Sample records for system steady state

  1. Stabilization of a spatially uniform steady state in two systems exhibiting Turing patterns

    NASA Astrophysics Data System (ADS)

    Konishi, Keiji; Hara, Naoyuki

    2018-05-01

    This paper deals with the stabilization of a spatially uniform steady state in two coupled one-dimensional reaction-diffusion systems with Turing instability. This stabilization corresponds to amplitude death that occurs in a coupled system with Turing instability. Stability analysis of the steady state shows that stabilization does not occur if the two reaction-diffusion systems are identical. We derive a sufficient condition for the steady state to be stable for any length of system and any boundary conditions. Our analytical results are supported with numerical examples.

  2. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    DTIC Science & Technology

    2016-08-29

    nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in

  3. Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)

    DTIC Science & Technology

    2016-05-18

    nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics . Nonequilibrium steady states...equilibrium [2], spontaneous relaxation towards equilibrium [3], nonequilibrium steady states generated by fixed thermodynamic forces [4], and stochastic pumps...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences— reaches a steady state in

  4. Quantification of the memory effect of steady-state currents from interaction-induced transport in quantum systems

    NASA Astrophysics Data System (ADS)

    Lai, Chen-Yen; Chien, Chih-Chun

    2017-09-01

    Dynamics of a system in general depends on its initial state and how the system is driven, but in many-body systems the memory is usually averaged out during evolution. Here, interacting quantum systems without external relaxations are shown to retain long-time memory effects in steady states. To identify memory effects, we first show quasi-steady-state currents form in finite, isolated Bose- and Fermi-Hubbard models driven by interaction imbalance and they become steady-state currents in the thermodynamic limit. By comparing the steady-state currents from different initial states or ramping rates of the imbalance, long-time memory effects can be quantified. While the memory effects of initial states are more ubiquitous, the memory effects of switching protocols are mostly visible in interaction-induced transport in lattices. Our simulations suggest that the systems enter a regime governed by a generalized Fick's law and memory effects lead to initial-state-dependent diffusion coefficients. We also identify conditions for enhancing memory effects and discuss possible experimental implications.

  5. Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof

    NASA Astrophysics Data System (ADS)

    Breden, Maxime; Castelli, Roberto

    2018-05-01

    In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.

  6. Pseudo-compressibility methods for the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Arnone, A.

    1993-01-01

    Preconditioning methods to accelerate convergence to a steady state for the incompressible fluid dynamics equations are considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Thus the steady state of the preconditioned system is the same as the steady state of the original system. The method is compared to other types of pseudo-compressibility. For finite difference methods preconditioning can change and improve the steady state solutions. An application to viscous flow around a cascade with a non-periodic mesh is presented.

  7. Steady-state entanglement in levitated optomechanical systems coupled to a higher order excited atomic ensemble

    NASA Astrophysics Data System (ADS)

    Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo

    2017-11-01

    We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.

  8. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  9. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  10. Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws

    PubMed Central

    Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.

    2014-01-01

    True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389

  11. Preconditioning and the limit to the incompressible flow equations

    NASA Technical Reports Server (NTRS)

    Turkel, E.; Fiterman, A.; Vanleer, B.

    1993-01-01

    The use of preconditioning methods to accelerate the convergence to a steady state for both the incompressible and compressible fluid dynamic equations are considered. The relation between them for both the continuous problem and the finite difference approximation is also considered. The analysis relies on the inviscid equations. The preconditioning consists of a matrix multiplying the time derivatives. Hence, the steady state of the preconditioned system is the same as the steady state of the original system. For finite difference methods the preconditioning can change and improve the steady state solutions. An application to flow around an airfoil is presented.

  12. Results of the ETV-1 breadboard tests under steady-state and transient conditions. [conducted in the NASA-LeRC Road Load Simulator

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.; Dustin, M. O.

    1981-01-01

    Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.

  13. Estimating systemic exposure to levonorgestrel from an oral contraceptive.

    PubMed

    Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C; Nandakumar, Renu; Cremers, Serge

    2017-04-01

    The gold standard for measuring oral contraceptive (OC) pharmacokinetics is the 24-h steady-state area under the curve (AUC). We conducted this study to assess whether limited sampling at steady state or measurements following use of one or two OCs could provide an adequate proxy in epidemiological studies for the progestin 24-h steady-state AUC of a particular OC. We conducted a 13-sample, 24-h pharmacokinetic study on both day 1 and day 21 of the first cycle of a monophasic OC containing 30-mcg ethinyl estradiol and 150-mcg levonorgestrel (LNG) in 17 normal-weight healthy White women and a single-dose 9-sample study of the same OC after a 1-month washout. We compared the 13-sample steady-state results with several steady-state and single-dose results calculated using parsimonious sampling schemes. The 13-sample steady-state 24-h LNG AUC was highly correlated with the steady-state 24-h trough value [r=0.95; 95% confidence interval (0.85, 0.98)] and with the steady-state 6-, 8-, 12- and 16-h values (0.92≤r≤0.95). The trough values after one or two doses were moderately correlated with the steady-state 24-h AUC value [r=0.70; 95% CI (0.27, 0.90) and 0.77; 95% CI (0.40, 0.92), respectively]. Single time-point concentrations at steady state and after administration of one or two OCs gave highly to moderately correlated estimates of steady-state LNG AUC. Using such measures could facilitate prospective pharmaco-epidemiologic studies of the OC and its side effects. A single time-point LNG concentration at steady state is an excellent proxy for complete and resource-intensive steady-state AUC measurement. The trough level after two single doses is a fair proxy for steady-state AUC. These results provide practical tools to facilitate large studies to investigate the relationship between systemic LNG exposure and side effects in a real-life setting. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Dissipative production of a maximally entangled steady state of two quantum bits.

    PubMed

    Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J

    2013-12-19

    Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.

  15. Is steady-state capitalism viable? A review of the issues and an answer in the affirmative.

    PubMed

    Lawn, Philip

    2011-02-01

    Most ecological economists believe that the transition to a steady-state economy is necessary to ensure ecological sustainability and to maximize a nation's economic welfare. While some observers agree with the necessity of the steady-state economy, they are nonetheless critical of the suggestion made by ecological economists-in particular, Herman Daly-that a steady-state economy is compatible with a capitalist system. First, they believe that steady-state capitalism is based on the untenable assumption that growth is an optional rather than in-built element of capitalism. Second, they argue that capitalist notions of efficient resource allocation are too restrictive to facilitate the transition to an "ecological" or steady-state economy. I believe these observers are outright wrong with their first criticism and, because they misunderstand Daly's vision of a steady-state economy, are misplaced with their second criticism. The nature of a capitalist system depends upon the institutional framework that supports and shapes it. Hence, a capitalist system can exist in a wide variety of forms. Unfortunately, many observers fail to recognize that the current "growth imperative" is the result of capitalist systems everywhere being institutionally designed to grow. They need not be designed this way to survive and thrive. Indeed, because continued growth is both existentially undesirable and ecologically unsustainable, redesigning capitalist systems through the introduction of Daly-like institutions would prove to be capitalism's savior. What's more, it would constitute humankind's best hope of achieving sustainable development. © 2011 New York Academy of Sciences.

  16. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia

    NASA Astrophysics Data System (ADS)

    Yang, Yuxiao; Shanechi, Maryam M.

    2016-12-01

    Objective. Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. Approach. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. Main results. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. Significance. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  17. An adaptive and generalizable closed-loop system for control of medically induced coma and other states of anesthesia.

    PubMed

    Yang, Yuxiao; Shanechi, Maryam M

    2016-12-01

    Design of closed-loop anesthetic delivery (CLAD) systems is an important topic, particularly for medically induced coma, which needs to be maintained for long periods. Current CLADs for medically induced coma require a separate offline experiment for model parameter estimation, which causes interruption in treatment and is difficult to perform. Also, CLADs may exhibit bias due to inherent time-variation and non-stationarity, and may have large infusion rate variations at steady state. Finally, current CLADs lack theoretical performance guarantees. We develop the first adaptive CLAD for medically induced coma, which addresses these limitations. Further, we extend our adaptive system to be generalizable to other states of anesthesia. We designed general parametric pharmacodynamic, pharmacokinetic and neural observation models with associated guidelines, and derived a novel adaptive controller. We further penalized large steady-state drug infusion rate variations in the controller. We derived theoretical guarantees that the adaptive system has zero steady-state bias. Using simulations that resembled real time-varying and noisy environments, we tested the closed-loop system for control of two different anesthetic states, burst suppression in medically induced coma and unconsciousness in general anesthesia. In 1200 simulations, the adaptive system achieved precise control of both anesthetic states despite non-stationarity, time-variation, noise, and no initial parameter knowledge. In both cases, the adaptive system performed close to a baseline system that knew the parameters exactly. In contrast, a non-adaptive system resulted in large steady-state bias and error. The adaptive system also resulted in significantly smaller steady-state infusion rate variations compared to prior systems. These results have significant implications for clinically viable CLAD design for a wide range of anesthetic states, with potential cost-saving and therapeutic benefits.

  18. A general theory of kinetics and thermodynamics of steady-state copolymerization.

    PubMed

    Shu, Yao-Gen; Song, Yong-Shun; Ou-Yang, Zhong-Can; Li, Ming

    2015-06-17

    Kinetics of steady-state copolymerization has been investigated since the 1940s. Irreversible terminal and penultimate models were successfully applied to a number of comonomer systems, but failed for systems where depropagation is significant. Although a general mathematical treatment of the terminal model with depropagation was established in the 1980s, a penultimate model and higher-order terminal models with depropagation have not been systematically studied, since depropagation leads to hierarchically-coupled and unclosed kinetic equations which are hard to solve analytically. In this work, we propose a truncation method to solve the steady-state kinetic equations of any-order terminal models with depropagation in a unified way, by reducing them into closed steady-state equations which give the exact solution of the original kinetic equations. Based on the steady-state equations, we also derive a general thermodynamic equality in which the Shannon entropy of the copolymer sequence is explicitly introduced as part of the free energy dissipation of the whole copolymerization system.

  19. Hybrid Cascading Outage Analysis of Extreme Events with Optimized Corrective Actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vallem, Mallikarjuna R.; Vyakaranam, Bharat GNVSR; Holzer, Jesse T.

    2017-10-19

    Power system are vulnerable to extreme contingencies (like an outage of a major generating substation) that can cause significant generation and load loss and can lead to further cascading outages of other transmission facilities and generators in the system. Some cascading outages are seen within minutes following a major contingency, which may not be captured exclusively using the dynamic simulation of the power system. The utilities plan for contingencies either based on dynamic or steady state analysis separately which may not accurately capture the impact of one process on the other. We address this gap in cascading outage analysis bymore » developing Dynamic Contingency Analysis Tool (DCAT) that can analyze hybrid dynamic and steady state behavior of the power system, including protection system models in dynamic simulations, and simulating corrective actions in post-transient steady state conditions. One of the important implemented steady state processes is to mimic operator corrective actions to mitigate aggravated states caused by dynamic cascading. This paper presents an Optimal Power Flow (OPF) based formulation for selecting corrective actions that utility operators can take during major contingency and thus automate the hybrid dynamic-steady state cascading outage process. The improved DCAT framework with OPF based corrective actions is demonstrated on IEEE 300 bus test system.« less

  20. Propulsion System Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic System T-MATS

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.

  1. Propulsion System Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; May, Ryan D.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A simulation toolbox has been developed for the creation of both steady-state and dynamic thermodynamic software models. This paper describes the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS), which combines generic thermodynamic and controls modeling libraries with a numerical iterative solver to create a framework for the development of thermodynamic system simulations, such as gas turbine engines. The objective of this paper is to present an overview of T-MATS, the theory used in the creation of the module sets, and a possible propulsion simulation architecture. A model comparison was conducted by matching steady-state performance results from a T-MATS developed gas turbine simulation to a well-documented steady-state simulation. Transient modeling capabilities are then demonstrated when the steady-state T-MATS model is updated to run dynamically.

  2. Low-dimensional Representation of Error Covariance

    NASA Technical Reports Server (NTRS)

    Tippett, Michael K.; Cohn, Stephen E.; Todling, Ricardo; Marchesin, Dan

    2000-01-01

    Ensemble and reduced-rank approaches to prediction and assimilation rely on low-dimensional approximations of the estimation error covariances. Here stability properties of the forecast/analysis cycle for linear, time-independent systems are used to identify factors that cause the steady-state analysis error covariance to admit a low-dimensional representation. A useful measure of forecast/analysis cycle stability is the bound matrix, a function of the dynamics, observation operator and assimilation method. Upper and lower estimates for the steady-state analysis error covariance matrix eigenvalues are derived from the bound matrix. The estimates generalize to time-dependent systems. If much of the steady-state analysis error variance is due to a few dominant modes, the leading eigenvectors of the bound matrix approximate those of the steady-state analysis error covariance matrix. The analytical results are illustrated in two numerical examples where the Kalman filter is carried to steady state. The first example uses the dynamics of a generalized advection equation exhibiting nonmodal transient growth. Failure to observe growing modes leads to increased steady-state analysis error variances. Leading eigenvectors of the steady-state analysis error covariance matrix are well approximated by leading eigenvectors of the bound matrix. The second example uses the dynamics of a damped baroclinic wave model. The leading eigenvectors of a lowest-order approximation of the bound matrix are shown to approximate well the leading eigenvectors of the steady-state analysis error covariance matrix.

