity in the adjacent surficial aquifer system. Simulations were performed with each of four cross-sectional, variable-density groundwater-flow models, developed using SEAWAT, to simulate hypothetical changes in salinity in the surficial aquifer system as a result of dredging. The cross-sectional models were designed to incorporate a range of hydrogeologic conceptualizations to estimate the effect of uncertainty in hydrogeologic properties. The cross-sectional models developed in this study do not necessarily simulate actual projected conditions; instead, the models were used to examine the potential effects of deepening the navigation channel on saltwater intrusion in the surficial aquifer system under a range of plausible hypothetical conditions. Simulated results for modeled conditions indicate that dredging will have little to no effect on salinity variations in areas upstream of currently proposed dredging activities. Results also indicate little to no effect in any part of the surficial aquifer system along the cross section near River Mile 11 or in the water-table unit along the cross section near River Mile 8. Salinity increases of up to 4.0 parts per thousand (ppt) were indicated by the model incorporating hydrogeologic conceptualizations with both a semiconfining bed over the limestone unit and a preferential flow layer within the limestone along the cross section near River Mile 8. Simulated increases in salinity greater than 0.2 ppt in this area were generally limited to portions of the limestone unit within about 75 feet of the channel on the north side of the river. The potential for saltwater to move from the river channel to the surficial aquifer system is limited, but may be present in areas where the head gradient from the aquifer to the river is small or negative and the salinity of the river is sufficient to induce density-driven advective flow into the aquifer. In some areas, simulated increases in salinity were exacerbated by the presence of laterally extensive semiconfining beds in combination with a high-conductivity preferential flow zone in the limestone unit of the surficial aquifer system and an upgradient source of saline water, such as beneath the salt marshes near Fanning Island. The volume of groundwater pumped in these areas is estimated to be low; therefore, saltwater intrusion will not substantially affect regional water supply, although users of the surficial aquifer system east of Dames Point along the northern shore of the river could be affected. Proposed dredging operations pose no risk to salinization of the Floridan aquifer system; in the study area, the intermediate confining unit ranges in thickness from more than 300 to about 500 feet and provides sufficient hydraulic separation between the surficial and Floridan aquifer systems.

  17. Plenum response to simulated disturbances of the model and fan inlet guide vanes in a transonic tunnel

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.

    1980-01-01

    In order to aid in the design of the National Transonic Facility (NTF) control system, test section/plenum response studies were carried out in a 0.186 scale model of the NTF high speed duct. Two types of disturbances, those induced by the model and those induced by the compressor inlet guide vanes were simulated. Some observations with regard to the test section/plenum response tests are summarized as follows. A resonance frequency for the test section/plenum area of the tunnel of approximately 50 Hz was observed for Mach numbers from 0.40 to 0.90. However, since the plenum is 3.1 times (based on volume) too large for the scaled size of the test section, care must be taken in extrapolating these data to NTF conditions. The plenum pressure data indicate the existence of pressure gradients in the plenum. The test results indicate that the difference between test section static pressure and plenum pressure is dependent on test section flow conditions. Plenum response to inlet guide vane type disturbances appears to be slower than plenum response to test section disturbances.

  18. Geologic cross section C-C' through the Appalachian basin from Erie County, north-central Ohio, to the Valley and Ridge province, Bedford County, south-central Pennsylvania

    USGS Publications Warehouse

    Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.; Crangle, Robert D.; Hope, Rebecca S.; Rowan, Elisabeth L.; Lentz, Erika E.

    2012-01-01

    Geologic cross section C-C' is the third in a series of cross sections constructed by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section C-C' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from north-central Ohio to the Valley and Ridge province in south-central Pennsylvania, a distance of approximately 260 miles (mi). This cross section is a companion to cross sections E-E' and D-D' that are located about 50 to 125 mi and 25 to 50 mi, respectively, to the southwest. Cross section C-C' contains much information that is useful for evaluating energy resources in the Appalachian basin. Although specific petroleum systems are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on what is shown on the cross section. Cross section C-C' also provides a general framework (stratigraphic units and general rock types) for the coal-bearing section, although the cross section lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank). In addition, cross section C-C' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  19. ELECTRICAL RESISTIVITY TECHNIQUE TO ASSESS THE INTEGRITY OF GEOMEMBRANE LINERS

    EPA Science Inventory

    Two-dimensional electrical modeling of a liner system was performed using computer techniques. The modeling effort examined the voltage distributions in cross sections of lined facilities with different leak locations. Results confirmed that leaks in the liner influenced voltage ...

  20. Creep-fatigue life prediction for engine hot section materials (isotropic)

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1982-01-01

    The objectives of this program are the investigation of fundamental approaches to high temperature crack initiation life prediction, identification of specific modeling strategies and the development of specific models for component relevant loading conditions. A survey of the hot section material/coating systems used throughout the gas turbine industry is included. Two material/coating systems will be identified for the program. The material/coating system designated as the base system shall be used throughout Tasks 1-12. The alternate material/coating system will be used only in Task 12 for further evaluation of the models developed on the base material. In Task II, candidate life prediction approaches will be screened based on a set of criteria that includes experience of the approaches within the literature, correlation with isothermal data generated on the base material, and judgements relative to the applicability of the approach for the complex cycles to be considered in the option program. The two most promising approaches will be identified. Task 3 further evaluates the best approach using additional base material fatigue testing including verification tests. Task 4 consists of technical, schedular, financial and all other reporting requirements in accordance with the Reports of Work clause.

  1. Electron-Impact Excitation Cross Sections for Modeling Non-Equilibrium Gas

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Liu, Yen; Panesi, Marco; Munafo, Alessandro; Wray, Alan; Carbon, Duane F.

    2015-01-01

    In order to provide a database for modeling hypersonic entry in a partially ionized gas under non-equilibrium, the electron-impact excitation cross sections of atoms have been calculated using perturbation theory. The energy levels covered in the calculation are retrieved from the level list in the HyperRad code. The downstream flow-field is determined by solving a set of continuity equations for each component. The individual structure of each energy level is included. These equations are then complemented by the Euler system of equations. Finally, the radiation field is modeled by solving the radiative transfer equation.

  2. Orbital Maneuvering Engine Feed System Coupled Stability Investigation, Computer User's Manual

    NASA Technical Reports Server (NTRS)

    Schuman, M. D.; Fertig, K. W.; Hunting, J. K.; Kahn, D. R.

    1975-01-01

    An operating manual for the feed system coupled stability model was given, in partial fulfillment of a program designed to develop, verify, and document a digital computer model that can be used to analyze and predict engine/feed system coupled instabilities in pressure-fed storable propellant propulsion systems over a frequency range of 10 to 1,000 Hz. The first section describes the analytical approach to modelling the feed system hydrodynamics, combustion dynamics, chamber dynamics, and overall engineering model structure, and presents the governing equations in each of the technical areas. This is followed by the program user's guide, which is a complete description of the structure and operation of the computerized model. Last, appendices provide an alphabetized FORTRAN symbol table, detailed program logic diagrams, computer code listings, and sample case input and output data listings.

  3. NASA Hybrid Wing Aircraft Aeroacoustic Test Documentation Report

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Bahr, Christopher J.; Hoad, Danny; Becker, Lawrence; Humphreys, William M.; Burley, Casey L.; Stead, Dan; hide

    2016-01-01

    This report summarizes results of the Hybrid Wing Body (HWB) N2A-EXTE model aeroacoustic test. The N2A-EXTE model was tested in the NASA Langley 14- by 22-Foot Subsonic Tunnel (14x22 Tunnel) from September 12, 2012 until January 28, 2013 and was designated as test T598. This document contains the following main sections: Section 1 - Introduction, Section 2 - Main Personnel, Section 3 - Test Equipment, Section 4 - Data Acquisition Systems, Section 5 - Instrumentation and Calibration, Section 6 - Test Matrix, Section 7 - Data Processing, and Section 8 - Summary. Due to the amount of material to be documented, this HWB test documentation report does not cover analysis of acquired data, which is to be presented separately by the principal investigators. Also, no attempt was made to include preliminary risk reduction tests (such as Broadband Engine Noise Simulator and Compact Jet Engine Simulator characterization tests, shielding measurement technique studies, and speaker calibration method studies), which were performed in support of this HWB test. Separate reports containing these preliminary tests are referenced where applicable.

  4. A study of internal energy relaxation in shocks using molecular dynamics based models

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Parsons, Neal; Levin, Deborah A.

    2015-10-01

    Recent potential energy surfaces (PESs) for the N2 + N and N2 + N2 systems are used in molecular dynamics (MD) to simulate rates of vibrational and rotational relaxations for conditions that occur in hypersonic flows. For both chemical systems, it is found that the rotational relaxation number increases with the translational temperature and decreases as the rotational temperature approaches the translational temperature. The vibrational relaxation number is observed to decrease with translational temperature and approaches the rotational relaxation number in the high temperature region. The rotational and vibrational relaxation numbers are generally larger in the N2 + N2 system. MD-quasi-classical trajectory (QCT) with the PESs is also used to calculate the V-T transition cross sections, the collision cross section, and the dissociation cross section for each collision pair. Direct simulation Monte Carlo (DSMC) results for hypersonic flow over a blunt body with the total collision cross section from MD/QCT simulations, Larsen-Borgnakke with new relaxation numbers, and the N2 dissociation rate from MD/QCT show a profile with a decreased translational temperature and a rotational temperature close to vibrational temperature. The results demonstrate that many of the physical models employed in DSMC should be revised as fundamental potential energy surfaces suitable for high temperature conditions become available.

  5. Aerodynamic Performance of Missile Configurations at Transonic Speeds Including the Effects of a Jet Plume

    DTIC Science & Technology

    1976-02-18

    shows three different body-fixed Cartesian coordinate systems used in the present analysis . The Cartesian coordinate system with the axes x, y, and z... using the analysis of the previous section. A different situation exists when the base pressure is greater than the ambient value. Now it becomes... USED IN THE PRESENT ANALYSIS Figure 26. Computational model used in Section!!. D. 85 FIN BODY 00 C> Z t t Voa (b) FLOW FOR V oa z

  6. Finite Element Analysis of Tube Hydroforming in Non-Symmetrical Dies

    NASA Astrophysics Data System (ADS)

    Nulkar, Abhishek V.; Gu, Randy; Murty, Pilaka

    2011-08-01

    Tube hydroforming has been studied intensively using commercial finite element programs. A great deal of the investigations dealt with models with symmetric cross-sections. It is known that additional constraints due to symmetry may be imposed on the model so that it is properly supported. For a non-symmetric model, these constraints become invalid and the model does not have sufficient support resulting in a singular finite element system. Majority of commercial codes have a limited capability in solving models with insufficient supports. Recently, new algorithms using penalty variable and air-like contact element (ALCE) have been developed to solve positive semi-definite finite element systems such as those in contact mechanics. In this study the ALCE algorithm is first validated by comparing its result against a commercial code using a symmetric model in which a circular tube is formed to polygonal dies with symmetric shapes. Then, the study investigates the accuracy and efficiency of using ALCE in analyzing hydroforming of tubes with various cross-sections in non-symmetrical dies in 2-D finite element settings.

  7. Geologic Cross Section I–I′ Through the Appalachian Basin from the Eastern Margin of the Illinois Basin, Jefferson County, Kentucky, to the Valley and Ridge Province, Scott County, Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Trippi, Michael H.; Swezey, Christopher S.

    2015-12-08

    Cross section I‒I ’ contains much information that is useful for evaluating energy resources in the Appalachian basin. Many of the key elements of the Appalachian basin petroleum systems (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and petroleum migration pathways) may be evaluated by burial history, thermal history, and fluid flow models on the basis of what is shown on the cross section. Cross section I‒I’ also provides a stratigraphic and structural framework for the Pennsylvanian coal-bearing section. In addition, geologists and engineers could use cross section I‒I’ as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  8. Modeling transonic aerodynamic response using nonlinear systems theory for use with modern control theory

    NASA Technical Reports Server (NTRS)

    Silva, Walter A.

    1993-01-01

    The presentation begins with a brief description of the motivation and approach that has been taken for this research. This will be followed by a description of the Volterra Theory of Nonlinear Systems and the CAP-TSD code which is an aeroelastic, transonic CFD (Computational Fluid Dynamics) code. The application of the Volterra theory to a CFD model and, more specifically, to a CAP-TSD model of a rectangular wing with a NACA 0012 airfoil section will be presented.

  9. A Simulation and Modeling Framework for Space Situational Awareness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olivier, S S

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. The framework is based on a flexible, scalable architecture to enable efficient, physics-based simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. The details of the modeling and simulation framework are described, including hydrodynamic models of satellitemore » intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical brightness calculations, generic radar system models, generic optical system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The use of this integrated simulation and modeling framework on a specific scenario involving space debris is demonstrated.« less

  10. Modeling off-resonant nonlinear-optical cascading in mesoscopic thin films and guest-host molecular systems

    NASA Astrophysics Data System (ADS)

    Dawson, Nathan J.; Andrews, James H.; Crescimanno, Michael

    2013-12-01

    A model for off-resonant microscopic cascading of (hyper)polarizabilities is developed using a self-consistent field approach to study mesoscopic systems of nonlinear polarizable atoms and molecules. We find enhancements in the higher-order susceptibilities resulting from geometrical and boundary orientation effects. We include an example of the dependence on excitation beam cross sectional structure and a simplified derivation of the microscopic cascading of the nonlinear-optical response in guest-host systems.

  11. JOURNAL SCOPE GUIDELINES: Paper classification scheme

    NASA Astrophysics Data System (ADS)

    2005-06-01

    This scheme is used to clarify the journal's scope and enable authors and readers to more easily locate the appropriate section for their work. For each of the sections listed in the scope statement we suggest some more detailed subject areas which help define that subject area. These lists are by no means exhaustive and are intended only as a guide to the type of papers we envisage appearing in each section. We acknowledge that no classification scheme can be perfect and that there are some papers which might be placed in more than one section. We are happy to provide further advice on paper classification to authors upon request (please email jphysa@iop.org). 1. Statistical physics numerical and computational methods statistical mechanics, phase transitions and critical phenomena quantum condensed matter theory Bose-Einstein condensation strongly correlated electron systems exactly solvable models in statistical mechanics lattice models, random walks and combinatorics field-theoretical models in statistical mechanics disordered systems, spin glasses and neural networks nonequilibrium systems network theory 2. Chaotic and complex systems nonlinear dynamics and classical chaos fractals and multifractals quantum chaos classical and quantum transport cellular automata granular systems and self-organization pattern formation biophysical models 3. Mathematical physics combinatorics algebraic structures and number theory matrix theory classical and quantum groups, symmetry and representation theory Lie algebras, special functions and orthogonal polynomials ordinary and partial differential equations difference and functional equations integrable systems soliton theory functional analysis and operator theory inverse problems geometry, differential geometry and topology numerical approximation and analysis geometric integration computational methods 4. Quantum mechanics and quantum information theory coherent states eigenvalue problems supersymmetric quantum mechanics scattering theory relativistic quantum mechanics semiclassical approximations foundations of quantum mechanics and measurement theory entanglement and quantum nonlocality geometric phases and quantum tomography quantum tunnelling decoherence and open systems quantum cryptography, communication and computation theoretical quantum optics 5. Classical and quantum field theory quantum field theory gauge and conformal field theory quantum electrodynamics and quantum chromodynamics Casimir effect integrable field theory random matrix theory applications in field theory string theory and its developments classical field theory and electromagnetism metamaterials 6. Fluid and plasma theory turbulence fundamental plasma physics kinetic theory magnetohydrodynamics and multifluid descriptions strongly coupled plasmas one-component plasmas non-neutral plasmas astrophysical and dusty plasmas

  12. 12 CFR Appendix B to Part 230 - Model Clauses and Sample Forms

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Model Clauses and Sample Forms B Appendix B to... SYSTEM TRUTH IN SAVINGS (REGULATION DD) Pt. 230, App. B Appendix B to Part 230—Model Clauses and Sample Forms Table of contents B-1—Model Clauses for Account Disclosures (Section 230.4(b)) B-2—Model Clauses...

  13. Effect of section properties on load carrying capacity of 10m span precast concrete closed spandrel arch bridge with corrugated section

    NASA Astrophysics Data System (ADS)

    Ong, Chong Yong; Choong, Kok Keong; Miralimov, Mirzakhid

    2017-10-01

    Various precast concrete arch bridge systems have been developed since 1960's. The reinforced concrete section of these systems is solid rectangular which is not an efficient section. Inspired by the nature of banana tree trunk, a relatively new corrugated section of precast concrete arch bridge was introduced and patented in Malaysia in 2008. This folded plate section is an open section which tends to open under vehicular loading. Hence, effect of section properties on load carrying capacity of precast concrete closed spandrel arch bridge with corrugated section under vehicle loading is presented in this paper. The arch bridge model has a clear span of 10m with 2.5m, 3.0m and 3.5m clear rise. For the corrugated section dimension model, overall depth varies from 475mm to 575mm, top and bottom flange thickness varies from 135mm to 155mm and web thickness varies from 90mm to 120mm. Linear and non-linear computational analysis are carried out using 2D PLAXIS software (in longitudinal direction) and LUSAS software (in transverse direction). In longitudinal direction, the sagging moment in non-linear analysis increases approximately 18% compared to linear analysis for different rise span ratio. From the analysis results, as the rise of arch increases, the sagging moment and hogging moment increases, but the axial force decreases. Besides, as the overall depth of corrugated section increases, the internal forces of the arch also increase. In transverse direction, the maximum tensile stress of concrete at crown and haunch decreases as slenderness ratio increases.

  14. MISSISSIPPI EMBAYMENT AQUIFER SYSTEM IN MISSISSIPPI: GEOHYDROLOGIC DATA COMPILATION FOR FLOW MODEL SIMULATION.

    USGS Publications Warehouse

    Arthur, J.K.; Taylor, R.E.

    1986-01-01

    As part of the Gulf Coast Regional Aquifer System Analysis (GC RASA) study, data from 184 geophysical well logs were used to define the geohydrologic framework of the Mississippi embayment aquifer system in Mississippi for flow model simulation. Five major aquifers of Eocene and Paleocene age were defined within this aquifer system in Mississippi. A computer data storage system was established to assimilate the information obtained from the geophysical logs. Computer programs were developed to manipulate the data to construct geologic sections and structure maps. Data from the storage system will be input to a five-layer, three-dimensional, finite-difference digital computer model that is used to simulate the flow dynamics in the five major aquifers of the Mississippi embayment aquifer system.

  15. 78 FR 12377 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... Change Relating to Market-Maker Continuous Quoting Obligations February 15, 2013. Pursuant to Section 19... relating to Market-Maker continuous quoting obligations. The text of the proposed rule change is available... Trading System (the ``System'').\\14\\ Their system computations also factor in their market risk models...

  16. 40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the... systems for sulfur dioxide, nitrogen oxides, and carbon monoxide to demonstrate continuous compliance with...

  17. 40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the... systems for sulfur dioxide, nitrogen oxides, and carbon monoxide to demonstrate continuous compliance with...

  18. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... systems must I install? 60.3038 Section 60.3038 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you...

  19. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... systems must I install? 60.3038 Section 60.3038 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you...

  20. 40 CFR 60.3038 - What continuous emission monitoring systems must I install?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... systems must I install? 60.3038 Section 60.3038 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... December 9, 2004 Model Rule-Monitoring § 60.3038 What continuous emission monitoring systems must I install... carbon monoxide and for oxygen. You must monitor the oxygen concentration at each location where you...

  1. 40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the... systems for sulfur dioxide, nitrogen oxides, and carbon monoxide to demonstrate continuous compliance with...

  2. 40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the continuous emission monitoring systems used? You must use data from the continuous emission monitoring...

  3. 40 CFR 60.1725 - How are the data from the continuous emission monitoring systems used?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emission monitoring systems used? 60.1725 Section 60.1725 Protection of Environment ENVIRONMENTAL... Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1725 How are the data from the continuous emission monitoring systems used? You must use data from the continuous emission monitoring...

  4. Laboratory Measurements and Modeling of Molecular Photoabsorption Cross Sections in the Ultraviolet: Diatomic Sulfur (S2) and Sulfur Monoxide (SO)

    NASA Astrophysics Data System (ADS)

    Stark, Glenn; Lyons, James; Herde, Hannah; Nave, Gillian; de Oliveira, Nelson

    2015-11-01

    Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S2) and sulfur monoxide (SO) are in progress.S2: Interpretations of atmospheric (Io, Jupiter, cometary comae) S2 absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S2 from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S2 vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S2 were completed using the NIST VUV-FTS at Gaithersburg, MD. These measurements are being incorporated into a coupled-channel model of the absorption spectrum of S2 to quantify the contributions from individual bands and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature.SO: There has been a long-standing need for high-resolution cross sections of SO radicals in the UV and VUV regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and for understanding sulfur isotope effects in the ancient (pre-O2) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO2 as a parent molecule. Photoabsorption measurements were recently recorded with the high-resolution VUV-FTS on the DESIRS beamline of the SOLEIL synchrotron. A number of strong, predissociated SO bands were measured in the 140 to 200 nm region. Weaker features associated with the SO B - X system were simultaneously recorded, allowing for an approximate determination of the VUV SO band f-values.

  5. Parentally Bereaved Children’s Grief: Self-system Beliefs as Mediators of the Relations between Grief and Stressors and Caregiver-child Relationship Quality

    PubMed Central

    Wolchik, Sharlene A.; Ma, Yue; Tein, Jenn-Yun; Sandler, Irwin N.; Ayers, Tim S.

    2009-01-01

    We investigated whether three self-system beliefs -- fear of abandonment, coping efficacy, and self-esteem -- mediated the relations between stressors and caregiver-child relationship quality and parentally bereaved youths’ general grief and intrusive grief thoughts. Cross-sectional (n=340 youth) and longitudinal (n=100 youth) models were tested. In the cross-sectional model, fear of abandonment mediated the effects of stressors and relationship quality on both measures of grief and coping efficacy mediated the path from relationship quality to general grief. Fear of abandonment showed a marginal prospective mediational relation between stressors and intrusive grief thoughts. After excluding the mediators, relationship quality showed a direct prospective relation to intrusive grief thoughts. PMID:18924290

  6. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  7. INEEL Subregional Conceptual Model Report Volume 2: Summary of Existing Knowledge of Geochemical Influences on the Fate and Transport of Contaminants in the Subsurface at the INEEL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul L. Wichlacz; Robert C. Starr; Brennon Orr

    2003-09-01

    This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants inmore » the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched. The documents that appeared to be the most pertinent were selected from further review. These documents are tabulated in the citation list. This report summarizes existing geochemical conceptual models, but does not attempt to generate a new conceptual model or select the ''right'' model. This document is organized as follows. Geochemical models are described in general in Section 2. Geochemical processes that control the transport and fate of contaminants introduced into groundwater are described in Section 3. The natural geochemistry of the Eastern Snake River Plain Aquifer (SRPA) is described in Section 4. The effect of waste disposal on the INEEL subsurface is described in Section 5. The geochemical behavior of the major contaminants is described in Section 6. Section 7 describes the site-specific geochemical models developed for various INEEL facilities.« less

  8. Extended MAGTF Operations - Tactical Chat

    DTIC Science & Technology

    2017-03-01

    vertical obstructions?  Over what ranges might such a system maintain connectivity? E . ORGANIZATION OF THESIS This thesis is organized in the...likely future models of UAVs will likely be capable of providing a relay platform for a long-range communication system that can solve the shadowing...problem presented in this study. However, for reasons outlined in the remainder of this section, current models of UAVs do not appear to provide a

  9. Reference set design for relational modeling of fuzzy systems

    NASA Astrophysics Data System (ADS)

    Lapohos, Tibor; Buchal, Ralph O.

    1994-10-01

    One of the keys to the successful relational modeling of fuzzy systems is the proper design of fuzzy reference sets. This has been discussed throughout the literature. In the frame of modeling a stochastic system, we analyze the problem numerically. First, we briefly describe the relational model and present the performance of the modeling in the most trivial case: the reference sets are triangle shaped. Next, we present a known fuzzy reference set generator algorithm (FRSGA) which is based on the fuzzy c-means (Fc-M) clustering algorithm. In the second section of this chapter we improve the previous FRSGA by adding a constraint to the Fc-M algorithm (modified Fc-M or MFc-M): two cluster centers are forced to coincide with the domain limits. This is needed to obtain properly shaped extreme linguistic reference values. We apply this algorithm to uniformly discretized domains of the variables involved. The fuzziness of the reference sets produced by both Fc-M and MFc-M is determined by a parameter, which in our experiments is modified iteratively. Each time, a new model is created and its performance analyzed. For certain algorithm parameter values both of these two algorithms have shortcomings. To eliminate the drawbacks of these two approaches, we develop a completely new generator algorithm for reference sets which we call Polyline. This algorithm and its performance are described in the last section. In all three cases, the modeling is performed for a variety of operators used in the inference engine and two defuzzification methods. Therefore our results depend neither on the system model order nor the experimental setup.

  10. A novel simulation theory and model system for multi-field coupling pipe-flow system

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Jiang, Fan; Cai, Guobiao; Xu, Xu

    2017-09-01

    Due to the lack of a theoretical basis for multi-field coupling in many system-level models, a novel set of system-level basic equations for flow/heat transfer/combustion coupling is put forward. Then a finite volume model of quasi-1D transient flow field for multi-species compressible variable-cross-section pipe flow is established by discretising the basic equations on spatially staggered grids. Combining with the 2D axisymmetric model for pipe-wall temperature field and specific chemical reaction mechanisms, a finite volume model system is established; a set of specific calculation methods suitable for multi-field coupling system-level research is structured for various parameters in this model; specific modularisation simulation models can be further derived in accordance with specific structures of various typical components in a liquid propulsion system. This novel system can also be used to derive two sub-systems: a flow/heat transfer two-field coupling pipe-flow model system without chemical reaction and species diffusion; and a chemical equilibrium thermodynamic calculation-based multi-field coupling system. The applicability and accuracy of two sub-systems have been verified through a series of dynamic modelling and simulations in earlier studies. The validity of this system is verified in an air-hydrogen combustion sample system. The basic equations and the model system provide a unified universal theory and numerical system for modelling and simulation and even virtual testing of various pipeline systems.

  11. Improvement of open and semi-open core wall system in tall buildings by closing of the core section in the last story

    NASA Astrophysics Data System (ADS)

    Kheyroddin, A.; Abdollahzadeh, D.; Mastali, M.

    2014-09-01

    Increasing number of tall buildings in urban population caused development of tall building structures. One of the main lateral load resistant systems is core wall system in high-rise buildings. Core wall system has two important behavioral aspects where the first aspect is related to reduce the lateral displacement by the core bending resistance and the second is governed by increasing of the torsional resistance and core warping of buildings. In this study, the effects of closed section core in the last story have been considered on the behavior of models. Regarding this, all analyses were performed by ETABS 9.2.v software (Wilson and Habibullah). Considering (a) drift and rotation of the core over height of buildings, (b) total and warping stress in the core body, (c) shear in beams due to warping stress, (d) effect of closing last story on period of models in various modes, (e) relative displacement between walls in the core system and (f) site effects in far and near field of fault by UBC97 spectra on base shear coefficient showed that the bimoment in open core is negative in the last quarter of building and it is similar to wall-frame structures. Furthermore, analytical results revealed that closed section core in the last story improves behavior of the last quarter of structure height, since closing of core section in the last story does not have significant effect on reducing base shear value in near and far field of active faults.

  12. Guest Editorial Modeling and Advanced Control of Wind Turbines/Wind Farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, J.; Hou, Y.; Zhu, Z.

    2017-09-01

    The papers in this special section brings together papers focused on the recent advancements and breakthroughs in the technology of modeling and enhanced active/reactive power control of wind power conversion systems, ranging from components of wind turbines to wind farms.

  13. Boolean Networks in Inference and Dynamic Modeling of Biological Systems at the Molecular and Physiological Level

    NASA Astrophysics Data System (ADS)

    Thakar, Juilee; Albert, Réka

    The following sections are included: * Introduction * Boolean Network Concepts and History * Extensions of the Classical Boolean Framework * Boolean Inference Methods and Examples in Biology * Dynamic Boolean Models: Examples in Plant Biology, Developmental Biology and Immunology * Conclusions * References

  14. A Novel Integrated Ecological Model for the study of Sustainability

    EPA Science Inventory

    In recent years, there has been a growing interest among various sections of the society in the study of sustainability. Recently, a generalized mathematical model depicting a combined economic-ecological-social system has been proposed to help in the formal study of sustainabili...

  15. Reaction dynamics near the barrier

    NASA Astrophysics Data System (ADS)

    Loveland, W.

    2011-10-01

    The availability of modest intensity (103-107 p/s) radioactive nuclear beams has had a significant impact on the study of nuclear reactions near the interaction barrier. The role of isospin in capture reactions is a case in point. Using heavy elements as a laboratory to explore these effects, we note that the cross section for producing an evaporation residue is σEVR(Ec . m .) = ∑ J = 0 JmaxσCN(Ec . m . , J) Wsur(Ec . m . , J) where σCN is the complete fusion cross section and Wsur is the survival probability of the completely fused system. The complete fusion cross section can be written as, σCN(Ec . m .) = ∑ J = 0 Jmaxσcapture(Ec . m .) PCN(Ec . m . , J) where σcapture(Ec.m.,J) is the ``capture'' cross section at center-of mass energy Ec.m. and spin J and PCN is the probability that the projectile-target system will evolve inside the fission saddle point to form a completely fused system rather than re-separating (quasi-fission). The systematics of the isospin dependence of the capture cross sections has been developed and the deduced interaction barriers for all known studies of capture cross sections with radioactive beams are in good agreement with recent predictions of an improved QMD model and semi-empirical models. The deduced barriers for these n-rich systems are lower than one would expect from the Bass or proximity potentials. In addition to the barrier lowering, there is an enhanced sub-barrier cross section in these n-rich systems that is of advantage in the synthesis of new heavy nuclei. Recent studies of the ``inverse fission'' of uranium (124,132Sn + 100Mo) have yielded unexpectedly low upper limits for this process due apparently to low values of the fusion probability, PCN. The fusion of halo nuclei, like 11Li with heavy nuclei, like 208Pb, promises to give new information about these and related nuclei and has led/may lead to unusual reaction mechanisms. This work was sponsored, in part, by the USDOE Office of Nuclear Physics.

  16. A comparison of WEC control strategies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, David G.; Bacelli, Giorgio; Coe, Ryan Geoffrey

    2016-04-01

    The operation of Wave Energy Converter (WEC) devices can pose many challenging problems to the Water Power Community. A key research question is how to significantly improve the performance of these WEC devices through improving the control system design. This report summarizes an effort to analyze and improve the performance of WEC through the design and implementation of control systems. Controllers were selected to span the WEC control design space with the aim of building a more comprehensive understanding of different controller capabilities and requirements. To design and evaluate these control strategies, a model scale test-bed WEC was designed formore » both numerical and experimental testing (see Section 1.1). Seven control strategies have been developed and applied on a numerical model of the selected WEC. This model is capable of performing at a range of levels, spanning from a fully-linear realization to varying levels of nonlinearity. The details of this model and its ongoing development are described in Section 1.2.« less

  17. Investigations of Few-Nucleon System Dynamics in Medium Energy Domain

    NASA Astrophysics Data System (ADS)

    Ciepał, I.; Kłos, B.; Kistryn, St.; Stephan, E.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Wrońska, A.; Zejma, J.

    2013-08-01

    Precise and large set of cross sections, vector A x , A y and tensor A xx , A xy , A yy analyzing powers for the 1 H( d, pp) n breakup reactions were measured at 100 and 130 MeV deuteron beam energies with the use of the SALAD and BINA detectors at KVI and Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which model the three-nucleon (3N) system dynamics. The calculations are based on different two-nucleon (2N) potentials which can be combined with models of the three-nucleon force (3NF) and other pieces of the dynamics can also be included like the Coulomb interaction and relativistic effects. The cross sections data reveal seizable 3NF and Coulomb force influence. In case of analyzing powers very low sensitivity to the effects was found and the data are well describe by 2N models only. At 130 MeV for A xy serious disagreements appear when 3NF models are included into calculations.

  18. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    NASA Astrophysics Data System (ADS)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy Dissipation Concept (EDC) employing a 41-step detailed chemistry mechanism, the non-adiabatic extension of the equilibrium Probability Density Function (PDF) based mixture-fraction model and a two-step global finite rate chemistry model with modified rate constants proposed to work well in oxy-methane flames. Based on the results from this section, the equilibrium PDF model in conjunction with a high-fidelity non-gray model for the radiative properties of the gas-phase may be deemed as accurate to capture the major gas species concentrations, temperatures and flame lengths in oxy-methane flames. The third section examines the variations in radiative transfer predictions due to the choice of chemistry and gas-phase radiative property models. The radiative properties were estimated employing four weighted-sum-of-gray-gases models (WSGGM) that were formulated employing different spectroscopic/model databases. An average variation of 14 -- 17% in the wall incident radiative fluxes was observed between the EDC and equilibrium mixture fraction chemistry models, due to differences in their temperature predictions within the flame. One-dimensional, line-of-sight radiation calculations showed a 15 -- 25 % reduction in the directional radiative fluxes at lower axial locations as a result of ignoring radiation from CO and CH4. Under the constraints of fixed temperature and species distributions, the flame radiant power estimates and average wall incident radiative fluxes varied by nearly 60% and 11% respectively among the different WSGG models.

  19. A systems approach to healthcare: agent-based modeling, community mental health, and population well-being.

    PubMed

    Silverman, Barry G; Hanrahan, Nancy; Bharathy, Gnana; Gordon, Kim; Johnson, Dan

    2015-02-01

    Explore whether agent-based modeling and simulation can help healthcare administrators discover interventions that increase population wellness and quality of care while, simultaneously, decreasing costs. Since important dynamics often lie in the social determinants outside the health facilities that provide services, this study thus models the problem at three levels (individuals, organizations, and society). The study explores the utility of translating an existing (prize winning) software for modeling complex societal systems and agent's daily life activities (like a Sim City style of software), into a desired decision support system. A case study tests if the 3 levels of system modeling approach is feasible, valid, and useful. The case study involves an urban population with serious mental health and Philadelphia's Medicaid population (n=527,056), in particular. Section 3 explains the models using data from the case study and thereby establishes feasibility of the approach for modeling a real system. The models were trained and tuned using national epidemiologic datasets and various domain expert inputs. To avoid co-mingling of training and testing data, the simulations were then run and compared (Section 4.1) to an analysis of 250,000 Philadelphia patient hospital admissions for the year 2010 in terms of re-hospitalization rate, number of doctor visits, and days in hospital. Based on the Student t-test, deviations between simulated vs. real world outcomes are not statistically significant. Validity is thus established for the 2008-2010 timeframe. We computed models of various types of interventions that were ineffective as well as 4 categories of interventions (e.g., reduced per-nurse caseload, increased check-ins and stays, etc.) that result in improvement in well-being and cost. The 3 level approach appears to be useful to help health administrators sort through system complexities to find effective interventions at lower costs. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Developing an Approach to Prioritize River Restoration using Data Extracted from Flood Risk Information System Databases.

    NASA Astrophysics Data System (ADS)

    Vimal, S.; Tarboton, D. G.; Band, L. E.; Duncan, J. M.; Lovette, J. P.; Corzo, G.; Miles, B.

    2015-12-01

    Prioritizing river restoration requires information on river geometry. In many states in the US detailed river geometry has been collected for floodplain mapping and is available in Flood Risk Information Systems (FRIS). In particular, North Carolina has, for its 100 Counties, developed a database of numerous HEC-RAS models which are available through its Flood Risk Information System (FRIS). These models that include over 260 variables were developed and updated by numerous contractors. They contain detailed surveyed or LiDAR derived cross-sections and modeled flood extents for different extreme event return periods. In this work, over 4700 HEC-RAS models' data was integrated and upscaled to utilize detailed cross-section information and 100-year modelled flood extent information to enable river restoration prioritization for the entire state of North Carolina. We developed procedures to extract geomorphic properties such as entrenchment ratio, incision ratio, etc. from these models. Entrenchment ratio quantifies the vertical containment of rivers and thereby their vulnerability to flooding and incision ratio quantifies the depth per unit width. A map of entrenchment ratio for the whole state was derived by linking these model results to a geodatabase. A ranking of highly entrenched counties enabling prioritization for flood allowance and mitigation was obtained. The results were shared through HydroShare and web maps developed for their visualization using Google Maps Engine API.

  1. Evaluation Model for Pavement Surface Distress on 3d Point Clouds from Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Yamamoto, K.; Shimamura, H.

    2012-07-01

    This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS). The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments' specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  2. The international performance of healthcare systems in population health: capabilities of pooled cross-sectional time series methods.

    PubMed

    Reibling, Nadine

    2013-09-01

    This paper outlines the capabilities of pooled cross-sectional time series methodology for the international comparison of health system performance in population health. It shows how common model specifications can be improved so that they not only better address the specific nature of time series data on population health but are also more closely aligned with our theoretical expectations of the effect of healthcare systems. Three methodological innovations for this field of applied research are discussed: (1) how dynamic models help us understand the timing of effects, (2) how parameter heterogeneity can be used to compare performance across countries, and (3) how multiple imputation can be used to deal with incomplete data. We illustrate these methodological strategies with an analysis of infant mortality rates in 21 OECD countries between 1960 and 2008 using OECD Health Data. Copyright © 2013 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Alternative Theoretical Bases for the Study of Human Communication: The Systems Perspective.

    ERIC Educational Resources Information Center

    Monge, Peter R.

    Three potentially useful perspectives for the scientific development of human communication theory are the law model, the systems approach, and the rules paradigm. It is the purpose of this paper to indicate the utility of the systems approach. The first section of this paper provides a brief account of the systems view of the world. Outlined in…

  4. Testing and Analytical Modeling for Purging Process of a Cryogenic Line

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.

    2015-01-01

    To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. The test article, a 3.35 m long with the diameter of 20 cm incline line, was filled with liquid or gaseous hydrogen and then purged with gaseous helium (GHe). Total of 10 tests were conducted. The influences of GHe flow rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer computer program, was utilized to model and simulate selective tests. The test procedures, modeling descriptions, and the results are presented in the following sections.

  5. Testing and Analytical Modeling for Purging Process of a Cryogenic Line

    NASA Technical Reports Server (NTRS)

    Hedayat, A.; Mazurkivich, P. V.; Nelson, M. A.; Majumdar, A. K.

