Sample records for system specifically express

  1. Transient, Inducible, Placenta-Specific Gene Expression in Mice

    PubMed Central

    Fan, Xiujun; Petitt, Matthew; Gamboa, Matthew; Huang, Mei; Dhal, Sabita; Druzin, Maurice L.; Wu, Joseph C.

    2012-01-01

    Molecular understanding of placental functions and pregnancy disorders is limited by the absence of methods for placenta-specific gene manipulation. Although persistent placenta-specific gene expression has been achieved by lentivirus-based gene delivery methods, developmentally and physiologically important placental genes have highly stage-specific functions, requiring controllable, transient expression systems for functional analysis. Here, we describe an inducible, placenta-specific gene expression system that enables high-level, transient transgene expression and monitoring of gene expression by live bioluminescence imaging in mouse placenta at different stages of pregnancy. We used the third generation tetracycline-responsive tranactivator protein Tet-On 3G, with 10- to 100-fold increased sensitivity to doxycycline (Dox) compared with previous versions, enabling unusually sensitive on-off control of gene expression in vivo. Transgenic mice expressing Tet-On 3G were created using a new integrase-based, site-specific approach, yielding high-level transgene expression driven by a ubiquitous promoter. Blastocysts from these mice were transduced with the Tet-On 3G-response element promoter-driving firefly luciferase using lentivirus-mediated placenta-specific gene delivery and transferred into wild-type pseudopregnant recipients for placenta-specific, Dox-inducible gene expression. Systemic Dox administration at various time points during pregnancy led to transient, placenta-specific firefly luciferase expression as early as d 5 of pregnancy in a Dox dose-dependent manner. This system enables, for the first time, reliable pregnancy stage-specific induction of gene expression in the placenta and live monitoring of gene expression during pregnancy. It will be widely applicable to studies of both placental development and pregnancy, and the site-specific Tet-On G3 mouse will be valuable for studies in a broad range of tissues. PMID:23011919

  2. Establishment of a tissue-specific RNAi system in C. elegans.

    PubMed

    Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D; Amano, Mutsuki; Moerman, Donald G; Kaibuchi, Kozo

    2007-10-01

    In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal-and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues.

  3. Establishment of a tissue-specific RNAi system in C. elegans

    PubMed Central

    Qadota, Hiroshi; Inoue, Makiko; Hikita, Takao; Köppen, Mathias; Hardin, Jeffrey D.; Amano, Mutsuki; Moerman, Donald G.; Kaibuchi, Kozo

    2011-01-01

    In C. elegans, mosaic analysis is a powerful genetic tool for determining in which tissue or specific cells a gene of interest is required. For traditional mosaic analysis, a loss-of-function mutant and a genomic fragment that can rescue the mutant phenotype are required. Here we establish an easy and rapid mosaic system using RNAi (RNA mediated interference), using a rde-1 mutant that is resistant to RNAi. Tissue-specific expression of the wild type rde-1 cDNA in rde-1 mutants limits RNAi sensitivity to a specific tissue. We established hypodermal- and muscle-specific RNAi systems by expressing rde-1 cDNA under the control of the lin-26 and hlh-1 promoters, respectively. We confirmed tissue-specific RNAi using two assays: (1) tissue-specific knockdown of GFP expression, and (2) phenocopy of mutations in essential genes that were previously known to function in a tissue-specific manner. We also applied this system to an essential gene, ajm-1, expressed in hypodermis and gut, and show that lethality in ajm-1 mutants is due to loss of expression in hypodermal cells. Although we demonstrate tissue-specific RNAi in hypodermis and muscle, this method could be easily applied to other tissues. PMID:17681718

  4. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    NASA Technical Reports Server (NTRS)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  5. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy

    PubMed Central

    Javan, Bita; Shahbazi, Majid

    2017-01-01

    Transcriptional targeting is the best approach for specific gene therapy. Hypoxia is a common feature of the tumour microenvironment. Therefore, targeting gene expression in hypoxic cells by placing transgene under the control of a hypoxia-responsive promoter can be a good strategy for cancer-specific gene therapy. The hypoxia-inducible gene expression system has been investigated more in suicide gene therapy and it can also be of great help in knocking down cancer gene therapy with siRNAs. However, this system needs to be optimised to have maximum efficacy with minimum side effects in normal tissues. The combination of tissue-/tumour-specific promoters with HRE core sequences has been found to enhance the specificity and efficacy of this system. In this review, hypoxia-inducible gene expression system as well as gene therapy strategies targeting tumour hypoxia will be discussed. This review will also focus on hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation systems developed for cancer-specific gene therapy. PMID:28798809

  6. Configurations of a two-tiered amplified gene expression system in adenoviral vectors designed to improve the specificity of in vivo prostate cancer imaging

    PubMed Central

    Sato, M; Figueiredo, ML; Burton, JB; Johnson, M; Chen, M; Powell, R; Gambhir, SS; Carey, M; Wu, L

    2009-01-01

    Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer. PMID:18305574

  7. Formal Specifications for an Electrical Power Grid System Stability and Reliability

    DTIC Science & Technology

    2015-09-01

    expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. IRB...analyze the power grid system requirements and express the critical runtime behavior using first-order logic. First, we identify observable...Verification System, and Type systems to name a few [5]. Theorem proving’s specification dimension is dependent on the expressive power of the formal

  8. Tissue-specific NETs alter genome organization and regulation even in a heterologous system.

    PubMed

    de Las Heras, Jose I; Zuleger, Nikolaj; Batrakou, Dzmitry G; Czapiewski, Rafal; Kerr, Alastair R W; Schirmer, Eric C

    2017-01-02

    Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes.

  9. WP1: transgenic opto-animals

    NASA Astrophysics Data System (ADS)

    UŻarowska, E.; Czajkowski, Rafał; Konopka, W.

    2014-11-01

    We aim to create a set of genetic tools where permanent opsin expression (ChR or NpHR) is precisely limited to the population of neurons that express immediate early gene c-fos during a specific temporal window of behavioral training. Since the c-fos gene is only expressed in neurons that form experience-dependent ensemble, this approach will result in specific labeling of a small subset of cells that create memory trace for the learned behavior. To this end we employ two alternative inducible gene expression systems: Tet Expression System and Cre/lox System. In both cases, the temporal window for opsin induction is controlled pharmacologically, by doxycycline or tamoxifen, respectively. Both systems will be used for creating lines of transgenic animals.

  10. Airway-Specific Inducible Transgene Expression Using Aerosolized Doxycycline

    PubMed Central

    Tata, Purushothama Rao; Pardo-Saganta, Ana; Prabhu, Mythili; Vinarsky, Vladimir; Law, Brandon M.; Fontaine, Benjamin A.; Tager, Andrew M.

    2013-01-01

    Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter–driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell–specific transgene expression using a cytokeratin 5 (also known as keratin 5)–driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype. PMID:23848320

  11. MultiSite Gateway-Compatible Cell Type-Specific Gene-Inducible System for Plants1[OPEN

    PubMed Central

    Siligato, Riccardo; Wang, Xin; Yadav, Shri Ram; Lehesranta, Satu; Ma, Guojie; Ursache, Robertas; Sevilem, Iris; Zhang, Jing; Gorte, Maartje; Prasad, Kalika; Heidstra, Renze

    2016-01-01

    A powerful method to study gene function is expression or overexpression in an inducible, cell type-specific system followed by observation of consequent phenotypic changes and visualization of linked reporters in the target tissue. Multiple inducible gene overexpression systems have been developed for plants, but very few of these combine plant selection markers, control of expression domains, access to multiple promoters and protein fusion reporters, chemical induction, and high-throughput cloning capabilities. Here, we introduce a MultiSite Gateway-compatible inducible system for Arabidopsis (Arabidopsis thaliana) plants that provides the capability to generate such constructs in a single cloning step. The system is based on the tightly controlled, estrogen-inducible XVE system. We demonstrate that the transformants generated with this system exhibit the expected cell type-specific expression, similar to what is observed with constitutively expressed native promoters. With this new system, cloning of inducible constructs is no longer limited to a few special cases but can be used as a standard approach when gene function is studied. In addition, we present a set of entry clones consisting of histochemical and fluorescent reporter variants designed for gene and promoter expression studies. PMID:26644504

  12. Immunophenotyping in systemic mastocytosis diagnosis: 'CD25 positive' alone is more informative than the 'CD25 and/or CD2' WHO criterion.

    PubMed

    Morgado, José Mário T; Sánchez-Muñoz, Laura; Teodósio, Cristina G; Jara-Acevedo, Maria; Alvarez-Twose, Iván; Matito, Almudena; Fernández-Nuñez, Elisa; García-Montero, Andrés; Orfao, Alberto; Escribano, Luís

    2012-04-01

    Aberrant expression of CD2 and/or CD25 by bone marrow, peripheral blood or other extracutaneous tissue mast cells is currently used as a minor World Health Organization diagnostic criterion for systemic mastocytosis. However, the diagnostic utility of CD2 versus CD25 expression by mast cells has not been prospectively evaluated in a large series of systemic mastocytosis. Here we evaluate the sensitivity and specificity of CD2 versus CD25 expression in the diagnosis of systemic mastocytosis. Mast cells from a total of 886 bone marrow and 153 other non-bone marrow extracutaneous tissue samples were analysed by multiparameter flow cytometry following the guidelines of the Spanish Network on Mastocytosis at two different laboratories. The 'CD25+ and/or CD2+ bone marrow mast cells' World Health Organization criterion showed an overall sensitivity of 100% with 99.0% specificity for the diagnosis of systemic mastocytosis whereas CD25 expression alone presented a similar sensitivity (100%) with a slightly higher specificity (99.2%). Inclusion of CD2 did not improve the sensitivity of the test and it decreased its specificity. In tissues other than bone marrow, the mast cell phenotypic criterion revealed to be less sensitive. In summary, CD2 expression does not contribute to improve the diagnosis of systemic mastocytosis when compared with aberrant CD25 expression alone, which supports the need to update and replace the minor World Health Organization 'CD25+ and/or CD2+' mast cell phenotypic diagnostic criterion by a major criterion based exclusively on CD25 expression.

  13. Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches

    PubMed Central

    2014-01-01

    Background The Sterile Insect Technique (SIT) is an accepted species-specific genetic control approach that acts as an insect birth control measure, which can be improved by biotechnological engineering to facilitate its use and widen its applicability. First transgenic insects carrying a single killing system have already been released in small scale trials. However, to evade resistance development to such transgenic approaches, completely independent ways of transgenic killing should be established and combined. Perspective Most established transgenic sexing and reproductive sterility systems are based on the binary tTA expression system that can be suppressed by adding tetracycline to the food. However, to create 'redundant killing' an additional independent conditional expression system is required. Here we present a perspective on the use of a second food-controllable binary expression system - the inducible Q system - that could be used in combination with site-specific recombinases to generate independent transgenic killing systems. We propose the combination of an already established transgenic embryonic sexing system to meet the SIT requirement of male-only releases based on the repressible tTA system together with a redundant male-specific reproductive sterility system, which is activated by Q-system controlled site-specific recombination and is based on a spermatogenesis-specifically expressed endonuclease acting on several species-specific target sites leading to chromosome shredding. Conclusion A combination of a completely independent transgenic sexing and a redundant reproductive male sterility system, which do not share any active components and mediate the induced lethality by completely independent processes, would meet the 'redundant killing' criteria for suppression of resistance development and could therefore be employed in large scale long-term suppression programs using biotechnologically enhanced SIT. PMID:25471733

  14. RNaseI from Escherichia coli cannot substitute for S-RNase in rejection of Nicotiana plumbaginifolia pollen.

    PubMed

    Beecher, B; Murfett, J; McClure, B A

    1998-03-01

    Unilateral incompatibility often occurs between self-incompatible (SI) species and their self-compatible (SC) relatives. For example, SI Nicotiana alata rejects pollen from SC N. plumbaginifolia, but the reciprocal pollination is compatible. This interspecific pollen rejection system closely resembles intraspecific S-allele-specific pollen rejection. However, the two systems differ in degree of specificity. In SI, rejection is S-allele-specific, meaning that only a single S-RNase causes rejection of pollen with a specific S genotype. Rejection of N. plumbaginifolia pollen is less specific, occurring in response to almost any S-RNase. Here, we have tested whether a non-S-RNase can cause rejection of N. plumbaginifolia pollen. The Escherichia coli rna gene encoding RNAseI was engineered for expression in transgenic (N. plumbaginifolia x SC N. alata) hybrids. Expression levels and pollination behavior of hybrids expressing E. coli RNaseI were compared to controls expressing SA2-RNase from N. alata. Immunoblot analysis and RNase activity assays showed that RNaseI and SA2-RNase were expressed at comparable levels. However, expression of SA2-RNase caused rejection of N. plumbaginifolia pollen, whereas expression of RNaseI did not. Thus, in this system, RNase activity alone is not sufficient for rejection of N. plumbaginifolia pollen. The results suggest that S-RNases may be specially adapted to function in pollen rejection.

  15. A reporter model to visualize imprinting stability at the Dlk1 locus during mouse development and in pluripotent cells.

    PubMed

    Swanzey, Emily; Stadtfeld, Matthias

    2016-11-15

    Genomic imprinting results in the monoallelic expression of genes that encode important regulators of growth and proliferation. Dysregulation of imprinted genes, such as those within the Dlk1-Dio3 locus, is associated with developmental syndromes and specific diseases. Our ability to interrogate causes of imprinting instability has been hindered by the absence of suitable model systems. Here, we describe a Dlk1 knock-in reporter mouse that enables single-cell visualization of allele-specific expression and prospective isolation of cells, simultaneously. We show that this 'imprinting reporter mouse' can be used to detect tissue-specific Dlk1 expression patterns in developing embryos. We also apply this system to pluripotent cell culture and demonstrate that it faithfully indicates DNA methylation changes induced upon cellular reprogramming. Finally, the reporter system reveals the role of elevated oxygen levels in eroding imprinted Dlk1 expression during prolonged culture and in vitro differentiation. The possibility to study allele-specific expression in different contexts makes our reporter system a useful tool to dissect the regulation of genomic imprinting in normal development and disease. © 2016. Published by The Company of Biologists Ltd.

  16. ELAV, a Drosophila neuron-specific protein, mediates the generation of an alternatively spliced neural protein isoform.

    PubMed

    Koushika, S P; Lisbin, M J; White, K

    1996-12-01

    Tissue-specific alternative pre-mRNA splicing is a widely used mechanism for gene regulation and the generation of different protein isoforms, but relatively little is known about the factors and mechanisms that mediate this process. Tissue-specific RNA-binding proteins could mediate alternative pre-mRNA splicing. In Drosophila melanogaster, the RNA-binding protein encoded by the elav (embryonic lethal abnormal visual system) gene is a candidate for such a role. The ELAV protein is expressed exclusively in neurons, and is important for the formation and maintenance of the nervous system. In this study, photoreceptor neurons genetically depleted of ELAV, and elav-null central nervous system neurons, were analyzed immunocytochemically for the expression of neural proteins. In both situations, the lack of ELAV corresponded with a decrease in the immunohistochemical signal of the neural-specific isoform of Neuroglian, which is generated by alternative splicing. Furthermore, when ELAV was expressed ectopically in cells that normally express only the non-neural isoform of Neuroglian, we observed the generation of the neural isoform of Neuroglian. Drosophila ELAV promotes the generation of the neuron-specific isoform of Neuroglian by the regulation of pre-mRNA splicing. The findings reported in this paper demonstrate that ELAV is necessary, and the ectopic expression of ELAV in imaginal disc cells is sufficient, to mediate neuron-specific alternative splicing.

  17. Dynamic facial expressions of emotion transmit an evolving hierarchy of signals over time.

    PubMed

    Jack, Rachael E; Garrod, Oliver G B; Schyns, Philippe G

    2014-01-20

    Designed by biological and social evolutionary pressures, facial expressions of emotion comprise specific facial movements to support a near-optimal system of signaling and decoding. Although highly dynamical, little is known about the form and function of facial expression temporal dynamics. Do facial expressions transmit diagnostic signals simultaneously to optimize categorization of the six classic emotions, or sequentially to support a more complex communication system of successive categorizations over time? Our data support the latter. Using a combination of perceptual expectation modeling, information theory, and Bayesian classifiers, we show that dynamic facial expressions of emotion transmit an evolving hierarchy of "biologically basic to socially specific" information over time. Early in the signaling dynamics, facial expressions systematically transmit few, biologically rooted face signals supporting the categorization of fewer elementary categories (e.g., approach/avoidance). Later transmissions comprise more complex signals that support categorization of a larger number of socially specific categories (i.e., the six classic emotions). Here, we show that dynamic facial expressions of emotion provide a sophisticated signaling system, questioning the widely accepted notion that emotion communication is comprised of six basic (i.e., psychologically irreducible) categories, and instead suggesting four. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Regulatory systems for hypoxia-inducible gene expression in ischemic heart disease gene therapy.

    PubMed

    Kim, Hyun Ah; Rhim, Taiyoun; Lee, Minhyung

    2011-07-18

    Ischemic heart diseases are caused by narrowed coronary arteries that decrease the blood supply to the myocardium. In the ischemic myocardium, hypoxia-responsive genes are up-regulated by hypoxia-inducible factor-1 (HIF-1). Gene therapy for ischemic heart diseases uses genes encoding angiogenic growth factors and anti-apoptotic proteins as therapeutic genes. These genes increase blood supply into the myocardium by angiogenesis and protect cardiomyocytes from cell death. However, non-specific expression of these genes in normal tissues may be harmful, since growth factors and anti-apoptotic proteins may induce tumor growth. Therefore, tight gene regulation is required to limit gene expression to ischemic tissues, to avoid unwanted side effects. For this purpose, various gene expression strategies have been developed for ischemic-specific gene expression. Transcriptional, post-transcriptional, and post-translational regulatory strategies have been developed and evaluated in ischemic heart disease animal models. The regulatory systems can limit therapeutic gene expression to ischemic tissues and increase the efficiency of gene therapy. In this review, recent progresses in ischemic-specific gene expression systems are presented, and their applications to ischemic heart diseases are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Induction of Mucosal Homing Virus-Specific CD8+ T Lymphocytes by Attenuated Simian Immunodeficiency Virus

    PubMed Central

    Cromwell, Mandy A.; Veazey, Ronald S.; Altman, John D.; Mansfield, Keith G.; Glickman, Rhona; Allen, Todd M.; Watkins, David I.; Lackner, Andrew A.; Johnson, R. Paul

    2000-01-01

    Induction of virus-specific T-cell responses in mucosal as well as systemic compartments of the immune system is likely to be a critical feature of an effective AIDS vaccine. We investigated whether virus-specific CD8+ lymphocytes induced in rhesus macaques by immunization with attenuated simian immunodeficiency virus (SIV), an approach that is highly effective in eliciting protection against mucosal challenge, express the mucosa-homing receptor α4β7 and traffic to the intestinal mucosa. SIV-specific CD8+ T cells expressing α4β7 were detected in peripheral blood and intestine of macaques infected with attenuated SIV. In contrast, virus-specific T cells in blood of animals immunized cutaneously by a combined DNA-modified vaccinia virus Ankara regimen did not express α4β7. These results demonstrate the selective induction of SIV-specific CD8+ T lymphocytes expressing α4β7 by a vaccine approach that replicates in mucosal tissue and suggest that induction of virus-specific lymphocytes that are able to home to mucosal sites may be an important characteristic of a successful AIDS vaccine. PMID:10954580

  20. The Formal Semantics of PVS

    NASA Technical Reports Server (NTRS)

    Owre, Sam; Shankar, Natarajan

    1999-01-01

    A specification language is a medium for expressing what is computed rather than how it is computed. Specification languages share some features with programming languages but are also different in several important ways. For our purpose, a specification language is a logic within which the behavior of computational systems can be formalized. Although a specification can be used to simulate the behavior of such systems, we mainly use specifications to state and prove system properties with mechanical assistance. We present the formal semantics of the specification language of SRI's Prototype Verification System (PVS). This specification language is based on the simply typed lambda calculus. The novelty in PVS is that it contains very expressive language features whose static analysis (e.g., typechecking) requires the assistance of a theorem prover. The formal semantics illuminates several of the design considerations underlying PVS, the interaction between theorem proving and typechecking.

  1. Microbial expression of alkaloid biosynthetic enzymes for characterization of their properties.

    PubMed

    Minami, Hiromichi; Ikezawa, Nobuhiro; Sato, Fumihiko

    2010-01-01

    A wide variety of secondary metabolites are produced in higher plants. These metabolites are synthesized in specific organs/cells at certain developmental stages and/or under specific environmental conditions. Since these biosynthetic activities are rather restricted and difficult to detect, the biochemical characterization of biosynthetic enzymes involved in secondary metabolism has been limited compared to those involved in primary metabolism. Recently, however, progress in tissue culture and molecular biology has made it easier to study biosynthetic enzymes. Here we describe protocols for expressing some biosynthetic enzymes in Escherichia coli expression systems, since this system is both efficient and cost-effective. First, we describe a standard system for expressing biosynthetic enzymes as a soluble protein under the T7 promoter of the pET expression system in E. coli. In addition, the successful expression of cytochrome P450 in E. coli in an active soluble form with N-terminal modification is discussed, since P450 is the critical enzyme in secondary metabolite biosynthesis.

  2. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  3. Immuno-Navigator, a batch-corrected coexpression database, reveals cell type-specific gene networks in the immune system

    PubMed Central

    Vandenbon, Alexis; Dinh, Viet H.; Mikami, Norihisa; Kitagawa, Yohko; Teraguchi, Shunsuke; Ohkura, Naganari; Sakaguchi, Shimon

    2016-01-01

    High-throughput gene expression data are one of the primary resources for exploring complex intracellular dynamics in modern biology. The integration of large amounts of public data may allow us to examine general dynamical relationships between regulators and target genes. However, obstacles for such analyses are study-specific biases or batch effects in the original data. Here we present Immuno-Navigator, a batch-corrected gene expression and coexpression database for 24 cell types of the mouse immune system. We systematically removed batch effects from the underlying gene expression data and showed that this removal considerably improved the consistency between inferred correlations and prior knowledge. The data revealed widespread cell type-specific correlation of expression. Integrated analysis tools allow users to use this correlation of expression for the generation of hypotheses about biological networks and candidate regulators in specific cell types. We show several applications of Immuno-Navigator as examples. In one application we successfully predicted known regulators of importance in naturally occurring Treg cells from their expression correlation with a set of Treg-specific genes. For one high-scoring gene, integrin β8 (Itgb8), we confirmed an association between Itgb8 expression in forkhead box P3 (Foxp3)-positive T cells and Treg-specific epigenetic remodeling. Our results also suggest that the regulation of Treg-specific genes within Treg cells is relatively independent of Foxp3 expression, supporting recent results pointing to a Foxp3-independent component in the development of Treg cells. PMID:27078110

  4. Adult mouse brain gene expression patterns bear an embryologic imprint

    PubMed Central

    Zapala, Matthew A.; Hovatta, Iiris; Ellison, Julie A.; Wodicka, Lisa; Del Rio, Jo A.; Tennant, Richard; Tynan, Wendy; Broide, Ron S.; Helton, Rob; Stoveken, Barbara S.; Winrow, Christopher; Lockhart, Daniel J.; Reilly, John F.; Young, Warren G.; Bloom, Floyd E.; Lockhart, David J.; Barlow, Carrolee

    2005-01-01

    The current model to explain the organization of the mammalian nervous system is based on studies of anatomy, embryology, and evolution. To further investigate the molecular organization of the adult mammalian brain, we have built a gene expression-based brain map. We measured gene expression patterns for 24 neural tissues covering the mouse central nervous system and found, surprisingly, that the adult brain bears a transcriptional “imprint” consistent with both embryological origins and classic evolutionary relationships. Embryonic cellular position along the anterior–posterior axis of the neural tube was shown to be closely associated with, and possibly a determinant of, the gene expression patterns in adult structures. We also observed a significant number of embryonic patterning and homeobox genes with region-specific expression in the adult nervous system. The relationships between global expression patterns for different anatomical regions and the nature of the observed region-specific genes suggest that the adult brain retains a degree of overall gene expression established during embryogenesis that is important for regional specificity and the functional relationships between regions in the adult. The complete collection of extensively annotated gene expression data along with data mining and visualization tools have been made available on a publicly accessible web site (www.barlow-lockhart-brainmapnimhgrant.org). PMID:16002470

  5. Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae.

    PubMed

    Park, Yang-Nim; Masison, Daniel; Eisenberg, Evan; Greene, Lois E

    2011-09-01

    The yeast Saccharomyces cerevisiae has proved to be an excellent model organism to study the function of proteins. One of the many advantages of yeast is the many genetic tools available to manipulate gene expression, but there are still limitations. To complement the many methods used to control gene expression in yeast, we have established a conditional gene deletion system by using the FLP/FRT system on yeast vectors to conditionally delete specific yeast genes. Expression of Flp recombinase, which is under the control of the GAL1 promoter, was induced by galactose, which in turn excised FRT sites flanked genes. The efficacy of this system was examined using the FRT site-flanked genes HSP104, URA3 and GFP. The pre-excision frequency of this system, which might be caused by the basal activity of the GAL1 promoter or by spontaneous recombination between FRT sites, was detected ca. 2% under the non-selecting condition. After inducing expression of Flp recombinase, the deletion efficiency achieved ca. 96% of cells in a population within 9 h. After conditional deletion of the specific gene, protein degradation and cell division then diluted out protein that was expressed from this gene prior to its excision. Most importantly, the specific protein to be deleted could be expressed under its own promoter, so that endogenous levels of protein expression were maintained prior to excision by the Flp recombinase. Therefore, this system provides a useful tool for the conditional deletion of genes in yeast. Published in 2011 by John Wiley & Sons, Ltd.

  6. Venus Express Chemical Propulsion System - The Mars Express Legacy

    NASA Astrophysics Data System (ADS)

    Hunter, C. J.

    2004-10-01

    ESA's ambition of inter-planetary exploration using a fast-track low cost industrial programme was well achieved with Mars Express. Reusing the platform architecture for the service module and specifically the Propulsion system enabled Venus Express to benefit from several lessons learnt from the Mars Express experience. Using all existing components qualified for previous programmes, many of them commercial telecommunication spacecraft programmes with components available from stock, an industrial organisation familiar from Mars Express was able to compress the schedule to make the November 2005 launch window a realistic target. While initial inspection of the CPS schematic indicates a modified Eurostar type architecture, - a similar system using some Eurostar components - would be a fairer description. The use of many parts of the system on arrival at the destination (Mars or Venus in this case) is a departure from the usual mode of operation, where many components are used during the initial few weeks of GTO or GEO. The system modifications over the basic Eurostar system have catered for this in terms of reliability contingencies by replacing components, or providing different levels of test capability or isolation in flight. This paper aims to provide an introduction to the system, address the evolution from Eurostar, and provide an initial assessment of the success of these modifications using the Mars Express experience, and how measures have been adopted specifically for Venus Express.

  7. Central nervous system-specific knockout of steroidogenic factor 1 results in increased anxiety-like behavior.

    PubMed

    Zhao, Liping; Kim, Ki Woo; Ikeda, Yayoi; Anderson, Kimberly K; Beck, Laurel; Chase, Stephanie; Tobet, Stuart A; Parker, Keith L

    2008-06-01

    Steroidogenic factor 1 (SF-1) plays key roles in adrenal and gonadal development, expression of pituitary gonadotropins, and development of the ventromedial hypothalamic nucleus (VMH). If kept alive by adrenal transplants, global knockout (KO) mice lacking SF-1 exhibit delayed-onset obesity and decreased locomotor activity. To define specific roles of SF-1 in the VMH, we used the Cre-loxP system to inactivate SF-1 in a central nervous system (CNS)-specific manner. These mice largely recapitulated the VMH structural defect seen in mice lacking SF-1 in all tissues. In multiple behavioral tests, mice with CNS-specific KO of SF-1 had significantly more anxiety-like behavior than wild-type littermates. The CNS-specific SF-1 KO mice had diminished expression or altered distribution in the mediobasal hypothalamus of several genes whose expression has been linked to stress and anxiety-like behavior, including brain-derived neurotrophic factor, the type 2 receptor for CRH (Crhr2), and Ucn 3. Moreover, transfection and EMSAs support a direct role of SF-1 in Crhr2 regulation. These findings reveal important roles of SF-1 in the hypothalamic expression of key regulators of anxiety-like behavior, providing a plausible molecular basis for the behavioral effect of CNS-specific KO of this nuclear receptor.

  8. A portable expression resource for engineering cross-species genetic circuits and pathways

    PubMed Central

    Kushwaha, Manish; Salis, Howard M.

    2015-01-01

    Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts. PMID:26184393

  9. [Research progress in neuropsychopharmacology updated for the post-genomic era].

    PubMed

    Nakanishi, Toru

    2009-11-01

    Neuropsychopharmacological research in the post genomic (genomic sequence) era has been developing rapidly through the use of novel techniques including DNA chips. We have applied these techniques to investigate the anti-tumor effect of NSAIDs, isolate novel genes specifically expressed in rheumatoid arthritis, and analyze gene expression profiles in mesenchymal stem cells. Recently, we have developed a novel system of quantitative PCR for detection of BDNF mRNA isoforms. By using this system, we identified the exon-specific mode of expression in acute and chronic pain. In addition, we have made gene expression profiles of KO mice of beta2 subunits in acetylcholine receptors.

  10. Subgenomic Reporter RNA System for Detection of Alphavirus Infection in Mosquitoes

    PubMed Central

    Steel, J. Jordan; Franz, Alexander W. E.; Sanchez-Vargas, Irma; Olson, Ken E.; Geiss, Brian J.

    2013-01-01

    Current methods for detecting real-time alphavirus (Family Togaviridae) infection in mosquitoes require the use of recombinant viruses engineered to express a visibly detectable reporter protein. These altered viruses expressing fluorescent proteins, usually from a duplicated viral subgenomic reporter, are effective at marking infection but tend to be attenuated due to the modification of the genome. Additionally, field strains of viruses cannot be visualized using this approach unless infectious clones can be developed to insert a reporter protein. To circumvent these issues, we have developed an insect cell-based system for detecting wild-type sindbis virus infection that uses a virus inducible promoter to express a fluorescent reporter gene only upon active virus infection. We have developed an insect expression system that produces sindbis virus minigenomes containing a subgenomic promoter sequence, which produces a translatable RNA species only when infectious virus is present and providing viral replication proteins. This subgenomic reporter RNA system is able to detect wild-type Sindbis infection in cultured mosquito cells. The detection system is relatively species specific and only detects closely related viruses, but can detect low levels of alphavirus specific replication early during infection. A chikungunya virus detection system was also developed that specifically detects chikungunya virus infection. Transgenic Aedes aegypti mosquito families were established that constitutively express the sindbis virus reporter RNA and were found to only express fluorescent proteins during virus infection. This virus inducible reporter system demonstrates a novel approach for detecting non-recombinant virus infection in mosquito cell culture and in live transgenic mosquitoes. PMID:24367703

  11. Embryo-specific expression of a visual reporter gene as a selection system for citrus transformation

    PubMed Central

    Zambon, Flavia T.; Erpen, Lígia; Soriano, Leonardo; Grosser, Jude

    2018-01-01

    The embryo-specific Dc3 gene promoter driving the VvMybA1 anthocyanin regulatory gene was used to develop a visual selection system for the genetic transformation of citrus. Agrobacterium-mediated transformation of cell suspension cultures resulted in the production of purple transgenic somatic embryos that could be easily separated from the green non-transgenic embryos. The somatic embryos produced phenotypically normal plants devoid of any visual purple coloration. These results were also confirmed using protoplast transformation. There was minimal gene expression in unstressed one-year-old transgenic lines. Cold and drought stress did not have any effect on gene expression, while exogenous ABA and NaCl application resulted in a minor change in gene expression in several transgenic lines. When gas exchange was measured in intact leaves, the transgenic lines were similar to controls under the same environment. Our results provide conclusive evidence for the utilization of a plant-derived, embryo-specific visual reporter system for the genetic transformation of citrus. Such a system could aid in the development of an all-plant, consumer-friendly GM citrus tree. PMID:29293649

  12. Temporally and spatially controllable gene expression and knockout in mouse urothelium.

    PubMed

    Zhou, Haiping; Liu, Yan; He, Feng; Mo, Lan; Sun, Tung-Tien; Wu, Xue-Ru

    2010-08-01

    Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.

  13. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    PubMed Central

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  14. Regulation of the gut-specific carboxypeptidase: a study using the binary Gal4/UAS system in the mosquito Aedes aegypti

    PubMed Central

    Zhao, Bo; Kokoza, Vladimir A.; Saha, Tusar T.; Wang, Stephanie; Roy, Sourav; Raikhel, Alexander S.

    2015-01-01

    Pathogen transmission by mosquitoes is tightly linked to blood feeding which, in turn, is required for egg development. Studies of these processes would greatly benefit from genetic methods, such as the binary Gal4/UAS system. The latter has been well established for model organisms, but its availability is limited for mosquitoes. The objective of this study was to develop the blood-meal-activated, gut-specific Gal4/UAS system for the yellow-fever mosquito Aedes aegypti and utilize it to investigate the regulation of gut-specific gene expression. A 1.1-kb, 5' upstream region of the carboxypeptidase A (CP) gene was used to genetically engineer the CP-Gal4 driver mosquito line. The CP-Gal4 specifically activated the Enhanced Green Fluorescent Protein (EGFP) reporter only after blood feeding in the gut of the CP-Gal4>UAS-EGFP female Ae. aegypti. We used this system to study the regulation of CP gene expression. In vitro treatments with either amino acids (AAs) or insulin stimulated expression of the CP-Gal4>UAS-EGFP transgene; no effect was observed with 20-hydroxyecdysone (20E) treatments. The transgene activation by AAs and insulin was blocked by rapamycin, the inhibitor of the Target-of-Rapamycin kinase (TOR). RNA interference (RNAi) silence of the insulin receptor (IR) reduced the expression of the CP-Gal4>UAS-EGFP transgene. Thus, in vitro and in vivo experiments have revealed that insulin and TOR pathways control expression of the digestive enzyme CP. In contrast, 20E, the major regulator of post-blood-meal vitellogenic events in female mosquitoes, has no role in regulating the expression of this gene. This novel CP-Gal4/UAS system permits functional testing of midgut-specific genes that are involved in blood digestion and interaction with pathogens in Ae. aegypti mosquitoes. PMID:25152428

  15. Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2.

    PubMed

    Fukuda, Tomokazu; Scott, Gregory; Komatsu, Yoshihiro; Araya, Runa; Kawano, Masako; Ray, Manas K; Yamada, Masahisa; Mishina, Yuji

    2006-04-01

    BMP signaling plays pleiotropic roles in various tissues. Transgenic mouse lines that overexpress BMP signaling in a tissue-specific manner would be beneficial; however, production of each tissue-specific transgenic mouse line is labor-intensive. Here, using a Cre-loxP system, we generated a conditionally overexpressing mouse line for BMP signaling through the type I receptor ALK2 (alternatively known as AVCRI, ActRI, or ActRIA). By mating this line with Cre-expression mouse lines, Cre-mediated recombination removes an intervening floxed lacZ expression cassette and thereby permits the expression of a constitutively active form of Alk2 (caAlk2) driven by a ubiquitous promoter, CAG. Tissue specificity of Cre recombination was monitored by a bicistronically expressed EGFP following Alk2 cDNA. Increased BMP signaling was confirmed by ectopic phosphorylation of SMAD1/5/8 in the areas where Cre recombination had occurred. The conditional overexpression system described here provides versatility in investigating gene functions in a tissue-specific manner without having to generate independent tissue-specific transgenic lines. Published 2006 Wiley-Liss, Inc.

  16. Targeted taste cell-specific overexpression of brain-derived neurotrophic factor in adult taste buds elevates phosphorylated TrkB protein levels in taste cells, increases taste bud size, and promotes gustatory innervation.

    PubMed

    Nosrat, Irina V; Margolskee, Robert F; Nosrat, Christopher A

    2012-05-11

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system.

  17. Targeted Taste Cell-specific Overexpression of Brain-derived Neurotrophic Factor in Adult Taste Buds Elevates Phosphorylated TrkB Protein Levels in Taste Cells, Increases Taste Bud Size, and Promotes Gustatory Innervation*

    PubMed Central

    Nosrat, Irina V.; Margolskee, Robert F.; Nosrat, Christopher A.

    2012-01-01

    Brain-derived neurotrophic factor (BDNF) is the most potent neurotrophic factor in the peripheral taste system during embryonic development. It is also expressed in adult taste buds. There is a lack of understanding of the role of BDNF in the adult taste system. To address this, we generated novel transgenic mice in which transgene expression was driven by an α-gustducin promoter coupling BDNF expression to the postnatal expression of gustducin in taste cells. Immunohistochemistry revealed significantly stronger BDNF labeling in taste cells of high BDNF-expressing mouse lines compared with controls. We show that taste buds in these mice are significantly larger and have a larger number of taste cells compared with controls. To examine whether innervation was affected in Gust-BDNF mice, we used antibodies to neural cell adhesion molecule (NCAM) and ATP receptor P2X3. The total density of general innervation and specifically the gustatory innervation was markedly increased in high BDNF-expressing mice compared with controls. TrkB and NCAM gene expression in laser capture microdissected taste epithelia were significantly up-regulated in these mice. Up-regulation of TrkB transcripts in taste buds and elevated taste cell-specific TrkB phosphorylation in response to increased BDNF levels indicate that BDNF controls the expression and activation of its high affinity receptor in taste cells. This demonstrates a direct taste cell function for BDNF. BDNF also orchestrates and maintains taste bud innervation. We propose that the Gust-BDNF transgenic mouse models can be employed to further dissect the specific roles of BDNF in the adult taste system. PMID:22442142

  18. Cerebrospinal Fluid Cytokine Expression Profile in Multiple Sclerosis and Chronic Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Bonin, Serena; Zanotta, Nunzia; Sartori, Arianna; Bratina, Alessio; Manganotti, Paolo; Trevisan, Giusto; Comar, Manola

    2018-02-01

    Cerebrospinal fluid (CSF) analysis in patients with particular neurologic disorders is a powerful tool to evaluate specific central nervous system inflammatory markers for diagnostic needs, because CSF represents the specific immune micro-environment to the central nervous system. CSF samples from 49 patients with multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP), and non-inflammatory neurologic disorders (NIND) as controls were submitted to protein expression profiles of 47 inflammatory biomarkers by multiplex Luminex bead assay to investigate possible differences in the inflammatory process for MS and CIDP. Our results showed differences in CSF cytokine levels in MS and CIDP; in particular, IL12 (p40) was significantly highly expressed in MS in comparison with CIDP and NIND, while SDF-1α and SCGF-β were significantly highly expressed in CIDP cohort when compared to MS and NIND. IL-9, IL-13, and IL-17 had higher expression levels in NIND if compared with the other groups. Our study showed that, despite some common pathogenic mechanisms, central and peripheral nervous system demyelinating diseases, such as MS and CIDP, differ in some specific inflammatory soluble proteins in CSF, underlining differences in the immune response involved in those autoimmune diseases.

  19. Reactive system verification case study: Fault-tolerant transputer communication

    NASA Technical Reports Server (NTRS)

    Crane, D. Francis; Hamory, Philip J.

    1993-01-01

    A reactive program is one which engages in an ongoing interaction with its environment. A system which is controlled by an embedded reactive program is called a reactive system. Examples of reactive systems are aircraft flight management systems, bank automatic teller machine (ATM) networks, airline reservation systems, and computer operating systems. Reactive systems are often naturally modeled (for logical design purposes) as a composition of autonomous processes which progress concurrently and which communicate to share information and/or to coordinate activities. Formal (i.e., mathematical) frameworks for system verification are tools used to increase the users' confidence that a system design satisfies its specification. A framework for reactive system verification includes formal languages for system modeling and for behavior specification and decision procedures and/or proof-systems for verifying that the system model satisfies the system specifications. Using the Ostroff framework for reactive system verification, an approach to achieving fault-tolerant communication between transputers was shown to be effective. The key components of the design, the decoupler processes, may be viewed as discrete-event-controllers introduced to constrain system behavior such that system specifications are satisfied. The Ostroff framework was also effective. The expressiveness of the modeling language permitted construction of a faithful model of the transputer network. The relevant specifications were readily expressed in the specification language. The set of decision procedures provided was adequate to verify the specifications of interest. The need for improved support for system behavior visualization is emphasized.

  20. Development of Augmented Leukemia/Lymphoma-Specific T-Cell Immunotherapy for Deployment with Haploidentical Hematopoietic Progenitor-Cell Transplant

    DTIC Science & Technology

    2009-05-01

    adoptive therapy using CD19-specific chimeric antigen receptor re-directed T cells for recurrent/refrctory follicular lymphoma...Beauty (SB) transposon/transposase system to express a CD19-specific chimeric antigen receptor (CAR). T cells that have undergone transposition...accomplished using genetic engineering to express a chimeric antigen receptor (CAR) to redirect the specificity of T cells for CD19 on malignant B cells

  1. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity.

    PubMed

    Logan, C; Wingate, R J; McKay, I J; Lumsden, A

    1998-07-15

    Recent evidence suggests that in vertebrates the formation of distinct neuronal cell types is controlled by specific families of homeodomain transcription factors. Furthermore, the expression domains of a number of these genes correlates with functionally integrated neuronal populations. We have isolated two members of the divergent T-cell leukemia translocation (HOX11/Tlx) homeobox gene family from chick, Tlx-1 and Tlx-3, and show that they are expressed in differentiating neurons of both the peripheral and central nervous systems. In the peripheral nervous system, Tlx-1 and Tlx-3 are expressed in overlapping domains within the placodally derived components of a number of cranial sensory ganglia. Tlx-3, unlike Tlx-1, is also expressed in neural crest-derived dorsal root and sympathetic ganglia. In the CNS, both genes are expressed in longitudinal columns of neurons at specific dorsoventral levels of the hindbrain. Each column has distinct anterior and/or posterior limits that respect inter-rhombomeric boundaries. Tlx-3 is also expressed in D2 and D3 neurons of the spinal cord. Tlx-1 and Tlx-3 expression patterns within the peripheral and central nervous systems suggest that Tlx proteins may be involved not only in the differentiation and/or survival of specific neuronal populations but also in the establishment of neuronal circuitry. Furthermore, by analogy with the LIM genes, Tlx family members potentially define sensory columns early within the developing hindbrain in a combinatorial manner.

  2. Cell-Specific Actions of a Human LHX3 Gene Enhancer During Pituitary and Spinal Cord Development

    PubMed Central

    Park, Soyoung; Mullen, Rachel D.

    2013-01-01

    The LIM class of homeodomain protein 3 (LHX3) transcription factor is essential for pituitary gland and nervous system development in mammals. In humans, mutations in the LHX3 gene underlie complex pediatric syndromes featuring deficits in anterior pituitary hormones and defects in the nervous system. The mechanisms that control temporal and spatial expression of the LHX3 gene are poorly understood. The proximal promoters of the human LHX3 gene are insufficient to guide expression in vivo and downstream elements including a conserved enhancer region appear to play a role in tissue-specific expression in the pituitary and nervous system. Here we characterized the activity of this downstream enhancer region in regulating gene expression at the cellular level during development. Human LHX3 enhancer-driven Cre reporter transgenic mice were generated to facilitate studies of enhancer actions. The downstream LHX3 enhancer primarily guides gene transcription in α-glycoprotein subunit -expressing cells secreting the TSHβ, LHβ, or FSHβ hormones and expressing the GATA2 and steroidogenic factor 1 transcription factors. In the developing nervous system, the enhancer serves as a targeting module active in V2a interneurons. These results demonstrate that the downstream LHX3 enhancer is important in specific endocrine and neural cell types but also indicate that additional regulatory elements are likely involved in LHX3 gene expression. Furthermore, these studies revealed significant gonadotrope cell heterogeneity during pituitary development, providing insights into the cellular physiology of this key reproductive regulatory cell. The human LHX3 enhancer-driven Cre reporter transgenic mice also provide a valuable tool for further developmental studies of cell determination and differentiation in the pituitary and nervous system. PMID:24100213

  3. Modular and coordinated expression of immune system regulatory and signaling components in the developing and adult nervous system.

    PubMed

    Monzón-Sandoval, Jimena; Castillo-Morales, Atahualpa; Crampton, Sean; McKelvey, Laura; Nolan, Aoife; O'Keeffe, Gerard; Gutierrez, Humberto

    2015-01-01

    During development, the nervous system (NS) is assembled and sculpted through a concerted series of neurodevelopmental events orchestrated by a complex genetic programme. While neural-specific gene expression plays a critical part in this process, in recent years, a number of immune-related signaling and regulatory components have also been shown to play key physiological roles in the developing and adult NS. While the involvement of individual immune-related signaling components in neural functions may reflect their ubiquitous character, it may also reflect a much wider, as yet undescribed, genetic network of immune-related molecules acting as an intrinsic component of the neural-specific regulatory machinery that ultimately shapes the NS. In order to gain insights into the scale and wider functional organization of immune-related genetic networks in the NS, we examined the large scale pattern of expression of these genes in the brain. Our results show a highly significant correlated expression and transcriptional clustering among immune-related genes in the developing and adult brain, and this correlation was the highest in the brain when compared to muscle, liver, kidney and endothelial cells. We experimentally tested the regulatory clustering of immune system (IS) genes by using microarray expression profiling in cultures of dissociated neurons stimulated with the pro-inflammatory cytokine TNF-alpha, and found a highly significant enrichment of immune system-related genes among the resulting differentially expressed genes. Our findings strongly suggest a coherent recruitment of entire immune-related genetic regulatory modules by the neural-specific genetic programme that shapes the NS.

  4. Gene expression in spider appendages reveals reversal of exd/hth spatial specificity, altered leg gap gene dynamics, and suggests divergent distal morphogen signaling.

    PubMed

    Prpic, Nikola-Michael; Janssen, Ralf; Wigand, Barbara; Klingler, Martin; Damen, Wim G M

    2003-12-01

    Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.

  5. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors.

    PubMed

    Gray, Steven J; Foti, Stacey B; Schwartz, Joel W; Bachaboina, Lavanya; Taylor-Blake, Bonnie; Coleman, Jennifer; Ehlers, Michael D; Zylka, Mark J; McCown, Thomas J; Samulski, R Jude

    2011-09-01

    With the increased use of small self-complementary adeno-associated viral (AAV) vectors, the design of compact promoters becomes critical for packaging and expressing larger transgenes under ubiquitous or cell-specific control. In a comparative study of commonly used 800-bp cytomegalovirus (CMV) and chicken β-actin (CBA) promoters, we report significant differences in the patterns of cell-specific gene expression in the central and peripheral nervous systems. The CMV promoter provides high initial neural expression that diminishes over time. The CBA promoter displayed mostly ubiquitous and high neural expression, but substantially lower expression in motor neurons (MNs). We report the creation of a novel hybrid form of the CBA promoter (CBh) that provides robust long-term expression in all cells observed with CMV or CBA, including MNs. To develop a short neuronal promoter to package larger transgenes into AAV vectors, we also found that a 229-bp fragment of the mouse methyl-CpG-binding protein-2 (MeCP2) promoter was able to drive neuron-specific expression within the CNS. Thus the 800-bp CBh promoter provides strong, long-term, and ubiquitous CNS expression whereas the MeCP2 promoter allows an extra 570-bp packaging capacity, with low and mostly neuronal expression within the CNS, similar to the MeCP2 transcription factor.

  6. Septin functions in organ system physiology and pathology

    PubMed Central

    Dolat, Lee; Hu, Qicong

    2015-01-01

    Human septins comprise a family of 13 genes that encode for >30 protein isoforms with ubiquitous and tissue-specific expressions. Septins are GTP-binding proteins that assemble into higher-order oligomers and filamentous polymers, which associate with cell membranes and the cytoskeleton. In the last decade, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In parallel, a growing number of studies show that septins play important roles for the development and physiology of specific tissues and organs. Here, we review the expression and function of septins in the cardiovascular, immune, nervous, urinary, digestive, respiratory, endocrine, reproductive, and integumentary organ systems. Furthermore, we discuss how the tissue-specific functions of septins relate to the pathology of human diseases that arise from aberrations in septin expression. PMID:24114910

  7. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite

    PubMed Central

    Mikheyev, Alexander; Tin, Mandy M. Y.; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects. PMID:26760975

  8. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite.

    PubMed

    Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M Y; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship between division of labor and expression of chemoreceptor genes remains to be explored. Using high-throughput mRNA sequencing (RNA-seq), we found several chemoreceptors that are differentially expressed among castes and between sexes in a subterranean termite Reticulitermes speratus. In total, 53 chemoreception-related genes were annotated, including 22 odorant receptors, 7 gustatory receptors, 12 ionotropic receptors, 9 odorant-binding proteins, and 3 chemosensory proteins. Most of the chemoreception-related genes had caste-related and sex-related expression patterns; in particular, some chemoreception genes showed king-biased or queen-biased expression patterns. Moreover, more than half of the genes showed significant age-dependent differences in their expression in female and/or male reproductives. These results reveal a strong relationship between the evolution of the division of labor and the regulation of chemoreceptor gene expression, thereby demonstrating the chemical communication and underlining chemoreception mechanism in social insects.

  9. Polyandry and sex-specific gene expression

    PubMed Central

    Mank, Judith E.; Wedell, Nina; Hosken, David J.

    2013-01-01

    Polyandry is widespread in nature, and has important evolutionary consequences for the evolution of sexual dimorphism and sexual conflict. Although many of the phenotypic consequences of polyandry have been elucidated, our understanding of the impacts of polyandry and mating systems on the genome is in its infancy. Polyandry can intensify selection on sexual characters and generate more intense sexual conflict. This has consequences for sequence evolution, but also for sex-biased gene expression, which acts as a link between mating systems, sex-specific selection and the evolution of sexual dimorphism. We discuss this and the remarkable confluence of sexual-conflict theory and patterns of gene expression, while also making predictions about transcription patterns, mating systems and sexual conflict. Gene expression is a key link in the genotype–phenotype chain, and although in its early stages, understanding the sexual selection–transcription relationship will provide significant insights into this critical association. PMID:23339238

  10. Knockout of the Na,K-ATPase α2-isoform in cardiac myocytes delays pressure overload-induced cardiac dysfunction

    PubMed Central

    Rindler, Tara N.; Lasko, Valerie M.; Nieman, Michelle L.; Okada, Motoi; Lorenz, John N.

    2013-01-01

    The α2-isoform of the Na,K-ATPase (α2) is the minor isoform of the Na,K-ATPase expressed in the cardiovascular system and is thought to play a critical role in the regulation of cardiovascular hemodynamics. However, the organ system/cell type expressing α2 that is required for this regulation has not been fully defined. The present study uses a heart-specific knockout of α2 to further define the tissue-specific role of α2 in the regulation of cardiovascular hemodynamics. To accomplish this, we developed a mouse model using the Cre/loxP system to generate a tissue-specific knockout of α2 in the heart using β-myosin heavy chain Cre. We have achieved a 90% knockout of α2 expression in the heart of the knockout mice. Interestingly, the heart-specific knockout mice exhibit normal basal cardiac function and systolic blood pressure, and in addition, these mice develop ACTH-induced hypertension in response to ACTH treatment similar to control mice. Surprisingly, the heart-specific knockout mice display delayed onset of cardiac dysfunction compared with control mice in response to pressure overload induced by transverse aortic constriction; however, the heart-specific knockout mice deteriorated to control levels by 9 wk post-transverse aortic constriction. These results suggest that heart expression of α2 does not play a role in the regulation of basal cardiovascular function or blood pressure; however, heart expression of α2 plays a role in the hypertrophic response to pressure overload. This study further emphasizes that the tissue localization of α2 determines its unique roles in the regulation of cardiovascular function. PMID:23436327

  11. Development of Genome Engineering Tools from Plant-Specific PPR Proteins Using Animal Cultured Cells.

    PubMed

    Kobayashi, Takehito; Yagi, Yusuke; Nakamura, Takahiro

    2016-01-01

    The pentatricopeptide repeat (PPR) motif is a sequence-specific RNA/DNA-binding module. Elucidation of the RNA/DNA recognition mechanism has enabled engineering of PPR motifs as new RNA/DNA manipulation tools in living cells, including for genome editing. However, the biochemical characteristics of PPR proteins remain unknown, mostly due to the instability and/or unfolding propensities of PPR proteins in heterologous expression systems such as bacteria and yeast. To overcome this issue, we constructed reporter systems using animal cultured cells. The cell-based system has highly attractive features for PPR engineering: robust eukaryotic gene expression; availability of various vectors, reagents, and antibodies; highly efficient DNA delivery ratio (>80 %); and rapid, high-throughput data production. In this chapter, we introduce an example of such reporter systems: a PPR-based sequence-specific translational activation system. The cell-based reporter system can be applied to characterize plant genes of interested and to PPR engineering.

  12. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster.

    PubMed

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-05-02

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome.

  13. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster

    PubMed Central

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-01-01

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome. PMID:17318176

  14. Recombinant expression of extracellular domain of mutant Epidermal Growth Factor Receptor in prokaryotic and baculovirus expression systems.

    PubMed

    Vettath, Sunitha Kodengil; Shivashankar, Gaganashree; Menon, Krishnakumar N; Vijayachandran, Lakshmi S

    2018-04-15

    Epidermal Growth Factor Receptor variant III (EGFRvIII) is a tumor specific antigen detected in various tumors including gliomas, breast cancer, lung cancer, head and neck squamous cell carcinoma (HNSCC). Screening of EGFRvIII targeting drug molecules can be accelerated by developing drug screening platforms using recombinantly expressed protein. Choice of expression system is one of the major factors deciding the success of recombinant expression of a protein. In our study, we have tried to express and purify the extracellular domain (ECD) of this highly unstable protein using bacterial and baculovirus expression systems to select the expression system suited for our purpose. Even though the protein was successfully expressed in prokaryotic system, purification could be done only under denaturing conditions. But in the baculovirus expression system, the protein was expressed in soluble form and could be purified under native conditions, with single step of purification. Based on our results, we conclude that insect cells are better choice over E. coli cells for expressing EGFRvIII ECD in soluble form. This study provides insights for other researchers involved in expression of similar unstable membrane proteins, on selecting the best expression system and challenges involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. A chromosomally encoded T7 RNA polymerase-dependent gene expression system for Corynebacterium glutamicum: construction and comparative evaluation at the single-cell level

    PubMed Central

    Kortmann, Maike; Kuhl, Vanessa; Klaffl, Simon; Bott, Michael

    2015-01-01

    Corynebacterium glutamicum has become a favourite model organism in white biotechnology. Nevertheless, only few systems for the regulatable (over)expression of homologous and heterologous genes are currently available, all of which are based on the endogenous RNA polymerase. In this study, we developed an isopropyl-β-d-1-thiogalactopyranosid (IPTG)-inducible T7 expression system in the prophage-free strain C. glutamicum MB001. For this purpose, part of the DE3 region of Escherichia coli BL21(DE3) including the T7 RNA polymerase gene 1 under control of the lacUV5 promoter was integrated into the chromosome, resulting in strain MB001(DE3). Furthermore, the expression vector pMKEx2 was constructed allowing cloning of target genes under the control of the T7lac promoter. The properties of the system were evaluated using eyfp as heterologous target gene. Without induction, the system was tightly repressed, resulting in a very low specific eYFP fluorescence (= fluorescence per cell density). After maximal induction with IPTG, the specific fluorescence increased 450-fold compared with the uninduced state and was about 3.5 times higher than in control strains expressing eyfp under control of the IPTG-induced tac promoter with the endogenous RNA polymerase. Flow cytometry revealed that T7-based eyfp expression resulted in a highly uniform population, with 99% of all cells showing high fluorescence. Besides eyfp, the functionality of the corynebacterial T7 expression system was also successfully demonstrated by overexpression of the C. glutamicum pyk gene for pyruvate kinase, which led to an increase of the specific activity from 2.6 to 135 U mg−1. It thus presents an efficient new tool for protein overproduction, metabolic engineering and synthetic biology approaches with C. glutamicum. PMID:25488698

  16. Real-time Avatar Animation from a Single Image.

    PubMed

    Saragih, Jason M; Lucey, Simon; Cohn, Jeffrey F

    2011-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user's facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters.

  17. Real-time Avatar Animation from a Single Image

    PubMed Central

    Saragih, Jason M.; Lucey, Simon; Cohn, Jeffrey F.

    2014-01-01

    A real time facial puppetry system is presented. Compared with existing systems, the proposed method requires no special hardware, runs in real time (23 frames-per-second), and requires only a single image of the avatar and user. The user’s facial expression is captured through a real-time 3D non-rigid tracking system. Expression transfer is achieved by combining a generic expression model with synthetically generated examples that better capture person specific characteristics. Performance of the system is evaluated on avatars of real people as well as masks and cartoon characters. PMID:24598812

  18. Expression of Histone Deacetylases in Cellular Compartments of the Mouse Brain and the Effects of Ischemia

    PubMed Central

    Bachleda, Amelia; Morrison, Richard S.; Murphy, Sean P.

    2011-01-01

    Drugs that inhibit specific histone deacetylase (HDAC) activities have enormous potential in preventing the consequences of acute injury to the nervous system and in allaying neurodegeneration. However, very little is known about the expression pattern of the HDACs in the central nervous system (CNS). Identifying the cell types that express HDACs in the CNS is important for determining therapeutic targets for HDAC inhibitors and evaluating potential side effects. We characterized the cellular expression of HDACs 1–3, and HDACs 4 and 6, in the adult mouse brain in the cingulate cortex, parietal cortex, dentate gyrus, and CA1 regions of the hippocampus and subcortical white matter. Expression of class I HDACs showed a cell-and region-specific pattern. Transient focal ischemia induced by temporary middle cerebral artery occlusion, or global ischemia induced by in vitro oxygen–glucose deprivation, altered the extent of HDAC expression in a region- and cell-specific manner. The pan-HDAC inhibitor, SAHA, reduced ischemia-induced alterations in HDACs. The results suggest that in addition to promoting epigenetic changes in transcriptional activity in the nucleus of neurons and glia, HDACs may also have non-transcriptional actions in axons and the distant processes of glial cells and may significantly modulate the response to injury in a cell- and region-specific manner. PMID:21966324

  19. LogScope

    NASA Technical Reports Server (NTRS)

    Havelund, Klaus; Smith, Margaret H.; Barringer, Howard; Groce, Alex

    2012-01-01

    LogScope is a software package for analyzing log files. The intended use is for offline post-processing of such logs, after the execution of the system under test. LogScope can, however, in principle, also be used to monitor systems online during their execution. Logs are checked against requirements formulated as monitors expressed in a rule-based specification language. This language has similarities to a state machine language, but is more expressive, for example, in its handling of data parameters. The specification language is user friendly, simple, and yet expressive enough for many practical scenarios. The LogScope software was initially developed to specifically assist in testing JPL s Mars Science Laboratory (MSL) flight software, but it is very generic in nature and can be applied to any application that produces some form of logging information (which almost any software does).

  20. Systems for the expression of orthogonal translation components in eubacterial host cells

    DOEpatents

    Ryu, Youngha; Schultz, Peter G.

    2013-01-22

    The invention related to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural acids at genetically-programmed positions.

  1. Self-Expression or Teacher Influence: The Shaw System of Finger-Painting.

    ERIC Educational Resources Information Center

    Stankiewicz, Mary Ann

    1984-01-01

    Finger painting is often regarded as the epitome of free expression for children. However, a careful review of the history of Ruth Shaw's finger-painting system reveals that it was dominated by specific techniques and stylistic conventions taught without a critical understanding of art history or appreciation. (IS)

  2. Systems for the expression of orthogonal translation components in eubacterial host cells

    DOEpatents

    Ryu, Youngha [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2011-06-14

    The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.

  3. Systems for the expression of orthogonal translation components eubacterial host cells

    DOEpatents

    Ryu, Youngha [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2012-06-12

    The invention relates to compositions and methods for the in vivo production of polypeptides comprising one or more unnatural amino acids. Specifically, the invention provides plasmid systems for the efficient eubacterial expression of polypeptides comprising one or more unnatural amino acids at genetically-programmed positions.

  4. The auxin-inducible degradation (AID) system enables versatile conditional protein depletion in C. elegans

    PubMed Central

    Zhang, Liangyu; Ward, Jordan D.; Cheng, Ze; Dernburg, Abby F.

    2015-01-01

    Experimental manipulation of protein abundance in living cells or organisms is an essential strategy for investigation of biological regulatory mechanisms. Whereas powerful techniques for protein expression have been developed in Caenorhabditis elegans, existing tools for conditional disruption of protein function are far more limited. To address this, we have adapted the auxin-inducible degradation (AID) system discovered in plants to enable conditional protein depletion in C. elegans. We report that expression of a modified Arabidopsis TIR1 F-box protein mediates robust auxin-dependent depletion of degron-tagged targets. We document the effectiveness of this system for depletion of nuclear and cytoplasmic proteins in diverse somatic and germline tissues throughout development. Target proteins were depleted in as little as 20-30 min, and their expression could be re-established upon auxin removal. We have engineered strains expressing TIR1 under the control of various promoter and 3′ UTR sequences to drive tissue-specific or temporally regulated expression. The degron tag can be efficiently introduced by CRISPR/Cas9-based genome editing. We have harnessed this system to explore the roles of dynamically expressed nuclear hormone receptors in molting, and to analyze meiosis-specific roles for proteins required for germ line proliferation. Together, our results demonstrate that the AID system provides a powerful new tool for spatiotemporal regulation and analysis of protein function in a metazoan model organism. PMID:26552885

  5. Knowledge-based requirements analysis for automating software development

    NASA Technical Reports Server (NTRS)

    Markosian, Lawrence Z.

    1988-01-01

    We present a new software development paradigm that automates the derivation of implementations from requirements. In this paradigm, informally-stated requirements are expressed in a domain-specific requirements specification language. This language is machine-understable and requirements expressed in it are captured in a knowledge base. Once the requirements are captured, more detailed specifications and eventually implementations are derived by the system using transformational synthesis. A key characteristic of the process is that the required human intervention is in the form of providing problem- and domain-specific engineering knowledge, not in writing detailed implementations. We describe a prototype system that applies the paradigm in the realm of communication engineering: the prototype automatically generates implementations of buffers following analysis of the requirements on each buffer.

  6. Hapten-derivatized nanoparticle targeting and imaging of gene expression by multimodality imaging systems.

    PubMed

    Cheng, C-M; Chu, P-Y; Chuang, K-H; Roffler, S R; Kao, C-H; Tseng, W-L; Shiea, J; Chang, W-D; Su, Y-C; Chen, B-M; Wang, Y-M; Cheng, T-L

    2009-01-01

    Non-invasive gene monitoring is important for most gene therapy applications to ensure selective gene transfer to specific cells or tissues. We developed a non-invasive imaging system to assess the location and persistence of gene expression by anchoring an anti-dansyl (DNS) single-chain antibody (DNS receptor) on the cell surface to trap DNS-derivatized imaging probes. DNS hapten was covalently attached to cross-linked iron oxide (CLIO) to form a 39+/-0.5 nm DNS-CLIO nanoparticle imaging probe. DNS-CLIO specifically bound to DNS receptors but not to a control single-chain antibody receptor. DNS-CLIO (100 microM Fe) was non-toxic to both B16/DNS (DNS receptor positive) and B16/phOx (control receptor positive) cells. Magnetic resonance (MR) imaging could detect as few as 10% B16/DNS cells in a mixture in vitro. Importantly, DNS-CLIO specifically bound to a B16/DNS tumor, which markedly reduced signal intensity. Similar results were also shown with DNS quantum dots, which specifically targeted CT26/DNS cells but not control CT26/phOx cells both in vitro and in vivo. These results demonstrate that DNS nanoparticles can systemically monitor the expression of DNS receptor in vivo by feasible imaging systems. This targeting strategy may provide a valuable tool to estimate the efficacy and specificity of different gene delivery systems and optimize gene therapy protocols in the clinic.

  7. Vasopressin and oxytocin receptor systems in the brain: sex differences and sex-specific regulation of social behavior

    PubMed Central

    Dumais, Kelly M.; Veenema, Alexa H.

    2015-01-01

    The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species- specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans. PMID:25951955

  8. Vasopressin and oxytocin receptor systems in the brain: Sex differences and sex-specific regulation of social behavior.

    PubMed

    Dumais, Kelly M; Veenema, Alexa H

    2016-01-01

    The neuropeptides vasopressin (VP) and oxytocin (OT) and their receptors in the brain are involved in the regulation of various social behaviors and have emerged as drug targets for the treatment of social dysfunction in several sex-biased neuropsychiatric disorders. Sex differences in the VP and OT systems may therefore be implicated in sex-specific regulation of healthy as well as impaired social behaviors. We begin this review by highlighting the sex differences, or lack of sex differences, in VP and OT synthesis in the brain. We then discuss the evidence showing the presence or absence of sex differences in VP and OT receptors in rodents and humans, as well as showing new data of sexually dimorphic V1a receptor binding in the rat brain. Importantly, we find that there is lack of comprehensive analysis of sex differences in these systems in common laboratory species, and we find that, when sex differences are present, they are highly brain region- and species-specific. Interestingly, VP system parameters (VP and V1aR) are typically higher in males, while sex differences in the OT system are not always in the same direction, often showing higher OT expression in females, but higher OT receptor expression in males. Furthermore, VP and OT receptor systems show distinct and largely non-overlapping expression in the rodent brain, which may cause these receptors to have either complementary or opposing functional roles in the sex-specific regulation of social behavior. Though still in need of further research, we close by discussing how manipulations of the VP and OT systems have given important insights into the involvement of these neuropeptide systems in the sex-specific regulation of social behavior in rodents and humans. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A site-specific genetic modification for induction of pluripotency and subsequent isolation of derived lung alveolar epithelial type II cells.

    PubMed

    Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L; Wetsel, Rick A; Wang, Dachun

    2014-02-01

    Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types are still major obstacles. Here we report a novel strategy using a single nonviral site-specific targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific Neomycin(R) transgene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of β-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc, and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random integration-free and exogenous reprogramming factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultrastructural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. © 2013 AlphaMed Press.

  10. A site-specific genetic modification for induction of pluripotency and subsequent isolation of derived lung alveolar epithelial type II cells

    PubMed Central

    Yan, Qing; Quan, Yuan; Sun, Huanhuan; Peng, Xinmiao; Zou, Zhengyun; Alcorn, Joseph L.; Wetsel, Rick A.; Wang, Dachun

    2013-01-01

    Human induced pluripotent stem cells (hiPSCs) have great therapeutic potential in repairing defective lung alveoli. However, genetic abnormalities caused by vector-integrations and low efficiency in generating hiPSCs, as well as difficulty in obtaining transplantable hiPSC-derived cell types, are still major obstacles. Here we report a novel strategy using a single non-viral site-specific-targeting vector with a combination of Tet-On inducible gene expression system, Cre/lox P switching gene expression system, and alveolar epithelial type II cell (ATIIC)-specific NeomycinR trangene expression system. With this strategy, a single copy of all of the required transgenes can be specifically knocked into a site immediately downstream of beta-2-microglobulin (B2M) gene locus at a high frequency, without causing B2M dysfunction. Thus, the expression of reprogramming factors, Oct4, Sox2, cMyc and Klf4, can be precisely regulated for efficient reprogramming of somatic cells into random-integration-free or genetic mutation-free hiPSCs. The exogenous reprogramming factor transgenes can be subsequently removed after reprogramming by transient expression of Cre recombinase, and the resulting random-integration-free and exogenous reprogramming-factor-free hiPSCs can be selectively differentiated into a homogenous population of ATIICs. In addition, we show that these hiPSC-derived ATIICs exhibit ultra-structural characteristics and biological functions of normal ATIICs. When transplanted into bleomycin-challenged mice lungs, hiPSC-derived ATIICs efficiently remain and re-epithelialize injured alveoli to restore pulmonary function, preventing lung fibrosis and increasing survival without tumorigenic side effect. This strategy allows for the first time efficient generation of patient-specific ATIICs for possible future clinical applications. PMID:24123810

  11. LGR5/GPR49 is implicated in motor neuron specification in nervous system.

    PubMed

    Song, Shao-jun; Mao, Xing-gang; Wang, Chao; Han, An-guo; Yan, Ming; Xue, Xiao-yan

    2015-01-01

    The biological roles of stem cell marker LGR5, the receptor for the Wnt-agonistic R-spondins, for nervous system are poorly known. Bioinformatics analysis in normal human brain tissues revealed that LGR5 is closely related with neuron development and functions. Interestingly, LGR5 and its ligands R-spondins (RSPO2 and RSPO3) are specifically highly expressed in projection motor neurons in the spinal cord, brain stem and cerebral. Inhibition of Notch activity in neural stem cells (NSCs) increased the percentage of neuronal cells and promoted LGR5 expression, while activation of Notch signal decreased neuronal cells and inhibited the LGR5 expression. Furthermore, knockdown of LGR5 inhibited the expression of neuronal markers MAP2, NeuN, GAP43, SYP and CHRM3, and also reduced the expression of genes that program the identity of motor neurons, including Isl1, Lhx3, PHOX2A, TBX20 and NEUROG2. Our data demonstrated that LGR5 is highly expressed in motor neurons in nervous system and is involved in their development by regulating transcription factors that program motor neuron identity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. Transphosphorylation of E. coli proteins during production of recombinant protein kinases provides a robust system to characterize kinase specificity

    USDA-ARS?s Scientific Manuscript database

    Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...

  13. PiggyBac-mediated Cancer Immunotherapy Using EBV-specific Cytotoxic T-cells Expressing HER2-specific Chimeric Antigen Receptor

    PubMed Central

    Nakazawa, Yozo; Huye, Leslie E; Salsman, Vita S; Leen, Ann M; Ahmed, Nabil; Rollins, Lisa; Dotti, Gianpietro; Gottschalk, Stephen M; Wilson, Matthew H; Rooney, Cliona M

    2011-01-01

    Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy. PMID:21772253

  14. PiggyBac-mediated cancer immunotherapy using EBV-specific cytotoxic T-cells expressing HER2-specific chimeric antigen receptor.