  3. Advanced continuous cultivation methods for systems microbiology.

    PubMed

    Adamberg, Kaarel; Valgepea, Kaspar; Vilu, Raivo

    2015-09-01

    Increasing the throughput of systems biology-based experimental characterization of in silico-designed strains has great potential for accelerating the development of cell factories. For this, analysis of metabolism in the steady state is essential as only this enables the unequivocal definition of the physiological state of cells, which is needed for the complete description and in silico reconstruction of their phenotypes. In this review, we show that for a systems microbiology approach, high-resolution characterization of metabolism in the steady state--growth space analysis (GSA)--can be achieved by using advanced continuous cultivation methods termed changestats. In changestats, an environmental parameter is continuously changed at a constant rate within one experiment whilst maintaining cells in the physiological steady state similar to chemostats. This increases the resolution and throughput of GSA compared with chemostats, and, moreover, enables following of the dynamics of metabolism and detection of metabolic switch-points and optimal growth conditions. We also describe the concept, challenge and necessary criteria of the systematic analysis of steady-state metabolism. Finally, we propose that such systematic characterization of the steady-state growth space of cells using changestats has value not only for fundamental studies of metabolism, but also for systems biology-based metabolic engineering of cell factories.

  4. Interplay of interaction and disorder in the steady state of an open quantum system

    NASA Astrophysics Data System (ADS)

    Xu, Xiansong; Guo, Chu; Poletti, Dario

    2018-04-01

    Many types of dissipative processes can be found in nature or be engineered, and their interplay with a system can give rise to interesting phases of matter. Here we study the interplay among interaction, tunneling, and disorder in the steady state of a spin chain coupled to a tailored bath. We consider a dissipation which, in contrast to disorder, tends to generate a homogeneously polarized steady state. We find that the steady state can be highly sensitive even to weak disorder. We also establish that, in the presence of such dissipation, even in the absence of interaction, a finite amount of disorder is needed for localization. Last, we show that for strong disorder the system reveals signatures of localization both in the weakly and strong interacting regimes.

  5. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    PubMed

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  6. Regimes of radiative and nonradiative transitions in transport through an electronic system in a photon cavity reaching a steady state

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Jonsson, Thorsteinn H.; Bernodusson, Maria Laura; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-01-01

    We analyze how a multilevel many-electron system in a photon cavity approaches the steady state when coupled to external leads. When a plunger gate is used to lower cavity photon dressed one- and two-electron states below the bias window defined by the external leads, we can identify one regime with nonradiative transitions dominating the electron transport, and another regime with radiative transitions. Both transitions trap the electrons in the states below the bias bringing the system into a steady state. The order of the two regimes and their relative strength depends on the location of the bias window in the energy spectrum of the system and the initial conditions.

  7. Efficient steady-state solver for hierarchical quantum master equations

    NASA Astrophysics Data System (ADS)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  8. Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints.

    PubMed

    Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan

    2016-08-22

    Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the analysis of the dataset for Raf/MEK/ERK signaling provides novel biological insights regarding the existence of feedback regulation. Many optimization problems considered in systems and computational biology are subject to steady-state constraints. While most optimization methods have convergence problems if these steady-state constraints are highly nonlinear, the methods presented recover the convergence properties of optimizers which can exploit an analytical expression for the parameter-dependent steady state. This renders them an excellent alternative to methods which are currently employed in systems and computational biology.

  9. Pure Gaussian state generation via dissipation: a quantum stochastic differential equation approach.

    PubMed

    Yamamoto, Naoki

    2012-11-28

    Recently, the complete characterization of a general Gaussian dissipative system having a unique pure steady state was obtained. This result provides a clear guideline for engineering an environment such that the dissipative system has a desired pure steady state such as a cluster state. In this paper, we describe the system in terms of a quantum stochastic differential equation (QSDE) so that the environment channels can be explicitly dealt with. Then, a physical meaning of that characterization, which cannot be seen without the QSDE representation, is clarified; more specifically, the nullifier dynamics of any Gaussian system generating a unique pure steady state is passive. In addition, again based on the QSDE framework, we provide a general and practical method to implement a desired dissipative Gaussian system, which has a structure of quantum state transfer.

  10. Steady-state kinetic modeling constrains cellular resting states and dynamic behavior.

    PubMed

    Purvis, Jeremy E; Radhakrishnan, Ravi; Diamond, Scott L

    2009-03-01

    A defining characteristic of living cells is the ability to respond dynamically to external stimuli while maintaining homeostasis under resting conditions. Capturing both of these features in a single kinetic model is difficult because the model must be able to reproduce both behaviors using the same set of molecular components. Here, we show how combining small, well-defined steady-state networks provides an efficient means of constructing large-scale kinetic models that exhibit realistic resting and dynamic behaviors. By requiring each kinetic module to be homeostatic (at steady state under resting conditions), the method proceeds by (i) computing steady-state solutions to a system of ordinary differential equations for each module, (ii) applying principal component analysis to each set of solutions to capture the steady-state solution space of each module network, and (iii) combining optimal search directions from all modules to form a global steady-state space that is searched for accurate simulation of the time-dependent behavior of the whole system upon perturbation. Importantly, this stepwise approach retains the nonlinear rate expressions that govern each reaction in the system and enforces constraints on the range of allowable concentration states for the full-scale model. These constraints not only reduce the computational cost of fitting experimental time-series data but can also provide insight into limitations on system concentrations and architecture. To demonstrate application of the method, we show how small kinetic perturbations in a modular model of platelet P2Y(1) signaling can cause widespread compensatory effects on cellular resting states.

  11. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    NASA Technical Reports Server (NTRS)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  12. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    PubMed

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation where reactor releases are episodic or pulse in nature, even if the magnitude of these releases is small. Copyright © 2012. Published by Elsevier Ltd.

  13. Coherent quantum dynamics in steady-state manifolds of strongly dissipative systems.

    PubMed

    Zanardi, Paolo; Campos Venuti, Lorenzo

    2014-12-12

    Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.

  14. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  15. Steady bipartite coherence induced by non-equilibrium environment

    NASA Astrophysics Data System (ADS)

    Huangfu, Yong; Jing, Jun

    2018-01-01

    We study the steady state of two coupled two-level atoms interacting with a non-equilibrium environment that consists of two heat baths at different temperatures. Specifically, we analyze four cases with respect to the configuration about the interactions between atoms and heat baths. Using secular approximation, the conventional master equation usually neglects steady-state coherence, even when the system is coupled with a non-equilibrium environment. When employing the master equation with no secular approximation, we find that the system coherence in our model, denoted by the off-diagonal terms in the reduced density matrix spanned by the eigenvectors of the system Hamiltonian, would survive after a long-time decoherence evolution. The absolute value of residual coherence in the system relies on different configurations of interaction channels between the system and the heat baths. We find that a large steady quantum coherence term can be achieved when the two atoms are resonant. The absolute value of quantum coherence decreases in the presence of additional atom-bath interaction channels. Our work sheds new light on the mechanism of steady-state coherence in microscopic quantum systems in non-equilibrium environments.

  16. Exact results for Schrödinger cats in driven-dissipative systems and their feedback control

    NASA Astrophysics Data System (ADS)

    Minganti, Fabrizio; Bartolo, Nicola; Lolli, Jared; Casteels, Wim; Ciuti, Cristiano

    2016-05-01

    In quantum optics, photonic Schrödinger cats are superpositions of two coherent states with opposite phases and with a significant number of photons. Recently, these states have been observed in the transient dynamics of driven-dissipative resonators subject to engineered two-photon processes. Here we present an exact analytical solution of the steady-state density matrix for this class of systems, including one-photon losses, which are considered detrimental for the achievement of cat states. We demonstrate that the unique steady state is a statistical mixture of two cat-like states with opposite parity, in spite of significant one-photon losses. The transient dynamics to the steady state depends dramatically on the initial state and can pass through a metastable regime lasting orders of magnitudes longer than the photon lifetime. By considering individual quantum trajectories in photon-counting configuration, we find that the system intermittently jumps between two cats. Finally, we propose and study a feedback protocol based on this behaviour to generate a pure cat-like steady state.

  17. Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state

    PubMed Central

    Niven, Robert K.

    2010-01-01

    This study examines a new formulation of non-equilibrium thermodynamics, which gives a conditional derivation of the ‘maximum entropy production’ (MEP) principle for flow and/or chemical reaction systems at steady state. The analysis uses a dimensionless potential function ϕst for non-equilibrium systems, analogous to the free energy concept of equilibrium thermodynamics. Spontaneous reductions in ϕst arise from increases in the ‘flux entropy’ of the system—a measure of the variability of the fluxes—or in the local entropy production; conditionally, depending on the behaviour of the flux entropy, the formulation reduces to the MEP principle. The inferred steady state is also shown to exhibit high variability in its instantaneous fluxes and rates, consistent with the observed behaviour of turbulent fluid flow, heat convection and biological systems; one consequence is the coexistence of energy producers and consumers in ecological systems. The different paths for attaining steady state are also classified. PMID:20368250

  18. A controls engineering approach for analyzing airplane input-output characteristics

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas

    1991-01-01

    An engineering approach for analyzing airplane control and output characteristics is presented. State-space matrix equations describing the linear perturbation dynamics are transformed from physical coordinates into scaled coordinates. The scaling is accomplished by applying various transformations to the system to employ prior engineering knowledge of the airplane physics. Two different analysis techniques are then explained. Modal analysis techniques calculate the influence of each system input on each fundamental mode of motion and the distribution of each mode among the system outputs. The optimal steady state response technique computes the blending of steady state control inputs that optimize the steady state response of selected system outputs. Analysis of an example airplane model is presented to demonstrate the described engineering approach.

  19. Influence of the hypercycle on the error threshold: a stochastic approach.

    PubMed

    García-Tejedor, A; Sanz-Nuño, J C; Olarrea, J; Javier de la Rubia, F; Montero, F

    1988-10-21

    The role of fluctuations on the error threshold of the hypercycle has been studied by a stochastic approach on a very simplified model. For this model, the master equation was derived and its unique steady state calculated. This state implies the extinction of the system. But the actual time necessary to reach the steady state may be astronomically long whereas for times of experimental interest the system could be near some quasi-stationary states. In order to explore this possibility a Gillespie simulation of the stochastic process has been carried out. These quasi-stationary states correspond to the deterministic steady states of the system. The error threshold shifts towards higher values of the quality factor Q. Moreover, information about the fluctuations around the quasi-stationary states is obtained. The results are discussed in relation to the deterministic states.

  20. Isotopic composition of transpiration and rates of change in leaf water isotopologue storage in response to environmental variables.

    PubMed

    Simonin, Kevin A; Roddy, Adam B; Link, Percy; Apodaca, Randy; Tu, Kevin P; Hu, Jia; Dawson, Todd E; Barbour, Margaret M

    2013-12-01

    During daylight hours, the isotope composition of leaf water generally approximates steady-state leaf water isotope enrichment model predictions. However, until very recently there was little direct confirmation that isotopic steady-state (ISS) transpiration in fact exists. Using isotope ratio infrared spectroscopy (IRIS) and leaf gas exchange systems we evaluated the isotope composition of transpiration and the rate of change in leaf water isotopologue storage (isostorage) when leaves were exposed to variable environments. In doing so, we developed a method for controlling the absolute humidity entering the gas exchange cuvette for a wide range of concentrations without changing the isotope composition of water vapour. The measurement system allowed estimation of (18)O enrichment both at the evaporation site and for bulk leaf water, in the steady state and the non-steady state. We show that non-steady-state effects dominate the transpiration isoflux even when leaves are at physiological steady state. Our results suggest that a variable environment likely prevents ISS transpiration from being achieved and that this effect may be exacerbated by lengthy leaf water turnover times due to high leaf water contents. © 2013 John Wiley & Sons Ltd.

  1. Analysis of Operating Principles with S-system Models

    PubMed Central

    Lee, Yun; Chen, Po-Wei; Voit, Eberhard O.