    2013-01-01

    To gain confidence in developing analytical models of the purging process for the cryogenic main propulsion systems of upper stage, two test series were conducted. The test article, a 3.35 m long with the diameter of 20 cm incline line, was filled with liquid or gaseous hydrogen and then purged with gaseous helium (GHe). Total of 10 tests were conducted. The influences of GHe flow rates and initial temperatures were evaluated. The Generalized Fluid System Simulation Program (GFSSP), an in-house general-purpose fluid system analyzer computer program, was utilized to model and simulate selective tests. The test procedures, modeling descriptions, and the results are presented in the following sections.

  6. 75 FR 27794 - Center for Scientific Review; Notice of Closed Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ...; Notice of Closed Meetings Pursuant to section 10(d) of the Federal Advisory Committee Act, as amended (5... Review Group; Modeling and Analysis of Biological Systems Study Section. Date: June 10-11, 2010. Time: 8...: June 10, 2010. Time: 8 a.m. to 5 p.m. Agenda: To review and evaluate grant applications. Place: Gaylord...

  7. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  8. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  9. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide... evaluation model. This section does not apply to a nuclear power reactor facility for which the...

  10. Sparsity-based acoustic inversion in cross-sectional multiscale optoacoustic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yiyong; Tzoumas, Stratis; Nunes, Antonio

    2015-09-15

    Purpose: With recent advancement in hardware of optoacoustic imaging systems, highly detailed cross-sectional images may be acquired at a single laser shot, thus eliminating motion artifacts. Nonetheless, other sources of artifacts remain due to signal distortion or out-of-plane signals. The purpose of image reconstruction algorithms is to obtain the most accurate images from noisy, distorted projection data. Methods: In this paper, the authors use the model-based approach for acoustic inversion, combined with a sparsity-based inversion procedure. Specifically, a cost function is used that includes the L1 norm of the image in sparse representation and a total variation (TV) term. Themore » optimization problem is solved by a numerically efficient implementation of a nonlinear gradient descent algorithm. TV–L1 model-based inversion is tested in the cross section geometry for numerically generated data as well as for in vivo experimental data from an adult mouse. Results: In all cases, model-based TV–L1 inversion showed a better performance over the conventional Tikhonov regularization, TV inversion, and L1 inversion. In the numerical examples, the images reconstructed with TV–L1 inversion were quantitatively more similar to the originating images. In the experimental examples, TV–L1 inversion yielded sharper images and weaker streak artifact. Conclusions: The results herein show that TV–L1 inversion is capable of improving the quality of highly detailed, multiscale optoacoustic images obtained in vivo using cross-sectional imaging systems. As a result of its high fidelity, model-based TV–L1 inversion may be considered as the new standard for image reconstruction in cross-sectional imaging.« less

  11. Real-time contaminant sensing and control in civil infrastructure systems

    NASA Astrophysics Data System (ADS)

    Rimer, Sara; Katopodes, Nikolaos

    2014-11-01

    A laboratory-scale prototype has been designed and implemented to test the feasibility of real-time contaminant sensing and control in civil infrastructure systems. A blower wind tunnel is the basis of the prototype design, with propylene glycol smoke as the ``contaminant.'' A camera sensor and compressed-air vacuum nozzle system is set up at the test section portion of the prototype to visually sense and then control the contaminant; a real-time controller is programmed to read in data from the camera sensor and administer pressure to regulators controlling the compressed air operating the vacuum nozzles. A computational fluid dynamics model is being integrated in with this prototype to inform the correct pressure to supply to the regulators in order to optimally control the contaminant's removal from the prototype. The performance of the prototype has been evaluated against the computational fluid dynamics model and is discussed in this presentation. Furthermore, the initial performance of the sensor-control system implemented in the test section of the prototype is discussed. NSF-CMMI 0856438.

  12. Study on the influence of supplying compressed air channels and evicting channels on pneumatical oscillation systems for vibromooshing

    NASA Astrophysics Data System (ADS)

    Glăvan, D. O.; Radu, I.; Babanatsas, T.; Babanatis Merce, R. M.; Kiss, I.; Gaspar, M. C.

    2018-01-01

    The paper presents a pneumatic system with two oscillating masses. The system is composed of a cylinder (framework) with mass m1, which has a piston with mass m2 inside. The cylinder (framework system) has one supplying channel for compressed air and one evicting channel for each work chamber (left and right of the piston). Functionality of the piston position comparatively with the cylinder (framework) is possible through the supplying or evicting of compressed air. The variable force that keeps the movement depends on variation of the pressure that is changing depending on the piston position according to the cylinder (framework) and to the section form that is supplying and evicting channels with compressed air. The paper presents the physical model/pattern, the mathematical model/pattern (differential equations) and numerical solution of the differential equations in hypothesis with the section form of supplying and evicting channels with compressed air is rectangular (variation linear) or circular (variation nonlinear).

  13. How to Use Benchmark and Cross-section Studies to Improve Data Libraries and Models

    NASA Astrophysics Data System (ADS)

    Wagner, V.; Suchopár, M.; Vrzalová, J.; Chudoba, P.; Svoboda, O.; Tichý, P.; Krása, A.; Majerle, M.; Kugler, A.; Adam, J.; Baldin, A.; Furman, W.; Kadykov, M.; Solnyshkin, A.; Tsoupko-Sitnikov, S.; Tyutyunikov, S.; Vladimirovna, N.; Závorka, L.

    2016-06-01

    Improvements of the Monte Carlo transport codes and cross-section libraries are very important steps towards usage of the accelerator-driven transmutation systems. We have conducted a lot of benchmark experiments with different set-ups consisting of lead, natural uranium and moderator irradiated by relativistic protons and deuterons within framework of the collaboration “Energy and Transmutation of Radioactive Waste”. Unfortunately, the knowledge of the total or partial cross-sections of important reactions is insufficient. Due to this reason we have started extensive studies of different reaction cross-sections. We measure cross-sections of important neutron reactions by means of the quasi-monoenergetic neutron sources based on the cyclotrons at Nuclear Physics Institute in Řež and at The Svedberg Laboratory in Uppsala. Measurements of partial cross-sections of relativistic deuteron reactions were the second direction of our studies. The new results obtained during last years will be shown. Possible use of these data for improvement of libraries, models and benchmark studies will be discussed.

  14. A New Presentation and Exploration of Human Cerebral Vasculature Correlated with Surface and Sectional Neuroanatomy

    ERIC Educational Resources Information Center

    Nowinski, Wieslaw L.; Thirunavuukarasuu, Arumugam; Volkau, Ihar; Marchenko, Yevgen; Aminah, Bivi; Gelas, Arnaud; Huang, Su; Lee, Looi Chow; Liu, Jimin; Ng, Ting Ting; Nowinska, Natalia G.; Qian, Guoyu Yu; Puspitasari, Fiftarina; Runge, Val M.

    2009-01-01

    The increasing complexity of human body models enabled by advances in diagnostic imaging, computing, and growing knowledge calls for the development of a new generation of systems for intelligent exploration of these models. Here, we introduce a novel paradigm for the exploration of digital body models illustrating cerebral vasculature. It enables…

  15. Hierarchical Linear Modeling (HLM): An Introduction to Key Concepts within Cross-Sectional and Growth Modeling Frameworks. Technical Report #1308

    ERIC Educational Resources Information Center

    Anderson, Daniel

    2012-01-01

    This manuscript provides an overview of hierarchical linear modeling (HLM), as part of a series of papers covering topics relevant to consumers of educational research. HLM is tremendously flexible, allowing researchers to specify relations across multiple "levels" of the educational system (e.g., students, classrooms, schools, etc.).…

  16. An Unscented Kalman Filter Approach to the Estimation of Nonlinear Dynamical Systems Models

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Ferrer, Emilio; Nesselroade, John R.

    2007-01-01

    In the past several decades, methodologies used to estimate nonlinear relationships among latent variables have been developed almost exclusively to fit cross-sectional models. We present a relatively new estimation approach, the unscented Kalman filter (UKF), and illustrate its potential as a tool for fitting nonlinear dynamic models in two ways:…

  17. A physically-based channel-modeling framework integrating HEC-RAS sediment transport capabilities and the USDA-ARS bank-stability and toe-erosion model (BSTEM)

    USDA-ARS?s Scientific Manuscript database

    Classical, one-dimensional, mobile bed, sediment-transport models simulate vertical channel adjustment, raising or lowering cross-section node elevations to simulate erosion or deposition. This approach does not account for bank erosion processes including toe scour and mass failure. In many systems...

  18. Semantic Importance Sampling for Statistical Model Checking

    DTIC Science & Technology

    2015-01-16

    SMT calls while maintaining correctness. Finally, we implement SIS in a tool called osmosis and use it to verify a number of stochastic systems with...2 surveys related work. Section 3 presents background definitions and concepts. Section 4 presents SIS, and Section 5 presents our tool osmosis . In...which I∗M|=Φ(x) = 1. We do this by first randomly selecting a cube c from C∗ with uniform probability since each cube has equal probability 9 5. OSMOSIS

  19. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    NASA Astrophysics Data System (ADS)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  20. Systems, Shocks and Time Bombs

    NASA Astrophysics Data System (ADS)

    Winder, Nick

    The following sections are included: * Introduction * Modelling strategies * Are time-bomb phenomena important? * Heuristic approaches to time-bomb phenomena * Three rational approaches to TBP * Two irrational approaches * Conclusions * References

  1. VICS-120 - A tube-vehicle system test facility.

    NASA Technical Reports Server (NTRS)

    Marte, J. E.

    1973-01-01

    Description of a large test facility for carrying out research in support of the aerodynamic and ventilation section of a handbook on subway design. The facility described is vertically oriented and has a test section with a nominal inside diameter of 2 in. and a length of 109 ft. It is capable of operating at Reynolds numbers up to full-scale (60,000,000) under open-end tube conditions. The facility is distinguished by a high degree of flexibility in configuration and operational limits. Details are given concerning the plenum assembly, the test section tubes, the scaffold, the instrumentation, the model launcher, the model arrestor, and the models themselves. A step-by-step account is given of the operation of the facility, and a brief sample of the type of data obtained from the facility is presented.

  2. Theoretical study on production cross sections of exotic actinide nuclei in multinucleon transfer reactions

    NASA Astrophysics Data System (ADS)

    Zhu, Long

    2017-12-01

    Within the dinuclear system (DNS) model, the multinucleon transfer reactions 129,136Xe + 248Cm, 112Sn + 238U, and 144Xe + 248Cm are investigated. The production cross sections of primary fragments are calculated with the DNS model. By using a statistical model, we investigate the influence of charged particle evaporation channels on production cross sections of exotic nuclei. It is found that for excited neutron-deficient nuclei the charged particle evaporation competes with neutron emission and plays an important role in the cooling process. The production cross sections of several exotic actinide nuclei are predicted in the reactions 112Sn + 238U and 136,144Xe + 248Cm. Considering the beam intensities, the collisions of 136,144Xe projectiles with a 248Cm target for producing neutron-rich nuclei with Z=92-96 are investigated. Supported by National Natural Science Foundation of China (11605296) and Natural Science Foundation of Guangdong Province, China (2016A030310208)

  3. Validation of Hansen-Roach library for highly enriched uranium metal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wenz, T.R.; Busch, R.D.

    The Hansen-Roach 16-group cross-section library has been validated for use in pure uranium metal systems by modeling the Godiva critical assembly using the neutronics transport theory code ONEDANT to perform effective multiplication factor (k{sub eff}) calculations. The cross-section library used contains data for 118 isotopes (34 unique elements), including the revised cross sections for {sup 235}U and {sup 238}U. The Godiva critical assembly is a 17.4-cm sphere composed of 93.7 wt% {sup 235}U, 1.0 wt% {sup 234}U, and 5.3 wt% {sup 238}U with an effective homogeneous density of 18.7 g/cm{sup 3}.

  4. The Simulation of Read-time Scalable Coherent Interface

    NASA Technical Reports Server (NTRS)

    Li, Qiang; Grant, Terry; Grover, Radhika S.

    1997-01-01

    Scalable Coherent Interface (SCI, IEEE/ANSI Std 1596-1992) (SCI1, SCI2) is a high performance interconnect for shared memory multiprocessor systems. In this project we investigate an SCI Real Time Protocols (RTSCI1) using Directed Flow Control Symbols. We studied the issues of efficient generation of control symbols, and created a simulation model of the protocol on a ring-based SCI system. This report presents the results of the study. The project has been implemented using SES/Workbench. The details that follow encompass aspects of both SCI and Flow Control Protocols, as well as the effect of realistic client/server processing delay. The report is organized as follows. Section 2 provides a description of the simulation model. Section 3 describes the protocol implementation details. The next three sections of the report elaborate on the workload, results and conclusions. Appended to the report is a description of the tool, SES/Workbench, used in our simulation, and internal details of our implementation of the protocol.

  5. The French health care system: liberal universalism.

    PubMed

    Steffen, Monika

    2010-06-01

    This article analyzes the reforms introduced over the last quarter century into the French health care system. A particular public-private combination, rooted in French history and institutionalized through a specific division of the policy field between private doctors and public hospitals, explains the system's core characteristics: universal access, free choice, high quality, and a weak capacity for regulation. The dual architecture of this unique system leads to different reform strategies and outcomes in its two main parts. While the state has leverage in the hospital sector, it has failed repeatedly in attempts to regulate the ambulatory care sector. The first section of this article sets out the main characteristics and historical landmarks that continue to affect policy framing and implementation. Section 2 focuses on the evolution in financing and access, section 3 on management and governance in the (private) ambulatory care sector, and section 4 on the (mainly public) hospital sector. The conclusion compares the French model with those developed in the comparative literature and sets out the terms of the dilemma: a state-run social health insurance that lacks both the legitimacy of Bismarckian systems and the leverages of state-run systems. The French system therefore pursues contradictory policy goals, simultaneously developing universalism and liberalism, which explains both the direct state intervention and its limits.

  6. Fragmentation of {sup 14}N, {sup 16}O, {sup 20}Ne, and {sup 24}Mg nuclei at 290 to 1000 MeV/nucleon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitlin, C.; Miller, J.; Guetersloh, S.

    We report fragmentation cross sections measured at 0 deg. for beams of {sup 14}N, {sup 16}O, {sup 20}Ne, and {sup 24}Mg ions, at energies ranging from 290 MeV/nucleon to 1000 MeV/nucleon. Beams were incident on targets of C, CH{sub 2}, Al, Cu, Sn, and Pb, with the C and CH{sub 2} target data used to obtain hydrogen-target cross sections. Using methods established in earlier work, cross sections obtained with both large-acceptance and small-acceptance detectors are extracted from the data and, when necessary, corrected for acceptance effects. The large-acceptance data yield cross sections for fragments with charges approximately half of themore » beam charge and above, with minimal corrections. Cross sections for lighter fragments are obtained from small-acceptance spectra, with more significant, model-dependent corrections that account for the fragment angular distributions. Results for both charge-changing and fragment production cross sections are compared to the predictions of the Los Alamos version of the quark gluon string model (LAQGSM) as well as the NASA Nuclear Fragmentation (NUCFRG2) model and the Particle and Heavy Ion Transport System (PHITS) model. For all beams and targets, cross sections for fragments as light as He are compared to the models. Estimates of multiplicity-weighted helium production cross sections are obtained from the data and compared to PHITS and LAQGSM predictions. Summary statistics show that the level of agreement between data and predictions is slightly better for PHITS than for either NUCFRG2 or LAQGSM.« less

  7. Flow impedance in a uniform magnetically insulated transmission line

    NASA Astrophysics Data System (ADS)

    Mendel, C. W.; Seidel, D. B.

    1999-12-01

    In two recent publications [C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas 2, 1332 (1995), C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas 3, 4207 (1996)] relativistic electron flow in cylindrical magnetically insulated transmission lines was analyzed and modeled under the assumption of negligible electron pressure. The model allows power flow in these lines to be accurately calculated under most conditions. The model was developed for coaxial right circular cylindrical electrodes. It is shown here that the model applies equally well to arbitrary cylindrical systems, i.e., systems consisting of electrodes of arbitrary cross section.

  8. Critical Evaluation of Chemical Reaction Rates and Collision Cross Sections of Importance in the Earth's Upper Atmosphere and the Atmospheres of Other Planets, Moons, and Comets

    NASA Technical Reports Server (NTRS)

    Huestis, David L.

    2006-01-01

    We propose to establish a long-term program of critical evaluation by domain experts of the rates and cross sections for atomic and molecular processes that are needed for understanding and modeling the atmospheres in the solar system. We envision data products resembling those of the JPL/NASA Panel for Data Evaluation and the similar efforts of the international combustion modeling community funded by US DoE and its European counterpart.

  9. Revisiting the horizontal redistribution of water in soils: Experiments and numerical modeling.

    PubMed

    Zhuang, L; Hassanizadeh, S M; Kleingeld, P J; van Genuchten, M Th

    2017-09-01

    A series of experiments and related numerical simulations were carried out to study one-dimensional water redistribution processes in an unsaturated soil. A long horizontal Plexiglas box was packed as homogenously as possible with sand. The sandbox was divided into two sections using a very thin metal plate, with one section initially fully saturated and the other section only partially saturated. Initial saturation in the dry section was set to 0.2, 0.4, or 0.6 in three different experiments. Redistribution between the wet and dry sections started as soon as the metal plate was removed. Changes in water saturation at various locations along the sandbox were measured as a function of time using a dual-energy gamma system. Also, air and water pressures were measured using two different kinds of tensiometers at various locations as a function of time. The saturation discontinuity was found to persist during the entire experiments, while observed water pressures were found to become continuous immediately after the experiments started. Two models, the standard Richards equation and an interfacial area model, were used to simulate the experiments. Both models showed some deviations between the simulated water pressures and the measured data at early times during redistribution. The standard model could only simulate the observed saturation distributions reasonably well for the experiment with the lowest initial water saturation in the dry section. The interfacial area model could reproduce observed saturation distributions of all three experiments, albeit by fitting one of the parameters in the surface area production term.

  10. Pulsed Lidar Performance/Technical Maturity Assessment

    NASA Technical Reports Server (NTRS)

    Gimmestad, Gary G.; West, Leanne L.; Wood, Jack W.; Frehlich, Rod

    2004-01-01

    This report describes the results of investigations performed by the Georgia Tech Research Institute (GTRI) and the National Center for Atmospheric Research (NCAR) under a task entitled 'Pulsed Lidar Performance/Technical Maturity Assessment' funded by the Crew Systems Branch of the Airborne Systems Competency at the NASA Langley Research Center. The investigations included two tasks, 1.1(a) and 1.1(b). The Tasks discussed in this report are in support of the NASA Virtual Airspace Modeling and Simulation (VAMS) program and are designed to evaluate a pulsed lidar that will be required for active wake vortex avoidance solutions. The Coherent Technologies, Inc. (CTI) WindTracer LIDAR is an eye-safe, 2-micron, coherent, pulsed Doppler lidar with wake tracking capability. The actual performance of the WindTracer system was to be quantified. In addition, the sensor performance has been assessed and modeled, and the models have been included in simulation efforts. The WindTracer LIDAR was purchased by the Federal Aviation Administration (FAA) for use in near-term field data collection efforts as part of a joint NASA/FAA wake vortex research program. In the joint research program, a minimum common wake and weather data collection platform will be defined. NASA Langley will use the field data to support wake model development and operational concept investigation in support of the VAMS project, where the ultimate goal is to improve airport capacity and safety. Task 1.1(a), performed by NCAR in Boulder, Colorado to analyze the lidar system to determine its performance and capabilities based on results from simulated lidar data with analytic wake vortex models provided by NASA, which were then compared to the vendor's claims for the operational specifications of the lidar. Task 1.1(a) is described in Section 3, including the vortex model, lidar parameters and simulations, and results for both detection and tracking of wake vortices generated by Boeing 737s and 747s. Task 1.1(b) was performed by GTRI in Atlanta, Georgia and is described in Section 4. Task 1.1(b) includes a description of the St. Louis Airport (STL) field test being conducted by the Volpe National Transportation Systems Center, and it also addresses the development of a test plan to validate simulation studies conducted as part of Task 1.1(a). Section 4.2 provides a description of the Volpe STL field tests, and Section 4.3 describes 3 possible ways to validate the WindTracer lidar simulations performed in Task 1.1(a).

  11. Recent results of measurements of evaporation residue excitation functions for 19F+194,196,198Pt and 16,18O+198Pt systems with HYRA spectrometer at IUAC

    NASA Astrophysics Data System (ADS)

    Behera, B. R.

    2015-01-01

    In this talk results of the evaporation residue (ER) cross sections for the 19F+194,196,198Pt (forming compound nuclei 213,215,217Fr) and 16,18O+198Pt (forming compound nuclei 214,216Rn) systems measured at Hybrid Recoil mass Analyzer (HYRA) spectrometer installed at the Pelletron+LINAC accelerator facility of the Inter University Accelerator Center (IUAC), New Delhi are reported. The survival probabilities of 215Fr and 217Fr with neutron numbers N = 126 are found to be lower than the survival probabilities of 215Fr and 217Fr with neutron numbers N = 128 and 130 respectively. Statistical model analysis of the ER cross sections show that an excitation energy dependent scaling factor of the finite-range rotating liquid drop model fission barrier is necessary to fit the experimental data. For the case of 214,216Rn, the experimental ER cross sections are compared with the predictions from the statistical model calculations of compound nuclear decay where Kramer's fission width is used. The strength of nuclear dissipation is treated as a free parameter in the calculations to fit the experimental data.

  12. PREFACE: Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors Special section featuring selected papers from the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Granados, Xavier; Sánchez, Àlvar; López-López, Josep

    2012-10-01

    The development of superconducting applications and superconducting engineering requires the support of consistent tools which can provide models for obtaining a good understanding of the behaviour of the systems and predict novel features. These models aim to compute the behaviour of the superconducting systems, design superconducting devices and systems, and understand and test the behavior of the superconducting parts. 50 years ago, in 1962, Charles Bean provided the superconducting community with a model efficient enough to allow the computation of the response of a superconductor to external magnetic fields and currents flowing through in an understandable way: the so called critical-state model. Since then, in addition to the pioneering critical-state approach, other tools have been devised for designing operative superconducting systems, allowing integration of the superconducting design in nearly standard electromagnetic computer-aided design systems by modelling the superconducting parts with consideration of time-dependent processes. In April 2012, Barcelona hosted the 3rd International Workshop on Numerical Modelling of High Temperature Superconductors (HTS), the third in a series of workshops started in Lausanne in 2010 and followed by Cambridge in 2011. The workshop reflected the state-of-the-art and the new initiatives of HTS modelling, considering mathematical, physical and technological aspects within a wide and interdisciplinary scope. Superconductor Science and Technology is now publishing a selection of papers from the workshop which have been selected for their high quality. The selection comprises seven papers covering mathematical, physical and technological topics which contribute to an improvement in the development of procedures, understanding of phenomena and development of applications. We hope that they provide a perspective on the relevance and growth that the modelling of HTS superconductors has achieved in the past 25 years.

  13. Use of the Ames Check Standard Model for the Validation of Wall Interference Corrections

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Amaya, M.; Flach, R.

    2018-01-01

    The new check standard model of the NASA Ames 11-ft Transonic Wind Tunnel was chosen for a future validation of the facility's wall interference correction system. The chosen validation approach takes advantage of the fact that test conditions experienced by a large model in the slotted part of the tunnel's test section will change significantly if a subset of the slots is temporarily sealed. Therefore, the model's aerodynamic coefficients have to be recorded, corrected, and compared for two different test section configurations in order to perform the validation. Test section configurations with highly accurate Mach number and dynamic pressure calibrations were selected for the validation. First, the model is tested with all test section slots in open configuration while keeping the model's center of rotation on the tunnel centerline. In the next step, slots on the test section floor are sealed and the model is moved to a new center of rotation that is 33 inches below the tunnel centerline. Then, the original angle of attack sweeps are repeated. Afterwards, wall interference corrections are applied to both test data sets and response surface models of the resulting aerodynamic coefficients in interference-free flow are generated. Finally, the response surface models are used to predict the aerodynamic coefficients for a family of angles of attack while keeping dynamic pressure, Mach number, and Reynolds number constant. The validation is considered successful if the corrected aerodynamic coefficients obtained from the related response surface model pair show good agreement. Residual differences between the corrected coefficient sets will be analyzed as well because they are an indicator of the overall accuracy of the facility's wall interference correction process.

  14. POST-PROCESSING ANALYSIS FOR THC SEEPAGE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. SUN

    This report describes the selection of water compositions for the total system performance assessment (TSPA) model of results from the thermal-hydrological-chemical (THC) seepage model documented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). The selection has been conducted in accordance with ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Post-Processing Analysis for THC Seepage) Report Integration'' (BSC 2004 [DIRS 171334]). This technical work plan (TWP) was prepared in accordance with AP-2.27Q, ''Planning for Science Activities''. Section 1.2.3 of the TWP describes planning information pertaining to the technical scope, content, and managementmore » of this report. The post-processing analysis for THC seepage (THC-PPA) documented in this report provides a methodology for evaluating the near-field compositions of water and gas around a typical waste emplacement drift as these relate to the chemistry of seepage, if any, into the drift. The THC-PPA inherits the conceptual basis of the THC seepage model, but is an independently developed process. The relationship between the post-processing analysis and other closely related models, together with their main functions in providing seepage chemistry information for the Total System Performance Assessment for the License Application (TSPA-LA), are illustrated in Figure 1-1. The THC-PPA provides a data selection concept and direct input to the physical and chemical environment (P&CE) report that supports the TSPA model. The purpose of the THC-PPA is further discussed in Section 1.2. The data selection methodology of the post-processing analysis (Section 6.2.1) was initially applied to results of the THC seepage model as presented in ''Drift-Scale THC Seepage Model'' (BSC 2004 [DIRS 169856]). Other outputs from the THC seepage model (DTN: LB0302DSCPTHCS.002 [DIRS 161976]) used in the P&CE (BSC 2004 [DIRS 169860], Section 6.6) were also subjected to the same initial selection. The present report serves as a full documentation of this selection and also provides additional analyses in support of the choice of waters selected for further evaluation in ''Engineered Barrier System: Physical and Chemical Environment'' (BSC 2004 [DIRS 169860], Section 6.6). The work scope for the studies presented in this report is described in the TWP (BSC 2004 [DIRS 171334]) and other documents cited above and can be used to estimate water and gas compositions near waste emplacement drifts. Results presented in this report were submitted to the Technical Data Management System (TDMS) under specific data tracking numbers (DTNs) as listed in Appendix A. The major change from previous selection of results from the THC seepage model is that the THC-PPA now considers data selection in space around the modeled waste emplacement drift, tracking the evolution of pore-water and gas-phase composition at the edge of the dryout zone around the drift. This post-processing analysis provides a scientific background for the selection of potential seepage water compositions.« less

  15. Computer aided three-dimensional reconstruction and modeling of the pelvis, by using plastinated cross sections, as a powerful tool for morphological investigations.

    PubMed

    Sora, Mircea-Constantin; Jilavu, Radu; Matusz, Petru

    2012-10-01

    The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction. A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created. Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space. The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.

  16. Aerofoil testing in a self-streamlining flexible walled wind tunnel. Ph.D. Thesis - Jul. 1987

    NASA Technical Reports Server (NTRS)

    Lewis, Mark Charles

    1988-01-01

    Two-dimensional self-streamlining flexible walled test sections eliminate, as far as experimentally possible, the top and bottom wall interference effects in transonic airfoil testing. The test section sidewalls are rigid, while the impervious top and bottom walls are flexible and contoured to streamline shapes by a system of jacks, without reference to the airfoil model. The concept of wall contouring to eliminate or minimize test section boundary interference in 2-D testing was first demonstrated by NPL in England during the early 40's. The transonic streamlining strategy proposed, developed and used by NPL has been compared with several modern strategies. The NPL strategy has proved to be surprisingly good at providing a wall interference-free test environment, giving model performance indistinguishable from that obtained using the modern strategies over a wide range of test conditions. In all previous investigations the achievement of wall streamlining in flexible walled test sections has been limited to test sections up to those resulting in the model's shock just extending to a streamlined wall. This work however, has also successfully demonstrated the feasibility of 2-D wall streamlining at test conditions where both model shocks have reached and penetrated through their respective flexible walls. Appropriate streamlining procedures have been established and are uncomplicated, enabling flexible walled test sections to cope easily with these high transonic flows.

  17. Trace Assessment for BWR ATWS Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, L.Y.; Diamond, D.; Arantxa Cuadra, Gilad Raitses, Arnold Aronson

    2010-04-22

    A TRACE/PARCS input model has been developed in order to be able to analyze anticipated transients without scram (ATWS) in a boiling water reactor. The model is based on one developed previously for the Browns Ferry reactor for doing loss-of-coolant accident analysis. This model was updated by adding the control systems needed for ATWS and a core model using PARCS. The control systems were based on models previously developed for the TRAC-B code. The PARCS model is based on information (e.g., exposure and moderator density (void) history distributions) obtained from General Electric Hitachi and cross sections for GE14 fuel obtainedmore » from an independent source. The model is able to calculate an ATWS, initiated by the closure of main steam isolation valves, with recirculation pump trip, water level control, injection of borated water from the standby liquid control system and actuation of the automatic depres-surization system. The model is not considered complete and recommendations are made on how it should be improved.« less

  18. Structural analysis using thrust-fault hanging-wall sequence diagrams: Ogden duplex, Wasatch Range, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schirmer, T.W.

    1988-05-01

    Detailed mapping and cross-section traverses provide the control for structural analysis and geometric modeling of the Ogden duplex, a complex thrust system exposed in the Wasatch Mountains, east of Ogden, Utah. The structures consist of east-dipping folded thrust faults, basement-cored horses, lateral ramps and folds, and tear faults. The sequence of thrusting determined by means of lateral overlap of horses, thrust-splay relationships, and a top-to-bottom piggyback development is Willard thrust, Ogden thrust, Weber thrust, and Taylor thrust. Major decollement zones occur in the Cambrian shales and limestones. The Tintic Quartzite is the marker for determining gross geometries of horses. Thismore » exposed duplex serves as a good model to illustrate the method of constructing a hanging-wall sequence diagram - a series of longitudinal cross sections that move forward in time and space, and show how a thrust system formed as it moved updip over various footwall ramps. A hanging wall sequence diagram also shows the complex lateral variations in a thrust system and helps to locate lateral ramps, lateral folds, tear faults, and other features not shown on dip-oriented cross sections. 8 figures.« less

  19. Analysis hierarchical model for discrete event systems

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  20. Interpretive geologic cross sections for the Death Valley regional flow system and surrounding areas, Nevada and California

    USGS Publications Warehouse

    Sweetkind, D.S.; Dickerson, R.P.; Blakely, R.J.; Denning, Paul

    2001-01-01

    This report presents a network of 28 geologic cross sections that portray subsurface geologic relations within the Death Valley regional ground-water system, a ground-water basin that encompasses a 3? x 3? area (approximately 70,000 km2) in southern Nevada and eastern California. The cross sections transect that part of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain. The specific geometric relationships portrayed on the cross sections are discussed in the context of four general sub-regions that have stratigraphic similarities and general consistency of structural style: (1) the Nevada Test Site vicinity; (2) the Spring Mountains, Pahrump Valley and Amargosa Desert region; (3) the Death Valley region; and (4) the area east of the Nevada Test Site. The subsurface geologic interpretations portrayed on the cross sections are based on an integration of existing geologic maps, measured stratigraphic sections, published cross sections, well data, and geophysical data and interpretations. The estimated top of pre-Cenozoic rocks in the cross sections is based on inversion of gravity data, but the deeper parts of the sections are based on geologic conceptual models and are more speculative. The region transected by the cross sections includes part of the southern Basin and Range Province, the northwest-trending Walker Lane belt, the Death Valley region, and the northern Mojave Desert. The region is structurally complex, where a locally thick Tertiary volcanic and sedimentary section unconformably overlies previously deformed Proterozoic through Paleozoic rocks. All of these rocks have been deformed by complex Neogene ex-tensional normal and strike-slip faults. These cross sections form a three-dimensional network that portrays the interpreted stratigraphic and structural relations in the region; the sections form part of the geologic framework that will be incorporated in a complex numerical model of ground-water flow in the Death Valley region.

  1. Electron-helium S-wave model benchmark calculations. II. Double ionization, single ionization with excitation, and double excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.

  2. Thermal Testing and Model Correlation for Advanced Topographic Laser Altimeter Instrument (ATLAS)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2016-01-01

    The Advanced Topographic Laser Altimeter System (ATLAS) part of the Ice Cloud and Land Elevation Satellite 2 (ICESat-2) is an upcoming Earth Science mission focusing on the effects of climate change. The flight instrument passed all environmental testing at GSFC (Goddard Space Flight Center) and is now ready to be shipped to the spacecraft vendor for integration and testing. This topic covers the analysis leading up to the test setup for ATLAS thermal testing as well as model correlation to flight predictions. Test setup analysis section will include areas where ATLAS could not meet flight like conditions and what were the limitations. Model correlation section will walk through changes that had to be made to the thermal model in order to match test results. The correlated model will then be integrated with spacecraft model for on-orbit predictions.

  3. A probabilistic methodology for radar cross section prediction in conceptual aircraft design

    NASA Astrophysics Data System (ADS)

    Hines, Nathan Robert

    System effectiveness has increasingly become the prime metric for the evaluation of military aircraft. As such, it is the decision maker's/designer's goal to maximize system effectiveness. Industry and government research documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness and reduce the cost of attrition. Today's operating environments demand low observable aircraft which are able to reliably take out valuable, time critical targets. Thus it is desirable to be able to design vehicles that are balanced for increased effectiveness. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section, a measure of radar signature, and must be considered from the very beginning of the design process. Radar cross section estimation should be incorporated into conceptual design to develop more capable systems. This research strives to meet these needs by developing a conceptual design tool that predicts radar cross section for parametric geometries. This tool predicts the absolute radar cross section of the vehicle as well as the impact of geometry changes, allowing for the simultaneous tradeoff of the aerodynamic, performance, and cost characteristics of the vehicle with the radar cross section. Furthermore, this tool can be linked to a campaign theater analysis code to demonstrate the changes in system and system of system effectiveness due to changes in aircraft geometry. A general methodology was developed and implemented and sample computer codes applied to prototype the proposed process. Studies utilizing this radar cross section tool were subsequently performed to demonstrate the capabilities of this method and show the impact that various inputs have on the outputs of these models. The F/A-18 aircraft configuration was chosen as a case study vehicle to perform a design space exercise and to investigate the relative impact of shaping parameters on radar cross section. Finally, two unique low observable configurations were analyzed to examine the impact of shaping for stealthiness.

  4. On the use temperature parameterized rate coefficients in the estimation of non-equilibrium reaction rates

    NASA Astrophysics Data System (ADS)

    Shizgal, Bernie D.; Chikhaoui, Aziz

    2006-06-01

    The present paper considers a detailed analysis of the nonequilibrium effects for a model reactive system with the Chapman-Eskog (CE) solution of the Boltzmann equation as well as an explicit time dependent solution. The elastic cross sections employed are a hard sphere cross section and the Maxwell molecule cross section. Reactive cross sections which model reactions with and without activation energy are used. A detailed comparison is carried out with these solutions of the Boltzmann equation and the approximation introduced by Cukrowski and coworkers [J. Chem. Phys. 97 (1992) 9086; Chem. Phys. 89 (1992) 159; Physica A 188 (1992) 344; Chem. Phys. Lett. A 297 (1998) 402; Physica A 275 (2000) 134; Chem. Phys. Lett. 341 (2001) 585; Acta Phys. Polonica B 334 (2003) 3607.] based on the temperature of the reactive particles. We show that the Cukrowski approximation has limited applicability for the large class of reactive systems studied in this paper. The explicit time dependent solutions of the Boltzmann equation demonstrate that the CE approach is valid only for very slow reactions for which the corrections to the equilibrium rate coefficient are very small.

  5. Method and system for SCR optimization

    DOEpatents

    Lefebvre, Wesley Curt [Boston, MA; Kohn, Daniel W [Cambridge, MA

    2009-03-10

    Methods and systems are provided for controlling SCR performance in a boiler. The boiler includes one or more generally cross sectional areas. Each cross sectional area can be characterized by one or more profiles of one or more conditions affecting SCR performance and be associated with one or more adjustable desired profiles of the one or more conditions during the operation of the boiler. The performance of the boiler can be characterized by boiler performance parameters. A system in accordance with one or more embodiments of the invention can include a controller input for receiving a performance goal for the boiler corresponding to at least one of the boiler performance parameters and for receiving data values corresponding to boiler control variables and to the boiler performance parameters. The boiler control variables include one or more current profiles of the one or more conditions. The system also includes a system model that relates one or more profiles of the one or more conditions in the boiler to the boiler performance parameters. The system also includes an indirect controller that determines one or more desired profiles of the one or more conditions to satisfy the performance goal for the boiler. The indirect controller uses the system model, the received data values and the received performance goal to determine the one or more desired profiles of the one or more conditions. The system model also includes a controller output that outputs the one or more desired profiles of the one or more conditions.

  6. Domain Modeling for Adaptive Training and Education in Support of the US Army Learning Model-Research Outline

    DTIC Science & Technology

    2015-06-01

    Definitions are provided for this section to distinguish between adaptive training and education elements and also to highlight their relationships ...illustrate this point Franke (2011) asserts that through the use of case study examples, instruction can provide the pedagogical foundation for decision...a prime example of an adaptive training and education system: a learner or trainee model, an instructional or pedagogical model, a domain model

  7. Going Overseas for Higher Education: The Asian Experience.

    ERIC Educational Resources Information Center

    Cummings, William K.

    1984-01-01

    Focuses on national differences in the numbers of students from selected Asian countries who undertake higher education abroad. Contrasts the development approach and the world-systems approach in national educational systems. Compares and presents a cross-sectional model of patterns, national levels, and determinants of sending students abroad.…

  8. Sawmill simulation and the best opening face system : a user`s guide

    Treesearch

    D. W. Lewis

    1985-01-01

    Computer sawmill simulation models are being used to increase lumber yield and improve management control. Although there are few managers or technical people in the sawmill industry who are not aware of the existence of these models, many do not realize the modelsa full potential. The first section of this paper describes computerized sawmill simulation models and...

  9. Nurse Training Act of 1975: Second Report to the Congress, March 15, 1979 (Revised).

    ERIC Educational Resources Information Center

    Health Resources Administration (DHEW/PHS), Bethesda, MD. Bureau of Health Manpower.