    PubMed

    Nakazawa, Yozo; Huye, Leslie E; Salsman, Vita S; Leen, Ann M; Ahmed, Nabil; Rollins, Lisa; Dotti, Gianpietro; Gottschalk, Stephen M; Wilson, Matthew H; Rooney, Cliona M

    2011-12-01

    Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can be modified to function as heterologous tumor directed effector cells that survive longer in vivo than tumor directed T cells without virus specificity, due to chronic stimulation by viral antigens expressed during persistent infection in seropositive individuals. We evaluated the nonviral piggyBac (PB) transposon system as a platform for modifying EBV-CTLs to express a functional human epidermal growth factor receptor 2-specific chimeric antigen receptor (HER2-CAR) thereby directing virus-specific, gene modified CTLs towards HER2-positive cancer cells. Peripheral blood mononuclear cells (PBMCs) were nucleofected with transposons encoding a HER2-CAR and a truncated CD19 molecule for selection followed by specific activation and expansion of EBV-CTLs. HER2-CAR was expressed in ~40% of T cells after CD19 selection with retention of immunophenotype, polyclonality, and function. HER2-CAR-modified EBV-CTLs (HER2-CTLs) killed HER2-positive brain tumor cell lines in vitro, exhibited transient and reversible increases in HER2-CAR expression following antigen-specific stimulation, and stably expressed HER2-CAR beyond 120 days. Adoptive transfer of PB-modified HER2-CTLs resulted in tumor regression in a murine xenograft model. Our results demonstrate that PB can be used to redirect virus-specific CTLs to tumor targets, which should prolong tumor-specific T cell survival in vivo producing more efficacious immunotherapy.

  15. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system.

    PubMed

    Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim

    2005-11-01

    Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.

  16. Polarized targeting of a shaker-like (A-type) K(+)-channel in the polarized epithelial cell line MDCK.

    PubMed

    Le Maout, S; Sewing, S; Coudrier, E; Elalouf, J M; Pongs, O; Merot, J

    1996-01-01

    Functional Kv 1-4 channels were stably expressed in filter-grown MDCK cells which form a polarized epithelium with two distinct plasma membrane domains: a basolateral and an apical cell surface. The Shaker-related Kv 1-4 channels mediated in MDCK cells fast transient (A-type) voltage-activated outward currents having similar properties to the ones reported for Kv 1-4 in the Xenopus oocytes expression system. Immunoblot analysis with specific anti-Kv 1-4 antibodies showed that two Kv 1-4 protein forms are expressed in MDCK cells which most likely represent the glycosylated and non-glycosylated Kv 1-4 protein, respectively. Using immunocytochemistry and confocal microscopy we showed that the Kv 1-4 channels are specifically localized in the basolateral membranes of MDCK cells. Thus, the MDCK cells may provide an important model system to analyse the polarized transport of ion channels such as Kv 1-4, which are distinctly expressed in the mammalian central nervous system.

  17. CRISPR/Cas9 mediates efficient conditional mutagenesis in Drosophila.

    PubMed

    Xue, Zhaoyu; Wu, Menghua; Wen, Kejia; Ren, Menda; Long, Li; Zhang, Xuedi; Gao, Guanjun

    2014-09-05

    Existing transgenic RNA interference (RNAi) methods greatly facilitate functional genome studies via controlled silencing of targeted mRNA in Drosophila. Although the RNAi approach is extremely powerful, concerns still linger about its low efficiency. Here, we developed a CRISPR/Cas9-mediated conditional mutagenesis system by combining tissue-specific expression of Cas9 driven by the Gal4/upstream activating site system with various ubiquitously expressed guide RNA transgenes to effectively inactivate gene expression in a temporally and spatially controlled manner. Furthermore, by including multiple guide RNAs in a transgenic vector to target a single gene, we achieved a high degree of gene mutagenesis in specific tissues. The CRISPR/Cas9-mediated conditional mutagenesis system provides a simple and effective tool for gene function analysis, and complements the existing RNAi approach. Copyright © 2014 Xue et al.

  18. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    PubMed

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  19. Cis-regulatory underpinnings of human GLI3 expression in embryonic craniofacial structures and internal organs.

    PubMed

    Abbasi, Amir A; Minhas, Rashid; Schmidt, Ansgar; Koch, Sabine; Grzeschik, Karl-Heinz

    2013-10-01

    The zinc finger transcription factor Gli3 is an important mediator of Sonic hedgehog (Shh) signaling. During early embryonic development Gli3 participates in patterning and growth of the central nervous system, face, skeleton, limb, tooth and gut. Precise regulation of the temporal and spatial expression of Gli3 is crucial for the proper specification of these structures in mammals and other vertebrates. Previously we reported a set of human intronic cis-regulators controlling almost the entire known repertoire of endogenous Gli3 expression in mouse neural tube and limbs. However, the genetic underpinning of GLI3 expression in other embryonic domains such as craniofacial structures and internal organs remain elusive. Here we demonstrate in a transgenic mice assay the potential of a subset of human/fish conserved non-coding sequences (CNEs) residing within GLI3 intronic intervals to induce reporter gene expression at known regions of endogenous Gli3 transcription in embryonic domains other than central nervous system (CNS) and limbs. Highly specific reporter expression was observed in craniofacial structures, eye, gut, and genitourinary system. Moreover, the comparison of expression patterns directed by these intronic cis-acting regulatory elements in mouse and zebrafish embryos suggests that in accordance with sequence conservation, the target site specificity of a subset of these elements remains preserved among these two lineages. Taken together with our recent investigations, it is proposed here that during vertebrate evolution the Gli3 expression control acquired multiple, independently acting, intronic enhancers for spatiotemporal patterning of CNS, limbs, craniofacial structures and internal organs. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  20. Systems Biophysics of Gene Expression

    PubMed Central

    Vilar, Jose M.G.; Saiz, Leonor

    2013-01-01

    Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses. PMID:23790365

  1. Ovule development: identification of stage-specific and tissue-specific cDNAs.

    PubMed Central

    Nadeau, J A; Zhang, X S; Li, J; O'Neill, S D

    1996-01-01

    A differential screening approach was used to identify seven ovule-specific cDNAs representing genes that are expressed in a stage-specific manner during ovule development. The Phalaenopsis orchid takes 80 days to complete the sequence of ovule developmental events, making it a good system to isolate stage-specific ovule genes. We constructed cDNA libraries from orchid ovule tissue during archesporial cell differentiation, megasporocyte formation, and the transition to meiosis, as well as during the final mitotic divisions of female gametophyte development. RNA gel blot hybridization analysis revealed that four clones were stage specific and expressed solely in ovule tissue, whereas one clone was specific to pollen tubes. Two other clones were not ovule specific. Sequence analysis and in situ hybridization revealed the identities and domain of expression of several of the cDNAs. O39 encodes a putative homeobox transcription factor that is expressed early in the differentiation of the ovule primordium; O40 encodes a cytochrome P450 monooxygenase (CYP78A2) that is pollen tube specific. O108 encodes a protein of unknown function that is expressed exclusively in the outer layer of the outer integument and in the female gametophyte of mature ovules. O126 encodes a glycine-rich protein that is expressed in mature ovules, and O141 encodes a cysteine proteinase that is expressed in the outer integument of ovules during seed formation. Sequences homologous to these ovule clones can now be isolated from other organisms, and this should facilitate their functional characterization. PMID:8742709

  2. The Tol2 transposon system mediates the genetic engineering of T-cells with CD19-specific chimeric antigen receptors for B-cell malignancies.

    PubMed

    Tsukahara, T; Iwase, N; Kawakami, K; Iwasaki, M; Yamamoto, C; Ohmine, K; Uchibori, R; Teruya, T; Ido, H; Saga, Y; Urabe, M; Mizukami, H; Kume, A; Nakamura, M; Brentjens, R; Ozawa, K

    2015-02-01

    Engineered T-cell therapy using a CD19-specific chimeric antigen receptor (CD19-CAR) is a promising strategy for the treatment of advanced B-cell malignancies. Gene transfer of CARs to T-cells has widely relied on retroviral vectors, but transposon-based gene transfer has recently emerged as a suitable nonviral method to mediate stable transgene expression. The advantages of transposon vectors compared with viral vectors include their simplicity and cost-effectiveness. We used the Tol2 transposon system to stably transfer CD19-CAR into human T-cells. Normal human peripheral blood lymphocytes were co-nucleofected with the Tol2 transposon donor plasmid carrying CD19-CAR and the transposase expression plasmid and were selectively propagated on NIH3T3 cells expressing human CD19. Expanded CD3(+) T-cells with stable and high-level transgene expression (~95%) produced interferon-γ upon stimulation with CD19 and specifically lysed Raji cells, a CD19(+) human B-cell lymphoma cell line. Adoptive transfer of these T-cells suppressed tumor progression in Raji tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared with control mice. These results demonstrate that the Tol2 transposon system could be used to express CD19-CAR in genetically engineered T-cells for the treatment of refractory B-cell malignancies.

  3. Multiplex conditional mutagenesis in zebrafish using the CRISPR/Cas system.

    PubMed

    Yin, L; Maddison, L A; Chen, W

    2016-01-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) system is a powerful tool for genome editing in numerous organisms. However, the system is typically used for gene editing throughout the entire organism. Tissue and temporal specific mutagenesis is often desirable to determine gene function in a specific stage or tissue and to bypass undesired consequences of global mutations. We have developed the CRISPR/Cas system for conditional mutagenesis in transgenic zebrafish using tissue-specific and/or inducible expression of Cas9 and U6-driven expression of sgRNA. To allow mutagenesis of multiple targets, we have isolated four distinct U6 promoters and designed Golden Gate vectors to easily assemble transgenes with multiple sgRNAs. We provide experimental details on the reagents and applications for multiplex conditional mutagenesis in zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Gene-specific cell labeling using MiMIC transposons

    PubMed Central

    Gnerer, Joshua P.; Venken, Koen J. T.; Dierick, Herman A.

    2015-01-01

    Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. PMID:25712101

  5. The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the ceh-36 Otx gene in C. elegans

    PubMed Central

    Kim, Kyuhyung; Kim, Rinho; Sengupta, Piali

    2010-01-01

    The differentiated features of postmitotic neurons are dictated by the expression of specific transcription factors. The mechanisms by which the precise spatiotemporal expression patterns of these factors are regulated are poorly understood. In C. elegans, the ceh-36 Otx homeobox gene is expressed in the AWC sensory neurons throughout postembryonic development, and regulates terminal differentiation of this neuronal subtype. Here, we show that the HMX/NKX homeodomain protein MLS-2 regulates ceh-36 expression specifically in the AWC neurons. Consequently, the AWC neurons fail to express neuron type-specific characteristics in mls-2 mutants. mls-2 is expressed transiently in postmitotic AWC neurons, and directly initiates ceh-36 expression. CEH-36 subsequently interacts with a distinct site in its cis-regulatory sequences to maintain its own expression, and also directly regulates the expression of AWC-specific terminal differentiation genes. We also show that MLS-2 acts in additional neuron types to regulate their development and differentiation. Our analysis describes a transcription factor cascade that defines the unique postmitotic characteristics of a sensory neuron subtype, and provides insights into the spatiotemporal regulatory mechanisms that generate functional diversity in the sensory nervous system. PMID:20150279

  6. A Glu-urea-Lys Ligand-conjugated Lipid Nanoparticle/siRNA System Inhibits Androgen Receptor Expression In Vivo

    PubMed Central

    Lee, Justin B; Zhang, Kaixin; Tam, Yuen Yi C; Quick, Joslyn; Tam, Ying K; Lin, Paulo JC; Chen, Sam; Liu, Yan; Nair, Jayaprakash K; Zlatev, Ivan; Rajeev, Kallanthottathil G; Manoharan, Muthiah; Rennie, Paul S; Cullis, Pieter R

    2016-01-01

    The androgen receptor plays a critical role in the progression of prostate cancer. Here, we describe targeting the prostate-specific membrane antigen using a lipid nanoparticle formulation containing small interfering RNA designed to silence expression of the messenger RNA encoding the androgen receptor. Specifically, a Glu-urea-Lys PSMA-targeting ligand was incorporated into the lipid nanoparticle system formulated with a long alkyl chain polyethylene glycol-lipid to enhance accumulation at tumor sites and facilitate intracellular uptake into tumor cells following systemic administration. Through these features, and by using a structurally refined cationic lipid and an optimized small interfering RNA payload, a lipid nanoparticle system with improved potency and significant therapeutic potential against prostate cancer and potentially other solid tumors was developed. Decreases in serum prostate-specific antigen, tumor cellular proliferation, and androgen receptor levels were observed in a mouse xenograft model following intravenous injection. These results support the potential clinical utility of a prostate-specific membrane antigen–targeted lipid nanoparticle system to silence the androgen receptor in advanced prostate cancer. PMID:28131285

  7. Utilizing high-throughput experimentation to enhance specific productivity of an E.coli T7 expression system by phosphate limitation.

    PubMed

    Huber, Robert; Roth, Simon; Rahmen, Natalie; Büchs, Jochen

    2011-03-17

    The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments. We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system E.coli BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the E.coli cells via a phosphate limitation. The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant E.coli-strains.

  8. Conditional transgenic mouse models: from the basics to genome-wide sets of knockouts and current studies of tissue regeneration.

    PubMed

    Bockamp, Ernesto; Sprengel, Rolf; Eshkind, Leonid; Lehmann, Thomas; Braun, Jan M; Emmrich, Frank; Hengstler, Jan G

    2008-03-01

    Many mouse models are currently available, providing avenues to elucidate gene function and to recapitulate specific pathological conditions. To a large extent, successful translation of clinical evidence or analytical data into appropriate mouse models is possible through progress in transgenic or gene-targeting technology. Beginning with a review of standard mouse transgenics and conventional gene targeting, this article will move on to discussing the basics of conditional gene expression: the tetracycline (tet)-off and tet-on systems based on the transactivators tet-controlled transactivator (Tta) and reverse tet-on transactivator (rtTA) that allow downregulation or induction of gene expression; Cre or Flp recombinase-mediated modifications, including excision, inversion, insertion and interchromosomal translocation; combination of the tet and Cre systems, permitting inducible knockout, reporter gene activation or activation of point mutations; the avian retroviral system based on delivery of rtTA specifically into cells expressing the avian retroviral receptor, which enables cell type-specific, inducible gene expression; the tamoxifen system, one of the most frequently applied steroid receptor-based systems, allows rapid activation of a fusion protein between the gene of interest and a mutant domain of the estrogen receptor, whereby activation does not depend on transcription; and techniques for cell type-specific ablation. The diphtheria toxin receptor system offers the advantage that it can be combined with the 'zoo' of Cre recombinase driver mice. Having described the basics we move on to the cutting edge: generation of genome-wide sets of conditional knockout mice. To this end, large ongoing projects apply two strategies: gene trapping based on random integration of trapping vectors into introns leading to truncation of the transcript, and gene targeting, representing the directed approach using homologous recombination. It can be expected that in the near future genome-wide sets of such mice will be available. Finally, the possibilities of conditional expression systems for investigating gene function in tissue regeneration will be illustrated by examples for neurodegenerative disease, liver regeneration and wound healing of the skin.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-05-14

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  10. Versatile control of Plasmodium falciparum gene expression with an inducible protein-RNA interaction

    PubMed Central

    Goldfless, Stephen J.; Wagner, Jeffrey C.; Niles, Jacquin C.

    2014-01-01

    The available tools for conditional gene expression in Plasmodium falciparum are limited. Here, to enable reliable control of target gene expression, we build a system to efficiently modulate translation. We overcame several problems associated with other approaches for regulating gene expression in P. falciparum. Specifically, our system functions predictably across several native and engineered promoter contexts, and affords control over reporter and native parasite proteins irrespective of their subcellular compartmentalization. Induction and repression of gene expression are rapid, homogeneous, and stable over prolonged periods. To demonstrate practical application of our system, we used it to reveal direct links between antimalarial drugs and their native parasite molecular target. This is an important out come given the rapid spread of resistance, and intensified efforts to efficiently discover and optimize new antimalarial drugs. Overall, the studies presented highlight the utility of our system for broadly controlling gene expression and performing functional genetics in P. falciparum. PMID:25370483

  11. Astronaut James S. Voss Performs Tasks in the Destiny Laboratory

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  12. Using HSV-TK/GCV suicide gene therapy to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification

    PubMed Central

    Jiang, Yong-Xiang; Liu, Tian-Jing; Yang, Jin; Chen, Yan; Fang, Yan-Wen

    2011-01-01

    Purpose To establish a novel, targeted lentivirus-based HSV-tk (herpes simplex virus thymidine kinase)/GCV (ganciclovir) gene therapy system to inhibit lens epithelial cell proliferation for treatment of posterior capsular opacification (PCO) after cataract surgery. Methods An enhanced Cre recombinase (Cre/loxP) system with a lentiviral vector expressing Cre under the control of the lens-specific promoter LEP503 (Lenti-LEP503-HSVtk-Cre [LTKCRE]) was constructed, as well as another lentiviral vector containing a switching unit. The latter vector contains a stuffer sequence encoding EGFP (Lenti-hPGK-Loxp-EGFP-pA-Loxp-HSVtk [PGFPTK]) with a functional polyadenylation signal between two loxP sites, followed by the herpes simplex virus thymidine kinase (HSV-tk) gene, both under the control of the human posphoglycerate kinase (hPGK) promoter. Expression of the downstream gene (HSV-tk) is activated by co-expression of Cre. Human lens epithelial cells (HLECs) or retinal pigmental epithelial cells (RPECs) were co-infected with LTKCRE and PGFPTK. The inhibitory effects on HLECs and RPECs infected by the enhanced specific lentiviral vector combination at the concentration of 20 µg/ml GCV were assayed and compared. Results The specific gene expression of Cre and HSV-tk in HLECs is activated by the LEP503 promoter. LTKCRE and PGFPTK co-infected HLECs, but not RPECs, expressed high levels of the HSV-tk protein. After 96 h of GCV treatment, the percentage of apoptotic HLECs infected by the enhanced specific lentiviral vector combination was 87.23%, whereas that of apoptotic RPECs was only 10.12%. Electron microscopy showed that GCV induced apoptosis and necrosis of the infected HLECs. Conclusions The enhanced specific lentiviral vector combination selectively and effectively expressed HSV-tk in HLECs. A concentration of 20 µg/ml, GCV is effective against the proliferation of HLECs in vitro. This cell-type-specific gene therapy using a Cre/loxP lentivirus system may be a feasible treatment strategy to prevent PCO. PMID:21283526

  13. The Covariant Formulation of Maxwell's Equations Expressed in a Form Independent of Specific Units

    ERIC Educational Resources Information Center

    Heras, Jose A.; Baez, G.

    2009-01-01

    The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants alpha, beta and gamma into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving…

  14. Modulation of systemic and mucosal immunity against an inactivated vaccine of Newcastle disease virus by oral co-administration of live attenuated Salmonella enterica serovar Typhimurium expressing chicken interleukin-18 and interferon-α

    PubMed Central

    RAHMAN, Md. Masudur; UYANGAA, Erdenebelig; HAN, Young Woo; HUR, Jin; PARK, Sang-Youel; LEE, John Hwa; KIM, Koanhoi; EO, Seong Kug

    2014-01-01

    Newcastle disease (ND) is a highly contagious disease of chickens causing significant economic losses worldwide. Due to limitations in the efficacy against currently circulating ND viruses, existing vaccination strategies require improvements, and incorporating immunomodulatory cytokines with existing vaccines might be a novel approach. Here, we investigated the systemic and mucosal immunomodulatory properties of oral co-administration of chicken interleukin-18 (chIL-18) and chicken interferon-α (chIFN-α) using attenuated Salmonella enterica serovar Typhimurium on an inactivated ND vaccine. Our results demonstrate that oral administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α provided enhanced systemic and mucosal immune responses, as determined by serum hemagglutination inhibition antibody and NDV Ag-specific IgG as well as NDV Ag-specific IgA in lung and duodenal lavages of chickens immunized with inactivated ND vaccine via the intramuscular or intranasal route. Notably, combined oral administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α significantly enhanced systemic and mucosal immunity in ND-vaccinated chickens, compared to single administration of S. enterica serovar Typhimurium expressing chIL-18 or chIFN-α. In addition, oral co-administration of S. enterica serovar Typhimurium expressing chIL-18 and chIFN-α provided enhanced NDV Ag-specific proliferation of peripheral blood mononuclear cells and Th1-biased cell-mediated immunity, compared to single administration of either construct. Therefore, our results provide valuable insight into the modulation of systemic and mucosal immunity by incorporation of immunomodulatory chIL-18 and chIFN-α using Salmonella vaccines into existing ND vaccines. PMID:25502364

  15. Production of human rotavirus and Salmonella antigens in plants and elicitation of fljB-specific humoral responses in mice.

    PubMed

    Bergeron-Sandoval, Louis-Philippe; Girard, Aurélie; Ouellet, François; Archambault, Denis; Sarhan, Fathey

    2011-02-01

    A Nicotiana benthamiana transient expression system was used to express single antigen and dimeric combinations of the human rotavirus (HRV) VP7 and a truncated VP4 (VP4Δ) proteins fused with Salmonella typhimurium's flagellin fljB subunit. Immunoblot analyses using rabbit antibodies generated against these proteins demonstrated that the constructs were successfully expressed with yields ranging from 0.85 to 31.97 μg of recombinant protein per gram of fresh leaf tissue. Expressing the single and dimeric antigens has no effect on plant growth and development except for VP7 and VP4Δ::VP7, which show mild necrotic lesions. Immunization of mice with proteins from leaves transformed with constructs bearing the fljB moiety elicited an fljB-specific humoral response. The Nicotiana benthamiana transient system is efficient to express multiple combinations of pathogen proteins and demonstrates the potential of generating a Salmonella typhimurium subunit vaccine in plants.

  16. A fast-evolving human NPAS3 enhancer gained reporter expression in the developing forebrain of transgenic mice

    PubMed Central

    Kamm, Gretel B.; López-Leal, Rodrigo; Lorenzo, Juan R.; Franchini, Lucía F.

    2013-01-01

    The developmental brain gene NPAS3 stands out as a hot spot in human evolution because it contains the largest number of human-specific, fast-evolving, conserved, non-coding elements. In this paper we studied 2xHAR142, one of these elements that is located in the fifth intron of NPAS3. Using transgenic mice, we show that the mouse and chimp 2xHAR142 orthologues behave as transcriptional enhancers driving expression of the reporter gene lacZ to a similar NPAS3 expression subdomain in the mouse central nervous system. Interestingly, the human 2xHAR142 orthologue drives lacZ expression to an extended expression pattern in the nervous system. Thus, molecular evolution of 2xHAR142 provides the first documented example of human-specific heterotopy in the forebrain promoted by a transcriptional enhancer and suggests that it may have contributed to assemble the unique properties of the human brain. PMID:24218632

  17. What is adapted in face adaptation? The neural representations of expression in the human visual system.

    PubMed

    Fox, Christopher J; Barton, Jason J S

    2007-01-05

    The neural representation of facial expression within the human visual system is not well defined. Using an adaptation paradigm, we examined aftereffects on expression perception produced by various stimuli. Adapting to a face, which was used to create morphs between two expressions, substantially biased expression perception within the morphed faces away from the adapting expression. This adaptation was not based on low-level image properties, as a different image of the same person displaying that expression produced equally robust aftereffects. Smaller but significant aftereffects were generated by images of different individuals, irrespective of gender. Non-face visual, auditory, or verbal representations of emotion did not generate significant aftereffects. These results suggest that adaptation affects at least two neural representations of expression: one specific to the individual (not the image), and one that represents expression across different facial identities. The identity-independent aftereffect suggests the existence of a 'visual semantic' for facial expression in the human visual system.

  18. Configuration-specific kinetic theory applied to an ideal binary gas mixture.

    PubMed

    Wiseman, Floyd L

    2006-10-05

    This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.

  19. Semantic technologies in a decision support system

    NASA Astrophysics Data System (ADS)

    Wasielewska, K.; Ganzha, M.; Paprzycki, M.; Bǎdicǎ, C.; Ivanovic, M.; Lirkov, I.

    2015-10-01

    The aim of our work is to design a decision support system based on ontological representation of domain(s) and semantic technologies. Specifically, we consider the case when Grid / Cloud user describes his/her requirements regarding a "resource" as a class expression from an ontology, while the instances of (the same) ontology represent available resources. The goal is to help the user to find the best option with respect to his/her requirements, while remembering that user's knowledge may be "limited." In this context, we discuss multiple approaches based on semantic data processing, which involve different "forms" of user interaction with the system. Specifically, we consider: (a) ontological matchmaking based on SPARQL queries and class expression, (b) graph-based semantic closeness of instances representing user requirements (constructed from the class expression) and available resources, and (c) multicriterial analysis based on the AHP method, which utilizes expert domain knowledge (also ontologically represented).

  20. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics.

    PubMed

    Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung

    2018-03-15

    Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.

  1. Universal light-switchable gene promoter system

    DOEpatents

    Quail, Peter H.; Huq, Enamul; Tepperman, James; Sato, Sae

    2005-02-22

    An artificial promoter system that can be fused upstream of any desired gene enabling reversible induction or repression of the expression of the gene at will in any suitable host cell or organisms by light is described. The design of the system is such that a molecule of the plant photoreceptor phytochrome is targeted to the specific DNA binding site in the promoter by a protein domain that is fused to the phytochrome and that specifically recognizes this binding site. This bound phytochrome, upon activation by light, recruits a second fusion protein consisting of a protein that binds to phytochrome only upon light activation and a transcriptional activation domain that activates expression of the gene downstream of the promoter.

  2. Western Blotting of the Endocannabinoid System.

    PubMed

    Wager-Miller, Jim; Mackie, Ken

    2016-01-01

    Measuring expression levels of G protein-coupled receptors (GPCRs) is an important step for understanding the distribution, function, and regulation of these receptors. A common approach for detecting proteins from complex biological systems is Western blotting. In this chapter, we describe a general approach to Western blotting protein components of the endocannabinoid system using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose membranes, with a focus on detecting type 1 cannabinoid (CB1) receptors. When this technique is carefully used, specifically with validation of the primary antibodies, it can provide quantitative information on protein expression levels. Additional information can also be inferred from Western blotting such as potential posttranslational modifications that can be further evaluated by specific analytical techniques.

  3. Neuronal cell fate specification in Drosophila.

    PubMed

    Jan, Y N; Jan, L Y

    1994-02-01

    Recent work indicates that the Drosophila nervous system develops in a progressive process of cell fate specification. Expression of specific proneural genes in clusters of cells (the proneural clusters) in the cellular blastoderm endows these cells with the potential to form certain types of neural precursors. Intercellular interactions that involve both proneural genes and neurogenic genes then allow the neural precursors to be singled out from the proneural clusters. Expression of neural precursor genes in all neural precursors is likely to account for the universal aspects of neuronal differentiation, such as axonal outgrowth. Selective expression of certain neuronal-type selector genes further specifies the type of neuron(s) that a neural precursor will produce.

  4. Automatic Methods and Tools for the Verification of Real Time Systems

    DTIC Science & Technology

    1997-07-31

    real - time systems . This was accomplished by extending techniques, based on automata theory and temporal logic, that have been successful for the verification of time-independent reactive systems. As system specification lanmaage for embedded real - time systems , we introduced hybrid automata, which equip traditional discrete automata with real-numbered clock variables and continuous environment variables. As requirements specification languages, we introduced temporal logics with clock variables for expressing timing constraints.

  5. Correct Hox gene expression established independently of position in Caenorhabditis elegans.

    PubMed

    Cowing, D; Kenyon, C

    1996-07-25

    The Hox genes are expressed in a conserved sequence of spatial domains along the anteroposterior (A/P) body axes of many organisms. In Drosophila, position-specific signals located along the A/P axis establish the pattern of Hox gene expression. In the nematode Caenorhabditis elegans, it is not known how the pattern of Hox gene expression is established. C. elegans uses lineal control mechanisms and local cell interactions to specify early blastomere identities. However, many cells expressing the same Hox gene are unrelated by lineage, suggesting that, as in Drosophila, domains of Hox gene expression may be defined by cell-extrinsic A/P positional signals. To test this, we have investigated whether posterior mesodermal and ectodermal cells will express their normal posterior Hox gene when they are mispositioned in the anterior. Surprisingly, we find that correct Hox gene expression does not depend on cell position, but is highly correlated with cell lineage. Thus, although the most striking feature of Hox gene expression is its positional specificity, in C. elegans the pattern is achieved, at least in part, by a lineage-specific control system that operates without regard to A/P position.

  6. Method To Identify Specific Inhibiutors Of Imp Dehydrogenase

    DOEpatents

    Collart, Frank R.; Huberman, Eliezer

    2000-11-28

    This invention relates to methods to identify specific inhibitors of the purine nucleotide synthesis enzyme, IMP dehydrogenase (IMPDH). IMPDH is an essential enzyme found in all free-living organisms from humans to bacteria and is an important therapeutic target. The invention allows the identification of specific inhibitors of any IMPDH enzyme which can be expressed in a functional form in a recombinant host cell. A variety of eukaryotic or prokaryotic host systems commonly used for the expression of recombinant proteins are suitable for the practice of the invention. The methods are amenable to high throughput systems for the screening of inhibitors generated by combinatorial chemistry or other methods such as antisense molecule production. Utilization of exogenous guanosine as a control component of the methods allows for the identification of inhibitors specific for IMPDH rather than other causes of decreased cell proliferation.

  7. Promoter specific DNA methylation and gene expression of POMC in acutely underweight and recovered patients with anorexia nervosa.

    PubMed

    Ehrlich, Stefan; Weiss, Deike; Burghardt, Roland; Infante-Duarte, Carmen; Brockhaus, Simone; Muschler, Marc A; Bleich, Stefan; Lehmkuhl, Ulrike; Frieling, Helge

    2010-10-01

    Proopiomelanocortin (POMC) and its derived peptides, in particular alpha-MSH, have been shown to play a crucial role in the regulation of hunger, satiety and energy homeostasis. Studies in patients with anorexia nervosa (AN) suggest an abnormal expression of appetite-regulating hormones. Hormone expression levels may be modulated by epigenetic mechanisms, which were recently shown to be implicated in the pathophysiology of eating disorders. We hypothesised that POMC promoter specific DNA methylation and gene expression will be affected by malnutrition and therefore differ in AN patients at distinct stages of the disorder. Promoter specific DNA methylation of the POMC gene and expression of POMC mRNA variants were determined in peripheral blood mononuclear cells (PBMC) of 30 healthy control women (HCW), 31 underweight (acAN) and 30 weight-recovered patients with AN (recAN). Malnutrition was characterized by plasma leptin. Expression of the functionally relevant long POMC mRNA transcript was significantly correlated with leptin levels and higher in acAN compared to recAN and HCW. Expression of the truncated form and mean promoter DNA methylation was similar in all three subgroups. Methylation of single CpG residues in the E2F binding site was inversely related to POMC expression. Our preliminary data on pattern of POMC regulation suggests an association with the underweight state rather than with persisting trait markers of AN. In contrast to POMC expression in the central nervous system, peripheral POMC mRNA expression decreased with malnutrition and hypoleptinemia. This may represent a counterregulatory mechanism as part of the crosstalk between the immune and neuroendocrine systems.

  8. Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts.

    PubMed

    Balow, James E; Ryan, John G; Chae, Jae Jin; Booty, Matthew G; Bulua, Ariel; Stone, Deborah; Sun, Hong-Wei; Greene, James; Barham, Beverly; Goldbach-Mansky, Raphaela; Kastner, Daniel L; Aksentijevich, Ivona

    2013-06-01

    To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra. We collected peripheral blood mononuclear cells from 22 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values≤false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 66 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions. Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 post-anakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra.

  9. Microarray-based gene expression profiling in patients with cryopyrin-associated periodic syndromes defines a disease-related signature and IL-1-responsive transcripts

    PubMed Central

    Balow, James E; Ryan, John G; Chae, Jae Jin; Booty, Matthew G; Bulua, Ariel; Stone, Deborah; Sun, Hong-Wei; Greene, James; Barham, Beverly; Goldbach-Mansky, Raphaela; Kastner, Daniel L; Aksentijevich, Ivona

    2014-01-01

    Objective To analyse gene expression patterns and to define a specific gene expression signature in patients with the severe end of the spectrum of cryopyrin-associated periodic syndromes (CAPS). The molecular consequences of interleukin 1 inhibition were examined by comparing gene expression patterns in 16 CAPS patients before and after treatment with anakinra. Methods We collected peripheral blood mononuclear cells from 22 CAPS patients with active disease and from 14 healthy children. Transcripts that passed stringent filtering criteria (p values ≤ false discovery rate 1%) were considered as differentially expressed genes (DEG). A set of DEG was validated by quantitative reverse transcription PCR and functional studies with primary cells from CAPS patients and healthy controls. We used 17 CAPS and 66 non-CAPS patient samples to create a set of gene expression models that differentiates CAPS patients from controls and from patients with other autoinflammatory conditions. Results Many DEG include transcripts related to the regulation of innate and adaptive immune responses, oxidative stress, cell death, cell adhesion and motility. A set of gene expression-based models comprising the CAPS-specific gene expression signature correctly classified all 17 samples from an independent dataset. This classifier also correctly identified 15 of 16 postanakinra CAPS samples despite the fact that these CAPS patients were in clinical remission. Conclusions We identified a gene expression signature that clearly distinguished CAPS patients from controls. A number of DEG were in common with other systemic inflammatory diseases such as systemic onset juvenile idiopathic arthritis. The CAPS-specific gene expression classifiers also suggest incomplete suppression of inflammation at low doses of anakinra. PMID:23223423

  10. Comparative Study on Different Expression Hosts for Alkaline Phytase Engineered in Escherichia coli.

    PubMed

    Chen, Weiwei; Yu, Hongwei; Ye, Lidan

    2016-07-01

    The application of alkaline phytase as a feed additive is restricted by the poor specific activity. Escherichia coli is a frequently used host for directed evolution of proteins including alkaline phytase towards improved activity. However, it is not suitable for production of food-grade products due to potential pathogenicity. To combine the advantages of different expression systems, mutants of the alkaline phytase originated from Bacillus subtilis 168 (phy168) were first generated via directed evolution in E. coli and then transformed to food-grade hosts B. subtilis and Pichia pastoris for secretory expression. In order to investigate the suitability of different expression systems, the phy168 mutants expressed in different hosts were characterized and compared in terms of specific activity, pH profile, pH stability, temperature profile, and thermostability. The specific activity of B. subtilis-expressed D24G/K70R/K111E/N121S mutant at pH 7.0 and 60 °C was 30.4 U/mg, obviously higher than those in P. pastoris (22.7 U/mg) and E. coli (19.7 U/mg). Moreover, after 10 min incubation at 80 °C, the B. subtilis-expressed D24G/K70R/K111E/N121S retained about 70 % of the activity at pH 7.0 and 37 °C, whereas the values were only about 25 and 50 % when expressed in P. pastoris and E. coli, respectively. These results suggested B. subtilis as an appropriate host for expression of phy168 mutants and that the strategy of creating mutants in one host and expressing them in another might be a new solution to industrial production of proteins with desired properties.

  11. [Expression of acylamidase gene in Rhodococcus erythropolis strains].

    PubMed

    Lavrov, K V; Novikov, A D; Riabchenko, L E; Ianenko, A S

    2014-09-01

    The expression of a new acylamidase gene from R. erythropolis 37 was studied in Rhodococcus erythropolis strains. This acylamidase, as a result of its unique substrate specificity, can hydrolyse N-substituted amides (4'-nitroacetanilide, N-isopropylacrylamide, N'N-dimethylaminopropylacrylamide). A new expression system based on the use of the promoter region of nitrilhydratase genes from R. rhodochrous M8 was created to achieve constitutive synthesis of acylamidase in R. erythropolis cells. A fourfold improvement in the acylamidase activity of recombinant R. erythropolis cells as compared with the parent wild-type strain was obtained through the use of the new expression system.

  12. Development of a transgenic zebrafish model expressing GFP in the notochord, somite and liver directed by the hfe2 gene promoter.

    PubMed

    Bian, Yue-Hong; Xu, Cheng; Li, Junling; Xu, Jin; Zhang, Hongwei; Du, Shao Jun

    2011-08-01

    Hemojuvelin, also known as RGMc, is encoded by hfe2 gene that plays an important role in iron homeostasis. hfe2 is specifically expressed in the notochord, developing somite and skeletal muscles during development. The molecular regulation of hfe2 expression is, however, not clear. We reported here the characterization of hfe2 gene expression and the regulation of its tissue-specific expression in zebrafish embryos. We demonstrated that the 6 kb 5'-flanking sequence upstream of the ATG start codon in the zebrafish hfe2 gene could direct GFP specific expression in the notochord, somites, and skeletal muscle of zebrafish embryos, recapitulating the expression pattern of the endogenous gene. However, the Tg(hfe2:gfp) transgene is also expressed in the liver of fish embryos, which did not mimic the expression of the endogenous hfe2 at the early stage. Nevertheless, the Tg(hfe2:gfp) transgenic zebrafish provides a useful model to study liver development. Treating Tg(hfe2:gfp) transgenic zebrafish embryos with valproic acid, a liver development inhibitor, significantly inhibited GFP expression in zebrafish. Together, these data indicate that the tissue specific expression of hfe2 in the notochord, somites and muscles is regulated by regulatory elements within the 6 kb 5'-flanking sequence of the hfe2 gene. Moreover, the Tg(hfe2:gfp) transgenic zebrafish line provides a useful model system for analyzing liver development in zebrafish.

  13. Simultaneous live imaging of the transcription and nuclear position of specific genes

    PubMed Central

    Ochiai, Hiroshi; Sugawara, Takeshi; Yamamoto, Takashi

    2015-01-01

    The relationship between genome organization and gene expression has recently been established. However, the relationships between spatial organization, dynamics, and transcriptional regulation of the genome remain unknown. In this study, we developed a live-imaging method for simultaneous measurements of the transcriptional activity and nuclear position of endogenous genes, which we termed the ‘Real-time Observation of Localization and EXpression (ROLEX)’ system. We demonstrated that ROLEX is highly specific and does not affect the expression level of the target gene. ROLEX enabled detection of sub-genome-wide mobility changes that depended on the state of Nanog transactivation in embryonic stem cells. We believe that the ROLEX system will become a powerful tool for exploring the relationship between transcription and nuclear dynamics in living cells. PMID:26092696

  14. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma.

    PubMed

    Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun

    2016-07-21

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene's expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment.

  15. Alpha-fetoprotein-targeted reporter gene expression imaging in hepatocellular carcinoma

    PubMed Central

    Kim, Kwang Il; Chung, Hye Kyung; Park, Ju Hui; Lee, Yong Jin; Kang, Joo Hyun

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers in Eastern Asia, and its incidence is increasing globally. Numerous experimental models have been developed to better our understanding of the pathogenic mechanism of HCC and to evaluate novel therapeutic approaches. Molecular imaging is a convenient and up-to-date biomedical tool that enables the visualization, characterization and quantification of biologic processes in a living subject. Molecular imaging based on reporter gene expression, in particular, can elucidate tumor-specific events or processes by acquiring images of a reporter gene’s expression driven by tumor-specific enhancers/promoters. In this review, we discuss the advantages and disadvantages of various experimental HCC mouse models and we present in vivo images of tumor-specific reporter gene expression driven by an alpha-fetoprotein (AFP) enhancer/promoter system in a mouse model of HCC. The current mouse models of HCC development are established by xenograft, carcinogen induction and genetic engineering, representing the spectrum of tumor-inducing factors and tumor locations. The imaging analysis approach of reporter genes driven by AFP enhancer/promoter is presented for these different HCC mouse models. Such molecular imaging can provide longitudinal information about carcinogenesis and tumor progression. We expect that clinical application of AFP-targeted reporter gene expression imaging systems will be useful for the detection of AFP-expressing HCC tumors and screening of increased/decreased AFP levels due to disease or drug treatment. PMID:27468205

  16. Gene-specific cell labeling using MiMIC transposons.

    PubMed

    Gnerer, Joshua P; Venken, Koen J T; Dierick, Herman A

    2015-04-30

    Binary expression systems such as GAL4/UAS, LexA/LexAop and QF/QUAS have greatly enhanced the power of Drosophila as a model organism by allowing spatio-temporal manipulation of gene function as well as cell and neural circuit function. Tissue-specific expression of these heterologous transcription factors relies on random transposon integration near enhancers or promoters that drive the binary transcription factor embedded in the transposon. Alternatively, gene-specific promoter elements are directly fused to the binary factor within the transposon followed by random or site-specific integration. However, such insertions do not consistently recapitulate endogenous expression. We used Minos-Mediated Integration Cassette (MiMIC) transposons to convert host loci into reliable gene-specific binary effectors. MiMIC transposons allow recombinase-mediated cassette exchange to modify the transposon content. We developed novel exchange cassettes to convert coding intronic MiMIC insertions into gene-specific binary factor protein-traps. In addition, we expanded the set of binary factor exchange cassettes available for non-coding intronic MiMIC insertions. We show that binary factor conversions of different insertions in the same locus have indistinguishable expression patterns, suggesting that they reliably reflect endogenous gene expression. We show the efficacy and broad applicability of these new tools by dissecting the cellular expression patterns of the Drosophila serotonin receptor gene family. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Human population-specific gene expression and transcriptional network modification with polymorphic transposable elements

    PubMed Central

    Wang, Lu; Mariño-Ramírez, Leonardo

    2017-01-01

    Abstract Transposable element (TE) derived sequences are known to contribute to the regulation of the human genome. The majority of known TE-derived regulatory sequences correspond to relatively ancient insertions, which are fixed across human populations. The extent to which human genetic variation caused by recent TE activity leads to regulatory polymorphisms among populations has yet to be thoroughly explored. In this study, we searched for associations between polymorphic TE (polyTE) loci and human gene expression levels using an expression quantitative trait loci (eQTL) approach. We compared locus-specific polyTE insertion genotypes to B cell gene expression levels among 445 individuals from 5 human populations. Numerous human polyTE loci correspond to both cis and trans eQTL, and their regulatory effects are directly related to cell type-specific function in the immune system. PolyTE loci are associated with differences in expression between European and African population groups, and a single polyTE loci is indirectly associated with the expression of numerous genes via the regulation of the B cell-specific transcription factor PAX5. The polyTE-gene expression associations we found indicate that human TE genetic variation can have important phenotypic consequences. Our results reveal that TE-eQTL are involved in population-specific gene regulation as well as transcriptional network modification. PMID:27998931

  18. Fructose-rich diet induces gender-specific changes in expression of the renin-angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta.

    PubMed

    Bundalo, Maja M; Zivkovic, Maja D; Romic, Snjezana Dj; Tepavcevic, Snezana N; Koricanac, Goran B; Djuric, Tamara M; Stankovic, Aleksandra D

    2016-01-01

    The cardiovascular renin-angiotensin system (RAS) could be affected by gender and dietary regime. We hypothesized that male rats will be more susceptible to activation of RAS in the heart and aorta, as a response to a fructose-rich diet (FRD). Both male and female Wistar rats were given a 10% (w/v) fructose solution for 9 weeks. We measured the biochemical parameters, blood pressure (BP) and heart rate. We used Western blot and real-time polymerase chain reaction (PCR) to quantify protein and gene expression. In the male rats, the FRD elevated BP and expression of cardiac angiotensin-converting enzyme (ACE), while the expression of angiotensin-converting enzyme 2 (ACE2) and angiotensin II Type 2 receptor (AT2R) were significantly decreased. In female rats, there were no changes in cardiac RAS expression due to FRD. Furthermore, the ACE/AT1R axis was overexpressed in the FRD male rats' aortae, while only AT1R was upregulated in the FRD female rats' aortae. ACE2 expression remained unchanged in the aortae of both genders receiving the FRD. The FRD induced gender-specific changes in the expression of the RAS in the heart and aortae of male rats. Further investigations are required in order to get a comprehensive understanding of the underlying mechanisms of gender-specific fructose-induced cardiovascular pathologies. © The Author(s) 2016.

  19. Fructose-rich diet induces gender-specific changes in expression of the renin–angiotensin system in rat heart and upregulates the ACE/AT1R axis in the male rat aorta

    PubMed Central

    Bundalo, Maja M; Zivkovic, Maja D; Romic, Snjezana Dj; Tepavcevic, Snezana N; Koricanac, Goran B; Djuric, Tamara M; Stankovic, Aleksandra D

    2016-01-01

    Introduction: The cardiovascular renin–angiotensin system (RAS) could be affected by gender and dietary regime. We hypothesized that male rats will be more susceptible to activation of RAS in the heart and aorta, as a response to a fructose-rich diet (FRD). Materials and methods: Both male and female Wistar rats were given a 10% (w/v) fructose solution for 9 weeks. We measured the biochemical parameters, blood pressure (BP) and heart rate. We used Western blot and real-time polymerase chain reaction (PCR) to quantify protein and gene expression. Results: In the male rats, the FRD elevated BP and expression of cardiac angiotensin-converting enzyme (ACE), while the expression of angiotensin-converting enzyme 2 (ACE2) and angiotensin II Type 2 receptor (AT2R) were significantly decreased. In female rats, there were no changes in cardiac RAS expression due to FRD. Furthermore, the ACE/AT1R axis was overexpressed in the FRD male rats’ aortae, while only AT1R was upregulated in the FRD female rats’ aortae. ACE2 expression remained unchanged in the aortae of both genders receiving the FRD. Conclusions: The FRD induced gender-specific changes in the expression of the RAS in the heart and aortae of male rats. Further investigations are required in order to get a comprehensive understanding of the underlying mechanisms of gender-specific fructose-induced cardiovascular pathologies. PMID:27121972

  20. Evaluation of the Pichia pastoris expression system for the production of GPCRs for structural analysis

    PubMed Central

    2011-01-01

    Background Various protein expression systems, such as Escherichia coli (E. coli), Saccharomyces cerevisiae (S. cerevisiae), Pichia pastoris (P. pastoris), insect cells and mammalian cell lines, have been developed for the synthesis of G protein-coupled receptors (GPCRs) for structural studies. Recently, the crystal structures of four recombinant human GPCRs, namely β2 adrenergic receptor, adenosine A2a receptor, CXCR4 and dopamine D3 receptor, were successfully determined using an insect cell expression system. GPCRs expressed in insect cells are believed to undergo mammalian-like posttranscriptional modifications and have similar functional properties than in mammals. Crystal structures of GPCRs have not yet been solved using yeast expression systems. In the present study, P. pastoris and insect cell expression systems for the human muscarinic acetylcholine receptor M2 subtype (CHRM2) were developed and the quantity and quality of CHRM2 synthesized by both expression systems were compared for the application in structural studies. Results The ideal conditions for the expression of CHRM2 in P. pastoris were 60 hr at 20°C in a buffer of pH 7.0. The specific activity of the expressed CHRM2 was 28.9 pmol/mg of membrane protein as determined by binding assays using [3H]-quinuclidinyl benzilate (QNB). Although the specific activity of the protein produced by P. pastoris was lower than that of Sf9 insect cells, CHRM2 yield in P. pastoris was 2-fold higher than in Sf9 insect cells because P. pastoris was cultured at high cell density. The dissociation constant (Kd) for QNB in P. pastoris was 101.14 ± 15.07 pM, which was similar to that in Sf9 insect cells (86.23 ± 8.57 pM). There were no differences in the binding affinity of CHRM2 for QNB between P. pastoris and Sf9 insect cells. Conclusion Compared to insect cells, P. pastoris is easier to handle, can be grown at lower cost, and can be expressed quicker at a large scale. Yeast, P. pastoris, and insect cells are all effective expression systems for GPCRs. The results of the present study strongly suggested that protein expression in P. pastoris can be applied to the structural and biochemical studies of GPCRs. PMID:21513509

  1. Maternal Germline-Specific Genes in the Asian Malaria Mosquito Anopheles stephensi: Characterization and Application for Disease Control

    PubMed Central

    Biedler, James K.; Qi, Yumin; Pledger, David; Macias, Vanessa M.; James, Anthony A.; Tu, Zhijian

    2014-01-01

    Anopheles stephensi is a principal vector of urban malaria on the Indian subcontinent and an emerging model for molecular and genetic studies of mosquito biology. To enhance our understanding of female mosquito reproduction, and to develop new tools for basic research and for genetic strategies to control mosquito-borne infectious diseases, we identified 79 genes that displayed previtellogenic germline-specific expression based on RNA-Seq data generated from 11 life stage–specific and sex-specific samples. Analysis of this gene set provided insights into the biology and evolution of female reproduction. Promoters from two of these candidates, vitellogenin receptor and nanos, were used in independent transgenic cassettes for the expression of artificial microRNAs against suspected mosquito maternal-effect genes, discontinuous actin hexagon and myd88. We show these promoters have early germline-specific expression and demonstrate 73% and 42% knockdown of myd88 and discontinuous actin hexagon mRNA in ovaries 48 hr after blood meal, respectively. Additionally, we demonstrate maternal-specific delivery of mRNA and protein to progeny embryos. We discuss the application of this system of maternal delivery of mRNA/miRNA/protein in research on mosquito reproduction and embryonic development, and for the development of a gene drive system based on maternal-effect dominant embryonic arrest. PMID:25480960

  2. Pathway-Based Concentration Response Profiles from Toxicogenomics Data

    EPA Science Inventory

    Microarray analysis of gene expression of in vitro systems could be a powerful tool for assessing chemical hazard. Differentially expressed genes specific to cells, chemicals, and concentrations can be organized into molecular pathways that inform mode of action. An important par...

  3. Cell-free unnatural amino acid incorporation with alternative energy systems and linear expression templates.

    PubMed

    Shrestha, Prashanta; Smith, Mark Thomas; Bundy, Bradley Charles

    2014-01-25

    Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Expression systems for therapeutic glycoprotein production.

    PubMed

    Durocher, Yves; Butler, Michael

    2009-12-01

    There are slightly over 165 recombinant pharmaceuticals currently approved for human use. Another 500 protein candidates are in preclinical and clinical development, about 70% of these being glycosylated proteins. The need for expression systems allowing the efficient manufacturing of high quality glycoproteins is thus becoming imperative. Recent developments with CHO cells, the predominant mammalian expression system, have focused on either increasing cell specific productivity or prolonging the life span of cells in culture that translates to high integrated viable cell densities. These two factors have allowed volumetric productivities in excess of 5 g/L under conditions of controlled nutrient feeding. In addition to glycoengineering strategies, which are offering considerable advantage in producing proteins with enhanced therapeutic properties, several alternative expression systems are being developed for their manufacture, each with their advantages and limitations.

  5. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    NASA Astrophysics Data System (ADS)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  6. Identification of a transient Sox5 expressing progenitor population in the neonatal ventral forebrain by a novel cis-regulatory element

    PubMed Central

    Hao, Hailing; Li, Ying; Tzatzalos, Evangeline; Gilbert, Jordana; Zala, Dhara; Bhaumik, Mantu; Cai, Li

    2014-01-01

    Precise control of lineage-specific gene expression in the neural stem/progenitor cells is crucial for generation of the diversity of neuronal and glial cell types in the central nervous system (CNS). The mechanism underlying such gene regulation, however, is not fully elucidated. Here, we report that a 377 bp evolutionarily conserved DNA fragment (CR5), located approximately 32 kbp upstream of Olig2 transcription start site, acts as a cis-regulator for gene expression in the development of the neonatal forebrain. CR5 is active in a time-specific and brain region-restricted manner. CR5 activity is not detected in the embryonic stage, but it is exclusively in a subset of Sox5+ cells in the neonatal ventral forebrain. Furthermore, we show that Sox5 binding motif in CR5 is important for this cell-specific gene regulatory activity; mutation of Sox5 binding motif in CR5 alters reporter gene expression with different cellular composition. Together, our study provides new insights into the regulation of cell-specific gene expression during CNS development. PMID:24954155

  7. A constitutive expression system for glycosyl hydrolase family 7 cellobiohydrolases in Hypocrea jecorina

    DOE PAGES

    Linger, Jeffrey G.; Taylor, II, Larry E.; Baker, John O.; ...

    2015-03-18

    One of the primary industrial-scale cellulase producers is the ascomycete fungus, Hypocrea jecorina, which produces and secretes large quantities of diverse cellulolytic enzymes. Perhaps the single most important biomass degrading enzyme is cellobiohydrolase I (cbh1or Cel7A) due to its enzymatic proficiency in cellulose depolymerization. However, production of Cel7A with native-like properties from heterologous expression systems has proven difficult. In this study, we develop a protein expression system in H. jecorina (Trichoderma reesei) useful for production and secretion of heterologous cellobiohydrolases from glycosyl hydrolase family 7. Building upon previous work in heterologous protein expression in filamentous fungi, we have integrated amore » native constitutive enolase promoter with the native cbh1 signal sequence. The results are the following: The constitutive eno promoter driving the expression of Cel7A allows growth on glucose and results in repression of the native cellulase system, severely reducing background endo- and other cellulase activity and greatly simplifying purification of the recombinant protein. Coupling this system to a Δcbh1 strain of H. jecorina ensures that only the recombinant Cel7A protein is produced. Two distinct transformant colony morphologies were observed and correlated with high and null protein production. Production levels in ‘fast’ transformants are roughly equivalent to those in the native QM6a strain of H. jecorina, typically in the range of 10 to 30 mg/L when grown in continuous stirred-tank fermenters. ‘Slow’ transformants showed no evidence of Cel7A production. Specific activity of the purified recombinant Cel7A protein is equivalent to that of native protein when assayed on pretreated corn stover, as is the thermal stability and glycosylation level. Purified Cel7A produced from growth on glucose demonstrated remarkably consistent specific activity. Purified Cel7A from the same strain grown on lactose demonstrated significantly higher variability in activity. In conclusion, he elimination of background cellulase induction provides much more consistent measured specific activity compared to a traditional cbh1 promoter system induced with lactose. This expression system provides a powerful tool for the expression and comparison of mutant and/or phylogenetically diverse cellobiohydrolases in the industrially relevant cellulase production host H. jecorina.« less

  8. S locus-linked F-box genes expressed in anthers of Hordeum bulbosum.

    PubMed

    Kakeda, Katsuyuki

    2009-09-01

    Diploid Hordeum bulbosum (a wild relative of cultivated barley) exhibits a two-locus self-incompatibility (SI) system gametophytically controlled by the unlinked multiallelic loci S and Z. This unique SI system is observed in the grasses (Poaceae) including the tribe Triticeae. This paper describes the identification and characterization of two F-box genes cosegregating with the S locus in H. bulbosum, named Hordeum S locus-linked F-box 1 (HSLF1) and HSLF2, which were derived from an S (3) haplotype-specific clone (HAS175) obtained by previous AMF (AFLP-based mRNA fingerprinting) analysis. Sequence analysis showed that both genes encode similar F-box proteins with a C-terminal leucine-rich repeat (LRR) domain, which are distinct from S locus (or S haplotype-specific) F-box protein (SLF/SFB), a class of F-box proteins identified as the pollen S determinant in S-RNase-based gametophytic SI systems. A number of homologous F-box genes with an LRR domain were found in the rice genome, although the functions of the gene family are unknown. One allele of the HSLF1 gene (HSLF1-S (3)) was expressed specifically in mature anthers, whereas no expression was detected from the other two alleles examined. Although the degree of sequence polymorphism among the three HSLF1 alleles was low, a frameshift mutation was found in one of the unexpressed alleles. The HSLF2 gene showed a low level of expression with no tissue specificity as well as little sequence polymorphism among the three alleles. The multiplicity of S locus-linked F-box genes is discussed in comparison with those found in the S-RNase-based SI system.

  9. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.

    PubMed Central

    Tabor, S; Richardson, C C

    1985-01-01

    The RNA polymerase gene of bacteriophage T7 has been cloned into the plasmid pBR322 under the inducible control of the lambda PL promoter. After induction, T7 RNA polymerase constitutes 20% of the soluble protein of Escherichia coli, a 200-fold increase over levels found in T7-infected cells. The overproduced enzyme has been purified to homogeneity. During extraction the enzyme is sensitive to a specific proteolysis, a reaction that can be prevented by a modification of lysis conditions. The specificity of T7 RNA polymerase for its own promoters, combined with the ability to inhibit selectively the host RNA polymerase with rifampicin, permits the exclusive expression of genes under the control of a T7 RNA polymerase promoter. We describe such a coupled system and its use to express high levels of phage T7 gene 5 protein, a subunit of T7 DNA polymerase. Images PMID:3156376

  10. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    PubMed

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Selecting antagonistic antibodies that control differentiation through inducible expression in embryonic stem cells

    PubMed Central

    Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John

    2013-01-01

    Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130

  12. Chimeric antigen receptors with human scFvs preferentially induce T cell anti-tumor activity against tumors with high B7H6 expression.

    PubMed

    Gacerez, Albert T; Hua, Casey K; Ackerman, Margaret E; Sentman, Charles L

    2018-05-01

    B7H6 is emerging as a promising tumor antigen that is known to be expressed on a wide array of tumors and is reported to stimulate anti-tumor responses from the immune system. As such, B7H6 presents a good target for tumor-specific immunotherapies. B7H6-specific chimeric antigen receptors (CAR) based on a murine antibody showed successful targeting and elimination of tumors expressing B7H6. However, mouse single chain variable fragments (scFvs) have the potential to induce host anti-CAR responses that may limit efficacy, so human scFvs specific for B7H6 were selected by yeast surface display. In this study, we validate the functionality of these human scFvs when formatted into chimeric antigen receptors. The data indicate that T cells expressing these B7H6-specific human scFvs as CARs induced potent anti-tumor activity in vitro and in vivo against tumors expressing high amounts of B7H6. Importantly, these human scFv-based CARs are sensitive to changes in B7H6 expression which may potentially spare non-tumor cells that express B7H6 and provides the foundation for future clinical development.

  13. Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene.

    PubMed Central

    Hirsh, J; Morgan, B A; Scholnick, S B

    1986-01-01

    We delimited sequences necessary for in vivo expression of the Drosophila melanogaster dopa decarboxylase gene Ddc. The expression of in vitro-altered genes was assayed following germ line integration via P-element vectors. Sequences between -209 and -24 were necessary for normally regulated expression, although genes lacking these sequences could be expressed at 10 to 50% of wild-type levels at specific developmental times. These genes showed components of normal developmental expression, which suggests that they retain some regulatory elements. All Ddc genes lacking the normal immediate 5'-flanking sequences were grossly deficient in larval central nervous system expression. Thus, this upstream region must contain at least one element necessary for this expression. A mutated Ddc gene without a normal TATA boxlike sequence used the normal RNA start points, indicating that this sequences is not required for start point specificity. Images PMID:3099170

  14. Recombinational Cloning Using Gateway and In-Fusion Cloning Schemes

    PubMed Central

    Throop, Andrea L.; LaBaer, Joshua

    2015-01-01

    The comprehensive study of protein structure and function, or proteomics, depends on the obtainability of full-length cDNAs in species-specific expression vectors and subsequent functional analysis of the expressed protein. Recombinational cloning is a universal cloning technique based on site-specific recombination that is independent of the insert DNA sequence of interest, which differentiates this method from the classical restriction enzyme-based cloning methods. Recombinational cloning enables rapid and efficient parallel transfer of DNA inserts into multiple expression systems. This unit summarizes strategies for generating expression-ready clones using the most popular recombinational cloning technologies, including the commercially available Gateway® (Life Technologies) and In-Fusion® (Clontech) cloning technologies. PMID:25827088

  15. Production of dengue virus envelope protein domain III-based antigens in tobacco chloroplasts using inducible and constitutive expression systems.

    PubMed

    Gottschamel, Johanna; Lössl, Andreas; Ruf, Stephanie; Wang, Yanliang; Skaugen, Morten; Bock, Ralph; Clarke, Jihong Liu

    2016-07-01

    Dengue fever is a disease in many parts of the tropics and subtropics and about half the world's population is at risk of infection according to the World Health Organization. Dengue is caused by any of the four related dengue virus serotypes DEN-1, -2, -3 and -4, which are transmitted to people by Aedes aegypti mosquitoes. Currently there is only one vaccine (Dengvaxia(®)) available (limited to a few countries) on the market since 2015 after half a century's intensive efforts. Affordable and accessible vaccines against dengue are hence still urgently needed. The dengue envelop protein domain III (EDIII), which is capable of eliciting serotype-specific neutralizing antibodies, has become the focus for subunit vaccine development. To contribute to the development of an accessible and affordable dengue vaccine, in the current study we have used plant-based vaccine production systems to generate a dengue subunit vaccine candidate in tobacco. Chloroplast genome engineering was applied to express serotype-specific recombinant EDIII proteins in tobacco chloroplasts using both constitutive and ethanol-inducible expression systems. Expression of a tetravalent antigen fusion construct combining EDIII polypeptides from all four serotypes was also attempted. Transplastomic EDIII-expressing tobacco lines were obtained and homoplasmy was verified by Southern blot analysis. Northern blot analyses showed expression of EDIII antigen-encoding genes. EDIII protein accumulation levels varied for the different recombinant EDIII proteins and the different expression systems, and reached between 0.8 and 1.6 % of total cellular protein. Our study demonstrates the suitability of the chloroplast compartment as a production site for an EDIII-based vaccine candidate against dengue fever and presents a Gateway(®) plastid transformation vector for inducible transgene expression.

  16. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  17. Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems

    PubMed Central

    Mühlberger, Elke; Weik, Michael; Volchkov, Viktor E.; Klenk, Hans-Dieter; Becker, Stephan

    1999-01-01

    The members of the family Filoviridae, Marburg virus (MBGV) and Ebola virus (EBOV), are very similar in terms of morphology, genome organization, and protein composition. To compare the replication and transcription strategies of both viruses, an artificial replication system based on the vaccinia virus T7 expression system was established for EBOV. Specific transcription and replication of an artificial monocistronic minireplicon was demonstrated by reporter gene expression and detection of the transcribed and replicated RNA species. As it was shown previously for MBGV, three of the four EBOV nucleocapsid proteins, NP, VP35, and L, were essential and sufficient for replication. In contrast to MBGV, EBOV-specific transcription was dependent on the presence of the fourth nucleocapsid protein, VP30. When EBOV VP30 was replaced by MBGV VP30, EBOV-specific transcription was observed but with lower efficiency. Exchange of NP, VP35, and L between the two replication systems did not lead to detectable reporter gene expression. It was further observed that neither MBGV nor EBOV were able to replicate the heterologous minigenomes. A chimeric minigenome, however, containing the EBOV leader and the MBGV trailer was encapsidated, replicated, transcribed, and packaged by both viruses. PMID:9971816

  18. BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire

    PubMed Central

    Najafova, Zeynab; Tirado-Magallanes, Roberto; Subramaniam, Malayannan; Hossan, Tareq; Schmidt, Geske; Nagarajan, Sankari; Baumgart, Simon J.; Mishra, Vivek Kumar; Bedi, Upasana; Hesse, Eric; Knapp, Stefan; Hawse, John R.; Johnsen, Steven A.

    2017-01-01

    Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4. PMID:27651452

  19. BRD4 localization to lineage-specific enhancers is associated with a distinct transcription factor repertoire.

    PubMed

    Najafova, Zeynab; Tirado-Magallanes, Roberto; Subramaniam, Malayannan; Hossan, Tareq; Schmidt, Geske; Nagarajan, Sankari; Baumgart, Simon J; Mishra, Vivek Kumar; Bedi, Upasana; Hesse, Eric; Knapp, Stefan; Hawse, John R; Johnsen, Steven A

    2017-01-09

    Proper temporal epigenetic regulation of gene expression is essential for cell fate determination and tissue development. The Bromodomain-containing Protein-4 (BRD4) was previously shown to control the transcription of defined subsets of genes in various cell systems. In this study we examined the role of BRD4 in promoting lineage-specific gene expression and show that BRD4 is essential for osteoblast differentiation. Genome-wide analyses demonstrate that BRD4 is recruited to the transcriptional start site of differentiation-induced genes. Unexpectedly, while promoter-proximal BRD4 occupancy correlated with gene expression, genes which displayed moderate expression and promoter-proximal BRD4 occupancy were most highly regulated and sensitive to BRD4 inhibition. Therefore, we examined distal BRD4 occupancy and uncovered a specific co-localization of BRD4 with the transcription factors C/EBPb, TEAD1, FOSL2 and JUND at putative osteoblast-specific enhancers. These findings reveal the intricacies of lineage specification and provide new insight into the context-dependent functions of BRD4. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Aptamer-Immobilized Surface Plasmon Resonance Biosensor for Rapid and Sensitive Determination of Virulence Determinant.

    PubMed

    Song, Myeong-Sub; Sekhon, Simranjeet Singh; Shin, Woo-Ri; Rhee, Sung-Keun; Ko, Jung Ho; Kim, Sang Yong; Min, Jiho; Ahn, Ji-Young; Kim, Yang-Hoon

    2018-05-01

    Shigella sonnei isolate invasion plasmid antigen protein, IpaH, was successfully expressed in recombinant overexpression bacterial system. The soluble expression IpaH was enhanced with molecular chaperon co-expressed environment. Specific aptamer IpaH17 was isolated through the SELEX process and showed fM binding affinity. IpaH17-SPR biosensor platform was involved to verify the binding sensitivity and specificity. The IpaH concentration dependent IpaH17-SPR sensor response was highly linear with a linear regression constant of 99.4% in the range between 0 and 100 ng/mL. In addition, S. sonnei revealed the specific RU value and detected in a real-time manner within 1 hour. Our study indicated that IpaH17-SPR sensor can allow for rapid, sensitive and specific determination of Shigella sonnei virulent factor.

  1. Enhancer activity of Helitron in sericin-1 gene promoter from Bombyx mori.

    PubMed

    Huang, Ke; Li, Chun-Feng; Wu, Jie; Wei, Jun-Hong; Zou, Yong; Han, Min-Jin; Zhou, Ze-Yang

    2016-06-01

    Sericin is a kind of water-soluble protein expressed specifically in the middle silk gland of Bombyx mori. When the sericin-1 gene promoter was cloned and a transgenic vector was constructed to express a foreign protein, a specific Helitron, Bmhel-8, was identified in the sericin-1 gene promoter sequence in some genotypes of Bombyx mori and Bombyx mandarina. Given that the Bmhel-8 Helitron transposon was present only in some genotypes, it could be the source of allelic variation in the sericin-1 promoter. The length of the sericin-1 promoter sequence is approximately 1063 or 643 bp. The larger size of the sequence or allele is ascribed to the presence of Bmhel-8. Silkworm genotypes can be homozygous for either the shorter or larger promoter sequence or heterozygous, containing both alleles. Bmhel-8 in the sericin-1 promoter exhibits enhancer activity, as demonstrated by a dual-luciferase reporter system in BmE cell lines. Furthermore, Bmhel-8 displays enhancer activity in a sericin-1 promoter-driven gene expression system but does not regulate the tissue-specific expression of sericin-1. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  2. Quantified Event Automata: Towards Expressive and Efficient Runtime Monitors

    NASA Technical Reports Server (NTRS)

    Barringer, Howard; Falcone, Ylies; Havelund, Klaus; Reger, Giles; Rydeheard, David

    2012-01-01

    Runtime verification is the process of checking a property on a trace of events produced by the execution of a computational system. Runtime verification techniques have recently focused on parametric specifications where events take data values as parameters. These techniques exist on a spectrum inhabited by both efficient and expressive techniques. These characteristics are usually shown to be conflicting - in state-of-the-art solutions, efficiency is obtained at the cost of loss of expressiveness and vice-versa. To seek a solution to this conflict we explore a new point on the spectrum by defining an alternative runtime verification approach.We introduce a new formalism for concisely capturing expressive specifications with parameters. Our technique is more expressive than the currently most efficient techniques while at the same time allowing for optimizations.

  3. Cell-Type Specific Inactivation of Hippocampal CA1 Disrupts Location-Dependent Object Recognition in the Mouse

    ERIC Educational Resources Information Center

    Haettig, Jakob; Sun, Yanjun; Wood, Marcelo A.; Xu, Xiangmin

    2013-01-01

    The allatostatin receptor (AlstR)/ligand inactivation system enables potent regulation of neuronal circuit activity. To examine how different cell types participate in memory formation, we have used this system through Cre-directed, cell-type specific expression in mouse hippocampal CA1 in vivo and examined functional effects of inactivation of…

  4. Identification of germline transcriptional regulatory elements in Aedes aegypti.

    PubMed

    Akbari, Omar S; Papathanos, Philippos A; Sandler, Jeremy E; Kennedy, Katie; Hay, Bruce A

    2014-02-04

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UD(MEL), and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  5. Identification of germline transcriptional regulatory elements in Aedes aegypti

    NASA Astrophysics Data System (ADS)

    Akbari, Omar S.; Papathanos, Philippos A.; Sandler, Jeremy E.; Kennedy, Katie; Hay, Bruce A.

    2014-02-01

    The mosquito Aedes aegypti is the principal vector for the yellow fever and dengue viruses, and is also responsible for recent outbreaks of the alphavirus chikungunya. Vector control strategies utilizing engineered gene drive systems are being developed as a means of replacing wild, pathogen transmitting mosquitoes with individuals refractory to disease transmission, or bringing about population suppression. Several of these systems, including Medea, UDMEL, and site-specific nucleases, which can be used to drive genes into populations or bring about population suppression, utilize transcriptional regulatory elements that drive germline-specific expression. Here we report the identification of multiple regulatory elements able to drive gene expression specifically in the female germline, or in the male and female germline, in the mosquito Aedes aegypti. These elements can also be used as tools with which to probe the roles of specific genes in germline function and in the early embryo, through overexpression or RNA interference.

  6. Redirecting Specificity of T cells Using the Sleeping Beauty System to Express Chimeric Antigen Receptors by Mix-and-Matching of VL and VH Domains Targeting CD123+ Tumors.