    2011-01-01

    Operating principles address general questions regarding the response dynamics of biological systems as we observe or hypothesize them, in comparison to a priori equally valid alternatives. In analogy to design principles, the question arises: Why are some operating strategies encountered more frequently than others and in what sense might they be superior? It is at this point impossible to study operation principles in complete generality, but the work here discusses the important situation where a biological system must shift operation from its normal steady state to a new steady state. This situation is quite common and includes many stress responses. We present two distinct methods for determining different solutions to this task of achieving a new target steady state. Both methods utilize the property of S-system models within Biochemical Systems Theory (BST) that steady-states can be explicitly represented as systems of linear algebraic equations. The first method uses matrix inversion, a pseudo-inverse, or regression to characterize the entire admissible solution space. Operations on the basis of the solution space permit modest alterations of the transients toward the target steady state. The second method uses standard or mixed integer linear programming to determine admissible solutions that satisfy criteria of functional effectiveness, which are specified beforehand. As an illustration, we use both methods to characterize alternative response patterns of yeast subjected to heat stress, and compare them with observations from the literature. PMID:21377479

  2. Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities

    USGS Publications Warehouse

    Bohling, Geoffrey C.; Zhan, Xiaoyong; Butler, James J.; Zheng, Li

    2002-01-01

    Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses can be analyzed to reduce this computational burden significantly, the time required to reach steady state will often be too long for practical applications of the tomography concept. In addition, uncertainty regarding the mechanisms driving the system to steady state can propagate to adversely impact the resulting hydraulic conductivity estimates. These disadvantages of a steady state analysis can be overcome by exploiting the simplifications possible under the steady shape flow regime. At steady shape conditions, drawdown varies with time but the hydraulic gradient does not. Thus transient data can be analyzed with the computational efficiency of a steady state model. In this study, we demonstrate the value of the steady shape concept for inversion of hydraulic tomography data and investigate its robustness with respect to improperly specified boundary conditions.

  3. Steady-state and transient analysis of a squeeze film damper bearing for rotor stability

    NASA Technical Reports Server (NTRS)

    Barrett, L. E.; Gunter, E. J.

    1975-01-01

    A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.

  4. An optimizing start-up strategy for a bio-methanator.

    PubMed

    Sbarciog, Mihaela; Loccufier, Mia; Vande Wouwer, Alain

    2012-05-01

    This paper presents an optimizing start-up strategy for a bio-methanator. The goal of the control strategy is to maximize the outflow rate of methane in anaerobic digestion processes, which can be described by a two-population model. The methodology relies on a thorough analysis of the system dynamics and involves the solution of two optimization problems: steady-state optimization for determining the optimal operating point and transient optimization. The latter is a classical optimal control problem, which can be solved using the maximum principle of Pontryagin. The proposed control law is of the bang-bang type. The process is driven from an initial state to a small neighborhood of the optimal steady state by switching the manipulated variable (dilution rate) from the minimum to the maximum value at a certain time instant. Then the dilution rate is set to the optimal value and the system settles down in the optimal steady state. This control law ensures the convergence of the system to the optimal steady state and substantially increases its stability region. The region of attraction of the steady state corresponding to maximum production of methane is considerably enlarged. In some cases, which are related to the possibility of selecting the minimum dilution rate below a certain level, the stability region of the optimal steady state equals the interior of the state space. Aside its efficiency, which is evaluated not only in terms of biogas production but also from the perspective of treatment of the organic load, the strategy is also characterized by simplicity, being thus appropriate for implementation in real-life systems. Another important advantage is its generality: this technique may be applied to any anaerobic digestion process, for which the acidogenesis and methanogenesis are, respectively, characterized by Monod and Haldane kinetics.

  5. Steady- and non-steady-state carbonate-silicate controls on atmospheric CO2

    USGS Publications Warehouse

    Sundquist, E.T.

    1991-01-01

    Two contrasting hypotheses have recently been proposed for the past long-term relation between atmospheric CO2 and the carbonate-silicate geochemical cycle. One approach (Berner, 1990) suggests that CO2 levels have varied in a manner that has maintained chemical weathering and carbonate sedimentation at a steady state with respect to tectonically controlled decarbonation reactions. A second approach (Raymo et al., 1988), applied specificlly to the late Cenozoic, suggests a decrease in CO2 caused by an uplift-induced increase in chemical weathering, without regard to the rate of decarbonation. According to the steady-state (first) hypothesis, increased weathering and carbonate sedimentation are generally associated with increasing atmospheric CO2, whereas the uplift (second) hypothesis implies decreasing CO2 under the same conditions. An ocean-atmosphere-sediment model has been used to assess the response of atmospheric CO2 and carbonate sedimentation to global perturbations in chemical weathering and decarbonation reactions. Although this assessment is theoretical and cannot yet be related to the geologic record, the model simulations compare steady-state and non-steady-state carbonate-silicate cycle response. The e-fold response time of the 'CO2-weathering' feedback mechanism is between 300 and 400 ka. The response of carbonate sedimentation is much more rapid. These response times provide a measure of the strength of steady-state assumptions, and imply that certain systematic relations are sustained throughout steady-state and non-steady-state scenarios for the carbonate-silicate cycle. The simulations suggest that feedbacks can maintain the system near a steady state, but that non-steady-state effects may contribute to long-term trends. The steady-state and uplift hypotheses are not necessarily incompatible over time scales of a few million years. ?? 1991.

  6. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  7. Differences between automatically detected and steady-state fractional flow reserve.

    PubMed

    Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht

    2016-02-01

    Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.

  8. Computing the structural influence matrix for biological systems.

    PubMed

    Giordano, Giulia; Cuba Samaniego, Christian; Franco, Elisa; Blanchini, Franco

    2016-06-01

    We consider the problem of identifying structural influences of external inputs on steady-state outputs in a biological network model. We speak of a structural influence if, upon a perturbation due to a constant input, the ensuing variation of the steady-state output value has the same sign as the input (positive influence), the opposite sign (negative influence), or is zero (perfect adaptation), for any feasible choice of the model parameters. All these signs and zeros can constitute a structural influence matrix, whose (i, j) entry indicates the sign of steady-state influence of the jth system variable on the ith variable (the output caused by an external persistent input applied to the jth variable). Each entry is structurally determinate if the sign does not depend on the choice of the parameters, but is indeterminate otherwise. In principle, determining the influence matrix requires exhaustive testing of the system steady-state behaviour in the widest range of parameter values. Here we show that, in a broad class of biological networks, the influence matrix can be evaluated with an algorithm that tests the system steady-state behaviour only at a finite number of points. This algorithm also allows us to assess the structural effect of any perturbation, such as variations of relevant parameters. Our method is applied to nontrivial models of biochemical reaction networks and population dynamics drawn from the literature, providing a parameter-free insight into the system dynamics.

  9. Pattern Formation in Keller-Segel Chemotaxis Models with Logistic Growth

    NASA Astrophysics Data System (ADS)

    Jin, Ling; Wang, Qi; Zhang, Zengyan

    In this paper, we investigate pattern formation in Keller-Segel chemotaxis models over a multidimensional bounded domain subject to homogeneous Neumann boundary conditions. It is shown that the positive homogeneous steady state loses its stability as chemoattraction rate χ increases. Then using Crandall-Rabinowitz local theory with χ being the bifurcation parameter, we obtain the existence of nonhomogeneous steady states of the system which bifurcate from this homogeneous steady state. Stability of the bifurcating solutions is also established through rigorous and detailed calculations. Our results provide a selection mechanism of stable wavemode which states that the only stable bifurcation branch must have a wavemode number that minimizes the bifurcation value. Finally, we perform extensive numerical simulations on the formation of stable steady states with striking structures such as boundary spikes, interior spikes, stripes, etc. These nontrivial patterns can model cellular aggregation that develop through chemotactic movements in biological systems.

  10. Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment.

    PubMed

    Astumian, R D

    2018-01-11

    In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.

  11. Estimating Systemic Exposure to Levonorgestrel from an Oral Contraceptive

    PubMed Central

    Basaraba, Cale N; Westhoff, Carolyn L; Pike, Malcolm C; Nandakumar, Renu; Cremers, Serge

    2017-01-01

    Objective The gold standard for measuring oral contraceptive (OC) pharmacokinetics is the 24-hour steady-state area-under-the-curve (AUC). We conducted this study to assess whether limited sampling at steady state or measurements following use of one or two OCs could provide an adequate proxy in epidemiological studies for the progestin 24-hour steady-state AUC of a particular OC. Study Design We conducted a 13-sample, 24-hour pharmacokinetic study on both day 1 and day 21 of the first cycle of a monophasic OC containing 30 μg ethinyl estradiol and 150 μg levonorgestrel (LNG) in 17 normal-weight healthy white women, and a single-dose 9-sample study of the same OC after a one-month washout. We compared the 13-sample steady-state results with several steady-state and single-dose results calculated using parsimonious sampling schemes. Results The 13-sample steady-state 24-hour LNG AUC was highly correlated with the steady-state 24-hour trough value (r = 0.95; 95% CI [0.85, 0.98]) and with the steady-state 6, 8, 12 and 16-hour values (0.92 ≤ r ≤ 0.95). The trough values after one or two doses were moderately correlated with the steady-state 24-hour AUC value (r = 0.70; 95% CI [0.27, 0.90] and 0.77; 95% CI [0.40, 0.92], respectively). Conclusions Single time-point concentrations at steady-state and after administration of one or two OCs gave highly to moderately correlated estimates of steady-state LNG AUC. Using such measures could facilitate prospective pharmaco-epidemiologic studies of the OC and its side effects. PMID:28041990

  12. A stability analysis of the power-law steady state of marine size spectra.

    PubMed

    Datta, Samik; Delius, Gustav W; Law, Richard; Plank, Michael J

    2011-10-01

    This paper investigates the stability of the power-law steady state often observed in marine ecosystems. Three dynamical systems are considered, describing the abundance of organisms as a function of body mass and time: a "jump-growth" equation, a first order approximation which is the widely used McKendrick-von Foerster equation, and a second order approximation which is the McKendrick-von Foerster equation with a diffusion term. All of these yield a power-law steady state. We derive, for the first time, the eigenvalue spectrum for the linearised evolution operator, under certain constraints on the parameters. This provides new knowledge of the stability properties of the power-law steady state. It is shown analytically that the steady state of the McKendrick-von Foerster equation without the diffusion term is always unstable. Furthermore, numerical plots show that eigenvalue spectra of the McKendrick-von Foerster equation with diffusion give a good approximation to those of the jump-growth equation. The steady state is more likely to be stable with a low preferred predator:prey mass ratio, a large diet breadth and a high feeding efficiency. The effects of demographic stochasticity are also investigated and it is concluded that these are likely to be small in real systems.

  13. MATHEMATICAL ANALYSIS OF STEADY-STATE SOLUTIONS IN COMPARTMENT AND CONTINUUM MODELS OF CELL POLARIZATION

    PubMed Central

    ZHENG, ZHENZHEN; CHOU, CHING-SHAN; YI, TAU-MU; NIE, QING

    2013-01-01

    Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together these results furnish a detailed description of the factors that influence the tradeoff between a single correctly aligned but poorly polarized stable steady-state solution versus multiple more highly polarized stable steady-state solutions that may be incorrectly aligned with the external gradient. PMID:21936604

  14. Response of a small-turboshaft-engine compression system to inlet temperature distortion

    NASA Technical Reports Server (NTRS)

    Biesiadny, T. J.; Klann, G. A.; Little, J. K.

    1984-01-01

    An experimental investigation was conducted into the response of a small-turboshaft-engine compression system to steady-state and transient inlet temperature distortions. Transient temperature ramps range from less than 100 K/sec to above 610 K/sec and generated instantaneous temperatures to 420 K above ambient. Steady-state temperature distortion levels were limited by the engine hardware temperature list. Simple analysis of the steady-state distortion data indicated that a particle separator at the engine inlet permitted higher levels of temperature distortion before onset of compressor surge than would be expected without the separator.

  15. A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Litt, Jonathan S.

    2010-01-01

    This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.

  16. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  17. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  18. Toward quantitative estimation of material properties with dynamic mode atomic force microscopy: a comparative study.

    PubMed

    Ghosal, Sayan; Gannepalli, Anil; Salapaka, Murti

    2017-08-11

    In this article, we explore methods that enable estimation of material properties with the dynamic mode atomic force microscopy suitable for soft matter investigation. The article presents the viewpoint of casting the system, comprising of a flexure probe interacting with the sample, as an equivalent cantilever system and compares a steady-state analysis based method with a recursive estimation technique for determining the parameters of the equivalent cantilever system in real time. The steady-state analysis of the equivalent cantilever model, which has been implicitly assumed in studies on material property determination, is validated analytically and experimentally. We show that the steady-state based technique yields results that quantitatively agree with the recursive method in the domain of its validity. The steady-state technique is considerably simpler to implement, however, slower compared to the recursive technique. The parameters of the equivalent system are utilized to interpret storage and dissipative properties of the sample. Finally, the article identifies key pitfalls that need to be avoided toward the quantitative estimation of material properties.