    In compliance with section 951 of Public Law 94-63, this second annual report presents and anlayzes information on the supply and distribution of and requirements for nurses. Chapter 1 presents three models on the requirements for nursing personnel in the nation: The Vector Model (impact of health system changes), Pugh Roberts Model (the system…

  10. Sleep Deprivation and Sustained Attention Performance: Integrating Mathematical and Cognitive Modeling

    DTIC Science & Technology

    2009-01-01

    Gluck,a David F. Dingesc aAir Force Research Laboratory, Mesa bThe Pennsylvania State University , University Park cUniversity of Pennsylvania School...possible using either model- ing approach in isolation. 2.1. Biomathematical models of alertness Biomathematical models of alertness have been developed...window into the information process- ing mechanisms in the cognitive system and how they may be affected by decreased alert- ness. The next section

  11. A Closed Network Queue Model of Underground Coal Mining Production, Failure, and Repair

    NASA Technical Reports Server (NTRS)

    Lohman, G. M.

    1978-01-01

    Underground coal mining system production, failures, and repair cycles were mathematically modeled as a closed network of two queues in series. The model was designed to better understand the technological constraints on availability of current underground mining systems, and to develop guidelines for estimating the availability of advanced mining systems and their associated needs for spares as well as production and maintenance personnel. It was found that: mine performance is theoretically limited by the maintainability ratio, significant gains in availability appear possible by means of small improvements in the time between failures the number of crews and sections should be properly balanced for any given maintainability ratio, and main haulage systems closest to the mine mouth require the most attention to reliability.

  12. Virtual plate pre-bending for the long bone fracture based on axis pre-alignment.

    PubMed

    Liu, Bin; Luo, Xinjian; Huang, Rui; Wan, Chao; Zhang, Bingbing; Hu, Weihua; Yue, Zongge

    2014-06-01

    In this paper, a modeling and visualizing system for assisting surgeons in correctly registering for the closed fracture reduction surgery is presented. By using this system, the geometric parameters of the target fixation plate before the long bone fracture operation can be obtained. The main processing scheme consists of following steps: firstly (image data process), utilize the Curvelet transform to denoise the CT images of fracture part and then reconstruct the 3D models of the broken bones. Secondly (pre-alignment), extract the axial lines of the broken bones and spatially align them. Then drive the broken bone models to be pre-aligned. Thirdly (mesh segmentation), a method based on vertex normal feature is utilized to obtain the broken bone cross-sections mesh models. Fourthly (fine registration), the ICP (Iterative Closest Point) algorithm is used to register the cross-sections and the broken bone models are driven to achieve the fine registration posture. Lastly (plate fitting), an accurate NURBS surface fitting method is used to construct the virtual plate. The experiment proved that the obtained models of the pre-bended plates were closely bonded to the surface of the registered long bone models. Finally, the lengths, angles and other interested geometric parameters can be measured on the plate models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Systematics of capture and fusion dynamics in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Wang, Bing; Wen, Kai; Zhao, Wei-Juan; Zhao, En-Guang; Zhou, Shan-Gui

    2017-03-01

    We perform a systematic study of capture excitation functions by using an empirical coupled-channel (ECC) model. In this model, a barrier distribution is used to take effectively into account the effects of couplings between the relative motion and intrinsic degrees of freedom. The shape of the barrier distribution is of an asymmetric Gaussian form. The effect of neutron transfer channels is also included in the barrier distribution. Based on the interaction potential between the projectile and the target, empirical formulas are proposed to determine the parameters of the barrier distribution. Theoretical estimates for barrier distributions and calculated capture cross sections together with experimental cross sections of 220 reaction systems with 182 ⩽ZPZT ⩽ 1640 are tabulated. The results show that the ECC model together with the empirical formulas for parameters of the barrier distribution work quite well in the energy region around the Coulomb barrier. This ECC model can provide prediction of capture cross sections for the synthesis of superheavy nuclei as well as valuable information on capture and fusion dynamics.

  14. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  15. Systematic measurement of double-differential neutron production cross sections for deuteron-induced reactions at an incident energy of 102 MeV

    NASA Astrophysics Data System (ADS)

    Araki, Shouhei; Watanabe, Yukinobu; Kitajima, Mizuki; Sadamatsu, Hiroki; Nakano, Keita; Kin, Tadahiro; Iwamoto, Yosuke; Satoh, Daiki; Hagiwara, Masayuki; Yashima, Hiroshi; Shima, Tatsushi

    2017-01-01

    Double-differential neutron production cross sections (DDXs) for deuteron-induced reactions on Li, Be, C, Al, Cu, and Nb at 102 MeV were measured at forward angles ≤25° by means of a time of flight (TOF) method with NE213 liquid organic scintillators at the Research Center of Nuclear Physics (RCNP), Osaka University. The experimental DDXs and energy-integrated cross sections were compared with TENDL-2015 data and Particle and Heavy Ion Transport code System (PHITS) calculation using a combination of the KUROTAMA model, the Liege Intra-Nuclear Cascade model, and the generalized evaporation model. The PHITS calculation showed better agreement with the experimental results than TENDL-2015 for all target nuclei, although the shape of the broad peak around 50 MeV was not satisfactorily reproduced by the PHITS calculation.

  16. Two-phase/two-phase heat exchanger simulation analysis

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1992-01-01

    The capillary pumped loop (CPL) system is one of the most desirable devices to dissipate heat energy in the radiation environment of the Space Station providing a relatively easy control of the temperature. A condenser, a component of the CPL system, is linked with a buffer evaporator in the form of an annulus section of a double tube heat exchanger arrangement: the concentric core of the double tube is the condenser; the annulus section is used as a buffer between the conditioned space and the radiation surrounding but works as an evaporator. A CPL system with this type of condenser is modeled to simulate its function numerically. Preliminary results for temperature variations of the system are shown and more investigations are suggested for further improvement.

  17. Geologic Cross Section D-D' Through the Appalachian Basin from the Findlay Arch, Sandusky County, Ohio, to the Valley and Ridge Province, Hardy County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Crangle, Robert D.; Trippi, Michael H.; Swezey, Christopher S.; Lentz, Erika E.; Rowan, Elisabeth L.; Hope, Rebecca S.

    2009-01-01

    Geologic cross section D-D' is the second in a series of cross sections constructed by the U.S. Geological Survey to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section D-D' provides a regional view of the structural and stratigraphic framework of the Appalachian basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 290 miles. The information shown on the cross section is based on geological and geophysical data from 13 deep drill holes, several of which penetrate the Paleozoic sedimentary rocks of the basin and bottom in Mesoproterozoic (Grenville-age) crystalline basement rocks. This cross section is a companion to cross section E-E' (Ryder and others, 2008) that is located about 25 to 50 mi to the southwest. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section D-D' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general geologic framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section D-D' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste or for the sequestration of carbon dioxide.

  18. An Evaluation of Alternatives for Processing of Administrative Pay Vouchers: A Simulation Approach.

    DTIC Science & Technology

    1982-09-01

    Finance Travel Voucher Q-GERT Productivity Personnel Forecasts Simulation Model 20. ABSTRACT (Continue on reverse side if necessary end Jdentfly by...Finance Office (ACF) has devised a Point System for use in determining the productivity of the ACF Travel Section (ACFTT). This Point System sets values...5 to 5+) to be assigned to incoming travel vouchers based on voucher complexity. This research had set objectives of (1) building an ACFTT model that

  19. Faculty Performance Management System: The Faculty Development/Evaluation System at Beaufort Technical College, 1986-1987. Revised.

    ERIC Educational Resources Information Center

    Tobias, Earole; And Others

    Designed for faculty members at Beaufort Technical College (BTC) in South Carolina, this handbook describes the college's faculty evaluation process and procedures. The first sections of the handbook explain the rationale and method for the faculty evaluation process, state the purposes and objectives of the system, and offer a model which breaks…

  20. Shuttle cryogenic supply system optimization study. Volume 1: Management supply, sections 1 - 3

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An analysis of the cryogenic supply system for use on space shuttle vehicles was conducted. The major outputs of the analysis are: (1) evaluations of subsystem and integrated system concepts, (2) selection of representative designs, (3) parametric data and sensitivity studies, (4) evaluation of cryogenic cooling in environmental control subsystems, and (5) development of mathematical model.

  1. [An analysis of caesarean sections in Uruguay by type of hospital].

    PubMed

    Aguirre, Rafael; Antón, José-Ignacio; Triunfo, Patricia

    2018-04-20

    To analyse on a comparative basis the incidence of caesarean sections among the different health care systems in Uruguay and with respect to the World Health Organization's (WHO) standards, taking into account the medical-obstetric characteristics of the births, particularly, the Robson classification. We examine 190,847 births registered by the Perinatal Information System in Uruguay between 2009 and 2014 by type of health care system. Using logit models, we analyse the probability of caesarean section taking into account the Robson classification, other risk factors and the mothers' characteristics. We compared the caesarean rates predicted by the different subsystems for a common population. Furthermore, we contrast the caesarean rates observed in each subsystem with the rates that resulted if the Uruguayan hospitals followed the guidelines of the sample of WHO reference hospitals. Private health systems in Uruguay exhibit a much higher incidence of caesarean sections than public ones, even after considering the medical-obstetric characteristics of the births. Caesarean rates are more than 75% higher than those observed if the WHO standards are applied. Uruguay has a very high incidence of caesarean sections with respect to WHO standards, particularly, in the private sector. This fact is unrelated to the clinical characteristics of the births. Copyright © 2018 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. U.S. Standard Atmosphere, 1976

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Part 1 gives the basis for computation of the main tables of atmospheric properties, including values of physical constants, conversion factors, and definitions of derived properties, including values of physical constants, conversion factors, and definitions of derived properties. Part 2 describes the model and data used up to 85 km, in the first section; and the model and data used above 85 km in the second section. The theoretical basis of the high altitude model is given in an appendix. Part 3 contains information on minor constituents in the troposphere, stratosphere, and mesosphere. The main tables of atmospheric properties to 1000 km are given in Part 4. The international system of metric units is used.

  3. Expansion of the Real-time Sport-land Information System for NOAA / National Weather Service Situational Awareness and Local Modeling Applications

    NASA Technical Reports Server (NTRS)

    Case, Jonathan L.; White, Kristopher D.

    2014-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center in Huntsville, AL (Jedlovec 2013; Ralph et al. 2013; Merceret et al. 2013) is running a real-time configuration of the Noah land surface model (LSM) within the NASA Land Information System (LIS) framework (hereafter referred to as the "SPoRT-LIS"). Output from the real-time SPoRT-LIS is used for (1) initializing land surface variables for local modeling applications, and (2) displaying in decision support systems for situational awareness and drought monitoring at select NOAA/National Weather Service (NWS) partner offices. The SPoRT-LIS is currently run over a domain covering the southeastern half of the Continental United States (CONUS), with an additional experimental real-time run over the entire CONUS and surrounding portions of southern Canada and northern Mexico. The experimental CONUS run incorporates hourly quantitative precipitation estimation (QPE) from the National Severe Storms Laboratory Multi- Radar Multi-Sensor (MRMS) product (Zhang et al. 2011, 2014), which will be transitioned into operations at the National Centers for Environmental Prediction (NCEP) in Fall 2014. This paper describes the current and experimental SPoRT-LIS configurations, and documents some of the limitations still remaining through the advent of MRMS precipitation analyses in the SPoRT-LIS land surface model (LSM) simulations. Section 2 gives background information on the NASA LIS and describes the realtime SPoRT-LIS configurations being compared. Section 3 presents recent work done to develop a training module on situational awareness applications of real-time SPoRT-LIS output. Comparisons between output from the two SPoRT-LIS runs are shown in Section 4, including a documentation of issues encountered in using the MRMS precipitation dataset. A summary and future work in given in Section 5, followed by acknowledgements and references.

  4. Dynamics of Longitudinal Impact in the Variable Cross-Section Rods

    NASA Astrophysics Data System (ADS)

    Stepanov, R.; Romenskyi, D.; Tsarenko, S.

    2018-03-01

    Dynamics of longitudinal impact in rods of variable cross-section is considered. Rods of various configurations are used as elements of power pulse systems. There is no single method to the construction of a mathematical model of longitudinal impact on rods. The creation of a general method for constructing a mathematical model of longitudinal impact for rods of variable cross-section is the goal of the article. An elastic rod is considered with a cross-sectional area varying in powers of law from the longitudinal coordinate. The solution of the wave equation is obtained using the Fourier method. Special functions are introduced on the basis of recurrence relations for Bessel functions for solving boundary value problems. The expression for the square of the norm is obtained taking into account the orthogonality property of the eigen functions with weight. For example, the impact of an inelastic mass along the wide end of a conical rod is considered. The expressions for the displacements, forces and stresses of the rod sections are obtained for the cases of sudden velocity communication and the application of force. The proposed mathematical model makes it possible to carry out investigations of the stress-strain state in rods of variable and constant cross-section for various conditions of dynamic effects.

  5. Numerical Simulation of Blood Flow in Human Artery Using (A, Q) and (A, u) Systems

    NASA Astrophysics Data System (ADS)

    Mungkasi, Sudi; Wijayanti Budiawan, Inge

    2018-03-01

    In this paper, we model blood flow in human artery in the form of (𝐴, 𝑄) and (𝐴, 𝑢) systems, then we use the Lax-Friedrichs finite volume method to find the numerical solution of each model. Here 𝐴 represents the cross sectional area of the artery, 𝑄 denotes the discharge of the blood flow, and 𝑢 is the velocity of the blood flow. We simulate the numerical scheme of each model and investigate how the blood pressure pulse propagates in human artery. Particularly, we use the residual of 𝐴 to determine which system is better numerically. We obtain that the (𝐴, 𝑄) system is better numerically than the (𝐴, 𝑢) system, because the absolute of the residual of 𝐴 using the (𝐴, 𝑄) system is smaller than the absolute of the residual of 𝐴 using the (𝐴, 𝑢) system.

  6. Multi-objective optimisation of aircraft flight trajectories in the ATM and avionics context

    NASA Astrophysics Data System (ADS)

    Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian

    2016-05-01

    The continuous increase of air transport demand worldwide and the push for a more economically viable and environmentally sustainable aviation are driving significant evolutions of aircraft, airspace and airport systems design and operations. Although extensive research has been performed on the optimisation of aircraft trajectories and very efficient algorithms were widely adopted for the optimisation of vertical flight profiles, it is only in the last few years that higher levels of automation were proposed for integrated flight planning and re-routing functionalities of innovative Communication Navigation and Surveillance/Air Traffic Management (CNS/ATM) and Avionics (CNS+A) systems. In this context, the implementation of additional environmental targets and of multiple operational constraints introduces the need to efficiently deal with multiple objectives as part of the trajectory optimisation algorithm. This article provides a comprehensive review of Multi-Objective Trajectory Optimisation (MOTO) techniques for transport aircraft flight operations, with a special focus on the recent advances introduced in the CNS+A research context. In the first section, a brief introduction is given, together with an overview of the main international research initiatives where this topic has been studied, and the problem statement is provided. The second section introduces the mathematical formulation and the third section reviews the numerical solution techniques, including discretisation and optimisation methods for the specific problem formulated. The fourth section summarises the strategies to articulate the preferences and to select optimal trajectories when multiple conflicting objectives are introduced. The fifth section introduces a number of models defining the optimality criteria and constraints typically adopted in MOTO studies, including fuel consumption, air pollutant and noise emissions, operational costs, condensation trails, airspace and airport operations. A brief overview of atmospheric and weather modelling is also included. Key equations describing the optimality criteria are presented, with a focus on the latest advancements in the respective application areas. In the sixth section, a number of MOTO implementations in the CNS+A systems context are mentioned with relevant simulation case studies addressing different operational tasks. The final section draws some conclusions and outlines guidelines for future research on MOTO and associated CNS+A system implementations.

  7. Mechanism of multinucleon transfer reaction based on the GRAZING model and DNS model

    NASA Astrophysics Data System (ADS)

    Wen, Pei-wei; Li, Cheng; Zhu, Long; Lin, Cheng-jian; Zhang, Feng-shou

    2017-11-01

    Multinucleon transfer (MNT) reactions have been studied by either the GRAZING model or dinuclear system (DNS) model before. MNT reactions in the grazing regime have been described quite well by the GRAZING model. The DNS model is able to deal with MNT reactions, which happen in the closer overlapped regime after contact of two colliding nuclei. Since MNT reactions can happen in both areas and cannot be distinguished in view of experimental work, it is beneficial to compare these two models to clarify mechanism of MNT reactions. In this study, the mechanism of the MNT reaction has been studied by comparing the GRAZING model and DNS model for the first time. Reaction systems 136Xe+208Pb at {E}{{c}.{{m}}.}=450 MeV and 64Ni+238U at {E}{{c}.{{m}}.}=307 MeV are taken as examples in this paper. It is found that the gradients of transfer cross sections with respect to the impact parameter of the GRAZING model and DNS model are mainly concentrated on two different areas, which represents two kinds of transfer mechanisms. The theoretical framework of these two models are exclusive according to whether capture happens, which guarantees that the theoretical results calculated by these two models have no overlap and can be added up. Results indicate that the description of experimental MNT reaction cross sections can be significantly improved if calculations of the GRAZING model and DNS model are both considered.

  8. Toward Improved Land Surface Initialization in Support of Regional WRF Forecasts at the Kenya Meteorological Service (KMS)

    NASA Technical Reports Server (NTRS)

    Case, Johnathan L.; Mungai, John; Sakwa, Vincent; Kabuchanga, Eric; Zavodsky, Bradley T.; Limaye, Ashutosh S.

    2014-01-01

    Flooding and drought are two key forecasting challenges for the Kenya Meteorological Service (KMS). Atmospheric processes leading to excessive precipitation and/or prolonged drought can be quite sensitive to the state of the land surface, which interacts with the planetary boundary layer (PBL) of the atmosphere providing a source of heat and moisture. The development and evolution of precipitation systems are affected by heat and moisture fluxes from the land surface, particularly within weakly-sheared environments such as in the tropics and sub-tropics. These heat and moisture fluxes during the day can be strongly influenced by land cover, vegetation, and soil moisture content. Therefore, it is important to represent the land surface state as accurately as possible in land surface and numerical weather prediction (NWP) models. Enhanced regional modeling capabilities have the potential to improve forecast guidance in support of daily operations and high-impact weather over eastern Africa. KMS currently runs a configuration of the Weather Research and Forecasting (WRF) NWP model in real time to support its daily forecasting operations, making use of the NOAA/National Weather Service (NWS) Science and Training Resource Center's Environmental Modeling System (EMS) to manage and produce the KMS-WRF runs on a regional grid over eastern Africa. Two organizations at the NASA Marshall Space Flight Center in Huntsville, AL, SERVIR and the Shortterm Prediction Research and Transition (SPoRT) Center, have established a working partnership with KMS for enhancing its regional modeling capabilities through new datasets and tools. To accomplish this goal, SPoRT and SERVIR is providing enhanced, experimental land surface initialization datasets and model verification capabilities to KMS as part of this collaboration. To produce a land-surface initialization more consistent with the resolution of the KMS-WRF runs, the NASA Land Information System (LIS) is run at a comparable resolution to provide real-time, daily soil initialization data in place of data interpolated from the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model soil moisture and temperature fields. Additionally, realtime green vegetation fraction (GVF) data from the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi- NPP) satellite will be incorporated into the KMS-WRF runs, once it becomes publicly available from the National Environmental Satellite Data and Information Service (NESDIS). Finally, model verification capabilities will be transitioned to KMS using the Model Evaluation Tools (MET; Brown et al. 2009) package in conjunction with a dynamic scripting package developed by SPoRT (Zavodsky et al. 2014), to help quantify possible improvements in simulated temperature, moisture and precipitation resulting from the experimental land surface initialization. Furthermore, the transition of these MET tools will enable KMS to monitor model forecast accuracy in near real time. This paper presents preliminary efforts to improve land surface model initialization over eastern Africa in support of operations at KMS. The remainder of this extended abstract is organized as follows: The collaborating organizations involved in the project are described in Section 2; background information on LIS and the configuration for eastern Africa is presented in Section 3; the WRF configuration used in this modeling experiment is described in Section 4; sample experimental WRF output with and without LIS initialization data are given in Section 5; a summary is given in Section 6 followed by acknowledgements and references.

  9. Prediction of flow dynamics using point processes

    NASA Astrophysics Data System (ADS)

    Hirata, Yoshito; Stemler, Thomas; Eroglu, Deniz; Marwan, Norbert

    2018-01-01

    Describing a time series parsimoniously is the first step to study the underlying dynamics. For a time-discrete system, a generating partition provides a compact description such that a time series and a symbolic sequence are one-to-one. But, for a time-continuous system, such a compact description does not have a solid basis. Here, we propose to describe a time-continuous time series using a local cross section and the times when the orbit crosses the local cross section. We show that if such a series of crossing times and some past observations are given, we can predict the system's dynamics with fine accuracy. This reconstructability neither depends strongly on the size nor the placement of the local cross section if we have a sufficiently long database. We demonstrate the proposed method using the Lorenz model as well as the actual measurement of wind speed.

  10. Relating DSM-5 section III personality traits to section II personality disorder diagnoses.

    PubMed

    Morey, L C; Benson, K T; Skodol, A E

    2016-02-01

    The DSM-5 Personality and Personality Disorders Work Group formulated a hybrid dimensional/categorical model that represented personality disorders as combinations of core impairments in personality functioning with specific configurations of problematic personality traits. Specific clusters of traits were selected to serve as indicators for six DSM categorical diagnoses to be retained in this system - antisocial, avoidant, borderline, narcissistic, obsessive-compulsive and schizotypal personality disorders. The goal of the current study was to describe the empirical relationships between the DSM-5 section III pathological traits and DSM-IV/DSM-5 section II personality disorder diagnoses. Data were obtained from a sample of 337 clinicians, each of whom rated one of his or her patients on all aspects of the DSM-IV and DSM-5 proposed alternative model. Regression models were constructed to examine trait-disorder relationships, and the incremental validity of core personality dysfunctions (i.e. criterion A features for each disorder) was examined in combination with the specified trait clusters. Findings suggested that the trait assignments specified by the Work Group tended to be substantially associated with corresponding DSM-IV concepts, and the criterion A features provided additional diagnostic information in all but one instance. Although the DSM-5 section III alternative model provided a substantially different taxonomic structure for personality disorders, the associations between this new approach and the traditional personality disorder concepts in DSM-5 section II make it possible to render traditional personality disorder concepts using alternative model traits in combination with core impairments in personality functioning.

  11. Wind-Tunnel Survey of an Oscillating Flow Field for Application to Model Helicopter Rotor Testing

    NASA Technical Reports Server (NTRS)

    Mirick, Paul H.; Hamouda, M-Nabil H.; Yeager, William T., Jr.

    1990-01-01

    A survey was conducted of the flow field produced by the Airstream Oscillator System (AOS) in the Langley Transonic Dynamics Tunnel (TDT). The magnitude of a simulated gust field was measured at 15 locations in the plane of a typical model helicopter rotor when tested in the TDT using the Aeroelastic Rotor Experimental System (ARES) model. These measurements were made over a range of tunnel dynamic pressures typical of those used for an ARES test. The data indicate that the gust field produced by the AOS is non-uniform across the tunnel test section, but should be sufficient to excite a model rotor.

  12. Validation of Cross Sections for Monte Carlo Simulation of the Photoelectric Effect

    NASA Astrophysics Data System (ADS)

    Han, Min Cheol; Kim, Han Sung; Pia, Maria Grazia; Basaglia, Tullio; Batič, Matej; Hoff, Gabriela; Kim, Chan Hyeong; Saracco, Paolo

    2016-04-01

    Several total and partial photoionization cross section calculations, based on both theoretical and empirical approaches, are quantitatively evaluated with statistical analyses using a large collection of experimental data retrieved from the literature to identify the state of the art for modeling the photoelectric effect in Monte Carlo particle transport. Some of the examined cross section models are available in general purpose Monte Carlo systems, while others have been implemented and subjected to validation tests for the first time to estimate whether they could improve the accuracy of particle transport codes. The validation process identifies Scofield's 1973 non-relativistic calculations, tabulated in the Evaluated Photon Data Library (EPDL), as the one best reproducing experimental measurements of total cross sections. Specialized total cross section models, some of which derive from more recent calculations, do not provide significant improvements. Scofield's non-relativistic calculations are not surpassed regarding the compatibility with experiment of K and L shell photoionization cross sections either, although in a few test cases Ebel's parameterization produces more accurate results close to absorption edges. Modifications to Biggs and Lighthill's parameterization implemented in Geant4 significantly reduce the accuracy of total cross sections at low energies with respect to its original formulation. The scarcity of suitable experimental data hinders a similar extensive analysis for the simulation of the photoelectron angular distribution, which is limited to a qualitative appraisal.

  13. Emulation study on system characteristic of high pressure common-rail fuel injection system for marine medium-speed diesel engine

    NASA Astrophysics Data System (ADS)

    Wang, Qinpeng; Yang, Jianguo; Xin, Dong; He, Yuhai; Yu, Yonghua

    2018-05-01

    In this paper, based on the characteristic analyzing of the mechanical fuel injection system for the marine medium-speed diesel engine, a sectional high-pressure common rail fuel injection system is designed, rated condition rail pressure of which is 160MPa. The system simulation model is built and the performance of the high pressure common rail fuel injection system is analyzed, research results provide the technical foundation for the system engineering development.

  14. Qualitative model-based diagnosis using possibility theory

    NASA Technical Reports Server (NTRS)

    Joslyn, Cliff

    1994-01-01

    The potential for the use of possibility in the qualitative model-based diagnosis of spacecraft systems is described. The first sections of the paper briefly introduce the Model-Based Diagnostic (MBD) approach to spacecraft fault diagnosis; Qualitative Modeling (QM) methodologies; and the concepts of possibilistic modeling in the context of Generalized Information Theory (GIT). Then the necessary conditions for the applicability of possibilistic methods to qualitative MBD, and a number of potential directions for such an application, are described.

  15. Behavioral and Temporal Pattern Detection Within Financial Data With Hidden Information

    DTIC Science & Technology

    2012-02-01

    probabilistic pattern detector to monitor the pattern. 15. SUBJECT TERMS Runtime verification, Hidden data, Hidden Markov models, Formal specifications...sequences in many other fields besides financial systems [L, TV, LC, LZ ]. Rather, the technique suggested in this paper is positioned as a hybrid...operation of the pattern detector . Section 7 describes the operation of the probabilistic pattern-matching monitor, and section 8 describes three

  16. Studies on Radar and Non-radar Sensor Networks

    DTIC Science & Technology

    2006-06-15

    the following sections. ubiquitous and persistent sensor sources such as "* Organic sensors (e.g., radar, electro- optic and infrared, III. SITUATION...repetition frequency (PRF). Under these circumstances, target RSN, but in noncoherent systems as well. The latter scenario is more challenging as...signal propagation models. Section III and IV analyzes coherent andseletio an Ga ssin u equl me n trge mo els In [3] noncoherent detection

  17. Agent based models for testing city evacuation strategies under a flood event as strategy to reduce flood risk

    NASA Astrophysics Data System (ADS)

    Medina, Neiler; Sanchez, Arlex; Nokolic, Igor; Vojinovic, Zoran

    2016-04-01

    This research explores the uses of Agent Based Models (ABM) and its potential to test large scale evacuation strategies in coastal cities at risk from flood events due to extreme hydro-meteorological events with the final purpose of disaster risk reduction by decreasing human's exposure to the hazard. The first part of the paper corresponds to the theory used to build the models such as: Complex adaptive systems (CAS) and the principles and uses of ABM in this field. The first section outlines the pros and cons of using AMB to test city evacuation strategies at medium and large scale. The second part of the paper focuses on the central theory used to build the ABM, specifically the psychological and behavioral model as well as the framework used in this research, specifically the PECS reference model is cover in this section. The last part of this section covers the main attributes or characteristics of human beings used to described the agents. The third part of the paper shows the methodology used to build and implement the ABM model using Repast-Symphony as an open source agent-based modelling and simulation platform. The preliminary results for the first implementation in a region of the island of Sint-Maarten a Dutch Caribbean island are presented and discussed in the fourth section of paper. The results obtained so far, are promising for a further development of the model and its implementation and testing in a full scale city

  18. A Model for Planning Vocational Education at the Local Level. Information Series No. 153.

    ERIC Educational Resources Information Center

    Bregman, Ralph

    One of a series of sixteen knowledge transformation papers, this paper presents an educational planning model which incorporates citizen involvement at the local level and provides a more responsive and efficient vocational education system. In the first section techniques are discussed for encouraging community participation, such as general…

  19. A comparison of coupled freshwater-saltwater sharp-interface and convective-dispersive models of saltwater intrusion in a layered aquifer system

    USGS Publications Warehouse

    Hill, Mary C.

    1988-01-01

    Simulated results of the coupled freshwater-saltwater sharp interface and convective-dispersive numerical models are compared by using steady-state cross-sectional simulations. The results indicate that in some aquifers the calculated sharp interface is located further landward than would be expected.

  20. Phase Control in Nonlinear Systems

    NASA Astrophysics Data System (ADS)

    Zambrano, Samuel; Seoane, Jesús M.; Mariño, Inés P.; Sanjuán, Miguel A. F.; Meucci, Riccardo

    The following sections are included: * Introduction * Phase Control of Chaos * Description of the model * Numerical exploration of phase control of chaos * Experimental evidence of phase control of chaos * Phase Control of Intermittency in Dynamical Systems * Crisis-induced intermittency and its control * Experimental setup and implementation of the phase control scheme * Phase control of the laser in the pre-crisis regime * Phase control of the intermittency after the crisis * Phase control of the intermittency in the quadratic map * Phase Control of Escapes in Open Dynamical Systems * Control of open dynamical systems * Model description * Numerical simulations and heuristic arguments * Experimental implementation in an electronic circuit * Conclusions and Discussions * Acknowledgments * References

  1. Automated plant, production management system

    NASA Astrophysics Data System (ADS)

    Aksenova, V. I.; Belov, V. I.

    1984-12-01

    The development of a complex of tasks for the operational management of production (OUP) within the framework of an automated system for production management (ASUP) shows that it is impossible to have effective computations without reliable initial information. The influence of many factors involving the production and economic activity of the entire enterprise upon the plan and course of production are considered. It is suggested that an adequate model should be available which covers all levels of the hierarchical system: workplace, section (bridgade), shop, enterprise, and the model should be incorporated into the technological sequence of performance and there should be provisions for an adequate man machine system.

  2. New model for burnout prediction in channels of various cross-section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bobkov, V.P.; Kozina, N.V.; Vinogrado, V.N.

    1995-09-01

    The model developed to predict a critical heat flux (CHF) in various channels is presented together with the results of data analysis. A model is the realization of relative method of CHF describing based on the data for round tube and on the system of correction factors. The results of data description presented here are for rectangular and triangular channels, annuli and rod bundles.

  3. Review of FD-TD numerical modeling of electromagnetic wave scattering and radar cross section

    NASA Technical Reports Server (NTRS)

    Taflove, Allen; Umashankar, Korada R.

    1989-01-01

    Applications of the finite-difference time-domain (FD-TD) method for numerical modeling of electromagnetic wave interactions with structures are reviewed, concentrating on scattering and radar cross section (RCS). A number of two- and three-dimensional examples of FD-TD modeling of scattering and penetration are provided. The objects modeled range in nature from simple geometric shapes to extremely complex aerospace and biological systems. Rigorous analytical or experimental validatons are provided for the canonical shapes, and it is shown that FD-TD predictive data for near fields and RCS are in excellent agreement with the benchmark data. It is concluded that with continuing advances in FD-TD modeling theory for target features relevant to the RCS problems and in vector and concurrent supercomputer technology, it is likely that FD-TD numerical modeling will occupy an important place in RCS technology in the 1990s and beyond.

  4. Extended Operating Configuration 2 (EOC-2) Design Document

    NASA Technical Reports Server (NTRS)

    Barkai, David; Blaylock, Bruce T. (Technical Monitor)

    1994-01-01

    This document describes the design and plan of the Extended Operating Configuration 2 (EOC-2) for the Numerical Aerodynamic Simulation division (NAS). It covers the changes in the computing environment for the period of '93-'94. During this period the computation capability at NAS will have quadrupled. The first section summarizes this paper: the NAS mission is to provide, by the year 2000, a computing system capable of simulating an entire aerospace vehicle in a few hours. This will require 100 GigaFlops sustained performance. The second section contains information about the NAS user community and the computational model used for projecting future requirements. In the third section, the overall requirements are presented, followed by a summary of the target EOC-2 system. The following sections cover, in more detail, each major component that will have undergone change during EOC-2: the high speed processor, mass storage, workstations, and networks.

  5. Search strategy using LHC pileup interactions as a zero bias sample

    NASA Astrophysics Data System (ADS)

    Nachman, Benjamin; Rubbo, Francesco

    2018-05-01

    Due to a limited bandwidth and a large proton-proton interaction cross section relative to the rate of interesting physics processes, most events produced at the Large Hadron Collider (LHC) are discarded in real time. A sophisticated trigger system must quickly decide which events should be kept and is very efficient for a broad range of processes. However, there are many processes that cannot be accommodated by this trigger system. Furthermore, there may be models of physics beyond the standard model (BSM) constructed after data taking that could have been triggered, but no trigger was implemented at run time. Both of these cases can be covered by exploiting pileup interactions as an effective zero bias sample. At the end of high-luminosity LHC operations, this zero bias dataset will have accumulated about 1 fb-1 of data from which a bottom line cross section limit of O (1 ) fb can be set for BSM models already in the literature and those yet to come.

  6. WRAP-RIB antenna technology development

    NASA Technical Reports Server (NTRS)

    Freeland, R. E.; Garcia, N. F.; Iwamoto, H.

    1985-01-01

    The wrap-rib deployable antenna concept development is based on a combination of hardware development and testing along with extensive supporting analysis. The proof-of-concept hardware models are large in size so they will address the same basic problems associated with the design fabrication, assembly and test as the full-scale systems which were selected to be 100 meters at the beginning of the program. The hardware evaluation program consists of functional performance tests, design verification tests and analytical model verification tests. Functional testing consists of kinematic deployment, mesh management and verification of mechanical packaging efficiencies. Design verification consists of rib contour precision measurement, rib cross-section variation evaluation, rib materials characterizations and manufacturing imperfections assessment. Analytical model verification and refinement include mesh stiffness measurement, rib static and dynamic testing, mass measurement, and rib cross-section characterization. This concept was considered for a number of potential applications that include mobile communications, VLBI, and aircraft surveillance. In fact, baseline system configurations were developed by JPL, using the appropriate wrap-rib antenna, for all three classes of applications.

  7. The ^132Sn + ^96Zr reaction: a study of fusion enhancement/hindrance

    NASA Astrophysics Data System (ADS)

    Loveland, Walter; Vinodkumar, A. M.; Neeway, James; Sprunger, Peter; Prisbrey, Landon; Peterson, Donald; Liang, J. F.; Shapira, Dan; Gross, C. J.; Varner, R. L.; Kolata, J. J.; Roberts, A.; Caraley, A. L.

    2008-10-01

    Capture-fission cross sections were measured for the collision of the massive nucleus ^132Sn with ^96Zr at center of mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm, instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system (DNS) model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron rich projectiles.

  8. 132Sn+96Zr reaction: A study of fusion enhancement/hindrance

    NASA Astrophysics Data System (ADS)

    Vinodkumar, A. M.; Loveland, W.; Neeway, J. J.; Prisbrey, L.; Sprunger, P. H.; Peterson, D.; Liang, J. F.; Shapira, D.; Gross, C. J.; Varner, R. L.; Kolata, J. J.; Roberts, A.; Caraley, A. L.

    2008-11-01

    Capture-fission cross sections were measured for the collision of the massive nucleus Sn132 with Zr96 at center-of-mass energies ranging from 192.8 to 249.6 MeV in an attempt to study fusion enhancement and hindrance in this reaction involving very neutron-rich nuclei. Coincident fission fragments were detected using silicon detectors. Using angle and energy conditions, deep inelastic scattering events were separated from fission events. Coupled-channels calculations can describe the data if the surface diffuseness parameter, a, is allowed to be 1.10 fm instead of the customary 0.6 fm. The measured capture-fission cross sections agree moderately well with model calculations using the dinuclear system model. If we use this model to predict fusion barrier heights for these reactions, we find the predicted fusion hindrance, as represented by the extra push energy, is greater for the more neutron-rich system, lessening the advantage of the lower interaction barriers with neutron-rich projectiles.

  9. Continuing Education in a Lifelong Learning Society: The Hong Kong Model

    ERIC Educational Resources Information Center

    Young, Enoch C. M.

    2008-01-01

    This paper examines the role and position of continuing education in the lifelong learning society of Hong Kong. The first section describes the basic components of Hong Kong's lifelong learning system, which is composed of two interconnected sub-systems--namely, conventional education and continuing education--integrated under a common…

  10. 75 FR 23822 - Notice of Opportunity for Public Comment on the Proposed Models for Plant-Specific Adoption of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... Agencywide Documents Access and Management System (ADAMS) under Accession Number ML092670242. The proposed... and Maintenance Program'' is being proposed for Section [5.5] [``Administrative Controls--Programs and... and Management System (ADAMS): Publicly available documents created or received at the NRC are...

  11. 76 FR 21820 - Airworthiness Directives; Bombardier, Inc. Model DHC-8-400 Series Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... Engineer, Airframe and Mechanical Systems Branch, ANE-171, FAA, New York Aircraft Certification Office... incorporation of a new maintenance task for the MLG stabilizer extension springs. You may obtain further... Temporary Revision MRB-45, dated October 6, 2009 to Section 1-32, Systems/Powerplant Maintenance Program of...

  12. 40 CFR 60.1735 - Am I exempt from any appendix B or appendix F requirements to evaluate continuous emission...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... appendix F requirements to evaluate continuous emission monitoring systems? 60.1735 Section 60.1735... Combustion Units Constructed on or Before August 30, 1999 Model Rule-Continuous Emission Monitoring § 60.1735... to also evaluate your oxygen (or carbon dioxide) continuous emission monitoring system. Therefore...