    PubMed

    Thokala, Radhika; Olivares, Simon; Mi, Tiejuan; Maiti, Sourindra; Deniger, Drew; Huls, Helen; Torikai, Hiroki; Singh, Harjeet; Champlin, Richard E; Laskowski, Tamara; McNamara, George; Cooper, Laurence J N

    2016-01-01

    Adoptive immunotherapy infusing T cells with engineered specificity for CD19 expressed on B- cell malignancies is generating enthusiasm to extend this approach to other hematological malignancies, such as acute myelogenous leukemia (AML). CD123, or interleukin 3 receptor alpha, is overexpressed on most AML and some lymphoid malignancies, such as acute lymphocytic leukemia (ALL), and has been an effective target for T cells expressing chimeric antigen receptors (CARs). The prototypical CAR encodes a VH and VL from one monoclonal antibody (mAb), coupled to a transmembrane domain and one or more cytoplasmic signaling domains. Previous studies showed that treatment of an experimental AML model with CD123-specific CAR T cells was therapeutic, but at the cost of impaired myelopoiesis, highlighting the need for systems to define the antigen threshold for CAR recognition. Here, we show that CARs can be engineered using VH and VL chains derived from different CD123-specific mAbs to generate a panel of CAR+ T cells. While all CARs exhibited specificity to CD123, one VH and VL combination had reduced lysis of normal hematopoietic stem cells. This CAR's in vivo anti-tumor activity was similar whether signaling occurred via chimeric CD28 or CD137, prolonging survival in both AML and ALL models. Co-expression of inducible caspase 9 eliminated CAR+ T cells. These data help support the use of CD123-specific CARs for treatment of CD123+ hematologic malignancies.

  7. SEPAC flight software detailed design specifications, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The detailed design specifications (as built) for the SEPAC Flight Software are defined. The design includes a description of the total software system and of each individual module within the system. The design specifications describe the decomposition of the software system into its major components. The system structure is expressed in the following forms: the control-flow hierarchy of the system, the data-flow structure of the system, the task hierarchy, the memory structure, and the software to hardware configuration mapping. The component design description includes details on the following elements: register conventions, module (subroutines) invocaton, module functions, interrupt servicing, data definitions, and database structure.

  8. Structured representation for requirements and specifications

    NASA Technical Reports Server (NTRS)

    Cohen, Gerald C.; Fisher, Gene; Frincke, Deborah; Wolber, Dave

    1991-01-01

    This document was generated in support of NASA contract NAS1-18586, Design and Validation of Digital Flight Control Systems suitable for Fly-By-Wire Applications, Task Assignment 2. Task 2 is associated with a formal representation of requirements and specifications. In particular, this document contains results associated with the development of a Wide-Spectrum Requirements Specification Language (WSRSL) that can be used to express system requirements and specifications in both stylized and formal forms. Included with this development are prototype tools to support the specification language. In addition a preliminary requirements specification methodology based on the WSRSL has been developed. Lastly, the methodology has been applied to an Advanced Subsonic Civil Transport Flight Control System.

  9. Specificity in cancer immunotherapy.

    PubMed

    Schietinger, Andrea; Philip, Mary; Schreiber, Hans

    2008-10-01

    From the earliest days in the field of tumor immunology three questions have been asked: do cancer cells express tumor-specific antigens, does the immune system recognize these antigens and if so, what is their biochemical nature? We now know that truly tumor-specific antigens exist, that they are caused by somatic mutations, and that these antigens can induce both humoral and cell-mediated immune responses. Because tumor-specific antigens are exclusively expressed by the cancer cell and are often crucial for tumorigenicity, they are ideal targets for anti-cancer immunotherapy. Nevertheless, the antigens that are targeted today by anti-tumor immunotherapy are not tumor-specific antigens, but antigens that are normal molecules also expressed by normal tissues (so-called "tumor-associated" antigens). If tumor-specific antigens exist and are ideal targets for immunotherapy, why are they not being targeted? In this review, we summarize current knowledge of tumor-specific antigens: their identification, immunological relevance and clinical use. We discuss novel tumor-specific epitopes and propose new approaches that could improve the success of cancer immunotherapy, especially for the treatment of solid tumors.

  10. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation.

    PubMed

    Obier, Nadine; Bonifer, Constanze

    2016-11-01

    Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development. © 2016 Federation of European Biochemical Societies.

  11. A novel multi-network approach reveals tissue-specific cellular modulators of fibrosis in systemic sclerosis.

    PubMed

    Taroni, Jaclyn N; Greene, Casey S; Martyanov, Viktor; Wood, Tammara A; Christmann, Romy B; Farber, Harrison W; Lafyatis, Robert A; Denton, Christopher P; Hinchcliff, Monique E; Pioli, Patricia A; Mahoney, J Matthew; Whitfield, Michael L

    2017-03-23

    Systemic sclerosis (SSc) is a multi-organ autoimmune disease characterized by skin fibrosis. Internal organ involvement is heterogeneous. It is unknown whether disease mechanisms are common across all involved affected tissues or if each manifestation has a distinct underlying pathology. We used consensus clustering to compare gene expression profiles of biopsies from four SSc-affected tissues (skin, lung, esophagus, and peripheral blood) from patients with SSc, and the related conditions pulmonary fibrosis (PF) and pulmonary arterial hypertension, and derived a consensus disease-associate signature across all tissues. We used this signature to query tissue-specific functional genomic networks. We performed novel network analyses to contrast the skin and lung microenvironments and to assess the functional role of the inflammatory and fibrotic genes in each organ. Lastly, we tested the expression of macrophage activation state-associated gene sets for enrichment in skin and lung using a Wilcoxon rank sum test. We identified a common pathogenic gene expression signature-an immune-fibrotic axis-indicative of pro-fibrotic macrophages (MØs) in multiple tissues (skin, lung, esophagus, and peripheral blood mononuclear cells) affected by SSc. While the co-expression of these genes is common to all tissues, the functional consequences of this upregulation differ by organ. We used this disease-associated signature to query tissue-specific functional genomic networks to identify common and tissue-specific pathologies of SSc and related conditions. In contrast to skin, in the lung-specific functional network we identify a distinct lung-resident MØ signature associated with lipid stimulation and alternative activation. In keeping with our network results, we find distinct MØ alternative activation transcriptional programs in SSc-associated PF lung and in the skin of patients with an "inflammatory" SSc gene expression signature. Our results suggest that the innate immune system is central to SSc disease processes but that subtle distinctions exist between tissues. Our approach provides a framework for examining molecular signatures of disease in fibrosis and autoimmune diseases and for leveraging publicly available data to understand common and tissue-specific disease processes in complex human diseases.

  12. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks

    PubMed Central

    Marbach, Daniel; Roy, Sushmita; Ay, Ferhat; Meyer, Patrick E.; Candeias, Rogerio; Kahveci, Tamer; Bristow, Christopher A.; Kellis, Manolis

    2012-01-01

    Gaining insights on gene regulation from large-scale functional data sets is a grand challenge in systems biology. In this article, we develop and apply methods for transcriptional regulatory network inference from diverse functional genomics data sets and demonstrate their value for gene function and gene expression prediction. We formulate the network inference problem in a machine-learning framework and use both supervised and unsupervised methods to predict regulatory edges by integrating transcription factor (TF) binding, evolutionarily conserved sequence motifs, gene expression, and chromatin modification data sets as input features. Applying these methods to Drosophila melanogaster, we predict ∼300,000 regulatory edges in a network of ∼600 TFs and 12,000 target genes. We validate our predictions using known regulatory interactions, gene functional annotations, tissue-specific expression, protein–protein interactions, and three-dimensional maps of chromosome conformation. We use the inferred network to identify putative functions for hundreds of previously uncharacterized genes, including many in nervous system development, which are independently confirmed based on their tissue-specific expression patterns. Last, we use the regulatory network to predict target gene expression levels as a function of TF expression, and find significantly higher predictive power for integrative networks than for motif or ChIP-based networks. Our work reveals the complementarity between physical evidence of regulatory interactions (TF binding, motif conservation) and functional evidence (coordinated expression or chromatin patterns) and demonstrates the power of data integration for network inference and studies of gene regulation at the systems level. PMID:22456606

  13. Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins.

    PubMed

    Pombo, Marina A; Zheng, Yi; Fernandez-Pozo, Noe; Dunham, Diane M; Fei, Zhangjun; Martin, Gregory B

    2014-01-01

    Plants have two related immune systems to defend themselves against pathogen attack. Initially,pattern-triggered immunity is activated upon recognition of microbe-associated molecular patterns by pattern recognition receptors. Pathogenic bacteria deliver effector proteins into the plant cell that interfere with this immune response and promote disease. However, some plants express resistance proteins that detect the presence of specific effectors leading to a robust defense response referred to as effector-triggered immunity. The interaction of tomato with Pseudomonas syringae pv. tomato is an established model system for understanding the molecular basis of these plant immune responses. We apply high-throughput RNA sequencing to this pathosystem to identify genes whose expression changes specifically during pattern-triggered or effector-triggered immunity. We then develop reporter genes for each of these responses that will enable characterization of the host response to the large collection of P. s. pv. tomato strains that express different combinations of effectors. Virus-induced gene silencing of 30 of the effector-triggered immunity-specific genes identifies Epk1 which encodes a predicted protein kinase from a family previously unknown to be involved in immunity. Knocked-down expression of Epk1 compromises effector-triggered immunity triggered by three bacterial effectors but not by effectors from non-bacterial pathogens. Epistasis experiments indicate that Epk1 acts upstream of effector-triggered immunity-associated MAP kinase signaling. Using RNA-seq technology we identify genes involved in specific immune responses. A functional genomics screen led to the discovery of Epk1, a novel predicted protein kinase required for plant defense activation upon recognition of three different bacterial effectors.

  14. Imaging and targeted therapy of pancreatic ductal adenocarcinoma using the theranostic sodium iodide symporter (NIS) gene

    PubMed Central

    Trajkovic-Arsic, Marija; Klutz, Kathrin; Braren, Rickmer; Schwaiger, Markus; Nelson, Peter J.; Ogris, Manfred; Wagner, Ernst; Siveke, Jens T.; Spitzweg, Christine

    2017-01-01

    The theranostic sodium iodide symporter (NIS) gene allows detailed molecular imaging of transgene expression and application of therapeutic radionuclides. As a crucial step towards clinical application, we investigated tumor specificity and transfection efficiency of epidermal growth factor receptor (EGFR)-targeted polyplexes as systemic NIS gene delivery vehicles in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC) that closely reflects human disease. PDAC was induced in mice by pancreas-specific activation of constitutively active KrasG12D and deletion of Trp53. We used tumor-targeted polyplexes (LPEI-PEG-GE11/NIS) based on linear polyethylenimine, shielded by polyethylene glycol and coupled with the EGFR-specific peptide ligand GE11, to target a NIS-expressing plasmid to high EGFR-expressing PDAC. In vitro iodide uptake studies in cell explants from murine EGFR-positive and EGFR-ablated PDAC lesions demonstrated high transfection efficiency and EGFR-specificity of LPEI-PEG-GE11/NIS. In vivo 123I gamma camera imaging and three-dimensional high-resolution 124I PET showed significant tumor-specific accumulation of radioiodide after systemic LPEI-PEG-GE11/NIS injection. Administration of 131I in LPEI-PEG-GE11/NIS-treated mice resulted in significantly reduced tumor growth compared to controls as determined by magnetic resonance imaging, though survival was not significantly prolonged. This study opens the exciting prospect of NIS-mediated radionuclide imaging and therapy of PDAC after systemic non-viral NIS gene delivery. PMID:28380420

  15. [Facial expressions of negative emotions in clinical interviews: The development, reliability and validity of a categorical system for the attribution of functions to facial expressions of negative emotions].

    PubMed

    Bock, Astrid; Huber, Eva; Peham, Doris; Benecke, Cord

    2015-01-01

    The development (Study 1) and validation (Study 2) of a categorical system for the attribution of facial expressions of negative emotions to specific functions. The facial expressions observed inOPDinterviews (OPD-Task-Force 2009) are coded according to the Facial Action Coding System (FACS; Ekman et al. 2002) and attributed to categories of basic emotional displays using EmFACS (Friesen & Ekman 1984). In Study 1 we analyze a partial sample of 20 interviews and postulate 10 categories of functions that can be arranged into three main categories (interactive, self and object). In Study 2 we rate the facial expressions (n=2320) from the OPD interviews (10 minutes each interview) of 80 female subjects (16 healthy, 64 with DSM-IV diagnosis; age: 18-57 years) according to the categorical system and correlate them with problematic relationship experiences (measured with IIP,Horowitz et al. 2000). Functions of negative facial expressions can be attributed reliably and validly with the RFE-Coding System. The attribution of interactive, self-related and object-related functions allows for a deeper understanding of the emotional facial expressions of patients with mental disorders.

  16. Tissue-specifically regulated site-specific excision of selectable marker genes in bivalent insecticidal, genetically-modified rice.

    PubMed

    Hu, Zhan; Ding, Xuezhi; Hu, Shengbiao; Sun, Yunjun; Xia, Liqiu

    2013-12-01

    Marker-free, genetically-modified rice was created by the tissue-specifically regulated Cre/loxP system, in which the Cre recombinase gene and hygromycin phosphotransferase gene (hpt) were flanked by two directly oriented loxP sites. Cre expression was activated by the tissue-specific promoter OsMADS45 in flower or napin in seed, resulting in simultaneous excision of the recombinase and marker genes. Segregation of T1 progeny was performed to select recombined plants. The excision was confirmed by PCR, Southern blot and sequence analyses indicating that efficiency varied from 10 to 53 % for OsMADS45 and from 12 to 36 % for napin. The expression of cry1Ac and vip3A was detected by RT-PCR analysis in marker-free transgenic rice. These results suggested that our tissue-specifically regulated Cre/loxP system could auto-excise marker genes from transgenic rice and alleviate public concerns about the security of GM crops.

  17. Adenovirus vector covalently conjugated to polyethylene glycol with a cancer-specific promoter suppresses the tumor growth through systemic administration.

    PubMed

    Yao, Xinglei; Yoshioka, Yasuo; Morishige, Tomohiro; Eto, Yusuke; Narimatsu, Shogo; Mizuguchi, Hiroyuki; Mukai, Yohei; Okada, Naoki; Nakagawa, Shinsaku

    2010-01-01

    Cancer gene therapy with adenovirus vectors (Adv) is limited to local administration because systemic administration of Adv produces a weak therapeutic effect and severe side effects. Previously, we generated a dual cancer-specific Adv system by using Adv covalently conjugated to polyethylene glycol (PEG) for transductional targeting and the telomere reverse transcriptase (TERT) promoter as a cancer-specific promoter for transcriptional targeting (PEG-Ad-TERT). We demonstrated that systemic administration of PEG-Ad-TERT showed superior antitumor effects against lung metastatic cancer with negligible side effects. Here, we investigated the therapeutic efficacy of systemic administration of PEG-Ad-TERT for the treatment of primary tumors. We first evaluated the transgene expression of PEG-Ad-TERT containing the luciferase gene (PEG-Ad-TERT/Luc) in primary tumors. Systemic administration of PEG-Ad-TERT/Luc resulted high transgene expression, similar to that observed in tumors for the conventional cytomegalovirus (CMV) promoter-driven Adv containing the luciferase gene (Ad-CMV/Luc). By comparison, transgene expression was 2500-fold lower than that of Ad-CMV/Luc in liver. We then examined the therapeutic effect of systemic administration of PEG-Ad-TERT containing the herpes simplex virus thymidine kinase (HSVtk) gene (PEG-Ad-TERT/HSVtk) for the treatment of primary tumors. We showed that PEG-Ad-TERT/HSVtk produced a notable antitumor effect against primary tumors with negligible side effects. These results demonstrated that PEG-Ad-TERT can be regarded as a prototype Adv with suitable efficacy and safety for systemic cancer gene therapy against both metastatic and primary tumors.

  18. Phenotypically silent Cre recombination within the postnatal ventricular conduction system.

    PubMed

    Bhattacharyya, Samadrita; Bhakta, Minoti; Munshi, Nikhil Vilas

    2017-01-01

    The cardiac conduction system (CCS) is composed of specialized cardiomyocytes that initiate and maintain cardiac rhythm. Any perturbation to the normal sequence of electrical events within the heart can result in cardiac arrhythmias. To understand how cardiac rhythm is established at the molecular level, several genetically modified mouse lines expressing Cre recombinase within specific CCS compartments have been created. In general, Cre driver lines have been generated either by homologous recombination of Cre into an endogenous locus or Cre expression driven by a randomly inserted transgene. However, haploinsufficiency of the endogenous gene compromises the former approach, while position effects negatively impact the latter. To address these limitations, we generated a Cre driver line for the ventricular conduction system (VCS) that preserves endogenous gene expression by targeting the Contactin2 (Cntn2) 3' untranslated region (3'UTR). Here we show that Cntn23'UTR-IRES-Cre-EGFP/+ mice recombine floxed alleles within the VCS and that Cre expression faithfully recapitulates the spatial distribution of Cntn2 within the heart. We further demonstrate that Cre expression initiates after birth with preservation of native Cntn2 protein. Finally, we show that Cntn23'UTR-IRES-Cre-EGFP/+ mice maintain normal cardiac mechanical and electrical function. Taken together, our results establish a novel VCS-specific Cre driver line without the adverse consequences of haploinsufficiency or position effects. We expect that our new mouse line will add to the accumulating toolkit of CCS-specific mouse reagents and aid characterization of the cell-autonomous molecular circuitry that drives VCS maintenance and function.

  19. Elimination of endogenous aberrant kappa chain transcripts from sp2/0-derived hybridoma cells by specific ribozyme cleavage: utility in genetic therapy of HIV-1 infections.

    PubMed Central

    Duan, L; Pomerantz, R J

    1994-01-01

    The pooled degenerate-primer polymerase chain reaction (PCR) technology is now widely used in the amplification and cloning of murine hybridoma-specific immunoglobulin gene cDNAs. The design of primers is mainly based on the highly conserved 5' terminus of immunoglobulin gene variable regions and the constant region in the 3' terminus. Of note, most murine hybridoma cell lines are derived from the Sp2/0 cell line, which is demonstrated to express endogenous aberrant kappa chains (abV kappa). This high-level endogenous abV kappa mixes with specific kappa chains in the hybridomas and interferes with the efficiency of the reverse transcriptase (RT)-PCR cloning strategy. In this report, during the cloning of murine anti-human immunodeficiency virus type I (HIV-1) hybridoma immunoglobulin cDNAs, a specific primer-PCR screening system was developed, based on the abV kappa complementarity-defining region (CDR), to eliminate abV kappa-carrying plasmids. Furthermore, an abV kappa sequence-specific derived ribozyme was developed and packaged in a retroviral expression vector system. This abV kappa ribozyme can be transduced into different murine hybridomas, and expressed intracellularly to potently eliminate endogenous abV kappa RNA. Images PMID:7816635

  20. Temporal identity in axonal target layer recognition.

    PubMed

    Petrovic, Milan; Hummel, Thomas

    2008-12-11

    The segregation of axon and dendrite projections into distinct synaptic layers is a fundamental principle of nervous system organization and the structural basis for information processing in the brain. Layer-specific recognition molecules that allow projecting neurons to stabilize transient contacts and initiate synaptogenesis have been identified. However, most of the neuronal cell-surface molecules critical for layer organization are expressed broadly in the developing nervous system, raising the question of how these so-called permissive adhesion molecules support synaptic specificity. Here we show that the temporal expression dynamics of the zinc-finger protein sequoia is the major determinant of Drosophila photoreceptor connectivity into distinct synaptic layers. Neighbouring R8 and R7 photoreceptors show consecutive peaks of elevated sequoia expression, which correspond to their sequential target-layer innervation. Loss of sequoia in R7 leads to a projection switch into the R8 recipient layer, whereas a prolonged expression in R8 induces a redirection of their axons into the R7 layer. The sequoia-induced axon targeting is mediated through the ubiquitously expressed Cadherin-N cell adhesion molecule. Our data support a model in which recognition specificity during synaptic layer formation is generated through a temporally restricted axonal competence to respond to broadly expressed adhesion molecules. Because developing neurons innervating the same target area often project in a distinct, birth-order-dependent sequence, temporal identity seems to contain crucial information in generating not only cell type diversity during neuronal division but also connection diversity of projecting neurons.

  1. ClinData Express – A Metadata Driven Clinical Research Data Management System for Secondary Use of Clinical Data

    PubMed Central

    Li, Zuofeng; Wen, Jingran; Zhang, Xiaoyan; Wu, Chunxiao; Li, Zuogao; Liu, Lei

    2012-01-01

    Aim to ease the secondary use of clinical data in clinical research, we introduce a metadata driven web-based clinical data management system named ClinData Express. ClinData Express is made up of two parts: 1) m-designer, a standalone software for metadata definition; 2) a web based data warehouse system for data management. With ClinData Express, what the researchers need to do is to define the metadata and data model in the m-designer. The web interface for data collection and specific database for data storage will be automatically generated. The standards used in the system and the data export modular make sure of the data reuse. The system has been tested on seven disease-data collection in Chinese and one form from dbGap. The flexibility of system makes its great potential usage in clinical research. The system is available at http://code.google.com/p/clindataexpress. PMID:23304327

  2. Deciphering defective amelogenesis using in vitro culture systems.

    PubMed

    Arinawati, Dian Yosi; Miyoshi, Keiko; Tanimura, Ayako; Horiguchi, Taigo; Hagita, Hiroko; Noma, Takafumi

    2018-04-01

    The conventional two-dimensional (2D) in vitro culture system is frequently used to analyze the gene expression with or without extracellular signals. However, the cells derived from primary culture and cell lines frequently deviate the gene expression profile compared to the corresponding in vivo samples, which sometimes misleads the actual gene regulation in vivo. To overcome this gap, we developed the comparative 2D and 3D in vitro culture systems and applied them to the genetic study of amelogenesis imperfecta (AI) as a model. Recently, we found specificity protein 6 (Sp6) mutation in an autosomal-recessive AI rat that was previously named AMI. We constructed 3D structure of ARE-B30 cells (AMI-derived rat dental epithelial cells) or G5 (control wild type cells) combined with RPC-C2A cells (rat pulp cell line) separated by the collagen membrane, while in 2D structure, ARE-B30 or G5 was cultured with or without the collagen membrane. Comparative analysis of amelogenesis-related gene expression in ARE-B30 and G5 using our 2D and 3D in vitro systems revealed distinct expression profiles, showing the causative outcomes. Bone morphogenetic protein 2 and follistatin were reciprocally expressed in G5, but not in ARE-B30 cells. All-or-none expression of amelotin, kallikrein-related peptidase 4, and nerve growth factor receptor was observed in both cell types. In conclusion, our in vitro culture systems detected the phenotypical differences in the expression of the stage-specific amelogenesis-related genes. Parallel analysis with 2D and 3D culture systems may provide a platform to understand the molecular basis for defective amelogenesis caused by Sp6 mutation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Representation and presentation of requirements knowledge

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Feather, Martin S.; Harris, David R.

    1992-01-01

    An approach to representation and presentation of knowledge used in the ARIES, an experimental requirements/specification environment, is described. The approach applies the notion of a representation architecture to the domain of software engineering and incorporates a strong coupling to a transformation system. It is characterized by a single highly expressive underlying representation, interfaced simultaneously to multiple presentations, each with notations of differing degrees of expressivity. This enables analysts to use multiple languages for describing systems and have these descriptions yield a single consistent model of the system.

  4. Analysis of Structure and Specific Functional Groups Involved in Acetylcholinesterase Catalysis and Inhibition

    DTIC Science & Technology

    1992-12-15

    et al., 1990). 2. SRpodoptera frugiperda (Sf9. Cells were typically grown in 250 mL of medium in a 500-mL spinner flask with slow stirring at 27"C in...reasonably good expression systems in Spodoptera for preparing large quantities of enzyme. The enzymes prepared from the baculovirus-Sjodo tera system were...4Standard Errors) for Wild-Type and Mutant Acetylcholinesterases Expressed in a Baculovirus- Spodoptera System’ enzyme 10’K, (M) Km tl/K. .. t 101K

  5. REEPs Are Membrane Shaping Adapter Proteins That Modulate Specific G Protein-Coupled Receptor Trafficking by Affecting ER Cargo Capacity

    PubMed Central

    Ho, Vincent K.; Angelotti, Timothy

    2013-01-01

    Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins. Therefore, some REEPs can be further described as ER membrane shaping adapter proteins. PMID:24098485

  6. 3D heterogeneous islet organoid generation from human embryonic stem cells using a novel engineered hydrogel platform.

    PubMed

    Candiello, Joseph; Grandhi, Taraka Sai Pavan; Goh, Saik Kia; Vaidya, Vimal; Lemmon-Kishi, Maya; Eliato, Kiarash Rahmani; Ros, Robert; Kumta, Prashant N; Rege, Kaushal; Banerjee, Ipsita

    2018-05-25

    Organoids, which exhibit spontaneous organ specific organization, function, and multi-cellular complexity, are in essence the in vitro reproduction of specific in vivo organ systems. Recent work has demonstrated human pluripotent stem cells (hPSCs) as a viable regenerative cell source for tissue-specific organoid engineering. This is especially relevant for engineering islet organoids, due to the recent advances in generating functional beta-like cells from human pluripotent stem cells. In this study, we report specific engineering of regenerative islet organoids of precise size and cellular heterogeneity, using a novel hydrogel system, Amikagel. Amikagel facilitated controlled and spontaneous aggregation of human embryonic stem cell derived pancreatic progenitor cells (hESC-PP) into robust homogeneous spheroids. This platform further allowed fine control over the integration of multiple cell populations to produce heterogeneous spheroids, which is a necessity for complex organoid engineering. Amikagel induced hESC-PP spheroid formation enhanced pancreatic islet-specific Pdx-1 and NKX6.1 gene and protein expression, while also increasing the percentage of committed population. hESC-PP spheroids were further induced towards mature beta-like cells which demonstrated increased Beta-cell specific INS1 gene and C-peptide protein expression along with functional insulin production in response to in vitro glucose challenge. Further integration of hESC-PP with biologically relevant supporting endothelial cells resulted in multicellular organoids which demonstrated spontaneous maturation towards islet-specific INS1 gene and C-peptide protein expression along with a significantly developed extracellular matrix support system. These findings establish Amikagel -facilitated platform ideal for islet organoid engineering. Copyright © 2018. Published by Elsevier Ltd.

  7. MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system

    PubMed Central

    Kapsimali, Marika; Kloosterman, Wigard P; de Bruijn, Ewart; Rosa, Frederic; Plasterk, Ronald HA; Wilson, Stephen W

    2007-01-01

    Background MicroRNA (miRNA) encoding genes are abundant in vertebrate genomes but very few have been studied in any detail. Bioinformatic tools allow prediction of miRNA targets and this information coupled with knowledge of miRNA expression profiles facilitates formulation of hypotheses of miRNA function. Although the central nervous system (CNS) is a prominent site of miRNA expression, virtually nothing is known about the spatial and temporal expression profiles of miRNAs in the brain. To provide an overview of the breadth of miRNA expression in the CNS, we performed a comprehensive analysis of the neuroanatomical expression profiles of 38 abundant conserved miRNAs in developing and adult zebrafish brain. Results Our results show miRNAs have a wide variety of different expression profiles in neural cells, including: expression in neuronal precursors and stem cells (for example, miR-92b); expression associated with transition from proliferation to differentiation (for example, miR-124); constitutive expression in mature neurons (miR-124 again); expression in both proliferative cells and their differentiated progeny (for example, miR-9); regionally restricted expression (for example, miR-222 in telencephalon); and cell-type specific expression (for example, miR-218a in motor neurons). Conclusion The data we present facilitate prediction of likely modes of miRNA function in the CNS and many miRNA expression profiles are consistent with the mutual exclusion mode of function in which there is spatial or temporal exclusion of miRNAs and their targets. However, some miRNAs, such as those with cell-type specific expression, are more likely to be co-expressed with their targets. Our data provide an important resource for future functional studies of miRNAs in the CNS. PMID:17711588

  8. Internal representations reveal cultural diversity in expectations of facial expressions of emotion.

    PubMed

    Jack, Rachael E; Caldara, Roberto; Schyns, Philippe G

    2012-02-01

    Facial expressions have long been considered the "universal language of emotion." Yet consistent cultural differences in the recognition of facial expressions contradict such notions (e.g., R. E. Jack, C. Blais, C. Scheepers, P. G. Schyns, & R. Caldara, 2009). Rather, culture--as an intricate system of social concepts and beliefs--could generate different expectations (i.e., internal representations) of facial expression signals. To investigate, they used a powerful psychophysical technique (reverse correlation) to estimate the observer-specific internal representations of the 6 basic facial expressions of emotion (i.e., happy, surprise, fear, disgust, anger, and sad) in two culturally distinct groups (i.e., Western Caucasian [WC] and East Asian [EA]). Using complementary statistical image analyses, cultural specificity was directly revealed in these representations. Specifically, whereas WC internal representations predominantly featured the eyebrows and mouth, EA internal representations showed a preference for expressive information in the eye region. Closer inspection of the EA observer preference revealed a surprising feature: changes of gaze direction, shown primarily among the EA group. For the first time, it is revealed directly that culture can finely shape the internal representations of common facial expressions of emotion, challenging notions of a biologically hardwired "universal language of emotion."

  9. Formal verification of automated teller machine systems using SPIN

    NASA Astrophysics Data System (ADS)

    Iqbal, Ikhwan Mohammad; Adzkiya, Dieky; Mukhlash, Imam

    2017-08-01

    Formal verification is a technique for ensuring the correctness of systems. This work focuses on verifying a model of the Automated Teller Machine (ATM) system against some specifications. We construct the model as a state transition diagram that is suitable for verification. The specifications are expressed as Linear Temporal Logic (LTL) formulas. We use Simple Promela Interpreter (SPIN) model checker to check whether the model satisfies the formula. This model checker accepts models written in Process Meta Language (PROMELA), and its specifications are specified in LTL formulas.

  10. Subcutaneous or oral immunization of mice with Lactococcus lactis expressing F4 fimbrial adhesin FaeG.

    PubMed

    Liu, Shujie; Li, Yongming; Xu, Ziwei; Wang, Yicheng

    2013-01-01

    Enterotoxigenic Escherichia coli (ETEC) is one of the most common causes of diarrhea in neonatal and postweaning piglets. Fimbrial adhesion of ETEC has been considered an important colonization factor with antigenicity. To safely and effectively deliver the F4 (K88) fimbrial adhesin FaeG to the immune system, we have previously constructed the secretory expression vector pNZ8112-faeG, and FaeG was produced in cytoplasmic form in Lactococcus lactis. In this work, BALB/c mice were immunized with recombinant L. lactis to further determine the immunogenicity of recombinant FaeG (rFaeG) via the subcutaneous or oral route. Subcutaneous immunization in mice with recombinant L. lactis induced a significant increase in the F4-specific serum IgG titer and the number of antibody-secreting cells (ASCs) in the spleen. Oral immunization of mice with recombinant L. lactis induced mucosal and systemic F4-specific immune responses and increased the number of ASCs in the spleen, mesenteric lymph nodes and Peyer's patches. High-dose (2.8 × 10(11) CFU) recombinant strains and adjuvant cholera toxin B subunit enhanced specific mucosal immune responses. The results suggest the feasibility of delivering rFaeG expressed in L. lactis to the immune system in order to induce an F4-specific immune response.

  11. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE PAGES

    Liang, Yan; Richardson, Sarah; Yan, Jingwei; ...

    2017-01-17

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  12. Endoribonuclease-Based Two-Component Repressor Systems for Tight Gene Expression Control in Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yan; Richardson, Sarah; Yan, Jingwei

    Tight control and multifactorial regulation of gene expression are important challenges in genetic engineering and are critical for the development of regulatory circuits. In meeting these challenges we will facilitate transgene expression regulation and support the fine-tuning of metabolic pathways to avoid the accumulation of undesired intermediates. By employing the endoribonuclease Csy4 and its recognition sequence from Pseudomonas aeruginosa and manipulating 5'UTR of mRNA, we developed a two-component expression–repression system to tightly control synthesis of transgene products. We demonstrated that this regulatory device was functional in monocotyledonous and dicotyledonous plant species, and showed that it can be used to repressmore » transgene expression by >400-fold and to synchronize transgene repression. In addition to tissue-specific transgene repression, this system offers stimuli-dependent expression control. Here, we identified 54 orthologous systems from various bacteria, using a bioinformatics approach and then validated in planta the activity for a few of those systems, demonstrating the potential diversity of such a two-component repressor system.« less

  13. Comprehensive RNA-Seq Expression Analysis of Sensory Ganglia with a Focus on Ion Channels and GPCRs in Trigeminal Ganglia

    PubMed Central

    Manteniotis, Stavros; Lehmann, Ramona; Flegel, Caroline; Vogel, Felix; Hofreuter, Adrian; Schreiner, Benjamin S. P.; Altmüller, Janine; Becker, Christian; Schöbel, Nicole; Hatt, Hanns; Gisselmann, Günter

    2013-01-01

    The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain. PMID:24260241

  14. Quantification of protein expression in cells and cellular subcompartments on immunohistochemical sections using a computer supported image analysis system.

    PubMed

    Braun, Martin; Kirsten, Robert; Rupp, Niels J; Moch, Holger; Fend, Falko; Wernert, Nicolas; Kristiansen, Glen; Perner, Sven

    2013-05-01

    Quantification of protein expression based on immunohistochemistry (IHC) is an important step for translational research and clinical routine. Several manual ('eyeballing') scoring systems are used in order to semi-quantify protein expression based on chromogenic intensities and distribution patterns. However, manual scoring systems are time-consuming and subject to significant intra- and interobserver variability. The aim of our study was to explore, whether new image analysis software proves to be sufficient as an alternative tool to quantify protein expression. For IHC experiments, one nucleus specific marker (i.e., ERG antibody), one cytoplasmic specific marker (i.e., SLC45A3 antibody), and one marker expressed in both compartments (i.e., TMPRSS2 antibody) were chosen. Stainings were applied on TMAs, containing tumor material of 630 prostate cancer patients. A pathologist visually quantified all IHC stainings in a blinded manner, applying a four-step scoring system. For digital quantification, image analysis software (Tissue Studio v.2.1, Definiens AG, Munich, Germany) was applied to obtain a continuous spectrum of average staining intensity. For each of the three antibodies we found a strong correlation of the manual protein expression score and the score of the image analysis software. Spearman's rank correlation coefficient was 0.94, 0.92, and 0.90 for ERG, SLC45A3, and TMPRSS2, respectively (p⟨0.01). Our data suggest that the image analysis software Tissue Studio is a powerful tool for quantification of protein expression in IHC stainings. Further, since the digital analysis is precise and reproducible, computer supported protein quantification might help to overcome intra- and interobserver variability and increase objectivity of IHC based protein assessment.

  15. FGF-2 deficiency does not influence FGF ligand and receptor expression during development of the nigrostriatal system.

    PubMed

    Ratzka, Andreas; Baron, Olga; Grothe, Claudia

    2011-01-01

    Secreted proteins of the fibroblast growth factor (FGF) family play important roles during development of various organ systems. A detailed knowledge of their temporal and spatial expression profiles, especially of closely related FGF family members, are essential to further identification of specific functions in distinct tissues. In the central nervous system dopaminergic neurons of the substantia nigra and their axonal projections into the striatum progressively degenerate in Parkinson's disease. In contrast, FGF-2 deficient mice display increased numbers of dopaminergic neurons. In this study, we determined the expression profiles of all 22 FGF-ligands and 10 FGF-receptor isoforms, in order to clarify, if FGF-2 deficiency leads to compensatory up-regulation of other FGFs in the nigrostriatal system. Three tissues, ventral mesencephalon (VM), striatum (STR) and as reference tissue spinal cord (SC) of wild-type and FGF-2 deficient mice at four developmental stages E14.5, P0, P28, and adult were comparatively analyzed by quantitative RT-PCR. As no differences between the genotypes were observed, a compensatory up-regulation can be excluded. Moreover, this analysis revealed that the majority of FGF-ligands (18/22) and FGF-receptors (9/10) are expressed during normal development of the nigrostriatal system and identified dynamic changes for some family members. By comparing relative expression level changes to SC reference tissue, general alterations in all 3 tissues, such as increased expression of FGF-1, -2, -22, FgfR-2c, -3c and decreased expression of FGF-13 during postnatal development were identified. Further, specific changes affecting only one tissue, such as increased FGF-16 (STR) or decreased FGF-17 (VM) expression, or two tissues, such as decreased expression of FGF-8 (VM, STR) and FGF-15 (SC, VM) were found. Moreover, 3 developmentally down-regulated FGFs (FGF-8b, FGF-15, FGF-17a) were functionally characterized by plasmid-based over-expression in dissociated E11.5 VM cell cultures, however, such a continuous exposure had no influence on the yield of dopaminergic neurons in vitro.

  16. A regulatory sequence from the retinoid X receptor γ gene directs expression to horizontal cells and photoreceptors in the embryonic chicken retina.

    PubMed

    Blixt, Maria K E; Hallböök, Finn

    2016-01-01

    Combining techniques of episomal vector gene-specific Cre expression and genomic integration using the piggyBac transposon system enables studies of gene expression-specific cell lineage tracing in the chicken retina. In this work, we aimed to target the retinal horizontal cell progenitors. A 208 bp gene regulatory sequence from the chicken retinoid X receptor γ gene (RXRγ208) was used to drive Cre expression. RXRγ is expressed in progenitors and photoreceptors during development. The vector was combined with a piggyBac "donor" vector containing a floxed STOP sequence followed by enhanced green fluorescent protein (EGFP), as well as a piggyBac helper vector for efficient integration into the host cell genome. The vectors were introduced into the embryonic chicken retina with in ovo electroporation. Tissue electroporation targets specific developmental time points and in specific structures. Cells that drove Cre expression from the regulatory RXRγ208 sequence excised the floxed STOP-sequence and expressed GFP. The approach generated a stable lineage with robust expression of GFP in retinal cells that have activated transcription from the RXRγ208 sequence. Furthermore, GFP was expressed in cells that express horizontal or photoreceptor markers when electroporation was performed between developmental stages 22 and 28. Electroporation of a stage 12 optic cup gave multiple cell types in accordance with RXRγ gene expression in the early retina. In this study, we describe an easy, cost-effective, and time-efficient method for testing regulatory sequences in general. More specifically, our results open up the possibility for further studies of the RXRγ-gene regulatory network governing the formation of photoreceptor and horizontal cells. In addition, the method presents approaches to target the expression of effector genes, such as regulators of cell fate or cell cycle progression, to these cells and their progenitor.

  17. Robo2 determines subtype-specific axonal projections of trigeminal sensory neurons

    PubMed Central

    Pan, Y. Albert; Choy, Margaret; Prober, David A.; Schier, Alexander F.

    2012-01-01

    How neurons connect to form functional circuits is central to the understanding of the development and function of the nervous system. In the somatosensory system, perception of sensory stimuli to the head requires specific connections between trigeminal sensory neurons and their many target areas in the central nervous system. Different trigeminal subtypes have specialized functions and downstream circuits, but it has remained unclear how subtype-specific axonal projection patterns are formed. Using zebrafish as a model system, we followed the development of two trigeminal sensory neuron subtypes: one that expresses trpa1b, a nociceptive channel important for sensing environmental chemicals; and a distinct subtype labeled by an islet1 reporter (Isl1SS). We found that Trpa1b and Isl1SS neurons have overall similar axon trajectories but different branching morphologies and distributions of presynaptic sites. Compared with Trpa1b neurons, Isl1SS neurons display reduced branch growth and synaptogenesis at the hindbrain-spinal cord junction. The subtype-specific morphogenesis of Isl1SS neurons depends on the guidance receptor Robo2. robo2 is preferentially expressed in the Isl1SS subset and inhibits branch growth and synaptogenesis. In the absence of Robo2, Isl1SS afferents acquire many of the characteristics of Trpa1b afferents. These results reveal that subtype-specific activity of Robo2 regulates subcircuit morphogenesis in the trigeminal sensory system. PMID:22190641

  18. Patterns of expression of position-dependent integrated transgenes in mouse embryo.

    PubMed Central

    Bonnerot, C; Grimber, G; Briand, P; Nicolas, J F

    1990-01-01

    The abilities to introduce foreign DNA into the genome of mice and to visualize gene expression at the single-cell level underlie a method for defining individual elements of a genetic program. We describe the use of an Escherichia coli lacZ reporter gene fused to the promoter of the gene for hypoxanthine phosphoribosyl transferase that is expressed in all tissues. Most transgenic mice (six of seven) obtained with this construct express the lacZ gene from the hypoxanthine phosphoribosyltransferase promoter. Unexpectedly, however, the expression is temporally and spatially regulated. Each transgenic line is characterized by a specific, highly reproducible pattern of lacZ expression. These results show that, for expression, the integrated construct must be complemented by elements of the genome. These elements exert dominant developmental control on the hypoxanthine phosphoribosyltransferase promoter. The expression patterns in some transgenic mice conform to a typological marker and in others to a subtle combination of typology and topography. These observations define discrete heterogeneities of cell types and of certain structures, particularly in the nervous system and in the mesoderm. This system opens opportunities for developmental studies by providing cellular, molecular, and genetic markers of cell types, cell states, and cells from developmental compartments. Finally this method illustrates that genes transduced or transposed to a different position in the genome acquire different spatiotemporal specificities, a result that has implications for evolution. Images PMID:1696727

  19. Alterations in the Ubiquitin Proteasome System in Persistent but Not Reversible Proteinuric Diseases

    PubMed Central

    Beeken, Maire; Lindenmeyer, Maja T.; Blattner, Simone M.; Radón, Victoria; Oh, Jun; Meyer, Tobias N.; Hildebrand, Diana; Schlüter, Hartmut; Reinicke, Anna T.; Knop, Jan-Hendrik; Vivekanandan-Giri, Anuradha; Münster, Silvia; Sachs, Marlies; Wiech, Thorsten; Pennathur, Subramaniam; Cohen, Clemens D.; Kretzler, Matthias; Stahl, Rolf A.K.

    2014-01-01

    Podocytes are the key cells affected in nephrotic glomerular kidney diseases, and they respond uniformly to injury with cytoskeletal rearrangement. In nephrotic diseases, such as membranous nephropathy and FSGS, persistent injury often leads to irreversible structural damage, whereas in minimal change disease, structural alterations are mostly transient. The factors leading to persistent podocyte injury are currently unknown. Proteolysis is an irreversible process and could trigger persistent podocyte injury through degradation of podocyte-specific proteins. We, therefore, analyzed the expression and functional consequence of the two most prominent proteolytic systems, the ubiquitin proteasome system (UPS) and the autophagosomal/lysosomal system, in persistent and transient podocyte injuries. We show that differential upregulation of both proteolytic systems occurs in persistent human and rodent podocyte injury. The expression of specific UPS proteins in podocytes differentiated children with minimal change disease from children with FSGS and correlated with poor clinical outcome. Degradation of the podocyte-specific protein α-actinin-4 by the UPS depended on oxidative modification in membranous nephropathy. Notably, the UPS was overwhelmed in podocytes during experimental glomerular disease, resulting in abnormal protein accumulation and compensatory upregulation of the autophagosomal/lysosomal system. Accordingly, inhibition of both proteolytic systems enhanced proteinuria in persistent nephrotic disease. This study identifies altered proteolysis as a feature of persistent podocyte injury. In the future, specific UPS proteins may serve as new biomarkers or therapeutic targets in persistent nephrotic syndrome. PMID:24722446

  20. Selective Infection of Antigen-Specific B Lymphocytes by Salmonella Mediates Bacterial Survival and Systemic Spreading of Infection

    PubMed Central

    de Wit, Jelle; Martinoli, Chiara; Zagato, Elena; Janssen, Hans; Jorritsma, Tineke; Bar-Ephraïm, Yotam E.; Rescigno, Maria; Neefjes, Jacques; van Ham, S. Marieke

    2012-01-01

    Background The bacterial pathogen Salmonella causes worldwide disease. A major route of intestinal entry involves M cells, providing access to B cell-rich Peyer’s Patches. Primary human B cells phagocytose Salmonella typhimurium upon recognition by the specific surface Ig receptor (BCR). As it is unclear how Salmonella disseminates systemically, we studied whether Salmonella can use B cells as a transport device for spreading. Methodology/Principal Findings Human primary B cells or Ramos cell line were incubated with GFP-expressing Salmonella. Intracellular survival and escape was studied in vitro by live cell imaging, flow cytometry and flow imaging. HEL-specific B cells were transferred into C57BL/6 mice and HEL-expressing Salmonella spreading in vivo was analyzed investigating mesenteric lymph nodes, spleen and blood. After phagocytosis by B cells, Salmonella survives intracellularly in a non-replicative state which is actively maintained by the B cell. Salmonella is later excreted followed by reproductive infection of other cell types. Salmonella-specific B cells thus act both as a survival niche and a reservoir for reinfection. Adoptive transfer of antigen-specific B cells before oral infection of mice showed that these B cells mediate in vivo systemic spreading of Salmonella to spleen and blood. Conclusions/Significance This is a first example of a pathogenic bacterium that abuses the antigen-specific cells of the adaptive immune system for systemic spreading for dissemination of infection. PMID:23209805

  1. Craniopharyngiomas express embryonic stem cell markers (SOX2, OCT4, KLF4, and SOX9) as pituitary stem cells but do not coexpress RET/GFRA3 receptors.

    PubMed

    Garcia-Lavandeira, Montserrat; Saez, Carmen; Diaz-Rodriguez, Esther; Perez-Romero, Sihara; Senra, Ana; Dieguez, Carlos; Japon, Miguel A; Alvarez, Clara V

    2012-01-01

    Adult stem cells maintain some markers expressed by embryonic stem cells and express other specific markers depending on the organ where they reside. Recently, stem/progenitor cells in the rodent and human pituitary have been characterized as expressing GFRA2/RET, PROP1, and stem cell markers such as SOX2 and OCT4 (GPS cells). Our objective was to detect other specific markers of the pituitary stem cells and to investigate whether craniopharyngiomas (CRF), a tumor potentially derived from Rathke's pouch remnants, express similar markers as normal pituitary stem cells. We conducted mRNA and Western blot studies in pituitary extracts, and immunohistochemistry and immunofluorescence on sections from normal rat and human pituitaries and 20 CRF (18 adamantinomatous and two papillary). Normal pituitary GPS stem cells localized in the marginal zone (MZ) express three key embryonic stem cell markers, SOX2, OCT4, and KLF4, in addition to SOX9 and PROP1 and β-catenin overexpression. They express the RET receptor and its GFRA2 coreceptor but also express the coreceptor GFRA3 that could be detected in the MZ of paraffin pituitary sections. CRF maintain the expression of SOX2, OCT4, KLF4, SOX9, and β-catenin. However, RET and GFRA3 expression was altered in CRF. In 25% (five of 20), both RET and GFRA3 were detected but not colocalized in the same cells. The other 75% (15 of 20) lose the expression of RET, GFRA3, or both proteins simultaneously. Human pituitary adult stem/progenitor cells (GPS) located in the MZ are characterized by expression of embryonic stem cell markers SOX2, OCT4, and KLF4 plus the specific pituitary embryonic factor PROP1 and the RET system. Redundancy in RET coreceptor expression (GFRA2 and GFRA3) suggest an important systematic function in their physiological behavior. CRF share the stem cell markers suggesting a common origin with GPS. However, the lack of expression of the RET/GFRA system could be related to the cell mislocation and deregulated growth of CRF.

  2. Cis-regulation of the amphioxus engrailed gene: insights into evolution of a muscle-specific enhancer.

    PubMed

    Beaster-Jones, Laura; Schubert, Michael; Holland, Linda Z

    2007-08-01

    To gain insights into the relation between evolution of cis-regulatory DNA and evolution of gene function, we identified tissue-specific enhancers of the engrailed gene of the basal chordate amphioxus (Branchiostoma floridae) and compared their ability to direct expression in both amphioxus and its nearest chordate relative, the tunicate Ciona intestinalis. In amphioxus embryos, the native engrailed gene is expressed in three domains - the eight most anterior somites, a few cells in the central nervous system (CNS) and a few ectodermal cells. In contrast, in C. intestinalis, in which muscle development is highly divergent, engrailed expression is limited to the CNS. To characterize the tissue-specific enhancers of amphioxus engrailed, we first showed that 7.8kb of upstream DNA of amphioxus engrailed directs expression to all three domains in amphioxus that express the native gene. We then identified the amphioxus engrailed muscle-specific enhancer as the 1.2kb region of upstream DNA with the highest sequence identity to the mouse en-2 jaw muscle enhancer. This amphioxus enhancer directed expression to both the somites in amphioxus and to the larval muscles in C. intestinalis. These results show that even though expression of the native engrailed has apparently been lost in developing C. intestinalis muscles, they express the transcription factors necessary to activate transcription from the amphioxus engrailed enhancer, suggesting that gene networks may not be completely disrupted if an individual component is lost.

  3. A novel system for constructing a recombinant highly-attenuated vaccinia virus strain (LC16m8) expressing foreign genes and its application for the generation of LC16m8-based vaccines against herpes simplex virus 2.

    PubMed

    Omura, Natsumi; Yoshikawa, Tomoki; Fujii, Hikaru; Shibamura, Miho; Inagaki, Takuya; Kato, Hirofumi; Egawa, Kazutaka; Harada, Shizuko; Yamada, Souichi; Takeyama, Haruko; Saijo, Masayuki

    2018-04-27

    A novel system was developed for generating a highly-attenuated vaccinia virus LC16m8 (m8, third generation smallpox vaccine) that expresses foreign genes. The innovations in this system are its excisable selection marker, specificity of the integration site of a gene of interest, and easy identification of clones with the fluorescent signal. Using this system, recombinant m8s, which expressed either herpes simplex virus 2 (HSV-2) glycoprotein B (gB)-, gD-, or both gB and gD (gB+gD) were developed, and their efficacy was evaluated. First, the induction of a specific IgG against these HSV-2 glycoproteins in mice infected with each of these recombinant m8s was confirmed with an immunofluorescence assay. Next, mice pre-infected with each of the recombinant m8s were infected with HSV-2 at the lethal dose to examine the vaccine efficacy. The fatality rate in mice pre-infected with either of the recombinant gB+gD- or gD-expressing m8s significantly decreased in comparison with that of the control. The survival rate in both male and female mice pre-infected with either of the recombinant gB+gD- and gD-expressing m8s increased to 100 % and 60 %, respectively, while most of the control mice died. In summary, this new system might be applicable for generating a novel m8-based vaccine.

  4. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research

    PubMed Central

    Kockel, Lutz; Huq, Lutfi M.; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E. S.; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M.; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E.; Chisholm, Townley W.; Kim, Seung K.

    2016-01-01

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila. However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. PMID:27527793

  5. A Drosophila LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research.

    PubMed

    Kockel, Lutz; Huq, Lutfi M; Ayyar, Anika; Herold, Emma; MacAlpine, Elle; Logan, Madeline; Savvides, Christina; Kim, Grace E S; Chen, Jiapei; Clark, Theresa; Duong, Trang; Fazel-Rezai, Vahid; Havey, Deanna; Han, Samuel; Jagadeesan, Ravi; Kim, Eun Soo Jackie; Lee, Diane; Lombardo, Kaelina; Piyale, Ida; Shi, Hansen; Stahr, Lydia; Tung, Dana; Tayvah, Uriel; Wang, Flora; Wang, Ja-Hon; Xiao, Sarah; Topper, Sydni M; Park, Sangbin; Rotondo, Cheryl; Rankin, Anne E; Chisholm, Townley W; Kim, Seung K

    2016-10-13

    Novel binary gene expression tools like the LexA-LexAop system could powerfully enhance studies of metabolism, development, and neurobiology in Drosophila However, specific LexA drivers for neuroendocrine cells and many other developmentally relevant systems remain limited. In a unique high school biology course, we generated a LexA-based enhancer trap collection by transposon mobilization. The initial collection provides a source of novel LexA-based elements that permit targeted gene expression in the corpora cardiaca, cells central for metabolic homeostasis, and other neuroendocrine cell types. The collection further contains specific LexA drivers for stem cells and other enteric cells in the gut, and other developmentally relevant tissue types. We provide detailed analysis of nearly 100 new LexA lines, including molecular mapping of insertions, description of enhancer-driven reporter expression in larval tissues, and adult neuroendocrine cells, comparison with established enhancer trap collections and tissue specific RNAseq. Generation of this open-resource LexA collection facilitates neuroendocrine and developmental biology investigations, and shows how empowering secondary school science can achieve research and educational goals. Copyright © 2016 Kockel et al.

  6. A human-specific mutation leads to the origin of a novel splice form of neuropsin (KLK8), a gene involved in learning and memory.

    PubMed

    Lu, Zhi-xiang; Peng, Jia; Su, Bing

    2007-10-01

    Neuropsin (kallikrein 8, KLK8) is a secreted-type serine protease preferentially expressed in the central nervous system and involved in learning and memory. Its splicing pattern is different in human and mouse, with the longer form (type II) only expressed in human. Sequence analysis suggested a recent origin of type II during primate evolution. Here we demonstrate that the type II form is absent in nonhuman primates, and is thus a human-specific splice form. With the use of an in vitro splicing assay, we show that a human-specific T to A mutation (c.71-127T>A) triggers the change of splicing pattern, leading to the origin of a novel splice form in the human brain. Using mutation assay, we prove that this mutation is not only necessary but also sufficient for type II expression. Our results demonstrate a molecular mechanism for the creation of novel proteins through alternative splicing in the central nervous system during human evolution. Copyright 2007 Wiley-Liss, Inc.

  7. Unique patterns of organization and migration of FGF-expressing cells during Drosophila morphogenesis.

    PubMed

    Du, Lijuan; Zhou, Amy; Patel, Akshay; Rao, Mishal; Anderson, Kelsey; Roy, Sougata

    2017-07-01

    Fibroblast growth factors (FGF) are essential signaling proteins that regulate diverse cellular functions in developmental and metabolic processes. In Drosophila, the FGF homolog, branchless (bnl) is expressed in a dynamic and spatiotemporally restricted pattern to induce branching morphogenesis of the trachea, which expresses the Bnl-receptor, breathless (btl). Here we have developed a new strategy to determine bnl- expressing cells and study their interactions with the btl-expressing cells in the range of tissue patterning during Drosophila development. To enable targeted gene expression specifically in the bnl expressing cells, a new LexA based bnl enhancer trap line was generated using CRISPR/Cas9 based genome editing. Analyses of the spatiotemporal expression of the reporter in various embryonic stages, larval or adult tissues and in metabolic hypoxia, confirmed its target specificity and versatility. With this tool, new bnl expressing cells, their unique organization and functional interactions with the btl-expressing cells were uncovered in a larval tracheoblast niche in the leg imaginal discs, in larval photoreceptors of the developing retina, and in the embryonic central nervous system. The targeted expression system also facilitated live imaging of simultaneously labeled Bnl sources and tracheal cells, which revealed a unique morphogenetic movement of the embryonic bnl- source. Migration of bnl- expressing cells may create a dynamic spatiotemporal pattern of the signal source necessary for the directional growth of the tracheal branch. The genetic tool and the comprehensive profile of expression, organization, and activity of various types of bnl-expressing cells described in this study provided us with an important foundation for future research investigating the mechanisms underlying Bnl signaling in tissue morphogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The Fanconi anemia/BRCA gene network in zebrafish: embryonic expression and comparative genomics.

    PubMed

    Titus, Tom A; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M; Frohnmayer, Jonathan D; Bremiller, Ruth A; Cañestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H

    2009-07-31

    Fanconi anemia (FA) is a genetic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn), and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions.

  9. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    PubMed Central

    Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.

    2008-01-01

    Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expressed during embryonic development in tissues that are disrupted in human patients by investigating fanc gene expression patterns. We found fanc gene maternal message, which can provide Fanc proteins to repair DNA damage encountered in rapid cleavage divisions. Zygotic expression was broad but especially strong in eyes, central nervous system and hematopoietic tissues. In the pectoral fin bud at hatching, fanc genes were expressed specifically in the apical ectodermal ridge, a signaling center for fin/limb development that may be relevant to the radius/thumb anomaly of FA patients. Hatching embryos expressed fanc genes strongly in the oral epithelium, a site of squamous cell carcinomas in FA patients. Larval and adult zebrafish expressed fanc genes in proliferative regions of the brain, which may be related to microcephaly in FA. Mature ovaries and testes expressed fanc genes in specific stages of oocyte and spermatocyte development, which may be related to DNA repair during homologous recombination in meiosis and to infertility in human patients. The intestine strongly expressed some fanc genes specifically in proliferative zones. Our results show that zebrafish has a complete complement of fanc genes in single copy and that these genes are expressed in zebrafish embryos and adults in proliferative tissues that are often affected in FA patients. These results support the notion that zebrafish offers an attractive experimental system to help unravel mechanisms relevant not only to FA, but also to breast cancer, given the involvement of fancj (brip1), fancn (palb2) and fancd1 (brca2) in both conditions. PMID:19101574

  10. Comparisons of MRI images, and auditory-related and vocal-related protein expressions in the brain of echolocation bats and rodents.

    PubMed

    Hsiao, Chun-Jen; Hsu, Chih-Hsiang; Lin, Ching-Lung; Wu, Chung-Hsin; Jen, Philip Hung-Sun

    2016-08-17

    Although echolocating bats and other mammals share the basic design of laryngeal apparatus for sound production and auditory system for sound reception, they have a specialized laryngeal mechanism for ultrasonic sound emissions as well as a highly developed auditory system for processing species-specific sounds. Because the sounds used by bats for echolocation and rodents for communication are quite different, there must be differences in the central nervous system devoted to producing and processing species-specific sounds between them. The present study examines the difference in the relative size of several brain structures and expression of auditory-related and vocal-related proteins in the central nervous system of echolocation bats and rodents. Here, we report that bats using constant frequency-frequency-modulated sounds (CF-FM bats) and FM bats for echolocation have a larger volume of midbrain nuclei (inferior and superior colliculi) and cerebellum relative to the size of the brain than rodents (mice and rats). However, the former have a smaller volume of the cerebrum and olfactory bulb, but greater expression of otoferlin and forkhead box protein P2 than the latter. Although the size of both midbrain colliculi is comparable in both CF-FM and FM bats, CF-FM bats have a larger cerebrum and greater expression of otoferlin and forkhead box protein P2 than FM bats. These differences in brain structure and protein expression are discussed in relation to their biologically relevant sounds and foraging behavior.

  11. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor.

    PubMed

    Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S

    2012-02-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.

  12. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor

    PubMed Central

    Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.

    2012-01-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659

  13. [Progress of genome engineering technology via clustered regularly interspaced short palindromic repeats--a review].

    PubMed

    Li, Hao; Qiu, Shaofu; Song, Hongbin

    2013-10-04

    In survival competition with phage, bacteria and archaea gradually evolved the acquired immune system--Clustered regularly interspaced short palindromic repeats (CRISPR), presenting the trait of transcribing the crRNA and the CRISPR-associated protein (Cas) to silence or cleaving the foreign double-stranded DNA specifically. In recent years, strong interest arises in prokaryotes primitive immune system and many in-depth researches are going on. Recently, researchers successfully repurposed CRISPR as an RNA-guided platform for sequence-specific gene expression, which provides a simple approach for selectively perturbing gene expression on a genome-wide scale. It will undoubtedly bring genome engineering into a more convenient and accurate new era.

  14. Adaptive Dialogue Systems for Assistive Living Environments

    ERIC Educational Resources Information Center

    Papangelis, Alexandros

    2013-01-01

    Adaptive Dialogue Systems (ADS) are intelligent systems, able to interact with users via multiple modalities, such as speech, gestures, facial expressions and others. Such systems are able to make conversation with their users, usually on a specific, narrow topic. Assistive Living Environments are environments where the users are by definition not…

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhipan; Lu, Qingtao; Wen, Xiaogang

    Highlights: Black-Right-Pointing-Pointer Rice rubisco activase promoter was analyzed in transgenic Arabidopsis system. Black-Right-Pointing-Pointer Region conferring tissue specific and light inducible expression of Rca was identified. Black-Right-Pointing-Pointer -58 to +43 bp region mediates tissue-specific expression of rice Rca. Black-Right-Pointing-Pointer Light inducible expression of rice Rca is mediated by -297 to -58 bp region. Black-Right-Pointing-Pointer Rice nuclear proteins bind specifically with the light inducible region. -- Abstract: To gain a better understanding of the regulatory mechanism of the rice rubisco activase (Rca) gene, variants of the Rca gene promoter (one full-length and four deletion mutants) fused to the coding region of themore » bacterial reporter gene {beta}-glucuronidase (GUS) were introduced into Arabidopsis via Agrobacterium-mediated transformation. Our results show that a 340 bp fragment spanning from -297 to +43 bp relative to the transcription initiation site is enough to promote tissue-specific and light-inducible expression of the rice Rca gene as done by the full-length promoter (-1428 to +43 bp). Further deletion analysis indicated that the region conferring tissue-specificity of Rca expression is localized within a 105 bp fragment from -58 to +43 bp, while light-inducible expression of Rca is mediated by the region from -297 to -58 bp. Gel shift assays and competition experiments demonstrated that rice nuclear proteins bind specifically with the fragment conferring light responsiveness at more than one binding site. This implies that multiple cis-elements may be involved in light-induced expression of the rice Rca gene. These works provide a useful reference for understanding transcriptional regulation mechanism of the rice Rca gene, and lay a strong foundation for further detection of related cis-elements and trans-factors.« less

  16. Sexual Dimorphism Floral MicroRNA Profiling and Target Gene Expression in Andromonoecious Poplar (Populus tomentosa)

    PubMed Central

    Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Zhang, Zhiyi; Zhang, Deqiang

    2013-01-01

    Although the molecular basis of poplar sex-specific flower development remains largely unknown, increasing evidence indicates an essential role for microRNAs (miRNAs). The specific miRNA types and precise miRNA expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. This system, combined with high-throughput sequencing and computational analysis, allowed us to characterize sex-specific miRNAomes from female and male flowers. Comparative miRNAome analysis combined with quantitative real-time PCR revealed the expression patterns of 27 miRNAs in poplar flower and showed that the targets of these miRNAs are involved in flower organogenesis, Ca2+ transport, phytohormone synthesis and metabolism, and DNA methylation. This paper describes a complex regulatory network consisting of these miRNAs expressed in sex-specific flower development in a dioecious plant. The conserved and novel miRNA locations were annotated in the Populus trichocarpa genome. Among these, miRNA Pto-F70 and 4 targets are located in the sex-determination regions of chromosome XIX. Furthermore, two novel miRNAs, Pto-F47 and Pto-F68, were shown for the first time to be regulatory factors in phytohormone interactions. To our knowledge, this report is the first systematic investigation of sex-specific flower-related miRNAs and their targets in poplar, and it deepens our understanding of the important regulatory functions of miRNAs in female and male flower development in this dioecious plant. PMID:23667507

  17. Three of the Four Nucleocapsid Proteins of Marburg Virus, NP, VP35, and L, Are Sufficient To Mediate Replication and Transcription of Marburg Virus-Specific Monocistronic Minigenomes

    PubMed Central

    Mühlberger, Elke; Lötfering, Beate; Klenk, Hans-Dieter; Becker, Stephan

    1998-01-01

    This paper describes the first reconstituted replication system established for a member of the Filoviridae, Marburg virus (MBGV). MBGV minigenomes containing the leader and trailer regions of the MBGV genome and the chloramphenicol acetyltransferase (CAT) gene were constructed. In MBGV-infected cells, these minigenomes were replicated and encapsidated and could be passaged. Unlike most other members of the order Mononegavirales, filoviruses possess four proteins presumed to be components of the nucleocapsid (NP, VP35, VP30, and L). To determine the protein requirements for replication and transcription, a reverse genetic system was established for MBGV based on the vaccinia virus T7 expression system. Northern blot analysis of viral RNA revealed that three nucleocapsid proteins (NP, VP35, and L) were essential and sufficient for transcription as well as replication and encapsidation. These data indicate that VP35, rather than VP30, is the functional homologue of rhabdo- and paramyxovirus P proteins. The reconstituted replication system was profoundly affected by the NP-to-VP35 expression ratio. To investigate whether CAT gene expression was achieved entirely by mRNA or in part by full-length plus-strand minigenomes, a copy-back minireplicon containing the CAT gene but lacking MBGV-specific transcriptional start sites was employed in the artificial replication system. This construct was replicated without accompanying CAT activity. It was concluded that the CAT activity reflected MBGV-specific transcription and not replication. PMID:9765419

  18. Enterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis.

    PubMed

    Clark, Jessica A; Gan, Heng; Samocha, Alexandr J; Fox, Amy C; Buchman, Timothy G; Coopersmith, Craig M

    2009-09-01

    Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal barrier dysfunction and improve survival in peritonitis. Transgenic FVB/N mice that overexpress EGF exclusively in enterocytes (IFABP-EGF) and wild-type (WT) mice were subjected to either sham laparotomy or cecal ligation and puncture (CLP). Intestinal permeability, expression of the tight junction proteins claudins-1, -2, -3, -4, -5, -7, and -8, occludin, and zonula occludens-1; villus length; intestinal epithelial proliferation; and epithelial apoptosis were evaluated. A separate cohort of mice was followed for survival. Peritonitis induced a threefold increase in intestinal permeability in WT mice. This was associated with increased claudin-2 expression and a change in subcellular localization. Permeability decreased to basal levels in IFABP-EGF septic mice, and claudin-2 expression and localization were similar to those of sham animals. Claudin-4 expression was decreased following CLP but was not different between WT septic mice and IFABP-EGF septic mice. Peritonitis-induced decreases in villus length and proliferation and increases in apoptosis seen in WT septic mice did not occur in IFABP-EGF septic mice. IFABP-EGF mice had improved 7-day mortality compared with WT septic mice (6% vs. 64%). Since enterocyte-specific overexpression of EGF is sufficient to prevent peritonitis-induced intestinal barrier dysfunction and confers a survival advantage, the protective effects of systemic EGF in septic peritonitis appear to be mediated in an intestine-specific fashion.

  19. MicroRNA miR-124 Controls the Choice between Neuronal and Astrocyte Differentiation by Fine-tuning Ezh2 Expression*

    PubMed Central

    Neo, Wen Hao; Yap, Karen; Lee, Suet Hoay; Looi, Liang Sheng; Khandelia, Piyush; Neo, Sheng Xiong; Makeyev, Eugene V.; Su, I-hsin

    2014-01-01

    Polycomb group protein Ezh2 is a histone H3 Lys-27 histone methyltransferase orchestrating an extensive epigenetic regulatory program. Several nervous system-specific genes are known to be repressed by Ezh2 in stem cells and derepressed during neuronal differentiation. However, the molecular mechanisms underlying this regulation remain poorly understood. Here we show that Ezh2 levels are dampened during neuronal differentiation by brain-enriched microRNA miR-124. Expression of miR-124 in a neuroblastoma cells line was sufficient to up-regulate a significant fraction of nervous system-specific Ezh2 target genes. On the other hand, naturally elevated expression of miR-124 in embryonic carcinoma cells undergoing neuronal differentiation correlated with down-regulation of Ezh2 levels. Importantly, overexpression of Ezh2 mRNA with a 3′-untranslated region (3′-UTR) lacking a functional miR-124 binding site, but not with the wild-type Ezh2 3′-UTR, hampered neuronal and promoted astrocyte-specific differentiation in P19 and embryonic mouse neural stem cells. Overall, our results uncover a molecular mechanism that allows miR-124 to balance the choice between alternative differentiation possibilities through fine-tuning the expression of a critical epigenetic regulator. PMID:24878960

  20. MicroRNA miR-124 controls the choice between neuronal and astrocyte differentiation by fine-tuning Ezh2 expression.

    PubMed

    Neo, Wen Hao; Yap, Karen; Lee, Suet Hoay; Looi, Liang Sheng; Khandelia, Piyush; Neo, Sheng Xiong; Makeyev, Eugene V; Su, I-hsin

    2014-07-25

    Polycomb group protein Ezh2 is a histone H3 Lys-27 histone methyltransferase orchestrating an extensive epigenetic regulatory program. Several nervous system-specific genes are known to be repressed by Ezh2 in stem cells and derepressed during neuronal differentiation. However, the molecular mechanisms underlying this regulation remain poorly understood. Here we show that Ezh2 levels are dampened during neuronal differentiation by brain-enriched microRNA miR-124. Expression of miR-124 in a neuroblastoma cells line was sufficient to up-regulate a significant fraction of nervous system-specific Ezh2 target genes. On the other hand, naturally elevated expression of miR-124 in embryonic carcinoma cells undergoing neuronal differentiation correlated with down-regulation of Ezh2 levels. Importantly, overexpression of Ezh2 mRNA with a 3'-untranslated region (3'-UTR) lacking a functional miR-124 binding site, but not with the wild-type Ezh2 3'-UTR, hampered neuronal and promoted astrocyte-specific differentiation in P19 and embryonic mouse neural stem cells. Overall, our results uncover a molecular mechanism that allows miR-124 to balance the choice between alternative differentiation possibilities through fine-tuning the expression of a critical epigenetic regulator.

  1. Molecular analysis of HLA-DPB1 alleles in idiopathic systemic sclerosis patients and uranium miners with systemic sclerosis.

    PubMed

    Rihs, H P; Conrad, K; Mehlhorn, J; May-Taube, K; Welticke, B; Frank, K H; Baur, X

    1996-03-01

    According to clinical mainifestation and autoantibody pattern [anti-Scl-70, anti-centromere antibodies (ACAs)], systemic sclerosis is a connective tissue disease with heterogenous subgroups. PCR-sequence-specific-oligonucleotide typing was used to study the genetic association of HLA-DPB1 alleles in 54 patients with idiopathic systemic sclerosis, 26 uranium miners with systemic sclerosis and 70 unrelated healthy control subjects. Systemic sclerosis patients with and without former employment in mines were divided into two subgroups according to their scleroderma-typical autoantibody specificities--anti-Scl-70 positive and ACA positive--and third subgroup comprising the rest. Statistical analysis revealed a significantly increased frequency of DPB1*1301(p=0.0001, corrected p=0.011) in idiopathic anti-Scl-70-positive systemic sclerosis cases when compared with unexposed controls. In the same group, we observed an enhanced frequency of DPB1*0601 and *1701 alleles. Since these three alleles carry the information for a glutamic acid residue in position 69 of DPB1, we tested the association of this residue with anti-Scl-70 expression. A strong association between anti-Scl-70 positivity in idiopathic systemic sclerosis patients and amino acid residue 69 of DPB1 was observed when compared with anti-Scl-70-negative idiopathic systemic sclerosis patients (p=0.0009) or unrelated controls (p=0.0007). ACA expression was not associated with the presence of any DPB1 allele tested. The data show that anti-Scl-70 expression in idiopathic systemic sclerosis patients is linked with DPB1*1301 whereas anti-Scl-70-positive miners do not show such a DPB1 association. Futhermore, the data indicate that glutamate 69 of DPB1 might be involved in the susceptibility to idiopathic anti-Scl-70 expression.