  19. Heat control in opto-mechanical system using quantum non-classicality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sushamana, E-mail: sushmana.sharma@jietjodhpur.ac.in; Senwar, Subash, E-mail: subashsenwar30@gmail.com

    2016-05-06

    Cooling of matter to the quantum ground state is a primary directive of quantum control. In other words, to extract entropy from a quantum system, efficient indirect quantum measurements may be implemented. The main objective is the cooling of the oscillator either to its motional ground state or to non-classical states, such as low-number Fock states, squeezed states or entangled states. It is shown that the use of quantum control procedure is better choice for even experimental realizations because it leads to a squeezed steady state with less than one phonon on average. The steady state of system corresponds tomore » cooling of the system.« less

  20. Polaron effects on the performance of light-harvesting systems: a quantum heat engine perspective

    NASA Astrophysics Data System (ADS)

    Xu, Dazhi; Wang, Chen; Zhao, Yang; Cao, Jianshu

    2016-02-01

    We explore energy transfer in a generic three-level system, which is coupled to three non-equilibrium baths. Built on the concept of quantum heat engine, our three-level model describes non-equilibrium quantum processes including light-harvesting energy transfer, nano-scale heat transfer, photo-induced isomerization, and photovoltaics in double quantum-dots. In the context of light-harvesting, the excitation energy is first pumped up by sunlight, then is transferred via two excited states which are coupled to a phonon bath, and finally decays to the reaction center. The efficiency of this process is evaluated by steady state analysis via a polaron-transformed master equation; thus the entire range of the system-phonon coupling strength can be covered. We show that the coupling with the phonon bath not only modifies the steady state, resulting in population inversion, but also introduces a finite steady state coherence which optimizes the energy transfer flux and efficiency. In the strong coupling limit, the steady state coherence disappears and the efficiency recovers the heat engine limit given by Scovil and Schultz-Dubois (1959 Phys. Rev. Lett. 2 262).

  1. Dynamical modelling of haematopoiesis: an integrated view over the system in homeostasis and under perturbation.

    PubMed

    Manesso, Erica; Teles, José; Bryder, David; Peterson, Carsten

    2013-03-06

    A very high number of different types of blood cells must be generated daily through a process called haematopoiesis in order to meet the physiological requirements of the organism. All blood cells originate from a population of relatively few haematopoietic stem cells residing in the bone marrow, which give rise to specific progenitors through different lineages. Steady-state dynamics are governed by cell division and commitment rates as well as by population sizes, while feedback components guarantee the restoration of steady-state conditions. In this study, all parameters governing these processes were estimated in a computational model to describe the haematopoietic hierarchy in adult mice. The model consisted of ordinary differential equations and included negative feedback regulation. A combination of literature data, a novel divide et impera approach for steady-state calculations and stochastic optimization allowed one to reduce possible configurations of the system. The model was able to recapitulate the fundamental steady-state features of haematopoiesis and simulate the re-establishment of steady-state conditions after haemorrhage and bone marrow transplantation. This computational approach to the haematopoietic system is novel and provides insight into the dynamics and the nature of possible solutions, with potential applications in both fundamental and clinical research.

  2. The Markov process admits a consistent steady-state thermodynamic formalism

    NASA Astrophysics Data System (ADS)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  3. A Process for the Creation of T-MATS Propulsion System Models from NPSS data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink (Math Works, Inc.) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  4. A Process for the Creation of T-MATS Propulsion System Models from NPSS Data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Trademark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  5. A Process for the Creation of T-MATS Propulsion System Models from NPSS Data

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2014-01-01

    A modular thermodynamic simulation package called the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) has been developed for the creation of dynamic simulations. The T-MATS software is designed as a plug-in for Simulink(Registered TradeMark) and allows a developer to create system simulations of thermodynamic plants (such as gas turbines) and controllers in a single tool. Creation of such simulations can be accomplished by matching data from actual systems, or by matching data from steady state models and inserting appropriate dynamics, such as the rotor and actuator dynamics for an aircraft engine. This paper summarizes the process for creating T-MATS turbo-machinery simulations using data and input files obtained from a steady state model created in the Numerical Propulsion System Simulation (NPSS). The NPSS is a thermodynamic simulation environment that is commonly used for steady state gas turbine performance analysis. Completion of all the steps involved in the process results in a good match between T-MATS and NPSS at several steady state operating points. Additionally, the T-MATS model extended to run dynamically provides the possibility of simulating and evaluating closed loop responses.

  6. The Completion of Non-Steady-State Queue Model on The Queue System in Dr. Yap Eye Hospital Yogyakarta

    NASA Astrophysics Data System (ADS)

    Helmi Manggala Putri, Arum; Subekti, Retno; Binatari, Nikenasih

    2017-06-01

    Dr Yap Eye Hospital Yogyakarta is one of the most popular reference eye hospitals in Yogyakarta. There are so many patients coming from other cities and many of them are BPJS (Badan Penyelenggara Jaminan Sosial, Social Security Administrative Bodies) patients. Therefore, it causes numerous BPJS patients were in long queue at counter C of the registration section so that it needs to be analysed using queue system. Queue system analysis aims to give queue model overview and determine its effectiveness measure. The data collecting technique used in this research are by interview and observation. After getting the arrival data and the service data of BPJS patients per 5 minutes, the next steps are investigating steady-state condition, examining the Poisson distribution, determining queue models, and counting the effectiveness measure. Based on the result of data observation on Tuesday, February 16th, 2016, it shows that the queue system at counter C has (M/M/1):(GD/∞/∞) queue model. The analysis result in counter C shows that the queue system is a non-steady-state condition. Three ways to cope a non-steady-state problem on queue system are proposed in this research such as bounding the capacity of queue system, adding the servers, and doing Monte Carlo simulation. The queue system in counter C will reach steady-state if the capacity of patients is not more than 52 BPJS patients or adding one more server. By using Monte Carlo simulation, it shows that the effectiveness measure of the average waiting time for BPJS patients in counter C is 36 minutes 65 seconds. In addition, the average queue length of BPJS patients is 11 patients.

  7. Temperature field of dielectric films under continuous ion-beam irradiation

    NASA Astrophysics Data System (ADS)

    Salikhov, T. Kh.; Abdurahmonov, A. A.

    2017-11-01

    In the present study, we theoretically examine the formation process of the steady-state temperature field in dielectrics under irradiation with a continuous ion beam in air with allowance for the temperature dependence of thermophysical quantities. Analytical expressions for the temperature field were obtained. An interconnected system of nonlinear algebraic equations for the steady-state temperatures at the front (irradiated) and rear surfaces of the sample, and the steady-state temperature at the interface between the ion-damaged and non-damaged region was obtained; by numerical solution of this system, a nonlinear dependence of the mentioned temperatures on the characteristics of incident ion flux was revealed.

  8. ESTIMATING SYSTEMIC EXPOSURE TO ETHINYL ESTRADIOL FROM AN ORAL CONTRACEPTIVE

    PubMed Central

    WESTHOFF, Carolyn L.; PIKE, Malcolm C.; TANG, Rosalind; DINAPOLI, Marianne N.; SULL, Monica; CREMERS, Serge

    2015-01-01

    Objectives This study was conducted to compare single-dose pharmacokinetics of ethinyl estradiol in an oral contraceptive to steady-state values, and to assess whether any simpler measures could provide an adequate proxy of the ‘gold standard’ 24-hour steady-state area-under-the-curve. Identifying a simple, less expensive, measure of systemic ethinyl estradiol exposure would be useful for larger studies designed to assess the relationship between an individual’s ethinyl estradiol exposure and her side effects. Study Design We conducted a 13 samples over 24 hours pharmacokinetic analysis on day 1 and day 21 of the first cycle of a monophasic oral contraceptive containing 30 mcg ethinyl estradiol and 150 mcg levonorgestrel in 17 non-obese healthy white women. We also conducted an abbreviated single dose 9-sample pharmacokinetic analysis after a month washout. Ethinyl estradiol was measured by liquid chromatography-tandem mass spectrometry. We compared results of full 13-sample steady-state pharmacokinetic analysis with results calculated using fewer samples (9 or 5) and following the single doses. We calculated Pearson correlation coefficients to evaluate the relationships between these estimates of systemic ethinyl estradiol exposure. Results The area-under-the-curve, maximum (Cmax), and 24-hour (C24) values were similar following the two single oral contraceptive doses (area-under-the-curve, r = 0.92). The steady-state 13-sample 24-hour area-under-the-curve was highly correlated with the average 9-sample area-under-the-curve after the two single doses (r = 0.81, p = 0.0002). This correlation remained the same if the number of samples was reduced to 4, taken at time 1, 2.5, 4 and 24 hours. The C24 at steady-state was highly correlated with the 24-hour steady-state area-under-the-curve (r = 0.92, p < 0.0001). The average of the C24 values following the two single doses was also quite highly correlated with the steady-state area-under-the-curve (r = 0.72, p = 0.0026). Conclusions Limited blood sampling, including results from two single doses, gave highly correlated estimates of an oral contraceptive user’s steady-state ethinyl estradiol exposure. PMID:25511238

  9. Estimating systemic exposure to ethinyl estradiol from an oral contraceptive.

    PubMed

    Westhoff, Carolyn L; Pike, Malcolm C; Tang, Rosalind; DiNapoli, Marianne N; Sull, Monica; Cremers, Serge

    2015-05-01

    This study was conducted to compare single-dose pharmacokinetics of ethinyl estradiol in an oral contraceptive with steady-state values and to assess whether any simpler measures could provide an adequate proxy of the "gold standard" 24-hour steady-state area under the curve (AUC) value. Identification of a simple, less expensive measure of systemic ethinyl estradiol exposure would be useful for larger studies that are designed to assess the relationship between an individual's ethinyl estradiol exposure and side-effects. We collected 13 samples over 24 hours for pharmacokinetic analysis on days 1 and 21 of the first cycle of a monophasic oral contraceptive that contained 30 μg ethinyl estradiol and 150 μg levonorgestrel in 17 nonobese healthy white women. We also conducted an abbreviated single-dose 9-sample pharmacokinetic analysis after a month washout. Ethinyl estradiol was measured by liquid chromatography-tandem mass spectrometry. We compared results of a full 13-sample steady-state pharmacokinetic analysis with results that had been calculated with the use of fewer samples (9 or 5) and after the single doses. We calculated Pearson correlation coefficients to evaluate the relationships between these estimates of systemic ethinyl estradiol exposure. The AUC, maximum, and 24-hour values were similar after the 2 single oral contraceptive doses (AUC; r=0.92). The steady-state 13-sample 24-hour AUC value was correlated highly with the average 9-sample AUC value after the 2 single doses (r=0.81; P=.0002). This correlation remained the same if the number of single-dose samples was reduced to 4, taken at time 1, 2.5, 4, and 24 hours. The 24-hour value at steady-state was correlated highly with the 24-hour steady-state AUC value (r=0.92; P<.0001). The average of the 24-hour values after the 2 single doses was also correlated quite highly with the steady-state AUC value (r=0.72; P=.0026). Limited blood sampling, including results from 2 single doses, gave highly correlated estimates of an oral contraceptive user's steady-state ethinyl estradiol exposure. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Summary and evaluation of the Strategic Defense Initiative Space Power Architecture Study

    NASA Technical Reports Server (NTRS)

    Edenburn, M. (Editor); Smith, J. M. (Editor)

    1989-01-01

    The Space Power Architecture Study (SPAS) identified and evaluated power subsystem options for multimegawatt electric (MMWE) space based weapons and surveillance platforms for the Strategic Defense Initiative (SDI) applications. Steady state requirements of less than 1 MMWE are adequately covered by the SP-100 nuclear space power program and hence were not addressed in the SPAS. Four steady state power systems less than 1 MMWE were investigated with little difference between them on a mass basis. The majority of the burst power systems utilized H(2) from the weapons and were either closed (no effluent), open (effluent release) or steady state with storage (no effluent). Closed systems used nuclear or combustion heat source with thermionic, Rankine, turboalternator, fuel cell and battery conversion devices. Open systems included nuclear or combustion heat sources using turboalternator, magnetohydrodynamic, fuel cell or battery power conversion devices. The steady state systems with storage used the SP-100 or Star-M reactors as energy sources and flywheels, fuel cells or batteries to store energy for burst applications. As with other studies the open systems are by far the lightest, most compact and simplist (most reliable) systems. However, unlike other studies the SPAS studied potential platform operational problems caused by effluents or vibration.

  11. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mod...

  12. New steady-state models for water-limited cropping systems using saline irrigation waters: Analytical solutions and applications

    USDA-ARS?s Scientific Manuscript database

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems mode...

  13. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    PubMed

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem.