  13. An integrated approach to reservoir modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, K.

    1993-08-01

    The purpose of this research is to evaluate the usefulness of the following procedural and analytical methods in investigating the heterogeneity of the oil reserve for the Mississipian Big Injun Sandstone of the Granny Creek field, Clay and Roane counties, West Virginia: (1) relational database, (2) two-dimensional cross sections, (3) true three-dimensional modeling, (4) geohistory analysis, (5) a rule-based expert system, and (6) geographical information systems. The large data set could not be effectively integrated and interpreted without this approach. A relational database was designed to fully integrate three- and four-dimensional data. The database provides an effective means for maintainingmore » and manipulating the data. A two-dimensional cross section program was designed to correlate stratigraphy, depositional environments, porosity, permeability, and petrographic data. This flexible design allows for additional four-dimensional data. Dynamic Graphics[sup [trademark

  14. Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA

    USGS Publications Warehouse

    Oki, D.S.; Souza, W.R.; Bolke, E.L.; Bauer, G.R.

    1998-01-01

    The coastal aquifer system of southern Oahu, Hawaii, USA, consists of highly permeable volcanic aquifers overlain by weathered volcanic rocks and interbedded marine and terrestrial sediments of both high and low permeability. The weathered volcanic rocks and sediments are collectively known as caprock, because they impede the free discharge of groundwater from the underlying volcanic aquifers. A cross-sectional groundwater flow and transport model was used to evaluate the hydrogeologic controls on the regional flow system in southwestern Oahu. Controls considered were: (a) overall caprock hydraulic conductivity; and (b) stratigraphic variations of hydraulic conductivity in the caprock. Within the caprock, variations in hydraulic conductivity, caused by stratigraphy or discontinuities of the stratigraphic units, are a major control on the direction of groundwater flow and the distribution of water levels and salinity. Results of cross-sectional modeling confirm the general groundwater flow pattern that would be expected in a layered coastal system. Ground-water flow is: (a) predominantly upward in the low-permeability sedimentary units; and (b) predominantly horizontal in the high-permeability sedimentary units.

  15. Barrier distributions and signatures of transfer channels in the Ca40+Ni58,64 fusion reactions at energies around and below the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Bourgin, D.; Courtin, S.; Haas, F.; Stefanini, A. M.; Montagnoli, G.; Goasduff, A.; Montanari, D.; Corradi, L.; Fioretto, E.; Huiming, J.; Scarlassara, F.; Rowley, N.; Szilner, S.; Mijatović, T.

    2014-10-01

    Background: The nuclear structure of colliding nuclei is known to influence the fusion process. Couplings of the relative motion to nuclear shape deformations and vibrations lead to an enhancement of the sub-barrier fusion cross section in comparison with the predictions of one-dimensional barrier penetration models. This enhancement is explained by coupled-channels calculations including these couplings. The sub-barrier fusion cross section is also affected by nucleon transfer channels between the colliding nuclei. Purpose: The aim of the present experiment is to investigate the influence of the projectile and target nuclear structures on the fusion cross sections in the Ca40+Ni58 and Ca40+Ni64 systems. Methods: The experimental and theoretical fusion excitation functions as well as the barrier distributions were compared for these two systems. Coupled-channels calculations were performed using the ccfull code. Results: Good agreement was found between the measured and calculated fusion cross sections for the Ca40+Ni58 system. The situation is different for the Ca40+Ni64 system where the coupled-channels calculations with no nucleon transfer clearly underestimate the fusion cross sections below the Coulomb barrier. The fusion excitation function was, however, well reproduced at low and high energies by including the coupling to the neutron pair-transfer channel in the calculations. Conclusions: The nuclear structure of the colliding nuclei influences the fusion cross sections below the Coulomb barrier for both Ca40+Ni58,64 systems. Moreover, we highlighted the effect of the neutron pair-transfer channel on the fusion cross sections in Ca40+Ni64.

  16. Preliminary Analysis of LORAN-C System Reliability for Civil Aviation.

    DTIC Science & Technology

    1981-09-01

    overviev of the analysis technique. Section 3 describes the computerized LORAN-C coverage model which is used extensively in the reliability analysis...Xth Plenary Assembly, Geneva, 1963, published by International Telecomunications Union. S. Braff, R., Computer program to calculate a Karkov Chain Reliability Model, unpublished york, MITRE Corporation. A-1 I.° , 44J Ili *Y 0E 00 ...F i8 1110 Prelim inary Analysis of Program Engineering & LORAN’C System ReliabilityMaintenance Service i ~Washington. D.C.

  17. Effects of the DRG-based prospective payment system operated by the voluntarily participating providers on the cesarean section rates in Korea.

    PubMed

    Lee, Kwangsoo; Lee, Sangil

    2007-05-01

    This study explored the effects of the diagnosis-related group (DRG)-based prospective payment system (PPS) operated by voluntarily participating organizations on the cesarean section (CS) rates, and analyzed whether the participating health care organizations had similar CS rates despite the varied participation periods. The study sample included delivery claims data from the Korean national health insurance program for the year 2003. Risk factors were identified and used in the adjustment model to distinguish the main reason for CS. Their risk-adjusted CS rates were compared by the reimbursement methods, and the organizations' internal and external environments were controlled. The final risk-adjustment model for the CS rates meets the criteria for an effective model. There were no significant differences of CS rates between providers in the DRG and fee-for-service system after controlling for organizational variables. The CS rates did not vary significantly depending on the providers' DRG participation periods. The results provide evidence that the DRG payment system operated by volunteering health care organizations had no impact on the CS rates, which can lower the quality of care. Although the providers joined the DRG system in different years, there were no differences in the CS rates among the DRG providers. These results support the future expansion of the DRG-based PPS plan to all health care services in Korea.

  18. Understanding electrostatic charge behaviour in aircraft fuel systems

    NASA Astrophysics Data System (ADS)

    Ogilvy, Jill A.; Hooker, Phil; Bennett, Darrell

    2015-10-01

    This paper presents work on the simulation of electrostatic charge build-up and decay in aircraft fuel systems. A model (EC-Flow) has been developed by BAE Systems under contract to Airbus, to allow the user to assess the effects of changes in design or in refuel conditions. Some of the principles behind the model are outlined. The model allows for a range of system components, including metallic and non-metallic pipes, valves, filters, junctions, bends and orifices. A purpose-built experimental rig was built at the Health and Safety Laboratory in Buxton, UK, to provide comparison data. The rig comprises a fuel delivery system, a test section where different components may be introduced into the system, and a Faraday Pail for measuring generated charge. Diagnostics include wall currents, charge densities and pressure losses. This paper shows sample results from the fitting of model predictions to measurement data and shows how analysis may be used to explain some of the observed trends.

  19. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    NASA Astrophysics Data System (ADS)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  20. Three-Dimensional Geologic Framework Model for a Karst Aquifer System, Hasty and Western Grove Quadrangles, Northern Arkansas

    USGS Publications Warehouse

    Turner, Kenzie J.; Hudson, Mark R.; Murray, Kyle E.; Mott, David N.

    2007-01-01

    Understanding ground-water flow in a karst aquifer benefits from a detailed conception of the three-dimensional (3D) geologic framework. Traditional two-dimensional products, such as geologic maps, cross-sections, and structure contour maps, convey a mental picture of the area but a stronger conceptualization can be achieved by constructing a digital 3D representation of the stratigraphic and structural geologic features. In this study, a 3D geologic model was created to better understand a karst aquifer system in the Buffalo National River watershed in northern Arkansas. The model was constructed based on data obtained from recent, detailed geologic mapping for the Hasty and Western Grove 7.5-minute quadrangles. The resulting model represents 11 stratigraphic zones of Ordovician, Mississippian, and Pennsylvanian age. As a result of the highly dissected topography, stratigraphic and structural control from geologic contacts and interpreted structure contours were sufficient for effectively modeling the faults and folds in the model area. Combined with recent dye-tracing studies, the 3D framework model is useful for visualizing the various geologic features and for analyzing the potential control they exert on the ground-water flow regime. Evaluation of the model, by comparison to published maps and cross-sections, indicates that the model accurately reproduces both the surface geology and subsurface geologic features of the area.

  1. Specification for a surface-search radar-detection-range model

    NASA Astrophysics Data System (ADS)

    Hattan, Claude P.

    1990-09-01

    A model that predicts surface-search radar detection range versus a variety of combatants has been developed at the Naval Ocean Systems Center. This model uses a simplified ship radar cross section (RCS) model and the U.S. Navy Oceanographic and Atmospheric Mission Library Standard Electromagnetic Propagation Model. It provides the user with a method of assessing the effects of the environment of the performance of a surface-search radar system. The software implementation of the model is written in ANSI FORTRAN 77, with MIL-STD-1753 extensions. The program provides the user with a table of expected detection ranges when the model is supplied with the proper environmental radar system inputs. The target model includes the variation in RCS as a function of aspect angle and the distribution of reflected radar energy as a function of height above the waterline. The modeled propagation effects include refraction caused by a multisegmented refractivity profile, sea-surface roughness caused by local winds, evaporation ducting, and surface-based ducts caused by atmospheric layering.

  2. Modeling Drinking Behavior Progression in Youth: a Non-identified Probability Discrete Event System Using Cross-sectional Data

    PubMed Central

    Hu, Xingdi; Chen, Xinguang; Cook, Robert L.; Chen, Ding-Geng; Okafor, Chukwuemeka

    2016-01-01

    Background The probabilistic discrete event systems (PDES) method provides a promising approach to study dynamics of underage drinking using cross-sectional data. However, the utility of this approach is often limited because the constructed PDES model is often non-identifiable. The purpose of the current study is to attempt a new method to solve the model. Methods A PDES-based model of alcohol use behavior was developed with four progression stages (never-drinkers [ND], light/moderate-drinker [LMD], heavy-drinker [HD], and ex-drinker [XD]) linked with 13 possible transition paths. We tested the proposed model with data for participants aged 12–21 from the 2012 National Survey on Drug Use and Health (NSDUH). The Moore-Penrose (M-P) generalized inverse matrix method was applied to solve the proposed model. Results Annual transitional probabilities by age groups for the 13 drinking progression pathways were successfully estimated with the M-P generalized inverse matrix approach. Result from our analysis indicates an inverse “J” shape curve characterizing pattern of experimental use of alcohol from adolescence to young adulthood. We also observed a dramatic increase for the initiation of LMD and HD after age 18 and a sharp decline in quitting light and heavy drinking. Conclusion Our findings are consistent with the developmental perspective regarding the dynamics of underage drinking, demonstrating the utility of the M-P method in obtaining a unique solution for the partially-observed PDES drinking behavior model. The M-P approach we tested in this study will facilitate the use of the PDES approach to examine many health behaviors with the widely available cross-sectional data. PMID:26511344

  3. [Critical phenomena, phase equilibria, and the temperature and structural optimum of homeostasis, as revealed by a model system water-biopolymer-electrolyte].

    PubMed

    Rozhkov, S P

    2005-01-01

    Equations of spinodal and two quasispinodals corresponding to critical and supercritical phase transitions leading to a rise of different dynamic structures of solution in the phase diagram of a model system water-biopolymer-electrolyte were obtained. The section of the phase diagram was considered where there exists the probability of quasi-equilibrium monomer-cluster and the principle of water-ion homeostasis is realized. Based on these results, a possible mechanism of origination of unspecific adaptation reactions of a biomolecular system at the stage of chemical evolution was suggested.

  4. Model-based high-throughput design of ion exchange protein chromatography.

    PubMed

    Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo

    2016-08-12

    This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Geologic Cross Section E-E' through the Appalachian Basin from the Findlay Arch, Wood County, Ohio, to the Valley and Ridge Province, Pendleton County, West Virginia

    USGS Publications Warehouse

    Ryder, Robert T.; Swezey, Christopher S.; Crangle, Robert D.; Trippi, Michael H.

    2008-01-01

    Geologic cross section E-E' is the first in a series of cross sections planned by the U.S. Geological Survey (USGS) to document and improve understanding of the geologic framework and petroleum systems of the Appalachian basin. Cross section E-E' provides a regional view of the structural and stratigraphic framework of the basin from the Findlay arch in northwestern Ohio to the Valley and Ridge province in eastern West Virginia, a distance of approximately 380 miles (mi) (fig. 1, on sheet 1). Cross section E-E' updates earlier geologic cross sections through the central Appalachian basin by Renfro and Feray (1970), Bennison (1978), and Bally and Snelson (1980) and a stratigraphic cross section by Colton (1970). Although other published cross sections through parts of the basin show more structural detail (for example, Shumaker, 1985; Kulander and Dean, 1986) and stratigraphic detail (for example, Ryder, 1992; de Witt and others, 1993; Hettinger, 2001), these other cross sections are of more limited extent geographically and stratigraphically. Although specific petroleum systems in the Appalachian basin are not identified on the cross section, many of their key elements (such as source rocks, reservoir rocks, seals, and traps) can be inferred from lithologic units, unconformities, and geologic structures shown on the cross section. Other aspects of petroleum systems (such as the timing of petroleum generation and preferred migration pathways) may be evaluated by burial history, thermal history, and fluid flow models based on information shown on the cross section. Cross section E-E' lacks the detail to illustrate key elements of coal systems (such as paleoclimate, coal quality, and coal rank), but it does provide a general framework (stratigraphic units and general rock types) for the coal-bearing section. Also, cross section E-E' may be used as a reconnaissance tool to identify plausible geologic structures and strata for the subsurface storage of liquid waste (for example, Colton, 1961; Lloyd and Reid, 1990) or for the sequestration of carbon dioxide (for example, Smith and others, 2002; Lucier and others, 2006).

  6. Exploration of cellular reaction systems.

    PubMed

    Kirkilionis, Markus

    2010-01-01

    We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.

  7. Engine Icing Modeling and Simulation (Part 2): Performance Simulation of Engine Rollback Phenomena

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Guo, Ten-Huei; Veres, Joseph P.; Jorgenson, Philip C. E.

    2011-01-01

    Ice buildup in the compressor section of a commercial aircraft gas turbine engine can cause a number of engine failures. One of these failure modes is known as engine rollback: an uncommanded decrease in thrust accompanied by a decrease in fan speed and an increase in turbine temperature. This paper describes the development of a model which simulates the system level impact of engine icing using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). When an ice blockage is added to C-MAPSS40k, the control system responds in a manner similar to that of an actual engine, and, in cases with severe blockage, an engine rollback is observed. Using this capability to simulate engine rollback, a proof-of-concept detection scheme is developed and tested using only typical engine sensors. This paper concludes that the engine control system s limit protection is the proximate cause of iced engine rollback and that the controller can detect the buildup of ice particles in the compressor section. This work serves as a feasibility study for continued research into the detection and mitigation of engine rollback using the propulsion control system.

  8. PathText: a text mining integrator for biological pathway visualizations

    PubMed Central

    Kemper, Brian; Matsuzaki, Takuya; Matsuoka, Yukiko; Tsuruoka, Yoshimasa; Kitano, Hiroaki; Ananiadou, Sophia; Tsujii, Jun'ichi

    2010-01-01

    Motivation: Metabolic and signaling pathways are an increasingly important part of organizing knowledge in systems biology. They serve to integrate collective interpretations of facts scattered throughout literature. Biologists construct a pathway by reading a large number of articles and interpreting them as a consistent network, but most of the models constructed currently lack direct links to those articles. Biologists who want to check the original articles have to spend substantial amounts of time to collect relevant articles and identify the sections relevant to the pathway. Furthermore, with the scientific literature expanding by several thousand papers per week, keeping a model relevant requires a continuous curation effort. In this article, we present a system designed to integrate a pathway visualizer, text mining systems and annotation tools into a seamless environment. This will enable biologists to freely move between parts of a pathway and relevant sections of articles, as well as identify relevant papers from large text bases. The system, PathText, is developed by Systems Biology Institute, Okinawa Institute of Science and Technology, National Centre for Text Mining (University of Manchester) and the University of Tokyo, and is being used by groups of biologists from these locations. Contact: brian@monrovian.com. PMID:20529930

  9. Optical mechanisms for detection of lipid-rich atherosclerotic plaques by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Hull, Edward L.; Gardner, Craig M.; Muller, James E.; Muller, Vianna J.; Salvato, Christopher V.; Lisauskas, Jennifer B.; Caplan, Jay D.

    2008-02-01

    InfraReDx has developed a spectroscopic cardiac catheter system capable of acquiring near-infrared (NIR) reflectance spectra from coronary arteries in vivo for identification of lipid-rich plaques of interest (LRP). The spectral data are analyzed with a chemometric model, producing a hyperspectral image (a chemogram) used to identify LRP in the interrogated region. In this paper, we describe a FT-IR microscopy system for measurement of the NIR scattering and absorption properties of healthy and diseased regions of human coronary arteries in small volumes (~10 μl). Scattering and absorption coefficients are obtained from sequential 140 um x 140 um regions of interest across the face of 500-micron thick, saline-irrigated fresh coronary artery sections. A customized FTIR microscope, measurement protocol, and inversion algorithm are used for optical property determination, and the system is calibrated using measurements of tissue-simulating phantoms having well-characterized optical properties. Tissue optical properties are co-registered with brightfield transmission images as well as with stained histologic thin sections (H&E, Movat Pentachrome, and Oil Red O) acquired from an immediately-adjacent section. The ultimate goal of these experiments is to establish a mechanistic link between the multivariate model predictions displayed on the InfraReDx chemogram and the light-tissue interactions that govern the measured NIR reflectance spectra.

  10. Particle bed reactor modeling

    NASA Technical Reports Server (NTRS)

    Sapyta, Joe; Reid, Hank; Walton, Lew

    1993-01-01

    The topics are presented in viewgraph form and include the following: particle bed reactor (PBR) core cross section; PBR bleed cycle; fuel and moderator flow paths; PBR modeling requirements; characteristics of PBR and nuclear thermal propulsion (NTP) modeling; challenges for PBR and NTP modeling; thermal hydraulic computer codes; capabilities for PBR/reactor application; thermal/hydralic codes; limitations; physical correlations; comparison of predicted friction factor and experimental data; frit pressure drop testing; cold frit mask factor; decay heat flow rate; startup transient simulation; and philosophy of systems modeling.

  11. Earth Observing System (EOS)/Advanced Microwave Sounding Unit-A (AMSU-A)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is the twentieth monthly report for the Earth Observing System/Advanced Microwave Sounding Unit-A (EOS/AMSU-A), Contract NAS5-32314, and covers the period from 1 August 1994 through 31 August 1994. This period is the eighth month of the Implementation Phase which provides for the design, fabrication, assembly, and test of the first EOS/AMSU-A, the Protoflight Model. During this period the number one priority for the program continued to be the issuance of Requests for Quotations (RFQ) to suppliers and the procurement of the long-lead receiver components. Significant effort was also dedicated to preparation and conduct of internal design reviews and preparation for the PDR scheduled in September. An overview of the program status, including key events, action items, and documentation submittals, is provided in Section 2 of this report. The Program Manager's 'Priority Issues' are defined in Section 3. Section 4 through 7 provide detailed progress reports for the system engineering effort, each subsystem, performance assurance, and configuration/data management. Contractual matters are discussed in Section 8.

  12. The Langley 14- by 22-Foot Subsonic Tunnel: Description, Flow Characteristics, and Guide for Users

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Quinto, P. Frank; Gatlin, Gregory M.; Applin, Zachary T.

    1990-01-01

    The Langley 14- by 22-foot Subsonic Tunnel is a closed circuit, single-return atmospheric wind tunnel with a test section that can be operated in a variety of configurations (closed, slotted, partially open, and open). The closed test section configuration is 14.5 ft high by 21.75 ft wide and 50 ft long with a maximum speed of about 338 ft/sec. The open test section configuration has a maximum speed of about 270 ft/sec, and is formed by raising the ceiling and walls, to form a floor-only configuration. The tunnel may be configured with a moving-belt ground plane and a floor boundary-layer removal system at the entrance to the test section for ground effect testing. In addition, the tunnel had a two-component laser velocimeter, a frequency modulated (FM) tape system for dynamic data acquisition, flow visualization equipment, and acoustic testing capabilities. Users of the 14- by 22-foot Subsonic Tunnel are provided with information required for planning of experimental investigations including test hardware and model support systems.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procarione, J.A.

    This research concerns the development of two models - a mine and a haulage shaft for ventilation studies. The model mine for instructional study of pressures and quantities was designed and built of 12-inch diameter furnace duct. It consists of a north and south sections in the hallway ceiling space in the third floor of the W.C. Browning Building. A fan section, consisting of three fans in Room 314, is attached to it. Both fan and duct sections may be operated singly, in parallel, and in series with each other. A blowing or exhausting mode allows a total of thirty-twomore » combinations. Through a system of air flow measurement stations, solenoid valves, and relays, pressures and velocities may be determined with a micromanometer or a pressure transducer whose output is processed by a computer. A control panel, made up of switches, permits the selection of the various fan-duct combinations and measurements. The 120 foot model shaft is for the study of shock losses when two skips are moving in an airflow within its confines. Air is directed from a fan downward through the 10 inch diameter aluminum shaft installed inside the former rubbish chute of the Browning Building. For data collection from which shock losses may be determined, sixteen strategically located measuring stations connect to pressure transducers. Voltage outputs from the transducers are sampled and processed by the computer in Room 314. In addition to the pressure readings, the skip speed and the air temperature in the model are also recorded by the computer system for later use in data reduction. Provisions are made for changing skip sizes and speeds as well as shaft wall roughness. With one skip size and speed and with smooth shaft walls, data was collected and processed to prove proper operation of the complete system.« less

  14. Environmental Barrier Coating Fracture, Fatigue and High-Heat-Flux Durability Modeling and Stochastic Progressive Damage Simulation

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Nemeth, Noel N.

    2017-01-01

    Advanced environmental barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to protect emerging light-weight SiC/SiC ceramic matrix composite (CMC) engine components, further raising engine operating temperatures and performance. Because the environmental barrier coating systems are critical to the performance, reliability and durability of these hot-section ceramic engine components, a prime-reliant coating system along with established life design methodology are required for the hot-section ceramic component insertion into engine service. In this paper, we have first summarized some observations of high temperature, high-heat-flux environmental degradation and failure mechanisms of environmental barrier coating systems in laboratory simulated engine environment tests. In particular, the coating surface cracking morphologies and associated subsequent delamination mechanisms under the engine level high-heat-flux, combustion steam, and mechanical creep and fatigue loading conditions will be discussed. The EBC compostion and archtechture improvements based on advanced high heat flux environmental testing, and the modeling advances based on the integrated Finite Element Analysis Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program will also be highlighted. The stochastic progressive damage simulation successfully predicts mud flat damage pattern in EBCs on coated 3-D specimens, and a 2-D model of through-the-thickness cross-section. A 2-parameter Weibull distribution was assumed in characterizing the coating layer stochastic strength response and the formation of damage was therefore modeled. The damage initiation and coalescence into progressively smaller mudflat crack cells was demonstrated. A coating life prediction framework may be realized by examining the surface crack initiation and delamination propagation in conjunction with environmental degradation under high-heat-flux and environment load test conditions.

  15. 3-dimensional digital reconstruction of the murine coronary system for the evaluation of chronic allograft vasculopathy.

    PubMed

    Fónyad, László; Shinoda, Kazunobu; Farkash, Evan A; Groher, Martin; Sebastian, Divya P; Szász, A Marcell; Colvin, Robert B; Yagi, Yukako

    2015-03-28

    Chronic allograft vasculopathy (CAV) is a major mechanism of graft failure of transplanted organs in humans. Morphometric analysis of coronary arteries enables the quantitation of CAV in mouse models of heart transplantation. However, conventional histological procedures using single 2-dimensional sections limit the accuracy of CAV quantification. The aim of this study is to improve the accuracy of CAV quantification by reconstructing the murine coronary system in 3-dimensions (3D) and using virtual reconstruction and volumetric analysis to precisely assess neointimal thickness. Mouse tissue samples, native heart and transplanted hearts with chronic allograft vasculopathy, were collected and analyzed. Paraffin embedded samples were serially sectioned, stained and digitized using whole slide digital imaging techniques under normal and ultraviolet lighting. Sophisticated software tools were used to generate and manipulate 3D reconstructions of the major coronary arteries and branches. The 3D reconstruction provides not only accurate measurements but also exact volumetric data of vascular lesions. This virtual coronary arteriography demonstrates that the vasculopathy lesions in this model are localized to the proximal coronary segments. In addition, virtual rotation and volumetric analysis enabled more precise measurements of CAV than single, randomly oriented histologic sections, and offer an improved readout for this important experimental model. We believe 3D reconstruction of 2D histological slides will provide new insights into pathological mechanisms in which structural abnormalities play a role in the development of a disease. The techniques we describe are applicable to the analysis of arteries, veins, bronchioles and similar sized structures in a variety of tissue types and disease model systems. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/3772457541477230 .

  16. Distress and adjustment among adolescents and young adults with cancer: an empirical and conceptual review

    PubMed Central

    Wakefield, Claire E.

    2013-01-01

    Adolescents and young adults (AYAs) with cancer must simultaneously navigate the challenges associated with their cancer experience, whilst striving to achieve a number of important developmental milestones at the cusp of adulthood. The disruption caused by their cancer experience at this critical life-stage is assumed to be responsible for significant distress among AYAs living with cancer. The quality and severity of psychological outcomes among AYAs remain poorly documented, however. This review examined the existing literature on psychological outcomes among AYAs living with cancer. All psychological outcomes (both distress and positive adjustment) were included, and AYAs were included across the cancer trajectory, ranging from newly-diagnosed patients, to long-term cancer survivors. Four key research questions were addressed. Section 1 answered the question, “What is the nature and prevalence of distress (and other psychological outcomes) among AYAs living with cancer?” and documented rates of clinical distress, as well as evidence for the trajectory of this distress over time. Section 2 examined the individual, cancer/treatment-related and socio-demographic factors that have been identified as predictors of these outcomes in this existing literature. Section 3 examined current theoretical models relevant to explaining psychological outcomes among AYAs, including developmental models, socio-cognitive and family-systems models, stress-coping frameworks, and cognitive appraisal models (including trauma and meaning making models). The mechanisms implicated in each model were discussed, as was the existing evidence for each model. Converging evidence implicating the potential role of autobiographical memory and future thinking systems in how AYAs process and integrate their cancer experience into their current sense of self and future goals are highlighted. Finally, Section 4 addressed the future of psycho-oncology in understanding and conceptualizing psychological outcomes among AYAs living with cancer, by discussing recent empirical advancements in adjacent, non-oncology fields that might improve our understanding of psychological outcomes in AYAs living with cancer. Included in these were models of memory and future thinking drawn from the broader psychology literature that identify important mechanisms involved in adjustment, as well as experimental paradigms for the study of these mechanisms within analogue, non-cancer AYA samples. PMID:26835313

  17. Effect of bar cross-section geometry on stress distribution in overdenture-retaining system simulating horizontal misfit and bone loss.

    PubMed

    Spazzin, Aloísio Oro; Costa, Ana Rosa; Correr, Américo Bortolazzo; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço; dos Santos, Mateus Bertolini Fernandes

    2013-08-09

    This study evaluated the influence of cross-section geometry of the bar framework on the distribution of static stresses in an overdenture-retaining bar system simulating horizontal misfit and bone loss. Three-dimensional FE models were created including two titanium implants and three cross-section geometries (circular, ovoid or Hader) of bar framework placed in the anterior part of a severely resorbed jaw. One model with 1.4-mm vertical loss of the peri-implant tissue was also created. The models set were exported to mechanical simulation software, where horizontal displacement (10, 50 or 100 μm) was applied simulating the settling of the framework, which suffered shrinkage during the laboratory procedures. The bar material used for the bar framework was a cobalt--chromium alloy. For evaluation of bone loss effect, only the 50-μm horizontal misfit was simulated. Data were qualitatively and quantitatively evaluated using von Mises stress for the mechanical part and maximum principal stress and μ-strain for peri-implant bone tissue given by the software. Stresses were concentrated along the bar and in the join between the bar and cylinder. In the peri-implant bone tissue, the μ-strain was higher in the cervical third. Higher stress levels and μ-strain were found for the models using the Hader bar. The bone loss simulated presented considerable increase on maximum principal stresses and μ-strain in the peri-implant bone tissue. In addition, for the amplification of the horizontal misfit, the higher complexity of the bar cross-section geometry and bone loss increases the levels of static stresses in the peri-implant bone tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Self-consistent treatment of electrostatics in molecular DNA braiding through external forces.

    PubMed

    Lee, Dominic J

    2014-06-01

    In this paper we consider a physical system in which two DNA molecules braid about each other. The distance between the two molecular ends, on either side of the braid, is held at a distance much larger than supercoiling radius of the braid. The system is subjected to an external pulling force, and a moment that induces the braiding. In a model, developed for understanding such a system, we assume that each molecule can be divided into a braided and unbraided section. We also suppose that the DNA is nicked so that there is no constraint of the individual linking numbers of the molecules. Included in the model are steric and electrostatic interactions, thermal fluctuations of the braided and unbraided sections of the molecule, as well as the constraint on the braid linking (catenation) number. We compare two approximations used in estimating the free energy of the braided section. One is where the amplitude of undulations of one molecule with respect to the other is determined only by steric interactions. The other is a self-consistent determination of the mean-squared amplitude of these undulations. In this second approximation electrostatics should play an important role in determining this quantity, as suggested by physical arguments. We see that if the electrostatic interaction is sufficiently large there are indeed notable differences between the two approximations. We go on to test the self-consistent approximation-included in the full model-against experimental data for such a system, and we find good agreement. However, there seems to be a slight left-right-handed braid asymmetry in some of the experimental results. We discuss what might be the origin of this small asymmetry.

  19. A study of the nucleus-nucleus total reaction cross section of stable systems at intermediate energies: An application to 12C

    NASA Astrophysics Data System (ADS)

    Hu, Liyuan; Song, Yushou; Hou, Yingwei; Liu, Huilan; Li, Hui

    2018-07-01

    A semi-microscopic analytical expression of the nucleus-nucleus total reaction cross section (σR) was proposed based on the strong absorption model. It is suitable for stable nuclei at intermediate energies. The matter density distributions of nuclei and the nucleon-nucleon total cross section were both considered. Particularly, the Fermi motion effect of the nucleons in a nucleus was also taken into account. The parametrization of σR was applied to the colliding systems including 12C. The experimental data at energies from 30 to 1000 MeV/nucleon were well reproduced, according to which an approach of deriving σR without adjustable parameters was developed. The necessity of considering the Fermi motion effect in the parametrization was discussed.

  20. Formal Modeling of Multi-Agent Systems using the Pi-Calculus and Epistemic Logic

    NASA Technical Reports Server (NTRS)

    Rorie, Toinette; Esterline, Albert

    1998-01-01

    Multi-agent systems have become important recently in computer science, especially in artificial intelligence (AI). We allow a broad sense of agent, but require at least that an agent has some measure of autonomy and interacts with other agents via some kind of agent communication language. We are concerned in this paper with formal modeling of multi-agent systems, with emphasis on communication. We propose for this purpose to use the pi-calculus, an extension of the process algebra CCS. Although the literature on the pi-calculus refers to agents, the term is used there in the sense of a process in general. It is our contention, however, that viewing agents in the AI sense as agents in the pi-calculus sense affords significant formal insight. One formalism that has been applied to agents in the AI sense is epistemic logic, the logic of knowledge. The success of epistemic logic in computer science in general has come in large part from its ability to handle concepts of knowledge that apply to groups. We maintain that the pi-calculus affords a natural yet rigorous means by which groups that are significant to epistemic logic may be identified, encapsulated, structured into hierarchies, and restructured in a principled way. This paper is organized as follows: Section 2 introduces the pi-calculus; Section 3 takes a scenario from the classical paper on agent-oriented programming [Sh93] and translates it into a very simple subset of the n-calculus; Section 4 then shows how more sophisticated features of the pi-calculus may bc brought into play; Section 5 discusses how the pi-calculus may be used to define groups for epistemic logic; and Section 6 is the conclusion.

  1. NASA Lewis 9- by 15-foot low-speed wind tunnel user manual

    NASA Technical Reports Server (NTRS)

    Soeder, Ronald H.

    1993-01-01

    This manual describes the 9- by 15-Foot Low-Speed Wind Tunnel at the Lewis Research Center and provides information for users who wish to conduct experiments in this atmospheric facility. Tunnel variables such as pressures, temperatures, available tests section area, and Mach number ranges (0.05 to 0.20) are discussed. In addition, general support systems such as air systems, hydraulic system, hydrogen system, laser system, flow visualization system, and model support systems are described. Instrumentation and data processing and acquisition systems are also discussed.

  2. Effect of the losses in the vocal tract on determination of the area function.

    PubMed

    Gülmezoğlu, M Bilginer; Barkana, Atalay

    2003-01-01

    In this work, the cross-sectional areas of the vocal tract are determined for the lossy and lossless cases by using the pole-zero models obtained from the electrical equivalent circuit model of the vocal tract and the system identification method. The cross-sectional areas are used to compare the lossy and lossless cases. In the lossy case, the internal losses due to wall vibration, heat conduction, air friction and viscosity are considered, that is, the complex poles and zeros obtained from the models are used directly. Whereas, in the lossless case, only the imaginary parts of these poles and zeros are used. The vocal tract shapes obtained for the lossy case are close to the actual ones.

  3. Regenerative life support system research

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.

  4. 78 FR 14681 - Approval and Promulgation of Implementation Plans; Kentucky; 110(a)(1) and (2) Infrastructure...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-07

    ..., and modeling to assure attainment and maintenance for that new NAAQS. Section 110(a) of the CAA... structural SIP requirements such as modeling, monitoring, and emissions inventories that are designed to... limits and other control measures. 110(a)(2)(B): Ambient air quality monitoring/data system. 110(a)(2)(C...

  5. Articulation Models and Systems: High School to Community Colleges and Community Colleges to Four Year Institutions.

    ERIC Educational Resources Information Center

    Ughetto, Richard; Hoerner, James L.

    This paper examines models of community college articulation with high schools and four-year institutions as examples of the facilitation of student transfer at the different levels. The first sections of the paper describe four programs to enhance high school to community college articulation: (1) Sacramento City College (California) and the…

  6. Cross sections for electron collision with difluoroacetylene

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Antony, Bobby; Song, Mi-Young

    2017-04-01

    We report a detailed calculation of total elastic, differential elastic, momentum transfer and electronic excitation for electron impact on difluoroacetylene (C2F2) molecules using the R-matrix method at low energies. After testing many target models, the final results are reported for the target model that gave the best target properties and predicted the lowest value of the shape resonance. The shape resonance is detected at 5.86 eV and 6.49 eV with the close-coupling and static exchange models due to 2Πg (2B2g, 2B3g) states. We observed that the effect of polarization becomes prominent at low energies below 4 eV, decreasing the magnitude of the elastic cross section systematically as it increases for C2F2. We have also computed elastic cross sections for C2H2, C2F4 and C2H4 with a similar model and compared with the experimental data for these molecules along with C2F2. General agreement is found in terms of the shape and nature of the cross section. Such a comparison shows the reliability of the present method for obtaining the cross section for C2F2. The calculation of elastic scattering cross section is extended to higher energies up to 5 keV using the spherical complex optical potential method. The two methods are found to be consistent, merging at around 12 eV for the elastic scattering cross section. Finally we report the total ionization cross section using the binary encounter Bethe method for C2F2. The perfluorination effect in the shape and magnitude of the elastic, momentum transfer and ionization cross sections when compared with C2H2 showed a similar trend to that in the C2H4-C2F4 and C6H6-C6F6 systems. The cross-section data reported in this article could be an important input for the development of a C2F2 plasma model for selective etching of Si/SiO2 in the semiconductor industry.

  7. Angular Random Walk Estimation of a Time-Domain Switching Micromachined Gyroscope

    DTIC Science & Technology

    2016-10-19

    1 2. PARAMETRIC SYSTEM IDENTIFICATION BASED ON TIME-DOMAIN SWITCHING ........ 2 3. FINITE ELEMENT MODELING OF RESONATOR...8 3. FINITE ELEMENT MODELING OF RESONATOR This section details basic finite element modeling of the resonator used with the TDSMG. While it...Based on finite element simulations of the employed resonator, it is found that the effects of thermomechanical noise is on par with 10 ps of timing

  8. Directional and sectional ride comfort estimation using an integrated human biomechanical-seat foam model

    NASA Astrophysics Data System (ADS)

    Mohajer, Navid; Abdi, Hamid; Nahavandi, Saeid; Nelson, Kyle

    2017-09-01

    In the methodology of objective measurement of ride comfort, application of a Human Biomechanical Model (HBM) is valuable for Whole Body Vibration (WBV) analysis. In this study, using a computational Multibody System (MBS) approach, development of a 3D passive HBM for a seated human is considered. For this purpose, the existing MBS-based HBMs of seated human are briefly reviewed first. The Equations of Motion (EoM) for the proposed model are then obtained and the simulation results are shown and compared with idealised ranges of experimental results suggested in the literature. The human-seat interaction is established using a nonlinear vibration model of foam with respect to the sectional behaviour of the seat foam. The developed system is then used for ride comfort estimation offered by a ride dynamic model. The effects of human weight, road class, and vehicle speed on the vibration of the human body segments in different directions are studied. It is shown that the there is a high correlation (more than 99.2%) between the vibration indices of the proposed HBM-foam model and the corresponding ISO 2631 WBV indices. In addition, relevant ISO 2631 indices that show a high correlation with the directional vibration of the head are identified.

  9. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundarymore » between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.« less

  10. Study of the Performance of Aids to Navigation Systems - Phase 1, An Empirical Model Approach

    DTIC Science & Technology

    1978-07-19

    Pesch, .. L. /Masakasy, J. G. /Clark Di . A. /Atkins .-. S.... -------- 00o Document I available to the U. S. public through the National Technical...Document is available to the public through PILOTING, FIX, NAVIGATOR, PILOT, the National Technical Information Service, MONTE CARLO MODEL, SHIP SIMULATO...Validation of Entire Navigating and Steering 5-33 Model 5.5 Overview of Model Capabilities and Achieved Goals 5-33 vi SECTION TITLE PAGE 6 PLAN FOR

  11. Supercritical tests of a self-optimizing, variable-Camber wind tunnel model

    NASA Technical Reports Server (NTRS)

    Levinsky, E. S.; Palko, R. L.