  2. Equations for the determination of humidity from dewpoint and psychrometric data

    NASA Technical Reports Server (NTRS)

    Parish, O. O.; Putnam, T. W.

    1977-01-01

    A general expression based on the Claperon-Clausius differential equation that relates saturation vapor pressure, absolute temperature, and the latent heat of transformation was derived that expresses saturation vapor pressure as a function of absolute temperature. This expression was then used to derive general expressions for vapor pressure, absolute humidity, and relative humidity as functions of either dewpoint and ambient temperature or psychrometric parameters. Constants for all general expressions were then evaluated to give specific expressions in both the international system of units and U.S. customary units for temperatures above and below freezing.

  3. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    PubMed

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  4. MicroRNA profiling of the murine hematopoietic system

    PubMed Central

    Monticelli, Silvia; Ansel, K Mark; Xiao, Changchun; Socci, Nicholas D; Krichevsky, Anna M; Thai, To-Ha; Rajewsky, Nikolaus; Marks, Debora S; Sander, Chris; Rajewsky, Klaus; Rao, Anjana; Kosik, Kenneth S

    2005-01-01

    Background MicroRNAs (miRNAs) are a class of recently discovered noncoding RNA genes that post-transcriptionally regulate gene expression. It is becoming clear that miRNAs play an important role in the regulation of gene expression during development. However, in mammals, expression data are principally based on whole tissue analysis and are still very incomplete. Results We used oligonucleotide arrays to analyze miRNA expression in the murine hematopoietic system. Complementary oligonucleotides capable of hybridizing to 181 miRNAs were immobilized on a membrane and probed with radiolabeled RNA derived from low molecular weight fractions of total RNA from several different hematopoietic and neuronal cells. This method allowed us to analyze cell type-specific patterns of miRNA expression and to identify miRNAs that might be important for cell lineage specification and/or cell effector functions. Conclusion This is the first report of systematic miRNA gene profiling in cells of the hematopoietic system. As expected, miRNA expression patterns were very different between hematopoietic and non-hematopoietic cells, with further subtle differences observed within the hematopoietic group. Interestingly, the most pronounced similarities were observed among fully differentiated effector cells (Th1 and Th2 lymphocytes and mast cells) and precursors at comparable stages of differentiation (double negative thymocytes and pro-B cells), suggesting that in addition to regulating the process of commitment to particular cellular lineages, miRNAs might have an important general role in the mechanism of cell differentiation and maintenance of cell identity. PMID:16086853

  5. Cell Adhesion Molecule and Lymphocyte Activation Marker Expression during Experimental Vaginal Candidiasis

    PubMed Central

    Wormley, Floyd L.; Chaiban, Joseph; Fidel, Paul L.

    2001-01-01

    Cell-mediated immunity by Th1-type CD4+ T cells is the predominant host defense mechanism against mucosal candidiasis. However, studies using an estrogen-dependent murine model of vaginal candidiasis have demonstrated little to no change in resident vaginal T cells during infection and no systemic T-cell infiltration despite the presence of Candida-specific systemic Th1-type responses in infected mice. The present study was designed to further investigate these observations by characterizing T-cell activation and cell adhesion molecule expression during primary and secondary C. albicans vaginal infections. While flow cytometry analysis of activation markers showed some evidence for activation of CD3+ draining lymph node and/or vaginal lymphocytes during both primary and secondary vaginal Candida infection, CD3+ cells expressing the homing receptors and integrins α4β7, αM290β7, and α4β1 in draining lymph nodes of mice with primary and secondary infections were reduced compared to results for uninfected mice. At the local level, few vaginal lymphocytes expressed integrins, with only minor changes observed during both primary and secondary infections. On the other hand, immunohistochemical analysis of vaginal cell adhesion molecule expression showed increases in mucosal addressin cell adhesion molecule 1 and vascular cell adhesion molecule 1 expression during both primary and secondary infections. Altogether, these data suggest that although the vaginal tissue is permissive to cellular infiltration during a vaginal Candida infection, the reduced numbers of systemic cells expressing the reciprocal cellular adhesion molecules may preempt cellular infiltration, thereby limiting Candida-specific T-cell responses against infection. PMID:11447188

  6. Living high training low induces physiological cardiac hypertrophy accompanied by down-regulation and redistribution of the renin-angiotensin system

    PubMed Central

    Shi, Wei; Meszaros, J Gary; Zeng, Shao-ju; Sun, Ying-yu; Zuo, Ming-xue

    2013-01-01

    Aim: Living high training low” (LHTL) is an exercise-training protocol that refers living in hypoxia stress and training at normal level of O2. In this study, we investigated whether LHTL caused physiological heart hypertrophy accompanied by changes of biomarkers in renin-angiotensin system in rats. Methods: Adult male SD rats were randomly assigned into 4 groups, and trained on living low-sedentary (LLS, control), living low-training low (LLTL), living high-sedentary (LHS) and living high-training low (LHTL) protocols, respectively, for 4 weeks. Hematological parameters, hemodynamic measurement, heart hypertrophy and plasma angiotensin II (Ang II) level of the rats were measured. The gene and protein expression of angiotensin-converting enzyme (ACE), angiotensinogen (AGT) and angiotensin II receptor I (AT1) in heart tissue was assessed using RT-PCR and immunohistochemistry, respectively. Results: LLTL, LHS and LHTL significantly improved cardiac function, increased hemoglobin concentration and RBC. At the molecular level, LLTL, LHS and LHTL significantly decreased the expression of ACE, AGT and AT1 genes, but increased the expression of ACE and AT1 proteins in heart tissue. Moreover, ACE and AT1 protein expression was significantly increased in the endocardium, but unchanged in the epicardium. Conclusion: LHTL training protocol suppresses ACE, AGT and AT1 gene expression in heart tissue, but increases ACE and AT1 protein expression specifically in the endocardium, suggesting that the physiological heart hypertrophy induced by LHTL is regulated by region-specific expression of renin-angiotensin system components. PMID:23377552

  7. Differential Regulation of Gene and Protein Expression by Zinc Oxide Nanoparticles in Hen’s Ovarian Granulosa Cells: Specific Roles of Nanoparticles

    PubMed Central

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Shen, Wei; Liu, Jing; Yang, Fen-Fang; Liu, Hong-Bo; Hao, Zhi-Hui

    2015-01-01

    Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen’s ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways. PMID:26460738

  8. Differential Regulation of Gene and Protein Expression by Zinc Oxide Nanoparticles in Hen's Ovarian Granulosa Cells: Specific Roles of Nanoparticles.

    PubMed

    Zhao, Yong; Li, Lan; Zhang, Peng-Fei; Shen, Wei; Liu, Jing; Yang, Fen-Fang; Liu, Hong-Bo; Hao, Zhi-Hui

    2015-01-01

    Annually, tons and tons of zinc oxide nanoparticles (ZnO NPs) are produced in the world. And they are applied in almost all aspects of our life. Their release from the products into environment may pose issue for human health. Although many studies have reported the adverse effects of ZnO NPs on organisms, little is known about the effects on female reproductive systems or the related mechanisms. Quantitative proteomics have not been applied although quantitative transcriptomics have been used in zinc oxide nanoparticles (ZnO NPs) research. Genes are very important players however proteins are the real actors in the biological systems. By using hen's ovarian granulosa cells, it was found that ZnO-NP-5μg/ml and ZnSO4-10μg/ml treatments produced the same amount of intracellular Zn and resulted in similar cell growth inhibition. And NPs were found in the treated cells. However, ZnO-NP-5μg/ml specifically regulated the expression of genes and proteins compared with that in ZnSO4-10μg/ml treatment. For the first time, this investigation reports that intact NPs produce different impacts on the expression of genes and proteins involved in specific pathways compared to that by Zn2+. The findings enrich our knowledge for the molecular insights of zinc oxide nanoparticles effects on the female reproductive systems. This also may raise the health concern that ZnO NPs may adversely affect the female reproductive systems through regulation of specific signaling pathways.

  9. Transient Expression of Lumbrokinase (PI239) in Tobacco (Nicotiana tabacum) Using a Geminivirus-Based Single Replicon System Dissolves Fibrin and Blood Clots.

    PubMed

    Dickey, Alexia; Wang, Nan; Cooper, Edwin; Tull, Lauren; Breedlove, Drew; Mason, Hugh; Liu, Dehu; Wang, Kevin Yueju

    2017-01-01

    Lumbrokinases, a group of fibrinolytic enzymes extracted from earthworm, have been widely used to prevent and treat various cardiovascular diseases. They specifically target fibrin to effectively degrade thrombi without major side effects. Plant expression systems are becoming potential alternative expression platforms for producing pharmaceutical proteins. In this work, a lumbrokinase (PI239) was produced from a plant system. Both wild-type (WT) and plant codon-optimized (OP) PI239 gene sequences were synthesized and cloned into a geminivirus-based single-vector DNA replicon system. Both vectors were independently expressed in tobacco (Nicotiana tabacum) leaves transiently by agroinfiltration. Overexpressed PI239 resulted in sudden tissue necrosis 3 days after infiltration. Remaining proteins were purified through His-tag affinity chromatography and analyzed with SDS-PAGE and Western blot methods. Purified PI239 successfully degraded artificial fibrin with relative activity of 13,400 U/mg when compared with commercial lumbrokinase product. In vitro tests demonstrated that plant-derived PI239 dissolved human blood clots and that the plant expression system is capable of producing functional PI239.

  10. Inhibitory effect of Survivin promoter-regulated oncolytic adenovirus carrying P53 gene against gallbladder cancer.

    PubMed

    Liu, Chen; Sun, Bin; An, Ni; Tan, Weifeng; Cao, Lu; Luo, Xiangji; Yu, Yong; Feng, Feiling; Li, Bin; Wu, Mengchao; Su, Changqing; Jiang, Xiaoqing

    2011-12-01

    Gene therapy has become an important strategy for treatment of malignancies, but problems remains concerning the low gene transferring efficiency, poor transgene expression and limited targeting specific tumors, which have greatly hampered the clinical application of tumor gene therapy. Gallbladder cancer is characterized by rapid progress, poor prognosis, and aberrantly high expression of Survivin. In the present study, we used a human tumor-specific Survivin promoter-regulated oncolytic adenovirus vector carrying P53 gene, whose anti-cancer effect has been widely confirmed, to construct a wide spectrum, specific, safe, effective gene-viral therapy system, AdSurp-P53. Examining expression of enhanced green fluorecent protein (EGFP), E1A and the target gene P53 in the oncolytic adenovirus system validated that Survivin promoter-regulated oncolytic adenovirus had high proliferation activity and high P53 expression in Survivin-positive gallbladder cancer cells. Our in vitro cytotoxicity experiment demonstrated that AdSurp-P53 possessed a stronger cytotoxic effect against gallbladder cancer cells and hepatic cancer cells. The survival rate of EH-GB1 cells was lower than 40% after infection of AdSurp-P53 at multiplicity of infection (MOI) = 1 pfu/cell, while the rate was higher than 90% after infection of Ad-P53 at the same MOI, demonstrating that AdSurp-P53 has a potent cytotoxicity against EH-GB1 cells. The tumor growth was greatly inhibited in nude mice bearing EH-GB1 xenografts when the total dose of AdSurp-P53 was 1 × 10(9) pfu, and terminal dUTP nick end-labeling (TUNEL) revealed that the apoptotic rate of cancer cells was (33.4 ± 8.4)%. This oncolytic adenovirus system overcomes the long-standing shortcomings of gene therapy: poor transgene expression and targeting of only specific tumors, with its therapeutic effect better than the traditional Ad-P53 therapy regimen already on market; our system might be used for patients with advanced gallbladder cancer and other cancers, who are not sensitive to chemotherapy, radiotherapy, or who lost their chance for surgical treatment. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Literature-based condition-specific miRNA-mRNA target prediction.

    PubMed

    Oh, Minsik; Rhee, Sungmin; Moon, Ji Hwan; Chae, Heejoon; Lee, Sunwon; Kang, Jaewoo; Kim, Sun

    2017-01-01

    miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions. A typical strategy to utilize expression data is to leverage the negative control roles of miRNAs on genes. To control false positives, a stringent cutoff value is typically set, but in this case, these methods tend to reject many true target relationships, i.e., false negatives. To overcome these limitations, additional information should be utilized. The literature is probably the best resource that we can utilize. Recent literature mining systems compile millions of articles with experiments designed for specific biological questions, and the systems provide a function to search for specific information. To utilize the literature information, we used a literature mining system, BEST, that automatically extracts information from the literature in PubMed and that allows the user to perform searches of the literature with any English words. By integrating omics data analysis methods and BEST, we developed Context-MMIA, a miRNA-mRNA target prediction method that combines expression data analysis results and the literature information extracted based on the user-specified context. In the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Context-MMIA outperformed the four existing target prediction methods that we tested. In another test on whether prediction methods can re-produce experimentally validated target relationships, Context-MMIA outperformed the four existing target prediction methods. In summary, Context-MMIA allows the user to specify a context of the experimental data to predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condition-specific miRNA targets.

  12. Knock-in strategy at 3'-end of Crx gene by CRISPR/Cas9 system shows the gene expression profiles during human photoreceptor differentiation.

    PubMed

    Homma, Kohei; Usui, Sumiko; Kaneda, Makoto

    2017-03-01

    Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  13. Expression of a Dianthus flavonoid glucosyltransferase in Saccharomyces cerevisiae for whole-cell biocatalysis.

    PubMed

    Werner, Sean R; Morgan, John A

    2009-07-15

    Glycosyltransferases are promising biocatalysts for the synthesis of small molecule glycosides. In this study, Saccharomyces cerevisiae expressing a flavonoid glucosyltransferase (GT) from Dianthus caryophyllus (carnation) was investigated as a whole-cell biocatalyst. Two yeast expression systems were compared using the flavonoid naringenin as a model substrate. Under in vitro conditions, naringenin-7-O-glucoside was formed and a higher specific glucosyl transfer activity was found using a galactose inducible expression system compared to a constitutive expression system. However, S. cerevisiae expressing the GT constitutively was significantly more productive than the galactose inducible system under in vivo conditions. Interestingly, the glycosides were recovered directly from the culture broth and did not accumulate intracellularly. A previously uncharacterized naringenin glycoside formed using the D. caryophyllus GT was identified as naringenin-4'-O-glucoside. It was found that S. cerevisiae cells hydrolyze naringenin-7-O-glucoside during whole-cell biocatalysis, resulting in a low final glycoside titer. When phloretin was added as a substrate to the yeast strain expressing the GT constitutively, the natural product phlorizin was formed. This study demonstrates S. cerevisiae is a promising whole-cell biocatalyst host for the production of valuable glycosides.

  14. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance.

    PubMed

    Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing

    2018-01-01

    Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  15. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    PubMed

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This transcriptome provides a valuable resource to investigate root hair biology in legumes and the roles that these cells play in rhizobial symbiosis establishment. These results could also contribute to the long-term objective of transferring this symbiotic capacity to non-legume plants.

  16. Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain.

    PubMed

    Beatman, Erica L; Massey, Aaron; Shives, Katherine D; Burrack, Kristina S; Chamanian, Mastooreh; Morrison, Thomas E; Beckham, J David

    2015-12-30

    We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10(4.5) infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. Specification of posterior midbrain region in zebrafish neuroepithelium.

    PubMed

    Miyagawa, T; Amanuma, H; Kuroiwa, A; Takeda, H

    1996-04-01

    The developing vertebrate nervous system displays a pronounced anterior-posterior (A-P) pattern, but the mechanism that generates this pattern is poorly understood. We examined through cell-transplantation experiments, when and how the cells in the zebrafish posterior midbrain acquire regional specificity along the A-P axis as shown by pax[b] gene expression. Labelled donor cells from the presumptive midbrain region at various stages were transplanted into more anterior part of unlabelled host embryos of the same developmental stage, and the expression of pax[b] in the donor cells were examined by in situ hybridization. The results indicated that, in the cells from the presumptive midbrain region, expression of pax[b] was determined as early as the 55%-epiboly (6.5 h, early gastrulation) when the underlying hypoblastic layer reached the presumptive midbrain region. We also found that when transplanted heterotopically, anterior, but not posterior, hypoblast cells induced expression of pax[b] in the overlying ectoderm. Expression of a midbrain specific gene is determined during early gastrulation and the hypoblastic layer plays an important role in this determination process.

  18. Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct.

    PubMed

    Yu, Ming-Jiun; Miller, R Lance; Uawithya, Panapat; Rinschen, Markus M; Khositseth, Sookkasem; Braucht, Drew W W; Chou, Chung-Lin; Pisitkun, Trairak; Nelson, Raoul D; Knepper, Mark A

    2009-02-17

    We used a systems biology-based approach to investigate the basis of cell-specific expression of the water channel aquaporin-2 (AQP2) in the renal collecting duct. Computational analysis of the 5'-flanking region of the AQP2 gene (Genomatix) revealed 2 conserved clusters of putative transcriptional regulator (TR) binding elements (BEs) centered at -513 bp (corresponding to the SF1, NFAT, and FKHD TR families) and -224 bp (corresponding to the AP2, SRF, CREB, GATA, and HOX TR families). Three other conserved motifs corresponded to the ETS, EBOX, and RXR TR families. To identify TRs that potentially bind to these BEs, we carried out mRNA profiling (Affymetrix) in mouse mpkCCDc14 collecting duct cells, revealing expression of 25 TRs that are also expressed in native inner medullary collecting duct. One showed a significant positive correlation with AQP2 mRNA abundance among mpkCCD subclones (Ets1), and 2 showed a significant negative correlation (Elf1 and an orphan nuclear receptor Nr1h2). Transcriptomic profiling in native proximal tubules (PT), medullary thick ascending limbs (MTAL), and IMCDs from kidney identified 14 TRs (including Ets1 and HoxD3) expressed in the IMCD but not PT or MTAL (candidate AQP2 enhancer roles), and 5 TRs (including HoxA5, HoxA9 and HoxA10) expressed in PT and MTAL but not in IMCD (candidate AQP2 repressor roles). In luciferase reporter assays, overexpression of 3 ETS family TRs transactivated the mouse proximal AQP2 promoter. The results implicate ETS family TRs in cell-specific expression of AQP2 and point to HOX, RXR, CREB and GATA family TRs as playing likely additional roles.

  19. Studies of thermostability in Camelus bactrianus (Bactrian camel) single-domain antibody specific for the mutant epidermal-growth-factor receptor expressed by Pichia.

    PubMed

    Omidfar, Kobra; Rasaee, Mohhamad Javad; Kashanian, Soheila; Paknejad, Malieheh; Bathaie, Zahra

    2007-01-01

    Camelids have a unique immune system capable of producing heavy-chain antibodies lacking the light chains and CH1 (constant heavy-chain domain 1). It has been shown that, in contrast with conventional antibody fragments, the variable domains of these heavy-chain antibodies are functional at or after exposure to high temperatures. In the present study, the VHH (variable domain of heavy-chain antibody) camel antibody was subcloned into vector Ppiczc and expressed in Pichia pastoris. ORB1-83 VHH antibody recognizes the external domain of the mutant EGFR [EGF (epidermal growth factor) receptor], EGFR VIII. This tumour-specific antigen is ligand-independent, contains a constitutively active tyrosine kinase domain and has been shown to be present in a number of human malignancies. We report here that, although expression from P. pastoris resulted in a significantly increased level of expression of the anti-EGFR VIII VHH antibodies compared with Escherichia coli [Omidfar, Rasaee, Modjtahedi, Forouzandeh, Taghikhani, Bakhtiari, Paknejad and Kashanian (2004) Tumor Biol. 25, 179-187; Omidfar, Rasaee, Modjtahedi, Forouzandeh, Taghikhani and Golmakany (2004) Tumor Biol. 25, 296-305], this antibody selectively bound to the EGFR VIII peptide and reacted specifically with the immunoaffinity-purified antigen from non-small-cell lung cancer. Furthermore, thermal denaturation stability and CD spectra analysis of the Camelus bactrianus (Bactrian camel) VHH and heavy-chain antibodies at different temperature proved reversibility and binding activity after heat denaturation. Our results indicate that the P. pastoris expression system may be useful for the expression of camel single domain antibody and the ability of the expressed protein to reversibly melt without aggregation, allowing it to regain binding activity after heat denaturation.

  20. Features of CRISPR-Cas Regulation Key to Highly Efficient and Temporally-Specific crRNA Production.

    PubMed

    Rodic, Andjela; Blagojevic, Bojana; Djordjevic, Magdalena; Severinov, Konstantin; Djordjevic, Marko

    2017-01-01

    Bacterial immune systems, such as CRISPR-Cas or restriction-modification (R-M) systems, affect bacterial pathogenicity and antibiotic resistance by modulating horizontal gene flow. A model system for CRISPR-Cas regulation, the Type I-E system from Escherichia coli , is silent under standard laboratory conditions and experimentally observing the dynamics of CRISPR-Cas activation is challenging. Two characteristic features of CRISPR-Cas regulation in E. coli are cooperative transcription repression of cas gene and CRISPR array promoters, and fast non-specific degradation of full length CRISPR transcripts (pre-crRNA). In this work, we use computational modeling to understand how these features affect the system expression dynamics. Signaling which leads to CRISPR-Cas activation is currently unknown, so to bypass this step, we here propose a conceptual setup for cas expression activation, where cas genes are put under transcription control typical for a restriction-modification (R-M) system and then introduced into a cell. Known transcription regulation of an R-M system is used as a proxy for currently unknown CRISPR-Cas transcription control, as both systems are characterized by high cooperativity, which is likely related to similar dynamical constraints of their function. We find that the two characteristic CRISPR-Cas control features are responsible for its temporally-specific dynamical response, so that the system makes a steep (switch-like) transition from OFF to ON state with a time-delay controlled by pre-crRNA degradation rate. We furthermore find that cooperative transcription regulation qualitatively leads to a cross-over to a regime where, at higher pre-crRNA processing rates, crRNA generation approaches the limit of an infinitely abrupt system induction. We propose that these dynamical properties are associated with rapid expression of CRISPR-Cas components and efficient protection of bacterial cells against foreign DNA. In terms of synthetic applications, the setup proposed here should allow highly efficient expression of small RNAs in a narrow time interval, with a specified time-delay with respect to the signal onset.

  1. Systemic Sympathoexcitation Was Associated with Paraventricular Hypothalamic Phosphorylation of Synaptic CaMKIIα and MAPK/ErK.

    PubMed

    Ogundele, Olalekan M; Rosa, Fernando A; Dharmakumar, Rohan; Lee, Charles C; Francis, Joseph

    2017-01-01

    Systemic administration of adrenergic agonist (Isoproterenol; ISOP) is known to facilitate cardiovascular changes associated with heart failure through an upregulation of cardiac toll-like receptor 4 (TLR4). Furthermore, previous studies have shown that cardiac tissue-specific deletion of TLR4 protects the heart against such damage. Since the autonomic regulation of systemic cardiovascular function originates from pre-autonomic sympathetic centers in the brain, it is unclear how a systemically driven sympathetic change may affect the pre-autonomic paraventricular hypothalamic nuclei (PVN) TLR4 expression. Here, we examined how change in PVN TLR4 was associated with alterations in the neurochemical cytoarchitecture of the PVN in systemic adrenergic activation. After 48 h of intraperitoneal 150 mg/kg ISOP treatment, there was a change in PVN CaMKIIα and MAPK/ErK expression, and an increase in TLR4 in expression. This was seen as an increase in p-MAPK/ErK, and a decrease in synaptic CaMKIIα expression in the PVN ( p < 0.01) of ISOP treated mice. Furthermore, there was an upregulation of vesicular glutamate transporter (VGLUT 2; p < 0.01) and a decreased expression of GABA in the PVN of Isoproterenol (ISOP) treated WT mice ( p < 0.01). However, after a PVN-specific knockdown of TLR4, the effect of systemic administration of ISOP was attenuated, as indicated by a decrease in p-MAPK/ErK ( p < 0.01) and upregulation of CaMKIIα ( p < 0.05). Additionally, loss of inhibitory function was averted while VGLUT2 expression decreased when compared with the ISOP treated wild type mice and the control. Taken together, the outcome of this study showed that systemic adrenergic activation may alter the expression, and phosphorylation of preautonomic MAPK/ErK and CaMKIIα downstream of TLR4. As such, by outlining the roles of these kinases in synaptic function, we have identified the significance of neural TLR4 in the progression, and attenuation of synaptic changes in the pre-autonomic sympathetic centers.

  2. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters

    PubMed Central

    Yordem, Burcu K.; Conte, Sarah S.; Ma, Jian Feng; Yokosho, Kengo; Vasques, Kenneth A.; Gopalsamy, Srinivasa N.; Walker, Elsbeth L.

    2011-01-01

    Background and Aims Brachypodium distachyon is a temperate grass with a small stature, rapid life cycle and completely sequenced genome that has great promise as a model system to study grass-specific traits for crop improvement. Under iron (Fe)-deficient conditions, grasses synthesize and secrete Fe(III)-chelating agents called phytosiderophores (PS). In Zea mays, Yellow Stripe1 (ZmYS1) is the transporter responsible for the uptake of Fe(III)–PS complexes from the soil. Some members of the family of related proteins called Yellow Stripe-Like (YSL) have roles in internal Fe translocation of plants, while the function of other members remains uninvestigated. The aim of this study is to establish brachypodium as a model system to study Fe homeostasis in grasses, identify YSL proteins in brachypodium and maize, and analyse their expression profiles in brachypodium in response to Fe deficiency. Methods The YSL family of proteins in brachypodium and maize were identified based on sequence similarity to ZmYS1. Expression patterns of the brachypodium YSL genes (BdYSL genes) were determined by quantitative RT–PCR under Fe-deficient and Fe-sufficient conditions. The types of PS secreted, and secretion pattern of PS in brachypodium were analysed by high-performance liquid chromatography. Key Results Eighteen YSL family members in maize and 19 members in brachypodium were identified. Phylogenetic analysis revealed that some YSLs group into a grass-specific clade. The Fe status of the plant can regulate expression of brachypodium YSL genes in both shoots and roots. 3-Hydroxy-2′-deoxymugineic acid (HDMA) is the dominant type of PS secreted by brachypodium, and its secretion is diurnally regulated. Conclusions PS secretion by brachypodium parallels that of related crop species such as barley and wheat. A single grass species-specific YSL clade is present, and expression of the BdYSL members of this clade could not be detected in shoots or roots, suggesting grass-specific functions in reproductive tissues. Finally, the Fe-responsive expression profiles of several YSLs suggest roles in Fe homeostasis. PMID:21831857

  3. Toward a dynamical theory of body movement in musical performance

    PubMed Central

    Demos, Alexander P.; Chaffin, Roger; Kant, Vivek

    2014-01-01

    Musicians sway expressively as they play in ways that seem clearly related to the music, but quantifying the relationship has been difficult. We suggest that a complex systems framework and its accompanying tools for analyzing non-linear dynamical systems can help identify the motor synergies involved. Synergies are temporary assemblies of parts that come together to accomplish specific goals. We assume that the goal of the performer is to convey musical structure and expression to the audience and to other performers. We provide examples of how dynamical systems tools, such as recurrence quantification analysis (RQA), can be used to examine performers' movements and relate them to the musical structure and to the musician's expressive intentions. We show how detrended fluctuation analysis (DFA) can be used to identify synergies and discover how they are affected by the performer's expressive intentions. PMID:24904490

  4. The Drosophila Extradenticle and Homothorax selector proteins control branchless/FGF expression in mesodermal bridge-cells.

    PubMed

    Merabet, Samir; Ebner, Andreas; Affolter, Markus

    2005-08-01

    The stereotyped outgrowth of tubular branches of the Drosophila tracheal system is orchestrated by the local and highly dynamic expression profile of branchless (bnl), which encodes a secreted fibroblast growth factor (FGF)-like molecule. Despite the importance of the spatial and temporal bnl regulation, little is known about the upstream mechanisms that establish its complex expression pattern. Here, we show that the Extradenticle and Homothorax selector proteins control bnl transcription in a single cell per segment, the mesodermal bridge-cell. In addition, we observed that a key determinant of bridge-cell specification, the transcription factor Hunchback, is also required for bnl expression. Therefore, we propose that one of the functions of the bridge-cell is to synthesize and secrete the chemoattractant Bnl. These findings provide a hitherto unknown and interesting link between combinatorial inputs of transcription factors, cell-specific ligand expression and organ morphogenesis.

  5. Altered Gag Polyprotein Cleavage Specificity of Feline Immunodeficiency Virus/Human Immunodeficiency Virus Mutant Proteases as Demonstrated in a Cell-Based Expression System

    PubMed Central

    Lin, Ying-Chuan; Brik, Ashraf; de Parseval, Aymeric; Tam, Karen; Torbett, Bruce E.; Wong, Chi-Huey; Elder, John H.

    2006-01-01

    We have used feline immunodeficiency virus (FIV) protease (PR) as a mutational system to study the molecular basis of substrate-inhibitor specificity for lentivirus PRs, with a focus on human immunodeficiency virus type 1 (HIV-1) PR. Our previous mutagenesis studies demonstrated that discrete substitutions in the active site of FIV PR with structurally equivalent residues of HIV-1 PR dramatically altered the specificity of the mutant PRs in in vitro analyses. Here, we have expanded these studies to analyze the specificity changes in each mutant FIV PR expressed in the context of the natural Gag-Pol polyprotein ex vivo. Expression mutants were prepared in which 4 to 12 HIV-1-equivalent substitutions were made in FIV PR, and cleavage of each Gag-Pol polyprotein was then assessed in pseudovirions from transduced cells. The findings demonstrated that, as with in vitro analyses, inhibitor specificities of the mutants showed increased HIV-1 PR character when analyzed against the natural substrate. In addition, all of the mutant PRs still processed the FIV polyprotein but the apparent order of processing was altered relative to that observed with wild-type FIV PR. Given the importance of the order in which Gag-Pol is processed, these findings likely explain the failure to produce infectious FIVs bearing these mutations. PMID:16873240

  6. Candidate innate immune system gene expression in the ecological model Daphnia

    PubMed Central

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E.; Little, Tom J.

    2011-01-01

    The last ten years have witnessed increasing interest in host–pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host–pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia–pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia–Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia–Pasteuria interaction. PMID:21550363

  7. Candidate innate immune system gene expression in the ecological model Daphnia.

    PubMed

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E; Little, Tom J

    2011-10-01

    The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive approaches to de novo identify immune system genes specific to the Daphnia-Pasteuria interaction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Antisense miR-7 impairs insulin expression in developing pancreas and in cultured pancreatic buds.

    PubMed

    Nieto, Margarita; Hevia, Pedro; Garcia, Enrique; Klein, Dagmar; Alvarez-Cubela, Silvia; Bravo-Egana, Valia; Rosero, Samuel; Damaris Molano, R; Vargas, Nancy; Ricordi, Camillo; Pileggi, Antonello; Diez, Juan; Domínguez-Bendala, Juan; Pastori, Ricardo L

    2012-01-01

    MicroRNAs regulate gene expression by inhibiting translation or inducing target mRNA degradation. MicroRNAs regulate organ differentiation and embryonic development, including pancreatic specification and islet function. We showed previously that miR-7 is highly expressed in human pancreatic fetal and adult endocrine cells. Here we determined the expression profile of miR-7 in the mouse-developing pancreas by RT-PCR and in situ hybridization. MiR-7 expression was low between embryonic days e10.5 and e11.5, then began to increase at e13.5 through e14.5, and eventually decreased by e18. In situ hybridization and immunostaining analysis showed that miR-7 colocalizes with endocrine marker Isl1, suggesting that miR-7 is expressed preferentially in endocrine cells. Whole-mount in situ hybridization shows miR-7 highly expressed in the embryonic neural tube. To investigate the role of miR-7 in development of the mouse endocrine pancreas, antisense miR-7 morpholinos (MO) were delivered to the embryo at an early developmental stage (e10.5 days) via intrauterine fetal heart injection. Inhibition of miR-7 during early embryonic life results in an overall downregulation of insulin production, decreased β-cell numbers, and glucose intolerance in the postnatal period. This phenomenon is specific for miR-7 and possibly due to a systemic effect on pancreatic development. On the other hand, the in vitro inhibition of miR-7 in explanted pancreatic buds leads to β-cell death and generation of β-cells expressing less insulin than those in MO control. Therefore, in addition to the potential indirect effects on pancreatic differentiation derived from its systemic downregulation, the knockdown of miR-7 appears to have a β-cell-specific effect as well. These findings suggest that modulation of miR-7 expression could be utilized in the development of stem cell therapies to cure diabetes.

  9. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis.

    PubMed

    Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R

    2016-12-01

    The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. © 2016 The Author(s).

  10. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis

    PubMed Central

    Honarpisheh, Mohsen; Desai, Jyaysi; Marschner, Julian A.; Weidenbusch, Marc; Lech, Maciej; Vielhauer, Volker; Anders, Hans-Joachim; Mulay, Shrikant R.

    2016-01-01

    The species-specific, as well as organ-specific expression of regulated necrosis (RN)-related molecules, is not known. We determined the expression levels of tumour necrosis factor receptor-1 (TNFR1), receptor activated protein kinase (RIPK)1, RIPK3, mixed lineage kinase domain-like (MLKL), CASP8, Fas-associated protein with death domain (FADD), cellular inhibitor of apoptosis protein (CIAP)1, CIAP2, glutathione peroxidase-4 (GPX4), cyclophilin D (CYPD), CASP1, NLRP3 and poly(ADP-ribose) polymerase-1 (PARP1) in human and mouse solid organs. We observed significant differences in expression of these molecules between human and mice. In addition, we characterized their expression profiles in acute as well as persistent tissue injury and chronic tissue remodelling using acute and chronic kidney injury models. We observed that the degree and pattern of induction of RN-related molecules were highly dependent on the trigger and disease pathogenesis. Furthermore, we studied their expression patterns in mice with lupus-like systemic autoimmunity, which revealed that the expression of MLKL, GPX4 and PARP1 significantly increased in the spleen along disease progression and CASP1, RIPK1, RIPK3 and CYPD were higher at the earlier stages but were significantly decreased in the later stages. In contrast, in the kidney, the expression of genes involved in pyroptosis, e.g. NLRP3 and CASP1 were significantly increased and TNFR1, RIPK1, RIPK3, CIAP1/2 and GPX4 were significantly decreased along the progression of lupus nephritis (LN). Thus, the organ- and species-specific expression of RN-related molecules should be considered during designing experiments, interpreting the results as well as extrapolating the conclusions from one species or organ to another species or organ respectively. PMID:27811014

  11. Inhibition of histone deacetylation and DNA methylation improves gene expression mediated by the adeno-associated virus/phage in cancer cells.

    PubMed

    Kia, Azadeh; Yata, Teerapong; Hajji, Nabil; Hajitou, Amin

    2013-10-22

    Bacteriophage (phage), viruses that infect bacteria only, have become promising vectors for targeted systemic delivery of genes to cancer, although, with poor efficiency. We previously designed an improved phage vector by incorporating cis genetic elements of adeno-associated virus (AAV). This novel AAV/phage hybrid (AAVP) specifically targeted systemic delivery of therapeutic genes into tumors. To advance the AAVP vector, we recently introduced the stress-inducible Grp78 tumor specific promoter and found that this dual tumor-targeted AAVP provides persistent gene expression, over time, in cancer cells compared to silenced gene expression from the CMV promoter in the parental AAVP. Herein, we investigated the effect of histone deacetylation and DNA methylation on AAVP-mediated gene expression in cancer cells and explored the effect of cell confluence state on AAVP gene expression efficacy. Using a combination of AAVP expressing the GFP reporter gene, flow cytometry, inhibitors of histone deacetylation, and DNA methylation, we have demonstrated that histone deacetylation and DNA methylation are associated with silencing of gene expression from the CMV promoter in the parental AAVP. Importantly, inhibitors of histone deacetylases boost gene expression in cancer cells from the Grp78 promoter in the dual tumor-targeted AAVP. However, cell confluence had no effect on AAVP-guided gene expression. Our findings prove that combination of histone deacetylase inhibitor drugs with the Grp78 promoter is an effective approach to improve AAVP-mediated gene expression in cancer cells and should be considered for AAVP-based clinical cancer gene therapy.

  12. In vivo phosphorylation of a peptide tag for protein purification.

    PubMed

    Goux, Marine; Fateh, Amina; Defontaine, Alain; Cinier, Mathieu; Tellier, Charles

    2016-05-01

    To design a new system for the in vivo phosphorylation of proteins in Escherichia coli using the co-expression of the α-subunit of casein kinase II (CKIIα) and a target protein, (Nanofitin) fused with a phosphorylatable tag. The level of the co-expressed CKIIα was controlled by the arabinose promoter and optimal phosphorylation was obtained with 2 % (w/v) arabinose as inductor. The effectiveness of the phosphorylation system was demonstrated by electrophoretic mobility shift assay (NUT-PAGE) and staining with a specific phosphoprotein-staining gel. The resulting phosphorylated tag was also used to purify the phosphoprotein by immobilized metal affinity chromatography, which relies on the specific interaction of phosphate moieties with Fe(III). The use of a single tag for both the purification and protein array anchoring provides a simple and straightforward system for protein analysis.

  13. Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis

    PubMed Central

    Ramaiah, Santhosh Kumar Vankayala; Günthner, Roman; Lech, Maciej; Anders, Hans-Joachim

    2013-01-01

    The cell type-, organ-, and species-specific expression of the Toll-like receptors (TLRs) are well described, but little is known about the respective expression profiles of their accessory molecules. We therefore determined the mRNA expression levels of LBP, MD2, CD36, CD14, granulin, HMGB1, LL37, GRP94, UNC93b1, TRIL, PRAT4A, AP3B1, AEP and the respective TLRs in human and mouse solid organs. Humans and mice displayed significant differences between their respective mRNA expression patterns of these factors. In addition, the expression profiles in transient tissue inflammation upon renal ischemia-reperfusion injury, in spleens and kidneys from mice with lupus-like systemic autoimmunity, and in progressive tissue fibrosis upon unilateral ureteral obstruction were studied. Several TLR co-factors were specifically regulated during the different phases of these disease entities, suggesting a functional involvement in the disease process. Thus, the organ- and species-specific expression patterns need to be considered in the design and interpretation of studies related to TLR-mediated innate immunity, which seems to be involved in the tissue injury phase, in the phase of tissue regeneration, and in progressive tissue remodelling. PMID:23803655

  14. A distal modular enhancer complex acts to control pituitary- and nervous system-specific expression of the LHX3 regulatory gene.

    PubMed

    Mullen, Rachel D; Park, Soyoung; Rhodes, Simon J

    2012-02-01

    Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency.

  15. A Distal Modular Enhancer Complex Acts to Control Pituitary- and Nervous System-Specific Expression of the LHX3 Regulatory Gene

    PubMed Central

    Mullen, Rachel D.; Park, Soyoung

    2012-01-01

    Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency. PMID:22194342

  16. Systems Level Analysis of Systemic Sclerosis Shows a Network of Immune and Profibrotic Pathways Connected with Genetic Polymorphisms

    PubMed Central

    Mahoney, J. Matthew; Taroni, Jaclyn; Martyanov, Viktor; Wood, Tammara A.; Greene, Casey S.; Pioli, Patricia A.; Hinchcliff, Monique E.; Whitfield, Michael L.

    2015-01-01

    Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6–12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA) genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected and related to a patients underlying genetic risk. PMID:25569146

  17. Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa.

    PubMed

    Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Chen, Qingqing; Tian, Jiaxing; Zhang, Deqiang

    2013-12-01

    Dioecious plants have evolved sex-specific floral development mechanisms. However, the precise gene expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. Comparative transcriptome and physiological analysis allowed us to characterize sex-specific development of female and male flowers. Transcriptome analysis identified genes significantly differentially expressed between the sexes, including genes related to floral development, phytohormone synthesis and metabolism, and DNA methylation. Correlation analysis revealed a significant correlation between phytohormone signaling and gene expression, identifying specific phytohormone-responsive genes and their cis-regulatory elements. Two genes related to DNA methylation, METHYLTRANSFERASE1 (MET1) and DECREASED DNA METHYLATION 1 (DDM1), which are located in the sex determination region of Chromosome XIX, have differential expression between female and male flowers. A time-course analysis revealed that MET1 and DDM1 expression may produce different DNA methylation levels in female and male flowers. Understanding the interactions of phytohormone signaling, DNA methylation and target gene expression should lead to a better understanding of sexual differences in floral development. Thus, this study identifies a set of candidate genes for further studies of poplar sexual dimorphism and relates sex-specific floral development to physiological and epigenetic changes.

  18. Rice-based mucosal vaccine as a global strategy for cold-chain- and needle-free vaccination

    PubMed Central

    Nochi, Tomonori; Takagi, Hidenori; Yuki, Yoshikazu; Yang, Lijun; Masumura, Takehiro; Mejima, Mio; Nakanishi, Ushio; Matsumura, Akiko; Uozumi, Akihiro; Hiroi, Takachika; Morita, Shigeto; Tanaka, Kunisuke; Takaiwa, Fumio; Kiyono, Hiroshi

    2007-01-01

    Capable of inducing antigen-specific immune responses in both systemic and mucosal compartments without the use of syringe and needle, mucosal vaccination is considered ideal for the global control of infectious diseases. In this study, we developed a rice-based oral vaccine expressing cholera toxin B subunit (CTB) under the control of the endosperm-specific expression promoter 2.3-kb glutelin GluB-1 with codon usage optimization for expression in rice seed. An average of 30 μg of CTB per seed was stored in the protein bodies, which are storage organelles in rice. When mucosally fed, rice seeds expressing CTB were taken up by the M cells covering the Peyer's patches and induced CTB-specific serum IgG and mucosal IgA antibodies with neutralizing activity. When expressed in rice, CTB was protected from pepsin digestion in vitro. Rice-expressed CTB also remained stable and thus maintained immunogenicity at room temperature for >1.5 years, meaning that antigen-specific mucosal immune responses were induced at much lower doses than were necessary with purified recombinant CTB. Because they require neither refrigeration (cold-chain management) nor a needle, these rice-based mucosal vaccines offer a highly practical and cost-effective strategy for orally vaccinating large populations against mucosal infections, including those that may result from an act of bioterrorism. PMID:17573530

  19. Salmonella Typhimurium induces SPI-1 and SPI-2 regulated and strain dependent downregulation of MHC II expression on porcine alveolar macrophages

    PubMed Central

    2012-01-01

    Foodborne salmonellosis is one of the most important bacterial zoonotic diseases worldwide. Salmonella Typhimurium is the serovar most frequently isolated from persistently infected slaughter pigs in Europe. Circumvention of the host’s immune system by Salmonella might contribute to persistent infection of pigs. In the present study, we found that Salmonella Typhimurium strain 112910a specifically downregulated MHC II, but not MHC I, expression on porcine alveolar macrophages in a Salmonella pathogenicity island (SPI)-1 and SPI-2 dependent way. Salmonella induced downregulation of MHC II expression and intracellular proliferation of Salmonella in macrophages were significantly impaired after opsonization with Salmonella specific antibodies prior to inoculation. Furthermore, the capacity to downregulate MHC II expression on macrophages differed significantly among Salmonella strains, independently of strain specific differences in invasion capacity, Salmonella induced cytotoxicity and altered macrophage activation status. The fact that strain specific differences in MHC II downregulation did not correlate with the extent of in vitro SPI-1 or SPI-2 gene expression indicates that other factors are involved in MHC II downregulation as well. Since Salmonella strain dependent interference with the pig’s immune response through downregulation of MHC II expression might indicate that certain Salmonella strains are more likely to escape serological detection, our findings are of major interest for Salmonella monitoring programs primarily based on serology. PMID:22694285

  20. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    PubMed

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians

    PubMed Central

    Saberi, Amir; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A.

    2016-01-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development. PMID:27163480

  2. GPCRs Direct Germline Development and Somatic Gonad Function in Planarians.

    PubMed

    Saberi, Amir; Jamal, Ayana; Beets, Isabel; Schoofs, Liliane; Newmark, Phillip A

    2016-05-01

    Planarians display remarkable plasticity in maintenance of their germline, with the ability to develop or dismantle reproductive tissues in response to systemic and environmental cues. Here, we investigated the role of G protein-coupled receptors (GPCRs) in this dynamic germline regulation. By genome-enabled receptor mining, we identified 566 putative planarian GPCRs and classified them into conserved and phylum-specific subfamilies. We performed a functional screen to identify NPYR-1 as the cognate receptor for NPY-8, a neuropeptide required for sexual maturation and germ cell differentiation. Similar to NPY-8, knockdown of this receptor results in loss of differentiated germ cells and sexual maturity. NPYR-1 is expressed in neuroendocrine cells of the central nervous system and can be activated specifically by NPY-8 in cell-based assays. Additionally, we screened the complement of GPCRs with expression enriched in sexually reproducing planarians, and identified an orphan chemoreceptor family member, ophis, that controls differentiation of germline stem cells (GSCs). ophis is expressed in somatic cells of male and female gonads, as well as in accessory reproductive tissues. We have previously shown that somatic gonadal cells are required for male GSC specification and maintenance in planarians. However, ophis is not essential for GSC specification or maintenance and, therefore, defines a secondary role for planarian gonadal niche cells in promoting GSC differentiation. Our studies uncover the complement of planarian GPCRs and reveal previously unappreciated roles for these receptors in systemic and local (i.e., niche) regulation of germ cell development.

  3. Functional characterization of sex pheromone receptors in the purple stem borer, Sesamia inferens (Walker).

    PubMed

    Zhang, Y-N; Zhang, J; Yan, S-W; Chang, H-T; Liu, Y; Wang, G-R; Dong, S-L

    2014-10-01

    The sex pheromone communication system in moths is highly species-specific and extremely sensitive, and pheromone receptors (PRs) are thought to be the most important factors in males. In the present study, three full-length cDNAs encoding PRs were characterized from Sesamia inferens antennae. These three PRs were all male-specific in expression, but their relative expression levels were very different; SinfOR29 was 17- to 23-fold higher than the other two PRs. Phylogenetic and motif pattern analyses showed that these three PRs were allocated to different PR subfamilies with different motif patterns. Functional analysis using the heterologous expression system of Xenopus oocytes demonstrated that SinfOR29 specifically and sensitively responded to the major pheromone component, Z11-16:OAc [concentration for 50% of maximal effect (EC50 ) = 3.431 × 10(-7) M], while SinfOR21 responded robustly to a minor pheromone component Z11-16:OH (EC50  = 1.087 × 10(-6) M). SinfOR27, however, displayed no response to any of the three pheromone components, but, interestingly, it was sensitive to a non-sex pheromone component Z9,E12-14:OAc (EC50  = 1.522 × 10(-6) M). Our results provide insight into the molecular mechanisms of specificity and sensitivity of the sex pheromone communication system in moths. © 2014 The Royal Entomological Society.

  4. Using viral vectors as gene transfer tools (Cell Biology and Toxicology Special Issue: ETCS-UK 1 day meeting on genetic manipulation of cells).

    PubMed

    Howarth, Joanna L; Lee, Youn Bok; Uney, James B

    2010-02-01

    In recent years, the development of powerful viral gene transfer techniques has greatly facilitated the study of gene function. This review summarises some of the viral delivery systems routinely used to mediate gene transfer into cell lines, primary cell cultures and in whole animal models. The systems described were originally discussed at a 1-day European Tissue Culture Society (ETCS-UK) workshop that was held at University College London on 1st April 2009. Recombinant-deficient viral vectors (viruses that are no longer able to replicate) are used to transduce dividing and post-mitotic cells, and they have been optimised to mediate regulatable, powerful, long-term and cell-specific expression. Hence, viral systems have become very widely used, especially in the field of neurobiology. This review introduces the main categories of viral vectors, focusing on their initial development and highlighting modifications and improvements made since their introduction. In particular, the use of specific promoters to restrict expression, translational enhancers and regulatory elements to boost expression from a single virion and the development of regulatable systems is described.

  5. Bioinspired Nanocomplex for Spatiotemporal Imaging of Sequential mRNA Expression in Differentiating Neural Stem Cells

    PubMed Central

    2015-01-01

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions. PMID:25494492

  6. Seed specific expression and analysis of recombinant human adenosine deaminase (hADA) in three host plant species.

    PubMed

    Doshi, Ketan M; Loukanina, Natalia N; Polowick, Patricia L; Holbrook, Larry A

    2016-10-01

    The plant seed is a leading platform amongst plant-based storage systems for the production of recombinant proteins. In this study, we compared the activity of human adenosine deaminase (hADA) expressed in transgenic seeds of three different plant species: pea (Pisum sativum L.), Nicotiana benthamiana L. and tarwi (Lupinus mutabilis Sweet). All three species were transformed with the same expression vector containing the hADA gene driven by the seed-specific promoter LegA2 with an apoplast targeting pinII signal peptide. During the study, several independent transgenic lines were generated and screened from each plant species and only lines with a single copy of the gene of interest were used for hADA expression analysis. A stable transgenic canola line expressing the ADA protein, under the control of 35S constitutive promoter was used as both as a positive control and for comparative study with the seed specific promoter. Significant differences were detected in the expression of hADA. The highest activity of the hADA enzyme (Units/g seed) was reported in tarwi (4.26 U/g) followed by pea (3.23 U/g) and Nicotiana benthamiana (1.69 U/g). The expression of mouse ADA in canola was very low in both seed and leaf tissue compared to other host plants, confirming higher activity of seed specific promoter. Altogether, these results suggest that tarwi could be an excellent candidate for the production of valuable recombinant proteins.

  7. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    PubMed

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  8. Dissection of expression-quantitative trait locus and allele specificity using a haploid/diploid plant system - insights into compensatory evolution of transcriptional regulation within populations.

    PubMed

    Verta, Jukka-Pekka; Landry, Christian R; MacKay, John

    2016-07-01

    Regulation of gene expression plays a central role in translating genotypic variation into phenotypic variation. Dissection of the genetic basis of expression variation is key to understanding how expression regulation evolves. Such analyses remain challenging in contexts where organisms are outbreeding, highly heterozygous and long-lived such as in the case of conifer trees. We developed an RNA sequencing (RNA-seq)-based approach for both expression-quantitative trait locus (eQTL) mapping and the detection of cis-acting (allele-specific) vs trans-acting (non-allele-specific) eQTLs. This method can be potentially applied to many conifers. We used haploid and diploid meiotic seed tissues of a single self-fertilized white spruce (Picea glauca) individual to dissect eQTLs according to linkage and allele specificity. The genetic architecture of local eQTLs linked to the expressed genes was particularly complex, consisting of cis-acting, trans-acting and, surprisingly, compensatory cis-trans effects. These compensatory effects influence expression in opposite directions and are neutral when combined in homozygotes. Nearly half of local eQTLs were under compensation, indicating that close linkage between compensatory cis-trans factors is common in spruce. Compensated genes were overrepresented in developmental and cell organization functions. Our haploid-diploid eQTL analysis in spruce revealed that compensatory cis-trans eQTLs segregate within populations and evolve in close genetic linkage. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Identification of an elaborate NK-specific system regulating HLA-C expression

    PubMed Central

    Ivarsson, Martin A.; Walker-Sperling, Victoria E.; Subleski, Jeff; Johnson, Jenna K.; Wright, Paul W.; Carrington, Mary; McVicar, Daniel W.

    2018-01-01

    The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development. PMID:29329284

  10. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine.

    PubMed

    Chen, Yang; Guo, Wanzhu; Xu, Zhiwen; Yan, Qigui; Luo, Yan; Shi, Qian; Chen, Dishi; Zhu, Ling; Wang, Xiaoyu

    2011-06-16

    Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection.

  11. Expression mapping using a retroviral vector for CD8+ T cell epitopes: definition of a Mycobacterium tuberculosis peptide presented by H2-Dd.

    PubMed

    Aoshi, Taiki; Suzuki, Mina; Uchijima, Masato; Nagata, Toshi; Koide, Yukio

    2005-03-01

    Identification of CD8+ T cell epitopes is important because detection of specific CD8+ T cells after infection or immunization requires prior knowledge of epitope specificity. Furthermore, identification of CD8+ T cell epitopes permits the development of specific preventive and therapeutic approaches to both infections and tumors. Thus far, CD8+ T cell epitopes have been identified either using an overlapping peptide library covering an entire protein, or using algorithms designed to identify likely peptides that bind to major histocompatibility complex (MHC) class I molecules. The synthesis of overlapping peptides can be prohibitively expensive, and the algorithm programs used to predict CD8+ T cell epitopes are not always accurate. Here we describe a retroviral expression system that specifically allows longer polypeptides and shorter peptides to be expressed in the cytoplasm, and thereby to be processed onto class I MHC molecules. T cells from mice that were immunized with a DNA vaccine encoding MPT-51 were probed against MHC-compatible cell lines retrovirally transduced with overlapping gene fragments encoding 120-140 amino acids of the MPT-51 molecule. After further testing of shorter peptide sequences, we identified a CD8+ T cell epitope using cell lines expressing a relatively small number of algorithm-predicted candidate epitopes. We found that one of the requirements for cell surface display of the 20-mer peptide was the need for cotranslational ubiquitination. The restriction molecule was identified as Dd following transduction with MHC class I genes followed by transduction with the oligonucleotide encoding the epitope. The retroviral expression system described here is cost-effective, particularly if the target molecule is large, and could be adapted to identifying T cell epitopes recognized in infectious disease and against tumor cell antigens.

  12. HOXA5 plays tissue-specific roles in the developing respiratory system.

    PubMed

    Landry-Truchon, Kim; Houde, Nicolas; Boucherat, Olivier; Joncas, France-Hélène; Dasen, Jeremy S; Philippidou, Polyxeni; Mansfield, Jennifer H; Jeannotte, Lucie

    2017-10-01

    Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract. © 2017. Published by The Company of Biologists Ltd.

  13. A modular toolset for recombination transgenesis and neurogenetic analysis of Drosophila.

    PubMed

    Wang, Ji-Wu; Beck, Erin S; McCabe, Brian D

    2012-01-01

    Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues.

  14. Anxiety from a Phylogenetic Perspective: Is there a Qualitative Difference between Human and Animal Anxiety?

    PubMed Central

    Belzung, Catherine; Philippot, Pierre

    2007-01-01

    A phylogenetic approach to anxiety is proposed. The different facets of human anxiety and their presence at different levels of the phylum are examined. All organisms, including unicellular such as protozoan, can display a specific reaction to danger. The mechanisms enabling the appraisal of harmful stimuli are fully present in insects. In higher invertebrates, fear is associated with a specific physiological response. In mammals, anxiety is accompanied by specific cognitive responses. The expression of emotions diversifies in higher vertebrates, only primates displaying facial expressions. Finally, autonoetic consciousness, a feature essential for human anxiety, appears only in great apes. This evolutive feature parallels the progress in the complexity of the logistic systems supporting it (e.g., the vegetative and central nervous systems). The ability to assess one's coping potential, the diversification of the anxiety responses, and autonoetic consciousness seem relevant markers in a phylogenetic perspective. PMID:17641735

  15. Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system

    PubMed Central

    Ohno, Yusuke; Kashio, Atsushi; Ogata, Ren; Ishitomi, Akihiro; Yamazaki, Yuki; Kihara, Akio

    2012-01-01

    Palmitoylation plays important roles in the regulation of protein localization, stability, and activity. The protein acyltransferases (PATs) have a common DHHC Cys-rich domain. Twenty-three DHHC proteins have been identified in humans. However, it is unclear whether all of these DHHC proteins function as PATs. In addition, their substrate specificities remain largely unknown. Here we develop a useful method to examine substrate specificities of PATs using a yeast expression system with six distinct model substrates. We identify 17 human DHHC proteins as PATs. Moreover, we classify 11 human and 5 yeast DHHC proteins into three classes (I, II, and III), based on the cellular localization of their respective substrates (class I, soluble proteins; class II, integral membrane proteins; class III, lipidated proteins). Our results may provide an important clue for understanding the function of individual DHHC proteins. PMID:23034182

  16. Lens-Specific Gene Recruitment of ζ-Crystallin through Pax6, Nrl-Maf, and Brain Suppressor Sites

    PubMed Central

    Sharon-Friling, Ronit; Richardson, Jill; Sperbeck, Sally; Lee, Douglas; Rauchman, Michael; Maas, Richard; Swaroop, Anand; Wistow, Graeme

    1998-01-01

    ζ-Crystallin is a taxon-specific crystallin, an enzyme which has undergone direct gene recruitment as a structural component of the guinea pig lens through a Pax6-dependent mechanism. Tissue specificity arises through a combination of effects involving three sites in the lens promoter. The Pax6 site (ZPE) itself shows specificity for an isoform of Pax6 preferentially expressed in lens cells. High-level expression of the promoter requires a second site, identical to an αCE2 site or half Maf response element (MARE), adjacent to the Pax6 site. A promoter fragment containing Pax6 and MARE sites gives lens-preferred induction of a heterologous promoter. Complexes binding the MARE in lens nuclear extracts are antigenically related to Nrl, and cotransfection with Nrl elevates ζ-crystallin promoter activity in lens cells. A truncated ζ promoter containing Nrl-MARE and Pax6 sites has a high level of expression in lens cells in transgenic mice but is also active in the brain. Suppression of the promoter in the brain requires sequences between −498 and −385, and a site in this region forms specific complexes in brain extract. A three-level model for lens-specific Pax6-dependent expression and gene recruitment is suggested: (i) binding of a specific isoform of Pax6; (ii) augmentation of expression through binding of Nrl or a related factor; and (iii) suppression of promoter activity in the central nervous system by an upstream negative element in the brain but not in the lens. PMID:9528779

  17. Generation of a neurodegenerative disease mouse model using lentiviral vectors carrying an enhanced synapsin I promoter.

    PubMed

    Matsuzaki, Yasunori; Oue, Miho; Hirai, Hirokazu

    2014-02-15

    Certain inherited progressive neurodegenerative disorders, such as spinocerebellar ataxia (SCA), affect neurons in large areas of the central nervous system (CNS). The selective expression of disease-causing and therapeutic genes in susceptible regions and cell types is critical for the generation of animal models and development of gene therapies for these diseases. Previous studies have demonstrated the advantages of the short synapsin I (SynI) promoter (0.5 kb) as a neuron-specific promoter for robust transgene expression. However, the short SynI promoter has also shown some promoter activity in glia and a lack of transgene expression in significant areas of the CNS. New methods: To improve the SynI promoter, we used a SynI promoter that is twice as long (1.0 kb) as the short SynI promoter and incorporated a minimal CMV (minCMV) sequence. We observed that the 1.0 kb rat SynI promoter with minCMV [rSynI(1.0)-minCMV] exhibited robust promoter strength, excellent neuronal specificity and wide-ranging transgene expression throughout the CNS. Comparison with existing methods: Compared with the two previously reported short (0.5 kb) promoters, the new promoter was superior with respect to neuronal specificity and more efficiently transduced neurons. Moreover, transgenic mice expressing the mutant protein ATXN1[Q98], which causes SCA type 1 (SCA1), under the control of the rSynI(1.0)-minCMV promoter showed robust transgene expression specifically in neurons throughout the CNS and exhibited progressive ataxia. rSynI(1.0)-minCMV drives robust and neuron-specific transgene expression throughout the CNS and is therefore useful for viral vector-mediated neuron-specific gene delivery and generation of neuron-specific transgenic animals. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Expression and purification of the antimicrobial peptide GSL1 in bacteria for raising antibodies.

    PubMed

    Meiyalaghan, Sathiyamoorthy; Latimer, Julie M; Kralicek, Andrew V; Shaw, Martin L; Lewis, John G; Conner, Anthony J; Barrell, Philippa J

    2014-11-04

    The Gibberellin Stimulated-Like (GSL) or Snakin peptides from higher plants are cysteine-rich, with broad spectrum activity against a range of bacterial and fungal pathogens. To detect GSL peptides in applications such as western blot analysis and enzyme-linked immunosorbent assays (ELISA), specific antibodies that recognise GSL peptides are required. However, the intrinsic antimicrobial activity of these peptides is likely to prevent their expression alone in bacterial or yeast expression systems for subsequent antibody production in animal hosts. To overcome this issue we developed an Escherichia coli expression strategy based on the expression of the GSL1 peptide as a His-tagged thioredoxin fusion protein. The DNA sequence for the mature GSL1 peptide from potato (Solanum tuberosum L.) was cloned into the pET-32a expression vector to produce a construct encoding N-terminally tagged his6-thioredoxin-GSL1. The fusion protein was overexpressed in E. coli to produce soluble non-toxic protein. The GSL1 fusion protein could be easily purified by using affinity chromatography to yield ~1.3 mg of his6-thioredoxin-GSL1 per L of culture. The fusion protein was then injected into rabbits for antibody production. Western blot analysis showed that the antibodies obtained from rabbit sera specifically recognised the GSL1 peptide that had been expressed in a wheat germ cell-free expression system. We present here the first report of a GSL1 peptide expressed as a fusion protein with thioredoxin that has resulted in milligram quantities of soluble protein to be produced. We have also demonstrated that a wheat germ system can be used to successfully express small quantities of GSL1 peptide useful as positive control in western blot analysis. To our knowledge this is the first report of antibodies being produced against GSL1 peptide. The antibodies will be useful for analysis of GSL1peptides in western blot, localization by immunohistochemistry (IHC) and quantitation by ELISA.

  19. Causal tapestries for psychology and physics.

    PubMed

    Sulis, William H

    2012-04-01

    Archetypal dynamics is a formal approach to the modeling of information flow in complex systems used to study emergence. It is grounded in the Fundamental Triad of realisation (system), interpretation (archetype) and representation (formal model). Tapestries play a fundamental role in the framework of archetypal dynamics as a formal representational system. They represent information flow by means of multi layered, recursive, interlinked graphical structures that express both geometry (form or sign) and logic (semantics). This paper presents a detailed mathematical description of a specific tapestry model, the causal tapestry, selected for use in describing behaving systems such as appear in psychology and physics from the standpoint of Process Theory. Causal tapestries express an explicit Lorentz invariant transient now generated by means of a reality game. Observables are represented by tapestry informons while subjective or hidden components (for example intellectual and emotional processes) are incorporated into the reality game that determines the tapestry dynamics. As a specific example, we formulate a random graphical dynamical system using causal tapestries.

  20. Solexa Sequencing of Novel and Differentially Expressed MicroRNAs in Testicular and Ovarian Tissues in Holstein Cattle

    PubMed Central

    Huang, Jinming; Ju, Zhihua; Li, Qiuling; Hou, Qinlei; Wang, Changfa; Li, Jianbin; Li, Rongling; Wang, Lingling; Sun, Tao; Hang, Suqin; Gao, Yundong; Hou, Minghai; Zhong, Jifeng

    2011-01-01

    The posttranscriptional gene regulation mediated by microRNA plays an important role in the development and function of male and female reproductive organs and germ cells in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in the testis and ovary in Holstein cattle by combining the Solexa sequencing with bioinformatics. In total 100 and 104 novel pre-miRNAs were identified in testicular and ovarian tissues, encoding 122 and 136 mature miRNAs, respectively. Of these, 6 miRNAs appear to be bovine-specific. A total of 246 known miRNAs were co-expressed in the testicular and ovarian tissues. Of the known miRNAs, twenty-one testis-specific and nine ovary-specific (1-23 reads) were found. Approximately 30.5% of the known bovine miRNAs in this study were found to have >2-fold differential expression within the two respective reproductive organ systems. The putative miRNA target genes of miRNAs were involved in pathways associated with reproductive physiology. Both known and novel tissue-specific miRNAs are expressed by Real-time quantitative PCR analysis in dairy cattle. This study expands the number of miRNAs known to be expressed in cattle. The patterns of miRNAs expression differed significantly between the bovine testicular and ovarian tissues, which provide important information on sex differences in miRNA expression. Diverse miRNAs may play an important regulatory role in the development of the reproductive organs in Holstein cattle. PMID:21912509

  1. Altered Peripheral Blood Monocyte Phenotype and Function in Chronic Liver Disease: Implications for Hepatic Recruitment and Systemic Inflammation.

    PubMed

    Gadd, Victoria L; Patel, Preya J; Jose, Sara; Horsfall, Leigh; Powell, Elizabeth E; Irvine, Katharine M

    2016-01-01

    Liver and systemic inflammatory factors influence monocyte phenotype and function, which has implications for hepatic recruitment and subsequent inflammatory and fibrogenic responses, as well as host defence. Peripheral blood monocyte surface marker (CD14, CD16, CD163, CSF1R, CCR2, CCR4, CCR5, CXCR3, CXCR4, CX3CR1, HLA-DR, CD62L, SIGLEC-1) expression and capacity for phagocytosis, oxidative burst and LPS-stimulated TNF production were assessed in patients with hepatitis C (HCV) (n = 39) or non-alcoholic fatty liver disease (NAFLD) (n = 34) (classified as non-advanced disease, compensated cirrhosis and decompensated cirrhosis) and healthy controls (n = 11) by flow cytometry. The selected markers exhibited similar monocyte-subset-specific expression patterns between patients and controls. Monocyte phenotypic signatures differed between NAFLD and HCV patients, with an increased proportion of CD16+ non-classical monocytes in NAFLD, but increased expression of CXCR3 and CXCR4 in HCV. In both cohorts, monocyte CCR2 expression was reduced and CCR4 elevated over controls. CD62L expression was specifically elevated in patients with decompensated cirrhosis and positively correlated with the model-for-end-stage-liver-disease score. Functionally, monocytes from patients with decompensated cirrhosis had equal phagocytic capacity, but displayed features of dysfunction, characterised by lower HLA-DR expression and blunted oxidative responses. Lower monocyte TNF production in response to LPS stimulation correlated with time to death in 7 (46%) of the decompensated patients who died within 8 months of recruitment. Chronic HCV and NAFLD differentially affect circulating monocyte phenotype, suggesting specific injury-induced signals may contribute to hepatic monocyte recruitment and systemic activation state. Monocyte function, however, was similarly impaired in patients with both HCV and NAFLD, particularly in advanced disease, which likely contributes to the increased susceptibility to infection in these patients.

  2. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.

    PubMed

    Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G

    2004-04-29

    Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  3. Hematopoietic stem cell-specific GFP-expressing transgenic mice generated by genetic excision of a pan-hematopoietic reporter gene.

    PubMed

    Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla

    2016-08-01

    Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  4. EXPRESS Rack Mockup

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the International Space Station (ISS). EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle. The Racks stay on orbit continually, while experiments are exchanged in and out of the EXPRESS Racks as needed, remaining on the ISS for three months to several years, depending on the experiment's time requirements. A refrigerator-sized Rack can be divided into segments, as large as half of an entire rack or as small as a bread box. Payloads within EXPRESS Racks can operate independently of each other, allowing for differences in temperature, power levels, and schedules. Experiments contained within EXPRESS Racks may be controlled by the ISS crew or remotely by the Payload Rack Officer at the Payload Operations Center at the Marshall Space Flight Center (MSFC). The EXPRESS Rack system was developed by MSFC and built by the Boeing Co. in Huntsville, Alabama. Eight EXPRESS Racks are being built for use on the ISS.

  5. Expressing Adaptation Strategies Using Adaptation Patterns

    ERIC Educational Resources Information Center

    Zemirline, N.; Bourda, Y.; Reynaud, C.

    2012-01-01

    Today, there is a real challenge to enable personalized access to information. Several systems have been proposed to address this challenge including Adaptive Hypermedia Systems (AHSs). However, the specification of adaptation strategies remains a difficult task for creators of such systems. In this paper, we consider the problem of the definition…

  6. Cell-type-specific expression of neural cell adhesion molecule (N-CAM) in Ito cells of rat liver. Up-regulation during in vitro activation and in hepatic tissue repair.

    PubMed

    Knittel, T; Aurisch, S; Neubauer, K; Eichhorst, S; Ramadori, G

    1996-08-01

    Ito cells (lipocytes, stellate cells) are regarded as the principle matrix-producing cell of the liver and have been shown recently to express glial fibrillary acidic protein, an intermediate filament typically found in glia cells of the nervous system. The present study examines 1) whether Ito cells of rat liver express central nervous system typical adhesion molecules, namely, neural cell adhesion molecule (N-CAM), in a cell-type-specific manner and 2) whether N-CAM expression is affected by activation of Ito cells in vitro and during rat liver injury in vivo. As assessed by reverse transcriptase polymerase chain reaction, Northern blotting, Western blotting, and immunocytochemistry of freshly isolated and cultivated hepatic cells, N-CAM expression was restricted to Ito cells and was absent in hepatocytes, Kupffer cells, and sinusoidal endothelial cells. Ito cells expressed predominantly N-CAM-coding transcripts of 6.1 and 4.8 kb in size and 140-kd isoforms of the N-CAM protein, which was localized on the cell surface membrane of Ito cells. In parallel to glial fibrillary acidic protein down-regulation and smooth muscle alpha-actin up-regulation, N-CAM expression was increased during in vitro transformation of Ito cells from resting to activated (myofibroblast-like) cells and by the fibrogenic mediator transforming growth factor-beta 1. By immunohistochemistry, N-CAM was detected in normal rat liver in the portal field as densely packed material and in a spot as well as fiber-like pattern probably representing nerve structures. However, after liver injury, N-CAM expression became detectable in mesenchymal cells within and around the necrotic area and within fibrotic septae. In serially cut tissue sections, N-CAM-positive cells were predominantly co-distributed with smooth muscle alpha-actin-positive cells rather than glial fibrillary acidic protein-positive cells, especially in fibrotic livers. The experimental results illustrate that N-CAM positivity in the liver cannot be solely ascribed to nerve endings as, among the different types of resident liver cells, Ito cells specifically express N-CAM in vitro and presumably in vivo. In addition to its role as potential cell-type-specific marker protein for activated Ito cells, the induction of N-CAM expression might illustrate a mechanism by which mesenchymal cell proliferation might be inhibited when tissue repair is concluded.

  7. Identification of the sexually dimorphic gastrin-releasing peptide system in the lumbosacral spinal cord that controls male reproductive function in the mouse and Asian house musk shrew (Suncus murinus).