  14. Steady state analysis of Boolean molecular network models via model reduction and computational algebra

    PubMed Central

    2014-01-01

    Background A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. Results This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. Conclusions The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for large Boolean networks with high average connectivity remains an open problem. PMID:24965213

  15. Absolute Steady-State Thermal Conductivity Measurements by Use of a Transient Hot-Wire System.

    PubMed

    Roder, H M; Perkins, R A; Laesecke, A; Nieto de Castro, C A

    2000-01-01

    A transient hot-wire apparatus was used to measure the thermal conductivity of argon with both steady-state and transient methods. The effects of wire diameter, eccentricity of the wire in the cavity, axial conduction, and natural convection were accounted for in the analysis of the steady-state measurements. Based on measurements on argon, the relative uncertainty at the 95 % level of confidence of the new steady-state measurements is 2 % at low densities. Using the same hot wires, the relative uncertainty of the transient measurements is 1 % at the 95 % level of confidence. This is the first report of thermal conductivity measurements made by two different methods in the same apparatus. The steady-state method is shown to complement normal transient measurements at low densities, particularly for fluids where the thermophysical properties at low densities are not known with high accuracy.

  16. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.

    2013-12-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.

  17. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.

    PubMed

    Schmideder, Andreas; Severin, Timm Steffen; Cremer, Johannes Heinrich; Weuster-Botz, Dirk

    2015-09-20

    A pH-controlled parallel stirred-tank bioreactor system was modified for parallel continuous cultivation on a 10 mL-scale by connecting multichannel peristaltic pumps for feeding and medium removal with micro-pipes (250 μm inner diameter). Parallel chemostat processes with Escherichia coli as an example showed high reproducibility with regard to culture volume and flow rates as well as dry cell weight, dissolved oxygen concentration and pH control at steady states (n=8, coefficient of variation <5%). Reliable estimation of kinetic growth parameters of E. coli was easily achieved within one parallel experiment by preselecting ten different steady states. Scalability of milliliter-scale steady state results was demonstrated by chemostat studies with a stirred-tank bioreactor on a liter-scale. Thus, parallel and continuously operated stirred-tank bioreactors on a milliliter-scale facilitate timesaving and cost reducing steady state studies with microorganisms. The applied continuous bioreactor system overcomes the drawbacks of existing miniaturized bioreactors, like poor mass transfer and insufficient process control. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.

    PubMed

    Salis, Howard; Kaznessis, Yiannis N

    2005-12-01

    Stochastic chemical kinetics more accurately describes the dynamics of "small" chemical systems, such as biological cells. Many real systems contain dynamical stiffness, which causes the exact stochastic simulation algorithm or other kinetic Monte Carlo methods to spend the majority of their time executing frequently occurring reaction events. Previous methods have successfully applied a type of probabilistic steady-state approximation by deriving an evolution equation, such as the chemical master equation, for the relaxed fast dynamics and using the solution of that equation to determine the slow dynamics. However, because the solution of the chemical master equation is limited to small, carefully selected, or linear reaction networks, an alternate equation-free method would be highly useful. We present a probabilistic steady-state approximation that separates the time scales of an arbitrary reaction network, detects the convergence of a marginal distribution to a quasi-steady-state, directly samples the underlying distribution, and uses those samples to accurately predict the state of the system, including the effects of the slow dynamics, at future times. The numerical method produces an accurate solution of both the fast and slow reaction dynamics while, for stiff systems, reducing the computational time by orders of magnitude. The developed theory makes no approximations on the shape or form of the underlying steady-state distribution and only assumes that it is ergodic. We demonstrate the accuracy and efficiency of the method using multiple interesting examples, including a highly nonlinear protein-protein interaction network. The developed theory may be applied to any type of kinetic Monte Carlo simulation to more efficiently simulate dynamically stiff systems, including existing exact, approximate, or hybrid stochastic simulation techniques.

  19. Crisis Management.

    ERIC Educational Resources Information Center

    Hore, Terry

    1978-01-01

    Problems of "steady state" institutions and techniques of management that have implications for Monash University, Australia are considered. The term "steady state" is used to indicate a lack of additional funds being injected into the system to promote growth and/or development. A trend toward public accountability in higher…

  20. Bistability and State Transition of a Delay Differential Equation Model of Neutrophil Dynamics

    NASA Astrophysics Data System (ADS)

    Ma, Suqi; Zhu, Kaiyi; Lei, Jinzhi

    This paper studies the existence of bistable states and control strategies to induce state transitions of a delay differential equation model of neutrophil dynamics. We seek the conditions that a stable steady state and an oscillatory state coexist in the neutrophil dynamical system. Physiologically, stable steady state represents the healthy state, while oscillatory state is usually associated with diseases such as cyclical neutropenia. We study the control strategies to induce the transitions from the disease state to the healthy state by introducing temporal perturbations to system parameters. This study is valuable in designing clinical protocols for the treatment of cyclical neutropenia.

  1. Fast cooling for a system of stochastic oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yongxin, E-mail: chen2468@umn.edu; Georgiou, Tryphon T., E-mail: tryphon@umn.edu; Pavon, Michele, E-mail: pavon@math.unipd.it

    2015-11-15

    We study feedback control of coupled nonlinear stochastic oscillators in a force field. We first consider the problem of asymptotically driving the system to a desired steady state corresponding to reduced thermal noise. Among the feedback controls achieving the desired asymptotic transfer, we find that the most efficient one from an energy point of view is characterized by time-reversibility. We also extend the theory of Schrödinger bridges to this model, thereby steering the system in finite time and with minimum effort to a target steady-state distribution. The system can then be maintained in this state through the optimal steady-state feedbackmore » control. The solution, in the finite-horizon case, involves a space-time harmonic function φ, and −logφ plays the role of an artificial, time-varying potential in which the desired evolution occurs. This framework appears extremely general and flexible and can be viewed as a considerable generalization of existing active control strategies such as macromolecular cooling. In the case of a quadratic potential, the results assume a form particularly attractive from the algorithmic viewpoint as the optimal control can be computed via deterministic matricial differential equations. An example involving inertial particles illustrates both transient and steady state optimal feedback control.« less

  2. Using steady-state equations for transient flow calculation in natural gas pipelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, R.N.; Zhou, P.

    1984-04-02

    Maddox and Zhou have extended their technique for calculating the unsteady-state behavior of straight gas pipelines to complex pipeline systems and networks. After developing the steady-state flow rate and pressure profile for each pipe in the network, analysts can perform the transient-state analysis in the real-time step-wise manner described for this technique.

  3. Characterization of the space shuttle reaction control system engine

    NASA Technical Reports Server (NTRS)

    Wilson, M. S.; Stechman, R. C.; Edelman, R. B.; Fortune, O. F.; Economos, C.

    1972-01-01

    A computer program was developed and written in FORTRAN 5 which predicts the transient and steady state performance and heat transfer characteristics of a pulsing GO2/GH2 rocket engine. This program predicts the dynamic flow and ignition characteristics which, when combined in a quasi-steady state manner with the combustion and mixing analysis program, will provide the thrust and specific impulse of the engine as a function of time. The program also predicts the transient and steady state heat transfer characteristics of the engine using various cooling concepts. The computer program, test case, and documentation are presented. The program is applicable to any system capable of utilizing the FORTRAN 4 or FORTRAN 5 language.

  4. Steady-State Dynamic Behavior of a Flexible Rotor With Auxiliary Support From a Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Feng, Li; Lawrence, Charles T.

    1996-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, clearance, support stiffness and damping is studied. Bifurcation diagrams are used as a tool to examine the dynamic behavior of this system as a function of the afore mentioned parameters. The harmonic balance method is also employed for synchronous response cases. The observed dynamical responses is discussed and some insights into the behavior of such systems are presented.

  5. Design and application of squeeze film dampers for turbomachinery stabilization

    NASA Technical Reports Server (NTRS)

    Gunter, E. J.; Barrett, L. E.; Allaire, P. E.

    1975-01-01

    The steady-state transient response of the squeeze film damper bearing was investigated. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived; the steady-state equations were used to determine the damper equivalent stiffness and damping coefficients. These coefficients are used to find the damper configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The effects of end seals and cavitated fluid film are included. The transient analysis of rotor-bearing systems was conducted by coupling the damping and rotor equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed.

  6. [Specific features in realization of the principle of minimum energy dissipation during individual development].

    PubMed

    Zotin, A A

    2012-01-01

    Realization of the principle of minimum energy dissipation (Prigogine's theorem) during individual development has been analyzed. This analysis has suggested the following reformulation of this principle for living objects: when environmental conditions are constant, the living system evolves to a current steady state in such a way that the difference between entropy production and entropy flow (psi(u) function) is positive and constantly decreases near the steady state, approaching zero. In turn, the current steady state tends to a final steady state in such a way that the difference between the specific entropy productions in an organism and its environment tends to be minimal. In general, individual development completely agrees with the law of entropy increase (second law of thermodynamics).

  7. Method for controlling start-up and steady state performance of a closed split flow recompression brayton cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasch, James Jay

    A method of resolving a balanced condition that generates control parameters for start-up and steady state operating points and various component and cycle performances for a closed split flow recompression cycle system. The method provides for improved control of a Brayton cycle thermal to electrical power conversion system. The method may also be used for system design, operational simulation and/or parameter prediction.

  8. Dynamic relaxation of a levitated nanoparticle from a non-equilibrium steady state.

    PubMed

    Gieseler, Jan; Quidant, Romain; Dellago, Christoph; Novotny, Lukas

    2014-05-01

    Fluctuation theorems are a generalization of thermodynamics on small scales and provide the tools to characterize the fluctuations of thermodynamic quantities in non-equilibrium nanoscale systems. They are particularly important for understanding irreversibility and the second law in fundamental chemical and biological processes that are actively driven, thus operating far from thermal equilibrium. Here, we apply the framework of fluctuation theorems to investigate the important case of a system relaxing from a non-equilibrium state towards equilibrium. Using a vacuum-trapped nanoparticle, we demonstrate experimentally the validity of a fluctuation theorem for the relative entropy change occurring during relaxation from a non-equilibrium steady state. The platform established here allows non-equilibrium fluctuation theorems to be studied experimentally for arbitrary steady states and can be extended to investigate quantum fluctuation theorems as well as systems that do not obey detailed balance.

  9. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  10. Microfluidic circuit analysis II: implications of ion conservation for microchannels connected in series.

    PubMed

    Biscombe, Christian J C; Davidson, Malcolm R; Harvie, Dalton J E

    2012-01-01

    A mathematical framework for analysing electrokinetic flow in microchannel networks is outlined. The model is based on conservation of volume and total charge at network junctions, but in contrast to earlier theories also incorporates conservation of ion charge there. The model is applied to mixed pressure-driven/electro-osmotic flows of binary electrolytes through homogeneous microchannels as well as a 4:1:4 contraction-expansion series network. Under conditions of specified volumetric flow rate and ion currents, non-linear steady-state phenomena may arise: when the direction of the net co-ion flux is opposite to the direction of the net volumetric flow, two different fully developed, steady-state flow solutions may be obtained. Model predictions are compared with two-dimensional computational fluid dynamics (CFD) simulations. For systems where two steady states are realisable, the ultimate steady behaviour is shown to depend in part upon the initial state of the system. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Efficient determination of the Markovian time-evolution towards a steady-state of a complex open quantum system

    NASA Astrophysics Data System (ADS)

    Jonsson, Thorsteinn H.; Manolescu, Andrei; Goan, Hsi-Sheng; Abdullah, Nzar Rauf; Sitek, Anna; Tang, Chi-Shung; Gudmundsson, Vidar

    2017-11-01

    Master equations are commonly used to describe time evolution of open systems. We introduce a general computationally efficient method for calculating a Markovian solution of the Nakajima-Zwanzig generalized master equation. We do so for a time-dependent transport of interacting electrons through a complex nano scale system in a photon cavity. The central system, described by 120 many-body states in a Fock space, is weakly coupled to the external leads. The efficiency of the approach allows us to place the bias window defined by the external leads high into the many-body spectrum of the cavity photon-dressed states of the central system revealing a cascade of intermediate transitions as the system relaxes to a steady state. The very diverse relaxation times present in the open system, reflecting radiative or non-radiative transitions, require information about the time evolution through many orders of magnitude. In our approach, the generalized master equation is mapped from a many-body Fock space of states to a Liouville space of transitions. We show that this results in a linear equation which is solved exactly through an eigenvalue analysis, which supplies information on the steady state and the time evolution of the system.

  12. Some Considerations on the Fundamentals of Chemical Kinetics: Steady State, Quasi-Equilibrium, and Transition State Theory

    ERIC Educational Resources Information Center

    Perez-Benito, Joaquin F.

    2017-01-01

    The elementary reaction sequence A ? I ? Products is the simplest mechanism for which the steady-state and quasi-equilibrium kinetic approximations can be applied. The exact integrated solutions for this chemical system allow inferring the conditions that must fulfill the rate constants for the different approximations to hold. A graphical…

  13. Performance evaluation capabilities for the design of physical systems

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.