    1979-01-01

    A testing procedure was used in a 16-foot Transonic Propulsion Wind Tunnel which leads to optimum wing airfoil sections without stopping the tunnel for model changes. Being experimental, the optimum shapes obtained incorporate various three-dimensional and nonlinear viscous and transonic effects not included in analytical optimization methods. The method is a closed-loop, computer-controlled, interactive procedure and employs a Self-Optimizing Flexible Technology wing semispan model that conformally adapts the airfoil section at two spanwise control stations to maximize or minimize various prescribed merit functions subject to both equality and inequality constraints. The model, which employed twelve independent hydraulic actuator systems and flexible skins, was also used for conventional testing. Although six of seven optimizations attempted were at least partially convergent, further improvements in model skin smoothness and hydraulic reliability are required to make the technique fully operational.

  12. Exclusive diffractive production of real photons and vector mesons in a factorized Regge-pole model with nonlinear Pomeron trajectory

    NASA Astrophysics Data System (ADS)

    Fazio, S.; Fiore, R.; Jenkovszky, L.; Lavorini, A.

    2012-03-01

    Exclusive diffractive production of real photons and vector mesons in ep collisions has been studied at HERA in a wide kinematic range. Here we present and discuss a Regge-type model of real photon production (deeply virtual Compton scattering), as well as production of vector mesons treated on the same footing by using an extension of a factorized Regge-pole model proposed earlier. The model has been fitted to the HERA data. Despite the very small number of the free parameters, the model gives a satisfactory description of the experimental data, both for the total cross section as a function of the photon virtuality Q2 or the energy W in the center of mass of the γ*p system, and the differential cross sections as a function of the squared four-momentum transfer t with fixed Q2 and W.

  13. Re-measurement of the 33S(α ,p )36Cl cross section for early solar system nuclide enrichment

    NASA Astrophysics Data System (ADS)

    Anderson, Tyler; Skulski, Michael; Clark, Adam; Nelson, Austin; Ostdiek, Karen; Collon, Philippe; Chmiel, Greg; Woodruff, Tom; Caffee, Marc

    2017-07-01

    Short-lived radionuclides (SLRs) with half-lives less than 100 Myr are known to have existed around the time of the formation of the solar system around 4.5 billion years ago. Understanding the production sources for SLRs is important for improving our understanding of processes taking place just after solar system formation as well as their timescales. Early solar system models rely heavily on calculations from nuclear theory due to a lack of experimental data for the nuclear reactions taking place. In 2013, Bowers et al. measured 36Cl production cross sections via the 33S(α ,p ) reaction and reported cross sections that were systematically higher than predicted by Hauser-Feshbach codes. Soon after, a paper by Peter Mohr highlighted the challenges the new data would pose to current nuclear theory if verified. The 33S(α ,p )36Cl reaction was re-measured at five energies between 0.78 MeV/nucleon and 1.52 MeV/nucleon, in the same range as measured by Bowers et al., and found systematically lower cross sections than originally reported, with the new results in good agreement with the Hauser-Feshbach code talys. Loss of Cl carrier in chemical extraction and errors in determination of reaction energy ranges are both possible explanations for artificially inflated cross sections measured in the previous work.

  14. Robot tracking system improvements and visual calibration of orbiter position for radiator inspection

    NASA Technical Reports Server (NTRS)

    Tonkay, Gregory

    1990-01-01

    The following separate topics are addressed: (1) improving a robotic tracking system; and (2) providing insights into orbiter position calibration for radiator inspection. The objective of the tracking system project was to provide the capability to track moving targets more accurately by adjusting parameters in the control system and implementing a predictive algorithm. A computer model was developed to emulate the tracking system. Using this model as a test bed, a self-tuning algorithm was developed to tune the system gains. The model yielded important findings concerning factors that affect the gains. The self-tuning algorithms will provide the concepts to write a program to automatically tune the gains in the real system. The section concerning orbiter position calibration provides a comparison to previous work that had been performed for plant growth. It provided the conceptualized routines required to visually determine the orbiter position and orientation. Furthermore, it identified the types of information which are required to flow between the robot controller and the vision system.

  15. 75 FR 6092 - Special Conditions: Model C-27J Airplane; Class E Cargo Compartment Lavatory

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-08

    ... waste-receptacle design-and-material standards. (g) Section 25.854, lavatory smoke-detector and fire... lavatory, and the oxygen-supply system in the lavatory, in the event of a smoke-detector alarm in the cargo... system that shuts off power to the lavatory following a lavatory or cargo-compartment smoke-detector...

  16. Development and Analysis of Models for Handling the Refrigerated Containerized Cargoes

    NASA Astrophysics Data System (ADS)

    Nyrkov, A.; Pavlova, L.; Nikiforov, V.; Sokolov, S.; Budnik, V.

    2017-07-01

    This paper considers the open multi-channel queuing system, which receives irregular homogeneous or heterogeneous applications with an unlimited flow of standby time. The system is regarded as an example of a container terminal, having conditionally functional sections with a certain duty cycle, which receives an irregular, non-uniform flow of vessels with the resultant intensity.

  17. Assured crew return vehicle post landing configuration design and test

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The 1991-1992 senior Mechanical and Aerospace Engineering Design class continued work on the post landing configurations for the Assured Crew Return Vehicle (ACRV) and the Emergency Egress Couch (EEC). The ACRV will be permanently docked to Space Station Freedom fulfilling NASA's commitment of Assured Crew Return Capability in the event of an accident or illness aboard Space Station Freedom. The EEC provides medical support and a transportation surface for an incapacitated crew member. The objective of the projects was to give the ACRV Project Office data to feed into their feasibility studies. Four design teams were given the task of developing models with dynamically and geometrically scaled characteristics. Groups one and two combined efforts to design a one-fifth scale model for the Apollo Command Module derivative, an on-board flotation system, and a lift attachment point system. This model was designed to test the feasibility of a rigid flotation and stabilization system and to determine the dynamics associated with lifting the vehicle during retrieval. However, due to priorities, it was not built. Group three designed a one-fifth scale model of the Johnson Space Center (JSC) benchmark configuration, the Station Crew Return Alternative Module (SCRAM) with a lift attachment point system. This model helped to determine the flotation and lifting characteristics of the SCRAM configuration. Group four designed a full scale EEC with changeable geometric and geometric and dynamic characteristics. This model provided data on the geometric characteristics of the EEC and on the placement of the CG and moment of inertia. It also gave the helicopter rescue personnel direct input to the feasibility study. Section 1 describes in detail the design of a one-fifth scale model of the Apollo Command Module Derivative (ACMD) ACRV. The objective of the ACMD Configuration Model Team was to use geometric and dynamic constraints to design a one-fifth scale working model of the Apollo Command Module Derivative (ACMD) configuration with a Lift Attachment Point (LAP) System. This model was required to incorporate a rigidly mounted flotation system and the egress system designed the previous academic year. The LAP system was to be used to determine the dynamic effects of locating the lifting points at different locations on the vehicle. The team was then to build and test the model; however, due to priorities, this did not occur. To better simulate the ACMD after a water landing, the nose cone section was removed and the deck area exposed. The areas researched during the design process were construction, center of gravity and moment of inertia, and lift attachment points.

  18. Scalable PGAS Metadata Management on Extreme Scale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chavarría-Miranda, Daniel; Agarwal, Khushbu; Straatsma, TP

    Programming models intended to run on exascale systems have a number of challenges to overcome, specially the sheer size of the system as measured by the number of concurrent software entities created and managed by the underlying runtime. It is clear from the size of these systems that any state maintained by the programming model has to be strictly sub-linear in size, in order not to overwhelm memory usage with pure overhead. A principal feature of Partitioned Global Address Space (PGAS) models is providing easy access to global-view distributed data structures. In order to provide efficient access to these distributedmore » data structures, PGAS models must keep track of metadata such as where array sections are located with respect to processes/threads running on the HPC system. As PGAS models and applications become ubiquitous on very large transpetascale systems, a key component to their performance and scalability will be efficient and judicious use of memory for model overhead (metadata) compared to application data. We present an evaluation of several strategies to manage PGAS metadata that exhibit different space/time tradeoffs. We use two real-world PGAS applications to capture metadata usage patterns and gain insight into their communication behavior.« less

  19. Advanced recovery systems wind tunnel test report

    NASA Technical Reports Server (NTRS)

    Geiger, R. H.; Wailes, W. K.

    1990-01-01

    Pioneer Aerospace Corporation (PAC) conducted parafoil wind tunnel testing in the NASA-Ames 80 by 120 test sections of the National Full-Scale Aerodynamic Complex, Moffett Field, CA. The investigation was conducted to determine the aerodynamic characteristics of two scale ram air wings in support of air drop testing and full scale development of Advanced Recovery Systems for the Next Generation Space Transportation System. Two models were tested during this investigation. Both the primary test article, a 1/9 geometric scale model with wing area of 1200 square feet and secondary test article, a 1/36 geometric scale model with wing area of 300 square feet, had an aspect ratio of 3. The test results show that both models were statically stable about a model reference point at angles of attack from 2 to 10 degrees. The maximum lift-drag ratio varied between 2.9 and 2.4 for increasing wing loading.

  20. Collisional excitation of interstellar PO(X2Π) by He: new ab initio potential energy surfaces and scattering calculations

    NASA Astrophysics Data System (ADS)

    Lique, François; Jiménez-Serra, Izaskun; Viti, Serena; Marinakis, Sarantos

    2018-01-01

    We present the first ab initio potential energy surfaces (PESs) for the PO(X2Π)-He van der Waals system. The PESs were obtained using the open-shell partially spin-restricted coupled cluster approach with single, double and perturbative triple excitations [UCCSD(T)]. The augmented correlation-consistent polarized valence triple-zeta (aug-cc-pVTZ) basis set was employed supplemented by mid-bond functions. Integral and differential cross sections for the rotational excitation in PO-He collisions were calculated using the new PES and compared with results in similar systems. Finally, our work presents the first hyperfine-resolved cross sections for this system that are needed for accurate modelling in astrophysical environments.

  1. GCSS/WGNE Pacific Cross-section Intercomparison: Tropical and Subtropical Cloud Transitions

    NASA Astrophysics Data System (ADS)

    Teixeira, J.

    2008-12-01

    In this presentation I will discuss the role of the GEWEX Cloud Systems Study (GCSS) working groups in paving the way for substantial improvements in cloud parameterization in weather and climate models. The GCSS/WGNE Pacific Cross-section Intercomparison (GPCI) is an extension of GCSS and is a different type of model evaluation where climate models are analyzed along a Pacific Ocean transect from California to the equator. This approach aims at complementing the more traditional efforts in GCSS by providing a simple framework for the evaluation of models that encompasses several fundamental cloud regimes such as stratocumulus, shallow cumulus and deep cumulus, as well as the transitions between them. Currently twenty four climate and weather prediction models are participating in GPCI. We will present results of the comparison between models and recent satellite data. In particular, we will explore in detail the potential of the Atmospheric Infrared Sounder (AIRS) and CloudSat data for the evaluation of the representation of clouds and convection in climate models.

  2. 76 FR 66207 - Airworthiness Directives; Sikorsky Aircraft Corporation (Sikorsky) Model S-92A Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... (RFM) as follows: (a) By making pen and ink changes, insert into the Operating Limitations section... alternative methods of compliance. (d) The Joint Aircraft System/Component (JASC) Code is 7200: Engine...

  3. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature distributions throughout the system, and (4) performance parameters such as thrust coefficient, specific impulse, mass flow rates, and equivalence ratio. Preliminary results are in good agreement with available performance data for systems resembling the NASP vehicle configuration.

  4. Optimal hydraulic design of new-type shaft tubular pumping system

    NASA Astrophysics Data System (ADS)

    Zhu, H. G.; Zhang, R. T.; Zhou, J. R.

    2012-11-01

    Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-epsilon turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m3/s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.

  5. [Nasolabial muscle finite-element study and clinical application].

    PubMed

    Yin, Ningbei; Wu, Jiajun; Chen, Bo; Wang, Yongqian; Song, Tao; Ma, Hengyuan

    2015-05-01

    To investigate the nasolabial muscle anatomy and biomechanical characteristics. Micro-computed tomography scan was performed in 8 cases of spontaneous abortion fetus lip nasal specimens to construct a three-dimensional model. The nasolabial muscle structure was analyzed using Mimics software. The three-dimensional configuration model of nasolabial muscle was established based on local anatomy and tissue section, and compared with tissue section. Three dimensional finite element analysis was performed on lip nasal muscle related biomechanics and surface deformation in Application verification was carried out in 263 cases of microform cleft lip surgery. There was close relationship between nasolabial muscle. The nasolabial muscle tension system was constituted, based on which a new cleft lip repair surgery was designed and satisfied results were achieved. There is close relationship among nasolabial muscle in anatomy, histology and biomechanics. To obtain better effect, cleft lip repair should be performed on the basis of recovering muscle tension system.

  6. Infrared thermography for detection of laminar-turbulent transition in low-speed wind tunnel testing

    NASA Astrophysics Data System (ADS)

    Joseph, Liselle A.; Borgoltz, Aurelien; Devenport, William

    2016-05-01

    This work presents the details of a system for experimentally identifying laminar-to-turbulent transition using infrared thermography applied to large, metal models in low-speed wind tunnel tests. Key elements of the transition detection system include infrared cameras with sensitivity in the 7.5- to 14.0-µm spectral range and a thin, insulating coat for the model. The fidelity of the system was validated through experiments on two wind-turbine blade airfoil sections tested at Reynolds numbers between Re = 1.5 × 106 and 3 × 106. Results compare well with measurements from surface pressure distributions and stethoscope observations. However, the infrared-based system provides data over a much broader range of conditions and locations on the model. This paper chronicles the design, implementation and validation of the infrared transition detection system, a subject which has not been widely detailed in the literature to date.

  7. Pressure distributions obtained on a 0.10-scale model of the Space Shuttle Orbiter's forebody in the Ames Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III; Henry, M. W.

    1986-01-01

    Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.

  8. Design considerations for a suboptimal Kalman filter

    NASA Astrophysics Data System (ADS)

    Difilippo, D. J.

    1995-06-01

    In designing a suboptimal Kalman filter, the designer must decide how to simplify the system error model without causing the filter estimation errors to increase to unacceptable levels. Deletion of certain error states and decoupling of error state dynamics are the two principal model simplifications that are commonly used in suboptimal filter design. For the most part, the decisions as to which error states can be deleted or decoupled are based on the designer's understanding of the physics of the particular system. Consequently, the details of a suboptimal design are usually unique to the specific application. In this paper, the process of designing a suboptimal Kalman filter is illustrated for the case of an airborne transfer-of-alignment (TOA) system used for synthetic aperture radar (SAR) motion compensation. In this application, the filter must continuously transfer the alignment of an onboard Doppler-damped master inertial navigation system (INS) to a strapdown navigator that processes information from a less accurate inertial measurement unit (IMU) mounted on the radar antenna. The IMU is used to measure spurious antenna motion during the SAR imaging interval, so that compensating phase corrections can be computed and applied to the radar returns, thereby presenting image degradation that would otherwise result from such motions. The principles of SAR are described in many references, for instance. The primary function of the TOA Kalman filter in a SAR motion compensation system is to control strapdown navigator attitude errors, and to a less degree, velocity and heading errors. Unlike a classical navigation application, absolute positional accuracy is not important. The motion compensation requirements for SAR imaging are discussed in some detail. This TOA application is particularly appropriate as a vehicle for discussing suboptimal filter design, because the system contains features that can be exploited to allow both deletion and decoupling of error states. In Section 2, a high-level background description of a SAR motion compensation system that incorporates a TOA Kalman filter is given. The optimal TOA filter design is presented in Section 3 with some simulation results to indicate potential filter performance. In Section 4, the suboptimal Kalman filter configuration is derived. Simulation results are also shown in this section to allow comparision between suboptimal and optimal filter performances. Conclusions are contained in Section 5.

  9. Emerging Technologies for Cancer Research: towards Personalized Medicine with Microfluidic Platforms and 3D Tumor Models.

    PubMed

    Turetta, Matteo; Ben, Fabio Del; Brisotto, Giulia; Biscontin, Eva; Bulfoni, Michela; Cesselli, Daniela; Colombatti, Alfonso; Scoles, Giacinto; Gigli, Giuseppe; Del Mercato, Loretta L

    2018-06-05

    In the present review, we describe three hot topics in cancer research such as circulating tumor cells, exosomes, and 3D environment models. The first section is dedicated to microfluidic platforms for detecting circulating tumor cells, including both affinity-based methods that take advantage of antibodies and aptamers, and "label-free" approaches, exploiting cancer cells physical features and, more recently, abnormal cancer metabolism. In the second section, we briefly describe biology of exosomes and their role in cancer, as well as conventional techniques for their isolation and innovative microfluidic platforms. In the third section, the importance of tumor microenvironment is highlighted, along with techniques for modeling it in vitro. Finally, we discuss limitations of two-dimensional monolayer methods and describe advantages and disadvantages of different three-dimensional tumor systems for cell-cell interaction analysis and their potential applications in cancer management. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Phase transition solutions in geometrically constrained magnetic domain wall models

    NASA Astrophysics Data System (ADS)

    Chen, Shouxin; Yang, Yisong

    2010-02-01

    Recent work on magnetic phase transition in nanoscale systems indicates that new physical phenomena, in particular, the Bloch wall width narrowing, arise as a consequence of geometrical confinement of magnetization and leads to the introduction of geometrically constrained domain wall models. In this paper, we present a systematic mathematical analysis on the existence of the solutions of the basic governing equations in such domain wall models. We show that, when the cross section of the geometric constriction is a simple step function, the solutions may be obtained by minimizing the domain wall energy over the constriction and solving the Bogomol'nyi equation outside the constriction. When the cross section and potential density are both even, we establish the existence of an odd domain wall solution realizing the phase transition process between two adjacent domain phases. When the cross section satisfies a certain integrability condition, we prove that a domain wall solution always exists which links two arbitrarily designated domain phases.

  11. Delta-Isobar Production in the Hard Photodisintegration of a Deuteron

    NASA Astrophysics Data System (ADS)

    Granados, Carlos; Sargsian, Misak

    2010-02-01

    Hard photodisintegration of the deuteron in delta-isobar production channels is proposed as a useful process in identifying the quark structure of hadrons and of hadronic interactions at large momentum and energy transfer. The reactions are modeled using the hard re scattering model, HRM, following previous works on hard breakup of a nucleon nucleon (NN) system in light nuclei. Here,quantitative predictions through the HRM require the numerical input of fits of experimental NN hard elastic scattering cross sections. Because of the lack of data in hard NN scattering into δ-isobar channels, the cross section of the corresponding photodisintegration processes cannot be predicted in the same way. Instead, the corresponding NN scattering process is modeled through the quark interchange mechanism, QIM, leaving an unknown normalization parameter. The observables of interest are ratios of differential cross sections of δ-isobar production channels to NN breakup in deuteron photodisintegration. Both entries in these ratios are derived through the HRM and QIM so that normalization parameters cancel out and numerical predictions can be obtained. )

  12. Asynchronous Laser Transponders for Precise Interplanetary Ranging and Time Transfer

    NASA Technical Reports Server (NTRS)

    Degnan, John J.; Smith, David E. (Technical Monitor)

    2001-01-01

    The feasibility of a two-way asynchronous (i.e. independently firing) interplanetary laser transponder pair, capable of decimeter ranging and subnanosecond time transfer from Earth to a spacecraft anywhere within the inner Solar System, is discussed. In the Introduction, we briefly discuss the current state-of-the-art in Satellite Laser Ranging (SLR) and Lunar Laser Ranging (LLR) which use single-ended range measurements to a passive optical reflector, and the limitations of this approach in ranging beyond the Moon to the planets. In Section 2 of this paper, we describe two types of transponders (echo and asynchronous), introduce the transponder link equation and the concept of "balanced" transponders, describe how range and time can be transferred between terminals, and preview the potential advantages of photon counting asynchronous transponders for interplanetary applications. In Section 3, we discuss and provide mathematical models for the various sources of noise in an interplanetary transponder link including planetary albedo, solar or lunar illumination of the local atmosphere, and laser backscatter off the local atmosphere. In Section 4, we introduce the key engineering elements of an interplanetary laser transponder and develop an operational scenario for the acquisition and tracking of the opposite terminal. In Section 5, we use the theoretical models of th previous sections to perform an Earth-Mars link analysis over a full synodic period of 780 days under the simplifying assumption of coaxial, coplanar, circular orbits. We demonstrate that, using slightly modified versions of existing space and ground based laser systems, an Earth-Mars transponder link is not only feasible but quite robust. We also demonstrate through analysis the advantages and feasibility of compact, low output power (<300 mW photon-counting transponders using NASA's developmental SLR2000 satellite laser ranging system as the Earth terminal. Section 6 provides a summary of the results and some concluding remarks regarding future applications.

  13. Simulating Bone Loss in Microgravity Using Mathematical Formulations of Bone Remodeling

    NASA Technical Reports Server (NTRS)

    Pennline, James A.

    2009-01-01

    Most mathematical models of bone remodeling are used to simulate a specific bone disease, by disrupting the steady state or balance in the normal remodeling process, and to simulate a therapeutic strategy. In this work, the ability of a mathematical model of bone remodeling to simulate bone loss as a function of time under the conditions of microgravity is investigated. The model is formed by combining a previously developed set of biochemical, cellular dynamics, and mechanical stimulus equations in the literature with two newly proposed equations; one governing the rate of change of the area of cortical bone tissue in a cross section of a cylindrical section of bone and one governing the rate of change of calcium in the bone fluid. The mechanical stimulus comes from a simple model of stress due to a compressive force on a cylindrical section of bone which can be reduced to zero to mimic the effects of skeletal unloading in microgravity. The complete set of equations formed is a system of first order ordinary differential equations. The results of selected simulations are displayed and discussed. Limitations and deficiencies of the model are also discussed as well as suggestions for further research.

  14. Tropical and Subtropical Cloud Transitions in Weather and Climate Prediction Models: The GCSS/WGNE Pacific Cross-Section Intercomparison (GPCI)

    NASA Technical Reports Server (NTRS)

    Teixeira, J.; Cardoso, S.; Bonazzola, M.; Cole, J.; DeGenio, A.; DeMott, C.; Franklin, C.; Hannay, C.; Jakob, C.; Jiao, Y.; hide

    2011-01-01

    A model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/ WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June July August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yr ECMWF Re-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.

  15. Development of Row of Vibration Insulators and its Mathematical Models on a Base of Common Multi-parameter Scheme of Element Axial Line

    NASA Astrophysics Data System (ADS)

    Ponomarev, Yury K.

    2018-01-01

    The mathematical model of deformation of a cable (rope) vibration insulator consisting of two identical clips connected by means of elastic elements of a complex axial line is developed in detail. The axial line of the element is symmetric relatively to the horizontal axis of the shape and is made up of five rectilinear sections of arbitrary length a, b, c, conjugated to four radius sections with parameters R1 and R2 with angular extent 90°. On the basis of linear representations of the theory of bending and torsion of mechanics of materials, applied mechanics and linear algebra, a mathematical model of loading of an element and a vibration insulator as a whole in the direction of the vertical Y axis has been developed. Generalized characteristics of the friction and elastic forces for an elastic element with a complete set of the listed sections are obtained. Further, with the help of nullification in the generalized model of the characteristics of certain parameters, special cases of friction and elastic forces are obtained without taking into account the nullified parameters. Simultaneously, on the basis of the 3D computer-aided design system, volumetric models of simplified structures were created, given in the work. It is shown that, with the help of a variation of the five parameters of the axial scheme of the element, in combination with the variation of the moment of inertia of the rope section and the number of elements entering the ensemble, the load characteristics and stiffness of the vibration insulators can be changed tens and hundreds of times. This opens up unlimited possibilities for the optimal design of vibration protection systems in terms of weight characteristics, in cost, in terms of vibration intensity, in overall dimensions in different directions, which is very important for aerospace and transport engineering.

  16. The design and operational development of self-streamlining 2-dimensional flexible walled test sections. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wolf, S. W. D.

    1984-01-01

    Self streamlining two dimensional flexible walled test sections eliminate the uncertainties found in data from conventional test sections particularly at transonic speeds. The test section sidewalls are rigid, while the floor and ceiling are flexible and are positioned to streamline shapes by a system of jacks, without reference to the model. The walls are therefore self streamlining. Data are taken from the model when the walls are good streamlines such that the inevitable residual wall induced interference is acceptably small and correctable. Successful two dimensional validation testing at low speeds has led to the development of a new transonic flexible walled test section. Tunnel setting times are minimized by the development of a rapid wall setting strategy coupled with on line computer control of wall shapes using motorized jacks. Two dimensional validation testing using symmetric and cambered aerofoils in the Mach number range up to about 0.85 where the walls are just supercritical, shows good agreement with reference data using small height-chord ratios between 1.5 and unity.

  17. Three-dimensional hydrogeologic framework model for use with a steady-state numerical ground-water flow model of the Death Valley regional flow system, Nevada and California

    USGS Publications Warehouse

    Belcher, Wayne R.; Faunt, Claudia C.; D'Agnese, Frank A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Department of Energy and other Federal, State, and local agencies, is evaluating the hydrogeologic characteristics of the Death Valley regional ground-water flow system. The ground-water flow system covers an area of about 100,000 square kilometers from latitude 35? to 38?15' North to longitude 115? to 118? West, with the flow system proper comprising about 45,000 square kilometers. The Death Valley regional ground-water flow system is one of the larger flow systems within the Southwestern United States and includes in its boundaries the Nevada Test Site, Yucca Mountain, and much of Death Valley. Part of this study includes the construction of a three-dimensional hydrogeologic framework model to serve as the foundation for the development of a steady-state regional ground-water flow model. The digital framework model provides a computer-based description of the geometry and composition of the hydrogeologic units that control regional flow. The framework model of the region was constructed by merging two previous framework models constructed for the Yucca Mountain Project and the Environmental Restoration Program Underground Test Area studies at the Nevada Test Site. The hydrologic characteristics of the region result from a currently arid climate and complex geology. Interbasinal regional ground-water flow occurs through a thick carbonate-rock sequence of Paleozoic age, a locally thick volcanic-rock sequence of Tertiary age, and basin-fill alluvium of Tertiary and Quaternary age. Throughout the system, deep and shallow ground-water flow may be controlled by extensive and pervasive regional and local faults and fractures. The framework model was constructed using data from several sources to define the geometry of the regional hydrogeologic units. These data sources include (1) a 1:250,000-scale hydrogeologic-map compilation of the region; (2) regional-scale geologic cross sections; (3) borehole information, and (4) gridded surfaces from a previous three-dimensional geologic model. In addition, digital elevation model data were used in conjunction with these data to define ground-surface altitudes. These data, properly oriented in three dimensions by using geographic information systems, were combined and gridded to produce the upper surfaces of the hydrogeologic units used in the flow model. The final geometry of the framework model is constructed as a volumetric model by incorporating the intersections of these gridded surfaces and by applying fault truncation rules to structural features from the geologic map and cross sections. The cells defining the geometry of the hydrogeologic framework model can be assigned several attributes such as lithology, hydrogeologic unit, thickness, and top and bottom altitudes.

  18. Phase Equilibria and Thermodynamic Descriptions of Ag-Ge and Ag-Ge-Ni Systems

    NASA Astrophysics Data System (ADS)

    Rajkumar, V. B.; Chen, Sinn-Wen

    2018-07-01

    Gibbs energy modeling of Ag-Ge and Ag-Ge-Ni systems was done using the calculation of the phase diagram method with associated data from this work and relevant literature information. In the Ag-Ge system, the solidus temperatures of Ag-rich alloys are measured using differential thermal analysis, and the energy of mixing for the FCC_A1 phase is calculated using the special quasi-random structures technique. The isothermal sections of the Ag-Ge-Ni system at 1023 K and 673 K are also experimentally determined. These data and findings in the relevant literature are used to model the Gibbs energy of the Ag-Ge and Ag-Ge- Ni systems. A reaction scheme and a liquidus projection of the Ag-Ge-Ni system are determined.

  19. Why style matters - uncertainty and structural interpretation in thrust belts.

    NASA Astrophysics Data System (ADS)

    Butler, Rob; Bond, Clare; Watkins, Hannah

    2016-04-01

    Structural complexity together with challenging seismic imaging make for significant uncertainty in developing geometric interpretations of fold and thrust belts. Here we examine these issues and develop more realistic approaches to building interpretations. At all scales, the best tests of the internal consistency of individual interpretations come from structural restoration (section balancing), provided allowance is made for heterogeneity in stratigraphy and strain. However, many existing balancing approaches give misleading perceptions of interpretational risk - both on the scale of individual fold-thrust (trap) structures and in regional cross-sections. At the trap-scale, idealised models are widely cited - fault-bend-fold, fault-propagation folding and trishear. These make entirely arbitrary choices for fault localisation and layer-by-layer deformation: precise relationships between faults and fold geometry are generally invalidated by real-world conditions of stratigraphic variation and distributed strain. Furthermore, subsurface predictions made using these idealisations for hydrocarbon exploration commonly fail the test of drilling. Rarely acknowledged, the geometric reliability of seismic images depends on the assigned seismic velocity model, which in turn relies on geological interpretation. Thus iterative approaches are required between geology and geophysics. The portfolio of commonly cited outcrop analogues is strongly biased to examples that simply conform to idealised models - apparently abnormal structures are rarely described - or even photographed! Insight can come from gravity-driven deep-water fold-belts where part of the spectrum of fold-thrust complexity is resolved through seismic imaging. This imagery shows deformation complexity in fold forelimbs and backlimbs. However, the applicability of these, weakly lithified systems to well-lithified successions (e.g. carbonates) of many foreland thrust belts remains conjectural. Examples of lithified systems will be drawn from the foothills of the Colombian Andes and the Papuan fold-belt. These show major forelimb structures with segmented steep-limbs containing substantial oil-columns, suggesting forelimb complexity in lithified sections maybe more common than predicted by idealised models. As with individual fold-thrust structures, regional cross-sections are commonly open to multiple interpretations. To date the over-reliance on comparative approaches with a narrow range of published studies (e.g. Canadian cordilleran foothills) has biased global interpretations of thrust systems. Perhaps the most significant issues relate to establishing a depth to detachment - specifically the involvement of basement at depth - especially the role of pre-existing (rift-originated) faults and their inversion. Not only do these choices impact on the local interpretation, the inferred shortening values, obtained by comparing restored section-lengths, can be radically different. Further issues arise for emergent, syn-depositional thrust systems where sedimentation prohibits flat-on-flat thrusting in favour of continuously ramping thrust trajectories. Inappropriate adoption of geometries gathered from buried (duplex) systems can create geometric interpretations that are tectono-stratigraphically invalid. This presentation illustrates these topics using a variety of thrust systems with the aim of promoting discussion on developing better interpretative strategies than those adopted hitherto.

  20. Laboratory measurements and modeling of molecular photoabsorption in the ultraviolet for planetary atmospheres applications: diatomic sulfur and sulfur monoxide

    NASA Astrophysics Data System (ADS)

    Stark, Glenn

    2016-07-01

    Our research program comprises the measurement and modeling of ultraviolet molecular photoabsorption cross sections with the highest practical resolution. It supports efforts to interpret and model observations of planetary atmospheres. Measurement and modeling efforts on diatomic sulfur (S _{2}) and sulfur monoxide (SO) are in progress. S _{2}: Interpretations of atmospheric (Io, Jupiter, cometary comae) S _{2} absorption features are hindered by a complete lack of laboratory cross section data in the ultraviolet. We are working to quantify the photoabsorption spectrum of S _{2} from 240 to 300 nm based on laboratory measurements and theoretical calculations. We have constructed an experimental apparatus to produce a stable column of S _{2} vapor at a temperature of 800 K. High-resolution measurements of the absorption spectrum of the strong B - X system of S _{2} were completed using the NIST VUV-FTS at Gaithersburg, Maryland. These measurements are currently being incorporated into a coupled-channel model of the absorption spectrum of S _{2} to quantify the contributions from individual band features and to establish the mechanisms responsible for the strong predissociation signature of the B - X system. A successful coupled channels model can then be used to calculate the B - X absorption spectrum at any temperature. SO: There has been a long-standing need for high-resolution cross sections of sulfur monoxide radicals in the ultraviolet and vacuum ultraviolet regions, where the molecule strongly predissociates, for modeling the atmospheres of Io and Venus, and most recently for understanding sulfur isotope effects in the ancient (pre-O _{2}) atmosphere of Earth. We have produced a measurable column of SO in a continuous-flow DC discharge cell, using SO _{2} as a parent molecule. Photoabsorption measurements were recently recorded on the DESIRS beamline of the SOLEIL synchrotron, taking advantage of the high-resolution VUV-FTS on that beamline. A number of strong, predissociated SO bands were measured in the 140 to 200 nm region. Weaker features associated with the SO B - X system were simultaneously recorded, allowing for an approximate determination of the VUV SO band f-values.

  1. Chaste: A test-driven approach to software development for biological modelling

    NASA Astrophysics Data System (ADS)

    Pitt-Francis, Joe; Pathmanathan, Pras; Bernabeu, Miguel O.; Bordas, Rafel; Cooper, Jonathan; Fletcher, Alexander G.; Mirams, Gary R.; Murray, Philip; Osborne, James M.; Walter, Alex; Chapman, S. Jon; Garny, Alan; van Leeuwen, Ingeborg M. M.; Maini, Philip K.; Rodríguez, Blanca; Waters, Sarah L.; Whiteley, Jonathan P.; Byrne, Helen M.; Gavaghan, David J.

    2009-12-01

    Chaste ('Cancer, heart and soft-tissue environment') is a software library and a set of test suites for computational simulations in the domain of biology. Current functionality has arisen from modelling in the fields of cancer, cardiac physiology and soft-tissue mechanics. It is released under the LGPL 2.1 licence. Chaste has been developed using agile programming methods. The project began in 2005 when it was reasoned that the modelling of a variety of physiological phenomena required both a generic mathematical modelling framework, and a generic computational/simulation framework. The Chaste project evolved from the Integrative Biology (IB) e-Science Project, an inter-institutional project aimed at developing a suitable IT infrastructure to support physiome-level computational modelling, with a primary focus on cardiac and cancer modelling. Program summaryProgram title: Chaste Catalogue identifier: AEFD_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFD_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: LGPL 2.1 No. of lines in distributed program, including test data, etc.: 5 407 321 No. of bytes in distributed program, including test data, etc.: 42 004 554 Distribution format: tar.gz Programming language: C++ Operating system: Unix Has the code been vectorised or parallelized?: Yes. Parallelized using MPI. RAM:<90 Megabytes for two of the scenarios described in Section 6 of the manuscript (Monodomain re-entry on a slab or Cylindrical crypt simulation). Up to 16 Gigabytes (distributed across processors) for full resolution bidomain cardiac simulation. Classification: 3. External routines: Boost, CodeSynthesis XSD, CxxTest, HDF5, METIS, MPI, PETSc, Triangle, Xerces Nature of problem: Chaste may be used for solving coupled ODE and PDE systems arising from modelling biological systems. Use of Chaste in two application areas are described in this paper: cardiac electrophysiology and intestinal crypt dynamics. Solution method: Coupled multi-physics with PDE, ODE and discrete mechanics simulation. Running time: The largest cardiac simulation described in the manuscript takes about 6 hours to run on a single 3 GHz core. See results section (Section 6) of the manuscript for discussion on parallel scaling.

  2. Energy Savings Modeling and Inspection Guidelines for Commercial Building Federal Tax Deductions for Buildings in 2016 and Later

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deru, Michael; Field-Macumber, Kristin

    This document provides guidance for modeling and inspecting energy-efficient property in commercial buildings for certification of the energy and power cost savings related to Section 179D of the Internal Revenue Code (IRC) enacted in Section 1331 of the 2005 Energy Policy Act (EPAct) of 2005, noted in Internal Revenue Service (IRS) Notices 2006-52 (IRS 2006), 2008-40 (IRS 2008) and 2012-26 (IRS 2012), and updated by the Protecting Americans from Tax Hikes (PATH) Act of 2015. Specifically, Section 179D provides federal tax deductions for energy-efficient property related to a commercial building's envelope; interior lighting; heating, ventilating, and air conditioning (HVAC); andmore » service hot water (SHW) systems. This document applies to buildings placed in service on or after January 1, 2016.« less

  3. Advanced earth observation spacecraft computer-aided design software: Technical, user and programmer guide

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.; Krauze, L. D.

    1983-01-01

    The IDEAS computer of NASA is a tool for interactive preliminary design and analysis of LSS (Large Space System). Nine analysis modules were either modified or created. These modules include the capabilities of automatic model generation, model mass properties calculation, model area calculation, nonkinematic deployment modeling, rigid-body controls analysis, RF performance prediction, subsystem properties definition, and EOS science sensor selection. For each module, a section is provided that contains technical information, user instructions, and programmer documentation.

  4. Proceedings of the Quantum Computation for Physical Modeling Workshop Held in North Falmouth, Massachusetts on October 18-19, 2000

    DTIC Science & Technology

    2002-01-01

    1-3], a task that is exponen- algorithms to model quantum mechanical systems. tially complex in the number of particles treated and A starting point ...cell size approaches zero). There- tion were presented by Succi and Benzi [10,11] and fore, from the point -of-view of the modeler, there ex- by... point regarding this particular In both cases, the model behaves as expected. gate is that when measurements are periodically made Third, in Section 4

  5. Drone photogrammetry for geological research: field digital stratigraphic logs for turbiditic reservoir analog studies in Calabria, Southern Italy.

    NASA Astrophysics Data System (ADS)

    Guillois, Maxime; Brocheray, Sandra; Paron, Paolo

    2017-04-01

    Drone technology combined with new algorithms like Structure from Motion (SfM) has revived and expanded the uses of photogrammetry bringing new flexibility and the capacity to carry on close range photogrammetry to inaccessible areas. This characteristics are particularly appealing in field geology offering the option to reconstruct continuous digital outcrop models of vertical or difficult to reach outcrops. In this light we present the results of a digital outcrop modelling of a Miocene turbiditic system (mainly sandstone) in Calabria (Southern Italy) generated through field data collected by means of a light-weight commercial drone, a detailed geological field survey and cloud point photogrammetric analyses comparing different software for this purpose (Agisoft Photoscan, Drone deploy, Arc3D). The geological model has been used as an input for preliminary reservoir modelling. We generated digital geological sections (stratigraphic logs) of 1,200 m of sections using expert digital image and terrain model interprepation from the DTM generated with drone data, with the goal to reconstruct the real thickness of each layer. We then compared the results with previously created detailed field geological cross sections. The comparison between drone-derived sections and field-survey sections shows a global accuracy of the thickness ranging between 1% to 10%. Although this new methodology still has to be validated in other morpho-lithological context it already demonstrating its usefulness for preliminary geological outcrop investigation and modelling in remote areas. We also compared the different softwares used and we made recommendations for future deployment. This research has been made possible thanks to a collaboration between UNESCO-IHE, The Netherlands, and UniLaSalle Beauvais, France.