    PubMed

    Tamura, Kei; Kobayashi, Yasuhisa; Hirooka, Asuka; Takanami, Keiko; Oti, Takumi; Jogahara, Takamichi; Oda, Sen-Ichi; Sakamoto, Tatsuya; Sakamoto, Hirotaka

    2017-05-01

    Several regions of the brain and spinal cord control male reproductive function. We previously demonstrated that the gastrin-releasing peptide (GRP) system, located in the lumbosacral spinal cord of rats, controls spinal centers to promote penile reflexes during male copulatory behavior. However, little information exists on the male-specific spinal GRP system in animals other than rats. The objective of this study was to examine the functional generality of the spinal GRP system in mammals using the Asian house musk shrew (Suncus murinus; suncus named as the laboratory strain), a specialized placental mammal model. Mice are also used for a representative model of small laboratory animals. We first isolated complementary DNA encoding GRP in suncus. Phylogenetic analysis revealed that suncus preproGRP was clustered to an independent branch. Reverse transcription-PCR showed that GRP and its receptor mRNAs were both expressed in the lumbar spinal cord of suncus and mice. Immunohistochemistry for GRP demonstrated that the sexually dimorphic GRP system and male-specific expression/distribution patterns of GRP in the lumbosacral spinal cord in suncus are similar to those of mice. In suncus, we further found that most GRP-expressing neurons in males also express androgen receptors, suggesting that this male-dominant system in suncus is also androgen-dependent. Taken together, these results indicate that the sexually dimorphic spinal GRP system exists not only in mice but also in suncus, suggesting that this system is a conserved property in mammals. J. Comp. Neurol. 525:1586-1598, 2017. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Three-dimensional hepatocyte culture system for the study of Echinococcus multilocularis larval development

    PubMed Central

    Chen, Bing; Yan, Hongbin; Zhao, Yannan; Lou, Zhongzi; Li, Jianqiu; Fu, Baoquan; Zhu, Xingquan; McManus, Donald P.; Dai, Jianwu; Jia, Wanzhong

    2018-01-01

    Background Hepatocyte-based metacestode culture is an attractive method to study alveolar echinococcosis (AE), but it is limited by the relatively short lifespan of cultured hepatocytes in maintaining their normal function. Methodology/principal findings We describe a three-dimensional (3D) hepatic culture system developed from co-cultured hepatocytes and mesenchymal stem cells using a collagen scaffold to study the development of Echinococcus multilocularis larvae. This 3D culture system preserved the function of hepatocytes for a longer period of time than their monolayer counterparts, with albumin secretion, 7-ethoxyresorufin O-deethylation activity, urea synthesis, CYP3A4 and CYP2D6 activity being highly preserved for 21–28 days. The expression levels of hepatocyte-specific genes including CLDN-3, Bsep, AFP, G6P, A1AT, CYP3A4 and NR1I3 were significantly higher in the 3D cultured system compared with their monolayer counterparts after 14-days in culture. Additionally, in the presence of 3D cultured hepatocytes, 81.2% of E. multilocularis protoscoleces rapidly de-differentiated into infective vesicles within eight weeks. Transcriptomic analyses revealed 807 differentially expressed genes between cultured vesicles and protoscoleces, including 119 genes uniquely expressed in protoscoleces, and 242 genes uniquely expressed in vesicles. These differentially expressed genes were mainly involved in parasite growth relating to the G-protein coupled receptor activity pathway, substrate-specific transmembrane transporter activity, cell-cell adhesion process, and potentially with neuroactive ligand-receptor interaction. Conclusions/significance This culture system provides a valuable advance in prolonging hepatocyte functionality, a foundation for future in-depth analysis of the host-parasite interaction in AE, and a useful model to evaluate potential therapeutic strategies to treat AE. PMID:29538424

  9. Chemokine receptor binding and signal transduction in native cells of the central nervous system.

    PubMed

    Davis, Christopher N; Chen, Shuzhen; Boehme, Stefen A; Bacon, Kevin B; Harrison, Jeffrey K

    2003-04-01

    Chemokine receptors belong to the superfamily of seven-transmembrane-spanning, G-protein-coupled receptors, and their expression by central nervous system cells is clearly documented. As this gene family has become the target of novel therapeutic development, the analysis of these receptors requires radioligand binding techniques as well as methods that entail assessing receptor stimulation of signal transduction pathways. Herein, we describe specific protocols for measuring radiolabeled chemokine binding to their cognate receptors on cultured glial cells as well as to receptors expressed in heterologous cell systems. Multiple downstream signaling pathways, including intracellular calcium influx and receptor-dependent kinase activation, are associated with chemokine receptor stimulation. Protocols for measuring these signaling events in chemokine-receptor-expressing cells are also presented.

  10. Neurotransmitter-based strategies for the treatment of cognitive dysfunction in Down syndrome.

    PubMed

    Das, Devsmita; Phillips, Cristy; Hsieh, Wayne; Sumanth, Krithika; Dang, Van; Salehi, Ahmad

    2014-10-03

    Down syndrome (DS) is a multisystem disorder affecting the cardiovascular, respiratory, gastrointestinal, neurological, hematopoietic, and musculoskeletal systems and is characterized by significant cognitive disability and a possible common pathogenic mechanism with Alzheimer's disease. During the last decade, numerous studies have supported the notion that the triplication of specific genes on human chromosome 21 plays a significant role in cognitive dysfunction in DS. Here we reviewed studies in trisomic mouse models and humans, including children and adults with DS. In order to identify groups of genes that contribute to cognitive disability in DS, multiple mouse models of DS with segmental trisomy have been generated. Over-expression of these particular genes in DS can lead to dysfunction of several neurotransmitter systems. Therapeutic strategies for DS have either focused on normalizing the expression of triplicated genes with important roles in DS or restoring the function of these systems. Indeed, our extensive review of studies on the pathogenesis of DS suggests that one plausible strategy for the treatment of cognitive dysfunction is to target the cholinergic, serotonergic, GABA-ergic, glutamatergic, and norepinephrinergic system. However, a fundamental strategy for treatment of cognitive dysfunction in DS would include reducing to normal levels the expression of specific triplicated genes in affected systems before the onset of neurodegeneration. Published by Elsevier Inc.

  11. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion.

    PubMed

    Talbot, Jared A; Currie, Ko W; Pearson, Bret J; Collins, Eva-Maria S

    2014-06-20

    Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. © 2014. Published by The Company of Biologists Ltd.

  12. Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion

    PubMed Central

    Talbot, Jared A.; Currie, Ko W.; Pearson, Bret J.; Collins, Eva-Maria S.

    2014-01-01

    ABSTRACT Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. PMID:24950970

  13. The gene road to royalty--differential expression of hydroxylating genes in the mandibular glands of the honeybee.

    PubMed

    Malka, Osnat; Karunker, Iris; Yeheskel, Adva; Morin, Shai; Hefetz, Abraham

    2009-10-01

    The advances in honeybee sociogenomics have paved the way for the study of social communication processes at the gene level, in particular the expression of caste-specific pheromones. The queen honeybee mandibular pheromone provides an excellent model system, in that biosynthesis of the hydroxylating fatty acid caste-specific pheromone appears to be reduced to a single chemical hydroxylation step of stearic acid. Queens are typified by omega-1-hydroxylation, as opposed to the worker-typical omega-hydroxylation. We hypothesized that this bifurcation is the consequence of differential expression of caste-specific genes that code for fatty acid-hydroxylating enzymes from the cytochrome P450 (CYP) family. Bioinformatics studies disclosed two candidate proteins CYP4AA1 and CYP18A1. We thus investigated the expression of these genes in the mandibular glands of queens, and of queenright (QR) and queenless (QL) workers. The real-time PCR results revealed that CYP4AA1 (omega-hydroxylation) was expressed at high levels in both QR and QL workers, whereas in queens its expression was negligible. The expression of CYP18A1 (omega-1-hydroxylation), on the other hand, was high in the queen's glands and negligible in those of QR workers. In QL workers, however, the expression of CYP18A1 was considerably elevated and significantly greater than in QR workers. Three-dimensional structural models constructed for these enzymes demonstrate differences in the active site between CYP18A1 and CYP4AA1, in line with their differential catalytic specificity. The fact that queen pheromone plasticity can be tracked all the way to gene expression provides a new insight into the process of caste differentiation and the accompanying social communication.

  14. RNA-seq Analysis Reveals Unique Transcriptome Signatures in Systemic Lupus Erythematosus Patients with Distinct Autoantibody Specificities

    PubMed Central

    Rai, Richa; Chauhan, Sudhir Kumar; Singh, Vikas Vikram; Rai, Madhukar; Rai, Geeta

    2016-01-01

    Systemic lupus erythematosus (SLE) patients exhibit immense heterogeneity which is challenging from the diagnostic perspective. Emerging high throughput sequencing technologies have been proved to be a useful platform to understand the complex and dynamic disease processes. SLE patients categorised based on autoantibody specificities are reported to have differential immuno-regulatory mechanisms. Therefore, we performed RNA-seq analysis to identify transcriptomics of SLE patients with distinguished autoantibody specificities. The SLE patients were segregated into three subsets based on the type of autoantibodies present in their sera (anti-dsDNA+ group with anti-dsDNA autoantibody alone; anti-ENA+ group having autoantibodies against extractable nuclear antigens (ENA) only, and anti-dsDNA+ENA+ group having autoantibodies to both dsDNA and ENA). Global transcriptome profiling for each SLE patients subsets was performed using Illumina® Hiseq-2000 platform. The biological relevance of dysregulated transcripts in each SLE subsets was assessed by ingenuity pathway analysis (IPA) software. We observed that dysregulation in the transcriptome expression pattern was clearly distinct in each SLE patients subsets. IPA analysis of transcripts uniquely expressed in different SLE groups revealed specific biological pathways to be affected in each SLE subsets. Multiple cytokine signaling pathways were specifically dysregulated in anti-dsDNA+ patients whereas Interferon signaling was predominantly dysregulated in anti-ENA+ patients. In anti-dsDNA+ENA+ patients regulation of actin based motility by Rho pathway was significantly affected. The granulocyte gene signature was a common feature to all SLE subsets; however, anti-dsDNA+ group showed relatively predominant expression of these genes. Dysregulation of Plasma cell related transcripts were higher in anti-dsDNA+ and anti-ENA+ patients as compared to anti-dsDNA+ ENA+. Association of specific canonical pathways with the uniquely expressed transcripts in each SLE subgroup indicates that specific immunological disease mechanisms are operative in distinct SLE patients’ subsets. This ‘sub-grouping’ approach could further be useful for clinical evaluation of SLE patients and devising targeted therapeutics. PMID:27835693

  15. Calcium affecting protein expression in longan under simulated acid rain stress.

    PubMed

    Pan, Tengfei; Li, Yongyu; Ma, Cuilan; Qiu, Dongliang

    2015-08-01

    Longan (Dimocarpus longana Lour. cv. Wulongling) of uniform one-aged seedlings grown in pots were selected to study specific proteins expressed in leaves under simulated acid rain (SiAR) stress and exogenous Ca(2+) regulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results showed that there was a protein band specifically expressed under SiAR of pH 2.5 stress for 15 days with its molecular weight of about 23 kD. A 17 kD protein band specifically expressed after SiAR stress 5 days. Compared with pH 2.5, the pH 3.5 of SiAR made a less influence to protein expression. Two-dimensional electrophoresis (2-DE) results showed that six new specific proteins including C4 (20.2 kD pI 6.0), F (24 kD pI 6.35), B3 (22.3 kD pI 6.35), B4 (23.5 kD pI 6.5), C5 (21.8 kD pI 5.6), and C6 (20.2 kD pI 5.6) specifically expressed. C4 always expressed during SiAR stress. F expressed under the stress of pH 2.5 for 15 days and expressed in all pH SiAR stress for 20 days. The expression of proteins including B3, C5, and C6 was related to pH value and stress intensity of SiAR. The expression of B4 resulted from synergistic effects of SiAR and Ca. The expression of G1 (Mr 19.3 kD, pI 4.5), G2 (Mr 17.8 kD, pI 4.65), G3 (Mr 16.6 kD, pI 4.6), and G4 (Mr 14.7 kD, pI 4.4) enhanced under the treatment of 5 mM ethylene glycol tetraacetic acid (EGTA) and 2 mM chlorpromazine (CPZ). These proteins showed antagonistic effects and might be relative to the Ca-calmodulin (Ca-CaM) system of longan in response to SiAR stress.

  16. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy

    PubMed Central

    Bengtsson, Niclas E.; Hall, John K.; Odom, Guy L.; Phelps, Michael P.; Andrus, Colin R.; Hawkins, R. David; Hauschka, Stephen D.; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2017-01-01

    Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders. PMID:28195574

  17. Targeted transgene insertion into the CHO cell genome using Cre recombinase-incorporating integrase-defective retroviral vectors.

    PubMed

    Kawabe, Yoshinori; Shimomura, Takuya; Huang, Shuohao; Imanishi, Suguru; Ito, Akira; Kamihira, Masamichi

    2016-07-01

    Retroviral vectors have served as efficient gene delivery tools in various biotechnology fields. However, viral DNA is randomly inserted into the genome, which can cause problems, such as insertional mutagenesis and gene silencing. Previously, we reported a site-specific gene integration system, in which a transgene is integrated into a predetermined chromosomal locus of Chinese hamster ovary (CHO) cells using integrase-defective retroviral vectors (IDRVs) and Cre recombinase. In this system, a Cre expression plasmid is transfected into founder cells before retroviral transduction. In practical applications of site-specific gene modification such as for hard-to-transfect cells or for in vivo gene delivery, both the transgene and the Cre protein into retroviral virions should be encapsulate. Here, we generated novel hybrid IDRVs in which viral genome and enzymatically active Cre can be delivered (Cre-IDRVs). Cre-IDRVs encoding marker genes, neomycin resistance and enhanced green fluorescent protein (EGFP), flanked by wild-type and mutated loxP sites were produced using an expression plasmid for a chimeric protein of Cre and retroviral gag-pol. After analyzing the incorporation of the Cre protein into retroviral virions by Western blotting, the Cre-IDRV was infected into founder CHO cells, in which marker genes (hygromycin resistance and red fluorescent protein) flanked with corresponding loxP sites are introduced into the genome. G418-resistant colonies expressing GFP appeared and the site-specific integration of the transgene into the expected chromosomal site was confirmed by PCR and sequencing of amplicons. Moreover, when Cre-IDRV carried a gene expression unit for a recombinant antibody, the recombinant cells in which the antibody expression cassette was integrated in a site-specific manner were generated and the cells produced the recombinant antibody. This method may provide a promising tool to perform site-specific gene modification according to Cre-based cell engineering. Biotechnol. Bioeng. 2016;113: 1600-1610. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. MO-DE-207B-03: Improved Cancer Classification Using Patient-Specific Biological Pathway Information Via Gene Expression Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, M; Craft, D

    Purpose: To develop an efficient, pathway-based classification system using network biology statistics to assist in patient-specific response predictions to radiation and drug therapies across multiple cancer types. Methods: We developed PICS (Pathway Informed Classification System), a novel two-step cancer classification algorithm. In PICS, a matrix m of mRNA expression values for a patient cohort is collapsed into a matrix p of biological pathways. The entries of p, which we term pathway scores, are obtained from either principal component analysis (PCA), normal tissue centroid (NTC), or gene expression deviation (GED). The pathway score matrix is clustered using both k-means and hierarchicalmore » clustering, and a clustering is judged by how well it groups patients into distinct survival classes. The most effective pathway scoring/clustering combination, per clustering p-value, thus generates various ‘signatures’ for conventional and functional cancer classification. Results: PICS successfully regularized large dimension gene data, separated normal and cancerous tissues, and clustered a large patient cohort spanning six cancer types. Furthermore, PICS clustered patient cohorts into distinct, statistically-significant survival groups. For a suboptimally-debulked ovarian cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00127) showed significant improvement over that of a prior gene expression-classified study (p = .0179). For a pancreatic cancer set, the pathway-classified Kaplan-Meier survival curve (p = .00141) showed significant improvement over that of a prior gene expression-classified study (p = .04). Pathway-based classification confirmed biomarkers for the pyrimidine, WNT-signaling, glycerophosphoglycerol, beta-alanine, and panthothenic acid pathways for ovarian cancer. Despite its robust nature, PICS requires significantly less run time than current pathway scoring methods. Conclusion: This work validates the PICS method to improve cancer classification using biological pathways. Patients are classified with greater specificity and physiological relevance as compared to current gene-specific approaches. Focus now moves to utilizing PICS for pan-cancer patient-specific treatment response prediction.« less

  19. The production of multiprotein complexes in insect cells using the baculovirus expression system.

    PubMed

    Abdulrahman, Wassim; Radu, Laura; Garzoni, Frederic; Kolesnikova, Olga; Gupta, Kapil; Osz-Papai, Judit; Berger, Imre; Poterszman, Arnaud

    2015-01-01

    The production of a homogeneous protein sample in sufficient quantities is an essential prerequisite not only for structural investigations but represents also a rate-limiting step for many functional studies. In the cell, a large fraction of eukaryotic proteins exists as large multicomponent assemblies with many subunits, which act in concert to catalyze specific activities. Many of these complexes cannot be obtained from endogenous source material, so recombinant expression and reconstitution are then required to overcome this bottleneck. This chapter describes current strategies and protocols for the efficient production of multiprotein complexes in large quantities and of high quality, using the baculovirus/insect cell expression system.

  20. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca2+-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus

    PubMed Central

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J.; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca2+ fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca2+-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα+/calbindin+ cells were closely surrounded by NAPE-PLD+ fiber varicosities. No pyramidal PPARα+/calbindin+ cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD+/calretinin+ cells were specifically detected in CA3. NAPE-PLD+ puncta surrounded the calretinin+ cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions. PMID:24672435

  1. Localization of peroxisome proliferator-activated receptor alpha (PPARα) and N-acyl phosphatidylethanolamine phospholipase D (NAPE-PLD) in cells expressing the Ca(2+)-binding proteins calbindin, calretinin, and parvalbumin in the adult rat hippocampus.

    PubMed

    Rivera, Patricia; Arrabal, Sergio; Vargas, Antonio; Blanco, Eduardo; Serrano, Antonia; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2014-01-01

    The N-acylethanolamines (NAEs), oleoylethanolamide (OEA) and palmithylethanolamide (PEA) are known to be endogenous ligands of PPARα receptors, and their presence requires the activation of a specific phospholipase D (NAPE-PLD) associated with intracellular Ca(2+) fluxes. Thus, the identification of a specific population of NAPE-PLD/PPARα-containing neurons that express selective Ca(2+)-binding proteins (CaBPs) may provide a neuroanatomical basis to better understand the PPARα system in the brain. For this purpose, we used double-label immunofluorescence and confocal laser scanning microscopy for the characterization of the co-existence of NAPE-PLD/PPARα and the CaBPs calbindin D28k, calretinin and parvalbumin in the rat hippocampus. PPARα expression was specifically localized in the cell nucleus and, occasionally, in the cytoplasm of the principal cells (dentate granular and CA pyramidal cells) and some non-principal cells of the hippocampus. PPARα was expressed in the calbindin-containing cells of the granular cell layer of the dentate gyrus (DG) and the SP of CA1. These principal PPARα(+)/calbindin(+) cells were closely surrounded by NAPE-PLD(+) fiber varicosities. No pyramidal PPARα(+)/calbindin(+) cells were detected in CA3. Most cells containing parvalbumin expressed both NAPE-PLD and PPARα in the principal layers of the DG and CA1/3. A small number of cells containing PPARα and calretinin was found along the hippocampus. Scattered NAPE-PLD(+)/calretinin(+) cells were specifically detected in CA3. NAPE-PLD(+) puncta surrounded the calretinin(+) cells localized in the principal cells of the DG and CA1. The identification of the hippocampal subpopulations of NAPE-PLD/PPARα-containing neurons that express selective CaBPs should be considered when analyzing the role of NAEs/PPARα-signaling system in the regulation of hippocampal functions.

  2. Hemoglobins, programmed cell death and somatic embryogenesis.

    PubMed

    Hill, Robert D; Huang, Shuanglong; Stasolla, Claudio

    2013-10-01

    Programmed cell death (PCD) is a universal process in all multicellular organisms. It is a critical component in a diverse number of processes ranging from growth and differentiation to response to stress. Somatic embryogenesis is one such process where PCD is significantly involved. Nitric oxide is increasingly being recognized as playing a significant role in regulating PCD in both mammalian and plant systems. Plant hemoglobins scavenge NO, and evidence is accumulating that events that modify NO levels in plants also affect hemoglobin expression. Here, we review the process of PCD, describing the involvement of NO and plant hemoglobins in the process. NO is an effector of cell death in both plants and vertebrates, triggering the cascade of events leading to targeted cell death that is a part of an organism's response to stress or to tissue differentiation and development. Expression of specific hemoglobins can alter this response in plants by scavenging the NO, thus, interrupting the death process. Somatic embryogenesis is used as a model system to demonstrate how cell-specific expression of different classes of hemoglobins can alter the embryogenic process, affecting hormone synthesis, cell metabolite levels and genes associated with PCD and embryogenic competence. We propose that plant hemoglobins influence somatic embryogenesis and PCD through cell-specific expression of a distinct plant hemoglobin. It is based on the premise that both embryogenic competence and PCD are strongly influenced by cellular NO levels. Increases in cellular NO levels result in elevated Zn(2+) and reactive-oxygen species associated with PCD, but they also result in decreased expression of MYC2, a transcription factor that is a negative effector of indoleacetic acid synthesis, a hormone that positively influences embryogenic competence. Cell-specific hemoglobin expression reduces NO levels as a result of NO scavenging, resulting in cell survival. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Vascular smooth muscle-specific knockdown of the noncardiac form of the L-type calcium channel by microRNA-based short hairpin RNA as a potential antihypertensive therapy.

    PubMed

    Rhee, Sung W; Stimers, Joseph R; Wang, Wenze; Pang, Li

    2009-05-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (Ca(L)) current and vascular tone is increased because of increased expression of the noncardiac form of the Ca(L) (Ca(v)1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Ca(v)1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Ca(v)1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Ca(v)1.2 expression by 61% and decreased the Ca(L) current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Ca(v)1.2, it did not affect the Ca(L) expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Ca(v)1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Ca(v)1.2 siRNA without similarly affecting cardiac Ca(L) expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension.

  4. Vascular Smooth Muscle-Specific Knockdown of the Noncardiac Form of the L-Type Calcium Channel by MicroRNA-Based Short Hairpin RNA as a Potential Antihypertensive Therapy

    PubMed Central

    Rhee, Sung W.; Stimers, Joseph R.; Wang, Wenze; Pang, Li

    2009-01-01

    In different rodent models of hypertension, vascular voltage-gated L-type calcium channel (CaL) current and vascular tone is increased because of increased expression of the noncardiac form of the CaL (Cav1.2). The objective of this study was to develop a small interfering RNA (siRNA) expression system against the noncardiac form of Cav1.2 to reduce its expression in vascular smooth muscle cells (VSMCs). siRNAs expressing plasmids and appropriate controls were constructed and first screened in human embryonic kidney (HEK) 293 cells cotransfected with a rat Cav1.2 expression vector. The most effective gene silencing was achieved with a modified mir-30a-based short hairpin RNA (shRNAmir) driven by the cytomegalovirus promoter. In A7r5 cells, a vascular smooth muscle cell line, two copies of shRNAmir driven by a chimeric VSMC-specific enhancer/promoter reduced endogenous Cav1.2 expression by 61% and decreased the CaL current carried by barium by 47%. Moreover, the chimeric vascular smooth muscle-specific enhancer/promoter displayed almost no activity in non-VSMCs (PC-12 and HEK 293). Because the proposed siRNA was designed to only target the noncardiac form of Cav1.2, it did not affect the CaL expression and function in cultured cardiomyocytes, even when driven by a stronger cytomegalovirus promoter. In conclusion, vascular Cav1.2 expression and function were effectively reduced by VSMC-specific delivery of the noncardiac form of Cav1.2 siRNA without similarly affecting cardiac CaL expression and function. When coupled with a viral vector, this molecular intervention in vivo may provide a novel long-term vascular-specific gene therapy for hypertension. PMID:19244098

  5. Specific induction of PAG608 in cranial and spinal motor neurons of L-DOPA-treated parkinsonian rats.

    PubMed

    Shimizu, Masako; Miyazaki, Ikuko; Higashi, Youichirou; Eslava-Alva, Maria J; Diaz-Corrales, Francisco J; Asanuma, Masato; Ogawa, Norio

    2008-04-01

    We identified p53-activated gene 608 (PAG608) as a specifically induced gene in striatal tissue of L-DOPA (100mg/kg)-injected hemi-parkinsonian rats using differential display assay. In the present study, we further examined morphological distribution of PAG608 in the central nervous system of L-DOPA-treated hemi-parkinsonian rats. PAG608 expression was markedly induced in fibers and neuronal cells of the lateral globus pallidus and reticular thalamic nucleus adjacent to internal capsule, specifically in the parkinsonian side of L-DOPA-treated models. The protein was also constitutively expressed in motor neurons specifically in either side of the pontine nucleus and motor nuclei of trigeminal and facial nerves. Furthermore, L-DOPA-induced PAG608 expression on motor neurons in the contralateral side of the ventral horn of the spinal cord and the lateral corticospinal tract without cell loss. The specific induction of PAG608 6-48h after L-DOPA injection in the extrapyramidal tracts, pyramidal tracts and corresponding lower motor neurons of the spinal cords suggests its involvement in molecular events in stimulated motor neurons. Taken together with the constitutive expression of PAG608 in the motor nuclei of cranial nerves, PAG608 may be a useful marker of stressed or activated lower motor neurons.

  6. Multifunctional Envelope-Type siRNA Delivery Nanoparticle Platform for Prostate Cancer Therapy.

    PubMed

    Xu, Xiaoding; Wu, Jun; Liu, Yanlan; Saw, Phei Er; Tao, Wei; Yu, Mikyung; Zope, Harshal; Si, Michelle; Victorious, Amanda; Rasmussen, Jonathan; Ayyash, Dana; Farokhzad, Omid C; Shi, Jinjun

    2017-03-28

    With the capability of specific silencing of target gene expression, RNA interference (RNAi) technology is emerging as a promising therapeutic modality for the treatment of cancer and other diseases. One key challenge for the clinical applications of RNAi is the safe and effective delivery of RNAi agents such as small interfering RNA (siRNA) to a particular nonliver diseased tissue (e.g., tumor) and cell type with sufficient cytosolic transport. In this work, we proposed a multifunctional envelope-type nanoparticle (NP) platform for prostate cancer (PCa)-specific in vivo siRNA delivery. A library of oligoarginine-functionalized and sharp pH-responsive polymers was synthesized and used for self-assembly with siRNA into NPs with the features of long blood circulation and pH-triggered oligoarginine-mediated endosomal membrane penetration. By further modification with ACUPA, a small molecular ligand specifically recognizing prostate-specific membrane antigen (PSMA) receptor, this envelope-type nanoplatform with multifunctional properties can efficiently target PSMA-expressing PCa cells and silence target gene expression. Systemic delivery of the siRNA NPs can efficiently silence the expression of prohibitin 1 (PHB1), which is upregulated in PCa and other cancers, and significantly inhibit PCa tumor growth. These results suggest that this multifunctional envelope-type nanoplatform could become an effective tool for PCa-specific therapy.

  7. Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual

    PubMed Central

    Focareta, Laura; Cole, Alison G.

    2016-01-01

    Cephalopods provide an unprecedented opportunity for comparative studies of the developmental genetics of organ systems that are convergent with analogous vertebrate structures. The Sox-family of transcription factors is an important class of DNA-binding proteins that are known to be involved in many aspects of differentiation, but have been largely unstudied in lophotrochozoan systems. Using a degenerate primer strategy we have isolated coding sequence for three members of the Sox family of transcription factors from a cephalopod mollusk, the European cuttlefish Sepia officinalis: Sof-SoxE, Sof-SoxB1, and Sof-SoxB2. Analyses of their expression patterns during organogenesis reveals distinct spatial and temporal expression domains. Sof-SoxB1 shows early ectodermal expression throughout the developing epithelium, which is gradually restricted to presumptive sensory epithelia. Expression within the nervous system appears by mid-embryogenesis. Sof-SoxB2 expression is similar to Sof-SoxB1 within the developing epithelia in early embryogenesis, however appears in largely non-overlapping expression domains within the central nervous system and is not expressed in the maturing sensory epithelium. In contrast, Sof-SoxE is expressed throughout the presumptive mesodermal territories at the onset of organogenesis. As development proceeds, Sof-SoxE expression is elevated throughout the developing peripheral circulatory system. This expression disappears as the circulatory system matures, but expression is maintained within undifferentiated connective tissues throughout the animal, and appears within the nervous system near the end of embryogenesis. SoxB proteins are widely known for their role in neural specification in numerous phylogenetic lineages. Our data suggests that Sof-SoxB genes play similar roles in cephalopods. In contrast, Sof-SoxE appears to be involved in the early stages of vasculogenesis of the cephalopod closed circulatory system, a novel role for a member of this gene family. PMID:27331398

  8. Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Crawford, Aladsair J.; Viswanathan, Vilayanur V.

    2014-06-01

    The Protocol for Uniformly Measuring and Expressing the Performance of Energy Storage Systems (PNNL-22010) was first issued in November 2012 as a first step toward providing a foundational basis for developing an initial standard for the uniform measurement and expression of energy storage system (ESS) performance. Its subsequent use in the field and review by the protocol working group and most importantly the users’ subgroup and the thermal subgroup has led to the fundamental modifications reflected in this update of the 2012 Protocol. As an update of the 2012 Protocol, this document (the June 2014 Protocol) is intended to supersedemore » its predecessor and be used as the basis for measuring and expressing ESS performance. The foreword provides general and specific details about what additions, revisions, and enhancements have been made to the 2012 Protocol and the rationale for them in arriving at the June 2014 Protocol.« less

  9. Regulation of human genome expression and RNA splicing by human papillomavirus 16 E2 protein.

    PubMed

    Gauson, Elaine J; Windle, Brad; Donaldson, Mary M; Caffarel, Maria M; Dornan, Edward S; Coleman, Nicholas; Herzyk, Pawel; Henderson, Scott C; Wang, Xu; Morgan, Iain M

    2014-11-01

    Human papillomavirus 16 (HPV16) is causative in human cancer. The E2 protein regulates transcription from and replication of the viral genome; the role of E2 in regulating the host genome has been less well studied. We have expressed HPV16 E2 (E2) stably in U2OS cells; these cells tolerate E2 expression well and gene expression analysis identified 74 genes showing differential expression specific to E2. Analysis of published gene expression data sets during cervical cancer progression identified 20 of the genes as being altered in a similar direction as the E2 specific genes. In addition, E2 altered the splicing of many genes implicated in cancer and cell motility. The E2 expressing cells showed no alteration in cell growth but were altered in cell motility, consistent with the E2 induced altered splicing predicted to affect this cellular function. The results present a model system for investigating E2 regulation of the host genome. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. MYB transcription factor gene involved in sex determination in Asparagus officinalis.

    PubMed

    Murase, Kohji; Shigenobu, Shuji; Fujii, Sota; Ueda, Kazuki; Murata, Takanori; Sakamoto, Ai; Wada, Yuko; Yamaguchi, Katsushi; Osakabe, Yuriko; Osakabe, Keishi; Kanno, Akira; Ozaki, Yukio; Takayama, Seiji

    2017-01-01

    Dioecy is a plant mating system in which individuals of a species are either male or female. Although many flowering plants evolved independently from hermaphroditism to dioecy, the molecular mechanism underlying this transition remains largely unknown. Sex determination in the dioecious plant Asparagus officinalis is controlled by X and Y chromosomes; the male and female karyotypes are XY and XX, respectively. Transcriptome analysis of A. officinalis buds showed that a MYB-like gene, Male Specific Expression 1 (MSE1), is specifically expressed in males. MSE1 exhibits tight linkage with the Y chromosome, specific expression in early anther development and loss of function on the X chromosome. Knockout of the MSE1 orthologue in Arabidopsis induces male sterility. Thus, MSE1 acts in sex determination in A. officinalis. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. Dosage Compensation of the Sex Chromosomes

    PubMed Central

    Disteche, Christine M.

    2013-01-01

    Differentiated sex chromosomes evolved because of suppressed recombination once sex became genetically controlled. In XX/XY and ZZ/ZW systems, the heterogametic sex became partially aneuploid after degeneration of the Y or W. Often, aneuploidy causes abnormal levels of gene expression throughout the entire genome. Dosage compensation mechanisms evolved to restore balanced expression of the genome. These mechanisms include upregulation of the heterogametic chromosome as well as repression in the homogametic sex. Remarkably, strategies for dosage compensation differ between species. In organisms where more is known about molecular mechanisms of dosage compensation, specific protein complexes containing noncoding RNAs are targeted to the X chromosome. In addition, the dosage-regulated chromosome often occupies a specific nuclear compartment. Some genes escape dosage compensation, potentially resulting in sex-specific differences in gene expression. This review focuses on dosage compensation in mammals, with comparisons to fruit flies, nematodes, and birds. PMID:22974302

  12. Deep brain optical measurements of cell type-specific neural activity in behaving mice.

    PubMed

    Cui, Guohong; Jun, Sang Beom; Jin, Xin; Luo, Guoxiang; Pham, Michael D; Lovinger, David M; Vogel, Steven S; Costa, Rui M

    2014-01-01

    Recent advances in genetically encoded fluorescent sensors enable the monitoring of cellular events from genetically defined groups of neurons in vivo. In this protocol, we describe how to use a time-correlated single-photon counting (TCSPC)-based fiber optics system to measure the intensity, emission spectra and lifetime of fluorescent biosensors expressed in deep brain structures in freely moving mice. When combined with Cre-dependent selective expression of genetically encoded Ca(2+) indicators (GECIs), this system can be used to measure the average neural activity from a specific population of cells in mice performing complex behavioral tasks. As an example, we used viral expression of GCaMPs in striatal projection neurons (SPNs) and recorded the fluorescence changes associated with calcium spikes from mice performing a lever-pressing operant task. The whole procedure, consisting of virus injection, behavior training and optical recording, takes 3-4 weeks to complete. With minor adaptations, this protocol can also be applied to recording cellular events from other cell types in deep brain regions, such as dopaminergic neurons in the ventral tegmental area. The simultaneously recorded fluorescence signals and behavior events can be used to explore the relationship between the neural activity of specific brain circuits and behavior.

  13. A Hybrid Approach to Finding Relevant Social Media Content for Complex Domain Specific Information Needs.

    PubMed

    Cameron, Delroy; Sheth, Amit P; Jaykumar, Nishita; Thirunarayan, Krishnaprasad; Anand, Gaurish; Smith, Gary A

    2014-12-01

    While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and "intelligible constructs" not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems.

  14. A Hybrid Approach to Finding Relevant Social Media Content for Complex Domain Specific Information Needs

    PubMed Central

    Cameron, Delroy; Sheth, Amit P.; Jaykumar, Nishita; Thirunarayan, Krishnaprasad; Anand, Gaurish; Smith, Gary A.

    2015-01-01

    While contemporary semantic search systems offer to improve classical keyword-based search, they are not always adequate for complex domain specific information needs. The domain of prescription drug abuse, for example, requires knowledge of both ontological concepts and “intelligible constructs” not typically modeled in ontologies. These intelligible constructs convey essential information that include notions of intensity, frequency, interval, dosage and sentiments, which could be important to the holistic needs of the information seeker. In this paper, we present a hybrid approach to domain specific information retrieval that integrates ontology-driven query interpretation with synonym-based query expansion and domain specific rules, to facilitate search in social media on prescription drug abuse. Our framework is based on a context-free grammar (CFG) that defines the query language of constructs interpretable by the search system. The grammar provides two levels of semantic interpretation: 1) a top-level CFG that facilitates retrieval of diverse textual patterns, which belong to broad templates and 2) a low-level CFG that enables interpretation of specific expressions belonging to such textual patterns. These low-level expressions occur as concepts from four different categories of data: 1) ontological concepts, 2) concepts in lexicons (such as emotions and sentiments), 3) concepts in lexicons with only partial ontology representation, called lexico-ontology concepts (such as side effects and routes of administration (ROA)), and 4) domain specific expressions (such as date, time, interval, frequency and dosage) derived solely through rules. Our approach is embodied in a novel Semantic Web platform called PREDOSE, which provides search support for complex domain specific information needs in prescription drug abuse epidemiology. When applied to a corpus of over 1 million drug abuse-related web forum posts, our search framework proved effective in retrieving relevant documents when compared with three existing search systems. PMID:25814917

  15. The Omics Dashboard for interactive exploration of gene-expression data.

    PubMed

    Paley, Suzanne; Parker, Karen; Spaulding, Aaron; Tomb, Jean-Francois; O'Maille, Paul; Karp, Peter D

    2017-12-01

    The Omics Dashboard is a software tool for interactive exploration and analysis of gene-expression datasets. The Omics Dashboard is organized as a hierarchy of cellular systems. At the highest level of the hierarchy the Dashboard contains graphical panels depicting systems such as biosynthesis, energy metabolism, regulation and central dogma. Each of those panels contains a series of X-Y plots depicting expression levels of subsystems of that panel, e.g. subsystems within the central dogma panel include transcription, translation and protein maturation and folding. The Dashboard presents a visual read-out of the expression status of cellular systems to facilitate a rapid top-down user survey of how all cellular systems are responding to a given stimulus, and to enable the user to quickly view the responses of genes within specific systems of interest. Although the Dashboard is complementary to traditional statistical methods for analysis of gene-expression data, we show how it can detect changes in gene expression that statistical techniques may overlook. We present the capabilities of the Dashboard using two case studies: the analysis of lipid production for the marine alga Thalassiosira pseudonana, and an investigation of a shift from anaerobic to aerobic growth for the bacterium Escherichia coli. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. The Omics Dashboard for interactive exploration of gene-expression data

    PubMed Central

    Paley, Suzanne; Parker, Karen; Spaulding, Aaron; Tomb, Jean-Francois; O’Maille, Paul

    2017-01-01

    Abstract The Omics Dashboard is a software tool for interactive exploration and analysis of gene-expression datasets. The Omics Dashboard is organized as a hierarchy of cellular systems. At the highest level of the hierarchy the Dashboard contains graphical panels depicting systems such as biosynthesis, energy metabolism, regulation and central dogma. Each of those panels contains a series of X–Y plots depicting expression levels of subsystems of that panel, e.g. subsystems within the central dogma panel include transcription, translation and protein maturation and folding. The Dashboard presents a visual read-out of the expression status of cellular systems to facilitate a rapid top-down user survey of how all cellular systems are responding to a given stimulus, and to enable the user to quickly view the responses of genes within specific systems of interest. Although the Dashboard is complementary to traditional statistical methods for analysis of gene-expression data, we show how it can detect changes in gene expression that statistical techniques may overlook. We present the capabilities of the Dashboard using two case studies: the analysis of lipid production for the marine alga Thalassiosira pseudonana, and an investigation of a shift from anaerobic to aerobic growth for the bacterium Escherichia coli. PMID:29040755

  17. Developmental and sex-specific differences in expression of neuropeptides derived from allatotropin gene in the silkmoth Bombyx mori.

    PubMed

    Bednár, Branislav; Roller, Ladislav; Čižmár, Daniel; Mitrová, Diana; Žitňan, Dušan

    2017-05-01

    Allatotropin (AT) and related neuropeptides are widespread bioactive molecules that regulate development, food intake and muscle contractions in insects and other invertebrates. In moths, alternative splicing of the at gene generates three mRNA precursors encoding AT with different combinations of three structurally similar AT-like peptides (ATLI-III). We used in situ hybridization and immunohistochemistry to map the differential expression of these transcripts during the postembryonic development of Bombyx mori. Transcript encoding AT alone was expressed in numerous neurons of the central nervous system and frontal ganglion, whereas transcripts encoding AT with ATLs were produced by smaller specific subgroups of neurons in larval stages. Metamorphosis was associated with considerable developmental changes and sex-specific differences in the expression of all transcripts. The most notable was the appearance of AT/ATL transcripts (1) in the brain lateral neurosecretory cells producing prothoracicotropic hormone; (2) in the male-specific cluster of about 20 neurons in the posterior region of the terminal abdominal ganglion; (3) in the female-specific medial neurons in the abdominal ganglia AG2-7. Immunohistochemical staining showed that these neurons produced a mixture of various neuropeptides and innervated diverse peripheral organs. Our data suggest that AT/ATL neuropeptides are involved in multiple stage- and sex-specific functions during the development of B. mori.

  18. Shoot Na+ exclusion and increased salinity tolerance engineered by cell type-specific alteration of Na+ transport in Arabidopsis.

    PubMed

    Møller, Inge S; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M; Roy, Stuart J; Coates, Juliet C; Haseloff, Jim; Tester, Mark

    2009-07-01

    Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants.

  19. Integrated flight/propulsion control - Subsystem specifications for performance

    NASA Technical Reports Server (NTRS)

    Neighbors, W. K.; Rock, Stephen M.

    1993-01-01

    A procedure is presented for calculating multiple subsystem specifications given a number of performance requirements on the integrated system. This procedure applies to problems where the control design must be performed in a partitioned manner. It is based on a structured singular value analysis, and generates specifications as magnitude bounds on subsystem uncertainties. The performance requirements should be provided in the form of bounds on transfer functions of the integrated system. This form allows the expression of model following, command tracking, and disturbance rejection requirements. The procedure is demonstrated on a STOVL aircraft design.

  20. Ligand-independent TLR signals generated by ectopic overexpression of MyD88 generate local and systemic anti-tumor immunity

    PubMed Central

    Hartman, Zachary C.; Osada, Takuya; Glass, Oliver; Yang, Xiao Y.; Lei, Gang-jun; Lyerly, H. Kim; Clay, Timothy M.

    2010-01-01

    Although critical for initiating and regulating immune responses, the therapeutic use of individual cytokines as anti-cancer immunotherapeutic agents has achieved only modest clinical success. Consequently, many current strategies have focused on the use of specific immunotherapeutic agonists that engage individual receptors of innate immune networks, such as the Toll Like-Receptor (TLR) system, each resulting in specific patterns of gene expression, cytokine production and inflammatory outcome. However, these immunotherapeutics are constrained by variable cellular TLR expression and responsiveness to particular TLR agonists, as well as the specific cellular context of different tumors. We hypothesized that overexpression of MyD88, a pivotal regulator of multiple TLR signaling pathways, could circumvent these constraints and mimic coordinated TLR signaling across all cell types in a ligand independent fashion. To explore this hypothesis, we generated an adenoviral vector expressing MyD88 and demonstrate that Ad-MyD88 infection elicits extensive Th1-specific transcriptional and secreted cytokine signatures in all murine and human cell types tested in vitro and in vivo. Importantly, in vivo intratumoral injection of Ad-MyD88 into established tumor masses enhanced adaptive immune responses and inhibited local tumor immunosuppression, resulting in significantly inhibited local and systemic growth of multiple tumor types. Finally, Ad-MyD88 infection of primary human dendritic cells, tumor associated fibroblasts, and colorectal carcinoma cells elicited significant Th1-type cytokine responses, resulting in enhanced tumor cell lysis and expansion of human tumor antigen-specific T-cells. Thus, Ad-MyD88 initiated robust anti-tumor activity in established murine tumor microenvironments and in human contexts, suggesting its potential effectiveness as a clinical immunotherapeutic strategy. PMID:20823152

  1. Unravelling the neurophysiological basis of aggression in a fish model

    PubMed Central

    2010-01-01

    Background Aggression is a near-universal behaviour with substantial influence on and implications for human and animal social systems. The neurophysiological basis of aggression is, however, poorly understood in all species and approaches adopted to study this complex behaviour have often been oversimplified. We applied targeted expression profiling on 40 genes, spanning eight neurological pathways and in four distinct regions of the brain, in combination with behavioural observations and pharmacological manipulations, to screen for regulatory pathways of aggression in the zebrafish (Danio rerio), an animal model in which social rank and aggressiveness tightly correlate. Results Substantial differences occurred in gene expression profiles between dominant and subordinate males associated with phenotypic differences in aggressiveness and, for the chosen gene set, they occurred mainly in the hypothalamus and telencephalon. The patterns of differentially-expressed genes implied multifactorial control of aggression in zebrafish, including the hypothalamo-neurohypophysial-system, serotonin, somatostatin, dopamine, hypothalamo-pituitary-interrenal, hypothalamo-pituitary-gonadal and histamine pathways, and the latter is a novel finding outside mammals. Pharmacological manipulations of various nodes within the hypothalamo-neurohypophysial-system and serotonin pathways supported their functional involvement. We also observed differences in expression profiles in the brains of dominant versus subordinate females that suggested sex-conserved control of aggression. For example, in the HNS pathway, the gene encoding arginine vasotocin (AVT), previously believed specific to male behaviours, was amongst those genes most associated with aggression, and AVT inhibited dominant female aggression, as in males. However, sex-specific differences in the expression profiles also occurred, including differences in aggression-associated tryptophan hydroxylases and estrogen receptors. Conclusions Thus, through an integrated approach, combining gene expression profiling, behavioural analyses, and pharmacological manipulations, we identified candidate genes and pathways that appear to play significant roles in regulating aggression in fish. Many of these are novel for non-mammalian systems. We further present a validated system for advancing our understanding of the mechanistic underpinnings of complex behaviours using a fish model. PMID:20846403

  2. The dormant cells of Mycobacterium tuberculosis may be resuscitated by targeting-expression system of recombinant mycobacteriophage-Rpf: implication of shorter course of TB chemotherapy in the future.

    PubMed

    Gan, Yiling; Yao, Yiyong; Guo, Shuliang

    2015-05-01

    Here we hypothesized that dormant cells of Mycobacterium tuberculosis (M. tuberculosis) may be resuscitated by a new expression system of recombinant mycobacteriophage-resuscitation-promoting factor (Rpf). In this system, gene of targeted Rpf was cloned into mycobacteriophage genome, since mycobacteriophages possess several characteristics, including automatic identification and specific infection of M. tuberculosis. Thus the targeted delivery and endogenous expression of Rpf to the infected area of M. tuberculosis can be realized, followed by resuscitating the dormant cells of M. tuberculosis. Finally, these resuscitated M. tuberculosis can be thoroughly killed by a strong short-term subsequent chemotherapy, which makes the course of TB chemotherapy much shorter in the future compared to simple chemotherapy. Early studies have confirmed that dormant cells of M. tuberculosis can be resuscitated by Rpf in vitro, but so far, there is no report that Rpf can succeed in resuscitating dormant cells of M. tuberculosis in vivo, the reason may be that it is difficult for purified Rpf to remain active in vivo, especially to achieve targeted delivery of exogenous Rpf to the infected area of dormant cells of M. tuberculosis. Mycobacteriophage is a virus, capable of specifically identifying and infecting mycobacterium, such as M. tuberculosis. Several studies show that motif 3-containing proteins have peptidoglycan-hydrolysing activity and that while this activity is not required for mycobacteriophage viability, it facilitates efficient infection and DNA injection of mycobacteriophage (including motif 3 protein) into stationary phase cells. Thus this expression system can achieve targeted delivery and endogenous expression of Rpf to infected area of dormant cells of M. tuberculosis. Finally, we discuss the implication of this recombinant expression system for shortening the course of TB chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Definition of Contravariant Velocity Components

    NASA Technical Reports Server (NTRS)

    Hung, Ching-moa; Kwak, Dochan (Technical Monitor)

    2002-01-01

    In this paper we have reviewed the basics of tensor analysis in an attempt to clarify some misconceptions regarding contravariant and covariant vector components as used in fluid dynamics. We have indicated that contravariant components are components of a given vector expressed as a unique combination of the covariant base vector system and, vice versa, that the covariant components are components of a vector expressed with the contravariant base vector system. Mathematically, expressing a vector with a combination of base vector is a decomposition process for a specific base vector system. Hence, the contravariant velocity components are decomposed components of velocity vector along the directions of coordinate lines, with respect to the covariant base vector system. However, the contravariant (and covariant) components are not physical quantities. Their magnitudes and dimensions are controlled by their corresponding covariant (and contravariant) base vectors.

  4. Identification and expression of the protein ubiquitination system in Giardia intestinalis.

    PubMed

    Gallego, Eva; Alvarado, Magda; Wasserman, Moises

    2007-06-01

    Giardia intestinalis is a single-cell eukaryotic microorganism, regarded as one of the earliest divergent eukaryotes and thus an attractive model to study the evolution of regulatory systems. Giardia has two different forms throughout its life cycle, cyst and trophozoite, and changes from one to the other in response to environmental signals. The two differentiation processes involve a differential gene expression as well as a quick and specific protein turnover that may be mediated by the ubiquitin/proteasome system. The aim of this work was to search for unreported components of the ubiquitination system and to experimentally demonstrate their expression in the parasite and during the two differentiation processes. We found activity of protein ubiquitination in G. intestinalis trophozoites and analyzed the transcription of the ubiquitin gene, as well as that of the activating (E1), conjugating (E2), and ligase (E3) ubiquitin enzymes during encystation and excystation. A constant ubiquitin expression persisted during the parasite's differentiation processes, whereas variation in transcription was observed in the other genes under study.

  5. Protein-protein interactions: an application of Tus-Ter mediated protein microarray system.

    PubMed

    Sitaraman, Kalavathy; Chatterjee, Deb K

    2011-01-01

    In this chapter, we present a novel, cost-effective microarray strategy that utilizes expression-ready plasmid DNAs to generate protein arrays on-demand and its use to validate protein-protein interactions. These expression plasmids were constructed in such a way so as to serve a dual purpose of synthesizing the protein of interest as well as capturing the synthesized protein. The microarray system is based on the high affinity binding of Escherichia coli "Tus" protein to "Ter," a 20 bp DNA sequence involved in the regulation of DNA replication. The protein expression is carried out in a cell-free protein synthesis system, with rabbit reticulocyte lysates, and the target proteins are detected either by labeled incorporated tag specific or by gene-specific antibodies. This microarray system has been successfully used for the detection of protein-protein interaction because both the target protein and the query protein can be transcribed and translated simultaneously in the microarray slides. The utility of this system for detecting protein-protein interaction is demonstrated by a few well-known examples: Jun/Fos, FRB/FKBP12, p53/MDM2, and CDK4/p16. In all these cases, the presence of protein complexes resulted in the localization of fluorophores at the specific sites of the immobilized target plasmids. Interestingly, during our interactions studies we also detected a previously unknown interaction between CDK2 and p16. Thus, this Tus-Ter based system of protein microarray can be used for the validation of known protein interactions as well as for identifying new protein-protein interactions. In addition, it can be used to examine and identify targets of nucleic acid-protein, ligand-receptor, enzyme-substrate, and drug-protein interactions.

  6. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    PubMed

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  7. Developing Laryngeal Muscle of Xenopus laevis as a Model System: Androgen-Driven Myogenesis Controls Fiber Type Transformation

    PubMed Central

    Nasipak, Brian; Kelley, Darcy B.

    2014-01-01

    The developmental programs that contribute to myogenic stem cell proliferation and muscle fiber differentiation control fiber numbers and twitch type. In this study, we describe the use of an experimental model system—androgen-regulated laryngeal muscle of juvenile clawed frogs, Xenopus laevis—to examine the contribution of proliferation by specific populations of myogenic stem cells to expression of the larynx-specific myosin heavy chain isoform, LM. Androgen treatment of juveniles (Stage PM0) resulted in up-regulation of an early (Myf-5) and a late (myogenin) myogenic regulatory factor; the time course of LM up-regulation tracked that of myogenin. Myogenic stem cells stimulated to proliferate by androgen include a population that expresses Pax-7, a marker for the satellite cell myogenic stem cell population. Since androgen can switch muscle fiber types from fast to slow even in denervated larynges, we developed an ex vivo culture system to explore the relation between proliferation and LM expression. Cultured whole larynges maintain sensitivity to androgen, increasing in size and LM expression. Blockade of cell proliferation with cis-platin prevents the switch from slow to fast twitch muscle fibers as assayed by ATPase activity. Blockade of cell proliferation in vivo also resulted in inhibition of LM expression. Thus, both in vivo and ex vivo, inhibition of myogenic stem cell proliferation blocks androgen-induced LM expression and fiber type switching in juveniles. PMID:21954146

  8. Applied Cliplets-based half-dynamic videos as intervention learning materials to attract the attention of adolescents with autism spectrum disorder to improve their perceptions and judgments of the facial expressions and emotions of others.

    PubMed

    Lee, I-Jui; Chen, Chien-Hsu; Lin, Ling-Yi

    2016-01-01

    Autism spectrum disorders (ASD) are characterized by a reduced ability to understand the emotional expressions on other people's faces. Increasing evidence indicates that children with ASD might not recognize or understand crucial nonverbal behaviors, which likely causes them to ignore nonverbal gestures and social cues, like facial expressions, that usually aid social interaction. In this study, we used software technology to create half-static and dynamic video materials to teach adolescents with ASD how to become aware of six basic facial expressions observed in real situations. This intervention system provides a half-way point via a dynamic video of a specific element within a static-surrounding frame to strengthen the ability of the six adolescents with ASD to attract their attention on the relevant dynamic facial expressions and ignore irrelevant ones. Using a multiple baseline design across participants, we found that the intervention learning system provided a simple yet effective way for adolescents with ASD to attract their attention on the nonverbal facial cues; the intervention helped them better understand and judge others' facial emotions. We conclude that the limited amount of information with structured and specific close-up visual social cues helped the participants improve judgments of the emotional meaning of the facial expressions of others.

  9. Modulatory effects of Echinacea purpurea extracts on human dendritic cells: a cell- and gene-based study.

    PubMed

    Wang, Chien-Yu; Chiao, Ming-Tsang; Yen, Po-Jen; Huang, Wei-Chou; Hou, Chia-Chung; Chien, Shih-Chang; Yeh, Kuo-Chen; Yang, Wen-Ching; Shyur, Lie-Fen; Yang, Ning-Sun

    2006-12-01

    Echinacea spp. are popularly used as an herbal medicine or food supplement for enhancing the immune system. This study shows that plant extracts from root [R] and stem plus leaf [S+L] tissues of E. purpurea exhibit opposite (enhancing vs inhibitory) modulatory effects on the expression of the CD83 marker in human dendritic cells (DCs), which are known as professional antigen-presenting cells. We developed a function-targeted DNA microarray system to characterize the effects of phytocompounds on human DCs. Down-regulation of mRNA expression of specific chemokines (e.g., CCL3 and CCL8) and their receptors (e.g., CCR1 and CCR9) was observed in [S+L]-treated DCs. Other chemokines and regulatory molecules (e.g., CCL4 and CCL2) involved in the c-Jun pathway were found to be up-regulated in [R]-treated DCs. This study, for the first time, demonstrates that E. purpurea extracts can modulate DC differentiation and expression of specific immune-related genes in DCs.

  10. Gut environment-induced intraepithelial autoreactive CD4+ T cells suppress central nervous system autoimmunity via LAG-3

    PubMed Central

    Kadowaki, Atsushi; Miyake, Sachiko; Saga, Ryoko; Chiba, Asako; Mochizuki, Hideki; Yamamura, Takashi

    2016-01-01

    The gut environment has been found to significantly influence autoimmune diseases such as multiple sclerosis; however, immune cell mechanisms are unclear. Here we show that the gut epithelium of myelin oligodendrocyte glycoprotein(35-55)-specific T-cell receptor transgenic mice contains environmental stimuli-induced intraepithelial lymphocytes (IELs) that inhibit experimental autoimmune encephalomyelitis on transfer. These cells express surface markers phenotypical of ‘induced' IELs, have a TH17-like profile and infiltrate the central nervous system (CNS). They constitutively express Ctla4 and Tgfb1 and markedly upregulate Lag3 expression in the CNS, thereby inhibiting inflammation. We also demonstrate the suppressive capability of CD4+ IELs with alternative antigen specificities, their proliferation in response to gut-derived antigens and contribution of the microbiota and dietary aryl hydrocarbon receptor ligands to their induction. Thus, the gut environment favours the generation of autoreactive CD4+ T cells with unique regulatory functions, potentially important for preventing CNS autoimmunity. PMID:27198196

  11. Systemic Chemokine Levels with "Gut-Specific" Vedolizumab in Patients with Inflammatory Bowel Disease-A Pilot Study.

    PubMed

    Zwicker, Stephanie; Lira-Junior, Ronaldo; Höög, Charlotte; Almer, Sven; Boström, Elisabeth A

    2017-08-22

    Vedolizumab, a gut-specific biological treatment for inflammatory bowel disease (IBD), is an antibody that binds to the α₄β₇ integrin and blocks T-cell migration into intestinal mucosa. We aimed to investigate chemokine levels in serum of IBD-patients treated with vedolizumab. In this pilot study, we included 11 IBD patients (8 Crohn's disease, 3 ulcerative colitis) previously non-respondent to anti-tumor necrosis factor (TNF)-agents. Patients received vedolizumab at week 0, 2 and 6 and were evaluated for clinical efficacy at week 10. Clinical characteristics and routine laboratory parameters were obtained and patients were classified as responders or non-responders. Expression of 21 chemokines in serum was measured using Proximity Extension Assay and related to clinical outcome. At week 10, 6 out of 11 patients had clinically responded. Overall expression of CCL13 increased after treatment. In non-responders, expression of CCL13 and CXCL8 increased after treatment, and CCL20 and CXCL1 expressions were higher compared to responders. In responders, CCL28 decreased after treatment. C-reactive protein (CRP) correlated negatively with 6 chemokines before therapy, but not after therapy. Systemic CCL13 expression increases in IBD-patients after vedolizumab therapy and several chemokine levels differ between responders and non-responders. An increased CCL13-level when starting vedolizumab treatment, might indicate potential prognostic value of measuring chemokine levels when starting therapy with vedolizumab. This study provides new information on modulation of systemic chemokine levels after vedolizumab treatment.

  12. Quantification of three steroid hormone receptors of the leopard gecko (Eublepharis macularius), a lizard with temperature-dependent sex determination: their tissue distributions and the effect of environmental change on their expressions.

    PubMed

    Endo, Daisuke; Park, Min Kyun

    2003-12-01

    Sex steroid hormones play a central role in the reproduction of all vertebrates. These hormones function through their specific receptors, so the expression levels of the receptors may reflect the responsibility of target organs. However, there was no effective method to quantify the expression levels of these receptors in reptilian species. In this study, we established the competitive-PCR assay systems for the quantification of the mRNA expression levels of three sex steroid hormone receptors in the leopard gecko. These assay systems were successfully able to detect the mRNA expression level of each receptor in various organs of male adult leopard geckoes. The expression levels of mRNA of these receptors were highly various depending on the organs assayed. This is the first report regarding the tissue distributions of sex steroid hormone receptor expressions in reptile. The effects of environmental conditions on these hormone receptor expressions were also examined. After the low temperature and short photoperiod treatment for 6 weeks, only the androgen receptor expression was significantly increased in the testes. The competitive-PCR assay systems established in this report should be applicable for various studies of the molecular mechanism underlying the reproductive activity of the leopard gecko.

  13. Modulation of ColE1-like Plasmid Replication for Recombinant Gene Expression

    PubMed Central

    Camps, Manel

    2010-01-01

    ColE1-like plasmids constitute the most popular vectors for recombinant protein expression. ColE1 plasmid replication is tightly controlled by an antisense RNA mechanism that is highly dynamic, tuning plasmid metabolic burden to the physiological state of the host. Plasmid homeostasis is upset upon induction of recombinant protein expression because of non-physiological levels of expression and because of the frequently biased amino acid composition of recombinant proteins. Disregulation of plasmid replication is the main cause of collapse of plasmid-based expression systems because of a simultaneous increase in the metabolic burden (due to increased average copy number) and in the probability of generation of plasmid-free cells (due to increased copy number variation). Interference between regulatory elements of co-resident plasmids causes comparable effects on plasmid stability (plasmid incompatibility). Modulating plasmid copy number for recombinant gene expression aims at achieving a high gene dosage while preserving the stability of the expression system. Here I present strategies targeting plasmid replication for optimizing recombinant gene expression. Specifically, I review approaches aimed at modulating the antisense regulatory system (as well as their implications for plasmid incompatibility) and innovative strategies involving modulation of host factors, of R-loop formation, and of the timing of recombinant gene expression. PMID:20218961

  14. Behavioral analysis of Drosophila transformants expressing human taste receptor genes in the gustatory receptor neurons.

    PubMed

    Adachi, Ryota; Sasaki, Yuko; Morita, Hiromi; Komai, Michio; Shirakawa, Hitoshi; Goto, Tomoko; Furuyama, Akira; Isono, Kunio

    2012-06-01

    Transgenic Drosophila expressing human T2R4 and T2R38 bitter-taste receptors or PKD2L1 sour-taste receptor in the fly gustatory receptor neurons and other tissues were prepared using conventional Gal4/UAS binary system. Molecular analysis showed that the transgene mRNAs are expressed according to the tissue specificity of the Gal4 drivers. Transformants expressing the transgene taste receptors in the fly taste neurons were then studied by a behavioral assay to analyze whether transgene chemoreceptors are functional and coupled to the cell response. Since wild-type flies show strong aversion against the T2R ligands as in mammals, the authors analyzed the transformants where the transgenes are expressed in the fly sugar receptor neurons so that they promote feeding ligand-dependently if they are functional and activate the neurons. Although the feeding preference varied considerably among different strains and individuals, statistical analysis using large numbers of transformants indicated that transformants expressing T2R4 showed a small but significant increase in the preference for denatonium and quinine, the T2R4 ligands, as compared to the control flies, whereas transformants expressing T2R38 did not. Similarly, transformants expressing T2R38 and PKD2L1 also showed a similar preference increase for T2R38-specific ligand phenylthiocarbamide (PTC) and a sour-taste ligand, citric acid, respectively. Taken together, the transformants expressing mammalian taste receptors showed a small but significant increase in the feeding preference that is taste receptor and also ligand dependent. Although future improvements are required to attain performance comparable to the endogenous robust response, Drosophila taste neurons may serve as a potential in vivo heterologous expression system for analyzing chemoreceptor function.

  15. Expressive facial animation synthesis by learning speech coarticulation and expression spaces.

    PubMed

    Deng, Zhigang; Neumann, Ulrich; Lewis, J P; Kim, Tae-Yong; Bulut, Murtaza; Narayanan, Shrikanth

    2006-01-01

    Synthesizing expressive facial animation is a very challenging topic within the graphics community. In this paper, we present an expressive facial animation synthesis system enabled by automated learning from facial motion capture data. Accurate 3D motions of the markers on the face of a human subject are captured while he/she recites a predesigned corpus, with specific spoken and visual expressions. We present a novel motion capture mining technique that "learns" speech coarticulation models for diphones and triphones from the recorded data. A Phoneme-Independent Expression Eigenspace (PIEES) that encloses the dynamic expression signals is constructed by motion signal processing (phoneme-based time-warping and subtraction) and Principal Component Analysis (PCA) reduction. New expressive facial animations are synthesized as follows: First, the learned coarticulation models are concatenated to synthesize neutral visual speech according to novel speech input, then a texture-synthesis-based approach is used to generate a novel dynamic expression signal from the PIEES model, and finally the synthesized expression signal is blended with the synthesized neutral visual speech to create the final expressive facial animation. Our experiments demonstrate that the system can effectively synthesize realistic expressive facial animation.

  16. Fast and selective cell isolation from blood sample by microfiber fabric system with vacuum aspiration

    NASA Astrophysics Data System (ADS)

    Ueki, Takayuki; Yoshihara, Akifumi; Teramura, Yuji; Takai, Madoka

    2016-01-01

    Since circulating tumor cells (CTCs) are tumor cells which are found in the blood of cancer patients, CTCs are potential tumor markers, so a rapid isolation of CTCs is desirable for clinical applications. In this paper, a three-dimensional polystyrene (PS) microfiber fabric with vacuum aspiration system was developed for capturing CTCs within a short time. Various microfiber fabrics with different diameters were prepared by the electrospinning method and optimized for contact frequency with cells. Vacuum aspiration utilizing these microfiber fabrics could filter all cells within seconds without mechanical damage. The microfiber fabric with immobilized anti-EpCAM antibodies was able to specifically capture MCF-7 cells that express EpCAM on their surfaces. The specificity of the system was confirmed by monitoring the ability to isolate MCF-7 cells from a mixture containing CCRF-CEM cells that do not express EpCAM. Furthermore, the selective capture ability of the microfiber was retained even when the microfiber was exposed to the whole blood of pigs spiked with MCF-7 cells. The specific cell capture ratio of the vacuum aspiration system utilizing microfiber fabric could be improved by increasing the thickness of the microfiber fabric through electrospinning time.

  17. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast.

    PubMed

    Chia, Minghao; van Werven, Folkert J

    2016-09-07

    Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for two hours, the vast majority of cells exhibit synchrony during pre-meiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate containing medium, but can be achieved in cells grown in rich medium until saturation. Our system solely requires IME1 because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be easily combined with other stage specific synchronization methods, and thereby applied to study specific stages of sporulation or the complete sporulation program. Copyright © 2016 Author et al.

  18. Ascl1-induced neuronal differentiation of P19 cells requires expression of a specific inhibitor protein of cAMP-dependent protein kinase

    PubMed Central

    Huang, Holly S.; Turner, David L.; Thompson, Robert C.; Uhler, Michael D.

    2011-01-01

    cAMP-dependent protein kinase (PKA) plays a critical role in nervous system development by modulating sonic hedgehog and bone morphogenetic protein signaling. In the current studies, P19 embryonic carcinoma cells were neuronally differentiated by expression of the proneural basic helix-loop-helix transcription factor Ascl1. After expression of Ascl1, but prior to expression of neuronal markers such as microtubule associated protein 2 and neuronal β-tubulin, P19 cells demonstrated a large, transient increase in both mRNA and protein for the endogenous protein kinase inhibitor (PKI)β. PKIβ-targeted shRNA constructs both reduced the levels of PKIβ expression and blocked the neuronal differentiation of P19 cells. This inhibition of differentiation was rescued by transfection of a shRNA-resistant expression vector for the PKIβ protein, and this rescue required the PKA-specific inhibitory sequence of the PKIβprotein. PKIβ played a very specific role in the Ascl1-mediated differentiation process since other PKI isoforms were unable to rescue the deficit conferred by shRNA-mediated knockdown of PKIβ. Our results define a novel requirement for PKIβ and its inhibition of PKA during neuronal differentiation of P19 cells. PMID:21623794

  19. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni

    PubMed Central

    Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S

    2008-01-01

    Background Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. Results We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1α and EF-2. Conclusion Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination. PMID:19114004

  20. Biomphalaria glabrata transcriptome: cDNA microarray profiling identifies resistant- and susceptible-specific gene expression in haemocytes from snail strains exposed to Schistosoma mansoni.

    PubMed

    Lockyer, Anne E; Spinks, Jenny; Kane, Richard A; Hoffmann, Karl F; Fitzpatrick, Jennifer M; Rollinson, David; Noble, Leslie R; Jones, Catherine S

    2008-12-29

    Biomphalaria glabrata is an intermediate snail host for Schistosoma mansoni, one of the important schistosomes infecting man. B. glabrata/S. mansoni provides a useful model system for investigating the intimate interactions between host and parasite. Examining differential gene expression between S. mansoni-exposed schistosome-resistant and susceptible snail lines will identify genes and pathways that may be involved in snail defences. We have developed a 2053 element cDNA microarray for B. glabrata containing clones from ORESTES (Open Reading frame ESTs) libraries, suppression subtractive hybridization (SSH) libraries and clones identified in previous expression studies. Snail haemocyte RNA, extracted from parasite-challenged resistant and susceptible snails, 2 to 24 h post-exposure to S. mansoni, was hybridized to the custom made cDNA microarray and 98 differentially expressed genes or gene clusters were identified, 94 resistant-associated and 4 susceptible-associated. Quantitative PCR analysis verified the cDNA microarray results for representative transcripts. Differentially expressed genes were annotated and clustered using gene ontology (GO) terminology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis. 61% of the identified differentially expressed genes have no known function including the 4 susceptible strain-specific transcripts. Resistant strain-specific expression of genes implicated in innate immunity of invertebrates was identified, including hydrolytic enzymes such as cathepsin L, a cysteine proteinase involved in lysis of phagocytosed particles; metabolic enzymes such as ornithine decarboxylase, the rate-limiting enzyme in the production of polyamines, important in inflammation and infection processes, as well as scavenging damaging free radicals produced during production of reactive oxygen species; stress response genes such as HSP70; proteins involved in signalling, such as importin 7 and copine 1, cytoplasmic intermediate filament (IF) protein and transcription enzymes such as elongation factor 1alpha and EF-2. Production of the first cDNA microarray for profiling gene expression in B. glabrata provides a foundation for expanding our understanding of pathways and genes involved in the snail internal defence system (IDS). We demonstrate resistant strain-specific expression of genes potentially associated with the snail IDS, ranging from signalling and inflammation responses through to lysis of proteinacous products (encapsulated sporocysts or phagocytosed parasite components) and processing/degradation of these targeted products by ubiquitination.

  1. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases.

    PubMed

    Tuller, T; Atar, S; Ruppin, E; Gurevich, M; Achiron, A

    2013-03-01

    The aim of this study is to understand intracellular regulatory mechanisms in peripheral blood mononuclear cells (PBMCs), which are either common to many autoimmune diseases or specific to some of them. We incorporated large-scale data such as protein-protein interactions, gene expression and demographical information of hundreds of patients and healthy subjects, related to six autoimmune diseases with available large-scale gene expression measurements: multiple sclerosis (MS), systemic lupus erythematosus (SLE), juvenile rheumatoid arthritis (JRA), Crohn's disease (CD), ulcerative colitis (UC) and type 1 diabetes (T1D). These data were analyzed concurrently by statistical and systems biology approaches tailored for this purpose. We found that chemokines such as CXCL1-3, 5, 6 and the interleukin (IL) IL8 tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In addition, the anti-apoptotic gene BCL3, interferon-γ (IFNG), and the vitamin D receptor (VDR) gene physically interact with significantly many genes that tend to be differentially expressed in PBMCs of patients with the analyzed autoimmune diseases. In general, similar cellular processes tend to be differentially expressed in PBMC in the analyzed autoimmune diseases. Specifically, the cellular processes related to cell proliferation (for example, epidermal growth factor, platelet-derived growth factor, nuclear factor-κB, Wnt/β-catenin signaling, stress-activated protein kinase c-Jun NH2-terminal kinase), inflammatory response (for example, interleukins IL2 and IL6, the cytokine granulocyte-macrophage colony-stimulating factor and the B-cell receptor), general signaling cascades (for example, mitogen-activated protein kinase, extracellular signal-regulated kinase, p38 and TRK) and apoptosis are activated in most of the analyzed autoimmune diseases. However, our results suggest that in each of the analyzed diseases, apoptosis and chemotaxis are activated via different subsignaling pathways. Analyses of the expression levels of dozens of genes and the protein-protein interactions among them demonstrated that CD and UC have relatively similar gene expression signatures, whereas the gene expression signatures of T1D and JRA relatively differ from the signatures of the other autoimmune diseases. These diseases are the only ones activated via the Fcɛ pathway. The relevant genes and pathways reported in this study are discussed at length, and may be helpful in the diagnoses and understanding of autoimmunity and/or specific autoimmune diseases.