    1972-01-01

    The results are presented of a study aimed at developing and formulating a capability for the limiting performance of large steady state systems. The accomplishments reported include: (1) development of a theory of limiting performance of large systems subject to steady state inputs; (2) application and modification of PERFORM, the computational capability for the limiting performance of systems with transient inputs; and (3) demonstration that use of an inherently smooth control force for a limiting performance calculation improves the system identification phase of the design process for physical systems subjected to transient loading.

  14. Buoyancy Suppression in Gases at High Temperatures

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Gokoglu, Suleyman A.

    2005-01-01

    The computational fluid dynamics code FLUENT was used to study Rayleigh instability at large temperature differences in a sealed gas-filled enclosure with a cold top surface and a heated bottom wall (Benard problem). Both steady state and transient calculations were performed. The results define the boundaries of instability in a system depending on the geometry, temperature and pressure. It is shown that regardless of how fast the bottom-wall temperature can be ramped up to minimize the time spent in the unstable region of fluid motion, the eventual stability of the system depends on the prevailing final pressure after steady state has been reached. Calculations also show that the final state of the system can be different depending on whether the result is obtained via a steady-state solution or is reached by transient calculations. Changes in the slope of the pressure-versus-time curve are found to be a very good indicator of changes in the flow patterns in the system.

  15. Discreteness-induced concentration inversion in mesoscopic chemical systems.

    PubMed

    Ramaswamy, Rajesh; González-Segredo, Nélido; Sbalzarini, Ivo F; Grima, Ramon

    2012-04-10

    Molecular discreteness is apparent in small-volume chemical systems, such as biological cells, leading to stochastic kinetics. Here we present a theoretical framework to understand the effects of discreteness on the steady state of a monostable chemical reaction network. We consider independent realizations of the same chemical system in compartments of different volumes. Rate equations ignore molecular discreteness and predict the same average steady-state concentrations in all compartments. However, our theory predicts that the average steady state of the system varies with volume: if a species is more abundant than another for large volumes, then the reverse occurs for volumes below a critical value, leading to a concentration inversion effect. The addition of extrinsic noise increases the size of the critical volume. We theoretically predict the critical volumes and verify, by exact stochastic simulations, that rate equations are qualitatively incorrect in sub-critical volumes.

  16. Steady-state entanglement activation in optomechanical cavities

    NASA Astrophysics Data System (ADS)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  17. Analytical solutions of one-dimensional multispecies reactive transport in a permeable reactive barrier-aquifer system

    NASA Astrophysics Data System (ADS)

    Mieles, John; Zhan, Hongbin

    2012-06-01

    The permeable reactive barrier (PRB) remediation technology has proven to be more cost-effective than conventional pump-and-treat systems, and has demonstrated the ability to rapidly reduce the concentrations of specific chemicals of concern (COCs) by up to several orders of magnitude in some scenarios. This study derives new steady-state analytical solutions to multispecies reactive transport in a PRB-aquifer (dual domain) system. The advantage of the dual domain model is that it can account for the potential existence of natural degradation in the aquifer, when designing the required PRB thickness. The study focuses primarily on the steady-state analytical solutions of the tetrachloroethene (PCE) serial degradation pathway and secondly on the analytical solutions of the parallel degradation pathway. The solutions in this study can also be applied to other types of dual domain systems with distinct flow and transport properties. The steady-state analytical solutions are shown to be accurate and the numerical program RT3D is selected for comparison. The results of this study are novel in that the solutions provide improved modeling flexibility including: 1) every species can have unique first-order reaction rates and unique retardation factors, and 2) daughter species can be modeled with their individual input concentrations or solely as byproducts of the parent species. The steady-state analytical solutions exhibit a limitation that occurs when interspecies reaction rate factors equal each other, which result in undefined solutions. Excel spreadsheet programs were created to facilitate prompt application of the steady-state analytical solutions, for both the serial and parallel degradation pathways.

  18. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Fisch, Nathaniel J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma.

  19. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    DOEpatents

    Bers, Abraham

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave RF energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected RF energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected RF energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range .DELTA.. The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width .DELTA. in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma.

  20. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, O.; Subaşı, Y.; Jarzynski, C.

    2016-04-01

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP)—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  1. Steady-State Algorithmic Analysis M/M/c Two-Priority Queues with Heterogeneous Rates.

    DTIC Science & Technology

    1981-04-21

    ALGORITHMIC ANALYSIS OF M/M/c TWO-PRIORITY QUEUES WITH HETEROGENEOUS RATES by Douglas R. Miller An algorithm for steady-state analysis of M/M/c nonpreemptive ...practical algorithm for systems involving more than two priority classes. The preemptive case is simpler than the nonpreemptive case; an algorithm for it...priority nonpreemptive queueing system with arrival rates 1 and X2 and service rates V and p42 * The state space can be described as follows. Let xi,j,k be

  2. Quantized transport and steady states of Floquet topological insulators

    NASA Astrophysics Data System (ADS)

    Esin, Iliya; Rudner, Mark S.; Refael, Gil; Lindner, Netanel H.

    2018-06-01

    Robust electronic edge or surface modes play key roles in the fascinating quantized responses exhibited by topological materials. Even in trivial materials, topological bands and edge states can be induced dynamically by a time-periodic drive. Such Floquet topological insulators (FTIs) inherently exist out of equilibrium; the extent to which they can host quantized transport, which depends on the steady-state population of their dynamically induced edge states, remains a crucial question. In this work, we obtain the steady states of two-dimensional FTIs in the presence of the natural dissipation mechanisms present in solid state systems. We give conditions under which the steady-state distribution resembles that of a topological insulator in the Floquet basis. In this state, the distribution in the Floquet edge modes exhibits a sharp feature akin to a Fermi level, while the bulk hosts a small density of excitations. We determine the regimes where topological edge-state transport persists and can be observed in FTIs.

  3. Application of a Physics-Based Stabilization Criterion to Flight System Thermal Testing

    NASA Technical Reports Server (NTRS)

    Baker, Charles; Garrison, Matthew; Cottingham, Christine; Peabody, Sharon

    2010-01-01

    The theory shown here can provide thermal stability criteria based on physics and a goal steady state error rather than on an arbitrary "X% Q/mC(sub P)" method. The ability to accurately predict steady-state temperatures well before thermal balance is reached could be very useful during testing. This holds true for systems where components are changing temperature at different rates, although it works better for the components closest to the sink. However, the application to these test cases shows some significant limitations: This theory quickly falls apart if the thermal control system in question is tightly coupled to a large mass not accounted for in the calculations, so it is more useful in subsystem-level testing than full orbiter tests. Tight couplings to a fluctuating sink causes noise in the steady state temperature predictions.

  4. Steady-state mechanical squeezing and ground-state cooling of a Duffing anharmonic oscillator in an optomechanical cavity assisted by a nonlinear medium

    NASA Astrophysics Data System (ADS)

    Momeni, F.; Naderi, M. H.

    2018-05-01

    In this paper, we study theoretically a hybrid optomechanical system consisting of a degenerate optical parametric amplifier inside a driven optical cavity with a moving end mirror which is modeled as a stiffening Duffing-like anharmonic quantum mechanical oscillator. By providing analytical expressions for the critical values of the system parameters corresponding to the emergence of the multistability behavior in the steady-state response of the system, we show that the stiffening mechanical Duffing anharmonicity reduces the width of the multistability region while the optical parametric nonlinearity can be exploited to drive the system toward the multistability region. We also show that for appropriate values of the mechanical anharmonicity strength the steady-state mechanical squeezing and the ground-state cooling of the mechanical resonator can be achieved. Moreover, we find that the presence of the nonlinear gain medium can lead to the improvement of the mechanical anharmonicity-induced cooling of the mechanical motion, as well as to the mechanical squeezing beyond the standard quantum limit of 3 dB.

  5. Steady-State Multiplicity Features of Chemically Reacting Systems.

    ERIC Educational Resources Information Center

    Luss, Dan

    1986-01-01

    Analyzes steady-state multiplicity in chemical reactors, focusing on the use of two mathematical tools, namely, the catastrophe theory and the singularity theory with a distinguished parameter. These tools can be used to determine the maximum number of possible solutions and the different types of bifurcation diagrams. (JN)

  6. D-3He Spherical Torus Fusion Reactor System Study

    DTIC Science & Technology

    1992-04-01

    assumed as a reasonable range. A.6 Steady-State Particle Balance The steady-state densities of the various species present in a burning plasma are...determined by a detailed particle balance calculation. In addition to the con- sumption and production of various species in a burning plasma , a

  7. Estimating Power System Dynamic States Using Extended Kalman Filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw

    2014-10-31

    Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This newmore » dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.« less

  8. Progress and prospect of true steady state operation with RF

    NASA Astrophysics Data System (ADS)

    Jacquinot, Jean

    2017-10-01

    Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.

  9. Control-based method to identify underlying delays of a nonlinear dynamical system.

    PubMed

    Yu, Dongchuan; Frasca, Mattia; Liu, Fang

    2008-10-01

    We suggest several stationary state control-based delay identification methods which do not require any structural information about the controlled systems and are applicable to systems described by delayed ordinary differential equations. This proposed technique includes three steps: (i) driving a system to a steady state; (ii) perturbing the control signal for shifting the steady state; and (iii) identifying all delays by detecting the time that the system is abruptly drawn out of stationarity. Some aspects especially important for applications are discussed as well, including interaction delay identification, stationary state convergence speed, performance comparison, and the influence of noise on delay identification. Several examples are presented to illustrate the reliability and robustness of all delay identification methods suggested.

  10. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  11. Steady-State Solutions Originating from an Enhanced Nonlinear Feedback in a Hybrid Opto-mechanical System

    NASA Astrophysics Data System (ADS)

    Fan, Qiu-Bo; Wang, Yi-Ru; Chen, Jin; Pan, Yue-Wu; Han, Bai-Ping; Fu, Chang-Bao; Sun, Yan

    2017-06-01

    The steady-state properties of a hybrid system are investigated in this paper. Many cold atoms in the four-level tripod configuration are confined in an optical cavity with a movable end mirror. The confined cold atoms are driven with two external classical fields and an internal cavity field. The internal cavity field is excited by an external driving field and shows a radiation pressure upon the movable end mirror. The coupling of atom-light and opto-mechanical interactions is enhanced by embedding a four-level atomic system in a typical opto-mechanical cavity. And an enhanced nonlinear feedback mechanism is offered by the enhanced coupling, which permits the observation of five and three steady-state solutions for relevant variables near two-photon resonance. The enhanced nonlinear feedback mechanism also allows us to observe the obvious difference in the double-EIT phenomenon between the atom-assisted opto-mechanical system and usual atom-field system.

  12. A geophysiologist's thoughts on geoengineering.

    PubMed

    Lovelock, James

    2008-11-13

    The Earth is now recognized as a self-regulating system that includes a reactive biosphere; the system maintains a long-term steady-state climate and surface chemical composition favourable for life. We are perturbing the steady state by changing the land surface from mainly forests to farm land and by adding greenhouse gases and aerosol pollutants to the air. We appear to have exceeded the natural capacity to counter our perturbation and consequently the system is changing to a new and as yet unknown but probably adverse state. I suggest here that we regard the Earth as a physiological system and consider amelioration techniques, geoengineering, as comparable to nineteenth century medicine.

  13. A Statistical Approach to Thermal Management of Data Centers Under Steady State and System Perturbations

    PubMed Central

    Haaland, Ben; Min, Wanli; Qian, Peter Z. G.; Amemiya, Yasuo

    2011-01-01

    Temperature control for a large data center is both important and expensive. On the one hand, many of the components produce a great deal of heat, and on the other hand, many of the components require temperatures below a fairly low threshold for reliable operation. A statistical framework is proposed within which the behavior of a large cooling system can be modeled and forecast under both steady state and perturbations. This framework is based upon an extension of multivariate Gaussian autoregressive hidden Markov models (HMMs). The estimated parameters of the fitted model provide useful summaries of the overall behavior of and relationships within the cooling system. Predictions under system perturbations are useful for assessing potential changes and improvements to be made to the system. Many data centers have far more cooling capacity than necessary under sensible circumstances, thus resulting in energy inefficiencies. Using this model, predictions for system behavior after a particular component of the cooling system is shut down or reduced in cooling power can be generated. Steady-state predictions are also useful for facility monitors. System traces outside control boundaries flag a change in behavior to examine. The proposed model is fit to data from a group of air conditioners within an enterprise data center from the IT industry. The fitted model is examined, and a particular unit is found to be underutilized. Predictions generated for the system under the removal of that unit appear very reasonable. Steady-state system behavior also is predicted well. PMID:22076026

  14. Nonthermal steady states after an interaction quench in the Falicov-Kimball model.

    PubMed

    Eckstein, Martin; Kollar, Marcus

    2008-03-28

    We present the exact solution of the Falicov-Kimball model after a sudden change of its interaction parameter using nonequilibrium dynamical mean-field theory. For different interaction quenches between the homogeneous metallic and insulating phases the system relaxes to a nonthermal steady state on time scales on the order of variant Planck's over 2pi/bandwidth, showing collapse and revival with an approximate period of h/interaction if the interaction is large. We discuss the reasons for this behavior and provide a statistical description of the final steady state by means of generalized Gibbs ensembles.