  6. How to assess good candidate molecules for self-activated optical power limiting

    NASA Astrophysics Data System (ADS)

    Lundén, Hampus; Glimsdal, Eirik; Lindgren, Mikael; Lopes, Cesar

    2018-03-01

    Reverse saturable absorbers have shown great potential to attenuate laser radiation. Good candidate molecules and various particles have successfully been incorporated into different glass matrices, enabling the creation of self-activated filters against damaging laser radiation. Although the performance of such filters has been impressive, work is still ongoing to improve the performance in a wider range of wavelengths and pulse widths. The purpose of this tutorial is, from an optical engineering perspective, to give an understanding of the strengths and weaknesses of this class of smart materials, how relevant photophysical parameters are measured and influence system performance and comment on the pitfalls in experimental evaluation of materials. A numerical population model in combination with simple physical formulas is used to demonstrate system behavior from a performance standpoint. Geometrical reasoning shows the advantage of reverse saturable absorption over nonlinear scattering due to a fraction of scattered light being recollected by imaging system optics. The numerical population model illustrates the importance of the optical power limiting performance during the leading edge of a nanosecond pulse, which is most strongly influenced by changes in the two-photon absorption cross section and the triplet linear absorption cross section for a modeled Pt-acetylide. This tutorial not only targets optical engineers evaluating reverse saturable absorbing materials but also aims to assist researchers with a chemistry background working on optical power limiting materials. We also present photophysical data for a series of coumarins that can be useful for the determination of quantum yields and two-photon cross sections and show examples of characterization of molecules with excited triplet states.

  7. Chapter 8: Planning Tools to Simulate and Optimize Neighborhood Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhivov, Alexander Michael; Case, Michael Patrick; Jank, Reinhard

    This section introduces different energy modeling tools available in Europe and the USA for community energy master planning process varying from strategic Urban Energy Planning to more detailed Local Energy Planning. Two modeling tools used for Energy Master Planning of primarily residential communities, the 3D city model with CityGML, and the Net Zero Planner tool developed for the US Department of Defense installations are described in more details.

  8. Off-Road Mobility Research

    DTIC Science & Technology

    1967-09-01

    Lewandowski, Thomas R. Magorian, H. T. McAdams, James N. Naylor, Walter F. Wood -ii- VJ-2330-G-2 Section 6 Stephen C. Cowin, Vito De Palma, Patrick M. Miller...providing detailed inputs to a)). 2. The establishing of the general framework for the Phenomenological Model. 3. A prelim.na ry methodology study using the...of current practice in mathematical modeling of vehicle-terrain systems. 2) The establishing of the framework for a vehicle-terrain dynamics model as

  9. Ground truth methods for optical cross-section modeling of biological aerosols

    NASA Astrophysics Data System (ADS)

    Kalter, J.; Thrush, E.; Santarpia, J.; Chaudhry, Z.; Gilberry, J.; Brown, D. M.; Brown, A.; Carter, C. C.

    2011-05-01

    Light detection and ranging (LIDAR) systems have demonstrated some capability to meet the needs of a fastresponse standoff biological detection method for simulants in open air conditions. These systems are designed to exploit various cloud signatures, such as differential elastic backscatter, fluorescence, and depolarization in order to detect biological warfare agents (BWAs). However, because the release of BWAs in open air is forbidden, methods must be developed to predict candidate system performance against real agents. In support of such efforts, the Johns Hopkins University Applied Physics Lab (JHU/APL) has developed a modeling approach to predict the optical properties of agent materials from relatively simple, Biosafety Level 3-compatible bench top measurements. JHU/APL has fielded new ground truth instruments (in addition to standard particle sizers, such as the Aerodynamic particle sizer (APS) or GRIMM aerosol monitor (GRIMM)) to more thoroughly characterize the simulant aerosols released in recent field tests at Dugway Proving Ground (DPG). These instruments include the Scanning Mobility Particle Sizer (SMPS), the Ultraviolet Aerodynamic Particle Sizer (UVAPS), and the Aspect Aerosol Size and Shape Analyser (Aspect). The SMPS was employed as a means of measuring smallparticle concentrations for more accurate Mie scattering simulations; the UVAPS, which measures size-resolved fluorescence intensity, was employed as a path toward fluorescence cross section modeling; and the Aspect, which measures particle shape, was employed as a path towards depolarization modeling.

  10. Generation, estimation, utilization, availability and compatibility aspects of geodetic and meteorological data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luetzow, H.B.v.

    1983-08-01

    Following an introduction, the paper discusses in section 2 the collection or generation of final geodetic data from conventional surveys, satellite observations, satellite altimetry, the Global Positioning System, and moving base gravity gradiometers. Section 3 covers data utilization and accuracy aspects including gravity programmed inertial positioning and subterraneous mass detection. Section 4 addresses the usefulness and limitation of the collocation method of physical geodesy. Section 5 is concerned with the computation of classical climatological data. In section 6, meteorological data assimilation is considered. Section 7 deals with correlated aspects of initial data generation with emphasis on initial wind field determination,more » parameterized and classical hydrostatic prediction models, non-hydrostatic prediction, computational networks, and computer capacity. The paper concludes that geodetic and meteorological data are expected to become increasingly more diversified and voluminous both regionally and globally, that its general availability will be more or less restricted for some time to come, that its quality and quantity are subject to change, and that meteorological data generation, accuracy and density have to be considered in conjunction with advanced as well as cost-effective numerical weather prediction models and associated computational efforts.« less

  11. Recent modifications and calibration of the Langley low-turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.; Foster, J. M.

    1984-01-01

    Modifications to the Langley Low-Turbulence Pressure Tunnel are presented and a calibration of the mean flow parameters in the test section is provided. Also included are the operational capability of the tunnel and typical test results for both single-element and multi-element airfoils. Modifications to the facility consisted of the following: replacement of the original cooling coils and antiturbulence screens and addition of a tunnel-shell heating system, a two dimensional model-support and force-balance system, a sidewall boundary layer control system, a remote-controlled survey apparatus, and a new data acquisition system. A calibration of the mean flow parameters in the test section was conducted over the complete operational range of the tunnel. The calibration included dynamic-pressure measurements, Mach number distributions, flow-angularity measurements, boundary-layer characteristics, and total-pressure profiles. In addition, test-section turbulence measurements made after the tunnel modifications have been included with these calibration data to show a comparison of existing turbulence levels with data obtained for the facility in 1941 with the original screen installation.

  12. A Three-Dimensional Atlas of the Honeybee Neck

    PubMed Central

    Berry, Richard P.; Ibbotson, Michael R.

    2010-01-01

    Three-dimensional digital atlases are rapidly becoming indispensible in modern biology. We used serial sectioning combined with manual registration and segmentation of images to develop a comprehensive and detailed three-dimensional atlas of the honeybee head-neck system. This interactive atlas includes skeletal structures of the head and prothorax, the neck musculature, and the nervous system. The scope and resolution of the model exceeds atlases previously developed on similar sized animals, and the interactive nature of the model provides a far more accessible means of interpreting and comprehending insect anatomy and neuroanatomy. PMID:20520729

  13. Stand-level growth and yield component models for red oak-sweetgum forests on Mid-South minor stream bottoms

    Treesearch

    Emily B. Schultz; J. Clint Iles; Thomas G. Matney; Andrew W. Ezell; James S. Meadows; Theodor D. Leininger; al. et.

    2010-01-01

    Greater emphasis is being placed on Southern bottomland hardwood management, but relatively few growth and yield prediction systems exist that are based on sufficient measurements. We present the aggregate stand-level expected yield and structural component equations for a red oak (Quercus section Lobatae)-sweetgum (Liquidambar styraciflua L.) growth and yield model....

  14. Tapping on the Glass: The Intersection of Leadership and Gender in Independent School Administration

    ERIC Educational Resources Information Center

    Ostos, Barbara Escobio

    2012-01-01

    While independent schools are a small sector of the American school system, they educate a significant cross section of society. Creating equitable models of leadership in their top administrative positions is important as students see those models and equate them with what leaders look and act like. This study examined leadership styles of heads…

  15. What Social Workers in Health Care Should Know about Lupus: A Structural Equation Model

    ERIC Educational Resources Information Center

    Auerbach, Charles; Beckerman, Nancy L.

    2011-01-01

    This article reports on findings from a cross-sectional study (N = 378) of patients living with systemic lupus erythematosus (SLE). The purpose of this study was to identify and clarify the unique psychosocial challenges for those living with lupus. The specific analysis will help to develop a model to determine how different factors influence SLE…

  16. Two-loop neutrino model with exotic leptons

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Orikasa, Yuta

    2016-01-01

    We propose a two-loop induced neutrino mass model, in which we show some bench mark points to satisfy the observed neutrino oscillation, the constraints of lepton flavor violations, and the relic density in the coannihilation system satisfying the current upper bound on the spin independent scattering cross section with nuclei. We also discuss new sources of muon anomalous magnetic moments.

  17. Lifelong Learning and Employability: Is the European Model of Vocational Training in Crisis?

    ERIC Educational Resources Information Center

    Heidemann, Winfried

    This paper explores the traditional European model of vocational training in light of a new focus on employability and lifelong learning that is becoming more common in Europe. It includes the following four sections: (1) an overview of some examples of vocational training systems in Europe and the proposal that they share enough to be considered…

  18. A Model for the Determination of the Costs of Special Education as Compared with That for General Education. Reading Draft.

    ERIC Educational Resources Information Center

    Ernst and Ernst, Chicago, IL.

    Proposed in the report is a model quantitative cost accounting system designed to help school districts gather and report data useful in determining equitable reimbursement formulas for special education as compared with general education. Included are sections on the approach and methodology used to construct a hypothetical school district,…

  19. Characterization of enzymatic micromachining for construction of variable cross-section microchannel topologies

    PubMed Central

    Ruggles, Molly E.; Jayaraman, Arul; Ugaz, Victor M.

    2016-01-01

    The ability to harness enzymatic activity as an etchant to precisely machine biodegradable substrates introduces new possibilities for microfabrication. This flow-based etching is straightforward to implement, enabling patterning of microchannels with topologies that incorporate variable depth along the cross-sectional dimension. Additionally, unlike conventional small-molecule formulations, the macromolecular nature of enzymatic etchants enables features to be precisely positioned. Here, we introduce a kinetic model to characterize the enzymatic machining process and its localization by co-injection of a macromolecular inhibitor species. Our model captures the interaction between enzyme, inhibitor, and substrate under laminar flow, enabling rational prediction of etched microchannel profiles so that cross-sectional topologies incorporating complex lateral variations in depth can be constructed. We also apply this approach to achieve simultaneous widening of an entire network of microchannels produced in the biodegradable polymeric substrate poly(lactic acid), laying a foundation to construct systems incorporating a broad range of internal cross-sectional dimensions by manipulating the process conditions. PMID:27190566

  20. Fracture toughness of esthetic dental coating systems by nanoindentation and FIB sectional analysis.

    PubMed

    Pecnik, Christina Martina; Courty, Diana; Muff, Daniel; Spolenak, Ralph

    2015-07-01

    Improving the esthetics of Ti-based dental implants is the last challenge remaining in the optimization process. The optical issues were recently solved by the application of highly and selectively reflective coatings on Ti implants. This work focuses on the mechanical durability of these esthetic ceramic based coating systems (with and without adhesion layers). The coating systems (Ti-ZrO2, Ti-Al-ZrO2, Ti-Ti-Al-ZrO2, Ti-Ag-ZrO2, Ti-Ti-Ag-ZrO2, Ti-Bragg and Ti-TiO2-Bragg) were subjected to nanoindentation experiments and examined using scanning electron microscopy and focused ion beam cross sectional analysis. Three coating systems contained adhesion layers (10nm of Ti or 60nm of TiO2 layers). The fracture toughness of selected samples was assessed applying two different models from literature, a classical for bulk materials and an energy-based model, which was further developed and adjusted. The ZrO2 based coating systems (total film thickness<200nm) followed a circumferential cracking behavior in contrast to Bragg coated samples (total film thickness around 1.5μm), which showed radial cracking emanating from the indent corners. For Ti-ZrO2 samples, a fracture toughness between 2.70 and 3.70MPam(1/2) was calculated using an energy-based model. The classical model was applied to Bragg coated samples and their fracture toughness ranged between 0.70 and 0.80MPam(1/2). Furthermore, coating systems containing an additional layer (Ti-Ti-Al-ZrO2, Ti-Ti-Ag-ZrO2 and Ti-TiO2-Bragg) showed an improved adhesion between the substrate and the coating. The addition of a Ti or TiO2 layer improved the adhesion between substrate and coating. The validity of the models for the assessment of the fracture toughness depended on the layer structure and fracture profile of the samples investigated here (classical model for thick coatings and energy-based model for thin coatings). Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Four-body extension of the continuum-discretized coupled-channels method

    NASA Astrophysics Data System (ADS)

    Descouvemont, P.

    2018-06-01

    I develop an extension of the continuum-discretized coupled-channels (CDCC) method to reactions where both nuclei present a low breakup threshold. This leads to a four-body model, where the only inputs are the interactions describing the colliding nuclei, and the four optical potentials between the fragments. Once these potentials are chosen, the model does not contain any additional parameter. First I briefly discuss the general formalism, and emphasize the need for dealing with large coupled-channel systems. The method is tested with existing benchmarks on 4 α bound states with the Ali-Bodmer potential. Then I apply the four-body CDCC to the 11Be+d system, where I consider the 10Be(0+,2+)+n configuration for 11Be. I show that breakup channels are crucial to reproduce the elastic cross section, but that core excitation plays a weak role. The 7Li+d system is investigated with an α +t cluster model for 7Li. I show that breakup channels significantly improve the agreement with the experimental cross section, but an additional imaginary term, simulating missing transfer channels, is necessary. The full CDCC results can be interpreted by equivalent potentials. For both systems, the real part is weakly affected by breakup channels, but the imaginary part is strongly modified. I suggest that the present wave functions could be used in future DWBA calculations.

  2. [Finite element analysis of the stress distribution of two-piece post crown with different adhesives ].

    PubMed

    He, Lihui; Liu, Lijie; Gao, Bei; Gao, Shang; Chen, Yifu; Zhihui, Liu

    2013-08-01

    To establish three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots, and analyze the stress distribution characteristic to the residual roots with different adhesives, so as to get the best combination under different conditions. The complete mandibular first molar in vitro was selected, the crown was removed along the cemento-enamel junction, then the residual roots were scanned by CT. CT images were imported into a reverse engineering software, and the three-dimensional finite element model of the mandibular first molar residual roots was reconstructed. Titanium two-piece post crown of the mandibular first molar residual roots was produced, then was scanned by CT. The model was reconstructed and assembled by MIMICS. The stress distribution of the root canal and root section under the vertical load and lateral load with different bonding systems were analyzed. Three-dimensional finite element model of two-piece post crown to the mandibular first molar residual roots was established. With the increasing of elastic modulus of the adhesives, the maximum stress within the root canal was also increasing. Elastic modulus of zinc phosphate was the biggest, so the stress within the root canal was the biggest; elastic modulus of Superbond C&B was the smallest, so the stress within the root canal was the smallest. Lateral loading stress was much larger than the vertical load. Under vertical load, the load on the root section was even with different bonding systems. Under lateral load, the maximum stress was much larger than the vertical load. The stress on the root section was minimum using zinc phosphate binder, and the stress on the root section was maximum using Superbond C&B. In two-piece post crown restorations, there is significant difference between different adhesives on tooth protection. When the tooth structure of the root canal orifices is weak, in order to avoid the occurrence of splitting, the larger elastic modulus bonding system is the first choice, such as zinc phosphate binder. When the resistance form of the root canal orifices is good enough but the root is too weak, it is suggested that the smaller elastic modulus bonding system is the first choice, such as Superbond C&B.

  3. Dynamics of complete and incomplete fusion in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Bao, Xiao Jun; Guo, Shu Qing; Zhang, Hong Fei; Li, Jun Qing

    2018-02-01

    In order to study the influence of the strong Coulomb and nuclear interactions on the dynamics of complete and incomplete fusion, we construct a new four-variable master equation (ME) so that the deformations as well as the nucleon transfer are viewed as consistently governed by MEs in the potential energy surface of the system. The calculated yields of quasifission fragments and evaporation residue cross section (ERCS) are in agreement with experimental data of hot fusion reactions. Comparing cross sections by theoretical results and experimental data, we find the improved dinuclear sysytem model also describes the transfer cross sections reasonably. The production cross sections of new neutron-rich isotopes are estimated by the multinucleon transfer reactions.

  4. Near-miss maternal morbidity from severe haemorrhage at caesarean section: A process and structure audit of system deficiencies in South Africa.

    PubMed

    Maswime, T S; Buchmann, E

    2017-10-31

    A rising caesarean section rate and substandard peri-operative care are believed to be the main reasons for recent increases in maternal deaths from bleeding during and after caesarean section (BDACS) in South Africa (SA). The Donabedian model assumes that clinical outcomes are influenced by healthcare workers and the healthcare system. To evaluate near-miss cases from BDACS with regard to health system structure (resources and facilities) and process (patient care). A cross-sectional prospective study was conducted in greater Johannesburg, SA. Data of women who had near-miss-related BDACS were collected by means of ongoing surveillance at 13 public hospitals. The World Health Organization intervention criteria were used to identify near-miss cases. A comparison of structure and process between the healthcare facilities was conducted. Of 20 527 caesarean sections , there were 93 near misses and 7 maternal deaths from BDACS. Dominant risk factors for near misses were previous caesarean section (43.9%), anaemia (25.3%) and pregnancy-induced hypertension (28.6%). Eighteen women were transferred to higher levels of care, and 8 (44.4%) experienced transport delays of >1 hour. The caesarean section decision-to-incision interval (DII) was ≥60 minutes in 77 of 86 women, with an average interval of 4 hours. Structural deficiencies were frequently present in district hospitals, and there were serious delays in ambulance transfer and DIIs at all levels of care. The majority of the women had risk factors for BDACS. There were major ambulance delays and lack of facilities, mostly in district hospitals. All women required life-saving interventions, but could not access appropriate care timeously. Prevention and management of BDACS require a fully functional health system.

  5. Time-dependent density functional theory description of total photoabsorption cross sections

    NASA Astrophysics Data System (ADS)

    Tenorio, Bruno Nunes Cabral; Nascimento, Marco Antonio Chaer; Rocha, Alexandre Braga

    2018-02-01

    The time-dependent version of the density functional theory (TDDFT) has been used to calculate the total photoabsorption cross section of a number of molecules, namely, benzene, pyridine, furan, pyrrole, thiophene, phenol, naphthalene, and anthracene. The discrete electronic pseudo-spectra, obtained in a L2 basis set calculation were used in an analytic continuation procedure to obtain the photoabsorption cross sections. The ammonia molecule was chosen as a model system to compare the results obtained with TDDFT to those obtained with the linear response coupled cluster approach in order to make a link with our previous work and establish benchmarks.

  6. Simulations of the propagation of multiple-FM smoothing by spectral dispersion on OMEGA EP

    DOE PAGES

    Kelly, J. H.; Shvydky, A.; Marozas, J. A.; ...

    2013-02-18

    A one-dimensional (1-D) smoothing by spectral dispersion (SSD) system for smoothing focal-spot nonuniformities using multiple modulation frequencies has been commissioned on one long-pulse beamline of OMEGA EP, the first use of such a system in a high-energy laser. Frequency modulation (FM) to amplitude modulation (AM) conversion in the infrared (IR) output, frequency conversion, and final optics affected the accumulation of B-integral in that beamline. Modeling of this FM-to-AM conversion using the code Miró. was used as input to set the beamline performance limits for picket (short) pulses with multi-FM SSD applied. This article first describes that modeling. The 1-D SSDmore » analytical model of Chuang is first extended to the case of multiple modulators and then used to benchmark Miró simulations. Comparison is also made to an alternative analytic model developed by Hocquet et al. With the confidence engendered by this benchmarking, Miró results for multi-FM SSD applied on OMEGA EP are then presented. The relevant output section(s) of the OMEGA EP Laser System are described. The additional B-integral in OMEGA EP IR components upstream of the frequency converters due to AM is modeled. The importance of locating the image of the SSD dispersion grating at the frequency converters is demonstrated. In conclusion, since frequency conversion is not performed in OMEGA EP’s target chamber, the additional AM due to propagation to the target chamber’s vacuum window is modeled.« less

  7. A New Femtosecond Laser-Based Three-Dimensional Tomography Technique

    NASA Astrophysics Data System (ADS)

    Echlin, McLean P.

    2011-12-01

    Tomographic imaging has dramatically changed science, most notably in the fields of medicine and biology, by producing 3D views of structures which are too complex to understand in any other way. Current tomographic techniques require extensive time both for post-processing and data collection. Femtosecond laser based tomographic techniques have been developed in both standard atmosphere (femtosecond laser-based serial sectioning technique - FSLSS) and in vacuum (Tri-Beam System) for the fast collection (10 5mum3/s) of mm3 sized 3D datasets. Both techniques use femtosecond laser pulses to selectively remove layer-by-layer areas of material with low collateral damage and a negligible heat affected zone. To the authors knowledge, femtosecond lasers have never been used to serial section and these techniques have been entirely and uniquely developed by the author and his collaborators at the University of Michigan and University of California Santa Barbara. The FSLSS was applied to measure the 3D distribution of TiN particles in a 4330 steel. Single pulse ablation morphologies and rates were measured and collected from literature. Simultaneous two-phase ablation of TiN and steel matrix was shown to occur at fluences of 0.9-2 J/cm2. Laser scanning protocols were developed minimizing surface roughness to 0.1-0.4 mum for laser-based sectioning. The FSLSS technique was used to section and 3D reconstruct titanium nitride (TiN) containing 4330 steel. Statistical analysis of 3D TiN particle sizes, distribution parameters, and particle density were measured. A methodology was developed to use the 3D datasets to produce statistical volume elements (SVEs) for toughness modeling. Six FSLSS TiN datasets were sub-sampled into 48 SVEs for statistical analysis and toughness modeling using the Rice-Tracey and Garrison-Moody models. A two-parameter Weibull analysis was performed and variability in the toughness data agreed well with Ruggieri et al. bulk toughness measurements. The Tri-Beam system combines the benefits of laser based material removal (speed, low-damage, automated) with detectors that collect chemical, structural, and topological information. Multi-modal sectioning information was collected after many laser scanning passes demonstrating the capability of the Tri-Beam system.

  8. A four-body model for the breakup of Borromean nucleus 22C

    NASA Astrophysics Data System (ADS)

    Miyamoto, Tomokazu

    A Borromean system is a bound 3-body system where no 2-body subsystems are bound. In nuclear physics, a nucleus that can be modelled as a Borromean system is called a Borromean nucleus; 6 He and 11 Li are good examples of this. Recent research suggests that this Borromean nature should also be exhibited by 22 C, the heaviest-known carbon isotope. In this PhD thesis, a schematic approach is taken to study reactions involving Borromean nuclei. Hyperspherical formalism (HH) and coordinate space Faddeev (CSF) method are used for creating their 3-body bound state wave functions. We formulate the reactions of a Borromean nucleus with a stable target at incident energies ranging from tens of (MeV) to a few hundred (MeV); we adopt a 4-body reaction model to deepen our understanding of the reaction mechanism involving Borromean nuclei. The Glauber-WKB framework is used to describe these reactions, which is well-suited for these incident energies. Introducing Watson-Migdal final state interaction, we calculate the E1 strengths for Borromean nuclei so as to elucidate their breakup mechanism and we explore the possibility of the existence of a soft dipole mode. We also calculate the differential breakup cross sections to see how the post-collision interaction can have an impact on the cross sections. As far as 22 C is concerned, it is found that the reactions are mainly focused on the forward angle region, and the contributions from the higher order terms are not significant. This implies that the non-eikonal trajectories do not play a crucial role in the reaction mechanism. Also, both E1 distributions and breakup cross sections seem to sensitive to the 2n-separation energies of the bound state wave functions, but the E1 distributions and the cross sections to 1- continuum state seem not to be sensitive to the FSIs; cross sections to 0+ and 2+ continuum states seem to be sensitive to the FSIs. Our findings does not support the view that, if an soft dipole mode exists, it is induced by the FSIs.

  9. 76 FR 68299 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Model MBB-BK 117 C-2 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...: Starter-Generator, 2437: DC Indicating System, and 2430: DC Generator System. (d) Revise the Emergency... Performance Data sections of the RFM to alert the operators to monitor the power display when a generator is... when one generator is deactivated. The actions specified in this AD are intended to prevent failure of...

  10. Environmental Influences in the Simulation of a Solar Space Heating System.

    DTIC Science & Technology

    1980-01-01

    this simulation an optimum collector size was determined from the energy requirements given by each model and a comparison made between the...Solar Collector Cross Section .. ............... 26 4. Solar System Schematic. .. .................. 31 5. Contributions to Annual Energy Cost...40 6. House Size I Annual Energy Cost. ....... ........ 46 7. House Size II Annual Energy Cost .. ..... ......... 47 8. House Size III Annual

  11. THE CAUSAL ANALYSIS / DIAGNOSIS DECISION ...

    EPA Pesticide Factsheets

    CADDIS is an on-line decision support system that helps investigators in the regions, states and tribes find, access, organize, use and share information to produce causal evaluations in aquatic systems. It is based on the US EPA's Stressor Identification process which is a formal method for identifying causes of impairments in aquatic systems. CADDIS 2007 increases access to relevant information useful for causal analysis and provides methods and tools that practitioners can use to analyze their own data. The new Candidate Cause section provides overviews of commonly encountered causes of impairments to aquatic systems: metals, sediments, nutrients, flow alteration, temperature, ionic strength, and low dissolved oxygen. CADDIS includes new Conceptual Models that illustrate the relationships from sources to stressors to biological effects. An Interactive Conceptual Model for phosphorus links the diagram with supporting literature citations. The new Analyzing Data section helps practitioners analyze their data sets and interpret and use those results as evidence within the USEPA causal assessment process. Downloadable tools include a graphical user interface statistical package (CADStat), and programs for use with the freeware R statistical package, and a Microsoft Excel template. These tools can be used to quantify associations between causes and biological impairments using innovative methods such as species-sensitivity distributions, biological inferenc

  12. Benchmark of neutron production cross sections with Monte Carlo codes

    NASA Astrophysics Data System (ADS)

    Tsai, Pi-En; Lai, Bo-Lun; Heilbronn, Lawrence H.; Sheu, Rong-Jiun

    2018-02-01

    Aiming to provide critical information in the fields of heavy ion therapy, radiation shielding in space, and facility design for heavy-ion research accelerators, the physics models in three Monte Carlo simulation codes - PHITS, FLUKA, and MCNP6, were systematically benchmarked with comparisons to fifteen sets of experimental data for neutron production cross sections, which include various combinations of 12C, 20Ne, 40Ar, 84Kr and 132Xe projectiles and natLi, natC, natAl, natCu, and natPb target nuclides at incident energies between 135 MeV/nucleon and 600 MeV/nucleon. For neutron energies above 60% of the specific projectile energy per nucleon, the LAQGMS03.03 in MCNP6, the JQMD/JQMD-2.0 in PHITS, and the RQMD-2.4 in FLUKA all show a better agreement with data in heavy-projectile systems than with light-projectile systems, suggesting that the collective properties of projectile nuclei and nucleon interactions in the nucleus should be considered for light projectiles. For intermediate-energy neutrons whose energies are below the 60% projectile energy per nucleon and above 20 MeV, FLUKA is likely to overestimate the secondary neutron production, while MCNP6 tends towards underestimation. PHITS with JQMD shows a mild tendency for underestimation, but the JQMD-2.0 model with a modified physics description for central collisions generally improves the agreement between data and calculations. For low-energy neutrons (below 20 MeV), which are dominated by the evaporation mechanism, PHITS (which uses GEM linked with JQMD and JQMD-2.0) and FLUKA both tend to overestimate the production cross section, whereas MCNP6 tends to underestimate more systems than to overestimate. For total neutron production cross sections, the trends of the benchmark results over the entire energy range are similar to the trends seen in the dominate energy region. Also, the comparison of GEM coupled with either JQMD or JQMD-2.0 in the PHITS code indicates that the model used to describe the first stage of a nucleus-nucleus collision also affects the low-energy neutron production. Thus, in this case, a proper combination of two physics models is desired to reproduce the measured results. In addition, code users should be aware that certain models consistently produce secondary neutrons within a constant fraction of another model in certain energy regions, which might be correlated to different physics treatments in different models.

  13. A Vehicle Management End-to-End Testing and Analysis Platform for Validation of Mission and Fault Management Algorithms to Reduce Risk for NASA's Space Launch System

    NASA Technical Reports Server (NTRS)

    Trevino, Luis; Johnson, Stephen B.; Patterson, Jonathan; Teare, David

    2015-01-01

    The development of the Space Launch System (SLS) launch vehicle requires cross discipline teams with extensive knowledge of launch vehicle subsystems, information theory, and autonomous algorithms dealing with all operations from pre-launch through on orbit operations. The characteristics of these systems must be matched with the autonomous algorithm monitoring and mitigation capabilities for accurate control and response to abnormal conditions throughout all vehicle mission flight phases, including precipitating safing actions and crew aborts. This presents a large complex systems engineering challenge being addressed in part by focusing on the specific subsystems handling of off-nominal mission and fault tolerance. Using traditional model based system and software engineering design principles from the Unified Modeling Language (UML), the Mission and Fault Management (M&FM) algorithms are crafted and vetted in specialized Integrated Development Teams composed of multiple development disciplines. NASA also has formed an M&FM team for addressing fault management early in the development lifecycle. This team has developed a dedicated Vehicle Management End-to-End Testbed (VMET) that integrates specific M&FM algorithms, specialized nominal and off-nominal test cases, and vendor-supplied physics-based launch vehicle subsystem models. The flexibility of VMET enables thorough testing of the M&FM algorithms by providing configurable suites of both nominal and off-nominal test cases to validate the algorithms utilizing actual subsystem models. The intent is to validate the algorithms and substantiate them with performance baselines for each of the vehicle subsystems in an independent platform exterior to flight software test processes. In any software development process there is inherent risk in the interpretation and implementation of concepts into software through requirements and test processes. Risk reduction is addressed by working with other organizations such as S&MA, Structures and Environments, GNC, Orion, the Crew Office, Flight Operations, and Ground Operations by assessing performance of the M&FM algorithms in terms of their ability to reduce Loss of Mission and Loss of Crew probabilities. In addition, through state machine and diagnostic modeling, analysis efforts investigate a broader suite of failure effects and detection and responses that can be tested in VMET and confirm that responses do not create additional risks or cause undesired states through interactive dynamic effects with other algorithms and systems. VMET further contributes to risk reduction by prototyping and exercising the M&FM algorithms early in their implementation and without any inherent hindrances such as meeting FSW processor scheduling constraints due to their target platform - ARINC 653 partitioned OS, resource limitations, and other factors related to integration with other subsystems not directly involved with M&FM. The plan for VMET encompasses testing the original M&FM algorithms coded in the same C++ language and state machine architectural concepts as that used by Flight Software. This enables the development of performance standards and test cases to characterize the M&FM algorithms and sets a benchmark from which to measure the effectiveness of M&FM algorithms performance in the FSW development and test processes. This paper is outlined in a systematic fashion analogous to a lifecycle process flow for engineering development of algorithms into software and testing. Section I describes the NASA SLS M&FM context, presenting the current infrastructure, leading principles, methods, and participants. Section II defines the testing philosophy of the M&FM algorithms as related to VMET followed by section III, which presents the modeling methods of the algorithms to be tested and validated in VMET. Its details are then further presented in section IV followed by Section V presenting integration, test status, and state analysis. Finally, section VI addresses the summary and forward directions followed by the appendices presenting relevant information on terminology and documentation.

  14. Synthetic Environments for HSI Application, Assessment, and Improvement (Environnements synthetiques pour l’application, l’evaluation et l’amelioration de l’integration homme-systeme)

    DTIC Science & Technology

    2015-06-01

    very coarse architectural model proposed in Section 2.4 into something that might be implemented . Figure 11 shows the model we have created based ...interoperability through common data models . So many of the pieces are either in place or are being developed currently. However, SEA still needs: • A core...of knowledge derived through the scientific method. In NATO, S&T is addressed using different business models , namely a collaborative business model

  15. A study of radar cross section measurement techniques

    NASA Technical Reports Server (NTRS)

    Mcdonald, Malcolm W.

    1986-01-01

    Past, present, and proposed future technologies for the measurement of radar cross section were studied. The purpose was to determine which method(s) could most advantageously be implemented in the large microwave anechoic chamber facility which is operated at the antenna test range site. The progression toward performing radar cross section measurements of space vehicles with which the Orbital Maneuvering Vehicle will be called upon to rendezvous and dock is a natural outgrowth of previous work conducted in recent years of developing a high accuracy range and velocity sensing radar system. The radar system was designed to support the rendezvous and docking of the Orbital Maneuvering Vehicle with various other space vehicles. The measurement of radar cross sections of space vehicles will be necessary in order to plan properly for Orbital Maneuvering Vehicle rendezvous and docking assignments. The methods which were studied include: standard far-field measurements; reflector-type compact range measurements; lens-type compact range measurement; near field/far field transformations; and computer predictive modeling. The feasibility of each approach is examined.

  16. Aeroelastic flutter enhancement by exploiting the combined use of shape memory alloys and nonlinear piezoelectric circuits

    NASA Astrophysics Data System (ADS)

    Sousa, Vagner Candido de; Silva, Tarcísio Marinelli Pereira; De Marqui Junior, Carlos

    2017-10-01

    In this paper, the combined effects of semi-passive control using shunted piezoelectric material and passive pseudoelastic hysteresis of shape memory springs on the aerolastic behavior of a typical section is investigated. An aeroelastic model that accounts for the presence of both smart materials employed as mechanical energy dissipation devices is presented. The Brinson model is used to simulate the shape memory material. New expressions for the modeling of the synchronized switch damping on inductor technique (developed for enhanced piezoelectric damping) are presented, resulting in better agreement with experimental data. The individual effects of each nonlinear mechanism on the aeroelastic behavior of the typical section are first verified. Later, the combined effects of semi-passive piezoelectric control and passive shape memory alloy springs on the post-critical behavior of the system are discussed in details. The range of post-flutter airflow speeds with stable limit cycle oscillations is significantly increased due to the combined effects of both sources of energy dissipation, providing an effective and autonomous way to modify the behavior of aeroelastic systems using smart materials.

  17. Studies of the Three-Nucleon System Dynamics in the Deuteron-Proton Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Ciepał, I.; Kłos, B.; Stephan, E.; Kistryn, St.; Biegun, A.; Bodek, K.; Deltuva, A.; Epelbaum, E.; Eslami-Kalantari, M.; Fonseca, A. C.; Golak, J.; Jha, V.; Kalantar-Nayestanaki, N.; Kamada, H.; Khatri, G.; Kirillov, Da.; Kirillov, Di.; Kliczewski, St.; Kozela, A.; Kravcikova, M.; Machner, H.; Magiera, A.; Martinska, G.; Messchendorp, J.; Nogga, A.; Parol, W.; Ramazani-Moghaddam-Arani, A.; Roy, B. J.; Sakai, H.; Sekiguchi, K.; Sitnik, I.; Siudak, R.; Skibiński, R.; Sworst, R.; Urban, J.; Witała, H.; Zejma, J.

    2014-03-01

    One of the most important goals of modern nuclear physics is to contruct nuclear force model which properly describes the experimental data. To develop and test predictions of current models the breakup 1H(overrightarrow d, pp)n reaction was investigated experimentally at 100 and 130 MeV deuteron beam energies. Rich set of data for cross section, vector and tensor analyzing powers was obtained with the use of the SALAD and BINA detectors at KVI and Germanium Wall setup at FZ-Jülich. Results are compared with various theoretical approaches which describe the three-nucleon (3N) system dynamics. For correct description of the cross section data both, three-nucleon force (3NF) and Coulomb force, have to be included into calculations and influence of those ingredients is seizable at specific parts of the phase space. In case of the vector analyzing powers very low sensitivity to any effects beyond nucleon-nucleon interaction was found. At 130 MeV, the Axy data are not correctly described when 3NF models are included into calculations.

  18. Improvement of Modeling HTGR Neutron Physics by Uncertainty Analysis with the Use of Cross-Section Covariance Information

    NASA Astrophysics Data System (ADS)

    Boyarinov, V. F.; Grol, A. V.; Fomichenko, P. A.; Ternovykh, M. Yu

    2017-01-01

    This work is aimed at improvement of HTGR neutron physics design calculations by application of uncertainty analysis with the use of cross-section covariance information. Methodology and codes for preparation of multigroup libraries of covariance information for individual isotopes from the basic 44-group library of SCALE-6 code system were developed. A 69-group library of covariance information in a special format for main isotopes and elements typical for high temperature gas cooled reactors (HTGR) was generated. This library can be used for estimation of uncertainties, associated with nuclear data, in analysis of HTGR neutron physics with design codes. As an example, calculations of one-group cross-section uncertainties for fission and capture reactions for main isotopes of the MHTGR-350 benchmark, as well as uncertainties of the multiplication factor (k∞) for the MHTGR-350 fuel compact cell model and fuel block model were performed. These uncertainties were estimated by the developed technology with the use of WIMS-D code and modules of SCALE-6 code system, namely, by TSUNAMI, KENO-VI and SAMS. Eight most important reactions on isotopes for MHTGR-350 benchmark were identified, namely: 10B(capt), 238U(n,γ), ν5, 235U(n,γ), 238U(el), natC(el), 235U(fiss)-235U(n,γ), 235U(fiss).

  19. Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue.

    PubMed

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R; Ingram, Marylou; Imam, S Ashraf

    2011-12-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue.