  2. Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine.

    PubMed

    Gorantala, Jyotsna; Grover, Sonam; Rahi, Amit; Chaudhary, Prerna; Rajwanshi, Ravi; Sarin, Neera Bhalla; Bhatnagar, Rakesh

    2014-04-20

    In concern with frequent recurrence of anthrax in endemic areas and inadvertent use of its spores as biological weapon, the development of an effective anthrax vaccine suitable for both human and veterinary needs is highly desirable. A simple oral delivery through expression in plant system could offer promising alternative to the current methods that rely on injectable vaccines extracted from bacterial sources. In the present study, we have expressed protective antigen (PA) gene in Indian mustard by Agrobacterium-mediated transformation and in tobacco by plastid transformation. Putative transgenic lines were verified for the presence of transgene and its expression by molecular analysis. PA expressed in transgenic lines was biologically active as evidenced by macrophage lysis assay. Intraperitoneal (i.p.) and oral immunization with plant PA in murine model indicated high serum PA specific IgG and IgA antibody titers. PA specific mucosal immune response was noted in orally immunized groups. Further, antibodies indicated lethal toxin neutralizing potential in-vitro and conferred protection against in-vivo toxin challenge. Oral immunization experiments demonstrated generation of immunoprotective response in mice. Thus, our study examines the feasibility of oral PA vaccine expressed in an edible plant system against anthrax. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Microwave & Magnetic (M2) Proteomics Reveals CNS-Specific Protein Expression Waves that Precede Clinical Symptoms of Experimental Autoimmune Encephalomyelitis

    NASA Astrophysics Data System (ADS)

    Raphael, Itay; Mahesula, Swetha; Purkar, Anjali; Black, David; Catala, Alexis; Gelfond, Jonathon A. L.; Forsthuber, Thomas G.; Haskins, William E.

    2014-09-01

    Central nervous system-specific proteins (CSPs), transported across the damaged blood-brain-barrier (BBB) to cerebrospinal fluid (CSF) and blood (serum), might be promising diagnostic, prognostic and predictive protein biomarkers of disease in individual multiple sclerosis (MS) patients because they are not expected to be present at appreciable levels in the circulation of healthy subjects. We hypothesized that microwave & magnetic (M2) proteomics of CSPs in brain tissue might be an effective means to prioritize putative CSP biomarkers for future immunoassays in serum. To test this hypothesis, we used M2 proteomics to longitudinally assess CSP expression in brain tissue from mice during experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Confirmation of central nervous system (CNS)-infiltrating inflammatory cell response and CSP expression in serum was achieved with cytokine ELISPOT and ELISA immunoassays, respectively, for selected CSPs. M2 proteomics (and ELISA) revealed characteristic CSP expression waves, including synapsin-1 and α-II-spectrin, which peaked at day 7 in brain tissue (and serum) and preceded clinical EAE symptoms that began at day 10 and peaked at day 20. Moreover, M2 proteomics supports the concept that relatively few CNS-infiltrating inflammatory cells can have a disproportionally large impact on CSP expression prior to clinical manifestation of EAE.

  4. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim

    2014-01-15

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairmentmore » of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors.« less

  5. Anxa4 Genes are Expressed in Distinct Organ Systems in Xenopus laevis and tropicalis But are Functionally Conserved

    PubMed Central

    Massé, Karine L; Collins, Robert J; Bhamra, Surinder; Seville, Rachel A

    2007-01-01

    Anxa4 belongs to the multigenic annexin family of proteins which are characterized by their ability to interact with membranes in a calcium-dependent manner. Defined as a marker for polarized epithelial cells, Anxa4 is believed to be involved in many cellular processes but its functions in vivo are still poorly understood. Previously, we cloned Xanx4 in Xenopus laevis (now referred to as anxa4a) and demonstrated its role during organogenesis of the pronephros, providing the first evidence of a specific function for this protein during the development of a vertebrate. Here, we describe the strict conservation of protein sequence and functional domains of anxa4 during vertebrate evolution. We also identify the paralog of anxa4a, anxa4b and show its specific temporal and spatial expression pattern is different from anxa4a. We show that anxa4 orthologs in X. laevis and tropicalis display expression domains in different organ systems. Whilst the anxa4a gene is mainly expressed in the kidney, Xt anxa4 is expressed in the liver. Finally, we demonstrate Xt anxa4 and anxa4a can display conserved function during kidney organogenesis, despite the fact that Xt anxa4 transcripts are not expressed in this domain. This study highlights the divergence of expression of homologous genes during Xenopus evolution and raises the potential problems of using X. tropicalis promoters in X. laevis. PMID:19279706

  6. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    PubMed

    Chen, Ying; Dai, Hongzheng; Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-04-26

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  7. Highly Tissue Specific Expression of Sphinx Supports Its Male Courtship Related Role in Drosophila melanogaster

    PubMed Central

    Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-01-01

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5′ flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes. PMID:21541324

  8. The prospect of gene therapy for prostate cancer: update on theory and status.

    PubMed

    Koeneman, K S; Hsieh, J T

    2001-09-01

    Molecularly based novel therapeutic agents are needed to address the problem of locally recurrent, or metastatic, advanced hormone-refractory prostate cancer. Recent basic science advances in mechanisms of gene expression, vector delivery, and targeting have rendered clinically relevant gene therapy to the prostatic fossa and distant sites feasible in the near future. Current research and clinical investigative efforts involving methods for more effective vector delivery and targeting, with enhanced gene expression to selected (specific) sites, are reviewed. These areas of research involve tissue-specific promoters, transgene exploration, vector design and delivery, and selective vector targeting. The 'vectorology' involved mainly addresses selective tissue homing with ligands, mechanisms of innate immune system evasion for durable transgene expression, and the possibility of repeat administration.

  9. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells.

    PubMed

    Gallo, P; Grimaldi, S; Latronico, M V G; Bonci, D; Pagliuca, A; Gallo, P; Ausoni, S; Peschle, C; Condorelli, G

    2008-02-01

    Human embryonic stem cells (hESCs) may become important for cardiac repair due to their potentially unlimited ability to generate cardiomyocytes (CMCs). Moreover, genetic manipulation of hESC-derived CMCs would be a very promising technique for curing myocardial disorders. At the present time, however, inducing the differentiation of hESCs into CMCs is extremely difficult and, therefore, an easy and standardizable technique is needed to evaluate differentiation strategies. Vectors driving cardiac-specific expression may represent an important tool not only for monitoring new cardiac-differentiation strategies, but also for the manipulation of cardiac differentiation of ESCs. To this aim, we generated cardiac-specific lentiviral vectors (LVVs) in which expression is driven by a short fragment of the cardiac troponin-I proximal promoter (TNNI3) with a human cardiac alpha-actin enhancer, and tested its suitability in inducing tissue-specific gene expression and ability to track the CMC lineage during differentiation of ESCs. We determined that (1) TNNI3-LVVs efficiently drive cardiac-specific gene expression and mark the cardiomyogenic lineage in human and mouse ESC differentiation systems (2) the cardiac alpha-actin enhancer confers a further increase in gene-expression specificity of TNNI3-LVVs in hESCs. Although this technique may not be useful in tracking small numbers of cells, data suggested that TNNI3-based LVVs are a powerful tool for manipulating human ESCs and modifying hESC-derived CMCs.

  10. Brain selective transgene expression in zebrafish using an NRSE derived motif

    PubMed Central

    Bergeron, Sadie A.; Hannan, Markus C.; Codore, Hiba; Fero, Kandice; Li, Grace H.; Moak, Zachary; Yokogawa, Tohei; Burgess, Harold A.

    2012-01-01

    Transgenic technologies enable the manipulation and observation of circuits controlling behavior by permitting expression of genetically encoded reporter genes in neurons. Frequently though, neuronal expression is accompanied by transgene expression in non-neuronal tissues, which may preclude key experimental manipulations, including assessment of the contribution of neurons to behavior by ablation. To better restrict transgene expression to the nervous system in zebrafish larvae, we have used DNA sequences derived from the neuron-restrictive silencing element (NRSE). We find that one such sequence, REx2, when used in conjunction with several basal promoters, robustly suppresses transgene expression in non-neuronal tissues. Both in transient transgenic experiments and in stable enhancer trap lines, suppression is achieved without compromising expression within the nervous system. Furthermore, in REx2 enhancer trap lines non-neuronal expression can be de-repressed by knocking down expression of the NRSE binding protein RE1-silencing transcription factor (Rest). In one line, we show that the resulting pattern of reporter gene expression coincides with that of the adjacent endogenous gene, hapln3. We demonstrate that three common basal promoters are susceptible to the effects of the REx2 element, suggesting that this method may be useful for confining expression from many other promoters to the nervous system. This technique enables neural specific targeting of reporter genes and thus will facilitate the use of transgenic methods to manipulate circuit function in freely behaving larvae. PMID:23293587

  11. Complexities of gene expression patterns in natural populations of an extremophile fish (Poecilia mexicana, Poeciliidae)

    PubMed Central

    Passow, Courtney N.; Brown, Anthony P.; Arias-Rodriguez, Lenin; Yee, Muh-Ching; Sockell, Alexandra; Schartl, Manfred; Warren, Wesley C.; Bustamante, Carlos; Kelley, Joanna L.; Tobler, Michael

    2017-01-01

    Variation in gene expression can provide insights into organismal responses to environmental stress and physiological mechanisms mediating adaptation to habitats with contrasting environmental conditions. We performed an RNA-sequencing experiment to quantify gene expression patterns in fish adapted to habitats with different combinations of environmental stressors, including the presence of toxic hydrogen sulphide (H2S) and the absence of light in caves. We specifically asked how gene expression varies among populations living in different habitats, whether population differences were consistent among organs, and whether there is evidence for shared expression responses in populations exposed to the same stressors. We analysed organ-specific transcriptome-wide data from four ecotypes of Poecilia mexicana (nonsulphidic surface, sulphidic surface, nonsulphidic cave and sulphidic cave). The majority of variation in gene expression was correlated with organ type, and the presence of specific environmental stressors elicited unique expression differences among organs. Shared patterns of gene expression between populations exposed to the same environmental stressors increased with levels of organismal organization (from transcript to gene to physiological pathway). In addition, shared patterns of gene expression were more common between populations from sulphidic than populations from cave habitats, potentially indicating that physiochemical stressors with clear biochemical consequences can constrain the diversity of adaptive solutions that mitigate their adverse effects. Overall, our analyses provided insights into transcriptional variation in a unique system, in which adaptation to H2S and darkness coincide. Functional annotations of differentially expressed genes provide a springboard for investigating physiological mechanisms putatively underlying adaptation to extreme environments. PMID:28598519

  12. Formal specification and mechanical verification of SIFT - A fault-tolerant flight control system

    NASA Technical Reports Server (NTRS)

    Melliar-Smith, P. M.; Schwartz, R. L.

    1982-01-01

    The paper describes the methodology being employed to demonstrate rigorously that the SIFT (software-implemented fault-tolerant) computer meets its requirements. The methodology uses a hierarchy of design specifications, expressed in the mathematical domain of multisorted first-order predicate calculus. The most abstract of these, from which almost all details of mechanization have been removed, represents the requirements on the system for reliability and intended functionality. Successive specifications in the hierarchy add design and implementation detail until the PASCAL programs implementing the SIFT executive are reached. A formal proof that a SIFT system in a 'safe' state operates correctly despite the presence of arbitrary faults has been completed all the way from the most abstract specifications to the PASCAL program.

  13. The effect of Lactobacillus johnsonii Ncc533 (La1) on the balance of Th1/Th2 cells in BALB/c mice.

    PubMed

    Yang, Junli; Li, Wen; Sun, Ruopeng; Li, Baomin

    2011-08-01

    To determine the effect of Lactobacillus johnsonii Ncc533 (La1) on Th1/Th2 balance, the production of IL-4 and IFN-γ by splenocytes was evaluated following its administration to mice from newborn to adult. Changes in IL-4 and IFN-γ expression and serum levels of OVA-specific-IgE were then investigated in an asthma model. Using flow cytometry (FCM) and ELISA, the percentage of IL-4 and IFN-γ expressing splenocytes and serum levels of OVA-specific-IgE were measured in different groups of mice. The percentages of IL-4 and IFN-γ expressing splenocytes in the offspring and in the adults of the La1-treated group were not significantly different when compared with the water-treated group. In the asthma model, the percentages of IL-4 expressing cells and the serum levels of OVA-specific-IgE in the La1-treated and water-treated group were significantly increased compared with those in the control group. The percentage of IFN-γ expressing cells was significantly lower in the La1-treated and water-treated groups. The percentage of IL-4 expressing cells and the serum levels of OVA-specific-IgE in the La1-treated group were significantly lower compared with those in the water-treated group, whereas the percentage of IFN-γ expressing cells was significantly higher. Administration of La1 had no effect on the immune system from the neonate to the adult in the normal mice. It did, however, significantly alter the percentages of IL-4 or IFN-γ expressing CD4+ T lymphocytes in the asthma model, suggesting that administration of La1 might regulate the immune response.

  14. Evaluating a Control System Architecture Based on a Formally Derived AOCS Model

    NASA Astrophysics Data System (ADS)

    Ilic, Dubravka; Latvala, Timo; Varpaaniemi, Kimmo; Vaisanen, Pauli; Troubitsyna, Elena; Laibinis, Linas

    2010-08-01

    Attitude & Orbit Control System (AOCS) refers to a wider class of control systems which are used to determine and control the attitude of the spacecraft while in orbit, based on the information obtained from various sensors. In this paper, we propose an approach to evaluate a typical (yet somewhat simplified) AOCS architecture using formal development - based on the Event-B method. As a starting point, an Ada specification of the AOCS is translated into a formal specification and further refined to incorporate all the details of its original source code specification. This way we are able not only to evaluate the Ada specification by expressing and verifying specific system properties in our formal models, but also to determine how well the chosen modelling framework copes with the level of detail required for an actual implementation and code generation from the derived models.

  15. A novel recombinant pseudorabies virus expressing parvovirus VP2 gene: Immunogenicity and protective efficacy in swine

    PubMed Central

    2011-01-01

    Background Porcine parvovirus (PPV) VP2 gene has been successfully expressed in many expression systems resulting in self-assembly of virus-like particles (VLPs) with similar morphology to the native capsid. Here, a pseudorabies virus (PRV) system was adopted to express the PPV VP2 gene. Methods A recombinant PRV SA215/VP2 was obtained by homologous recombination between the vector PRV viral DNA and a transfer plasmid. Then recombinant virus was purified with plaque purification, and its identity confirmed by PCR amplification, Western blot and indirect immunofluorescence (IFA) analyses. Electronic microscopy of PRV SA215/VP2 confirmed self-assembly of both pseudorabies virus and VLPs from VP2 protein. Results Immunization of piglets with recombinant virus elicited PRV-specific and PPV-specific humoral immune responses and provided complete protection against a lethal dose of PRV challenges. Gilts immunized with recombinant viruses induced PPV-specific antibodies, and significantly reduced the mortality rate of (1 of 28) following virulent PPV challenge compared with the control (7 of 31). Furthermore, PPV virus DNA was not detected in the fetuses of recombinant virus immunized gilts. Conclusions In this study, a recombinant PRV SA215/VP2 virus expressing PPV VP2 protein was constructed using PRV SA215 vector. The safety, immunogenicity, and protective efficacy of the recombinant virus were demonstrated in piglets and primiparous gilts. This recombinant PRV SA215/VP2 represents a suitable candidate for the development of a bivalent vaccine against both PRV and PPV infection. PMID:21679423

  16. dHb9 expressing larval motor neurons persist through metamorphosis to innervate adult-specific muscle targets and function in Drosophila eclosion.

    PubMed

    Banerjee, Soumya; Toral, Marcus; Siefert, Matthew; Conway, David; Dorr, Meredith; Fernandes, Joyce

    2016-12-01

    The Drosophila larval nervous system is radically restructured during metamorphosis to produce adult specific neural circuits and behaviors. Genesis of new neurons, death of larval neurons and remodeling of those neurons that persistent collectively act to shape the adult nervous system. Here, we examine the fate of a subset of larval motor neurons during this restructuring process. We used a dHb9 reporter, in combination with the FLP/FRT system to individually identify abdominal motor neurons in the larval to adult transition using a combination of relative cell body location, axonal position, and muscle targets. We found that segment specific cell death of some dHb9 expressing motor neurons occurs throughout the metamorphosis period and continues into the post-eclosion period. Many dHb9 > GFP expressing neurons however persist in the two anterior hemisegments, A1 and A2, which have segment specific muscles required for eclosion while a smaller proportion also persist in A2-A5. Consistent with a functional requirement for these neurons, ablating them during the pupal period produces defects in adult eclosion. In adults, subsequent to the execution of eclosion behaviors, the NMJs of some of these neurons were found to be dismantled and their muscle targets degenerate. Our studies demonstrate a critical continuity of some larval motor neurons into adults and reveal that multiple aspects of motor neuron remodeling and plasticity that are essential for adult motor behaviors. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1387-1416, 2016. © 2016 Wiley Periodicals, Inc.

  17. Characterization of the yeast copper-inducible promoter system in Arabidopsis thaliana

    NASA Technical Reports Server (NTRS)

    Granger, C. L.; Cyr, R. J.

    2001-01-01

    Inducible promoters or gene-switches are used to both spatially and temporally regulate gene expression. Such regulation can provide information concerning the function of a gene in a developmental context as well as avoid potential harmful effects due to overexpression. A gfp construct under the control of a copper-inducible promoter was introduced into Arabidopsis thaliana (L.) Heynh. and the regulatory parameters of this inducible promoter were determined. Here, we describe the time-course of up- and down-regulation of GFP expression in response to copper level, the optimal regulatory levels of copper, and the tissue specificity of expression in three transgenic lines. We conclude that the copper-inducible promoter system may be useful in regulating the time and location of gene expression in A. thaliana.

  18. Examination of the genetic basis for sexual dimorphism in the Aedes aegypti (dengue vector mosquito) pupal brain

    PubMed Central

    2014-01-01

    Background Most animal species exhibit sexually dimorphic behaviors, many of which are linked to reproduction. A number of these behaviors, including blood feeding in female mosquitoes, contribute to the global spread of vector-borne illnesses. However, knowledge concerning the genetic basis of sexually dimorphic traits is limited in any organism, including mosquitoes, especially with respect to differences in the developing nervous system. Methods Custom microarrays were used to examine global differences in female vs. male gene expression in the developing pupal head of the dengue vector mosquito, Aedes aegypti. The spatial expression patterns of a subset of differentially expressed transcripts were examined in the developing female vs. male pupal brain through in situ hybridization experiments. Small interfering RNA (siRNA)-mediated knockdown studies were used to assess the putative role of Doublesex, a terminal component of the sex determination pathway, in the regulation of sex-specific gene expression observed in the developing pupal brain. Results Transcripts (2,527), many of which were linked to proteolysis, the proteasome, metabolism, catabolic, and biosynthetic processes, ion transport, cell growth, and proliferation, were found to be differentially expressed in A. aegypti female vs. male pupal heads. Analysis of the spatial expression patterns for a subset of dimorphically expressed genes in the pupal brain validated the data set and also facilitated the identification of brain regions with dimorphic gene expression. In many cases, dimorphic gene expression localized to the optic lobe. Sex-specific differences in gene expression were also detected in the antennal lobe and mushroom body. siRNA-mediated gene targeting experiments demonstrated that Doublesex, a transcription factor with consensus binding sites located adjacent to many dimorphically expressed transcripts that function in neural development, is required for regulation of sex-specific gene expression in the developing A. aegypti brain. Conclusions These studies revealed sex-specific gene expression profiles in the developing A. aegypti pupal head and identified Doublesex as a key regulator of sexually dimorphic gene expression during mosquito neural development. PMID:25729562

  19. [Expression of epidermal growth factor receptor mutation specific antibodies in lung adenocarcinoma: evaluation of sensitivity, specificity and relationship to histologic subtypes].

    PubMed

    Lai, Y M; Feng, Q; Sun, Y; Wang, P; Shi, Y F; Zhao, M; Wu, Q; Li, X H

    2016-09-08

    To evaluate the expression of epidermal growth factor receptor (EGFR) mutation specific antibodies in invasive lung adenocarcinomas, and their sensitivity, specificity, as well as relationship to histological subtypes. Immunostaining with EGFR mutation-specific antibodies, del E746-A750 in exon 19 and L858R in exon 21, was performed in tissue microarrays of 884 cases of resection specimens to study the relationship between the immunophenotypes and morphologic subtypes. The sensitivity and specificity of the stains were compared with gene mutations detected by amplified refractory mutation system-polymerase chain reaction (ARMS-PCR). Of the 884 cases, the expression of del E746-A750 in exon 19 was 3+ , 2+ , 1+ and 0 in 7 cases (0.79%), 38 cases (4.30%), 129 cases (14.59%) and 710 cases (80.32%), respectively. For L858R in exon 21, 3+ , 2+ , 1+ and 0 staining were seen in 82 cases (9.28%), 93 cases (10.52%), 82 cases (9.28%) and 627 cases (70.93%), respectively. For both antibodies, positive expression (1+ or more) was mainly observed in lepidic, acinar and papillary predominant subtypes, and rarely seen in solid subtype or invasive mucinous adenocarcinoma (P=0.014 and 0.016). If 1+ to 3+ expression was set as positive, the specificity of exon 19/exon 21 reached 98.59%/92.98%, while the sensitivity was relatively lower (62.86%/88.89%). If 2+ to 3+ expression was read as positive, the specificity and sensitivity were 99.30%/97.37% and 25.71%/74.60% for exon 19/exon 21. If only 3+ expression was considered positive, the specificity was 100.0% for both antibodies, with a low sensitivity (8.57% for exon 19 and 34.92% for exon 21). Of the 18 cases with E746-A750 del in exon 19 based on molecular detection, the sensitivity of immunohistochemistry for exon 19 was 88.89% if a positive cutoff value ≥1+ was used; in contrast, of the 8 cases harboring other deletions in exon 19, only two cases were positive as 1+ . Both the EGFR mutation specific antibodies del E746-A750 in exon 19 and L858R in exon 21 demonstrate high specificity and relatively low sensitivity, and are mostly expressed in lepidic, acinar and papillary predominant subtypes, but rarely in solid subtype or invasive mucinous adenocarcinoma. For cases with 3+ expression, a mutational statue for EGFR is likely. For the 2+ positive cases, the accuracy to predict mutation almost reaches 90%, but molecular detection for confirmation is desirable. For the 1+ and negative cases, DNA-based test is essential to avoid false negativity.

  20. Increased expression of Toll-like receptors (TLRs) 7 and 9 and other cytokines in systemic lupus erythematosus (SLE) patients: ethnic differences and potential new targets for therapeutic drugs.

    PubMed

    Lyn-Cook, Beverly D; Xie, Chenghui; Oates, Jarren; Treadwell, Edward; Word, Beverly; Hammons, George; Wiley, Kenneth

    2014-09-01

    Increased expression of pro-inflammatory cytokines such as interferon, tumor necrosis factors (TNFs) and specific interleukins (ILs) has been found in a number of autoimmune diseases, including systemic lupus erythematous (SLE). These cytokines are induced by toll-like receptors (TLRs). Toll-like receptors are activated in response to accumulation of apoptotic bodies. These receptors play critical roles in innate immune systems. Increased levels of interferon-alpha (INF-α) have also been found in many SLE patients and often correlate with disease severity. The objectives of this study were to examine the expression of selected TLRs and cytokines that have been identified in animal models and some limited human studies in a group of African Americans (AA) and European Americans (EA) women with lupus in comparison to age-matched non-lupus women. Blood samples were consecutively obtained by informed consent from 286 patients, 153 lupus and 136 non-lupus, seen in the rheumatology clinics at East Carolina University. Cytokines were analyzed from blood serum using enzyme linked immunoassay (ELISA) for IL-6 and INF-α. Total RNA was isolated, using a Paxgene kit, from peripheral blood mononuclear cells of African American and European American women blood samples. Quantitative real-time PCR using the CFX real-time system was conducted on all samples to determine TLRs 7 and 9, as well as INF-α expression. Toll-like receptor 7 (p<0.01) and 9 (p=0.001) expression levels were significantly increased in lupus patients compared to age-matched controls. African American women with lupus had a 2-fold increase in TLR-9 expression level when compared to their healthy controls or European American lupus patients. However, there was no ethnic difference in expression of TLR-7 in lupus patients. INF-α expression was significantly higher in lupus patients (p<0.0001) and also showed ethnic difference in expression. Serum levels revealed significant increases in expression of IL-6, IFN-γ and TNF-α in lupus patients compared to non-lupus patients. African American women with lupus had significantly higher serum levels of IL-6 and TNF-α. African American women with lupus demonstrated increased levels of specific pro-inflammatory cytokines and Toll-like receptors when compared to EA women. Increased expression in these lupus patients provides an opportunity for targeting with antagonist as a new therapy for systemic lupus erythematous. Published by Elsevier Ltd.

  1. The Microphthalmia Transcription Factor (Mitf) Controls Expression of the Ocular Albinism Type 1 Gene: Link between Melanin Synthesis and Melanosome Biogenesis

    PubMed Central

    Vetrini, Francesco; Auricchio, Alberto; Du, Jinyan; Angeletti, Barbara; Fisher, David E.; Ballabio, Andrea; Marigo, Valeria

    2004-01-01

    Melanogenesis is the process that regulates skin and eye pigmentation. Albinism, a genetic disease causing pigmentation defects and visual disorders, is caused by mutations in genes controlling either melanin synthesis or melanosome biogenesis. Here we show that a common transcriptional control regulates both of these processes. We performed an analysis of the regulatory region of Oa1, the murine homolog of the gene that is mutated in the X-linked form of ocular albinism, as Oa1's function affects melanosome biogenesis. We demonstrated that Oa1 is a target of Mitf and that this regulatory mechanism is conserved in the human gene. Tissue-specific control of Oa1 transcription lies within a region of 617 bp that contains the E-box bound by Mitf. Finally, we took advantage of a virus-based system to assess tissue specificity in vivo. To this end, a small fragment of the Oa1 promoter was cloned in front of a reporter gene in an adeno-associated virus. After we injected this virus into the subretinal space, we observed reporter gene expression specifically in the retinal pigment epithelium, confirming the cell-specific expression of the Oa1 promoter in the eye. The results obtained with this viral system are a preamble to the development of new gene delivery approaches for the treatment of retinal pigment epithelium defects. PMID:15254223

  2. Restoring pollen fertility in transgenic male-sterile eggplant by Cre/loxp-mediated site-specific recombination system.

    PubMed

    Cao, Bihao; Huang, Zhiyin; Chen, Guoju; Lei, Jianjun

    2010-04-01

    This study was designed to control plant fertility by cell lethal gene Barnase expressing at specific developmental stage and in specific tissue of male organ under the control of Cre/loxP system, for heterosis breeding, producing hybrid seed of eggplant. The Barnase-coding region was flanked by loxP recognition sites for Cre-recombinase. The eggplant inbred/pure line ('E-38') was transformed with Cre gene and the inbred/pure line ('E-8') was transformed with the Barnase gene situated between loxp. The experiments were done separately, by means of Agrobacterium co-culture. Four T(0) -plants with the Barnase gene were obtained, all proved to be male-sterile and incapable of producing viable pollen. Flowers stamens were shorter, but the vegetative phenotype was similar to wild-type. Five T (0) -plants with the Cre gene developed well, blossomed out and set fruit normally. The crossing of male-sterile Barnase-plants with Cre expression transgenic eggplants resulted in site-specific excision with the male-sterile plants producing normal fruits. With the Barnase was excised, pollen fertility was fully restored in the hybrids. The phenotype of these restored plants was the same as that of the wild-type. Thus, the Barnase and Cre genes were capable of stable inheritance and expression in progenies of transgenic plants.

  3. Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie

    PubMed Central

    2014-01-01

    Background Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. Results In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. Conclusions The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease. PMID:24450868

  4. Double promoter expression systems for recombinant protein production by industrial microorganisms.

    PubMed

    Öztürk, Sibel; Ergün, Burcu Gündüz; Çalık, Pınar

    2017-10-01

    Using double promoter expression systems is a promising approach to increase heterologous protein production. In this review, current double promoter expression systems for the production of recombinant proteins (r-proteins) by industrially important bacteria, Bacillus subtilis and Escherichia coli; and yeasts, Saccharomyces cerevisiae and Pichia pastoris, are discussed by assessing their potentials and drawbacks. Double promoter expression systems need to be designed to maintain a higher specific product formation rate within the production domain. While bacterial double promoter systems have been constructed as chimeric tandem promoters, yeast dual promoter systems have been developed as separate expression cassettes. To increase production and productivity, the optimal transcriptional activity should be justified either by simultaneously satisfying the requirements of both promoters, or by consecutively stimulating the changeover from one to another in a biphasic process or via successive-iterations. Thus, considering the dynamics of a fermentation process, double promoters can be classified according to their operational mechanisms, as: i) consecutively operating double promoter systems, and ii) simultaneously operating double promoter systems. Among these metabolic design strategies, extending the expression period with two promoters activated under different conditions, or enhancing the transcriptional activity with two promoters activated under similar conditions within the production domain, can be applied independently from the host. Novel studies with new insights, which aim a rational systematic design and construction of dual promoter expression vectors with tailored transcriptional activity, will empower r-protein production with enhanced production and productivity. Finally, the current state-of-the-art review emphasizes the advantages of double promoter systems along with the necessity for discovering new promoters for the development of more effective and adaptive processes to meet the increasing demand of r-protein industry.

  5. Identification of the amino acids essential for LytSR-mediated signal transduction in Staphylococcus aureus and their roles in biofilm-specific gene expression

    PubMed Central

    Lehman, McKenzie K.; Bose, Jeffrey L.; Sharma-Kuinkel, Batu K.; Moormeier, Derek E.; Endres, Jennifer L.; Sadykov, Marat R.; Biswas, Indranil; Bayles, Kenneth W.

    2015-01-01

    Summary Recent studies have demonstrated that expression of the Staphylococcus aureus lrgAB operon is specifically expressed within tower structures during biofilm development. To gain a better understanding of the mechanisms underlying this spatial control of lrgAB expression, we carried out a detailed analysis of the LytSR two-component system. Specifically, a conserved aspartic acid (Asp53) of the LytR response regulator was shown to be the target of phosphorylation, which resulted in enhanced binding to the lrgAB promoter and activation of transcription. In addition, we identified His390 of the LytS histidine kinase as the site of autophosphorylation and Asn394 as a critical amino acid involved in phosphatase activity. Interestingly, LytS-independent activation of LytR was observed during planktonic growth, with acetyl phosphate acting as a phosphodonor to LytR. In contrast, mutations disrupting the function of LytS prevented tower-specific lrgAB expression, providing insight into the physiologic environment within these structures. In addition, over activation of LytR led to increased lrgAB promoter activity during planktonic and biofilm growth and a change in biofilm morphology. Overall, the results of this study are the first to define the LytSR signal transduction pathway, as well as determine the metabolic context within biofilm tower structures that triggers these signaling events. PMID:25491472

  6. Dynamic facial expressions evoke distinct activation in the face perception network: a connectivity analysis study.

    PubMed

    Foley, Elaine; Rippon, Gina; Thai, Ngoc Jade; Longe, Olivia; Senior, Carl

    2012-02-01

    Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223-233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.

  7. Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus.

    PubMed

    Watanabe, Takayuki; Sadamoto, Hisayo; Aonuma, Hitoshi

    2013-12-01

    In insects, dopamine modulates various aspects of behavior such as learning and memory, arousal and locomotion, and is also a precursor of melanin. To elucidate the molecular basis of the dopaminergic system in the field cricket Gryllus bimaculatus DeGeer, we identified genes involved in dopamine biosynthesis, signal transduction, and dopamine re-uptake in the cricket. Complementary DNA of two isoforms of tyrosine hydroxylase (TH), which convert tyrosine into L-3,4-dihydroxyphenylalanine, was isolated from the cricket brain cDNA library. In addition, four dopamine receptor genes (Dop1, Dop2, Dop3, and DopEcR) and a high-affinity dopamine transporter gene were identified. The two TH isoforms contained isoform-specific regions in the regulatory ACT domain and showed differential expression patterns in different tissues. In addition, the dopamine receptor genes had a receptor subtype-specific distribution: the Dop1, Dop2, and DopEcR genes were broadly expressed in various tissues at differential expression levels, and the Dop3 gene was restrictedly expressed in neuronal tissues and the testicles. Our findings provide a fundamental basis for understanding the dopaminergic regulation of diverse physiological processes in the cricket.

  8. Pulsed Irradiation Improves Target Selectivity of Infrared Laser-Evoked Gene Operator for Single-Cell Gene Induction in the Nematode C. elegans

    PubMed Central

    Suzuki, Motoshi; Toyoda, Naoya; Takagi, Shin

    2014-01-01

    Methods for turning on/off gene expression at the experimenter’s discretion would be useful for various biological studies. Recently, we reported on a novel microscope system utilizing an infrared laser-evoked gene operator (IR-LEGO) designed for inducing heat shock response efficiently in targeted single cells in living organisms without cell damage, thereby driving expression of a transgene under the control of a heat shock promoter. Although the original IR-LEGO can be successfully used for gene induction, several limitations hinder its wider application. Here, using the nematode Caenorhabditis elegans (C. elegans) as a subject, we have made improvements in IR-LEGO. For better spatial control of heating, a pulsed irradiation method using an optical chopper was introduced. As a result, single cells of C. elegans embryos as early as the 2-cell stage and single neurons in ganglia can be induced to express genes selectively. In addition, the introduction of site-specific recombination systems to IR-LEGO enables the induction of gene expression controlled by constitutive and cell type-specific promoters. The strategies adopted here will be useful for future applications of IR-LEGO to other organisms. PMID:24465705

  9. Selective Constraints on Coding Sequences of Nervous System Genes Are a Major Determinant of Duplicate Gene Retention in Vertebrates

    PubMed Central

    Roux, Julien; Liu, Jialin; Robinson-Rechavi, Marc

    2017-01-01

    Abstract The evolutionary history of vertebrates is marked by three ancient whole-genome duplications: two successive rounds in the ancestor of vertebrates, and a third one specific to teleost fishes. Biased loss of most duplicates enriched the genome for specific genes, such as slow evolving genes, but this selective retention process is not well understood. To understand what drives the long-term preservation of duplicate genes, we characterized duplicated genes in terms of their expression patterns. We used a new method of expression enrichment analysis, TopAnat, applied to in situ hybridization data from thousands of genes from zebrafish and mouse. We showed that the presence of expression in the nervous system is a good predictor of a higher rate of retention of duplicate genes after whole-genome duplication. Further analyses suggest that purifying selection against the toxic effects of misfolded or misinteracting proteins, which is particularly strong in nonrenewing neural tissues, likely constrains the evolution of coding sequences of nervous system genes, leading indirectly to the preservation of duplicate genes after whole-genome duplication. Whole-genome duplications thus greatly contributed to the expansion of the toolkit of genes available for the evolution of profound novelties of the nervous system at the base of the vertebrate radiation. PMID:28981708

  10. Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps

    PubMed Central

    Schebelle, Laura; Wolf, Claudia; Stribl, Carola; Javaheri, Tahereh; Schnütgen, Frank; Ettinger, Andreas; Ivics, Zoltán; Hansen, Jens; Ruiz, Patricia; von Melchner, Harald; Wurst, Wolfgang; Floss, Thomas

    2010-01-01

    Recombinase-mediated cassette exchange (RMCE) exploits the possibility to unidirectionally exchange any genetic material flanked by heterotypic recombinase recognition sites (RRS) with target sites in the genome. Due to a limited number of available pre-fabricated target sites, RMCE in mouse embryonic stem (ES) cells has not been tapped to its full potential to date. Here, we introduce a universal system, which allows the targeted insertion of any given transcriptional unit into 85 742 previously annotated retroviral conditional gene trap insertions, representing 7013 independent genes in mouse ES cells, by RMCE. This system can be used to express any given cDNA under the control of endogenous trapped promoters in vivo, as well as for the generation of transposon ‘launch pads’ for chromosomal region-specific ‘Sleeping Beauty’ insertional mutagenesis. Moreover, transcription of the gene-of-interest is only activated upon Cre-recombinase activity, a feature that adds conditionality to this expression system, which is demonstrated in vivo. The use of the RMCE system presented in this work requires one single-cloning step followed by one overnight gateway clonase reaction and subsequent cassette exchange in ES cells with efficiencies of 40% in average. PMID:20139417

  11. Nuclear factor I-A represses expression of the cell adhesion molecule L1

    PubMed Central

    2009-01-01

    Background The neural cell adhesion molecule L1 plays a crucial role in development and plasticity of the nervous system. Neural cells thus require precise control of L1 expression. Results We identified a full binding site for nuclear factor I (NFI) transcription factors in the regulatory region of the mouse L1 gene. Electrophoretic mobility shift assay (EMSA) showed binding of nuclear factor I-A (NFI-A) to this site. Moreover, for a brain-specific isoform of NFI-A (NFI-A bs), we confirmed the interaction in vivo using chromatin immunoprecipitation (ChIP). Reporter gene assays showed that in neuroblastoma cells, overexpression of NFI-A bs repressed L1 expression threefold. Conclusion Our findings suggest that NFI-A, in particular its brain-specific isoform, represses L1 gene expression, and might act as a second silencer of L1 in addition to the neural restrictive silencer factor (NRSF). PMID:20003413

  12. Expression, purification and antibody preparation of PCV2 Rep and ORF3 proteins.

    PubMed

    Peng, Zhiyuan; Ma, Teng; Pang, Daxin; Su, Dan; Chen, Fuwang; Chen, Xinrong; Guo, Ning; Ouyang, Ting; Ouyang, Hongsheng; Ren, Linzhu

    2016-05-01

    Rep and ORF3 proteins are important functional proteins of porcine circovirus 2 (PCV2). Here, Rep and ORF3 genes were cloned, expressed and used to raise polyclonal antibodies. The result showed the recombinant plasmids of Rep and ORF3 genes constructed in this study were expressed efficiently in the prokaryotic system, and the recombinant proteins had antigenicity and immunogenicity. Furthermore, reactivity and specificity of the antiserums were characterized by western blot and indirect immunofluorescent assays. The results elucidated that polyclonal antiserum prepared with Rep or ORF3 had good reactivity and specificity against PCV2, or the Rep and ORF3 expressed in PK-15 cells, respectively. The Rep protein is promising for PCV2 antibody and vaccine development. These results will be helpful for further studies focusing on pathogenesis of PCV2 and serology diagnostic test or vaccine development against PCV2. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation.

    PubMed

    Grogan, Shawn P; Chen, Xian; Sovani, Sujata; Taniguchi, Noboru; Colwell, Clifford W; Lotz, Martin K; D'Lima, Darryl D

    2014-01-01

    Interaction between chondrocytes and the cartilage extracellular matrix (ECM) is essential for maintaining the cartilage's role as a low-friction and load-bearing tissue. In this study, we examined the influence of cartilage zone-specific ECM on human articular chondrocytes (HAC) in two-dimensional and three-dimensional (3D) environments. Two culture systems were used. SYSTEM 1: HAC were cultured on cell-culture plates that had been precoated with the following ECM molecules for 7 days: decorin, biglycan, tenascin C (superficial zone), collagen type II, hyaluronan (HA) (middle and deep zones), and osteopontin (deep zone). Uncoated standard culture plates were used as controls. Expanded cells were examined for phenotypic changes using real-time polymerase chain reaction. In addition, expanded cells were placed into high-density pellet cultures for 14 days. Neocartilage formation was assessed via gene expression and histology evaluations. SYSTEM 2: HAC that were cultured on untreated plates and encapsulated in a 3D alginate scaffold were mixed with one of the zone-specific ECM molecules. Cell viability, gene expression, and histology assessments were conducted on 14-day-old tissues. In HAC monolayer culture, exposure to decorin, HA, and osteopontin increased COL2A1 and aggrecan messenger RNA (mRNA) levels compared with controls. Biglycan up-regulated aggrecan without a significant impact on COL2A1 expression; Tenascin C reduced COL2A1 expression. Neocartilage formed after preculture on tenascin C and collagen type II expressed higher COL2A1 mRNA compared with control pellets. Preculture of HAC on HA decreased both COL2A1 and aggrecan expression levels compared with controls, which was consistent with histology. Reduced proteoglycan 4 (PRG4) mRNA levels were observed in HAC pellets that had been precultured with biglycan and collagen type II. Exposing HAC to HA directly in 3D-alginate culture most effectively induced neocartilage formation, showing increased COL2A1 and aggrecan, and reduced COL1A1 compared with controls. Decorin treatments increased HAC COL2A1 mRNA levels. These data indicate that an appropriate exposure to cartilage-specific ECM proteins could be used to enhance cartilage formation and to even induce the formation of zone-specific phenotypes to improve cartilage regeneration.

  14. High levels of PROM1 (CD133) transcript are a potential predictor of poor prognosis in medulloblastoma

    PubMed Central

    Raso, Alessandro; Mascelli, Samantha; Biassoni, Roberto; Nozza, Paolo; Kool, Marcel; Pistorio, Angela; Ugolotti, Elisabetta; Milanaccio, Claudia; Pignatelli, Sara; Ferraro, Manuela; Pavanello, Marco; Ravegnani, Marcello; Cama, Armando; Garrè, Maria Luisa; Capra, Valeria

    2011-01-01

    The surface marker PROM1 is considered one of the most important markers of tumor-initiating cells, and its expression is believed to be an adverse prognostic factor in gliomas and in other malignancies. To date, to our knowledge, no specific studies of its expression in medulloblastoma series have been performed. The aims of our study were to evaluate the expression profile of the PROM1 gene in medulloblastoma and to assess its possible role as a prognostic factor. The PROM1 gene expression was evaluated by quantitative– polymerase chain reaction on 45 medulloblastoma samples by using specific dye-labeled probe systems. A significantly higher expression of PROM1 was found both in patients with poorer prognosis (P= .007) and in those with metastasis (P= .03). Kaplan–Meier analysis showed that both overall survival (OS) and progression-free survival (PFS) were shorter in patients with higher PROM1 mRNA levels than in patients with lower expression, even when the desmoplastic cases were excluded (P= .0004 and P= .002, for OS and PFS for all cases, respectively; P= .002 and P= .008 for OS and PFS for nondesmoplastic cases, respectively). Cox regression model demonstrated that PROM1 expression is an independent prognostic factor (hazard ratio, 4.56; P= .008). The result was validated on an independent cohort of 42 cases by microarray-based analysis (P= .019). This work suggests that high mRNA levels of PROM1 are associated with poor outcome in pediatric medulloblastoma. Furthermore, high PROM1 expression levels seem to increase the likelihood of metastases. Such results need to be confirmed in larger prospective series to possibly incorporate PROM1 gene expression into risk classification systems to be used in the clinical setting. PMID:21486962

  15. Macrophage-Specific Expression of IL-37 in Hyperlipidemic Mice Attenuates Atherosclerosis.

    PubMed

    McCurdy, Sara; Baumer, Yvonne; Toulmin, Emma; Lee, Bog-Hieu; Boisvert, William A

    2017-11-15

    Atherosclerosis, the progressive buildup of plaque within arterial blood vessels, can lead to fatal downstream events, such as heart attack or stroke. A key event contributing to the development of atherosclerosis is the infiltration of monocytes and its associated inflammation, as well as the formation of lipid-laden macrophage foam cells within the vessel wall. IL-37 is recognized as an important anti-inflammatory cytokine expressed especially by immune cells. This study was undertaken to elucidate the role of macrophage-expressed IL-37 in reducing the production and effects of proinflammatory cytokines, preventing foam cell formation, and reducing the development of atherosclerosis. Expression of human IL-37 was achieved with a macrophage-specific overexpression system, using the CD68 promoter in mouse primary bone marrow-derived macrophages via retroviral transduction. Macrophage IL-37 expression in vitro resulted in decreased mRNA (e.g., IL-1B, IL-6, and IL-12) and secreted protein production (e.g., IL-6, M-CSF, and ICAM-1) of key inflammatory mediators. IL-37 expression also inhibited macrophage proliferation, apoptosis, and transmigration, as well as reduced lipid uptake, compared with controls in vitro. The in vivo effects of macrophage-expressed IL-37 were investigated through bone marrow transplantation of transduced hematopoietic stem cells into irradiated atherosclerosis-prone Ldlr -/- mice. After 10 wk on a high-fat/high-cholesterol diet, mice with IL-37-expressing macrophages showed reduced disease pathogenesis, which was demonstrated by significantly less arterial plaque development and systemic inflammation compared with control mice. The athero-protective effect of macrophage-expressed IL-37 has implications for development of future therapies to treat atherosclerosis, as well as other chronic inflammatory diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  16. Specialized Motor-Driven dusp1 Expression in the Song Systems of Multiple Lineages of Vocal Learning Birds

    PubMed Central

    Horita, Haruhito; Kobayashi, Masahiko; Liu, Wan-chun; Oka, Kotaro; Jarvis, Erich D.; Wada, Kazuhiro

    2012-01-01

    Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits. PMID:22876306

  17. A Modular Toolset for Recombination Transgenesis and Neurogenetic Analysis of Drosophila

    PubMed Central

    Wang, Ji-Wu; Beck, Erin S.; McCabe, Brian D.

    2012-01-01

    Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues. PMID:22848718

  18. A novel keratin18 promoter that drives reporter gene expression in the intrahepatic and extrahepatic biliary system allows isolation of cell-type specific transcripts from zebrafish liver

    PubMed Central

    Wilkins, Benjamin J.; Gong, Weilong; Pack, Michael

    2015-01-01

    Heritable and acquired biliary disorders are an important cause of acute and chronic human liver disease. Biliary development and physiology have been studied extensively in rodent models and more recently, zebrafish have been used to uncover pathogenic mechanisms and potential therapies for these conditions. Here we report development of novel transgenic lines labeling the intrahepatic and extrahepatic biliary system of zebrafish larvae that can be used for lineage tracing and isolation of biliary-specific RNAs from mixed populations of liver cells. We show that GFP expression driven by a 4.4 kilobase promoter fragment from the zebrafish keratin18 (krt18) gene allows visualization of all components of the developing biliary system as early as 3 days post-fertilization. In addition, expression of a ribosomal fusion protein (EGFP-Rpl10a) in krt18:TRAP transgenic fish allows for enrichment of translated biliary cell mRNAs via translating ribosome affinity purification (TRAP). Future studies utilizing these reagents will enhance our understanding of the morphologic and molecular processes involved in biliary development and disease. PMID:24394404

  19. A CMake-Based Cross Platform Build System for Tcl/Tk

    DTIC Science & Technology

    2011-11-01

    expressing the logic for generating user-installable packages of the finished package. While specific com- pilation instructions are typically unique to each...Windows com- pilation . This presented a difficulty for the BRL- CAD project in that neither of these systems inte- grated well with BRL-CAD’s own build...build files. 2. Implement enough of the Tcl/Tk–specific com- pilation macro logic in CMake to support build- 1Twylite’s Coffee project uses CMake to

  20. Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass

    DOE PAGES

    Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian; ...

    2018-04-24

    Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less

  1. Switchgrass (Panicum virgatum L.) promoters for green tissue-specific expression of the MYB4 transcription factor for reduced-recalcitrance transgenic switchgrass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wusheng; Mazarei, Mitra; Ye, Rongjian

    Genetic engineering of switchgrass (Panicum virgatum L.) for reduced cell wall recalcitrance and improved biofuel production has been a long pursued goal. Up to now, constitutive promoters have been used to direct the expression of cell wall biosynthesis genes toward attaining that goal. While generally sufficient to gauge a transgene's effects in the heterologous host, constitutive overexpression often leads to undesirable plant phenotypic effects. Green tissue-specific promoters from switchgrass are potentially valuable to directly alter cell wall traits exclusively in harvestable aboveground biomass while not changing root phenotypes. We identified and functionally characterized three switchgrass green tissue-specific promoters and assessedmore » marker gene expression patterns and intensity in stably transformed rice (Oryza sativa L.), and then used them to direct the expression of the switchgrass MYB4 (PvMYB4) transcription factor gene in transgenic switchgrass to endow reduced recalcitrance in aboveground biomass. These promoters correspond to photosynthesis-related light-harvesting complex II chlorophyll-a/b binding gene (PvLhcb), phosphoenolpyruvate carboxylase (PvPEPC), and the photosystem II 10 kDa R subunit (PvPsbR). Real-time RT-PCR analysis detected their strong expression in the aboveground tissues including leaf blades, leaf sheaths, internodes, inflorescences, and nodes of switchgrass, which was tightly up-regulated by light. Stable transgenic rice expressing the GUS reporter under the control of each promoter (756-2005 bp in length) further confirmed their strong expression patterns in leaves and stems. With the exception of the serial promoter deletions of PvLhcb, all GUS marker patterns under the control of each 5'-end serial promoter deletion were not different from that conveyed by their respective promoters. All of the shortest promoter fragments (199-275 bp in length) conveyed strong green tissue-specific GUS expression in transgenic rice. PvMYB4 is a master repressor of lignin biosynthesis. The green tissue-specific expression of PvMYB4 via each promoter in transgenic switchgrass led to significant gains in saccharification efficiency, decreased lignin, and decreased S/G lignin ratios. In contrast to constitutive overexpression of PvMYB4, which negatively impacts switchgrass root growth, plant growth was not compromised in green tissue-expressed PvMYB4 switchgrass plants in the current study. Each of the newly described green tissue-specific promoters from switchgrass has utility to change cell wall biosynthesis exclusively in aboveground harvestable biomass without altering root systems. The truncated green tissue promoters are very short and should be useful for targeted expression in a number of monocots to improve shoot traits while restricting gene expression from roots. Green tissue-specific expression of PvMYB4 is an effective strategy for improvement of transgenic feedstocks.« less

  2. The Expression and Function of the Achaete-Scute Genes in Tribolium castaneum Reveals Conservation and Variation in Neural Pattern Formation and Cell Fate Specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    SUMMARY The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ache genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ache genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we fmd that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Triboliurn and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Triboliurn proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-use is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Triboliurn ache genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  3. The expression and function of the achaete-scute genes in Tribolium castaneum reveals conservation and variation in neural pattern formation and cell fate specification

    NASA Technical Reports Server (NTRS)

    Wheeler, Scott R.; Carrico, Michelle L.; Wilson, Beth A.; Brown, Susan J.; Skeath, James B.

    2003-01-01

    The study of achaete-scute (ac/sc) genes has recently become a paradigm to understand the evolution and development of the arthropod nervous system. We describe the identification and characterization of the ac/sc genes in the coleopteran insect species Tribolium castaneum. We have identified two Tribolium ac/sc genes - achaete-scute homolog (Tc-ASH) a proneural gene and asense (Tc-ase) a neural precursor gene that reside in a gene complex. Focusing on the embryonic central nervous system we find that Tc-ASH is expressed in all neural precursors and the proneural clusters from which they segregate. Through RNAi and misexpression studies we show that Tc-ASH is necessary for neural precursor formation in Tribolium and sufficient for neural precursor formation in Drosophila. Comparison of the function of the Drosophila and Tribolium proneural ac/sc genes suggests that in the Drosophila lineage these genes have maintained their ancestral function in neural precursor formation and have acquired a new role in the fate specification of individual neural precursors. Furthermore, we find that Tc-ase is expressed in all neural precursors suggesting an important and conserved role for asense genes in insect nervous system development. Our analysis of the Tribolium ac/sc genes indicates significant plasticity in gene number, expression and function, and implicates these modifications in the evolution of arthropod neural development.

  4. Identification of FGF-dependent genes in the Drosophila tracheal system.

    PubMed

    Stahl, Markus; Schuh, Reinhard; Adryan, Boris

    2007-01-01

    The embryonic development of the tracheal system of the fruit fly Drosophila provides a paradigm for genetic studies of branching morphogenesis. Efforts of many laboratories have identified Branchless (Bnl, a fibroblast growth factor homologue) and Breathless (Btl, the receptor homologue) as crucial factors at many stages of tracheal system development. The downstream targets of the Bnl/Btl signalling cascade, however, remain mostly unknown. Misexpression of the bnl gene results in specific tracheal phenotypes that lead to larval death. We characterised the transcriptional profiles of targeted over-expression of bnl in the embryonic trachea and of loss-of-function bnl(P1) mutant embryos. Gene expression data was mapped to high-throughput in situ hybridisation based ImaGO-annotation. Thus, we identified and confirmed by quantitative PCR 13 Bnl-dependent genes that are expressed in cells within and outside of the tracheal system.

  5. Multiplex Conditional Mutagenesis Using Transgenic Expression of Cas9 and sgRNAs

    PubMed Central

    Yin, Linlin; Maddison, Lisette A.; Li, Mingyu; Kara, Nergis; LaFave, Matthew C.; Varshney, Gaurav K.; Burgess, Shawn M.; Patton, James G.; Chen, Wenbiao

    2015-01-01

    Determining the mechanism of gene function is greatly enhanced using conditional mutagenesis. However, generating engineered conditional alleles is inefficient and has only been widely used in mice. Importantly, multiplex conditional mutagenesis requires extensive breeding. Here we demonstrate a system for one-generation multiplex conditional mutagenesis in zebrafish (Danio rerio) using transgenic expression of both cas9 and multiple single guide RNAs (sgRNAs). We describe five distinct zebrafish U6 promoters for sgRNA expression and demonstrate efficient multiplex biallelic inactivation of tyrosinase and insulin receptor a and b, resulting in defects in pigmentation and glucose homeostasis. Furthermore, we demonstrate temporal and tissue-specific mutagenesis using transgenic expression of Cas9. Heat-shock-inducible expression of cas9 allows temporal control of tyr mutagenesis. Liver-specific expression of cas9 disrupts insulin receptor a and b, causing fasting hypoglycemia and postprandial hyperglycemia. We also show that delivery of sgRNAs targeting ascl1a into the eye leads to impaired damage-induced photoreceptor regeneration. Our findings suggest that CRISPR/Cas9-based conditional mutagenesis in zebrafish is not only feasible but rapid and straightforward. PMID:25855067

  6. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear

    PubMed Central

    Corneveaux, Jason J.; Ohmen, Jeffrey; White, Cory; Allen, April N.; Lusis, Aldons J.; Van Camp, Guy; Huentelman, Matthew J.; Friedman, Rick A.

    2015-01-01

    The mammalian inner ear consists of the cochlea and the vestibular labyrinth (utricle, saccule, and semicircular canals), which participate in both hearing and balance. Proper development and life-long function of these structures involves a highly complex coordinated system of spatial and temporal gene expression. The characterization of the inner ear transcriptome is likely important for the functional study of auditory and vestibular components, yet, primarily due to tissue unavailability, detailed expression catalogues of the human inner ear remain largely incomplete. We report here, for the first time, comprehensive transcriptome characterization of the adult human cochlea, ampulla, saccule and utricle of the vestibule obtained from patients without hearing abnormalities. Using RNA-Seq, we measured the expression of >50,000 predicted genes corresponding to approximately 200,000 transcripts, in the adult inner ear and compared it to 32 other human tissues. First, we identified genes preferentially expressed in the inner ear, and unique either to the vestibule or cochlea. Next, we examined expression levels of specific groups of potentially interesting RNAs, such as genes implicated in hearing loss, long non-coding RNAs, pseudogenes and transcripts subject to nonsense mediated decay (NMD). We uncover the spatial specificity of expression of these RNAs in the hearing/balance system, and reveal evidence of tissue specific NMD. Lastly, we investigated the non-syndromic deafness loci to which no gene has been mapped, and narrow the list of potential candidates for each locus. These data represent the first high-resolution transcriptome catalogue of the adult human inner ear. A comprehensive identification of coding and non-coding RNAs in the inner ear will enable pathways of auditory and vestibular function to be further defined in the study of hearing and balance. Expression data are freely accessible at https://www.tgen.org/home/research/research-divisions/neurogenomics/supplementary-data/inner-ear-transcriptome.aspx PMID:26341477

  7. Genetic dissection of TrkB activated signalling pathways required for specific aspects of the taste system

    PubMed Central

    2014-01-01

    Background Neurotrophin-4 (NT-4) and brain derived neurotrophic factor (BDNF) bind to the same receptor, Ntrk2/TrkB, but play distinct roles in the development of the rodent gustatory system. However, the mechanisms underlying these processes are lacking. Results Here, we demonstrate, in vivo, that single or combined point mutations in major adaptor protein docking sites on TrkB receptor affect specific aspects of the mouse gustatory development, known to be dependent on BDNF or NT-4. In particular, mice with a mutation in the TrkB-SHC docking site had reduced gustatory neuron survival at both early and later stages of development, when survival is dependent on NT-4 and BDNF, respectively. In addition, lingual innervation and taste bud morphology, both BDNF-dependent functions, were altered in these mutants. In contrast, mutation of the TrkB-PLCγ docking site alone did not affect gustatory neuron survival. Moreover, innervation to the tongue was delayed in these mutants and taste receptor expression was altered. Conclusions We have genetically dissected pathways activated downstream of the TrkB receptor that are required for specific aspects of the taste system controlled by the two neurotrophins NT-4 and BDNF. In addition, our results indicate that TrkB also regulate the expression of specific taste receptors by distinct signalling pathways. These results advance our knowledge of the biology of the taste system, one of the fundamental sensory systems crucial for an organism to relate to the environment. PMID:25256039

  8. DREW-UCLA Breast Cancer Research and Training Program: Molecular/Cellular Pathogenesis Model

    DTIC Science & Technology

    2007-03-01

    system in bovine renal brush- border [13] and in a bovine renal epithelial cell line NBL -1 [14]. In order to highlight the substrate difference with an... NBL -1 expresses a broad specificity Na(+)-dependent neu- tral amino acid transport system (System B0) similar to that in bovine renal brush border

  9. Hyaluronic Acid-Based pH-Sensitive Polymer-Modified Liposomes for Cell-Specific Intracellular Drug Delivery Systems.

    PubMed

    Miyazaki, Maiko; Yuba, Eiji; Hayashi, Hiroshi; Harada, Atsushi; Kono, Kenji

    2018-01-17

    For the enhancement of therapeutic effects and reduction of side effects derived from anticancer drugs in cancer chemotherapy, it is imperative to develop drug delivery systems with cancer-specificity and controlled release function inside cancer cells. pH-sensitive liposomes are useful as an intracellular drug delivery system because of their abilities to transfer their contents into the cell interior through fusion or destabilization of endosome, which has weakly acidic environment. We earlier reported liposomes modified with various types of pH-sensitive polymers based on synthetic polymers and biopolymers as vehicles for intracellular drug delivery systems. In this study, hyaluronic acid (HA)-based pH-sensitive polymers were designed as multifunctional polymers having not only pH-sensitivity but also targeting properties to cells expressing CD44, which is known as a cancer cell surface marker. Carboxyl group-introduced HA derivatives of two types, MGlu-HA and CHex-HA, which have a more hydrophobic side chain structure than that of MGlu-HA, were synthesized by reaction with various dicarboxylic anhydrides. These polymer-modified liposomes were stable at neutral pH, but showed content release under weakly acidic conditions. CHex-HA-modified liposomes delivered their contents into CD44-expressing cells more efficiently than HA-modified or MGlu-HA-modified liposomes or unmodified liposomes, whereas the same liposomes were taken up only slightly by cells expressing CD44 proteins less. Competition assay using free HA or other polymers revealed that HA derivative-modified liposomes might be recognized by CD44. Therefore, HA-derivative-modified liposomes are useful as cell-specific intracellular drug delivery systems.

  10. The role of Sox6 in zebrafish muscle fiber type specification.

    PubMed

    Jackson, Harriet E; Ono, Yosuke; Wang, Xingang; Elworthy, Stone; Cunliffe, Vincent T; Ingham, Philip W

    2015-01-01

    The transcription factor Sox6 has been implicated in regulating muscle fiber type-specific gene expression in mammals. In zebrafish, loss of function of the transcription factor Prdm1a results in a slow to fast-twitch fiber type transformation presaged by ectopic expression of sox6 in slow-twitch progenitors. Morpholino-mediated Sox6 knockdown can suppress this transformation but causes ectopic expression of only one of three slow-twitch specific genes assayed. Here, we use gain and loss of function analysis to analyse further the role of Sox6 in zebrafish muscle fiber type specification. The GAL4 binary misexpression system was used to express Sox6 ectopically in zebrafish embryos. Cis-regulatory elements were characterized using transgenic fish. Zinc finger nuclease mediated targeted mutagenesis was used to analyse the effects of loss of Sox6 function in embryonic, larval and adult zebrafish. Zebrafish transgenic for the GCaMP3 Calcium reporter were used to assay Ca2+ transients in wild-type and mutant muscle fibres. Ectopic Sox6 expression is sufficient to downregulate slow-twitch specific gene expression in zebrafish embryos. Cis-regulatory elements upstream of the slow myosin heavy chain 1 (smyhc1) and slow troponin c (tnnc1b) genes contain putative Sox6 binding sites required for repression of the former but not the latter. Embryos homozygous for sox6 null alleles expressed tnnc1b throughout the fast-twitch muscle whereas other slow-specific muscle genes, including smyhc1, were expressed ectopically in only a subset of fast-twitch fibers. Ca2+ transients in sox6 mutant fast-twitch fibers were intermediate in their speed and amplitude between those of wild-type slow- and fast-twitch fibers. sox6 homozygotes survived to adulthood and exhibited continued misexpression of tnnc1b as well as smaller slow-twitch fibers. They also exhibited a striking curvature of the spine. The Sox6 transcription factor is a key regulator of fast-twitch muscle fiber differentiation in the zebrafish, a role similar to that ascribed to its murine ortholog.

  11. High-yield expression of recombinant soybean agglutinin in plants using transient and stable systems.

    PubMed

    Tremblay, Reynald; Feng, Mary; Menassa, Rima; Huner, Norman P A; Jevnikar, Anthony M; Ma, Shengwu

    2011-04-01

    Soybean agglutinin (SBA) is a specific N-acetylgalactosamine-binding plant lectin that can agglutinate a wide variety of cells. SBA has great potential for medical and biotechnology-focused applications, including screening and treatment of breast cancer, isolation of fetal cells from maternal blood for genetic screening, the possibility as a carrier system for oral drug delivery, and utilization as an affinity tag for high-quality purification of tagged proteins. The success of these applications, to a large degree, critically depends on the development of a highly efficient expression system for a source of recombinant SBA (rSBA). Here, we demonstrate the utility of transient and stable expression systems in Nicotiana benthamiana and potato, respectively, for the production of rSBA, with the transgenic protein accumulated to 4% of total soluble protein (TSP) in Nicotiana benthamiana leaves and 0.3% of TSP in potato tubers. Furthermore, we show that both plant-derived rSBAs retain their ability to induce the agglutination of red blood cells, are similarly glycosylated when compared with native SBA, retained their binding specificity for N-acetylgalactosamine, and were highly resistant to degradation in simulated gastric and intestinal fluids. Affinity column purification using N-acetylgalactosamine as a specific ligand resulted in high recovery and purity of rSBA. This work is the first step toward use of rSBA for various new applications, including the development of rSBA as a novel affinity tag for simplified purification of tagged proteins and as a new carrier molecule for delivery of oral drugs.

  12. A Dual Luciferase Reporter System for B. burgdorferi Measures Transcriptional Activity during Tick-Pathogen Interactions

    PubMed Central

    Adams, Philip P.; Flores Avile, Carlos; Jewett, Mollie W.

    2017-01-01

    Knowledge of the transcriptional responses of vector-borne pathogens at the vector-pathogen interface is critical for understanding disease transmission. Borrelia (Borreliella) burgdorferi, the causative agent of Lyme disease in the United States, is transmitted by the bite of infected Ixodes sp. ticks. It is known that B. burgdorferi has altered patterns of gene expression during tick acquisition, persistence and transmission. Recently, we and others have discovered in vitro expression of RNAs found internal, overlapping, and antisense to annotated open reading frames in the B. burgdorferi genome. However, there is a lack of molecular genetic tools for B. burgdorferi for quantitative, strand-specific, comparative analysis of these transcripts in distinct environments such as the arthropod vector. To address this need, we have developed a dual luciferase reporter system to quantify B. burgdorferi promoter activities in a strand-specific manner. We demonstrate that constitutive expression of a B. burgdorferi codon-optimized Renilla reniformis luciferase gene (rlucBb) allows normalization of the activity of a promoter of interest when fused to the B. burgdorferi codon-optimized Photinus pyralis luciferase gene (flucBb) on the same plasmid. Using the well characterized, differentially regulated, promoters for flagellin (flaBp), outer surface protein A (ospAp) and outer surface protein C (ospCp), we document the efficacy of the dual luciferase system for quantitation of promoter activities during in vitro growth and in infected ticks. Cumulatively, the dual luciferase method outlined herein is the first dual reporter system for B. burgdorferi, providing a novel and highly versatile approach for strand-specific molecular genetic analyses. PMID:28620587

  13. A Dual Luciferase Reporter System for B. burgdorferi Measures Transcriptional Activity during Tick-Pathogen Interactions.

    PubMed

    Adams, Philip P; Flores Avile, Carlos; Jewett, Mollie W

    2017-01-01

    Knowledge of the transcriptional responses of vector-borne pathogens at the vector-pathogen interface is critical for understanding disease transmission. Borrelia ( Borreliella ) burgdorferi , the causative agent of Lyme disease in the United States, is transmitted by the bite of infected Ixodes sp . ticks. It is known that B. burgdorferi has altered patterns of gene expression during tick acquisition, persistence and transmission. Recently, we and others have discovered in vitro expression of RNAs found internal, overlapping, and antisense to annotated open reading frames in the B. burgdorferi genome. However, there is a lack of molecular genetic tools for B. burgdorferi for quantitative, strand-specific, comparative analysis of these transcripts in distinct environments such as the arthropod vector. To address this need, we have developed a dual luciferase reporter system to quantify B. burgdorferi promoter activities in a strand-specific manner. We demonstrate that constitutive expression of a B. burgdorferi codon-optimized Renilla reniformis luciferase gene ( rluc Bb ) allows normalization of the activity of a promoter of interest when fused to the B. burgdorferi codon-optimized Photinus pyralis luciferase gene ( fluc Bb ) on the same plasmid. Using the well characterized, differentially regulated, promoters for flagellin ( flaBp ), outer surface protein A ( ospAp ) and outer surface protein C ( ospCp ), we document the efficacy of the dual luciferase system for quantitation of promoter activities during in vitro growth and in infected ticks. Cumulatively, the dual luciferase method outlined herein is the first dual reporter system for B. burgdorferi , providing a novel and highly versatile approach for strand-specific molecular genetic analyses.

  14. Two-Stage, In Silico Deconvolution of the Lymphocyte Compartment of the Peripheral Whole Blood Transcriptome in the Context of Acute Kidney Allograft Rejection

    PubMed Central

    Shannon, Casey P.; Balshaw, Robert; Ng, Raymond T.; Wilson-McManus, Janet E.; Keown, Paul; McMaster, Robert; McManus, Bruce M.; Landsberg, David; Isbel, Nicole M.; Knoll, Greg; Tebbutt, Scott J.

    2014-01-01

    Acute rejection is a major complication of solid organ transplantation that prevents the long-term assimilation of the allograft. Various populations of lymphocytes are principal mediators of this process, infiltrating graft tissues and driving cell-mediated cytotoxicity. Understanding the lymphocyte-specific biology associated with rejection is therefore critical. Measuring genome-wide changes in transcript abundance in peripheral whole blood cells can deliver a comprehensive view of the status of the immune system. The heterogeneous nature of the tissue significantly affects the sensitivity and interpretability of traditional analyses, however. Experimental separation of cell types is an obvious solution, but is often impractical and, more worrying, may affect expression, leading to spurious results. Statistical deconvolution of the cell type-specific signal is an attractive alternative, but existing approaches still present some challenges, particularly in a clinical research setting. Obtaining time-matched sample composition to biologically interesting, phenotypically homogeneous cell sub-populations is costly and adds significant complexity to study design. We used a two-stage, in silico deconvolution approach that first predicts sample composition to biologically meaningful and homogeneous leukocyte sub-populations, and then performs cell type-specific differential expression analysis in these same sub-populations, from peripheral whole blood expression data. We applied this approach to a peripheral whole blood expression study of kidney allograft rejection. The patterns of differential composition uncovered are consistent with previous studies carried out using flow cytometry and provide a relevant biological context when interpreting cell type-specific differential expression results. We identified cell type-specific differential expression in a variety of leukocyte sub-populations at the time of rejection. The tissue-specificity of these differentially expressed probe-set lists is consistent with the originating tissue and their functional enrichment consistent with allograft rejection. Finally, we demonstrate that the strategy described here can be used to derive useful hypotheses by validating a cell type-specific ratio in an independent cohort using the nanoString nCounter assay. PMID:24733377

  15. Absolute gene expression patterns of thioredoxin and glutaredoxin redox systems in mouse.

    PubMed

    Jurado, Juan; Prieto-Alamo, María-José; Madrid-Rísquez, José; Pueyo, Carmen

    2003-11-14

    This work provides the first absolute expression patterns of genes coding for all known components of both thioredoxin (Trx) and glutaredoxin (Grx) systems in mouse: Trx1, Trx2, Grx1, Grx2, TrxR1, TrxR2, thioredoxin/glutathione reductase, and glutathione reductase. We devised a novel assay that, combining the advantages of multiplex and real-time PCR, streamlines the quantitation of the actual mRNA copy numbers in whole-animal experiments. Quantitations reported establish differences among adult organs and embryonic stages, compare mRNA decay rates, explore the significance of alternative mRNA isoforms derived from TrxR1 and Grx2 genes, and examine the time-course expression upon superoxide stress promoted by paraquat. Collectively, these quantitations show: i) unique expression profiles for each transcript and mouse organ examined, yet with some general trends like the higher amounts of mRNA species coding for thioredoxins than those coding for the reductases that control their redox states and activities; ii) continuous expression during embryogenesis with outstanding up-regulations of Trx1 and TrxR1 mRNAs in specific temporal sequences; iii) drastic differences in mRNA stability, liver decay rates range from 2.8 h (thioredoxin/glutathione reductase) to >/= 35 h (Trx1 and Trx2), and directly correlate with mRNA steady-state values; iv) testis-specific differences in the amounts (relative to total isoforms) of transcripts yielding the mitochondrial Grx2a and 67-kDa TrxR1 variants; and v) coordinated up-regulation of TrxR1 and glutathione reductase mRNAs in response to superoxide stress in an organ-specific manner. Further insights into in vivo roles of these redox systems should be gained from more focused studies of the mechanisms underlying the vast differences reported here at the transcript level.