  15. Fluctuations, Stratification and Stability in a Liquid Fluidized Bed at Low Reynolds Number

    NASA Technical Reports Server (NTRS)

    Segre, P. N.; McClymer, J. P.

    2004-01-01

    The sedimentation dynamics of extremely low polydispersity, non-colloidal, particles are studied in a liquid fluidized bed at low Reynolds number, Re much less than 1. When fluidized, the system reaches a steady state, defined where the local average volume fraction does not vary in time. In steady state, the velocity fluctuations and the particle concentrations are found to strongly depend on height. Using our results, we test a recently developed stability model for steady state sedimentation. The model describes the data well, and shows that in steady state there is a balancing of particle fluxes due to the fluctuations and the concentration gradient. Some results are also presented for the dependence of the concentration gradient in fluidized beds on particle size; the gradients become smaller as the particles become larger and fewer in number.

  16. Steady-state measurement-induced nonlocality in thermal reservoir

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Xie, Yu-Xia

    2018-06-01

    We examined measurement-induced nonlocality (MIN) of a central system for which every of the constituent qubit is embedded in its respective independent thermal reservoir. By introducing anisotropy to the Heisenberg XY interaction of the qubits, we showed that the strength of the MIN can be enhanced apparently. The anisotropy of the spin interaction can also be employed to generate MIN from the initial zero-MIN states. In the infinite-time limit, the steady-state MIN is independent of the initial states and is determined solely by the anisotropic parameter of the system and the decoherence factor of the thermal reservoir.

  17. Perception of steady-state vowels and vowelless syllables by adults and children

    NASA Astrophysics Data System (ADS)

    Nittrouer, Susan

    2005-04-01

    Vowels can be produced as long, isolated, and steady-state, but that is not how they are found in natural speech. Instead natural speech consists of almost continuously changing (i.e., dynamic) acoustic forms from which mature listeners recover underlying phonetic form. Some theories suggest that children need steady-state information to recognize vowels (and so learn vowel systems), even though that information is sparse in natural speech. The current study examined whether young children can recover vowel targets from dynamic forms, or whether they need steady-state information. Vowel recognition was measured for adults and children (3, 5, and 7 years) for natural productions of /dæd/, /dUd/ /æ/, /U/ edited to make six stimulus sets: three dynamic (whole syllables; syllables with middle 50-percent replaced by cough; syllables with all but the first and last three pitch periods replaced by cough), and three steady-state (natural, isolated vowels; reiterated pitch periods from those vowels; reiterated pitch periods from the syllables). Adults scored nearly perfectly on all but first/last three pitch period stimuli. Children performed nearly perfectly only when the entire syllable was heard, and performed similarly (near 80%) for all other stimuli. Consequently, children need dynamic forms to perceive vowels; steady-state forms are not preferred.

  18. Experimental and Analytical Performance of a Dual Brayton Power Conversion System

    NASA Technical Reports Server (NTRS)

    Lavelle, Thomas A.; Hervol, David S.; Briggs, Maxwell; Owen, A. Karl

    2009-01-01

    The interactions between two closed Brayton cycle (CBC) power conversion units (PCU) which share a common gas inventory and heat source have been studied experimentally using the Dual Brayton Power Conversion System (DBPCS) and analytically using the Closed- Cycle System Simulation (CCSS) computer code. Selected operating modes include steady-state operation at equal and unequal shaft speeds and various start-up scenarios. Equal shaft speed steady-state tests were conducted for heater exit temperatures of 840 to 950 K and speeds of 50 to 90 krpm, providing a system performance map. Unequal shaft speed steady-state testing over the same operating conditions shows that the power produced by each Brayton is sensitive to the operating conditions of the other due to redistribution of gas inventory. Startup scenarios show that starting the engines one at a time can dramatically reduce the required motoring energy. Although the DBPCS is not considered a flight-like system, these insights, as well as the operational experience gained from operating and modeling this system provide valuable information for the future development of Brayton systems.

  19. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O productionmore » and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.« less

  20. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.

    PubMed

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-10-22

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  1. A Steady State and Quasi-Steady Interface Between the Generalized Fluid System Simulation Program and the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Majumdar, Alok; Tiller, Bruce

    2001-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program SINDA/G. The flow code, GFSSP, is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasisteady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  2. Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns.

    PubMed

    Childs, Dorothee; Grimbs, Sergio; Selbig, Joachim

    2015-06-15

    Structural kinetic modelling (SKM) is a framework to analyse whether a metabolic steady state remains stable under perturbation, without requiring detailed knowledge about individual rate equations. It provides a representation of the system's Jacobian matrix that depends solely on the network structure, steady state measurements, and the elasticities at the steady state. For a measured steady state, stability criteria can be derived by generating a large number of SKMs with randomly sampled elasticities and evaluating the resulting Jacobian matrices. The elasticity space can be analysed statistically in order to detect network positions that contribute significantly to the perturbation response. Here, we extend this approach by examining the kinetic feasibility of the elasticity combinations created during Monte Carlo sampling. Using a set of small example systems, we show that the majority of sampled SKMs would yield negative kinetic parameters if they were translated back into kinetic models. To overcome this problem, a simple criterion is formulated that mitigates such infeasible models. After evaluating the small example pathways, the methodology was used to study two steady states of the neuronal TCA cycle and the intrinsic mechanisms responsible for their stability or instability. The findings of the statistical elasticity analysis confirm that several elasticities are jointly coordinated to control stability and that the main source for potential instabilities are mutations in the enzyme alpha-ketoglutarate dehydrogenase. © The Author 2015. Published by Oxford University Press.

  3. Coherence enhanced quantum metrology in a nonequilibrium optical molecule

    NASA Astrophysics Data System (ADS)

    Wang, Zhihai; Wu, Wei; Cui, Guodong; Wang, Jin

    2018-03-01

    We explore the quantum metrology in an optical molecular system coupled to two environments with different temperatures, using a quantum master equation beyond secular approximation. We discover that the steady-state coherence originating from and sustained by the nonequilibrium condition can enhance quantum metrology. We also study the quantitative measures of the nonequilibrium condition in terms of the curl flux, heat current and entropy production at the steady state. They are found to grow with temperature difference. However, an apparent paradox arises considering the contrary behaviors of the steady-state coherence and the nonequilibrium measures in relation to the inter-cavity coupling strength. This paradox is resolved by decomposing the heat current into a population part and a coherence part. Only the latter, the coherence part of the heat current, is tightly connected to the steady-state coherence and behaves similarly with respect to the inter-cavity coupling strength. Interestingly, the coherence part of the heat current flows from the low-temperature reservoir to the high-temperature reservoir, opposite to the direction of the population heat current. Our work offers a viable way to enhance quantum metrology for open quantum systems through steady-state coherence sustained by the nonequilibrium condition, which can be controlled and manipulated to maximize its utility. The potential applications go beyond quantum metrology and extend to areas such as device designing, quantum computation and quantum technology in general.

  4. Relevance of system size to the steady-state properties of tapped granular systems.

    PubMed

    Gago, Paula A; Maza, Diego; Pugnaloni, Luis A

    2015-03-01

    We investigate the steady-state packing fraction ϕ and force moment tensor Σ of quasi-two-dimensional granular columns subjected to tapping. Systems of different height h and width L are considered. We find that ϕ and Σ, which describe the macroscopic state of the system, are insensitive to L for L>50d (with d the grain diameter). However, results for granular columns of different heights cannot be conciliated. This suggests that comparison between results of different laboratories on this type of experiments can be done only for systems of same height. We show that a parameter ɛ=1+(Aω)2/(2gh), with A and ω the amplitude and frequency of the tap and g the acceleration of gravity, can be defined to characterize the tap intensity. This parameter is based on the effective flight of the granular bed, which takes into account the h dependency. When ϕ is plotted as a function of ɛ, the data collapses for systems of different h. However, this parameter alone is unable to determine the steady state to be reached since different Σ can be observed for a given ɛ if different column heights are considered.

  5. Time-dependent current into and through multilevel parallel quantum dots in a photon cavity

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2017-05-01

    We analyze theoretically the charging current into, and the transport current through, a nanoscale two-dimensional electron system with two parallel quantum dots embedded in a short wire placed in a photon cavity. A plunger gate is used to place specific many-body states of the interacting system in the bias window defined by the external leads. We show how the transport phenomena active in the many-level complex central system strongly depend on the gate voltage. We identify a resonant transport through the central system as the two spin components of the one-electron ground state are in the bias window. This resonant transport through the lowest energy electron states seems to a large extent independent of the detuned photon field when judged from the transport current. This could be expected in the small bias regime, but an observation of the occupancy of the states of the system reveals that this picture is not entirely true. The current does not reflect slower photon-active internal transitions bringing the system into the steady state. The number of initially present photons determines when the system reaches the real steady state. With two-electron states in the bias window we observe a more complex situation with intermediate radiative and nonradiative relaxation channels leading to a steady state with a weak nonresonant current caused by inelastic tunneling through the two-electron ground state of the system. The presence of the radiative channels makes this phenomena dependent on the number of photons initially in the cavity.

  6. Integrator Windup Protection-Techniques and a STOVL Aircraft Engine Controller Application

    NASA Technical Reports Server (NTRS)

    KrishnaKumar, K.; Narayanaswamy, S.

    1997-01-01

    Integrators are included in the feedback loop of a control system to eliminate the steady state errors in the commanded variables. The integrator windup problem arises if the control actuators encounter operational limits before the steady state errors are driven to zero by the integrator. The typical effects of windup are large system oscillations, high steady state error, and a delayed system response following the windup. In this study, methods to prevent the integrator windup are examined to provide Integrator Windup Protection (IW) for an engine controller of a Short Take-Off and Vertical Landing (STOVL) aircraft. An unified performance index is defined to optimize the performance of the Conventional Anti-Windup (CAW) and the Modified Anti-Windup (MAW) methods. A modified Genetic Algorithm search procedure with stochastic parameter encoding is implemented to obtain the optimal parameters of the CAW scheme. The advantages and drawbacks of the CAW and MAW techniques are discussed and recommendations are made for the choice of the IWP scheme, given some characteristics of the system.

  7. Operational Characteristics of an Accelerator Driven Fissile Solution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimpland, Robert Herbert

    Operational characteristics represent the set of responses that a nuclear system exhibits during normal operation. Operators rely on this behavior to assess the status of the system and to predict the consequences of off-normal events. These characteristics largely refer to the relationship between power and system operating conditions. The static and dynamic behavior of a chain-reacting system, operating at sufficient power, is primarily governed by reactivity effects. The science of reactor physics has identified and evaluated a number of such effects, including Doppler broadening and shifts in the thermal neutron spectrum. Often these reactivity effects are quantified in the formmore » of feedback coefficients that serve as coupling coefficients relating the neutron population and the physical mechanisms that drive reactivity effects, such as fissile material temperature and density changes. The operational characteristics of such nuclear systems usually manifest themselves when perturbations between system power (neutron population) and system operating conditions arise. Successful operation of such systems requires the establishment of steady equilibrium conditions. However, prior to obtaining the desired equilibrium (steady-state) conditions, an approach from zero-power (startup) must occur. This operational regime may possess certain limiting system conditions that must be maintained to achieve effective startup. Once steady-state is achieved, a key characteristic of this operational regime is the level of stability that the system possesses. Finally, a third operational regime, shutdown, may also possess limiting conditions of operation that must be maintained. This report documents the operational characteristics of a “generic” Accelerator Driven Fissile Solution (ADFS) system during the various operational regimes of startup, steady-state operation, and shutdown. Typical time-dependent behavior for each operational regime will be illustrated, and key system parameters, such as response times, will be quantified. A generalized linear systems analysis of steady-state operations will be performed to evaluate the level of stability of ADFS systems. This information should provide a basic understanding of typical ADFS system operational behavior, and facilitate the development of monitoring procedures and operator aids.« less

  8. Heating in Integrable Time-Periodic Systems

    NASA Astrophysics Data System (ADS)

    Ishii, Takashi; Kuwahara, Tomotaka; Mori, Takashi; Hatano, Naomichi

    2018-06-01

    We investigate a heating phenomenon in periodically driven integrable systems that can be mapped to free-fermion models. We find that heating to the high-temperature state, which is a typical scenario in nonintegrable systems, can also appear in integrable time-periodic systems; the amount of energy absorption rises drastically near a frequency threshold where the Floquet-Magnus expansion diverges. As the driving period increases, we also observe that the effective temperatures of the generalized Gibbs ensemble for conserved quantities go to infinity. By the use of the scaling analysis, we reveal that, in the limit of infinite system size and driving period, the steady state after a long time is equivalent to the infinite-temperature state. We obtain the asymptotic behavior L-1 and T-2 as to how the steady state approaches the infinite-temperature state as the system size L and the driving period T increase.