  20. EDITORIAL: Special section on signal transduction Special section on signal transduction

    NASA Astrophysics Data System (ADS)

    Shvartsman, Stanislav

    2012-08-01

    This special section of Physical Biology focuses on multiple aspects of signal transduction, broadly defined as the study of the mechanisms by which cells communicate with their environment. Mechanisms of cell communication involve detection of incoming signals, which can be chemical, mechanical or electromagnetic, relaying these signals to intracellular processes, such as cytoskeletal networks or gene expression systems, and, ultimately, converting these signals to responses such as cell differentiation or death. Given the multiscale nature of signal transduction systems, they must be studied at multiple levels, from the identities and structures of molecules comprising signal detection and interpretation networks, to the systems-level properties of these networks. The 11 papers in this special section illustrate some of the most exciting aspects of signal transduction research. The first two papers, by Marie-Anne Félix [1] and by Efrat Oron and Natalia Ivanova [2], focus on cell-cell interactions in developing tissues, using vulval patterning in worm and cell fate specification in mammalian embryos as prime examples of emergent cell behaviors. Next come two papers from the groups of Julio Saez-Rodriguez [3] and Kevin Janes [4]. These papers discuss how the causal relationships between multiple components of signaling systems can be inferred using multivariable statistical analysis of empirical data. An authoritative review by Zarnitsyna and Zhu [5] presents a detailed discussion of the sequence of signaling events involved in T-cell triggering. Once the structure and components of the signaling systems are determined, they can be modeled using approaches that have been successful in other physical sciences. As two examples of such approaches, reviews by Rubinstein [6] and Kholodenko [7], present reaction-diffusion models of cell polarization and thermodynamics-based models of gene regulation. An important class of models takes the form of enzymatic networks, where a single molecule can participate in multiple types of interactions. Mathematical analysis of these models is discussed in the papers by Del Vecchio [8], Seaton and Krishnan [9], and Hatzimanikatis and colleagues [10]. Finally, all signaling systems are information processing devices. While this point is broadly accepted, there have been only a few attempts to apply information theory to experimental signaling systems. A review by Andre Levchenko and colleagues [11] provides a very clear introduction to information theory and its potential applications to signal transduction in cellular systems. References [1] Félix M-A 2012 Phys. Biol. 9 045001 [2] Oron E and Ivanova N 2012 Phys. Biol. 9 045002 [3] MacNamara A et al 2012 Phys. Biol. 9 045003 [4] Jensen K J and Janes K A 2012 Phys. Biol. 9 045004 [5] Zarnitsyna V and Zhu C 2012 Phys. Biol. 9 045005 [6] Rubinstein B et al 2012 Phys. Biol. 9 045006 [7] Frank T D et al 2012 Phys. Biol. 9 045007 [8] Del Vecchio D et al 2012 Phys. Biol. 9 045008 [9] Seaton D D and Krishnan J 2012 Phys. Biol. 9 045009 [10] Radivojevic A et al 2012 Phys. Biol. 9 045010 [11] Rhee A et al 2012 Phys. Biol. 9 045011

  1. Vector quantizer based on brightness maps for image compression with the polynomial transform

    NASA Astrophysics Data System (ADS)

    Escalante-Ramirez, Boris; Moreno-Gutierrez, Mauricio; Silvan-Cardenas, Jose L.

    2002-11-01

    We present a vector quantization scheme acting on brightness fields based on distance/distortion criteria correspondent with psycho-visual aspects. These criteria quantify sensorial distortion between vectors that represent either portions of a digital image or alternatively, coefficients of a transform-based coding system. In the latter case, we use an image representation model, namely the Hermite transform, that is based on some of the main perceptual characteristics of the human vision system (HVS) and in their response to light stimulus. Energy coding in the brightness domain, determination of local structure, code-book training and local orientation analysis are all obtained by means of the Hermite transform. This paper, for thematic reasons, is divided in four sections. The first one will shortly highlight the importance of having newer and better compression algorithms. This section will also serve to explain briefly the most relevant characteristics of the HVS, advantages and disadvantages related with the behavior of our vision in front of ocular stimulus. The second section shall go through a quick review of vector quantization techniques, focusing their performance on image treatment, as a preview for the image vector quantizer compressor actually constructed in section 5. Third chapter was chosen to concentrate the most important data gathered on brightness models. The building of this so-called brightness maps (quantification of the human perception on the visible objects reflectance), in a bi-dimensional model, will be addressed here. The Hermite transform, a special case of polynomial transforms, and its usefulness, will be treated, in an applicable discrete form, in the fourth chapter. As we have learned from previous works 1, Hermite transform has showed to be a useful and practical solution to efficiently code the energy within an image block, deciding which kind of quantization is to be used upon them (whether scalar or vector). It will also be a unique tool to structurally classify the image block within a given lattice. This particular operation intends to be one of the main contributions of this work. The fifth section will fuse the proposals derived from the study of the three main topics- addressed in the last sections- in order to propose an image compression model that takes advantage of vector quantizers inside the brightness transformed domain to determine the most important structures, finding the energy distribution inside the Hermite domain. Sixth and last section will show some results obtained while testing the coding-decoding model. The guidelines to evaluate the image compressing performance were the compression ratio, SNR and psycho-visual quality. Some conclusions derived from the research and possible unexplored paths will be shown on this section as well.

  2. Advancing coastal ocean modelling, analysis, and prediction for the US Integrated Ocean Observing System

    USGS Publications Warehouse

    Wilkin, John L.; Rosenfeld, Leslie; Allen, Arthur; Baltes, Rebecca; Baptista, Antonio; He, Ruoying; Hogan, Patrick; Kurapov, Alexander; Mehra, Avichal; Quintrell, Josie; Schwab, David; Signell, Richard; Smith, Jane

    2017-01-01

    This paper outlines strategies that would advance coastal ocean modelling, analysis and prediction as a complement to the observing and data management activities of the coastal components of the US Integrated Ocean Observing System (IOOS®) and the Global Ocean Observing System (GOOS). The views presented are the consensus of a group of US-based researchers with a cross-section of coastal oceanography and ocean modelling expertise and community representation drawn from Regional and US Federal partners in IOOS. Priorities for research and development are suggested that would enhance the value of IOOS observations through model-based synthesis, deliver better model-based information products, and assist the design, evaluation, and operation of the observing system itself. The proposed priorities are: model coupling, data assimilation, nearshore processes, cyberinfrastructure and model skill assessment, modelling for observing system design, evaluation and operation, ensemble prediction, and fast predictors. Approaches are suggested to accomplish substantial progress in a 3–8-year timeframe. In addition, the group proposes steps to promote collaboration between research and operations groups in Regional Associations, US Federal Agencies, and the international ocean research community in general that would foster coordination on scientific and technical issues, and strengthen federal–academic partnerships benefiting IOOS stakeholders and end users.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrack, A.G.

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses tomore » calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).« less

  4. Spheroidal Populated Star Systems

    NASA Astrophysics Data System (ADS)

    Angeletti, Lucio; Giannone, Pietro

    2008-10-01

    Globular clusters and low-ellipticity early-type galaxies can be treated as systems populated by a large number of stars and whose structures can be schematized as spherically symmetric. Their studies profit from the synthesis of stellar populations. The computation of synthetic models makes use of various contributions from star evolution and stellar dynamics. In the first sections of the paper we present a short review of our results on the occurrence of galactic winds in star systems ranging from globular clusters to elliptical galaxies, and the dynamical evolution of a typical massive globular cluster. In the subsequent sections we describe our approach to the problem of the stellar populations in elliptical galaxies. The projected radial behaviours of spectro-photometric indices for a sample of eleven galaxies are compared with preliminary model results. The best agreement between observation and theory shows that our galaxies share a certain degree of heterogeneity. The gas energy dissipation varies from moderate to large, the metal yield ranges from solar to significantly oversolar, the dispersion of velocities is isotropic in most of the cases and anisotropic in the remaining instances.

  5. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  6. Intelligent fuzzy controller for event-driven real time systems

    NASA Technical Reports Server (NTRS)

    Grantner, Janos; Patyra, Marek; Stachowicz, Marian S.

    1992-01-01

    Most of the known linguistic models are essentially static, that is, time is not a parameter in describing the behavior of the object's model. In this paper we show a model for synchronous finite state machines based on fuzzy logic. Such finite state machines can be used to build both event-driven, time-varying, rule-based systems and the control unit section of a fuzzy logic computer. The architecture of a pipelined intelligent fuzzy controller is presented, and the linguistic model is represented by an overall fuzzy relation stored in a single rule memory. A VLSI integrated circuit implementation of the fuzzy controller is suggested. At a clock rate of 30 MHz, the controller can perform 3 MFLIPS on multi-dimensional fuzzy data.

  7. Airport-Noise Levels and Annoyance Model (ALAMO) user's guide

    NASA Technical Reports Server (NTRS)

    Deloach, R.; Donaldson, J. L.; Johnson, M. J.

    1986-01-01

    A guide for the use of the Airport-Noise Level and Annoyance MOdel (ALAMO) at the Langley Research Center computer complex is provided. This document is divided into 5 primary sections, the introduction, the purpose of the model, and an in-depth description of the following subsystems: baseline, noise reduction simulation and track analysis. For each subsystem, the user is provided with a description of architecture, an explanation of subsystem use, sample results, and a case runner's check list. It is assumed that the user is familiar with the operations at the Langley Research Center (LaRC) computer complex, the Network Operating System (NOS 1.4) and CYBER Control Language. Incorporated within the ALAMO model is a census database system called SITE II.

  8. Chaos in a 4D dissipative nonlinear fermionic model

    NASA Astrophysics Data System (ADS)

    Aydogmus, Fatma

    2015-12-01

    Gursey Model is the only possible 4D conformally invariant pure fermionic model with a nonlinear self-coupled spinor term. It has been assumed to be similar to the Heisenberg's nonlinear generalization of Dirac's equation, as a possible basis for a unitary description of elementary particles. Gursey Model admits particle-like solutions for the derived classical field equations and these solutions are instantonic in character. In this paper, the dynamical nature of damped and forced Gursey Nonlinear Differential Equations System (GNDES) are studied in order to get more information on spinor type instantons. Bifurcation and chaos in the system are observed by constructing the bifurcation diagrams and Poincaré sections. Lyapunov exponent and power spectrum graphs of GNDES are also constructed to characterize the chaotic behavior.

  9. Measurements of noise produced by flow past lifting surfaces

    NASA Technical Reports Server (NTRS)

    Kendall, J. M.

    1978-01-01

    Wind tunnel studies have been conducted to determine the specific locations of aerodynamic noise production within the flow field about various lifting-surface configurations. The models tested included low aspect ratio shapes intended to represent aircraft flaps, a finite aspect ratio NACA 0012 wing, and a multi-element wing section consisting of a main section, a leading edge flap, and dual trailing edge flaps. Turbulence was induced on the models by surface roughness. Lift and drag were measured for the flap models. Hot-wire anemometry was used for study of the flap-model vortex roll-up. Apparent noise source distributions were measured by use of a directional microphone system, located outside the tunnel, which was scanned about the flow region to be analyzed under computer control. These distributions exhibited a diversity of pattern, suggesting that several flow processes are important to lifting-surface noise production. Speculation concerning these processes is offered.

  10. A cross-sectional investigation of acceptance of health information technology: A nationwide survey of community pharmacists in Turkey.

    PubMed

    Sezgin, Emre; Özkan-Yıldırım, Sevgi

    Health information technologies have become vital to health care services. In that regard, successful use of information technologies in pharmaceutical services is important to manage, control and maintain pharmaceutical transactions, which increase the quality of health care delivery. This study aimed to identify influencing factors on pharmacists' acceptance of pharmaceutical service systems. A cross-sectional study was conducted employing a research model based on technology acceptance theories. A parsimonious model was developed, and a self-reported questionnaire was distributed online. Community pharmacists participated voluntarily via the website of Turkish Pharmacists' Association. The data was analyzed employing Structural Equation Modeling. From 77 out of 81 cities of Turkey, 2169 community pharmacists participated to the survey with 43% response rate. Perceived usefulness, perceived ease of use, system factors and perceived behavioral control explained 47% of total variance in pharmacists' intention to use the pharmaceutical technology. The findings of the research provided insight about relations of influencing factors and practical implications regarding perceived behaviors and system use. Future researchers would benefit from the study design and findings. The study is also valuable for being the first nationwide study conducted on pharmacists about user attitudes toward a technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: a review.

    PubMed

    Jacobson, Carol R

    2011-06-01

    Urbanisation produces numerous changes in the natural environments it replaces. The impacts include habitat fragmentation and changes to both the quality and quantity of the stormwater runoff, and result in changes to hydrological systems. This review integrates research in relatively diverse areas to examine how the impacts of urban imperviousness on hydrological systems can be quantified and modelled. It examines the nature of reported impacts of urbanisation on hydrological systems over four decades, including the effects of changes in imperviousness within catchments, and some inconsistencies in studies of the impacts of urbanisation. The distribution of imperviousness within urban areas is important in understanding the impacts of urbanisation and quantification requires detailed characterisation of urban areas. As a result most mapping of urban areas uses remote sensing techniques and this review examines a range of techniques using medium and high resolution imagery, including spectral unmixing. The third section examines the ways in which scientists and hydrological and environmental engineers model and quantify water flows in urban areas, the nature of hydrological models and methods for their calibration. The final section examines additional factors which influence the impact of impervious surfaces and some uncertainties that exist in current knowledge. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    NASA Technical Reports Server (NTRS)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines the rankings of the Gardner Zero-Crossing Detector and both versions of the Early-Late Gate Synchronizer. The least robust models are the high and low-sample-rate Sliding Window Synchronizers. Consequently, the recommended replacement synchronizer for NASA's Advanced Air Transportation Technologies mobile aeronautical communications system is the high-sample-rate Modified Sliding Window Synchronizer. By incorporating this synchronizer into their system, NASA can be assured that their system will be operational in extremely adverse conditions. The quick convergence time of the MSWS should allow the use of high-level protocols. However, if NASA feels that reduced system complexity is the most important aspect of their replacement synchronizer, the Gardner Zero-Crossing Detector would be the best choice.

  13. Fusion of deformed nuclei in the reactions of 76Ge+150Nd and 28Si+198Pt at the Coulomb barrier region

    NASA Astrophysics Data System (ADS)

    Nishio, K.; Ikezoe, H.; Mitsuoka, S.; Lu, J.

    2000-07-01

    Evaporation residue cross sections for 28Si+198Pt and 76Ge+150Nd, both of which form a compound nucleus 226U, were measured in the vicinity of the Coulomb barrier. The measurement gives direct evidence that the system really fuses together to form a fully equilibrated compound nucleus. For the 28Si+198Pt reaction, we have measured the fission fragments to determine the fusion cross section by taking advantage of the highly fissile character of 226U. The evaporation residue cross section and the fusion cross section for 28Si+198Pt allowed us to investigate the deexcitation process (exit channel) of the compound nucleus 226U, and the parameters entering in a statistical model calculation could be determined. By estimating the deexcitation of the compound nucleus 226U with the statistical model, the effect of the deformed nucleus 150Nd on the fusion reaction 76Ge+150Nd was extracted. The experimental data indicated that there is more than 13 MeV extra-extra-push energy for the system to fuse together when the projectile 76Ge collides at the tip of the deformed 150Nd nucleus. On the contrary, for the side collision which is more compact in configuration than the tip collision, no fusion hindrance is suggested.

  14. A web-based Tamsui River flood early-warning system with correction of real-time water stage using monitoring data

    NASA Astrophysics Data System (ADS)

    Liao, H. Y.; Lin, Y. J.; Chang, H. K.; Shang, R. K.; Kuo, H. C.; Lai, J. S.; Tan, Y. C.

    2017-12-01

    Taiwan encounters heavy rainfalls frequently. There are three to four typhoons striking Taiwan every year. To provide lead time for reducing flood damage, this study attempt to build a flood early-warning system (FEWS) in Tanshui River using time series correction techniques. The predicted rainfall is used as the input for the rainfall-runoff model. Then, the discharges calculated by the rainfall-runoff model is converted to the 1-D river routing model. The 1-D river routing model will output the simulating water stages in 487 cross sections for the future 48-hr. The downstream water stage at the estuary in 1-D river routing model is provided by storm surge simulation. Next, the water stages of 487 cross sections are corrected by time series model such as autoregressive (AR) model using real-time water stage measurements to improve the predicted accuracy. The results of simulated water stages are displayed on a web-based platform. In addition, the models can be performed remotely by any users with web browsers through a user interface. The on-line video surveillance images, real-time monitoring water stages, and rainfalls can also be shown on this platform. If the simulated water stage exceeds the embankments of Tanshui River, the alerting lights of FEWS will be flashing on the screen. This platform runs periodically and automatically to generate the simulation graphic data of flood water stages for flood disaster prevention and decision making.

  15. Significant Features Found in Simulated Tropical Climates Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.

    2000-01-01

    Cloud resolving model (CRM) has widely been used in recent years for simulations involving studies of radiative-convective systems and their role in determining the tropical regional climate. The growing popularity of CRMs usage can be credited for their inclusion of crucial and realistic features such like explicit cloud-scale dynamics, sophisticated microphysical processes, and explicit radiative-convective interaction. For example, by using a two-dimensional cloud model with radiative-convective interaction process, found a QBO-like (quasibiennial oscillation) oscillation of mean zonal wind that affected the convective system. Accordingly, the model-generated rain band corresponding to convective activity propagated in the direction of the low-level zonal mean winds; however, the precipitation became "localized" (limited within a small portion of the domain) as zonal mean winds were removed. Two other CRM simulations by S94 and Grabowski et al. (1996, hereafter G96), respectively that produced distinctive quasi-equilibrium ("climate") states on both tropical water and energy, i.e., a cold/dry state in S94 and a warm/wet state in G96, have later been investigated by T99. They found that the pattern of the imposed large-scale horizontal wind and the magnitude of the imposed surface fluxes were the two crucial mechanisms in determining the tropical climate states. The warm/wet climate was found associated with prescribed strong surface winds, or with maintained strong vertical wind shears that well-organized convective systems prevailed. On the other hand, the cold/dry climate was produced due to imposed weak surface winds and weak wind shears throughout a vertically mixing process by convection. In this study, considered as a sequel of T99, the model simulations to be presented are generally similar to those of T99 (where a detailed model setup can be found), except for a more detailed discussion along with few more simulated experiments. There are twelve major experiments chosen for presentations that are introduced in section two. Several significant feature analyses regarding the rainfall properties, CAPE (Convective Available Potential Energy), cloud-scale eddies, the stability issue, the convective system propagation, relative humidity, and the effect on the quasi-equilibrium state by the imposed constant. radiation or constant surface fluxes, and etc. will be presented in the meeting. However, only three of the subjects are discussed in section three. A brief summary is concluded in the end section.

  16. Evolution of fusion hindrance for asymmetric systems at deep sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Shrivastava, A.; Mahata, K.; Pandit, S. K.; Nanal, V.; Ichikawa, T.; Hagino, K.; Navin, A.; Palshetkar, C. S.; Parkar, V. V.; Ramachandran, K.; Rout, P. C.; Kumar, Abhinav; Chatterjee, A.; Kailas, S.

    2016-04-01

    Measurements of fusion cross-sections of 7Li and 12C with 198Pt at deep sub-barrier energies are reported to unravel the role of the entrance channel in the occurrence of fusion hindrance. The onset of fusion hindrance has been clearly observed in 12C +198Pt system but not in 7Li +198Pt system, within the measured energy range. Emergence of the hindrance, moving from lighter (6,7Li) to heavier (12C, 16O) projectiles is explained employing a model that considers a gradual transition from a sudden to adiabatic regime at low energies. The model calculation reveals a weak effect of the damping of coupling to collective motion for the present systems as compared to that obtained for systems with heavier projectiles.

  17. View west within the periphery of the load dispatch model ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View west within the periphery of the load dispatch model board, operator's console is at lower center and button board is at lower right of the photograph; section of model board shown covers substation from Perryman (left) to Frankford (right); instruments at right center of photograph formerly monitored energy usage and were replaced by computerized monitoring system. - Thirtieth Street Station, Load Dispatch Center, Thirtieth & Market Streets, Railroad Station, Amtrak (formerly Pennsylvania Railroad Station), Philadelphia, Philadelphia County, PA

  18. The dynamic flexural response of propeller blades. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Djordjevic, S. Z.

    1982-01-01

    The determination of the torsional constants of three blade models having NACA four-digit symmetrical airfoil cross sections is presented. Values were obtained for these models analytically and experimentally. Results were also obtained for three other models having rectangular, elliptical, and parabolic cross sections. Complete modal analyses were performed for five blade models. The identification of modal parameters was done for cases when the blades were modeled as either undamped or damped multi-degree-of-freedom systems. For the experimental phase of this study, the modal testing was performed using a Dual Channel FFT analyzer and an impact hammer (which produced an impulsive excitation). The natural frequency and damping of each mode in the frequency range up to 2 kHz were measured. A small computer code was developed to calculate the dynamic response of the blade models for comparison with the experimental results. A comparison of the undamped and damped cases was made for all five blade models at the instant of maximum excitation force. The program was capable of handling models where the excitation forces were distributed arbitrarily along the length of the blade.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas; Burns, Joseph R.

    The aftermath of the Tōhoku earthquake and the Fukushima accident has led to a global push to improve the safety of existing light water reactors. A key component of this initiative is the development of nuclear fuel and cladding materials with potentially enhanced accident tolerance, also known as accident-tolerant fuels (ATF). These materials are intended to improve core fuel and cladding integrity under beyond design basis accident conditions while maintaining or enhancing reactor performance and safety characteristics during normal operation. To complement research that has already been carried out to characterize ATF neutronics, the present study provides an initial investigationmore » of the sensitivity and uncertainty of ATF systems responses to nuclear cross section data. ATF concepts incorporate novel materials, including SiC and FeCrAl cladding and high density uranium silicide composite fuels, in turn introducing new cross section sensitivities and uncertainties which may behave differently from traditional fuel and cladding materials. In this paper, we conducted sensitivity and uncertainty analysis using the TSUNAMI-2D sequence of SCALE with infinite lattice models of ATF assemblies. Of all the ATF materials considered, it is found that radiative capture in 56Fe in FeCrAl cladding is the most significant contributor to eigenvalue uncertainty. 56Fe yields significant potential eigenvalue uncertainty associated with its radiative capture cross section; this is by far the largest ATF-specific uncertainty found in these cases, exceeding even those of uranium. We found that while significant new sensitivities indeed arise, the general sensitivity behavior of ATF assemblies does not markedly differ from traditional UO2/zirconium-based fuel/cladding systems, especially with regard to uncertainties associated with uranium. We assessed the similarity of the IPEN/MB-01 reactor benchmark model to application models with FeCrAl cladding. We used TSUNAMI-IP to calculate similarity indices of the application model and IPEN/MB-01 reactor benchmark model. This benchmark was selected for its use of SS304 as a cladding and structural material, with significant 56Fe content. The similarity indices suggest that while many differences in reactor physics arise from differences in design, sensitivity to and behavior of 56Fe absorption is comparable between systems, thus indicating the potential for this benchmark to reduce uncertainties in 56Fe radiative capture cross sections.« less

  20. Scale model performance test investigation of mixed flow exhaust systems for an energy efficient engine /E3/ propulsion system

    NASA Technical Reports Server (NTRS)

    Kuchar, A. P.; Chamberlin, R.

    1983-01-01

    As part of the NASA Energy Efficient Engine program, scale-model performance tests of a mixed flow exhaust system were conducted. The tests were used to evaluate the performance of exhaust system mixers for high-bypass, mixed-flow turbofan engines. The tests indicated that: (1) mixer penetration has the most significant affect on both mixing effectiveness and mixer pressure loss; (2) mixing/tailpipe length improves mixing effectiveness; (3) gap reduction between the mixer and centerbody increases high mixing effectiveness; (4) mixer cross-sectional shape influences mixing effectiveness; (5) lobe number affects mixing degree; and (6) mixer aerodynamic pressure losses are a function of secondary flows inherent to the lobed mixer concept.

  1. Force Measurements in Magnetic Suspension and Balance System

    NASA Technical Reports Server (NTRS)

    Kuzin, Alexander; Shapovalov, George; Prohorov, Nikolay

    1996-01-01

    The description of an infrared telemetry system for measurement of drag forces in Magnetic Suspension and Balance Systems (MSBS) is presented. This system includes a drag force sensor, electronic pack and transmitter placed in the model which is of special construction, and receiver with a microprocessor-based measuring device, placed outside of the test section. Piezosensitive resonators as sensitive elements and non-magnetic steel as the material for the force sensor are used. The main features of the proposed system for load measurements are discussed and the main characteristics are presented.

  2. Elastic, inelastic, and 1-nucleon transfer channels in the 7Li+120Sn system

    NASA Astrophysics Data System (ADS)

    Kundu, A.; Santra, S.; Pal, A.; Chattopadhyay, D.; Tripathi, R.; Roy, B. J.; Nag, T. N.; Nayak, B. K.; Saxena, A.; Kailas, S.

    2017-03-01

    Background: Simultaneous description of major outgoing channels for a nuclear reaction by coupled-channels calculations using the same set of potential and coupling parameters is one of the difficult tasks to accomplish in nuclear reaction studies. Purpose: To measure the elastic, inelastic, and transfer cross sections for as many channels as possible in 7Li+120Sn system at different beam energies and simultaneously describe them by a single set of model calculations using fresco. Methods: Projectile-like fragments were detected using six sets of Si-detector telescopes to measure the cross sections for elastic, inelastic, and 1-nucleon transfer channels at two beam energies of 28 and 30 MeV. Optical model analysis of elastic data and coupled-reaction-channels (CRC) calculations that include around 30 reaction channels coupled directly to the entrance channel, with respective structural parameters, were performed to understand the measured cross sections. Results: Structure information available in the literature for some of the identified states did not reproduce the present data. Cross sections obtained from CRC calculations using a modified but single set of potential and coupling parameters were able to describe simultaneously the measured data for all the channels at both the measured energies as well as the existing data for elastic and inelastic cross sections at 44 MeV. Conclusions: Non-reproduction of some of the cross sections using the structure information available in the literature which are extracted from reactions involving different projectiles indicates that such measurements are probe dependent. New structural parameters were assigned for such states as well as for several new transfer states whose spectroscopic factors were not known.

  3. Sting Dynamics of Wind Tunnel Models

    DTIC Science & Technology

    1976-05-01

    Patterson AFB, AFFDL, Ohio, October 1964. 17. Brunk, James E. "Users Manual: Extended Capability Magnus Rotor and Ballistic Body 6-DOF Trajectory...measure "second-order" aerodynamic effects resulting, for example, from Reynolds number in- fluence. Consequently, all wind tunnel data systems are...sting-model interference effects , sting configurations normally consist of one or more linearly tapered sections combined with one or more untapered

  4. A Model for the Determination of the Costs of Special Education as Compared with That for General Education. Appendix: Part 1.

    ERIC Educational Resources Information Center

    Ernst and Ernst, Chicago, IL.

    Part 1 of the appendix to "A Model for the Determination of the Costs of Special Education as Compared with That for General Education" contains comprehensive descriptive and statistical information on Ernstville, a hypothetical school district conceived to illustrate the operation of a proposed cost accounting system. Included are sections on…

  5. Extension-torsion coupling behavior of advanced composite tilt-rotor blades

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1989-01-01

    An analytic model was developed to study the extension-bend-twist coupling behavior of an advanced composite helicopter or tilt-rotor blade. The outer surface of the blade is defined by rotating an arbitrary cross section about an initial twist axis. The cross section can be nonhomogeneous and composed of generally anisotropic materials. The model is developed based upon a three dimensional elasticity approach that is recast as a coupled two-dimensional boundary value problem defined in a curvilinear coordinate system. Displacement solutions are written in terms of known functions that represent extension, bending, and twisting and unknown functions for local cross section deformations. The unknown local deformation functions are determined by applying the principle of minimum potential energy to the discretized two-dimensional cross section. This is an application of the Ritz method, where the trial function family is the displacement field associated with a finite element (8-node isoparametric quadrilaterals) representation of the section. A computer program was written where the cross section is discretized into 8-node quadrilateral subregions. Initially the program was verified using previously published results (both three-dimensional elasticity and technical beam theory) for pretwisted isotropic bars with an elliptical cross section. In addition, solid and thin-wall multi-cell NACA-0012 airfoil sections were analyzed to illustrate the pronounced effects that pretwist, initial twist axis location, and spar location has on coupled behavior. Currently, a series of advanced composite airfoils are being modeled in order to assess how the use of laminated composite materials interacts with pretwist to alter the coupling behavior of the blade. These studies will investigate the use of different ply angle orientations and the use of symmetric versus unsymmetric laminates.

  6. Experimental and rendering-based investigation of laser radar cross sections of small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Laurenzis, Martin; Bacher, Emmanuel; Christnacher, Frank

    2017-12-01

    Laser imaging systems are prominent candidates for detection and tracking of small unmanned aerial vehicles (UAVs) in current and future security scenarios. Laser reflection characteristics for laser imaging (e.g., laser gated viewing) of small UAVs are investigated to determine their laser radar cross section (LRCS) by analyzing the intensity distribution of laser reflection in high resolution images. For the first time, LRCSs are determined in a combined experimental and computational approaches by high resolution laser gated viewing and three-dimensional rendering. An optimized simple surface model is calculated taking into account diffuse and specular reflectance properties based on the Oren-Nayar and the Cook-Torrance reflectance models, respectively.

  7. System dynamic modeling: an alternative method for budgeting.

    PubMed

    Srijariya, Witsanuchai; Riewpaiboon, Arthorn; Chaikledkaew, Usa

    2008-03-01

    To construct, validate, and simulate a system dynamic financial model and compare it against the conventional method. The study was a cross-sectional analysis of secondary data retrieved from the National Health Security Office (NHSO) in the fiscal year 2004. The sample consisted of all emergency patients who received emergency services outside their registered hospital-catchments area. The dependent variable used was the amount of reimbursed money. Two types of model were constructed, namely, the system dynamic model using the STELLA software and the multiple linear regression model. The outputs of both methods were compared. The study covered 284,716 patients from various levels of providers. The system dynamic model had the capability of producing various types of outputs, for example, financial and graphical analyses. For the regression analysis, statistically significant predictors were composed of service types (outpatient or inpatient), operating procedures, length of stay, illness types (accident or not), hospital characteristics, age, and hospital location (adjusted R(2) = 0.74). The total budget arrived at from using the system dynamic model and regression model was US$12,159,614.38 and US$7,301,217.18, respectively, whereas the actual NHSO reimbursement cost was US$12,840,805.69. The study illustrated that the system dynamic model is a useful financial management tool, although it is not easy to construct. The model is not only more accurate in prediction but is also more capable of analyzing large and complex real-world situations than the conventional method.

  8. The significance of salt reconstruction for basin modeling results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansen, H.; Blomvik, V.; Bonnell, L.

    1996-12-31

    Salt structures can play a major role in the temperature history as well as in the formation of hydrocarbon traps. Salt movement through time is therefore an important process to incorporate into basin models. Based on this need, a new model for geologic reconstruction of salt geometries was incorporated into the BMT{trademark} basin modeling system. The reconstruction model is based on two basic mechanisms: (1) The ability to change lithology for a polygon (a sub-domain in the cross section) at a given time (litho-switching) and (2) the ability to inflate/deflate mass in polygons. Litho-switching is used where salt diapirs penetratemore » overlaying strata. Inflation/deflation is used to change the shape of a salt polygon. By inflating/deflating parts of polygons, it is possible to restore the salt layer step by step back to original form. The advantage of this approach is its applicability to geological problems that cannot be addressed by many basin modeling systems. To test the approach, we have reconstructed a cross-section from the Central Graben of the North Sea using two different geological models. One model assumes that synforms developed on the surface during Triassic deposition. These synforms were later preserved as sediment {open_quotes}pods{close_quotes}. The other geological model assumes that the salt movement was passively related to eastward basin subsidence, with salt upwelling between rafted Triassic blocks. The test indicate that the approach is versatile and can be used to evaluate the thermal consequences of a number of geologic models of salt movement.« less

  9. The significance of salt reconstruction for basin modeling results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johansen, H.; Blomvik, V.; Bonnell, L.

    1996-01-01

    Salt structures can play a major role in the temperature history as well as in the formation of hydrocarbon traps. Salt movement through time is therefore an important process to incorporate into basin models. Based on this need, a new model for geologic reconstruction of salt geometries was incorporated into the BMT[trademark] basin modeling system. The reconstruction model is based on two basic mechanisms: (1) The ability to change lithology for a polygon (a sub-domain in the cross section) at a given time (litho-switching) and (2) the ability to inflate/deflate mass in polygons. Litho-switching is used where salt diapirs penetratemore » overlaying strata. Inflation/deflation is used to change the shape of a salt polygon. By inflating/deflating parts of polygons, it is possible to restore the salt layer step by step back to original form. The advantage of this approach is its applicability to geological problems that cannot be addressed by many basin modeling systems. To test the approach, we have reconstructed a cross-section from the Central Graben of the North Sea using two different geological models. One model assumes that synforms developed on the surface during Triassic deposition. These synforms were later preserved as sediment [open quotes]pods[close quotes]. The other geological model assumes that the salt movement was passively related to eastward basin subsidence, with salt upwelling between rafted Triassic blocks. The test indicate that the approach is versatile and can be used to evaluate the thermal consequences of a number of geologic models of salt movement.« less

  10. The dynamics of acute inflammation

    NASA Astrophysics Data System (ADS)

    Kumar, Rukmini

    The acute inflammatory response is the non-specific and immediate reaction of the body to pathogenic organisms, tissue trauma and unregulated cell growth. An imbalance in this response could lead to a condition commonly known as "shock" or "sepsis". This thesis is an attempt to elucidate the dynamics of acute inflammatory response to infection and contribute to its systemic understanding through mathematical modeling and analysis. The models of immunity discussed use Ordinary Differential Equations (ODEs) to model the variation of concentration in time of the various interacting species. Chapter 2 discusses three such models of increasing complexity. Sections 2.1 and 2.2 discuss smaller models that capture the core features of inflammation and offer general predictions concerning the design of the system. Phase-space and bifurcation analyses have been used to examine the behavior at various parameter regimes. Section 2.3 discusses a global physiological model that includes several equations modeling the concentration (or numbers) of cells, cytokines and other mediators. The conclusions drawn from the reduced and detailed models about the qualitative effects of the parameters are very similar and these similarities have also been discussed. In Chapter 3, the specific applications of the biologically detailed model are discussed in greater detail. These include a simulation of anthrax infection and an in silico simulation of a clinical trial. Such simulations are very useful to biologists and could prove to be invaluable tools in drug design. Finally, Chapter 4 discusses the general problem of extinction of populations modeled as continuous variables in ODES is discussed. The average time to extinction and threshold are estimated based on analyzing the equivalent stochastic processes.

  11. Underground pipeline laying using the pipe-in-pipe system

    NASA Astrophysics Data System (ADS)

    Antropova, N.; Krets, V.; Pavlov, M.

    2016-09-01

    The problems of resource saving and environmental safety during the installation and operation of the underwater crossings are always relevant. The paper describes the existing methods of trenchless pipeline technology, the structure of multi-channel pipelines, the types of supporting and guiding systems. The rational design is suggested for the pipe-in-pipe system. The finite element model is presented for the most dangerous sections of the inner pipes, the optimum distance is detected between the roller supports.

  12. American River Watershed Investigation, California. Volume 4. Appendix N

    DTIC Science & Technology

    1991-12-01

    terrain model will be developed for use with the Intergraph System . DESIGN IEMAILS Design levee sections were chosen to remain the same as used in...superiority is to design freeboard in such a manner that should design flows be exceeded, the levee system will fail in a way to cause the least catastrophic...effects. The Sacramento Area levee system is complex and several areas such as the Natomas area are surrounded by levees such that levee failure at

  13. Modeling flash floods in southern France for road management purposes

    NASA Astrophysics Data System (ADS)

    Vincendon, Béatrice; Édouard, Simon; Dewaele, Hélène; Ducrocq, Véronique; Lespinas, Franck; Delrieu, Guy; Anquetin, Sandrine

    2016-10-01

    Flash-floods are among the most devastating hazards in the Mediterranean. A major subset of damage and casualties caused by flooding is related to road submersion. Distributed hydrological nowcasting can be used for road flooding monitoring. This requires rainfall-runoff simulations at a high space and time resolution. Distributed hydrological models, such as the ISBA-TOP coupled system used in this study, are designed to simulate discharges for any cross-section of a river but they are generally calibrated for certain outlets and give deteriorated results for the sub-catchment outlets. The paper first analyses ISBA-TOP discharge simulations in the French Mediterranean region for target points different from the outlets used for calibration. The sensitivity of the model to its governing factors is examined to highlight the validity of results obtained for ungauged river sections compared with those obtained for the main gauged outlets. The use of improved model inputs is found beneficial for sub-catchments simulation. The calibration procedure however provides the parameters' values for the main outlets only and these choices influence the simulations for ungauged catchments or sub-catchments. As a result, a new version of ISBA-TOP system without any parameter to calibrate is used to produce diagnostics relevant for quantifying the risk of road submersion. A first diagnostic is the simulated runoff spatial distribution, it provides a useful information about areas with a high risk of submersion. Then an indicator of the flood severity is given by simulated discharges presented with respect to return periods. The latter has to be used together with information about the vulnerability of road-river cross-sections.

  14. Comprehensive Approach to Pupil Planning: Stage III - Instructional Planning (Includes Data Sources Within the CAPP System and Teacher's Instructional Plan). Experimental Edition.

    ERIC Educational Resources Information Center

    Vlasak, Frances Stetson; Kaufman, Martin J.

    Presented is Stage III of the Comprehensive Approach to Pupil Planning (CAPP) System, a three-stage model for planning educational interventions in the regular and special education classrooms and for guiding placement decisions. The guide focuses on the instructional planning team with sections on the following: Stage III personnel; roles and…

  15. State-of-the-Art for Assessing Earthquake Hazards in the United States. Report 15. Tsunamis, Seiches, and Landslide-Induced Water Waves.

    DTIC Science & Technology

    1979-11-01

    island of a multiple-island system. Thus, when Vastano and Bernard applied their model to the three-island system of 26 Kauai, Oahu, and Niihau in the...Hawaiian Islands, the two islands of Oahu and Niihau had to be represented by cylinders with vertical walls whose cross sections were truncated wedges

  16. Predicted effects on ground water of construction of Divide Cut section, Tennessee-Tombigbee Waterway, northeastern Mississippi, using a digital model

    USGS Publications Warehouse

    McBride, Mark S.