  16. Theory and design of interferometric synthetic aperture radars

    NASA Technical Reports Server (NTRS)

    Rodriguez, E.; Martin, J. M.

    1992-01-01

    A derivation of the signal statistics, an optimal estimator of the interferometric phase, and the expression necessary to calculate the height-error budget are presented. These expressions are used to derive methods of optimizing the parameters of the interferometric synthetic aperture radar system (InSAR), and are then employed in a specific design example for a system to perform high-resolution global topographic mapping with a one-year mission lifetime, subject to current technological constraints. A Monte Carlo simulation of this InSAR system is performed to evaluate its performance for realistic topography. The results indicate that this system has the potential to satisfy the stringent accuracy and resolution requirements for geophysical use of global topographic data.

  17. The Role of the Transcription Factors MtrR and MtrA in the Fitness of the Pathogen Neisseria gonorrhoeae

    DTIC Science & Technology

    2007-10-19

    MacA -MacB efflux pump is expressed at very low levels in N. gonorrhoeae; however, experimental alteration of the promoter sequence showed that the...specificity (132). The gonococcus expresses four efflux pump systems, namely MtrC-Mtr-D-MtrE (64), FarA-FarB-MtrE (97), NorM (158), and MacA -MacB (161...2005. Characterization of the MacA -MacB efflux system in Neisseria gonorrhoeae. The Journal of antimicrobial chemotherapy 56:856-860. 162. Rouquette, C

  18. Investigation of Seasonal and Latitudinal Effects on the Expression of Clock Genes in Drosophila

    NASA Astrophysics Data System (ADS)

    Hosseini, Seyede Sanaz; Nazarimehr, Fahimeh; Jafari, Sajad

    The primary goal in this work is to develop a dynamical model capturing the influence of seasonal and latitudinal variations on the expression of Drosophila clock genes. To this end, we study a specific dynamical system with strange attractors that exhibit changes of Drosophila activity in a range of latitudes and across different seasons. Bifurcations of this system are analyzed to peruse the effect of season and latitude on the behavior of clock genes. Existing experimental data collected from the activity of Drosophila melanogaster corroborate the dynamical model.

  19. A tetracycline expression system in combination with Sox9 for cartilage tissue engineering.

    PubMed

    Yao, Yi; He, Yu; Guan, Qian; Wu, Qiong

    2014-02-01

    Cartilage tissue engineering using controllable transcriptional therapy together with synthetic biopolymer scaffolds shows higher potential for overcoming chondrocyte degradation and constructing artificial cartilages both in vivo and in vitro. Here, the potential regulating tetracycline expression (Tet-on) system was used to express Sox9 both in vivo and in vitro. Chondrocyte degradation was measured in vitro and overcome by Soxf9 expression. Experiments confirmed the feasibility of the combined use of Sox9 and Tet-on system in cartilage tissue engineering. Engineered poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were seeded with recombinant chondrocytes which were transfected with Tet-induced Sox9 expression; the scaffolds were implanted under the skin of 8-week-old rats. The experimental group was injected with Dox in the abdomen, while the control group was injected with normal saline. After 4 or 8 days of implantation in vivo, the newly formed pieces of articular chondrocytes were taken out and measured. Dox injection in vivo showed positive effect on recombinant chondrocytes, in which Sox9 expression was up-regulated by an inducible system with specific matrix proteins. The results demonstrate this controllable transcriptional therapy is a potential approach for tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.

    PubMed

    Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa

    2018-05-08

    Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.

  1. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors

    PubMed Central

    Farroni, Jeffrey S; McCool, Brian A

    2004-01-01

    Background Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. Results While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The β-amino acid taurine possessed 30–50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for β-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Conclusions Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology. PMID:15301692

  2. Extrinsic factors regulate partial agonist efficacy of strychnine-sensitive glycine receptors.

    PubMed

    Farroni, Jeffrey S; McCool, Brian A

    2004-08-09

    Strychnine-sensitive glycine receptors in many adult forebrain regions consist of alpha2 + beta heteromeric channels. This subunit composition is distinct from the alpha1 + beta channels found throughout the adult spinal cord. Unfortunately, the pharmacology of forebrain alpha2beta receptors are poorly defined compared to 'neonatal' alpha2 homomeric channels or 'spinal' alpha1beta heteromers. In addition, the pharmacologic properties of native alpha2beta glycine receptors have been generally distinct from receptors produced by heterologous expression. To identify subtype-specific pharmacologic tools for the forebrain alpha2beta receptors, it is important to identify a heterologous expression system that closely resembles these native glycine-gated chloride channels. While exploring pharmacological properties of alpha2beta glycine receptors compared to alpha2-homomers, we found that distinct heterologous expression systems appeared to differentially influence partial agonist pharmacology. The beta-amino acid taurine possessed 30-50% efficacy for alpha2-containing receptor isoforms when expressed in HEK 293 cells. However, taurine efficacy was dramatically reduced in L-cell fibroblasts. Similar results were obtained for beta-alanine. The efficacy of these partial agonists was also strongly reduced by the beta subunit. There were no significant differences in apparent strychnine affinity values calculated from concentration-response data between expression systems or subunit combinations. Nor did relative levels of expression correlate with partial agonist efficacy when compared within or between several different expression systems. Finally, disruption of the tubulin cytoskeleton reduced the efficacy of partial agonists in a subunit-dependent, but system-independent, fashion. Our results suggest that different heterologous expression systems can dramatically influence the agonist pharmacology of strychnine-sensitive glycine receptors. In the systems examine here, these effects are independent of both absolute expression level and any system-related alterations in the agonist binding site. We conclude that complex interactions between receptor composition and extrinsic factors may play a significant role in determining strychnine-sensitive glycine receptor partial agonist pharmacology.

  3. AMTEC radioisotope power system design and analysis for Pluto Express Fly-By

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.; Sievers, R.K.

    1997-12-31

    The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS producesmore » 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.« less

  4. Positive Bioluminescence Imaging of MicroRNA Expression in Small Animal Models Using an Engineered Genetic-Switch Expression System, RILES.

    PubMed

    Baril, Patrick; Pichon, Chantal

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs which regulate gene expression by directing their target mRNA for degradation or translational repression. Since their discovery in the early 1990s, miRNAs have emerged as key components in the posttranscriptional regulation of gene networks, shaping many biological processes from development, morphogenesis, differentiation, proliferation and apoptosis. Although understanding of the molecular basis of miRNA biology is improving, methods to monitor the dynamic and the spatiotemporal aspects of miRNA expression under physiopathological conditions are required. However, monitoring of miRNAs is difficult due to their small size, low abundance, high degree of sequence similarity, and their dynamic expression pattern which is subjected to tight transcriptional and post-transcriptional controls. Recently, we developed a miRNA monitoring system called RILES, standing for RNAi-inducible expression system, which relies on an engineered regulatable expression system, to switch on the expression of the luciferase gene when the targeted miRNA is expressed in cells. We demonstrated that RILES is a specific, sensitive, and robust method to determine the fine-tuning of miRNA expression during the development of an experimental pathological process in mice. Because RILES offers the possibility for longitudinal studies on individual subjects, sharper insights into miRNA regulation can be generated, with applications in physiology, pathophysiology and development of RNAi-based therapies. This chapter describes methods and protocols to monitor the expression of myomiR-206, -1, and -133 in the tibialis anterior muscle of mice. These protocols can be used and adapted to monitor the expression of other miRNAs in other biological processes.

  5. Shoot Na+ Exclusion and Increased Salinity Tolerance Engineered by Cell Type–Specific Alteration of Na+ Transport in Arabidopsis[W][OA

    PubMed Central

    Møller, Inge S.; Gilliham, Matthew; Jha, Deepa; Mayo, Gwenda M.; Roy, Stuart J.; Coates, Juliet C.; Haseloff, Jim; Tester, Mark

    2009-01-01

    Soil salinity affects large areas of cultivated land, causing significant reductions in crop yield globally. The Na+ toxicity of many crop plants is correlated with overaccumulation of Na+ in the shoot. We have previously suggested that the engineering of Na+ exclusion from the shoot could be achieved through an alteration of plasma membrane Na+ transport processes in the root, if these alterations were cell type specific. Here, it is shown that expression of the Na+ transporter HKT1;1 in the mature root stele of Arabidopsis thaliana decreases Na+ accumulation in the shoot by 37 to 64%. The expression of HKT1;1 specifically in the mature root stele is achieved using an enhancer trap expression system for specific and strong overexpression. The effect in the shoot is caused by the increased influx, mediated by HKT1;1, of Na+ into stelar root cells, which is demonstrated in planta and leads to a reduction of root-to-shoot transfer of Na+. Plants with reduced shoot Na+ also have increased salinity tolerance. By contrast, plants constitutively expressing HKT1;1 driven by the cauliflower mosaic virus 35S promoter accumulated high shoot Na+ and grew poorly. Our results demonstrate that the modification of a specific Na+ transport process in specific cell types can reduce shoot Na+ accumulation, an important component of salinity tolerance of many higher plants. PMID:19584143

  6. Identification of mediator complex 26 (Crsp7) gametologs on platypus X1 and Y5 sex chromosomes: a candidate testis-determining gene in monotremes?

    PubMed

    Tsend-Ayush, Enkhjargal; Kortschak, R Daniel; Bernard, Pascal; Lim, Shu Ly; Ryan, Janelle; Rosenkranz, Ruben; Borodina, Tatiana; Dohm, Juliane C; Himmelbauer, Heinz; Harley, Vincent R; Grützner, Frank

    2012-01-01

    The basal lineage of monotremes features an extraordinarily complex sex chromosome system which has provided novel insights into the evolution of mammalian sex chromosomes. Recently, sequence information from autosomes, X chromosomes, and XY-shared pseudoautosomal regions has become available. However, no gene has so far been described on any of the Y chromosome-specific regions. We analyzed sequences derived from Y-specific BAC clones to identify genes with potentially male-specific function. Here, we report the identification and characterization of the mediator complex protein gametologs on platypus Y5 (Crspy). We also identified the X-chromosomal copy which unexpectedly maps to X1 (Crspx). Sequence comparison shows extensive divergence between the X and Y copy, but we found no significant positive selection on either gametolog. Expression analysis shows widespread expression of Crspx. Crspy is expressed exclusively in males with particularly strong expression in testis and kidney. Reporter gene assays to investigate whether Crspx/y can act on the recently discovered mouse Sox9 testis-specific enhancer element did reveal a modest effect together with mouse Sox9 + Sf1, but showed overall no significant upregulation of the reporter gene. This is the first report of a differentiated functional male-specific gene on platypus Y chromosomes, providing new insights into sex chromosome evolution and a candidate gene for male-specific function in monotremes.

  7. The reciprocal relationship between heme oxygenase and nitric oxide synthase in the organs of lipopolysaccharide-treated rodents.

    PubMed

    Furuichi, Masayuki; Yokozuka, Motoi; Takemori, Ken; Yamanashi, Yoshitaka; Sakamoto, Atsuhiro

    2009-08-01

    The production of nitric oxide (NO) by inducible NO synthase (NOS) and carbon monoxide (CO) by inducible heme oxygenase (HO) contributes greatly to endotoxemia. Reciprocal relationships have been proposed between the NO/NOS and CO/HO systems. However, the interaction between these systems during endotoxemia is unclear, and it is unknown whether the interactive behavior differs among organs. Using endotoxic rats, we studied the effects of the inducible NOS (iNOS) inhibitor L-canavanine (CAN), and the HO inhibitor zinc protoporphyrin (ZPP) on gene expression and protein levels of iNOS, endothelial NOS (eNOS), inducible HO (HO-1), and constitutive HO (HO-2) in the brain, lung, heart, liver and kidney tissue. Intravenous injection of LPS significantly increased iNOS and HO-1 gene expression in all organs. The effects of LPS on eNOS gene expression differed among organs, with increased expression in the liver and kidney, and no change in the lung, brain and heart. ZPP administration down-regulated the LPS-induced increase in HO-1 expression and produced a further increase in iNOS expression in all organs. These data suggest that the CO/HO system modifies the NO/NOS system in endotoxic organs, and that there were only minor organ-specific behaviors in terms of the relationship between these systems in the organs examined.

  8. A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron.

    PubMed

    Horn, Nikki; Carvalho, Ana L; Overweg, Karin; Wegmann, Udo; Carding, Simon R; Stentz, Régis

    2016-01-01

    There is considerable interest in studying the function of Bacteroides species resident in the human gastrointestinal (GI)-tract and the contribution they make to host health. Reverse genetics and protein expression techniques, such as those developed for well-characterized Escherichia coli cannot be applied to Bacteroides species as they and other members of the Bacteriodetes phylum have unique promoter structures. The availability of useful Bacteroides-specific genetic tools is therefore limited. Here we describe the development of an effective mannan-controlled gene expression system for Bacteroides thetaiotaomicron containing the mannan-inducible promoter-region of an α-1,2-mannosidase gene (BT_3784), a ribosomal binding site designed to modulate expression, a multiple cloning site to facilitate the cloning of genes of interest, and a transcriptional terminator. Using the Lactobacillus pepI as a reporter gene, mannan induction resulted in an increase of reporter activity in a time- and concentration-dependent manner with a wide range of activity. The endogenous BtcepA cephalosporinase gene was used to demonstrate the suitability of this novel expression system, enabling the isolation of a His-tagged version of BtCepA. We have also shown with experiments performed in mice that the system can be induced in vivo in the presence of an exogenous source of mannan. By enabling the controlled expression of endogenous and exogenous genes in B. thetaiotaomicron this novel inducer-dependent expression system will aid in defining the physiological role of individual genes and the functional analyses of their products.

  9. The DinJ/RelE toxin-antitoxin system suppresses virulence in Xylella fastidiosa

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa, the causal agent of a number agriculturally important plant diseases, encodes multiple toxin-antitoxin (TA) systems. TA modules consist of a toxin protein co-expressed with a specific antitoxin, and are often acquired through horizontal gene transfer. Antitoxin molecules (RNA or ...

  10. Generation of Recombinant Porcine Parvovirus Virus-Like Particles in Saccharomyces cerevisiae and Development of Virus-Specific Monoclonal Antibodies

    PubMed Central

    Tamošiūnas, Paulius Lukas; Petraitytė-Burneikienė, Rasa; Lasickienė, Rita; Sereika, Vilimas; Lelešius, Raimundas; Žvirblienė, Aurelija; Sasnauskas, Kęstutis

    2014-01-01

    Porcine parvovirus (PPV) is a widespread infectious virus that causes serious reproductive diseases of swine and death of piglets. The gene coding for the major capsid protein VP2 of PPV was amplified using viral nucleic acid extract from swine serum and inserted into yeast Saccharomyces cerevisiae expression plasmid. Recombinant PPV VP2 protein was efficiently expressed in yeast and purified using density gradient centrifugation. Electron microscopy analysis of purified PPV VP2 protein revealed the self-assembly of virus-like particles (VLPs). Nine monoclonal antibodies (MAbs) against the recombinant PPV VP2 protein were generated. The specificity of the newly generated MAbs was proven by immunofluorescence analysis of PPV-infected cells. Indirect IgG ELISA based on the recombinant VLPs for detection of PPV-specific antibodies in swine sera was developed and evaluated. The sensitivity and specificity of the new assay were found to be 93.4% and 97.4%, respectively. In conclusion, yeast S. cerevisiae represents a promising expression system for generating recombinant PPV VP2 protein VLPs of diagnostic relevance. PMID:25045718

  11. A Functional Genomic Meta-Analysis of Clinical Trials in Systemic Sclerosis: Toward Precision Medicine and Combination Therapy.

    PubMed

    Taroni, Jaclyn N; Martyanov, Viktor; Mahoney, J Matthew; Whitfield, Michael L

    2017-05-01

    Systemic sclerosis is an orphan, systemic autoimmune disease with no FDA-approved treatments. Its heterogeneity and rarity often result in underpowered clinical trials making the analysis and interpretation of associated molecular data challenging. We performed a meta-analysis of gene expression data from skin biopsies of patients with systemic sclerosis treated with five therapies: mycophenolate mofetil, rituximab, abatacept, nilotinib, and fresolimumab. A common clinical improvement criterion of -20% or -5 modified Rodnan skin score was applied to each study. We applied a machine learning approach that captured features beyond differential expression and was better at identifying targets of therapies than the differential expression alone. Regardless of treatment mechanism, abrogation of inflammatory pathways accompanied clinical improvement in multiple studies suggesting that high expression of immune-related genes indicates active and targetable disease. Our framework allowed us to compare different trials and ask if patients who failed one therapy would likely improve on a different therapy, based on changes in gene expression. Genes with high expression at baseline in fresolimumab nonimprovers were downregulated in mycophenolate mofetil improvers, suggesting that immunomodulatory or combination therapy may have benefitted these patients. This approach can be broadly applied to increase tissue specificity and sensitivity of differential expression results. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response.

    PubMed

    Sandhu, J S; Krasnyanski, S F; Domier, L L; Korban, S S; Osadjan, M D; Buetow, D E

    2000-04-01

    Respiratory syncytial virus (RSV) is one of the most important pathogens of infancy and early childhood. Here a fruit-based edible subunit vaccine against RSV was developed by expressing the RSV fusion (F) protein gene in transgenic tomato plants. The F-gene was expressed in ripening tomato fruit under the control of the fruit-specific E8 promoter. Oral immunization of mice with ripe transgenic tomato fruits led to the induction of both serum and mucosal RSV-F specific antibodies. The ratio of immunoglobulin subclasses produced in response to immunization suggested that a type 1 T-helper cell immune response was preferentially induced. Serum antibodies showed an increased titer when the immunized mice were exposed to inactivated RSV antigen.

  13. Tissue-Specific Regulation of Chromatin Insulator Function

    PubMed Central

    Matzat, Leah H.; Dale, Ryan K.; Moshkovich, Nellie; Lei, Elissa P.

    2012-01-01

    Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type–specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP–seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator. PMID:23209434

  14. Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells

    PubMed Central

    Singh, Harjeet; Figliola, Matthew J.; Dawson, Margaret J.; Olivares, Simon; Zhang, Ling; Yang, Ge; Maiti, Sourindra; Manuri, Pallavi; Senyukov, Vladimir; Jena, Bipulendu; Kebriaei, Partow; Champlin, Richard E.; Huls, Helen; Cooper, Laurence J. N.

    2013-01-01

    Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼1010 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion. PMID:23741305

  15. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    NASA Technical Reports Server (NTRS)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as upstream targets for the effects of weightlessness. In the past year we have determined that the expression of E Proteins is restricted to specific fiber types by post-transcriptional mechanisms. By far, the most prevalent mechanism of cellular control for achieving post-transcriptional regulation of gene expression is selective proteolysis -through the ubiquitin -proteasome pathway. Steady-state levels of HEB message are similar in all fast and slow skeletal muscle fiber types, yet the protein is restricted to Type IIX fibers. HEB appears to be a nodal point for regulating fiber-specific transcription, as expression of the transcription factor is regulated at the post-transcriptional level. It is not clear at present whether the regulation is at the level of protein synthesis or degradation. We are now poised to evaluate the biological role of ubiquitination in fiber specific-gene expression by controlling the post-transcriptional expression of E Proteins. The use of metabolic labelling and pharmacological inhibitors of the ubiquitin pathway will be used to identify the mode of regulation of the Type IIX expression pattern. The potential role of specific kinases in effecting the restriction of HEB expression will be examined by using both inhibitors and activators. The results of these studies will provide the necessary information to evaluate the biological role of E proteins in controlling fiber type transitions, and in potentially attenuating the atrophic effects of microgravity conditions. We have also recently shown that ectopic expression of the HEB protein transactivates the Type IIX-specific skeletal a-actin reporter. The 218 bp skeletal a-actin promoter drives transgene expression solely in mature Type IIX fibers. A mouse also carrying the transgene MLCI/HEB (which ectopically expresses the E Protein HEB in Type IIB fibers) forces expression of the skeletal a-actin reporter gene in Type IIB fibers. We can now dissect the composition of this fiber-specific cis-element. The skeletal a-actin promoter is quite compact and has been extensively characterized in vitro for activity and binding factors. The single E box may act as a binding target of myogenic factor/HEB heterodimer to allow for IIX expression. The HEB transcription factor may recognize either the precise flanking sequences of the E Box, or perhaps interacting with other proteins bound nearby, and activating expression in Type IIX fibers. This E box will be both ablated, and alternatively, as ablation may well destroy any muscle-specific transcriptional activity, flanking sequences substituted with those surrounding the E box (El) of the myogenin promoter. Modification of fiber-specific transgene expression will be tested in transgenic mice. The results of these studies will provide basic information on the regulatory circuitry underlying fiber specificity, and will form the basis for building appropriate transgenic regulatory cassettes to effect fiber transitions in subsequent experimental manipulations on unweighted muscles.

  16. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons.

    PubMed

    Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti

    2017-02-14

    Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.

  17. Directed Neural Differentiation of Mouse Embryonic Stem Cells Is a Sensitive System for the Identification of Novel Hox Gene Effectors

    PubMed Central

    Bami, Myrto; Episkopou, Vasso; Gavalas, Anthony; Gouti, Mina

    2011-01-01

    The evolutionarily conserved Hox family of homeodomain transcription factors plays fundamental roles in regulating cell specification along the anterior posterior axis during development of all bilaterian animals by controlling cell fate choices in a highly localized, extracellular signal and cell context dependent manner. Some studies have established downstream target genes in specific systems but their identification is insufficient to explain either the ability of Hox genes to direct homeotic transformations or the breadth of their patterning potential. To begin delineating Hox gene function in neural development we used a mouse ES cell based system that combines efficient neural differentiation with inducible Hoxb1 expression. Gene expression profiling suggested that Hoxb1 acted as both activator and repressor in the short term but predominantly as a repressor in the long run. Activated and repressed genes segregated in distinct processes suggesting that, in the context examined, Hoxb1 blocked differentiation while activating genes related to early developmental processes, wnt and cell surface receptor linked signal transduction and cell-to-cell communication. To further elucidate aspects of Hoxb1 function we used loss and gain of function approaches in the mouse and chick embryos. We show that Hoxb1 acts as an activator to establish the full expression domain of CRABPI and II in rhombomere 4 and as a repressor to restrict expression of Lhx5 and Lhx9. Thus the Hoxb1 patterning activity includes the regulation of the cellular response to retinoic acid and the delay of the expression of genes that commit cells to neural differentiation. The results of this study show that ES neural differentiation and inducible Hox gene expression can be used as a sensitive model system to systematically identify Hox novel target genes, delineate their interactions with signaling pathways in dictating cell fate and define the extent of functional overlap among different Hox genes. PMID:21637844

  18. Tailor-made fibroblast-specific and antibiotic-free interleukin 12 plasmid for gene electrotransfer-mediated cancer immunotherapy.

    PubMed

    Kamensek, Urska; Tesic, Natasa; Sersa, Gregor; Kos, Spela; Cemazar, Maja

    2017-01-01

    Electrotransfer mediated delivery of interleukin-12 (IL-12) gene, encoded on a plasmid vector, has already been demonstrated to have a potent antitumor efficacy and great potential for clinical application. In the present study, our aim was to construct an optimized IL-12-encoding plasmid that is safe from the regulatory point of view. In light of previous studies demonstrating that IL-12 should be released in a tumor localized manner for optimal efficacy, the strong ubiquitous promoter was replaced with a weak endogenous promoter of the collagen 2 gene, which is specific for fibroblasts. Next, to comply with increasing regulatory demands for clinically used plasmids, the expression cassette was cloned in a plasmid lacking the antibiotic resistance gene. The constructed fibroblast-specific and antibiotic-free IL-12 plasmid was demonstrated to support low IL-12 expression after gene electrotransfer in selected cell lines. Furthermore, the removal of antibiotic resistance did not affect the plasmid expression profile and lowered its cytotoxicity. With optimal IL-12 expression and minimal transgene non-specific effects, i.e., low cytotoxicity, the constructed plasmid could be especially valuable for different modern immunological approaches to achieve localized boosting of the host's immune system. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FLmore » activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.« less

  20. LIN28A enhances the therapeutic potential of cultured neural stem cells in a Parkinson's disease model.

    PubMed

    Rhee, Yong-Hee; Kim, Tae-Ho; Jo, A-Young; Chang, Mi-Yoon; Park, Chang-Hwan; Kim, Sang-Mi; Song, Jae-Jin; Oh, Sang-Min; Yi, Sang-Hoon; Kim, Hyeon Ho; You, Bo-Hyun; Nam, Jin-Wu; Lee, Sang-Hun

    2016-10-01

    The original properties of tissue-specific stem cells, regardless of their tissue origins, are inevitably altered during in vitro culturing, lessening the clinical and research utility of stem cell cultures. Specifically, neural stem cells derived from the ventral midbrain lose their dopamine neurogenic potential, ventral midbrain-specific phenotypes, and repair capacity during in vitro cell expansion, all of which are critical concerns in using the cultured neural stem cells in therapeutic approaches for Parkinson's disease. In this study, we observed that the culture-dependent changes of neural stem cells derived from the ventral midbrain coincided with loss of RNA-binding protein LIN28A expression. When LIN28A expression was forced and sustained during neural stem cell expansion using an inducible expression-vector system, loss of dopamine neurogenic potential and midbrain phenotypes after long-term culturing was blocked. Furthermore, dopamine neurons that differentiated from neural stem cells exhibited remarkable survival and resistance against toxic insults. The observed effects were not due to a direct action of LIN28A on the differentiated dopamine neurons, but rather its action on precursor neural stem cells as exogene expression was switched off in the differentiating/differentiated cultures. Remarkable and reproducible behavioural recovery was shown in all Parkinson's disease rats grafted with neural stem cells expanded with LIN28A expression, along with extensive engraftment of dopamine neurons expressing mature neuronal and midbrain-specific markers. These findings suggest that LIN28A expression during stem cell expansion could be used to prepare therapeutically competent donor cells. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Role of heat shock protein Hsp25 in the response of the orofacial nuclei motor system to physiological stress

    NASA Technical Reports Server (NTRS)

    Murashov, A. K.; Talebian, S.; Wolgemuth, D. J.

    1998-01-01

    Although expression of the small heat shock protein family member Hsp25 has been previously observed in the central nervous system (CNS), both constitutively and upon induction, its function in the CNS remains far from clear. In the present study we have characterized the spatial pattern of expression of Hsp25 in the normal adult mouse brain as well as the changes in expression patterns induced by subjecting mice to experimental hyperthermia or hypoxia. Immunohistochemical analysis revealed a surprisingly restricted pattern of constitutive expression of Hsp25 in the brain, limited to the facial, trigeminal, ambiguus, hypoglossal and vagal motor nuclei of the brainstem. After hyperthermia or hypoxia treatment, significant increases in the levels of Hsp25 were observed in these same areas and also in fibers of the facial and trigeminal nerve tracts. Immunoblot analysis of protein lysates from brainstem also showed the same pattern of induction of Hsp25. Surprisingly, no other area in the brain showed expression of Hsp25, in either control or stressed animals. The highly restricted expression of Hsp25 implies that this protein may have a specific physiological role in the orofacial motor nuclei, which govern precise coordination between muscles of mastication and the pharynx, larynx, and face. Its rapid induction after stress further suggests that Hsp25 may serve as a specific molecular chaperone in the lower cholinergic motor neurons and along their fibers under conditions of stress or injury. Copyright 1998 Elsevier Science B.V.

  2. Heterologous expression of pathogen-specific genes ligA and ligB in the saprophyte Leptospira biflexa confers enhanced adhesion to cultured cells and fibronectin.

    PubMed

    Figueira, Cláudio Pereira; Croda, Julio; Choy, Henry A; Haake, David A; Reis, Mitermayer G; Ko, Albert I; Picardeau, Mathieu

    2011-06-09

    In comparison to other bacterial pathogens, our knowledge of the molecular basis of the pathogenesis of leptospirosis is extremely limited. An improved understanding of leptospiral pathogenetic mechanisms requires reliable tools for functional genetic analysis. Leptospiral immunoglobulin-like (Lig) proteins are surface proteins found in pathogenic Leptospira, but not in saprophytes. Here, we describe a system for heterologous expression of the Leptospira interrogans genes ligA and ligB in the saprophyte Leptospira biflexa serovar Patoc. The genes encoding LigA and LigB under the control of a constitutive spirochaetal promoter were inserted into the L. biflexa replicative plasmid. We were able to demonstrate expression and surface localization of LigA and LigB in L. biflexa. We found that the expression of the lig genes significantly enhanced the ability of transformed L. biflexa to adhere in vitro to extracellular matrix components and cultured cells, suggesting the involvement of Lig proteins in cell adhesion. This work reports a complete description of the system we have developed for heterologous expression of pathogen-specific proteins in the saprophytic L. biflexa. We show that expression of LigA and LigB proteins from the pathogen confers a virulence-associated phenotype on L. biflexa, namely adhesion to eukaryotic cells and fibronectin in vitro. This study indicates that L. biflexa can serve as a surrogate host to characterize the role of key virulence factors of the causative agent of leptospirosis.

  3. Gene transfer to brain using herpes simplex virus vectors.

    PubMed

    Glorioso, J C; Goins, W F; Meaney, C A; Fink, D J; DeLuca, N A

    1994-01-01

    Herpes simplex virus type 1 represents an ideal candidate for development as a vehicle for gene transfer to postmitotic neurons of the central nervous system. The natural biology of this virus makes it well suited for this purpose as it is capable of infecting a variety of neuronal cell types in the brain where the viral genome can persist indefinitely in a latent state. In latency, the viral lytic genes are transcriptionally silent and a unique set of latency-associated transcripts are expressed. Two impediments to using herpes simplex virus vectors must be overcome: (1) A noncytotoxic mutant virus backbone must be engineered, and (2) a suitable promoter-regulator that stably expresses foreign genes from the vector genome during latency must be constructed. Deletion of specific immediate early genes from the vector can render the virus nontoxic to neurons in culture and in vivo following stereotactic inoculation into specific regions of the brain. Because these viruses cannot replicate, they enter latency on infection of central nervous system neurons. A number of viral and cellular promoters have been tested for their ability to express genes during latency. Strong viral promoters and neurospecific promoters display transient activity. Although the promoter regions for the latency-associated transcripts are highly active in the peripheral nervous system, they show low-level but persistent activity in the brain. Experiments are in progress to exploit RNA polymerase III gene promoters or novel recombinant promoters capable of auto-inducing their own expression in order to increase gene expression during latency in brain neurons.

  4. Immunization with recombinantly expressed glycan antigens from Schistosoma mansoni induces glycan-specific antibodies against the parasite

    PubMed Central

    Prasanphanich, Nina Salinger; Luyai, Anthony E; Song, Xuezheng; Heimburg-Molinaro, Jamie; Mandalasi, Msano; Mickum, Megan; Smith, David F; Nyame, A Kwame; Cummings, Richard D

    2014-01-01

    Schistosomiasis caused by infection with parasitic helminths of Schistosoma spp. is a major global health problem due to inadequate treatment and lack of a vaccine. The immune response to schistosomes includes glycan antigens, which could be valuable diagnostic markers and vaccine targets. However, no precedent exists for how to design vaccines targeting eukaryotic glycoconjugates. The di- and tri-saccharide motifs LacdiNAc (GalNAcβ1,4GlcNAc; LDN) and fucosylated LacdiNAc (GalNAcβ1,4(Fucα1-3)GlcNAc; LDNF) are the basis for several important schistosome glycan antigens. They occur in monomeric form or as repeating units (poly-LDNF) and as part of a variety of different glycoconjugates. Because chemical synthesis and conjugation of such antigens is exceedingly difficult, we sought to develop a recombinant expression system for parasite glycans. We hypothesized that presentation of parasite glycans on the cell surface would induce glycan-specific antibodies. We generated Chinese hamster ovary (CHO) Lec8 cell lines expressing poly-LDN (L8-GT) and poly-LDNF (L8-GTFT) abundantly on their membrane glycoproteins. Sera from Schistosoma mansoni-infected mice were highly cross-reactive with the cells and with cell-surface N-glycans. Immunizing mice with L8-GT and L8-GTFT cells induced glycan-specific antibodies. The L8-GTFT cells induced a sustained booster response, with antibodies that bound to S. mansoni lysates and recapitulated the exquisite specificity of the anti-parasite response for particular presentations of LDNF antigen. In summary, this recombinant expression system promotes successful generation of antibodies to the glycans of S. mansoni, and it can be adapted to study the role of glycan antigens and anti-glycan immune responses in many other infections and pathologies. PMID:24727440

  5. Metazoan tRNA introns generate stable circular RNAs in vivo

    PubMed Central

    Lu, Zhipeng; Filonov, Grigory S.; Noto, John J.; Schmidt, Casey A.; Hatkevich, Talia L.; Wen, Ying; Jaffrey, Samie R.; Matera, A. Gregory

    2015-01-01

    We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating “designer” circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. PMID:26194134

  6. Behavioral Deficits and Subregion-Specific Suppression of LTP in Mice Expressing a Population of Mutant NMDA Receptors throughout the Hippocampus

    ERIC Educational Resources Information Center

    Chen, Philip E.; Errington, Michael L.; Kneussel, Matthias; Chen, Guiquan; Annala, Alexander J.; Rudhard, York H.; Rast, Georg F.; Specht, Christian G.; Tigaret, Cezar M.; Nassar, Mohammed A.; Morris, Richard G.M.; Bliss, Timothy V. P.; Schoepfer, Ralf

    2009-01-01

    The NMDA receptor (NMDAR) subunit GluN1 is an obligatory component of NMDARs without a known functional homolog and is expressed in almost every neuronal cell type. The NMDAR system is a coincidence detector with critical roles in spatial learning and synaptic plasticity. Its coincidence detection property is crucial for the induction of…

  7. Facial expressions as a model to test the role of the sensorimotor system in the visual perception of the actions.

    PubMed

    Mele, Sonia; Ghirardi, Valentina; Craighero, Laila

    2017-12-01

    A long-term debate concerns whether the sensorimotor coding carried out during transitive actions observation reflects the low-level movement implementation details or the movement goals. On the contrary, phonemes and emotional facial expressions are intransitive actions that do not fall into this debate. The investigation of phonemes discrimination has proven to be a good model to demonstrate that the sensorimotor system plays a role in understanding actions acoustically presented. In the present study, we adapted the experimental paradigms already used in phonemes discrimination during face posture manipulation, to the discrimination of emotional facial expressions. We submitted participants to a lower or to an upper face posture manipulation during the execution of a four alternative labelling task of pictures randomly taken from four morphed continua between two emotional facial expressions. The results showed that the implementation of low-level movement details influence the discrimination of ambiguous facial expressions differing for a specific involvement of those movement details. These findings indicate that facial expressions discrimination is a good model to test the role of the sensorimotor system in the perception of actions visually presented.

  8. Transient Expression and Cellular Localization of Recombinant Proteins in Cultured Insect Cells.

    PubMed

    Fabrick, Jeffrey A; Hull, J Joe

    2017-04-20

    Heterologous protein expression systems are used for the production of recombinant proteins, the interpretation of cellular trafficking/localization, and the determination of the biochemical function of proteins at the sub-organismal level. Although baculovirus expression systems are increasingly used for protein production in numerous biotechnological, pharmaceutical, and industrial applications, nonlytic systems that do not involve viral infection have clear benefits but are often overlooked and underutilized. Here, we describe a method for generating nonlytic expression vectors and transient recombinant protein expression. This protocol allows for the efficient cellular localization of recombinant proteins and can be used to rapidly discern protein trafficking within the cell. We show the expression of four recombinant proteins in a commercially available insect cell line, including two aquaporin proteins from the insect Bemisia tabaci, as well as subcellular marker proteins specific for the cell plasma membrane and for intracellular lysosomes. All recombinant proteins were produced as chimeras with fluorescent protein markers at their carboxyl termini, which allows for the direct detection of the recombinant proteins. The double transfection of cells with plasmids harboring constructs for the genes of interest and a known subcellular marker allows for live cell imaging and improved validation of cellular protein localization.

  9. Development of two bacterial artificial chromosome shuttle vectors for a recombination-based cloning and regulated expression of large genes in mammalian cells.

    PubMed

    Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M

    2001-04-01

    Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.

  10. Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.

    PubMed

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2013-12-01

    Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P < 0.05) between gonadal and subcutaneous adipose tissue in obese and lean dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  11. The extracellular matrix controls gap junction protein expression and function in postnatal hippocampal neural progenitor cells

    PubMed Central

    Imbeault, Sophie; Gauvin, Lianne G; Toeg, Hadi D; Pettit, Alexandra; Sorbara, Catherine D; Migahed, Lamiaa; DesRoches, Rebecca; Menzies, A Sheila; Nishii, Kiyomasa; Paul, David L; Simon, Alexander M; Bennett, Steffany AL

    2009-01-01

    Background Gap junction protein and extracellular matrix signalling systems act in concert to influence developmental specification of neural stem and progenitor cells. It is not known how these two signalling systems interact. Here, we examined the role of ECM components in regulating connexin expression and function in postnatal hippocampal progenitor cells. Results We found that Cx26, Cx29, Cx30, Cx37, Cx40, Cx43, Cx45, and Cx47 mRNA and protein but only Cx32 and Cx36 mRNA are detected in distinct neural progenitor cell populations cultured in the absence of exogenous ECM. Multipotential Type 1 cells express Cx26, Cx30, and Cx43 protein. Their Type 2a progeny but not Type 2b and 3 neuronally committed progenitor cells additionally express Cx37, Cx40, and Cx45. Cx29 and Cx47 protein is detected in early oligodendrocyte progenitors and mature oligodendrocytes respectively. Engagement with a laminin substrate markedly increases Cx26 protein expression, decreases Cx40, Cx43, Cx45, and Cx47 protein expression, and alters subcellular localization of Cx30. These changes are associated with decreased neurogenesis. Further, laminin elicits the appearance of Cx32 protein in early oligodendrocyte progenitors and Cx36 protein in immature neurons. These changes impact upon functional connexin-mediated hemichannel activity but not gap junctional intercellular communication. Conclusion Together, these findings demonstrate a new role for extracellular matrix-cell interaction, specifically laminin, in the regulation of intrinsic connexin expression and function in postnatal neural progenitor cells. PMID:19236721

  12. Hmx1 is required for the normal development of somatosensory neurons in the geniculate ganglion

    PubMed Central

    Quina, Lely A.; Tempest, Lynne; Hsu, Yun-Wei A.; Cox, Timothy C.; Turner, Eric E.

    2012-01-01

    Hmx1 is a variant homeodomain transcription factor expressed in the developing sensory nervous system, retina, and craniofacial mesenchyme. Recently, mutations at the Hmx1 locus have been linked to craniofacial defects in humans, rats, and mice, but its role in nervous system development is largely unknown. Here we show that Hmx1 is expressed in a subset of sensory neurons in the cranial and dorsal root ganglia which does not correspond to any specific sensory modality. Sensory neurons in the dorsal root and trigeminal ganglia of Hmx1dm/dm mouse embryos have no detectable Hmx1 protein, yet they undergo neurogenesis and express sensory subtype markers normally, demonstrating that Hmx1 is not globally required for the specification of sensory neurons from neural crest precursors. Loss of Hmx1 expression has no obvious effect on the early development of the trigeminal (V), superior (IX/X), or dorsal root ganglia neurons in which it is expressed, but results in marked defects in the geniculate (VII) ganglion. Hmx1dm/dm mouse embryos possess only a vestigial posterior auricular nerve, and general somatosensory neurons in the geniculate ganglion are greatly reduced by mid-gestation. Although Hmx1 is expressed in geniculate neurons prior to cell cycle exit, it does not appear to be required for neurogenesis, and the loss of geniculate neurons is likely to be the result of increased cell death. Fate mapping of neural crest-derived tissues indicates that Hmx1-expressing somatosensory neurons at different axial levels may be derived from either the neural crest or the neurogenic placodes. PMID:22586713

  13. Temporal Differences in MicroRNA Expression Patterns in Astrocytes and Neurons after Ischemic Injury

    PubMed Central

    Ziu, Mateo; Fletcher, Lauren; Rana, Shushan; Jimenez, David F.; Digicaylioglu, Murat

    2011-01-01

    MicroRNAs (miRNAs) are small, non-protein-coding RNA molecules that modulate gene translation. Their expression is altered in many central nervous system (CNS) injuries suggesting a role in the cellular response to stress. Current studies in brain tissue have not yet described the cell-specific temporal miRNA expression patterns following ischemic injury. In this study, we analyzed the expression alterations of a set of miRNAs in neurons and astrocytes subjected to 60 minutes of ischemia and collected at different time-points following this injury. To mimic ischemic conditions and reperfusion in vitro, cortical primary neuronal and astrocytic cultures prepared from fetal rats were first placed in oxygen and glucose deprived (OGD) medium for 60 minutes, followed by their transfer into normoxic pre-conditioned medium. Total RNA was extracted at different time-points after the termination of the ischemic insult and the expression levels of miRNAs were measured. In neurons exposed to OGD, expression of miR-29b was upregulated 2-fold within 6 h and up to 4-fold at 24 h post-OGD, whereas induction of miR-21 was upregulated 2-fold after 24 h when compared to expression in neurons under normoxic conditions. In contrast, in astrocytes, miR-29b and miR-21 were upregulated only after 12 h. MiR-30b, 107, and 137 showed expression alteration in astrocytes, but not in neurons. Furthermore, we show that expression of miR-29b was significantly decreased in neurons exposed to Insulin-Like Growth Factor I (IGF-I), a well documented neuroprotectant in ischemic models. Our study indicates that miRNAs expression is altered in neurons and astrocytes after ischemic injury. Furthermore, we found that following OGD, specific miRNAs have unique cell-specific temporal expression patterns in CNS. Therefore the specific role of each miRNA in different intracellular processes in ischemic brain and the relevance of their temporal and spatial expression patterns warrant further investigation that may lead to novel strategies for therapeutic interventions. PMID:21373187

  14. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation

    PubMed Central

    2011-01-01

    Background Green plant leaves have always fascinated biologists as hosts for photosynthesis and providers of basic energy to many food webs. Today, comprehensive databases of gene expression data enable us to apply increasingly more advanced computational methods for reverse-engineering the regulatory network of leaves, and to begin to understand the gene interactions underlying complex emergent properties related to stress-response and development. These new systems biology methods are now also being applied to organisms such as Populus, a woody perennial tree, in order to understand the specific characteristics of these species. Results We present a systems biology model of the regulatory network of Populus leaves. The network is reverse-engineered from promoter information and expression profiles of leaf-specific genes measured over a large set of conditions related to stress and developmental. The network model incorporates interactions between regulators, such as synergistic and competitive relationships, by evaluating increasingly more complex regulatory mechanisms, and is therefore able to identify new regulators of leaf development not found by traditional genomics methods based on pair-wise expression similarity. The approach is shown to explain available gene function information and to provide robust prediction of expression levels in new data. We also use the predictive capability of the model to identify condition-specific regulation as well as conserved regulation between Populus and Arabidopsis. Conclusions We outline a computationally inferred model of the regulatory network of Populus leaves, and show how treating genes as interacting, rather than individual, entities identifies new regulators compared to traditional genomics analysis. Although systems biology models should be used with care considering the complexity of regulatory programs and the limitations of current genomics data, methods describing interactions can provide hypotheses about the underlying cause of emergent properties and are needed if we are to identify target genes other than those constituting the "low hanging fruit" of genomic analysis. PMID:21232107

  15. The extraction of simple relationships in growth factor-specific multiple-input and multiple-output systems in cell-fate decisions by backward elimination PLS regression.

    PubMed

    Akimoto, Yuki; Yugi, Katsuyuki; Uda, Shinsuke; Kudo, Takamasa; Komori, Yasunori; Kubota, Hiroyuki; Kuroda, Shinya

    2013-01-01

    Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that, in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12 cells.

  16. Engineering High Assurance Distributed Cyber Physical Systems

    DTIC Science & Technology

    2015-01-15

    decisions: number of interacting agents and co-dependent decisions made in real-time without causing interference . To engineer a high assurance DART...environment specification, architecture definition, domain-specific languages, design patterns, code - generation, analysis, test-generation, and simulation...include synchronization between the models and source code , debugging at the model level, expression of the design intent, and quality of service

  17. Chapter 4: Small Commercial and Residential Unitary and Split System HVAC Heating and Cooling Equipment-Efficiency Upgrade Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Jacobson, David; Metoyer, Jarred

    The specific measure described here involves improving the overall efficiency in air-conditioning systems as a whole (compressor, evaporator, condenser, and supply fan). The efficiency rating is expressed as the energy efficiency ratio (EER), seasonal energy efficiency ratio (SEER), and integrated energy efficiency ratio (IEER). The higher the EER, SEER or IEER, the more efficient the unit is.

  18. Food-derived sensory cues modulate longevity via distinct neuroendocrine insulin-like peptides

    PubMed Central

    Artan, Murat; Jeong, Dae-Eun; Lee, Dongyeop; Kim, Young-Il; Son, Heehwa G.; Husain, Zahabiya; Kim, Jinmahn; Altintas, Ozlem; Kim, Kyuhyung; Alcedo, Joy; Lee, Seung-Jae V.

    2016-01-01

    Environmental fluctuations influence organismal aging by affecting various regulatory systems. One such system involves sensory neurons, which affect life span in many species. However, how sensory neurons coordinate organismal aging in response to changes in environmental signals remains elusive. Here, we found that a subset of sensory neurons shortens Caenorhabditis elegans’ life span by differentially regulating the expression of a specific insulin-like peptide (ILP), INS-6. Notably, treatment with food-derived cues or optogenetic activation of sensory neurons significantly increases ins-6 expression and decreases life span. INS-6 in turn relays the longevity signals to nonneuronal tissues by decreasing the activity of the transcription factor DAF-16/FOXO. Together, our study delineates a mechanism through which environmental sensory cues regulate aging rates by modulating the activities of specific sensory neurons and ILPs. PMID:27125673

  19. A filamentous bacteriophage targeted to carcinoembryonic antigen induces tumor regression in mouse models of colorectal cancer.

    PubMed

    Murgas, Paola; Bustamante, Nicolás; Araya, Nicole; Cruz-Gómez, Sebastián; Durán, Eduardo; Gaete, Diana; Oyarce, César; López, Ernesto; Herrada, Andrés Alonso; Ferreira, Nicolás; Pieringer, Hans; Lladser, Alvaro

    2018-02-01

    Colorectal cancer is a deadly disease, which is frequently diagnosed at advanced stages, where conventional treatments are no longer effective. Cancer immunotherapy has emerged as a new form to treat different malignancies by turning-on the immune system against tumors. However, tumors are able to evade antitumor immune responses by promoting an immunosuppressive microenvironment. Single-stranded DNA containing M13 bacteriophages are highly immunogenic and can be specifically targeted to the surface of tumor cells to trigger inflammation and infiltration of activated innate immune cells, overcoming tumor-associated immunosuppression and promoting antitumor immunity. Carcinoembryonic antigen (CEA) is highly expressed in colorectal cancers and has been shown to promote several malignant features of colorectal cancer cells. In this work, we targeted M13 bacteriophage to CEA, a tumor-associated antigen over-expressed in a high proportion of colorectal cancers but largely absent in normal cells. The CEA-targeted M13 bacteriophage was shown to specifically bind to purified CEA and CEA-expressing tumor cells in vitro. Both intratumoral and systemic administration of CEA-specific bacteriophages significantly reduced tumor growth of mouse models of colorectal cancer, as compared to PBS and control bacteriophage administration. CEA-specific bacteriophages promoted tumor infiltration of neutrophils and macrophages, as well as maturation dendritic cells in tumor-draining lymph nodes, suggesting that antitumor T-cell responses were elicited. Finally, we demonstrated that tumor protection provided by CEA-specific bacteriophage particles is mediated by CD8 + T cells, as depletion of circulating CD8 + T cells completely abrogated antitumor protection. In summary, we demonstrated that CEA-specific M13 bacteriophages represent a potential immunotherapy against colorectal cancer.

  20. Increased bacterial cell density and recombinant protein yield using a commercial microbial cultivation system.

    PubMed

    Peck, Grantley R; Bowden, Timothy R; Shiell, Brian J; Michalski, Wojtek P

    2014-01-01

    EnBase (BioSilta, Finland) is a microbial cultivation system that replicates fed-batch systems through sustained release of glucose by enzymatic degradation of a polymeric substrate. Achievable bacterial cell densities and recombinant capripoxvirus protein expression levels, solubility, and antigenicity using the EnBase system were assessed. BL21-AI Escherichia coli expressing capripoxvirus proteins achieved up to eightfold higher cell densities when grown in EnBase media compared with standard media. Greater yields of capripoxvirus proteins were attained using EnBase media, either through increases in the amount of expressed protein per cell in conjunction with higher cell density or through the increase in cell density alone. Addition of EnBase booster enhanced protein yield for one of the proteins tested but reduced yield for the other. However, the amount of soluble forms of the capripoxvirus proteins tested was not different from that observed from cultures grown under standard conditions. Purified capripoxvirus proteins expressed using EnBase or standard media were assessed for their performance by enzyme-linked immunosorbent assay (ELISA) and were shown to be equally capable of specifically binding capripoxvirus antibodies.

  1. Comprehensive gene expression profiling following DNA vaccination of rainbow trout against infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Purcell, Maureen K.; Nichols, Krista M.; Winton, James R.; Kurath, Gael; Thorgaard, Gary H.; Wheeler, Paul; Hansen, John D.; Herwig, Russell P.; Park, Linda K.

    2006-01-01

    The DNA vaccine based on the glycoprotein gene of Infectious hematopoietic necrosis virus induces a non-specific anti-viral immune response and long-term specific immunity against IHNV. This study characterized gene expression responses associated with the early anti-viral response. Homozygous rainbow trout were injected intra-muscularly (I.M.) with vector DNA or the IHNV DNA vaccine. Gene expression in muscle tissue (I.M. site) was evaluated using a 16,008 feature salmon cDNA microarray. Eighty different genes were significantly modulated in the vector DNA group while 910 genes were modulated in the IHNV DNA vaccinate group relative to control group. Quantitative reverse-transcriptase PCR was used to examine expression of selected immune genes at the I.M. site and in other secondary tissues. In the localized response (I.M. site), the magnitudes of gene expression changes were much greater in the vaccinate group relative to the vector DNA group for the majority of genes analyzed. At secondary systemic sites (e.g. gill, kidney and spleen), type I IFN-related genes were up-regulated in only the IHNV DNA vaccinated group. The results presented here suggest that the IHNV DNA vaccine induces up-regulation of the type I IFN system across multiple tissues, which is the functional basis of early anti-viral immunity.

  2. Constitutive expression of Botrytis aclada laccase in Pichia pastoris

    PubMed Central

    Kittl, Roman; Gonaus, Christoph; Pillei, Christian; Haltrich, Dietmar; Ludwig, Roland

    2012-01-01

    The heterologous expression of laccases is important for their large-scale production and genetic engineering—a prerequisite for industrial application. Pichia pastoris is the preferred expression host for fungal laccases. The recently cloned laccase from the ascomycete Botrytis aclada (BaLac) has been efficiently expressed in P. pastoris under the control of the inducible alcohol oxidase (AOX1) promoter. In this study, we compare these results to the constitutive expression in the same organism using the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. The results show that the amounts of BaLac produced with the GAP system (517 mgL-1) and the AOX1 system (495 mgL-1) are comparable. The constitutive expression is, however, faster, and the specific activity of BaLac in the culture supernatant is higher (41.3 Umg-1 GAP, 14.2 Umg-1 AOX1). In microtiter plates, the constitutive expression provides a clear advantage due to easy manipulation (simple medium, no methanol feeding) and fast enzyme production (high-throughput screening assays can already be performed after 48 h). PMID:22705842

  3. Expression of Shigella flexneri ipaB Gene in Tobacco.

    PubMed

    Ohadi, Mandana; Rasouli, Rahimeh; Darzi-Eslam, Elham; Jafari, Anis; Ehsani, Parastoo

    2013-04-01

    Shigellosis is a leading cause of diarrhea in many developing countries and although the disease can be controlled and managed with antibiotics, the constant emergence of resistant species requiring ever newer antibacterial drugs make development of an effective vaccine necessary. The bacteria are highly contagious and since immunity to Shigella is serotype-specific a multi-serotype vaccine is required for adequate protection. Proteins encoded by Shigella invasion plasmid, which are part of the Type Three Secretion System (TTSS) of this bacteria, are good candidate as vaccine targets since they are both immunogenic and conserved between different Shigella species. The advent of molecular farming, which is a low cost system, has opened up new venues for production of recombinant proteins. In view of the difficulties encountered in expressing IpaB in Escherichia coli (E. coli), the feasibility of the expression of this protein in tobacco has been investigated. The ipaB gene was cloned in place of the Hygromycin gene in pCambia1304 containing GFP as a reporter gene. The vector was then transferred into competent Agrobacterium tumefaciens (A. tumefaciens) strain LBA4404 which was used for agro-infiltration of Nicotiana tobaccum (N. tobaccum) leaves. Transformation was confirmed by expression of GFP. The gene was also cloned in pBAD/geneIII A and transformed E. coli host containing the construct was induced using different amounts of L-arabinose as inducer. Expression of IpaB gene by both hosts was determined by Western blotting using anti-IpaB monoclonal antibody. The data obtained showed that IpaB was expressed in plant leaves but expression in E. coli was not detectable. This study showed that N. tobaccum is capable of expressing this protein without its specific chaperon and in levels detectable by Western blotting.

  4. Expression of IL-22 in the Skin Causes Th2-Biased Immunity, Epidermal Barrier Dysfunction and Pruritus via Stimulating Epithelial Th2 Cytokines and the GRP Pathway

    PubMed Central

    Lou, Hongfei; Lu, Jingning; Choi, Eun Byul; Oh, Min Hee; Jeong, Mingeum; Barmettler, Sara; Zhu, Zhou; Zheng, Tao

    2017-01-01

    Increased expression of Th22 cytokine IL-22 is a characteristic finding in atopic dermatitis (AD). However, the specific role of IL-22 in the pathogenesis of AD in vivo has yet to be elucidated. Consistent with observations in human AD, IL-22 was significantly increased in the AD skin of mice after epicutaneous sensitization to house dust mite allergen. Utilizing a skin-specific inducible transgenic system, we show here that expression of IL-22 in the skin of mice caused an AD-like phenotype characterized by chronic pruritic dermatitis associated with Th2-biased local and systemic immune responses, down-regulation of Epidermal Differentiation Complex genes and enhanced dermatitis upon epicutaneous allergen exposure. IL-22 potently induced the expression of gastrin-releasing peptide (GRP), a neuropeptide pruritogen, in dermal immune cells and sensory afferents and in their skin-innervating sensory neurons. IL-22 also differentially up-regulated the expression of GRP receptor (GRPR) on keratinocytes of AD skin. The number of GRP+ cells in the skin correlated with the AD severity and the intensity of pruritus. IL-22 directly upregulated the expression of epithelial-derived type 2 cytokines (TSLP and IL-33) and GRP in primary keratinocytes. Furthermore, GRP not only strongly induced TSLP but also increased the expression IL-33 and GRPR synergistically with IL-22. Importantly, we found that the expression of GRP was strikingly increased in the skin of patients with AD. These results indicate that IL-22 plays important pathogenic roles in the initiation and development of AD, in part through inducing keratinocyte production of type 2 cytokines and activation of the GRP/GRPR pathway. PMID:28228560

  5. Evaluation of in vitro spermatogenesis system effectiveness to study genes behavior: monitoring the expression of the testis specific 10 (Tsga10) gene as a model.

    PubMed

    Miryounesi, Mohammad; Nayernia, Karim; Mobasheri, Maryam Beigom; Dianatpour, Mahdi; Oko, Richard; Savad, Shahram; Modarressi, Mohammad Hossein

    2014-10-01

    In vitro generation of germ cells introduces a novel approach to male infertility and provides an effective system in gene tracking studies, however many aspects of this process have remained unclear. We aimed to promote mouse embryonic stem cells (mESC) differentiation into germ cells and evaluate its effectiveness with tracking the expression of the Tsga10 during this process. mESCs were differentiated into germ cells in the presence of Retinoic Acid. Based on developmental schedule of the postnatal testis, samples were taken on the 7th, 12th, and 25th days of the culture and were subjected to expression analysis of a panel of germ cell specific genes. Expression of Tsga10 in RNA and protein levels was then analyzed. Transition from mitosis to meiosis occurred between 7th and 12th days of mESC culture and post-meiotic gene expression did not occur until the 25th day of the culture. Results showed low level of Tsga10expression in undifferentiated stem cells. During transition from meiotic to post-meiotic phase, Tsga10 expression increased in 6.6 folds. This finding is in concordance with in vivo changes during transition from pre-pubertal to pubertal stage. Localization of processed and unprocessed forms of the related protein was similar to those in vivo as well. Expression pattern of Tsga10, as a gene with critical function in spermatogenesis, is similar during in vitro and in vivo germ cell generation. The results suggest that in vitro derived germ cells could be a trusted model to study genes behavior during spermatogenesis.

  6. Enhanced Cell-Specific Ablation in Zebrafish Using a Triple Mutant of Escherichia Coli Nitroreductase

    PubMed Central

    Mathias, Jonathan R.; Zhang, Zhanying; Saxena, Meera T.

    2014-01-01

    Abstract Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology. PMID:24428354

  7. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase.

    PubMed

    Mathias, Jonathan R; Zhang, Zhanying; Saxena, Meera T; Mumm, Jeff S

    2014-04-01

    Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.

  8. Expression of Glutamine Transporter Slc38a3 (SNAT3) During Acidosis is Mediated by a Different Mechanism than Tissue-Specific Expression

    PubMed Central

    Balkrishna, Sarojini; Bröer, Angelika; Welford, Scott M.; Hatzoglou, Maria; Bröer, Stefan

    2015-01-01

    Background Despite homeostatic pH regulation, systemic and cellular pH changes take place and strongly influence metabolic processes. Transcription of the glutamine transporter SNAT3 (Slc38a3) for instance is highly up-regulated in the kidney during metabolic acidosis to provide glutamine for ammonia production. Methods Slc38a3 promoter activity and messenger RNA stability were measured in cultured cells in response to different extracellular pH values. Results Up-regulation of SNAT3 mRNA was mediated both by the stabilization of its mRNA and by the up-regulation of gene transcription. Stabilisation of the mRNA involved a pH-response element, while enhanced transcription made use of a second pH-sensitive Sp1 binding site in addition to a constitutive Sp1 binding site. Transcriptional regulation dominated the early response to acidosis, while mRNA stability was more important for chronic adaptation. Tissue-specific expression of SNAT3, by contrast, appeared to be controlled by promoter methylation and histone modifications. Conclusions Regulation of SNAT3 gene expression by extracellular pH involves post-transcriptional and transcriptional mechanisms, the latter being distinct from the mechanisms that control the tissue-specific expression of the gene. PMID:24854847

  9. PD-L1, Galectin-9 and CD8+ tumor-infiltrating lymphocytes are associated with survival in hepatocellular carcinoma.

    PubMed

    Sideras, Kostandinos; Biermann, Katharina; Verheij, Joanne; Takkenberg, Bart R; Mancham, Shanta; Hansen, Bettina E; Schutz, Hannah M; de Man, Robert A; Sprengers, Dave; Buschow, Sonja I; Verseput, Maddy C M; Boor, Patrick P C; Pan, Qiuwei; van Gulik, Thomas M; Terkivatan, Turkan; Ijzermans, Jan N M; Beuers, Ulrich H W; Sleijfer, Stefan; Bruno, Marco J; Kwekkeboom, Jaap

    2017-01-01

    Novel systemic treatments for hepatocellular carcinoma (HCC) are strongly needed. Immunotherapy is a promising strategy that can induce specific antitumor immune responses. Understanding the mechanisms of immune resistance by HCC is crucial for development of suitable immunotherapeutics. We used immunohistochemistry on tissue-microarrays to examine the co-expression of the immune inhibiting molecules PD-L1, Galectin-9, HVEM and IDO, as well as tumor CD8 + lymphocyte infiltration in HCC, in two independent cohorts of patients. We found that at least some expression in tumor cells was seen in 97% of cases for HVEM, 83% for PD-L1, 79% for Gal-9 and 66% for IDO. In the discovery cohort (n = 94), we found that lack of, or low, tumor expression of PD-L1 ( p < 0.001), Galectin-9 ( p < 0.001) and HVEM ( p < 0.001), and low CD8 + TIL count ( p = 0.016), were associated with poor HCC-specific survival. PD-L1, Galectin-9 and CD8 + TIL count were predictive of HCC-specific survival independent of baseline clinicopathologic characteristics and the combination of these markers was a powerful predictor of HCC-specific survival (HR 0.29; p <0.001). These results were confirmed in the validation cohort (n = 60). We show that low expression levels of PD-L1 and Gal-9 in combination with low CD8 + TIL count predict extremely poor HCC-specific survival and it requires a change in two of these parameters to significantly improve prognosis. In conclusion, intra-tumoral expression of these immune inhibiting molecules was observed in the majority of HCC patients. Low expression of PD-L1 and Galectin-9 and low CD8 + TIL count are associated with poor HCC-specific survival. Combining immune biomarkers leads to superior predictors of HCC mortality.

  10. Spermatogenesis Drives Rapid Gene Creation and Masculinization of the X Chromosome in Stalk-Eyed Flies (Diopsidae).

    PubMed

    Baker, Richard H; Narechania, Apurva; DeSalle, Rob; Johns, Philip M; Reinhardt, Josephine A; Wilkinson, Gerald S

    2016-03-26

    Throughout their evolutionary history, genomes acquire new genetic material that facilitates phenotypic innovation and diversification. Developmental processes associated with reproduction are particularly likely to involve novel genes. Abundant gene creation impacts the evolution of chromosomal gene content and general regulatory mechanisms such as dosage compensation. Numerous studies in model organisms have found complex and, at times contradictory, relationships among these genomic attributes highlighting the need to examine these patterns in other systems characterized by abundant sexual selection. Therefore, we examined the association among novel gene creation, tissue-specific gene expression, and chromosomal gene content within stalk-eyed flies. Flies in this family are characterized by strong sexual selection and the presence of a newly evolved X chromosome. We generated RNA-seq transcriptome data from the testes for three species within the family and from seven additional tissues in the highly dimorphic species,Teleopsis dalmanni Analysis of dipteran gene orthology reveals dramatic testes-specific gene creation in stalk-eyed flies, involving numerous gene families that are highly conserved in other insect groups. Identification of X-linked genes for the three species indicates that the X chromosome arose prior to the diversification of the family. The most striking feature of this X chromosome is that it is highly masculinized, containing nearly twice as many testes-specific genes as expected based on its size. All the major processes that may drive differential sex chromosome gene content-creation of genes with male-specific expression, development of male-specific expression from pre-existing genes, and movement of genes with male-specific expression-are elevated on the X chromosome ofT. dalmanni This masculinization occurs despite evidence that testes expressed genes do not achieve the same levels of gene expression on the X chromosome as they do on the autosomes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Directed chromosomal integration and expression of porcine rotavirus outer capsid protein VP4 in Lactobacillus casei ATCC393.

    PubMed

    Yin, Ji-Yuan; Guo, Chao-Qun; Wang, Zi; Yu, Mei-Ling; Gao, Shuai; Bukhari, Syed M; Tang, Li-Jie; Xu, Yi-Gang; Li, Yi-Jing

    2016-11-01

    Using two-step plasmid integration in the presence of 5-fluorouracil (5-FU), we developed a stable and markerless Lactobacillus casei strain for vaccine antigen expression. The upp of L. casei, which encodes uracil phosphoribosyltransferase (UPRTase), was used as a counterselection marker. We employed the Δupp isogenic mutant, which is resistant to 5-FU, as host and a temperature-sensitive suicide plasmid bearing upp expression cassette as counterselectable integration vector. Extrachromosomal expression of UPRTase complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. The resultant genotype can either be wild type or recombinant. The efficacy of the system was demonstrated by insertion and expression of porcine rotavirus (PRV) VP4. To improve VP4 expression, we analyzed L. casei transcriptional profiles and selected the constitutive highly expressed enolase gene (eno). The VP4 inserted after the eno termination codon were screened in the presence of 5-FU. Using genomic PCR amplification, we confirmed that VP4 was successfully integrated and stably inherited for at least 50 generations. Western blot demonstrated that VP4 was steadily expressed in medium with different carbohydrates. RT-qPCR and ELISA analysis showed that VP4 expression from the chromosomal location was similar to that achieved by a plasmid expression system. Applying the recombinant strain to immunize BALB/c mice via oral administration revealed that the VP4-expressing L. casei could induce both specific local and systemic humoral immune responses in mice. Overall, the improved gene replacement system represents an efficient method for chromosome recombination in L. casei and provides a safe tool for vaccine production.

  12. Systems Reconsolidation Reveals a Selective Role for the Anterior Cingulate Cortex in Generalized Contextual Fear Memory Expression

    PubMed Central

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory. PMID:25091528

  13. Systems reconsolidation reveals a selective role for the anterior cingulate cortex in generalized contextual fear memory expression.

    PubMed

    Einarsson, Einar Ö; Pors, Jennifer; Nader, Karim

    2015-01-01

    After acquisition, hippocampus-dependent memories undergo a systems consolidation process, during which they become independent of the hippocampus and dependent on the anterior cingulate cortex (ACC) for memory expression. However, consolidated remote memories can become transiently hippocampus-dependent again following memory reactivation. How this systems reconsolidation affects the role of the ACC in remote memory expression is not known. Using contextual fear conditioning, we show that the expression of 30-day-old remote memory can transiently be supported by either the ACC or the dorsal hippocampus following memory reactivation, and that the ACC specifically mediates expression of remote generalized contextual fear memory. We found that suppression of neural activity in the ACC with the AMPA/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) impaired the expression of remote, but not recent, contextual fear memory. Fear expression was not affected by this treatment if preceded by memory reactivation 6 h earlier, nor was it affected by suppression of neural activity in the dorsal hippocampus with the GABA-receptor agonist muscimol. However, simultaneous targeting of both the ACC and the dorsal hippocampus 6 h after memory reactivation disrupted contextual fear memory expression. Second, we observed that expression of a 30-day-old generalized contextual fear memory in a novel context was not affected by memory reactivation 6 h earlier. However, intra-ACC CNQX infusion before testing impaired contextual fear expression in the novel context, but not the original training context. Together, these data suggest that although the dorsal hippocampus may be recruited during systems reconsolidation, the ACC remains necessary for the expression of generalized contextual fear memory.

  14. Prostate-Specific and Tumor-Specific Targeting of an Oncolytic HSV-1 Amplicon/Helper Virus for Prostate Cancer Treatment

    DTIC Science & Technology

    2009-11-01

    that differentially expressed tumor suppressor miRNAs can be utilized to control the replication of an oncolytic DNA virus in a tumor-specific...demonstrated that the utilization of the tissue-specific promoter and the miRNA-mediated 3’UTRs in a targeted virotherapy is a viable approach with...elements into the whole HSV-1 viral genome should increase the safety margin substantially. The major advantage of the amplicon/helper system is its

  15. Quantification of Chitinase mRNA Levels in Human and Mouse Tissues by Real-Time PCR: Species-Specific Expression of Acidic Mammalian Chitinase in Stomach Tissues

    PubMed Central

    Ohno, Misa; Togashi, Yuto; Tsuda, Kyoko; Okawa, Kazuaki; Kamaya, Minori; Sakaguchi, Masayoshi; Sugahara, Yasusato; Oyama, Fumitaka

    2013-01-01

    Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific. PMID:23826286

  16. Divergent expression of 11beta-hydroxysteroid dehydrogenase and 11beta-hydroxylase genes between male morphs in the central nervous system, sonic muscle and testis of a vocal fish.