    1981-01-01

    The Tennessee-Tombigbee Waterway, connecting the Tennessee River in northeastern Mississippi with the Gulf of Mexico, is currently (1980) under construction. The Divide Section, the northernmost 39 miles of the Waterway, will consist, from north to south, of (1) a dredged channel, (2) the Divide Cut, and (3) an artifical lake impounded by the Bay Springs Dam. In all three , water will be at Tennessee River level. A three-dimensional digital model covering 3,273 square miles was constructed to simulate ground-water flow in the Gordo and Eutaw Formations and the Coffee Sand in the vicinity of the Divide Section. The model was calibrated to preconstruction water levels, then used to simulate the effects of stresses imposed by the construction of the Divide Section. The model indicates that the system stabilizes after major changes in conditions within a few months. The Divide Cut acts as a drain, lowering water levels as much as 55 feet. Drawdowns of 5 feet occur as much as 8 miles from the Cut. The 80-foot-high Bay Springs Dam raises ground-water levels by 5 feet as far as 6 miles from its impoundment. Drawdown is not likely to affect public water supplies significantly, but probably will adversely affect a relatively small number of private wells. (USGS)

  17. A study of 36Cl production in the early Solar System

    NASA Astrophysics Data System (ADS)

    Bowers, Matthew R.

    Short-lived radionuclides (SLRs) with lifetimes tau < 100 Ma are known to have been extant when the Solar System formed 4.568 billion years ago from meteoritic studies of their decay products. Identifying the origins of SLRs can provide insight into the origins and timescales of our Solar System and the processes that shaped it. There are two proposed production scenarios for the origins of SLRs with tau < 5 Ma. Freshly synthesized material could be incorporated in the Solar System by a nearby stellar source (e.g., supernova, AGB star, Wolf-Rayet star), or SLRs could have also been produced by the bombardment of gas and dust by solar energetic particles (SEP) emitted by our young Sun. The origin of extinct 36Cl (t1/2 = 0.301 Ma) in the early Solar System is thought to have been produced by local particle irradiation. However the models that attempt to recreate the production of 36Cl in the early Solar System lack experimental data for the nuclear reactions considered. The first measurement of the 33S(alpha,p) 36Cl reaction, an important reaction in the production of 36Cl , was performed. The cross section measurement was performed by bombarding a target and collecting the recoiled 36Cl atoms produced in the reaction, chemically processing the samples, and measuring the 36Cl/Cl concentration of the samples with accelerator mass spectrometry (AMS). The cross section was measured at six energies that ranged from 0.70 up to 2.42 MeV/A, within the SEP energy spectrum. The experimental results were found to be systematically higher than the predicted cross sections. However, the deviations lead to < 7 % increase in total production of 36Cl under the x-wind model. From the experimental measurement and a study of the other reactions' contributions to 36Cl production, 36Cl could have been produced close to the protoSun by reactions on Ca targets using the x-wind model, or in a late-stage irradiation event on a volatile-rich reservoir by 3He and alpha reactions on S targets.

  18. Model development for national assessment of commercial vehicle parking

    DOT National Transportation Integrated Search

    2002-03-01

    The objective of this research was to estimate the extent and geographic distribution of truck rest parking supply and demand along the National Highway System in accordance with Section 4027 of the Transportation Equity Act for the 21st Century. Thi...

  19. Mathematical model of device for slurry concentration and desludging in near-bottom zone

    NASA Astrophysics Data System (ADS)

    Shishkin, P. V.; Trufanova, I. S.

    2017-10-01

    There are many systems for extracting minerals from the bottom of water bodies, but none of them meets the requirements, so the actual task is to create technical means that provide the best performance and environmental safety. Increase the efficiency of the hydromechanical mining method is possible due to the maximum concentration and desludging of the slurry in the near-bottom zone, which allows reducing the energy and material consumption of hydrotransport of minerals. To achieve this goal, it is proposed to use a perforated section adjacent to the power unit, with a transverse cross section that reduces in its length in the direction of flow, in the pressure pulp pipeline system.

  20. Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior

    PubMed Central

    Vukicevic, M.; Chiulli, J.A.; Conover, T.; Pennati, G.; Hsia, T.Y.; Figliola, R.S.

    2013-01-01

    We describe an in vitro model of the Fontan circulation with respiration to study subdiaphragmatic venous flow behavior. The venous and arterial connections of a total cavopulmonary connection (TCPC) test section were coupled with a physical lumped parameter (LP) model of the circulation. Intrathoracic and subdiaphragmatic pressure changes associated with normal breathing were applied. This system was tuned for two patients (5 years, 0.67 m2; 10 years, 1.2 m2) to physiological values. System function was verified by comparison to the analytical model on which it was based and by consistency with published clinical measurements. Overall, subdiaphragmatic venous flow was influenced by respiration. Flow within the arteries and veins increased during inspiration but decreased during expiration with retrograde flow in the inferior venous territories. System pressures and flows showed close agreement with the analytical LP model (p < 0.05). The ratio of the flow rates occurring during inspiration to expiration were within the clinical range of values reported elsewhere. The approach used to setup and control the model was effective and provided reasonable comparisons with clinical data. PMID:23644612

  1. FY17 Status Report on NEAMS Neutronics Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C. H.; Jung, Y. S.; Smith, M. A.

    2017-09-30

    Under the U.S. DOE NEAMS program, the high-fidelity neutronics code system has been developed to support the multiphysics modeling and simulation capability named SHARP. The neutronics code system includes the high-fidelity neutronics code PROTEUS, the cross section library and preprocessing tools, the multigroup cross section generation code MC2-3, the in-house meshing generation tool, the perturbation and sensitivity analysis code PERSENT, and post-processing tools. The main objectives of the NEAMS neutronics activities in FY17 are to continue development of an advanced nodal solver in PROTEUS for use in nuclear reactor design and analysis projects, implement a simplified sub-channel based thermal-hydraulic (T/H)more » capability into PROTEUS to efficiently compute the thermal feedback, improve the performance of PROTEUS-MOCEX using numerical acceleration and code optimization, improve the cross section generation tools including MC2-3, and continue to perform verification and validation tests for PROTEUS.« less

  2. Bilinear effect in complex systems

    NASA Astrophysics Data System (ADS)

    Lam, Lui; Bellavia, David C.; Han, Xiao-Pu; Alston Liu, Chih-Hui; Shu, Chang-Qing; Wei, Zhengjin; Zhou, Tao; Zhu, Jichen

    2010-09-01

    The distribution of the lifetime of Chinese dynasties (as well as that of the British Isles and Japan) in a linear Zipf plot is found to consist of two straight lines intersecting at a transition point. This two-section piecewise-linear distribution is different from the power law or the stretched exponent distribution, and is called the Bilinear Effect for short. With assumptions mimicking the organization of ancient Chinese regimes, a 3-layer network model is constructed. Numerical results of this model show the bilinear effect, providing a plausible explanation of the historical data. The bilinear effect in two other social systems is presented, indicating that such a piecewise-linear effect is widespread in social systems.

  3. Video model deformation system for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1983-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. A rudimentary theory section is followed by a description of the video-based system and control measures required to protect cameras from the hostile environment. Preliminary results obtained with the same camera placement as planned for NTF are presented and plans for facility testing with a specially designed test wing are discussed.

  4. Space applications of artificial intelligence; Proceedings of the Annual Goddard Conference, Greenbelt, MD, May 16, 17, 1989

    NASA Technical Reports Server (NTRS)

    Rash, James L. (Editor); Dent, Carolyn P. (Editor)

    1989-01-01

    Theoretical and implementation aspects of AI systems for space applications are discussed in reviews and reports. Sections are devoted to planning and scheduling, fault isolation and diagnosis, data management, modeling and simulation, and development tools and methods. Particular attention is given to a situated reasoning architecture for space repair and replace tasks, parallel plan execution with self-processing networks, the electrical diagnostics expert system for Spacelab life-sciences experiments, diagnostic tolerance for missing sensor data, the integration of perception and reasoning in fast neural modules, a connectionist model for dynamic control, and applications of fuzzy sets to the development of rule-based expert systems.

  5. Low- ν Flux and Total Charged-current Cross Sections in MINERvA

    NASA Astrophysics Data System (ADS)

    Ren, Lu

    2014-03-01

    The MINER νA experiment measures neutrino and antineutrino interaction cross sections on carbon and other nuclei. Cross section measurements require accurate knowledge of the incident neutrino flux. The ``low- ν'' flux technique uses a standard-candle cross section for events with low energy transfer to to the hadronic system to determine the incident flux. MINER νA will use low- ν fluxes for neutrinos and antineutrinos to tune production models used in beam simulations and to extract total cross sections as a function of energy. We present the low- ν flux technique adapted for the MINER νA data samples and preliminary results for the extracted low- ν fluxes in MINER νA. MINER νA will extend the range of antineutino charged-current cross section measurements to lower energies which are of interest to future accelerator oscillation experiments.

  6. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    NASA Astrophysics Data System (ADS)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.

  7. Nonlinear identification of the total baroreflex arc.

    PubMed

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru; Mukkamala, Ramakrishna

    2015-12-15

    The total baroreflex arc [the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP)] is known to exhibit nonlinear behaviors. However, few studies have quantitatively characterized its nonlinear dynamics. The aim of this study was to develop a nonlinear model of the sympathetically mediated total arc without assuming any model form. Normal rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were isolated and attached to a servo-controlled piston pump, and the AP and sympathetic nerve activity (SNA) were measured. CSP was perturbed using a Gaussian white noise signal. A second-order Volterra model was developed by applying nonparametric identification to the measurements. The second-order kernel was mainly diagonal, but the diagonal differed in shape from the first-order kernel. Hence, a reduced second-order model was similarly developed comprising a linear dynamic system in parallel with a squaring system in cascade with a slower linear dynamic system. This "Uryson" model predicted AP changes 12% better (P < 0.01) than a linear model in response to new Gaussian white noise CSP. The model also predicted nonlinear behaviors, including thresholding and mean responses to CSP changes about the mean. Models of the neural arc (the system relating CSP to SNA) and peripheral arc (the system relating SNA to AP) were likewise developed and tested. However, these models of subsystems of the total arc showed approximately linear behaviors. In conclusion, the validated nonlinear model of the total arc revealed that the system takes on an Uryson structure. Copyright © 2015 the American Physiological Society.

  8. Nonlinear identification of the total baroreflex arc

    PubMed Central

    Moslehpour, Mohsen; Kawada, Toru; Sunagawa, Kenji; Sugimachi, Masaru

    2015-01-01

    The total baroreflex arc [the open-loop system relating carotid sinus pressure (CSP) to arterial pressure (AP)] is known to exhibit nonlinear behaviors. However, few studies have quantitatively characterized its nonlinear dynamics. The aim of this study was to develop a nonlinear model of the sympathetically mediated total arc without assuming any model form. Normal rats were studied under anesthesia. The vagal and aortic depressor nerves were sectioned, the carotid sinus regions were isolated and attached to a servo-controlled piston pump, and the AP and sympathetic nerve activity (SNA) were measured. CSP was perturbed using a Gaussian white noise signal. A second-order Volterra model was developed by applying nonparametric identification to the measurements. The second-order kernel was mainly diagonal, but the diagonal differed in shape from the first-order kernel. Hence, a reduced second-order model was similarly developed comprising a linear dynamic system in parallel with a squaring system in cascade with a slower linear dynamic system. This “Uryson” model predicted AP changes 12% better (P < 0.01) than a linear model in response to new Gaussian white noise CSP. The model also predicted nonlinear behaviors, including thresholding and mean responses to CSP changes about the mean. Models of the neural arc (the system relating CSP to SNA) and peripheral arc (the system relating SNA to AP) were likewise developed and tested. However, these models of subsystems of the total arc showed approximately linear behaviors. In conclusion, the validated nonlinear model of the total arc revealed that the system takes on an Uryson structure. PMID:26354845

  9. Conceptual study of an ICRH traveling-wave antenna system for low-coupling conditions as expected in DEMO

    NASA Astrophysics Data System (ADS)

    Ragona, R.; Messiaen, A.

    2016-07-01

    For the central heating of a fusion reactor ion cyclotron radio frequency heating (ICRH) is the first choice method as it is able to couple RF power to the ions without density limit. The drawback of this heating method is the problem of excitation of the magneto-sonic wave through the plasma boundary layer from the antenna located along the wall, without exceeding its voltage standoff. The amount of coupling depends on the antenna excitation and the surface admittance at the antenna output due to the plasma profile. The paper deals with the optimization of the antenna excitation by the use of sections of traveling-wave antennas (TWAs) distributed all along the reactor wall between the blanket modules. They are mounted and fed in resonant ring system(s). First, the physics of the coupling of a strap array is studied by simple models and the coupling code ANTITER II. Then, after the study of the basic properties of a TWA section, its feeding problem is solved by hybrids driving them in resonant ring circuit(s). The complete modeling is obtained from the matrices of the TWA sections connected to one of the feeding hybrid(s). The solution is iterated with the coupling code to determine the loading for a reference low-coupling ITER plasma profile. The resulting wave pattern up to the plasma bulk is derived. The proposed system is totally load resilient and allows us to obtain a very selective exciting wave spectrum. A discussion of some practical implementation problems is added.

  10. Mapping Aquifer Systems with Airborne Electromagnetics in the Central Valley of California.

    PubMed

    Knight, Rosemary; Smith, Ryan; Asch, Ted; Abraham, Jared; Cannia, Jim; Viezzoli, Andrea; Fogg, Graham

    2018-03-09

    The passage of the Sustainable Groundwater Management Act in California has highlighted a need for cost-effective ways to acquire the data used in building conceptual models of the aquifer systems in the Central Valley of California. One approach would be the regional implementation of the airborne electromagnetic (AEM) method. We acquired 104 line-kilometers of data in the Tulare Irrigation District, in the Central Valley, to determine the depth of investigation (DOI) of the AEM method, given the abundance of electrically conductive clays, and to assess the usefulness of the method for mapping the hydrostratigraphy. The data were high quality providing, through inversion of the data, models displaying the variation in electrical resistivity to a depth of approximately 500 m. In order to transform the resistivity models to interpreted sections displaying lithology, we established the relationship between resistivity and lithology using collocated lithology logs (from drillers' logs) and AEM data. We modeled the AEM response and employed a bootstrapping approach to solve for the range of values in the resistivity model corresponding to sand and gravel, mixed coarse and fine, and clay in the unsaturated and saturated regions. The comparison between the resulting interpretation and an existing cross section demonstrates that AEM can be an effective method for mapping the large-scale hydrostratigraphy of aquifer systems in the Central Valley. The methods employed and developed in this study have widespread application in the use of the AEM method for groundwater management in similar geologic settings. © 2018 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  11. Linking molecular models with ion mobility experiments. Illustration with a rigid nucleic acid structure

    PubMed Central

    D'Atri, Valentina; Porrini, Massimiliano; Rosu, Frédéric; Gabelica, Valérie

    2015-01-01

    Ion mobility spectrometry experiments allow the mass spectrometrist to determine an ion's rotationally averaged collision cross section ΩEXP. Molecular modelling is used to visualize what ion three-dimensional structure(s) is(are) compatible with the experiment. The collision cross sections of candidate molecular models have to be calculated, and the resulting ΩCALC are compared with the experimental data. Researchers who want to apply this strategy to a new type of molecule face many questions: (1) What experimental error is associated with ΩEXP determination, and how to estimate it (in particular when using a calibration for traveling wave ion guides)? (2) How to generate plausible 3D models in the gas phase? (3) Different collision cross section calculation models exist, which have been developed for other analytes than mine. Which one(s) can I apply to my systems? To apply ion mobility spectrometry to nucleic acid structural characterization, we explored each of these questions using a rigid structure which we know is preserved in the gas phase: the tetramolecular G-quadruplex [dTGGGGT]4, and we will present these detailed investigation in this tutorial. © 2015 The Authors. Journal of Mass Spectrometry published by John Wiley & Sons Ltd. PMID:26259654

  12. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies.

    PubMed

    Planchart, Antonio; Green, Adrian; Hoyo, Cathrine; Mattingly, Carolyn J

    2018-03-01

    Metabolic syndrome (MS) describes the co-occurrence of conditions that increase one's risk for heart disease and other disorders such as diabetes and stroke. The worldwide increase in the prevalence of MS cannot be fully explained by lifestyle factors such as sedentary behavior and caloric intake alone. Environmental exposures, such as heavy metals, have been implicated, but results are conflicting and possible mechanisms remain unclear. To assess recent progress in determining a possible role between heavy metal exposure and MS, we reviewed epidemiological and model system data for cadmium (Cd), lead (Pb), and mercury (Hg) from the last decade. Data from 36 epidemiological studies involving 17 unique countries/regions and 13 studies leveraging model systems are included in this review. Epidemiological and model system studies support a possible association between heavy metal exposure and MS or comorbid conditions; however, results remain conflicting. Epidemiological studies were predominantly cross-sectional and collectively, they highlight a global interest in this question and reveal evidence of differential susceptibility by sex and age to heavy metal exposures. In vivo studies in rats and mice and in vitro cell-based assays provide insights into potential mechanisms of action relevant to MS including altered regulation of lipid and glucose homeostasis, adipogenesis, and oxidative stress. Heavy metal exposure may contribute to MS or comorbid conditions; however, available data are conflicting. Causal inference remains challenging as epidemiological data are largely cross-sectional; and variation in study design, including samples used for heavy metal measurements, age of subjects at which MS outcomes are measured; the scope and treatment of confounding factors; and the population demographics vary widely. Prospective studies, standardization or increased consistency across study designs and reporting, and consideration of molecular mechanisms informed by model system studies are needed to better assess potential causal links between heavy metal exposure and MS.

  13. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition, the model routes tributary base flow through the river network to the Rock River. The parameter-estimation code PEST was linked to the GFLOW model to select the combination of parameter values best able to match more than 8,000 water-level measurements and base-flow estimates at 9 streamgages. Results from the calibrated GFLOW model show simulated (1) ground-water-flow directions, (2) ground-water/surface-water interactions, as depicted in a map of gaining and losing river and lake sections, (3) ground-water contributing areas for selected tributary rivers, and (4) areas of relatively local ground water captured by rivers. Ground-water flow patterns are controlled primarily by river geometries, with most river sections gaining water from the ground-water-flow system; losing sections are most common on the downgradient shore of lakes and reservoirs or near major pumping centers. Ground-water contributing areas to tributary rivers generally coincide with surface watersheds; however the locations of ground-water divides are controlled by the water table, whereas surface-water divides are controlled by surface topography. Finally, areas of relatively local ground water captured by rivers generally extend upgradient from rivers but are modified by the regional flow pattern, such that these areas tend to shift toward regional ground-water divides for relatively small rivers. It is important to recognize the limitations of this regional-scale model. Heterogeneities in subsurface properties and in recharge rates are considered only at a very broad scale (miles to tens of miles). No account is taken of vertical variations in properties or pumping rates, and no provision is made to account for stacked ground-water-flow systems that have different flow patterns at different depths. Small-scale flow systems (hundreds to thousands of feet) associated with minor water bodies are not considered; as a result, the model is not currently designed for simulating site-specifi

  14. The Point Sal–Point Piedras Blancas correlation and the problem of slip on the San Gregorio–Hosgri fault, central California Coast Ranges

    USGS Publications Warehouse

    Colgan, Joseph P.; Stanley, Richard G.

    2016-01-01

    Existing models for large-magnitude, right-lateral slip on the San Gregorio–Hosgri fault system imply much more deformation of the onshore block in the Santa Maria basin than is supported by geologic data. This problem is resolved by a model in which dextral slip on this fault system increases gradually from 0–10 km near Point Arguello to ∼150 km at Cape San Martin, but such a model requires abandoning the cross-fault tie between Point Sal and Point Piedras Blancas, which requires 90–100 km of right-lateral slip on the southern Hosgri fault. We collected stratigraphic and detrital zircon data from Miocene clastic rocks overlying Jurassic basement at both localities to determine if either section contained unique characteristics that could establish how far apart they were in the early Miocene. Our data indicate that these basins formed in the early Miocene during a period of widespread transtensional basin formation in the central Coast Ranges, and they filled with sediment derived from nearby pre-Cenozoic basement rocks. Although detrital zircon data do not indicate a unique source component in either section, they establish the maximum depositional age of the previously undated Point Piedras Blancas section to be 18 Ma. We also show that detrital zircon trace-element data can be used to discriminate between zircons of oceanic crust and arc affinity of the same age, a potentially useful tool in future studies of the California Coast Ranges. Overall, we find no characteristics in the stratigraphy and provenance of the Point Sal and Point Piedras Blancas sections that are sufficiently unique to prove whether they were far apart or close together in the early Miocene, making them of questionable utility as piercing points.

  15. Static shape control for adaptive wings

    NASA Astrophysics Data System (ADS)

    Austin, Fred; Rossi, Michael J.; van Nostrand, William; Knowles, Gareth; Jameson, Antony

    1994-09-01

    A theoretical method was developed and experimentally validated, to control the static shape of flexible structures by employing internal translational actuators. A finite element model of the structure, without the actuators present, is employed to obtain the multiple-input, multiple-output control-system gain matrices for actuator-load control as well as actuator-displacement control. The method is applied to the quasistatic problem of maintaining an optimum-wing cross section during various transonic-cruise flight conditions to obtain significant reductions in the shock-induced drag. Only small, potentially achievable, adaptive modifications to the profile are required. The adaptive-wing concept employs actuators as truss elements of active ribs to reshape the wing cross section by deforming the structure. Finite element analyses of an adaptive-rib model verify the controlled-structure theory. Experiments on the model were conducted, and arbitrarily selected deformed shapes were accurately achieved.

  16. Possible complementary cosmic-ray systems: Nuclei and antinuclei

    NASA Technical Reports Server (NTRS)

    Buck, Warren W.; Wilson, John W.; Townsend, Lawrence W.; Norbury, John W.

    1987-01-01

    Arguments are presented for the possible existence of antinuclei of charge Absolute Value of Z greater than 2 and particularly galactic cosmic antinuclei. Theoretical antinucleus-nucleus optical model cross sections are calculated and presented for the first time. A brief review of the nucleon-antinucleon interaction is also presented and its connection with the antinucleus-nucleus interaction is made. The predicted cross sections are smooth and show no structure. Finally, the findings are tied together with the formation of microlesions in living tissue.

  17. Feasibility of making sound power measurements in the NASA Langley V/STOL tunnel test section

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.; Scheiman, J.; Silcox, R. J.

    1976-01-01

    Based on exploratory acoustic measurements in Langley's V/STOL wind tunnel, recommendations are made on the methodology for making sound power measurements of aircraft components in the closed tunnel test section. During airflow, tunnel self-noise and microphone flow-induced noise place restrictions on the amplitude and spectrum of the sound source to be measured. Models of aircraft components with high sound level sources, such as thrust engines and powered lift systems, seem likely candidates for acoustic testing.

  18. Elastic scattering and total reaction cross section of {sup 6}He+{sup 120}Sn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, P. N. de; Lichtenthaeler, R.; Pires, K. C. C.

    The elastic scattering of {sup 6}He on {sup 120}Sn has been measured at four energies above the Coulomb barrier using the {sup 6}He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels calculations. The total reaction cross sections have been derived and compared with other systems of similar masses.

  19. Application of Satellite Frost Forecast Technology to Other Parts of the United States Phase II: Introduction

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The history and status of University of Michigan and University of Pennsylvania involvement in determining if P-model for front prediction used in Florida is applicable to those geographic locations is reviewed. The possibility of using the S-model to develop a satellite front forecast system that can recall the distribution of temperatures during previous freezes from a particular area and bring that cold climate climatology to bear on present forecasts is discussed as well as a proposed GOES satellite downlink system to sectionalize the data used in Florida.

  20. Model-based reasoning for system and software engineering: The Knowledge From Pictures (KFP) environment

    NASA Technical Reports Server (NTRS)

    Bailin, Sydney; Paterra, Frank; Henderson, Scott; Truszkowski, Walt

    1993-01-01

    This paper presents a discussion of current work in the area of graphical modeling and model-based reasoning being undertaken by the Automation Technology Section, Code 522.3, at Goddard. The work was initially motivated by the growing realization that the knowledge acquisition process was a major bottleneck in the generation of fault detection, isolation, and repair (FDIR) systems for application in automated Mission Operations. As with most research activities this work started out with a simple objective: to develop a proof-of-concept system demonstrating that a draft rule-base for a FDIR system could be automatically realized by reasoning from a graphical representation of the system to be monitored. This work was called Knowledge From Pictures (KFP) (Truszkowski et. al. 1992). As the work has successfully progressed the KFP tool has become an environment populated by a set of tools that support a more comprehensive approach to model-based reasoning. This paper continues by giving an overview of the graphical modeling objectives of the work, describing the three tools that now populate the KFP environment, briefly presenting a discussion of related work in the field, and by indicating future directions for the KFP environment.

  1. Display Systems Dynamics Requirements for Flying Qualities

    DTIC Science & Technology

    1988-05-09

    Schidtt. LodI Caser 13a. TYPE OP REPORT 1 &b TIME COVERED 14 DAEO EPOR Ywot.MDay)15. AGEWCUNT Finial Repart IFROM Oct.66o To DeB- 7lse may 9 178 16...e Di Spc Il .AI OF TABLE OF CONTENTS Section Page I INTRODUCTION 1 1 . Motivation and Objectives 1 2. Overview 3 3. Report Organization 4 II MODEL...BASED ANALYSIS FRAMEWORK 5 1 . Optimal Control Model Structure 5 2. OCM-Based Characterization of Flying Qualities 8 III MODELING THE PERCEPTUAL INTERFACE

  2. Community Water System Regionalization and Stakeholder Implications: Estimating Effects to Consumers and Purveyors (PREPRINT)

    DTIC Science & Technology

    2011-01-01

    gallon. The data are cross sectional and a Breusch - Pagan test finds that heteroscedasticity is a problem. To correct for it, the analysis re...heteroscedasticity after a fixed effect model uses a Breusch and Pagan Lagrange multiplier test (Baum, 2006a). After a random effects model the test is a...EFFECTS 17 The data originate from 33 CWSs over 13 years so the next step is to test for CWS specific effects. The FE model in the table presents

  3. International Planetary Data Alliance (IPDA) Information Model

    NASA Technical Reports Server (NTRS)

    Hughes, John Steven; Beebe, R.; Guinness, E.; Heather, D.; Huang, M.; Kasaba, Y.; Osuna, P.; Rye, E.; Savorskiy, V.

    2007-01-01

    This document is the third deliverable of the International Planetary Data Alliance (IPDA) Archive Data Standards Requirements Identification project. The goal of the project is to identify a subset of the standards currently in use by NASAs Planetary Data System (PDS) that are appropriate for internationalization. As shown in the highlighted sections of Figure 1, the focus of this project is the Information Model component of the Data Architecture Standards, namely the object models, a data dictionary, and a set of data formats.

  4. Understanding Stream Channel Sediment Source Contributions For The Paradise Creek Watershed In Northern Idaho

    NASA Astrophysics Data System (ADS)

    Rittenburg, R.; Boll, J.; Brooks, E. S.

    2013-12-01

    Excess sediment from agricultural areas has been a major source of impairment for water bodies, resulting in the implementation of mitigation measures across landscapes. Watershed scale reductions often target upland erosion as key non-point sources for sediment loading. Stream channel dynamics, however, also play a contributing role in sediment loading in the form of legacy sediments, channel erosion and deposition, and buffering during storm events. In-stream contributions are not well understood, and are a potentially important consideration for Total Maximum Daily Loads (TMDLs). The objective of this study is to differentiate stream bank and stream bed sediment contributions and better understand the role of legacy sediments. The study area is the Paradise Creek Watershed in northern Idaho. We modeled sediment yield to the channel system using the Water Erosion Prediction Project (WEPP) model, and subsequent channel erosion and deposition using CONCEPTs. Field observations of cross-sections along the channel system over a 5-year period were collected to verify model simulations and to test the hypothesis that the watershed load was composed predominantly of legacy sediments. Our modeling study shows that stream channels contributed to 39% of the total annual sediment load for the basin, with a 19-year time lag between sediments entering the stream to leaving the watershed outlet. Observations from long-term cross sectional data in the watershed, and a sediment fingerprinting analysis will be presented to better understand sediment contributions from within the stream channel system.

  5. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  6. Collision cross sections and transport coefficients of O-, O2 -, O3 - and O4 - negative ions in O2, N2 and dry air for non-thermal plasmas modelling

    NASA Astrophysics Data System (ADS)

    Hennad, Ali; Yousfi, Mohammed

    2018-02-01

    The ions interaction data such as interaction potential parameters, elastic and inelastic collision cross sections and the transport coefficients (reduced mobility and diffusion coefficients) have been determined and analyzed in the case of the main negative oxygen ions (O-, O2 -, O3 - and O4 -) present in low temperature plasma at atmospheric pressure when colliding O2, N2 and dry air. The ion transport has been determined from an optimized Monte Carlo simulation using calculated elastic and experimentally fitted inelastic collision cross sections. The elastic momentum transfer collision cross sections have been calculated from a semi-classical JWKB approximation based on a ( n-4) rigid core interaction potential model. The cross sections sets involving elastic and inelastic processes were then validated using measured reduced mobility data and also diffusion coefficient whenever available in the literature. From the sets of elastic and inelastic collision cross sections thus obtained for the first time for O3-/O2, O2 -/N2, O3 -/N2, and O4 -/N2 systems, the ion transport coefficients were calculated in pure gases and dry air over a wide range of the density reduced electric field E/N.

  7. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event

    NASA Astrophysics Data System (ADS)

    Killingsworth, Bryan A.; Hayles, Justin A.; Zhou, Chuanming; Bao, Huiming

    2013-10-01

    The ∼635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently 17O-depleted sulfate (SO42-) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly 17O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous 17O signal was imparted to sulfate of oxidative weathering origin. However, 17O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate 17O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The 17O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ13C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  8. Sedimentary constraints on the duration of the Marinoan Oxygen-17 Depletion (MOSD) event.

    PubMed

    Killingsworth, Bryan A; Hayles, Justin A; Zhou, Chuanming; Bao, Huiming

    2013-10-29

    The ~635 Ma Marinoan glaciation is marked by dramatic Earth system perturbations. Deposition of nonmass-dependently (17)O-depleted sulfate (SO4(2-)) in worldwide postglacial sediments is, thus far, unique to this glaciation. It is proposed that an extremely high-pCO2 atmosphere can result in highly (17)O-depleted atmospheric O2, or the Marinoan Oxygen-17 Depletion (MOSD) event. This anomalous (17)O signal was imparted to sulfate of oxidative weathering origin. However, (17)O-depleted sulfate occurs in limited sedimentary intervals, suggesting that Earth surface conditions conducive to the MOSD had a finite duration. An MOSD duration can, therefore, provide much needed constraint on modeling Earth system responses at that time. Unfortunately, the sulfate (17)O record is often sparse or lacks radiometric dates. Here, we report 11 barite layers from a post-Marinoan dolostone sequence at Wushanhu in the South China Block. The (17)O depletion fluctuates in magnitude in lower layers but is persistently absent up section, providing the most confident first and last sedimentary appearance of the anomaly. δ(13)C chemostratigraphy is used to correlate the Wushanhu section to two proximal sections on the same shallow platform that lack barite layers but have published U-Pb dates that occur in dolostone and shale. Assuming a similar pattern and rate for carbonate and shale deposition among the different sections, we estimate the MOSD duration at 0-0.99 My. This number can be further constrained by new radiometric dates from equivalent sequences worldwide, thus underpinning models on the nonsteady-state Earth system response in the immediate aftermath of the Marinoan meltdown.

  9. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.

  10. Athermal operation of multi-section slotted tunable lasers.

    PubMed

    Wallace, M J; O'Reilly Meehan, R; Enright, R; Bello, F; McCloskey, D; Barabadi, B; Wang, E N; Donegan, J F

    2017-06-26

    Two distinct athermal bias current procedures based on thermal tuning are demonstrated for a low-cost, monotlithic, three section slotted single mode laser, achieving mode-hop free wavelength stability of ± 0.04 nm / 5 GHz over a temperature range of 8-47 °C. This is the first time that athermal performance has been demonstrated for a three-section slotted laser with simple fabrication, and is well within the 50 GHz grid spacing specified for DWDM systems. This performance is similar to experiments on more complex DS-DBR lasers, indicating that strong athermal performance can be achieved using our lower-cost three section devices. An analytical model and thermoreflectance measurements provide further insight into the operation of multi-section lasers and lay the foundation for an accurate predictive tool for optimising such devices for athermal operation.

  11. Meeting the Deadline: Why, When and How

    NASA Technical Reports Server (NTRS)

    Dignum, Frank; Broersen, Jan; Dignum, Virginia; Meyer, John-Jules

    2004-01-01

    A normative system is defined as any set of interacting agents whose behavior can usefully be regarded as norm-directed. Most organizations, and more specifically institutions, fall under this definition. Interactions in these normative systems are regulated by normative templates that describe desired behavior in terms of deontic concepts (obligations, prohibitions and permissions), deadlines, violations and sanctions. Agreements between agents, and between an agent and the society, can then be specified by means of contracts. Contracts provide flexible but verifiable means to integrate society requirements and agent autonomy. and are an adequate means for the explicit specification of interactions. From the society perspective, it is important that these contracts adhere to the specifications described in the model of the organization. If we want to automate such verifications, we have to formalize the languages used for contracts and for the specification of organizations. The logic LCR is based on deontic temporal logic. LCR is an expressive language for describing interaction in multi-agent systems, including obligations with deadlines. Deadlines are important norms in most interactions between agents. Intuitively, a deadline states that an agent should perform an action before a certain point in time. The obligation to perform the action starts at the moment the deadline becomes active. E.g. when a contract is signed or approved. If the action is not performed in time a violation of the deadline occurs. It can be specified independently what measure has to be taken in this case. In this paper we investigate the deadline concept in more detail. The paper is organized as follows. Section 2 defines the variant of CTL we use. In section 3, we discuss the basic intuitions of deadlines. Section 4 presents a first intuitive formalization for deadlines. In section 5, we look at a more complex model for deadlines trying to catch some more practical aspects. Finally, in section 6 we present issues for future work and our conciusions.

  12. An overview of modelling approaches and potential solution towards an endgame of tobacco

    NASA Astrophysics Data System (ADS)

    Halim, Tisya Farida Abdul; Sapiri, Hasimah; Abidin, Norhaslinda Zainal

    2015-12-01

    A high number of premature mortality due to tobacco use has increased worldwide. Despite control policies being implemented to reduce premature mortality, the rate of smoking prevalence is still high. Moreover, tobacco issues become increasingly difficult since many aspects need to be considered simultaneously. Thus, the purpose of this paper is to present an overview of existing modelling studies on tobacco control system. The background section describes the tobacco issues and its current trends. These models have been categorised according to their modelling approaches either individual or integrated approaches. Next, a framework of modelling approaches based on the integration of multi-criteria decision making, system dynamics and nonlinear programming is proposed, expected to reduce the smoking prevalence. This framework provides guideline for modelling the interaction between smoking behaviour and its impacts, tobacco control policies and the effectiveness of each strategy in healthcare.

  13. Cardiovascular Adaptations Induced by Resistance Training in Animal Models.

    PubMed

    Melo, S F S; da Silva Júnior, N D; Barauna, V G; Oliveira, E M

    2018-01-01

    In the last 10 years the number of studies showing the benefits of resistance training (RT) to the cardiovascular system, have grown. In comparison to aerobic training, RT-induced favorable adaptations to the cardiovascular system have been ignored for many years, thus the mechanisms of the RT-induced cardiovascular adaptations are still uncovered. The lack of animal models with comparable protocols to the RT performed by humans hampers the knowledge. We have used squat-exercise model, which is widely used by many others laboratories. However, to a lesser extent, other models are also employed to investigate the cardiovascular adaptations. In the subsequent sections we will review the information regarding cardiac morphological adaptations, signaling pathway of the cardiac cell, cardiac function and the vascular adaptation induced by RT using this animal model developed by Tamaki et al. in 1992. Furthermore, we also describe cardiovascular findings observed using other animal models of RT.

  14. 24 CFR 3285.601 - Field assembly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... parts that are necessary to join all sections of the home and are designed to be located underneath the home. The installation instructions must be designed in accordance with applicable requirements of part... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems...

  15. 46 CFR 393.4 - Marine Highway Projects.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... transportation system research, data, and analysis used to develop or support the business model. (vii) Proposed.... Designated Marine Highway Projects may receive support from the Department as described in this section. (b... congestion-related impacts. (2) Identify proposed water transportation services that represent the greatest...

  16. 46 CFR 393.4 - Marine Highway Projects.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... transportation system research, data, and analysis used to develop or support the business model. (vii) Proposed.... Designated Marine Highway Projects may receive support from the Department as described in this section. (b... congestion-related impacts. (2) Identify proposed water transportation services that represent the greatest...

  17. 42 CFR § 414.1310 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2017-10-01

    ... (CONTINUED) MEDICARE PROGRAM (CONTINUED) PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Merit-Based Incentive Payment System and Alternative Payment Model Incentive § 414.1310 Applicability. (a) Program Implementation. Except as specified in paragraph (b) of this section, MIPS applies to payments for items and...

  18. 24 CFR 3285.703 - Smoke alarms.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.703 Smoke... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Smoke alarms. 3285.703 Section 3285.703 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued...

  19. 46 CFR 161.002-18 - Method of application for type approval.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the system's instruction manual, including information concerning installation, programming, operation... section. (4) Three copies of a list prepared by the manufacturer that contains the name, model number, and... cabinet, detector, zone card, isolator, central processing unit, zener barrier, special purpose module, or...

  20. Anomalous anisotropies of fission fragments in near- and sub-barrier fusion-fussion reactions

    NASA Astrophysics Data System (ADS)

    Huanqiao, Zhang; Zuhua, Liu; Jincheng, Xu; Jun, Lu; Ming, Ruan; Kan, Xu

    1992-03-01

    Fission cross sections and angular distributions have been measured for the reactions of 16O + 232Th and238U, and19F + 208Pb and232Th at near- and sub-barrier energies. The fission excitation functions are rather well reproduced on the basis of Wong model or coupled channels theory. However, the models which reproduce the sub-barrier fusion cross sections fail to account for the experimental anisotropies of fission fragments. It is found that the observed anisotropies are much larger than expected. For the first time it has been observed that the anisotropies as a function of the center-of-mass energy show a peak centered near 4.5 MeV below the fusion barrier for several reaction systems. The present approaches fail to explain these anomalies. For 19F + 208Pb systems, our results confirm the prediction of an approximately constant value for the mean square spin of the compound nucleus produced in far sub-barrier fusion reaction.

Top