    PubMed

    Arterbery, Adam S; Deitcher, David L; Bass, Andrew H

    2010-05-15

    The vocalizing midshipman fish, Porichthys notatus, has two male morphs that exhibit alternative mating tactics. Only territorial males acoustically court females with long duration (minutes to >1h) calls, whereas sneaker males attempt to steal fertilizations. During the breeding season, morph-specific tactics are paralleled by a divergence in relative testis and vocal muscle size, plasma levels of the androgen 11-ketotestosterone (11KT) and the glucocorticoid cortisol, and mRNA expression levels in the central nervous system (CNS) of the steroid-synthesizing enzyme aromatase (estrogen synthase). Here, we tested the hypothesis that the midshipman's two male morphs would further differ in the CNS, as well as in the testis and vocal muscle, in mRNA abundance for the enzymes 11beta-hydroxylase (11betaH) and 11beta-hydroxysteroid dehydrogenase (11betaHSD) that directly regulate both 11KT and cortisol synthesis. Quantitative real-time PCR demonstrated male morph-specific profiles for both enzymes. Territorial males had higher 11betaH and 11betaHSD mRNA levels in testis and vocal muscle. By contrast, sneaker males had the higher CNS expression, especially for 11betaHSD, in the region containing an expansive vocal pacemaker circuit that directly determines the temporal attributes of natural calls. We propose for territorial males that higher enzyme expression in testis underlies its greater plasma 11KT levels, which in vocal muscle provides both gluconeogenic and androgenic support for its long duration calling. We further propose for sneaker males that higher enzyme expression in the vocal CNS contributes to known cortisol-specific effects on its vocal physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  17. Application of Mutated miR-206 Target Sites Enables Skeletal Muscle-specific Silencing of Transgene Expression of Cardiotropic AAV9 Vectors

    PubMed Central

    Geisler, Anja; Schön, Christian; Größl, Tobias; Pinkert, Sandra; Stein, Elisabeth A; Kurreck, Jens; Vetter, Roland; Fechner, Henry

    2013-01-01

    Insertion of completely complementary microRNA (miR) target sites (miRTS) into a transgene has been shown to be a valuable approach to specifically repress transgene expression in non-targeted tissues. miR-122TS have been successfully used to silence transgene expression in the liver following systemic application of cardiotropic adeno-associated virus (AAV) 9 vectors. For miR-206–mediated skeletal muscle-specific silencing of miR-206TS–bearing AAV9 vectors, however, we found this approach failed due to the expression of another member (miR-1) of the same miR family in heart tissue, the intended target. We introduced single-nucleotide substitutions into the miR-206TS and searched for those which prevented miR-1–mediated cardiac repression. Several mutated miR-206TS (m206TS), in particular m206TS-3G, were resistant to miR-1, but remained fully sensitive to miR-206. All these variants had mismatches in the seed region of the miR/m206TS duplex in common. Furthermore, we found that some m206TS, containing mismatches within the seed region or within the 3′ portion of the miR-206, even enhanced the miR-206– mediated transgene repression. In vivo expression of m206TS-3G– and miR-122TS–containing transgene of systemically applied AAV9 vectors was strongly repressed in both skeletal muscle and the liver but remained high in the heart. Thus, site-directed mutagenesis of miRTS provides a new strategy to differentiate transgene de-targeting of related miRs. PMID:23439498

  18. Development of a tightly regulated and highly responsive copper-inducible gene expression system and its application to control of flowering time.

    PubMed

    Saijo, Takanori; Nagasawa, Akitsu

    2014-01-01

    A newly developed copper-inducible gene expression system overcame the mixed results reported earlier, worked well both in cultured cells and a whole plant, and enabled to control flowering timing. Copper is one of the essential microelements and is readily taken up by plants. However, to date, it has rarely been used to control the expression of genes of interest, probably due to the inefficiency of the gene expression systems. In this study, we successfully developed a copper-inducible gene expression system that is based on the regulation of the yeast metallothionein gene. This system can be applied in the field and regulated at approximately one-hundredth of the rate used for registered copper-based fungicides. In the presence of copper, a translational fusion of the ACE1 transcription factor with the VP16 activation domain (VP16AD) of herpes simplex virus strongly activated transcription of the GFP gene in transgenic Arabidopsis. Interestingly, insertion of the To71 sequence, a 5'-untranslated region of the 130k/180k gene of tomato mosaic virus, upstream of the GFP gene reduced the basal expression of GFP in the absence of copper to almost negligible levels, even in soil-grown plants that were supplemented with ordinary liquid nutrients. Exposure of plants to 100 μM copper resulted in an over 1,000-fold induction ratio at the transcriptional level of GFP. This induction was copper-specific and dose-dependent with rapid and reversible responses. Using this expression system, we also succeeded in regulating floral transition by copper treatment. These results indicate that our newly developed copper-inducible system can accelerate gene functional analysis in model plants and can be used to generate novel agronomic traits in crop species.

  19. Neural Progenitors Adopt Specific Identities by Directly Repressing All Alternative Progenitor Transcriptional Programs.

    PubMed

    Kutejova, Eva; Sasai, Noriaki; Shah, Ankita; Gouti, Mina; Briscoe, James

    2016-03-21

    In the vertebrate neural tube, a morphogen-induced transcriptional network produces multiple molecularly distinct progenitor domains, each generating different neuronal subtypes. Using an in vitro differentiation system, we defined gene expression signatures of distinct progenitor populations and identified direct gene-regulatory inputs corresponding to locations of specific transcription factor binding. Combined with targeted perturbations of the network, this revealed a mechanism in which a progenitor identity is installed by active repression of the entire transcriptional programs of other neural progenitor fates. In the ventral neural tube, sonic hedgehog (Shh) signaling, together with broadly expressed transcriptional activators, concurrently activates the gene expression programs of several domains. The specific outcome is selected by repressive input provided by Shh-induced transcription factors that act as the key nodes in the network, enabling progenitors to adopt a single definitive identity from several initially permitted options. Together, the data suggest design principles relevant to many developing tissues. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Improving the human readability of Arden Syntax medical logic modules using a concept-oriented terminology and object-oriented programming expressions.

    PubMed

    Choi, Jeeyae; Bakken, Suzanne; Lussier, Yves A; Mendonça, Eneida A

    2006-01-01

    Medical logic modules are a procedural representation for sharing task-specific knowledge for decision support systems. Based on the premise that clinicians may perceive object-oriented expressions as easier to read than procedural rules in Arden Syntax-based medical logic modules, we developed a method for improving the readability of medical logic modules. Two approaches were applied: exploiting the concept-oriented features of the Medical Entities Dictionary and building an executable Java program to replace Arden Syntax procedural expressions. The usability evaluation showed that 66% of participants successfully mapped all Arden Syntax rules to Java methods. These findings suggest that these approaches can play an essential role in the creation of human readable medical logic modules and can potentially increase the number of clinical experts who are able to participate in the creation of medical logic modules. Although our approaches are broadly applicable, we specifically discuss the relevance to concept-oriented nursing terminologies and automated processing of task-specific nursing knowledge.

  1. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems

    PubMed Central

    Caplen, Natasha J.; Parrish, Susan; Imani, Farhad; Fire, Andrew; Morgan, Richard A.

    2001-01-01

    Short interfering RNAs (siRNAs) are double-stranded RNAs of ≈21–25 nucleotides that have been shown to function as key intermediaries in triggering sequence-specific RNA degradation during posttranscriptional gene silencing in plants and RNA interference in invertebrates. siRNAs have a characteristic structure, with 5′-phosphate/3′-hydroxyl ends and a 2-base 3′ overhang on each strand of the duplex. In this study, we present data that synthetic siRNAs can induce gene-specific inhibition of expression in Caenorhabditis elegans and in cell lines from humans and mice. In each case, the interference by siRNAs was superior to the inhibition of gene expression mediated by single-stranded antisense oligonucleotides. The siRNAs seem to avoid the well documented nonspecific effects triggered by longer double-stranded RNAs in mammalian cells. These observations may open a path toward the use of siRNAs as a reverse genetic and therapeutic tool in mammalian cells. PMID:11481446

  2. Targeting of Magnetic Nanoparticle-coated Microbubbles to the Vascular Wall Empowers Site-specific Lentiviral Gene Delivery in vivo.

    PubMed

    Heun, Yvonn; Hildebrand, Staffan; Heidsieck, Alexandra; Gleich, Bernhard; Anton, Martina; Pircher, Joachim; Ribeiro, Andrea; Mykhaylyk, Olga; Eberbeck, Dietmar; Wenzel, Daniela; Pfeifer, Alexander; Woernle, Markus; Krötz, Florian; Pohl, Ulrich; Mannell, Hanna

    2017-01-01

    In the field of vascular gene therapy, targeting systems are promising advancements to improve site-specificity of gene delivery. Here, we studied whether incorporation of magnetic nanoparticles (MNP) with different magnetic properties into ultrasound sensitive microbubbles may represent an efficient way to enable gene targeting in the vascular system after systemic application. Thus, we associated novel silicon oxide-coated magnetic nanoparticle containing microbubbles (SO-Mag MMB) with lentiviral particles carrying therapeutic genes and determined their physico-chemical as well as biological properties compared to MMB coated with polyethylenimine-coated magnetic nanoparticles (PEI-Mag MMB). While there were no differences between both MMB types concerning size and lentivirus binding, SO-Mag MMB exhibited superior characteristics regarding magnetic moment, magnetizability as well as transduction efficiency under static and flow conditions in vitro . Focal disruption of lentiviral SO-Mag MMB by ultrasound within isolated vessels exposed to an external magnetic field decisively improved localized VEGF expression in aortic endothelium ex vivo and enhanced the angiogenic response. Using the same system in vivo , we achieved a highly effective, site-specific lentiviral transgene expression in microvessels of the mouse dorsal skin after arterial injection. Thus, we established a novel lentiviral MMB technique, which has great potential towards site-directed vascular gene therapy.

  3. Localization of PPARdelta in murine central nervous system: expression in oligodendrocytes and neurons.

    PubMed

    Woods, John W; Tanen, Michael; Figueroa, David J; Biswas, Chhabi; Zycband, Emanuel; Moller, David E; Austin, Christopher P; Berger, Joel P

    2003-06-13

    The peroxisome proliferator-activated receptors (PPARs), PPARdelta, PPARgamma and PPARalpha, comprise a subclass of the supergene family of nuclear receptors. As such they are ligand-regulated transcription factors whose major effects are mediated by altering expression of target genes. PPARdelta has been shown to be ubiquitously expressed in mammals. However, its primary biological role(s) has yet to be defined. Several recent studies have demonstrated that PPARdelta is the most highly expressed PPAR isoform in the central nervous system, but ambiguity still exists as to the specific brain sub-regions and cells in which it is expressed. Here, utilizing novel, isoform-selective PPARdelta riboprobes and an anti-peptide antibody, we performed a series of in situ hybridization and immunolocalization studies to determine the distribution of PPARdelta in the central nervous system (CNS) of mice. We found that PPARdelta mRNA and protein is expressed throughout the brain, with particularly high levels in the entorhinal cortex, hypothalamus and hippocampus, and lower levels in the corpus callosum and caudate putamen. At the cellular level, PPARdelta mRNA and protein were found to be expressed in oligodendrocytes and neurons but not astrocytes. Such results suggest a role for PPARdelta in both myelination and neuronal functioning within the CNS.

  4. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity.

    PubMed

    Elferink, M G L; Olinga, P; Draaisma, A L; Merema, M T; Bauerschmidt, S; Polman, J; Schoonen, W G; Groothuis, G M M

    2008-06-15

    The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl(4), fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.

  5. Targeted expression of miR-34a using the T-VISA system suppresses breast cancer cell growth and invasion.

    PubMed

    Li, Laisheng; Xie, Xinhua; Luo, Jinmei; Liu, Min; Xi, Shaoyan; Guo, Jiaoli; Kong, Yanan; Wu, Minqing; Gao, Jie; Xie, Zeming; Tang, Jun; Wang, Xi; Wei, Weidong; Yang, Mingtian; Hung, Mien-Chie; Xie, Xiaoming

    2012-12-01

    Recurrence and metastasis result in a poor prognosis for breast cancer patients. Recent studies have demonstrated that microRNAs (miRNAs) play vital roles in the development and metastasis of breast cancer. In this study, we investigated the therapeutic potential of miR-34a in breast cancer. We found that miR-34a is downregulated in breast cancer cell lines and tissues, compared with normal cell lines and the adjacent nontumor tissues, respectively. To explore the therapeutic potential of miR-34a, we designed a targeted miR-34a expression plasmid (T-VISA-miR-34a) using the T-VISA system, and evaluated its antitumor effects, efficacy, mechanism of action, and systemic toxicity. T-VISA-miR-34a induced robust, persistent expression of miR-34a, and dramatically suppressed breast cancer cell growth, migration, and invasion in vitro by downregulating the protein expression levels of the miR-34a target genes E2F3, CD44, and SIRT1. In an orthotopic mouse model of breast cancer, intravenous injection of T-VISA-miR-34a:liposomal complex nanoparticles significantly inhibited tumor growth, prolonged survival, and did not induce systemic toxicity. In conclusion, T-VISA-miR-34a lead to robust, specific overexpression of miR-34a in breast cancer cells and induced potent antitumor effects in vitro and in vivo. T-VISA-miR-34a may provide a potentially useful, specific, and safe-targeted therapeutic approach for breast cancer.

  6. Targeted Expression of miR-34a Using the T-VISA System Suppresses Breast Cancer Cell Growth and Invasion

    PubMed Central

    Li, Laisheng; Xie, Xinhua; Luo, Jinmei; Liu, Min; Xi, Shaoyan; Guo, Jiaoli; Kong, Yanan; Wu, Minqing; Gao, Jie; Xie, Zeming; Tang, Jun; Wang, Xi; Wei, Weidong; Yang, Mingtian; Hung, Mien-Chie; Xie, Xiaoming

    2012-01-01

    Recurrence and metastasis result in a poor prognosis for breast cancer patients. Recent studies have demonstrated that microRNAs (miRNAs) play vital roles in the development and metastasis of breast cancer. In this study, we investigated the therapeutic potential of miR-34a in breast cancer. We found that miR-34a is downregulated in breast cancer cell lines and tissues, compared with normal cell lines and the adjacent nontumor tissues, respectively. To explore the therapeutic potential of miR-34a, we designed a targeted miR-34a expression plasmid (T-VISA-miR-34a) using the T-VISA system, and evaluated its antitumor effects, efficacy, mechanism of action, and systemic toxicity. T-VISA-miR-34a induced robust, persistent expression of miR-34a, and dramatically suppressed breast cancer cell growth, migration, and invasion in vitro by downregulating the protein expression levels of the miR-34a target genes E2F3, CD44, and SIRT1. In an orthotopic mouse model of breast cancer, intravenous injection of T-VISA-miR-34a:liposomal complex nanoparticles significantly inhibited tumor growth, prolonged survival, and did not induce systemic toxicity. In conclusion, T-VISA-miR-34a lead to robust, specific overexpression of miR-34a in breast cancer cells and induced potent antitumor effects in vitro and in vivo. T-VISA-miR-34a may provide a potentially useful, specific, and safe-targeted therapeutic approach for breast cancer. PMID:23032974

  7. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elferink, M.G.L.; Olinga, P.; Draaisma, A.L.

    2008-06-15

    The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such asmore » Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl{sub 4}, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.« less

  8. Variation in the Oxytocin Receptor Gene Predicts Brain Region Specific Expression and Social Attachment

    PubMed Central

    King, Lanikea B.; Walum, Hasse; Inoue, Kiyoshi; Eyrich, Nicholas W.; Young, Larry J.

    2015-01-01

    Background Oxytocin (OXT) modulates several aspects of social behavior. Intranasal OXT is a leading candidate for treating social deficits in autism spectrum disorder (ASD) and common genetic variants in the human oxytocin receptor (OXTR) are associated with emotion recognition, relationship quality and ASD. Animal models have revealed that individual differences in Oxtr expression in the brain drive social behavior variation. Our understanding of how genetic variation contributes to brain OXTR expression is very limited. Methods We investigated Oxtr expression in monogamous prairie voles, which have a well characterized OXT system. We quantified brain region-specific levels of Oxtr mRNA and OXTR protein with established neuroanatomical methods. We used pyrosequencing to investigate allelic imbalance of Oxtr mRNA, a molecular signature of polymorphic genetic regulatory elements. We performed next-generation sequencing to discover variants in and near the Oxtr gene. We investigated social attachment using the partner preference test. Results Our allelic imbalance data demonstrates that genetic variants contribute to individual differences in Oxtr expression, but only in particular brain regions, including the nucleus accumbens (NAcc), where OXTR signaling facilitates social attachment. Next-generation sequencing identified one polymorphism in the Oxtr intron, near a putative cis-regulatory element, explaining 74% of the variance in striatal Oxtr expression specifically. Males homozygous for the high expressing allele display enhanced social attachment. Discussion Taken together, these findings provide convincing evidence for robust genetic influence on Oxtr expression and provide novel insights into how non-coding polymorphisms in the OXTR might influence individual differences in human social cognition and behavior PMID:26893121

  9. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis

    PubMed Central

    Mao, Yanfei; Zhang, Zhengjing; Feng, Zhengyan; Wei, Pengliang; Zhang, Hui; Botella, José Ramón; Zhu, Jian-Kang

    2017-01-01

    Summary The Streptococcus-derived CRISPR/Cas9 system is being widely used to perform targeted gene modifications in plants. This customized endonuclease system has two components, the single-guide RNA (sgRNA) for target DNA recognition and the CRISPR-associated protein 9 (Cas9) for DNA cleavage. Ubiquitously expressed CRISPR/Cas9 systems (UC) generate targeted gene modifications with high efficiency but only those produced in reproductive cells are transmitted to the next generation. We report the design and characterization of a germ-line-specific Cas9 system (GSC) for Arabidopsis gene modification in male gametocytes, constructed using a SPOROCYTELESS (SPL) genomic expression cassette. Four loci in two endogenous genes were targeted by both systems for comparative analysis. Mutations generated by the GSC system were rare in T1 plants but were abundant (30%) in the T2 generation. The vast majority (70%) of the T2 mutant population generated using the UC system were chimeras while the newly developed GSC system produced only 29% chimeras, with 70% of the T2 mutants being heterozygous. Analysis of two loci in the T2 population showed that the abundance of heritable gene mutations was 37% higher in the GSC system compared to the UC system and the level of polymorphism of the mutations was also dramatically increased with the GSC system. Two additional systems based on germ-line-specific promoters (pDD45-GT and pLAT52-GT) were also tested, and one of them was capable of generating heritable homozygous T1 mutant plants. Our results suggest that future application of the described GSC system will facilitate the screening for targeted gene modifications, especially lethal mutations in the T2 population. PMID:26360626

  10. How do plants achieve immunity? Defence without specialized immune cells.

    PubMed

    Spoel, Steven H; Dong, Xinnian

    2012-01-25

    Vertebrates have evolved a sophisticated adaptive immune system that relies on an almost infinite diversity of antigen receptors that are clonally expressed by specialized immune cells that roam the circulatory system. These immune cells provide vertebrates with extraordinary antigen-specific immune capacity and memory, while minimizing self-reactivity. Plants, however, lack specialized mobile immune cells. Instead, every plant cell is thought to be capable of launching an effective immune response. So how do plants achieve specific, self-tolerant immunity and establish immune memory? Recent developments point towards a multilayered plant innate immune system comprised of self-surveillance, systemic signalling and chromosomal changes that together establish effective immunity.

  11. Maintenance and expression of the S. cerevisiae mitochondrial genome--from genetics to evolution and systems biology.

    PubMed

    Lipinski, Kamil A; Kaniak-Golik, Aneta; Golik, Pawel

    2010-01-01

    As a legacy of their endosymbiotic eubacterial origin, mitochondria possess a residual genome, encoding only a few proteins and dependent on a variety of factors encoded by the nuclear genome for its maintenance and expression. As a facultative anaerobe with well understood genetics and molecular biology, Saccharomyces cerevisiae is the model system of choice for studying nucleo-mitochondrial genetic interactions. Maintenance of the mitochondrial genome is controlled by a set of nuclear-coded factors forming intricately interconnected circuits responsible for replication, recombination, repair and transmission to buds. Expression of the yeast mitochondrial genome is regulated mostly at the post-transcriptional level, and involves many general and gene-specific factors regulating splicing, RNA processing and stability and translation. A very interesting aspect of the yeast mitochondrial system is the relationship between genome maintenance and gene expression. Deletions of genes involved in many different aspects of mitochondrial gene expression, notably translation, result in an irreversible loss of functional mtDNA. The mitochondrial genetic system viewed from the systems biology perspective is therefore very fragile and lacks robustness compared to the remaining systems of the cell. This lack of robustness could be a legacy of the reductive evolution of the mitochondrial genome, but explanations involving selective advantages of increased evolvability have also been postulated. Copyright © 2009 Elsevier B.V. All rights reserved.

  12. Translation system engineering in Escherichia coli enhances non-canonical amino acid incorporation into proteins.

    PubMed

    Gan, Rui; Perez, Jessica G; Carlson, Erik D; Ntai, Ioanna; Isaacs, Farren J; Kelleher, Neil L; Jewett, Michael C

    2017-05-01

    The ability to site-specifically incorporate non-canonical amino acids (ncAAs) into proteins has made possible the study of protein structure and function in fundamentally new ways, as well as the bio synthesis of unnatural polymers. However, the task of site-specifically incorporating multiple ncAAs into proteins with high purity and yield continues to present a challenge. At the heart of this challenge lies the lower efficiency of engineered orthogonal translation system components compared to their natural counterparts (e.g., translation elements that specifically use a ncAA and do not interact with the cell's natural translation apparatus). Here, we show that evolving and tuning expression levels of multiple components of an engineered translation system together as a whole enhances ncAA incorporation efficiency. Specifically, we increase protein yield when incorporating multiple p-azido-phenylalanine(pAzF) residues into proteins by (i) evolving the Methanocaldococcus jannaschii p-azido-phenylalanyl-tRNA synthetase anti-codon binding domain, (ii) evolving the elongation factor Tu amino acid-binding pocket, and (iii) tuning the expression of evolved translation machinery components in a single vector. Use of the evolved translation machinery in a genomically recoded organism lacking release factor one enabled enhanced multi-site ncAA incorporation into proteins. We anticipate that our approach to orthogonal translation system development will accelerate and expand our ability to site-specifically incorporate multiple ncAAs into proteins and biopolymers, advancing new horizons for synthetic and chemical biotechnology. Biotechnol. Bioeng. 2017;114: 1074-1086. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. A Potent, Imaging Adenoviral Vector Driven by the Cancer-selective Mucin-1 Promoter That Targets Breast Cancer Metastasis

    PubMed Central

    Huyn, Steven T.; Burton, Jeremy B.; Sato, Makoto; Carey, Michael; Gambhir, Sanjiv S.; Wu, Lily

    2009-01-01

    Purpose With breast cancer, early detection and proper staging are critical, and will often influence both the treatment regimen and the therapeutic outcome for those affected with this disease. Improvements in these areas will play a profound role in reducing mortality from breast cancer. Experimental Design In this work we developed a breast cancer – targeted serotype 5 adenoviral vector, utilizing the tumor-specific mucin-1 promoter in combination with the two-step transcriptional amplification system, a system used to augment the activity of weak tissue – specific promoters. Results We showed the strong specificity of this tumor-selective adenovirus to express the luciferase optical imaging gene, leading to diagnostic signals that enabled detection of sentinel lymph node metastasis of breast cancer. Furthermore, we were able to target hepatic metastases following systemic administration of this mucin-1 selective virus. Conclusions Collectively, we showed that the amplified mucin-1 promoter – driven vector is able to deliver to and selectively express a desirable transgene in metastatic lesions of breast tumors. This work has strong clinical relevance to current diagnostic staging approaches, and could add to targeted therapeutic strategies to advance the fight against breast cancer. PMID:19366829

  14. Tissue-Specific Analysis of Pharmacological Pathways.

    PubMed

    Hao, Yun; Quinnies, Kayla; Realubit, Ronald; Karan, Charles; Tatonetti, Nicholas P

    2018-06-19

    Understanding the downstream consequences of pharmacologically targeted proteins is essential to drug design. Current approaches investigate molecular effects under tissue-naïve assumptions. Many target proteins, however, have tissue-specific expression. A systematic study connecting drugs to target pathways in in vivo human tissues is needed. We introduced a data-driven method that integrates drug-target relationships with gene expression, protein-protein interaction, and pathway annotation data. We applied our method to four independent genomewide expression datasets and built 467,396 connections between 1,034 drugs and 954 pathways in 259 human tissues or cell lines. We validated our results using data from L1000 and Pharmacogenomics Knowledgebase (PharmGKB), and observed high precision and recall. We predicted and tested anticoagulant effects of 22 compounds experimentally that were previously unknown, and used clinical data to validate these effects retrospectively. Our systematic study provides a better understanding of the cellular response to drugs and can be applied to many research topics in systems pharmacology. © 2018 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  15. Support vector machine for automatic pain recognition

    NASA Astrophysics Data System (ADS)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  16. The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression.

    PubMed

    Munch, David; Gupta, Vikas; Bachmann, Asger; Busch, Wolfgang; Kelly, Simon; Mun, Terry; Andersen, Stig Uggerhøj

    2018-02-01

    Nucleotide-binding site leucine-rich repeat resistance genes (NLRs) allow plants to detect microbial effectors. We hypothesized that NLR expression patterns could reflect organ-specific differences in effector challenge and tested this by carrying out a meta-analysis of expression data for 1,235 NLRs from nine plant species. We found stable NLR root/shoot expression ratios within species, suggesting organ-specific hardwiring of NLR expression patterns in anticipation of distinct challenges. Most monocot and dicot plant species preferentially expressed NLRs in roots. In contrast, Brassicaceae species, including oilseed rape ( Brassica napus ) and the model plant Arabidopsis ( Arabidopsis thaliana ), were unique in showing NLR expression skewed toward the shoot across multiple phylogenetically distinct groups of NLRs. The Brassicaceae are also outliers in the sense that they have lost the common symbiosis signaling pathway, which enables intracellular infection by root symbionts. While it is unclear if these two events are related, the NLR expression shift identified here suggests that the Brassicaceae may have evolved unique pattern-recognition receptors and antimicrobial root metabolites to substitute for NLR protection. Such innovations in root protection could potentially be exploited in crop rotation schemes or for enhancing root defense systems of non-Brassicaceae crops. © 2018 American Society of Plant Biologists. All Rights Reserved.

  17. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma.

    PubMed

    Heimberger, Amy B; Archer, Gary E; Crotty, Laura E; McLendon, Roger E; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2002-01-01

    Dendritic cells (DCs) are specialized cells of the immune system that are capable of generating potent immune responses that are active even within the "immunologically privileged" central nervous system. However, immune responses generated by DCs have also been demonstrated to produce clinically significant autoimmunity. Targeting the epidermal growth factor receptor variant III (EGFRvIII), which is a mutation specific to tumor tissue, could eliminate this risk. The purpose of this study was to demonstrate that DC-based immunizations directed solely against this tumor-specific antigen, which is commonly found on tumors that originate within or metastasize to the brain, could be efficacious. C3H mice were vaccinated with DCs mixed with a keyhole limpet hemocyanin conjugate of the tumor-specific peptide, PEP-3, which spans the EGFRvIII mutation, or the random-sequence peptide, PEP-1, and were intracerebrally challenged with a syngeneic melanoma expressing a murine homologue of EGFRvIII. Systemic immunization with DCs mixed with PEP-3-keyhole limpet hemocyanin generated antigen-specific immunity. Among mice challenged with intracerebral tumors, this resulted in an approximately 600% increase in the median survival time (>300 d, P < 0.0016), relative to control values. Sixty-three percent of mice treated with DCs mixed with the tumor-specific peptide survived in the long term and 100% survived rechallenge with tumor, indicating that antitumor immunological memory was also induced. In a murine melanoma model, immunization with DCs mixed with tumor-specific peptide results in an antigen-specific immunological response that recognizes the EGFRvIII mutation, has potent antitumor efficacy against intracerebral tumors that express EGFRvIII, and results in long-lasting antitumor immunity.

  18. Slc7a11 (xCT) protein expression is not altered in the depressed brain and system xc- deficiency does not affect depression-associated behaviour in the corticosterone mouse model.

    PubMed

    Demuyser, Thomas; Deneyer, Lauren; Bentea, Eduard; Albertini, Giulia; Femenia, Teresa; Walrave, Laura; Sato, Hideyo; Danbolt, Niels C; De Bundel, Dimitri; Michotte, Alex; Lindskog, Maria; Massie, Ann; Smolders, Ilse

    2017-09-27

    The cystine/glutamate antiporter (system xc-) is believed to contribute to nonvesicular glutamate release from glial cells in various brain areas. Although recent investigations implicate system xc- in mood disorders, unambiguous evidence has not yet been established. Therefore, we evaluated the possible role of system xc- in the depressive state. We conducted a protein expression analysis of the specific subunit of system xc- (xCT) in brain regions of the corticosterone mouse model, Flinders Sensitive Line rat model and post-mortem tissue of depressed patients. We next subjected system xc- deficient mice to the corticosterone model and analysed their behaviour in several tests. Lastly, we subjected additional cohorts of xCT-deficient and wild-type mice to N-acetylcysteine treatment to unveil whether the previously reported antidepressant-like effects are dependent upon system xc-. We did not detect any changes in xCT expression levels in the animal models or patients compared to proper controls. Furthermore, loss of system xc- had no effect on depression- and anxiety-like behaviour. Finally, the antidepressant-like effects of N-acetylcysteine are not mediated via system xc-. xCT protein expression is not altered in the depressed brain and system xc- deficiency does not affect depression-associated behaviour in the corticosterone mouse model.

  19. Emotional modulation of visual remapping of touch.

    PubMed

    Cardini, Flavia; Bertini, Caterina; Serino, Andrea; Ladavas, Elisabetta

    2012-10-01

    The perception of tactile stimuli on the face is modulated if subjects concurrently observe a face being touched; this effect is termed "visual remapping of touch" or the VRT effect. Given the high social value of this mechanism, we investigated whether it might be modulated by specific key information processed in face-to-face interactions: facial emotional expression. In two separate experiments, participants received tactile stimuli, near the perceptual threshold, either on their right, left, or both cheeks. Concurrently, they watched several blocks of movies depicting a face with a neutral, happy, or fearful expression that was touched or just approached by human fingers (Experiment 1). Participants were asked to distinguish between unilateral and bilateral felt tactile stimulation. Tactile perception was enhanced when viewing touch toward a fearful face compared with viewing touch toward the other two expressions. In order to test whether this result can be generalized to other negative emotions or whether it is a fear-specific effect, we ran a second experiment, where participants watched movies of faces-touched or approached by fingers-with either a fearful or an angry expression (Experiment 2). In line with the first experiment, tactile perception was enhanced when subjects viewed touch toward a fearful face and not toward an angry face. Results of the present experiments are interpreted in light of different mechanisms underlying different emotions recognition, with a specific involvement of the somatosensory system when viewing a fearful expression and a resulting fear-specific modulation of the VRT effect.

  20. APGEN Scheduling: 15 Years of Experience in Planning Automation

    NASA Technical Reports Server (NTRS)

    Maldague, Pierre F.; Wissler, Steve; Lenda, Matthew; Finnerty, Daniel

    2014-01-01

    In this paper, we discuss the scheduling capability of APGEN (Activity Plan Generator), a multi-mission planning application that is part of the NASA AMMOS (Advanced Multi- Mission Operations System), and how APGEN scheduling evolved over its applications to specific Space Missions. Our analysis identifies two major reasons for the successful application of APGEN scheduling to real problems: an expressive DSL (Domain-Specific Language) for formulating scheduling algorithms, and a well-defined process for enlisting the help of auxiliary modeling tools in providing high-fidelity, system-level simulations of the combined spacecraft and ground support system.

  1. Integrative and systemic approaches for evaluating PPARβ/δ (PPARD) function

    PubMed Central

    Giordano Attianese, Greta MP

    2015-01-01

    The peroxisome proliferator-activated receptors (PPARs) are a group of nuclear receptors that function as transcription factors regulating the expression of genes involved in cellular differentiation, development, metabolism and also tumorigenesis. Three PPAR isotypes (α, β/δ and γ) have been identified, among which PPARβ/δ is the most difficult to functionally examine due to its tissue-specific diversity in cell fate determination, energy metabolism and housekeeping activities. PPARβ/δ acts both in a ligand-dependent and -independent manner. The specific type of regulation, activation or repression, is determined by many factors, among which the type of ligand, the presence/absence of PPARβ/δ-interacting corepressor or coactivator complexes and PPARβ/δ protein post-translational modifications play major roles. Recently, new global approaches to the study of nuclear receptors have made it possible to evaluate their molecular activity in a more systemic fashion, rather than deeply digging into a single pathway/function. This systemic approach is ideally suited for studying PPARβ/δ, due to its ubiquitous expression in various organs and its overlapping and tissue-specific transcriptomic signatures. The aim of the present review is to present in detail the diversity of PPARβ/δ function, focusing on the different information gained at the systemic level, and describing the global and unbiased approaches that combine a systems view with molecular understanding. PMID:25945080

  2. [New concepts on the role of cytokines in the central nervous system].

    PubMed

    Jacque, C; Tchélingérian, J L

    1994-11-01

    Initially described as modulatory molecules in the peripheral immune system and during haematopoiesis, several cytokines also play a role in the brain. Their synthesis in the central nervous system (CNS) is not due solely to glial cell activation or invading immune cells. On the one hand, several functions of central neurons are modulated by cytokines such as IL-1, TNF alpha, IL-2 and IL-6. Thus, IL-1 and TNF alpha modulate the synthesis of several neuromediators and modify ion influxes. IL-2 regulates the effects of central dopaminergic neurons on cholinergic, noradrenergic, serotoninergic and glutamatergic functions. On the other hand, neurons have recently been shown to be able to synthesize some of these cytokines under specific traumatic conditions. For example, a lesion to the hippocampus induces neuronal synthesis of IL-1 alpha and TNF alpha. This induction through neuronal circuits may operate at a distance in contrast to the glial reaction operating only locally. The recent demonstration of the expression by central neurons of receptors specific for these cytokines support a potentially crucial role for these molecules in brain function. Some data emerge in the literature demonstrating a potent expression of cytokines in the central nervous system in numerous pathological situations. Then, it appears that, at the interface between nervous and immune systems, cytokines may bear a pivotal role in the development of specific symptoms in neuroimmune diseases.

  3. Evaluation of the Expressiveness of an ICNP-based Nursing Data Dictionary in a Computerized Nursing Record System

    PubMed Central

    Cho, InSook; Park, Hyeoun-Ae

    2006-01-01

    This study evaluated the domain completeness and expressiveness issues of the International Classification for Nursing Practice-based (ICNP) nursing data dictionary (NDD) through its application in an enterprise electronic medical record (EMR) system as a standard vocabulary at a single tertiary hospital in Korea. Data from 2,262 inpatients obtained over a period of 9 weeks (May to July 2003) were extracted from the EMR system for analysis. Among the 530,218 data-input events, 401,190 (75.7%) were entered from the NDD, 20,550 (3.9%) used only free text, and 108,478 (20.4%) used a combination of coded data and free text. A content analysis of the free-text events showed that 80.3% of the expressions could be found in the NDD, whereas 10.9% were context-specific expressions such as direct quotations of patient complaints and responses, and references to the care plan or orders of physicians. A total of 7.8% of the expressions was used for a supplementary purpose such as adding a conjunction or end verb to make an expression appear as natural language. Only 1.0% of the expressions were identified as not being covered by the NDD. This evaluation study demonstrates that the ICNP-based NDD has sufficient power to cover most of the expressions used in a clinical nursing setting. PMID:16622170

  4. Acquisition of a Non-Vocal 'Language' by Aphasic Children

    ERIC Educational Resources Information Center

    Hughes, Jennifer

    1974-01-01

    Aphasic children were taught to communicate via a system of visual symbols devised by Premack (1969) for use with chimpanzees. Subjects readily learned to express several language functions in this way. "Premackese" is seen better viewed as a communication system. It may be that Aphasic children lack some specifically linguistic ability.…

  5. A Study of Information Systems Programs Accredited by ABET in Relation to IS 2010

    ERIC Educational Resources Information Center

    Feinstein, David; Longenecker, Herbert E., Jr.; Shrestha, Dina

    2014-01-01

    This article examines the relationship between ABET CAC standards for undergraduate programs of information systems and IS 2010 curriculum specifications. We have reviewed current institution described course work that identifies course structures from accredited IS programs. The accredited programs all matched the expectations expressed in ABET…

  6. Selective Constraints on Coding Sequences of Nervous System Genes Are a Major Determinant of Duplicate Gene Retention in Vertebrates.

    PubMed

    Roux, Julien; Liu, Jialin; Robinson-Rechavi, Marc

    2017-11-01

    The evolutionary history of vertebrates is marked by three ancient whole-genome duplications: two successive rounds in the ancestor of vertebrates, and a third one specific to teleost fishes. Biased loss of most duplicates enriched the genome for specific genes, such as slow evolving genes, but this selective retention process is not well understood. To understand what drives the long-term preservation of duplicate genes, we characterized duplicated genes in terms of their expression patterns. We used a new method of expression enrichment analysis, TopAnat, applied to in situ hybridization data from thousands of genes from zebrafish and mouse. We showed that the presence of expression in the nervous system is a good predictor of a higher rate of retention of duplicate genes after whole-genome duplication. Further analyses suggest that purifying selection against the toxic effects of misfolded or misinteracting proteins, which is particularly strong in nonrenewing neural tissues, likely constrains the evolution of coding sequences of nervous system genes, leading indirectly to the preservation of duplicate genes after whole-genome duplication. Whole-genome duplications thus greatly contributed to the expansion of the toolkit of genes available for the evolution of profound novelties of the nervous system at the base of the vertebrate radiation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Mucosal and systemic immune responses elicited by recombinant Lactococcus lactis expressing a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis.

    PubMed

    Torkashvand, Ali; Bahrami, Fariborz; Adib, Minoo; Ajdary, Soheila

    2018-05-05

    We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. T-cell immunotherapy for human MK-1-expressing tumors using a fusion protein of the superantigen SEA and anti-MK-1 scFv antibody.

    PubMed

    Ueno, Aruto; Arakawa, Fumiko; Abe, Hironori; Matsumoto, Hisanobu; Kudo, Toshio; Asano, Ryutaro; Tsumoto, Kohei; Kumagai, Izumi; Kuroki, Motomu; Kuroki, Masahide

    2002-01-01

    The bacterial superantigen staphylococcal enterotoxin A (SEA) is an extremely potent activator of T lymphocytes when presented on major histocompatibility complex (MHC) class II molecules. To develop a tumor-specific superantigen for cancer therapy, we constructed a recombinant fusion protein of SEA and the single-chain variable fragment (scFv) of the FU-MK-1 antibody, which recognizes a glycoprotein antigen (termed MK-1 antigen) present on most carcinomas. We employed recombinant DNA techniques to fuse recombinant mutant SEA to an scFv antibody derived from FU-MK-1 and the resulting fusion protein (SEA/FUscFv) was produced by a bacterial expression system, purified with a metal-affinity column, and characterized for its MK-1-binding specificity and its antitumor activity. The SEA/FUscFv fusion protein retained the reactivity with MK-1-expressing tumor cells, introduced a specific cytotoxicity of lymphokine-activated killer T-cells to the tumor cells, and consequently suppressed the tumor growth in a SCID mouse xenograft model. This genetically engineered SEA/FUscFv fusion protein may serve as a potentially useful immunotherapeutic reagent for human MK-1-expressing tumors.

  9. Pattern Genes Suggest Functional Connectivity of Organs

    NASA Astrophysics Data System (ADS)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  10. Evolution under monogamy feminizes gene expression in Drosophila melanogaster.

    PubMed

    Hollis, Brian; Houle, David; Yan, Zheng; Kawecki, Tadeusz J; Keller, Laurent

    2014-03-18

    Many genes have evolved sexually dimorphic expression as a consequence of divergent selection on males and females. However, because the sexes share a genome, the extent to which evolution can shape gene expression independently in each sex is controversial. Here, we use experimental evolution to reveal suboptimal sex-specific expression for much of the genome. By enforcing a monogamous mating system in populations of Drosophila melanogaster for over 100 generations, we eliminated major components of selection on males: female choice and male-male competition. If gene expression is subject to sexually antagonistic selection, relaxed selection on males should cause evolution towards female optima. Monogamous males and females show this pattern of feminization in both the whole-body and head transcriptomes. Genes with male-biased expression patterns evolved decreased expression under monogamy, while genes with female-biased expression evolved increased expression, relative to polygamous populations. Our results demonstrate persistent and widespread evolutionary tension between male and female adaptation.

  11. Spatial pattern of receptor expression in the olfactory epithelium.

    PubMed Central

    Nef, P; Hermans-Borgmeyer, I; Artières-Pin, H; Beasley, L; Dionne, V E; Heinemann, S F

    1992-01-01

    A PCR-based strategy for amplifying putative receptors involved in murine olfaction was employed to isolate a member (OR3) of the seven-transmembrane-domain receptor superfamily. During development, the first cells that express OR3 appear adjacent to the wall of the telencephalic vesicle at embryonic day 10. The OR3 receptor is uniquely expressed in a subset of olfactory cells that have a characteristic bilateral symmetry in the adult olfactory epithelium. This receptor and its specific pattern of expression may serve a functional role in odor coding or, alternatively, may play a role in the development of the olfactory system. Images PMID:1384038

  12. Tissue-specific models of spinal muscular atrophy confirm a critical role of SMN in motor neurons from embryonic to adult stages.

    PubMed

    Laird, Angela S; Mackovski, Nikolce; Rinkwitz, Silke; Becker, Thomas S; Giacomotto, Jean

    2016-05-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disease linked to survival motor neuron (SMN) protein deficiency. While SMN protein is expressed ubiquitously, its deficiency triggers tissue-specific hallmarks, including motor neuron death and muscle atrophy, leading to impaired motor functions and premature death. Here, using stable miR-mediated knockdown technology in zebrafish, we developed the first vertebrate system allowing transgenic spatio-temporal control of the smn1 gene. Using this new model it is now possible to investigate normal and pathogenic SMN function(s) in specific cell types, independently or in synergy with other cell populations. We took advantage of this new system to first test the effect of motor neuron or muscle-specific smn1 silencing. Anti-smn1 miRNA expression in motor neurons, but not in muscles, reproduced SMA hallmarks, including abnormal motor neuron development, poor motor function and premature death. Interestingly, smn1 knockdown in motor neurons also induced severe late-onset phenotypes including scoliosis-like body deformities, weight loss, muscle atrophy and, seen for the first time in zebrafish, reduction in the number of motor neurons, indicating motor neuron degeneration. Taken together, we have developed a new transgenic system allowing spatio-temporal control of smn1 expression in zebrafish, and using this model, we have demonstrated that smn1 silencing in motor neurons alone is sufficient to reproduce SMA hallmarks in zebrafish. It is noteworthy that this research is going beyond SMA as this versatile gene-silencing transgenic system can be used to knockdown any genes of interest, filling the gap in the zebrafish genetic toolbox and opening new avenues to study gene functions in this organism. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Long noncoding RNA in hematopoiesis and immunity.

    PubMed

    Satpathy, Ansuman T; Chang, Howard Y

    2015-05-19

    Dynamic gene expression during cellular differentiation is tightly coordinated by transcriptional and post-transcriptional mechanisms. An emerging theme is the central role of long noncoding RNAs (lncRNAs) in the regulation of this specificity. Recent advances demonstrate that lncRNAs are expressed in a lineage-specific manner and control the development of several cell types in the hematopoietic system. Moreover, specific lncRNAs are induced to modulate innate and adaptive immune responses. lncRNAs can function via RNA-DNA, RNA-RNA, and RNA-protein target interactions. As a result, they affect several stages of gene regulation, including chromatin modification, mRNA biogenesis, and protein signaling. We discuss recent advances, future prospects, and challenges in understanding the roles of lncRNAs in immunity and immune-mediated diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress

    PubMed Central

    Trittermann, Christine; Berger, Bettina; Roy, Stuart J.; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early “osmotic” phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions. PMID:26244554

  15. Expression regulation by a methyl-CpG binding domain in an E. coli based, cell-free TX-TL system

    NASA Astrophysics Data System (ADS)

    Schenkelberger, M.; Shanak, S.; Finkler, M.; Worst, E. G.; Noireaux, V.; Helms, V.; Ott, A.

    2017-04-01

    Cytosine methylation plays an important role in the epigenetic regulation of eukaryotic gene expression. The methyl-CpG binding domain (MBD) is common to a family of eukaryotic transcriptional regulators. How MBD, a stretch of about 80 amino acids, recognizes CpGs in a methylation dependent manner, and as a function of sequence, is only partly understood. Here we show, using an Escherichia coli cell-free expression system, that MBD from the human transcriptional regulator MeCP2 performs as a specific, methylation-dependent repressor in conjunction with the BDNF (brain-derived neurotrophic factor) promoter sequence. Mutation of either base flanking the central CpG pair changes the expression level of the target gene. However, the relative degree of repression as a function of MBD concentration remains unaltered. Molecular dynamics simulations that address the DNA B fiber ratio and the handedness reveal cooperative transitions in the promoter DNA upon MBD binding that correlate well with our experimental observations. We suggest that not only steric hindrance, but also conformational changes of the BDNF promoter as a result of MBD binding are required for MBD to act as a specific inhibitory element. Our work demonstrates that the prokaryotic transcription machinery can reproduce features of epigenetic mammalian transcriptional regulatory elements.

  16. Antitumor activity of cytotoxic T lymphocytes engineered to target vascular endothelial growth factor receptors

    NASA Astrophysics Data System (ADS)

    Niederman, Thomas M. J.; Ghogawala, Zoher; Carter, Bob S.; Tompkins, Hillary S.; Russell, Margaret M.; Mulligan, Richard C.

    2002-05-01

    The demonstration that angiogenesis is required for the growth of solid tumors has fueled an intense interest in the development of new therapeutic strategies that target the tumor vasculature. Here we report the development of an immune-based antiangiogenic strategy that is based on the generation of T lymphocytes that possess a killing specificity for cells expressing vascular endothelial growth factor receptors (VEGFRs). To target VEGFR-expressing cells, recombinant retroviral vectors were generated that encoded a chimeric T cell receptor comprised of VEGF sequences linked to intracellular signaling sequences derived from the chain of the T cell receptor. After transduction of primary murine CD8 lymphocytes by such vectors, the transduced cells were shown to possess an efficient killing specificity for cells expressing the VEGF receptor, Flk-1, as measured by in vitro cytotoxicity assays. After adoptive transfer into tumor-bearing mice, the genetically modified cytotoxic T lymphocytes strongly inhibited the growth of a variety of syngeneic murine tumors and human tumor xenografts. An increased effect on in vivo tumor growth inhibition was seen when this therapy was combined with the systemic administration of TNP-470, a conventional angiogenesis inhibitor. The utilization of the immune system to target angiogenic markers expressed on tumor vasculature may prove to be a powerful means for controlling tumor growth.

  17. Olfactory neuroblastoma in dogs and cats--a histological and immunohistochemical analysis.

    PubMed

    Brosinski, K; Janik, D; Polkinghorne, A; Von Bomhard, W; Schmahl, W

    2012-01-01

    Olfactory neuroblastoma (ONB) was identified in 13 dogs and nine cats. The tumours were subjected to microscopical examination and were graded using a human pathological grading system. In the canine and feline tumours there was more necrosis and higher mitotic activity (mitotic index and Ki67 labelling index) than reported in human ONB. Rosettes were a common feature of feline ONBs. A significant correlation was observed between the histological grade and the Ki67 labelling index. The histopathological diagnosis of ONB was confirmed immunohistochemically by demonstration of the neuronal marker neuron-specific enolase (NSE). Two other neuron-specific antibodies specific for microtubule-associated protein-2 (MAP-2) and neuronal nuclei antigen (NeuN) were evaluated. MAP-2 expression proved to have higher specificity than labelling for NSE. NeuN expression was less sensitive and of limited practical value. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Steroid biotransformations in biphasic systems with Yarrowia lipolytica expressing human liver cytochrome P450 genes

    PubMed Central

    2012-01-01

    Background Yarrowia lipolytica efficiently metabolizes and assimilates hydrophobic compounds such as n-alkanes and fatty acids. Efficient substrate uptake is enabled by naturally secreted emulsifiers and a modified cell surface hydrophobicity and protrusions formed by this yeast. We were examining the potential of recombinant Y. lipolytica as a biocatalyst for the oxidation of hardly soluble hydrophobic steroids. Furthermore, two-liquid biphasic culture systems were evaluated to increase substrate availability. While cells, together with water soluble nutrients, are maintained in the aqueous phase, substrates and most of the products are contained in a second water-immiscible organic solvent phase. Results For the first time we have co-expressed the human cytochromes P450 2D6 and 3A4 genes in Y. lipolytica together with human cytochrome P450 reductase (hCPR) or Y. lipolytica cytochrome P450 reductase (YlCPR). These whole-cell biocatalysts were used for the conversion of poorly soluble steroids in biphasic systems. Employing a biphasic system with the organic solvent and Y. lipolytica carbon source ethyl oleate for the whole-cell bioconversion of progesterone, the initial specific hydroxylation rate in a 1.5 L stirred tank bioreactor was further increased 2-fold. Furthermore, the product formation was significantly prolonged as compared to the aqueous system. Co-expression of the human CPR gene led to a 4-10-fold higher specific activity, compared to the co-overexpression of the native Y. lipolytica CPR gene. Multicopy transformants showed a 50-70-fold increase of activity as compared to single copy strains. Conclusions Alkane-assimilating yeast Y. lipolytica, coupled with the described expression strategies, demonstrated its high potential for biotransformations of hydrophobic substrates in two-liquid biphasic systems. Especially organic solvents which can be efficiently taken up and/or metabolized by the cell might enable more efficient bioconversion as compared to aqueous systems and even enable simple, continuous or at least high yield long time processes. PMID:22876969

  19. Molecular brake pad hypothesis: pulling off the brakes for emotional memory

    PubMed Central

    Vogel-Ciernia, Annie

    2015-01-01

    Under basal conditions histone deacetylases (HDACs) and their associated co-repressor complexes serve as molecular ‘brake pads’ to prevent the gene expression required for long-term memory formation. Following a learning event, HDACs and their co-repressor complexes are removed from a subset of specific gene promoters, allowing the histone acetylation and active gene expression required for long-term memory formation. Inhibition of HDACs increases histone acetylation, extends gene expression profiles, and allows for the formation of persistent long-term memories for training events that are otherwise forgotten. We propose that emotionally salient experiences have utilized this system to form strong and persistent memories for behaviorally significant events. Consequently, the presence or absence of HDACs at a selection of specific gene promoters could serve as a critical barrier for permitting the formation of long-term memories. PMID:23096102

  20. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    PubMed

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  1. Tumor-specific expression of shVEGF and suicide gene as a novel strategy for esophageal cancer therapy.

    PubMed

    Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng

    2016-06-21

    To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.

  2. Immune response induced by oral delivery of Bacillus subtilis spores expressing enolase of Clonorchis sinensis in grass carps (Ctenopharyngodon idellus).

    PubMed

    Jiang, Hongye; Chen, Tingjin; Sun, Hengchang; Tang, Zeli; Yu, Jinyun; Lin, Zhipeng; Ren, Pengli; Zhou, Xinyi; Huang, Yan; Li, Xuerong; Yu, Xinbing

    2017-01-01

    Clonorchiasis, caused by the consumption of raw or undercooked freshwater fish containing infective metacercariae of Clonorchis sinensisis (C.sinensis), remains a common public health problem. New effective prevention strategies are still urgent to control this food-borne infectious disease. The previous studies suggested Bacillus subtilis (B. subtilis) spores was an ideal vaccines delivery system, and the C.sinensis enolase (CsENO) was a potential vaccine candidate against clonorchiasis. In the current study, we detected CsENO-specific IgM levels by ELISA in sera, intestinal mucus and skin mucus in grass carps (Ctenopharyngodon idella) through oral administration with B. subtilis spores surface expressing CsENO. In addition, immune-related genes expression was also measured by qRT-PCR. Grass carps orally treated with B. subtilis spores or normal forages were used as controls. The results of ELISA manifested that specific IgM levels of grass carps in CsENO group in sera, intestine mucus and skin mucus almost significantly increased from week 4 post the first oral administration when compared to the two control groups. The levels of specific IgM reached its peak in intestine mucus firstly, then in sera, and last in skin mucus. qRT-PCR results showed that 5 immune-related genes expression had different degree of rising trend in CsENO group when compared to the two control groups. Our study demonstrated that orally administrated with B. subtilis spores expressing CsENO induced innate and adaptive immunity, systemic and local mucosal immunity, and humoral and cellular immunity. Our work may pave the way to clarify the exact mechanisms of protective efficacy elicited by B. subtilis spores expressing CsENO and provide new ideas for vaccine development against C. sinensis infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity.

    PubMed

    Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter; van Loon, Jack J W A; Muller, Marc

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.

  4. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity

    PubMed Central

    Aceto, Jessica; Nourizadeh-Lillabadi, Rasoul; Marée, Raphael; Dardenne, Nadia; Jeanray, Nathalie; Wehenkel, Louis; Aleström, Peter

    2015-01-01

    Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity. PMID:26061167

  5. Identification of Ind transcription activation and repression domains required for dorsoventral patterning of the CNS.

    PubMed

    Von Ohlen, Tonia L; Moses, Cade

    2009-07-01

    Specification of cell fates across the dorsoventral axis of the central nervous system in Drosophila involves the subdivision of the neuroectoderm into three domains that give rise to three columns of neural precursor cells called neuroblasts. Ventral nervous system defective (Vnd), intermediate neuroblasts defective (Ind) and muscle segment homeobox (Msh) are expressed in the three columns from ventral to dorsal, respectively. The products of these genes play multiple important roles in formation and specification of the embryonic nervous system. Ind, for example, is known to play roles in two important processes. First, Ind is essential for formation of neuroblasts conjunction with SoxB class transcription factors. Sox class transcription factors are known to specify neural stem cells in vertebrates. Second, Ind plays an important role in patterning the CNS in conjunction with, vnd and msh, which is also similar to how vertebrates pattern their neural tube. This work focuses two important aspects of Ind function. First, we used multiple approaches to identify and characterize specific domains within the protein that confer repressor or activator ability. Currently, little is known about the presence of activation or repression domains within Ind. Here, we show that transcriptional repression by Ind requires multiple conserved domains within the protein, and that Ind has a transcriptional activation domain. Specifically, we have identified a novel domain, the Pst domain, that has transcriptional repression ability and appears to act independent of interaction with the co-repressor Groucho. This domain is highly conserved among insect species, but is not found in vertebrate Gsh class homeodomain proteins. Second, we show that Ind can and does repress vnd expression, but does so in a stage specific manner. We conclude from this that the function of Ind in regulating vnd expression is one of refinement and maintenance of the dorsal border.

  6. A Novel Tightly Regulated Gene Expression System for the Human Intestinal Symbiont Bacteroides thetaiotaomicron

    PubMed Central

    Horn, Nikki; Carvalho, Ana L.; Overweg, Karin; Wegmann, Udo; Carding, Simon R.; Stentz, Régis

    2016-01-01

    There is considerable interest in studying the function of Bacteroides species resident in the human gastrointestinal (GI)-tract and the contribution they make to host health. Reverse genetics and protein expression techniques, such as those developed for well-characterized Escherichia coli cannot be applied to Bacteroides species as they and other members of the Bacteriodetes phylum have unique promoter structures. The availability of useful Bacteroides-specific genetic tools is therefore limited. Here we describe the development of an effective mannan-controlled gene expression system for Bacteroides thetaiotaomicron containing the mannan-inducible promoter–region of an α-1,2-mannosidase gene (BT_3784), a ribosomal binding site designed to modulate expression, a multiple cloning site to facilitate the cloning of genes of interest, and a transcriptional terminator. Using the Lactobacillus pepI as a reporter gene, mannan induction resulted in an increase of reporter activity in a time- and concentration-dependent manner with a wide range of activity. The endogenous BtcepA cephalosporinase gene was used to demonstrate the suitability of this novel expression system, enabling the isolation of a His-tagged version of BtCepA. We have also shown with experiments performed in mice that the system can be induced in vivo in the presence of an exogenous source of mannan. By enabling the controlled expression of endogenous and exogenous genes in B. thetaiotaomicron this novel inducer-dependent expression system will aid in defining the physiological role of individual genes and the functional analyses of their products. PMID:27468280

  7. Cancer as quasi-attractor in the gene expression phase space

    NASA Astrophysics Data System (ADS)

    Giuliani, A.

    2017-09-01

    It takes no more than 250 tissue types to build up a metazoan, and each tissue has a specific and largely invariant gene expression signature. This implies the `viable configurations' correspondent to a given activated/inactivated expression pattern over the entire genome are very few. This points to the presence of few `low energy deep valleys' correspondent to the allowed states of the system and is a direct consequence of the fact genes do not work by alone but embedded into genetic expression networks. Statistical thermodynamics formalism focusing on the changes in the degree of correlation of the studied systems allows to detect transition behavior in gene expression phase space resembling the phase transition of physical-chemistry studies. In this realm cancer can be intended as a sort of `parasite' sub-attractor of the corresponding healthy tissue that, in the case of disease, is `kinetically entrapped' into a sub-optimal solution. The consequences of such a state of affair for cancer therapies are potentially huge.

  8. Metazoan tRNA introns generate stable circular RNAs in vivo.

    PubMed

    Lu, Zhipeng; Filonov, Grigory S; Noto, John J; Schmidt, Casey A; Hatkevich, Talia L; Wen, Ying; Jaffrey, Samie R; Matera, A Gregory

    2015-09-01

    We report the discovery of a class of abundant circular noncoding RNAs that are produced during metazoan tRNA splicing. These transcripts, termed tRNA intronic circular (tric)RNAs, are conserved features of animal transcriptomes. Biogenesis of tricRNAs requires anciently conserved tRNA sequence motifs and processing enzymes, and their expression is regulated in an age-dependent and tissue-specific manner. Furthermore, we exploited this biogenesis pathway to develop an in vivo expression system for generating "designer" circular RNAs in human cells. Reporter constructs expressing RNA aptamers such as Spinach and Broccoli can be used to follow the transcription and subcellular localization of tricRNAs in living cells. Owing to the superior stability of circular vs. linear RNA isoforms, this expression system has a wide range of potential applications, from basic research to pharmaceutical science. © 2015 Lu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Tunable Protein Stabilization In Vivo Mediated by Shield-1 in Transgenic Medaka

    PubMed Central

    Froschauer, Alexander; Kube, Lisa; Kegler, Alexandra; Rieger, Christiane; Gutzeit, Herwig O.

    2015-01-01

    Techniques for conditional gene or protein expression are important tools in developmental biology and in the analysis of physiology and disease. On the protein level, the tunable and reversible expression of proteins can be achieved by the fusion of the protein of interest to a destabilizing domain (DD). In the absence of its specific ligand (Shield-1), the protein is degraded by the proteasome. The DD-Shield system has proven to be an excellent tool to regulate the expression of proteins of interests in mammalian systems but has not been applied in teleosts like the medaka. We present the application of the DD-Shield technique in transgenic medaka and show the ubiquitous conditional expression throughout life. Shield-1 administration to the water leads to concentration-dependent induction of a YFP reporter gene in various organs and in spermatogonia at the cellular level. PMID:26148066

  10. Identification of PN1, a Predominant Voltage-Dependent Sodium Channel Expressed Principally in Peripheral Neurons

    NASA Astrophysics Data System (ADS)

    Toledo-Aral, Juan J.; Moss, Brenda L.; He, Zhi-Jun; Koszowski, Adam G.; Whisenand, Teri; Levinson, Simon R.; Wolf, John J.; Silos-Santiago, Inmaculada; Halegoua, Simon; Mandel, Gail

    1997-02-01

    Membrane excitability in different tissues is due, in large part, to the selective expression of distinct genes encoding the voltage-dependent sodium channel. Although the predominant sodium channels in brain, skeletal muscle, and cardiac muscle have been identified, the major sodium channel types responsible for excitability within the peripheral nervous system have remained elusive. We now describe the deduced primary structure of a sodium channel, peripheral nerve type 1 (PN1), which is expressed at high levels throughout the peripheral nervous system and is targeted to nerve terminals of cultured dorsal root ganglion neurons. Studies using cultured PC12 cells indicate that both expression and targeting of PN1 is induced by treatment of the cells with nerve growth factor. The preferential localization suggests that the PN1 sodium channel plays a specific role in nerve excitability.

  11. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.

    PubMed

    Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O

    1994-05-26

    Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.

  12. Large Field Visualization with Demand-Driven Calculation

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.; Henze, Chris

    1999-01-01

    We present a system designed for the interactive definition and visualization of fields derived from large data sets: the Demand-Driven Visualizer (DDV). The system allows the user to write arbitrary expressions to define new fields, and then apply a variety of visualization techniques to the result. Expressions can include differential operators and numerous other built-in functions, ail of which are evaluated at specific field locations completely on demand. The payoff of following a demand-driven design philosophy throughout becomes particularly evident when working with large time-series data, where the costs of eager evaluation alternatives can be prohibitive.

  13. Preferential expression of an ammonium transporter and of two putative nitrate transporters in root hairs of tomato.

    PubMed Central

    Lauter, F R; Ninnemann, O; Bucher, M; Riesmeier, J W; Frommer, W B

    1996-01-01

    Root hairs as specialized epidermal cells represent part of the outermost interface between a plant and its soil environment. They make up to 70% of the root surface and, therefore, are likely to contribute significantly to nutrient uptake. To study uptake systems for mineral nitrogen, three genes homologous to Arabidopsis nitrate and ammonium transporters (AtNrt1 and AtAmt1) were isolated from a root hair-specific tomato cDNA library. Accumulation of LeNrt1-1, LeNrt1-2, and LeAmt1 transcripts was root-specific, with no detectable transcripts in stems or leaves. Expression was root cell type-specific and regulated by nitrogen availability. LeNrt1-2 mRNA accumulation was restricted to root hairs that had been exposed to nitrate. In contrast, LeNrt1-1 transcripts were detected in root hairs as well as other root tissues under all nitrogen treatments applied. Analogous to LeNrt1-1, the gene LeAmt1 was expressed under all nitrogen conditions tested, and root hair-specific mRNA accumulation was highest following exposure to ammonium. Expression of LeAMT1 in an ammonium uptake-deficient yeast strain restored growth on low ammonium medium, confirming its involvement in ammonium transport. Root hair specificity and characteristics of substrate regulation suggest an important role of the three genes in uptake of mineral nitrogen. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8755617

  14. A Machine Learning Approach to Predict Gene Regulatory Networks in Seed Development in Arabidopsis

    PubMed Central

    Ni, Ying; Aghamirzaie, Delasa; Elmarakeby, Haitham; Collakova, Eva; Li, Song; Grene, Ruth; Heath, Lenwood S.

    2016-01-01

    Gene regulatory networks (GRNs) provide a representation of relationships between regulators and their target genes. Several methods for GRN inference, both unsupervised and supervised, have been developed to date. Because regulatory relationships consistently reprogram in diverse tissues or under different conditions, GRNs inferred without specific biological contexts are of limited applicability. In this report, a machine learning approach is presented to predict GRNs specific to developing Arabidopsis thaliana embryos. We developed the Beacon GRN inference tool to predict GRNs occurring during seed development in Arabidopsis based on a support vector machine (SVM) model. We developed both global and local inference models and compared their performance, demonstrating that local models are generally superior for our application. Using both the expression levels of the genes expressed in developing embryos and prior known regulatory relationships, GRNs were predicted for specific embryonic developmental stages. The targets that are strongly positively correlated with their regulators are mostly expressed at the beginning of seed development. Potential direct targets were identified based on a match between the promoter regions of these inferred targets and the cis elements recognized by specific regulators. Our analysis also provides evidence for previously unknown inhibitory effects of three positive regulators of gene expression. The Beacon GRN inference tool provides a valuable model system for context-specific GRN inference and is freely available at https://github.com/BeaconProjectAtVirginiaTech/beacon_network_inference.git. PMID:28066488

  15. Multiple alpha subunits of integrin are involved in cell-mediated responses of the Manduca immune system.

    PubMed

    Zhuang, Shufei; Kelo, Lisha; Nardi, James B; Kanost, Michael R

    2008-01-01

    The cell-mediated responses of the insect innate immune system-phagocytosis, nodulation, encapsulation-involve multiple cell adhesion molecules of hemocyte surfaces. A hemocyte-specific (HS) integrin and a member of the immunoglobulin (Ig) superfamily (neuroglian) are involved in the encapsulation response of hemocytes in Manduca sexta. In addition, two new integrin alpha (alpha) subunits have been found on these hemocytes. The alpha2 subunit is mainly expressed in epidermis and Malphigian tubules, whereas the alpha3 subunit is primarily expressed on hemocytes and fat body cells. Of the three known alpha subunits, the alpha1 subunit found in HS integrin is the predominant subunit of hemocytes. Cell adhesion assays indicate that alpha2 belongs to the integrin family with RGD-binding motifs, confirming the phylogenetic analysis of alpha subunits based on the amino-acid sequence alignment of different alpha subunits. Double-stranded RNAs (dsRNAs) targeting each of these three integrin alpha subunits not only specifically decreased transcript expression of each alpha subunit in hemocytes, but also abolished the cell-mediated encapsulation response of hemocytes to foreign surfaces. The individual alpha subunits of M. sexta integrins, like their integrin counterparts in mammalian immune systems, have critical, individual roles in cell-substrate and cell-cell interactions during immune responses.

  16. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse

    NASA Technical Reports Server (NTRS)

    Tidball, James G.; Spencer, Melissa J.

    2002-01-01

    Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.

  17. Use of in vivo Expression Technology for the Identification of Putative Host Adaptation Factors of the Lyme Disease Spirochete.

    PubMed

    Casselli, Timothy; Bankhead, Troy

    2015-01-01

    The causative agent of Lyme disease, Borrelia burgdorferi, is an obligate parasite that requires either a tick vector or a mammalian host for survival. Identification of the bacterial genes that are specifically expressed during infection of the mammalian host could provide targets for novel therapeutics and vaccines. In vivo expression technology (IVET) is a reporter-based promoter trap system that utilizes selectable markers to identify promoters of bacterial host-specific genes. Using previously characterized genes for in vivo and in vitro selection, this study utilized an IVET system that allows for selection of B. burgdorferi sequences that act as active promoters only during murine infection. This promoter trap system was able to successfully distinguish active promoter sequences both in vivo and in vitro from control sequences and a library of cloned B. burgdorferi genomic fragments. However, a bottleneck effect during the experimental mouse infection limited the utility for genome-wide promoter screening. Overall, IVET was demonstrated as a tool for the identification of in vivo-induced promoter elements of B. burgdorferi, and the observed infection bottleneck apparent using a polyclonal infection pool provides insight into the dynamics of experimental infection with B. burgdorferi. © 2015 S. Karger AG, Basel.

  18. Expression of a calpastatin transgene slows muscle wasting and obviates changes in myosin isoform expression during murine muscle disuse.

    PubMed

    Tidball, James G; Spencer, Melissa J

    2002-12-15

    Muscle wasting is a prominent feature of several systemic diseases, neurological damage and muscle disuse. The contribution of calpain proteases to muscle wasting in any instance of muscle injury or disease has remained unknown because of the inability to specifically perturb calpain activity in vivo. We have generated a transgenic mouse with muscle-specific overexpression of calpastatin, which is the endogenous inhibitor of calpains, and induced muscle atrophy by unloading hindlimb musculature for 10 days. Expression of the transgene resulted in increases in calpastatin concentration in muscle by 30- to 50-fold, and eliminated all calpain activity that was detectable on zymograms. Muscle fibres in ambulatory, transgenic mice were smaller in diameter, but more numerous, so that muscle mass did not differ between transgenic and non-transgenic mice. This is consistent with the role of the calpain-calpastatin system in muscle cell fusion that has been observed in vitro. Overexpression of calpastatin reduced muscle atrophy by 30 % during the 10 day unloading period. In addition, calpastatin overexpression completely prevented the shift in myofibrillar myosin content from slow to fast isoforms, which normally occurs in muscle unloading. These findings indicate that therapeutics directed toward regulating the calpain-calpastatin system may be beneficial in preventing muscle mass loss in muscle injury and disease.

  19. An efficient strategy for producing a stable, replaceable, highly efficient transgene expression system in silkworm, Bombyx mori

    PubMed Central

    Long, Dingpei; Lu, Weijian; Zhang, Yuli; Bi, Lihui; Xiang, Zhonghuai; Zhao, Aichun

    2015-01-01

    We developed an efficient strategy that combines a method for the post-integration elimination of all transposon sequences, a site-specific recombination system, and an optimized fibroin H-chain expression system to produce a stable, replaceable, highly efficient transgene expression system in the silkworm (Bombyx mori) that overcomes the disadvantages of random insertion and post-integration instability of transposons. Here, we generated four different transgenic silkworm strains, and of one the transgenic strains, designated TS1-RgG2, with up to 16% (w/w) of the target protein in the cocoons, was selected. The subsequent elimination of all the transposon sequences from TS1-RgG2 was completed by the heat-shock-induced expression of the transposase in vivo. The resulting transgenic silkworm strain was designated TS3-g2 and contained only the attP-flanked optimized fibroin H-chain expression cassette in its genome. A phiC31/att-system-based recombinase-mediated cassette exchange (RMCE) method could be used to integrate other genes of interest into the same genome locus between the attP sites in TS3-g2. Controlling for position effects with phiC31-mediated RMCE will also allow the optimization of exogenous protein expression and fine gene function analyses in the silkworm. The strategy developed here is also applicable to other lepidopteran insects, to improve the ecological safety of transgenic strains in biocontrol programs. PMID:25739894

  20. Multilevel Regulation of Bacterial Gene Expression with the Combined STAR and Antisense RNA System.

    PubMed

    Lee, Young Je; Kim, Soo-Jung; Moon, Tae Seok

    2018-03-16

    Synthetic small RNA regulators have emerged as a versatile tool to predictably control bacterial gene expression. Owing to their simple design principles, small size, and highly orthogonal behavior, these engineered genetic parts have been incorporated into genetic circuits. However, efforts to achieve more sophisticated cellular functions using RNA regulators have been hindered by our limited ability to integrate different RNA regulators into complex circuits. Here, we present a combined RNA regulatory system in Escherichia coli that uses small transcription activating RNA (STAR) and antisense RNA (asRNA) to activate or deactivate target gene expression in a programmable manner. Specifically, we demonstrated that the activated target output by the STAR system can be deactivated by expressing two different types of asRNAs: one binds to and sequesters the STAR regulator, affecting the transcription process, while the other binds to the target mRNA, affecting the translation process. We improved deactivation efficiencies (up to 96%) by optimizing each type of asRNA and then integrating the two optimized asRNAs into a single circuit. Furthermore, we demonstrated that the combined STAR and asRNA system can control gene expression in a reversible way and can regulate expression of a gene in the genome. Lastly, we constructed and simultaneously tested two A AND NOT B logic gates in the same cell to show sophisticated multigene regulation by the combined system. Our approach establishes a methodology for integrating multiple RNA regulators to rationally control multiple genes.

Top