  9. Dynamical emergence of Markovianity in local time scheme.

    PubMed

    Jeknić-Dugić, J; Arsenijević, M; Dugić, M

    2016-06-01

    Recently we pointed out the so-called local time scheme as a novel approach to quantum foundations that solves the preferred pointer-basis problem. In this paper, we introduce and analyse in depth a rather non-standard dynamical map that is imposed by the scheme. On the one hand, the map does not allow for introducing a properly defined generator of the evolution nor does it represent a quantum channel. On the other hand, the map is linear, positive, trace preserving and unital as well as completely positive, but is not divisible and therefore non-Markovian. Nevertheless, we provide quantitative criteria for dynamical emergence of time-coarse-grained Markovianity, for exact dynamics of an open system, as well as for operationally defined approximation of a closed or open many-particle system. A closed system never reaches a steady state, whereas an open system may reach a unique steady state given by the Lüders-von Neumann formula; where the smaller the open system, the faster a steady state is attained. These generic findings extend the standard open quantum systems theory and substantially tackle certain cosmological issues.

  10. Modeling stochastic noise in gene regulatory systems

    PubMed Central

    Meister, Arwen; Du, Chao; Li, Ye Henry; Wong, Wing Hung

    2014-01-01

    The Master equation is considered the gold standard for modeling the stochastic mechanisms of gene regulation in molecular detail, but it is too complex to solve exactly in most cases, so approximation and simulation methods are essential. However, there is still a lack of consensus about the best way to carry these out. To help clarify the situation, we review Master equation models of gene regulation, theoretical approximations based on an expansion method due to N.G. van Kampen and R. Kubo, and simulation algorithms due to D.T. Gillespie and P. Langevin. Expansion of the Master equation shows that for systems with a single stable steady-state, the stochastic model reduces to a deterministic model in a first-order approximation. Additional theory, also due to van Kampen, describes the asymptotic behavior of multistable systems. To support and illustrate the theory and provide further insight into the complex behavior of multistable systems, we perform a detailed simulation study comparing the various approximation and simulation methods applied to synthetic gene regulatory systems with various qualitative characteristics. The simulation studies show that for large stochastic systems with a single steady-state, deterministic models are quite accurate, since the probability distribution of the solution has a single peak tracking the deterministic trajectory whose variance is inversely proportional to the system size. In multistable stochastic systems, large fluctuations can cause individual trajectories to escape from the domain of attraction of one steady-state and be attracted to another, so the system eventually reaches a multimodal probability distribution in which all stable steady-states are represented proportional to their relative stability. However, since the escape time scales exponentially with system size, this process can take a very long time in large systems. PMID:25632368

  11. Marginal states in a cubic autocatalytic reaction

    NASA Astrophysics Data System (ADS)

    Das, Debojyoti; Ghosh, Pushpita; Ray, Deb Shankar

    2011-09-01

    Marginal steady state belongs to a special class of states in nonlinear dynamics. To realize this state we consider a cubic autocatalytic reaction A + 2B → 3B in a continuous-stirred-tank-reactor, where the flow rate of the reactant A can be controlled to manipulate the dynamical behavior of the open system. We demonstrate that when the flow rate is weakly noisy the autocatalytic reaction admits of a steady state which is marginal in nature and is surrounded by infinite number of periodic trajectories. When the uncatalyzed reaction A → B is included in the reaction scheme, there exists a marginal steady state which is a critical state corresponding to the point of transition between the flow branch and the equilibrium branch, similar to gas-liquid critical point of transition. This state loses its stability in the weak noise limit.

  12. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  13. Organizational and Systems Theory: An Integrated Review

    DTIC Science & Technology

    1980-09-30

    and flexibility as it copes with its environ- ment, attempts to maintain a relatively steady state or balance , and utilizes its resources to grow in...to its adaptation and flexibility as it • =• •-•:’•1copes with its environment, attempts to maintain a relative steady state " or balance , and...damper or suppressor on GNS. Simultaneously, the supra-system’s principal interests are toward increasing FA, while the work group provides a balancing

  14. Development of a preprototype trace contaminant control system. [for space stations

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The steady state contaminant load model based on shuttle equipment and material test programs, and on the current space station studies was revised. An emergency upset contaminant load model based on anticipated emergency upsets that could occur in an operational space station was defined. Control methods for the contaminants generated by the emergency upsets were established by test. Preliminary designs of both steady state and emergency contaminant control systems for the space station application are presented.

  15. Nonlinear system guidance in the presence of transmission zero dynamics

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Hunt, L. R.; Su, R.

    1995-01-01

    An iterative procedure is proposed for computing the commanded state trajectories and controls that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the transmission zero effects nulled out. Then the 'steady state' solution of the perturbation model with the transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both time domain and frequency domain methods are presented for computing the steady state solutions of the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of linear and nonlinear examples.

  16. Matrix-product-operator approach to the nonequilibrium steady state of driven-dissipative quantum arrays

    NASA Astrophysics Data System (ADS)

    Mascarenhas, Eduardo; Flayac, Hugo; Savona, Vincenzo

    2015-08-01

    We develop a numerical procedure to efficiently model the nonequilibrium steady state of one-dimensional arrays of open quantum systems based on a matrix-product operator ansatz for the density matrix. The procedure searches for the null eigenvalue of the Liouvillian superoperator by sweeping along the system while carrying out a partial diagonalization of the single-site stationary problem. It bears full analogy to the density-matrix renormalization-group approach to the ground state of isolated systems, and its numerical complexity scales as a power law with the bond dimension. The method brings considerable advantage when compared to the integration of the time-dependent problem via Trotter decomposition, as it can address arbitrarily long-ranged couplings. Additionally, it ensures numerical stability in the case of weakly dissipative systems thanks to a slow tuning of the dissipation rates along the sweeps. We have tested the method on a driven-dissipative spin chain, under various assumptions for the Hamiltonian, drive, and dissipation parameters, and compared the results to those obtained both by Trotter dynamics and Monte Carlo wave function methods. Accurate and numerically stable convergence was always achieved when applying the method to systems with a gapped Liouvillian and a nondegenerate steady state.

  17. Quantum state engineering in hybrid open quantum systems

    NASA Astrophysics Data System (ADS)

    Joshi, Chaitanya; Larson, Jonas; Spiller, Timothy P.

    2016-04-01

    We investigate a possibility to generate nonclassical states in light-matter coupled noisy quantum systems, namely, the anisotropic Rabi and Dicke models. In these hybrid quantum systems, a competing influence of coherent internal dynamics and environment-induced dissipation drives the system into nonequilibrium steady states (NESSs). Explicitly, for the anisotropic Rabi model, the steady state is given by an incoherent mixture of two states of opposite parities, but as each parity state displays light-matter entanglement, we also find that the full state is entangled. Furthermore, as a natural extension of the anisotropic Rabi model to an infinite spin subsystem, we next explored the NESS of the anisotropic Dicke model. The NESS of this linearized Dicke model is also an inseparable state of light and matter. With an aim to enrich the dynamics beyond the sustainable entanglement found for the NESS of these hybrid quantum systems, we also propose to combine an all-optical feedback strategy for quantum state protection and for establishing quantum control in these systems. Our present work further elucidates the relevance of such hybrid open quantum systems for potential applications in quantum architectures.

  18. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  19. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  20. On the relationship of steady states of continuous and discrete models arising from biology.

    PubMed

    Veliz-Cuba, Alan; Arthur, Joseph; Hochstetler, Laura; Klomps, Victoria; Korpi, Erikka

    2012-12-01

    For many biological systems that have been modeled using continuous and discrete models, it has been shown that such models have similar dynamical properties. In this paper, we prove that this happens in more general cases. We show that under some conditions there is a bijection between the steady states of continuous and discrete models arising from biological systems. Our results also provide a novel method to analyze certain classes of nonlinear models using discrete mathematics.

  1. Steady-state analysis of a faulted three-phase four-wire system supplying induction motors with neutrals connected and other single-phase line-to-neutral loads

    NASA Technical Reports Server (NTRS)

    Wood, M. E.

    1980-01-01

    Four wire Wye connected ac power systems exhibit peculiar steady state fault characteristics when the fourth wire of three phase induction motors is connected. The loss of one phase of power source due to a series or shunt fault results in currents higher than anticipated on the remaining two phases. A theoretical approach to compute the fault currents and voltages is developed. A FORTRAN program is included in the appendix.

  2. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    NASA Astrophysics Data System (ADS)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  3. [Growth characteristics and control of iron bacteria on cast iron in drinking water distribution systems].

    PubMed

    Wang, Yang; Zhang, Xiao-Jian; Chen, Yu-Qiao; Lu, Pin-Pin; Chen, Chao

    2009-11-01

    This study investigated the growth characteristics of iron bacteria on cast iron and relationship between suspended and attached iron bacteria. The steady-state growth of iron bacteria would need 12 d and iron bacteria level in effluents increased 1 lg. Hydraulics influence on iron bacteria level and detachment rate of steady-state attached iron bacteria was not significant. But it could affect the time of attached iron bacteria on cast-iron coupons reaching to steady state. When the chlorine residual was 0.3 mg/L, the iron bacteria growth could be controlled effectively and suspended and attached iron bacteria levels both decreased 1 lg. When the chlorine residual was more than 1.0 mg/L, it could not inactivate the iron bacteria of internal corrosion scale yet. There was little effect on inhibiting the iron bacteria growth that the chlorine residual was 0.05 mg/L in drinking water quality standard of China. The iron bacteria on coupons reached to steady state without disinfectant and then increased the chlorine residual to 1.25 mg/L, the attached iron bacteria level could decrease 2 lg to 3 lg. Under steady-state, the suspended iron bacteria levels were linearly dependent on the attached iron bacteria. The control of iron bacteria in drinking water distribution systems was advanced: maintaining the chlorine residual (0.3 mg/L), flushing the pipeline with high dosage disinfectant, adopting corrosion-resistant pipe materials and renovating the old pipe loop.

  4. Period doubling in period-one steady states

    NASA Astrophysics Data System (ADS)

    Wang, Reuben R. W.; Xing, Bo; Carlo, Gabriel G.; Poletti, Dario

    2018-02-01

    Nonlinear classical dissipative systems present a rich phenomenology in their "route to chaos," including period doubling, i.e., the system evolves with a period which is twice that of the driving. However, typically the attractor of a periodically driven quantum open system evolves with a period which exactly matches that of the driving. Here, we analyze a periodically driven many-body open quantum system whose classical correspondent presents period doubling. We show that by studying the dynamical correlations, it is possible to show the occurrence of period doubling in the quantum (period-one) steady state. We also discuss that such systems are natural candidates for clean and intrinsically robust Floquet time crystals.

  5. 40 CFR 1065.650 - Emission calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from a changing flow rate or a constant flow rate (including discrete-mode steady-state testing), as...·hr e NOx = 64.975/25.783 e NOx = 2.520 g/(kW·hr) (2) For discrete-mode steady-state testing, you may... method not be used if there are any work flow paths described in § 1065.210 that cross the system...

  6. Confining the state of light to a quantum manifold by engineered two-photon loss

    NASA Astrophysics Data System (ADS)

    Leghtas, Z.; Touzard, S.; Pop, I. M.; Kou, A.; Vlastakis, B.; Petrenko, A.; Sliwa, K. M.; Narla, A.; Shankar, S.; Hatridge, M. J.; Reagor, M.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H.

    2015-02-01

    Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds.

  7. Net Surface Flux Budget Over Tropical Oceans Estimated from the Tropical Rainfall Measuring Mission (TRMM)

    NASA Astrophysics Data System (ADS)

    Fan, Tai-Fang

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  8. Magneto - Optical Imaging of Superconducting MgB2 Thin Films

    NASA Astrophysics Data System (ADS)

    Hummert, Stephanie Maria

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  9. Open Markov Processes and Reaction Networks

    NASA Astrophysics Data System (ADS)

    Swistock Pollard, Blake Stephen

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  10. Boron Carbide Filled Neutron Shielding Textile Polymers

    NASA Astrophysics Data System (ADS)

    Manzlak, Derrick Anthony

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  11. Parallel Unstructured Grid Generation for Complex Real-World Aerodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Zagaris, George

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  12. Polymeric Radiation Shielding for Applications in Space: Polyimide Synthesis and Modeling of Multi-Layered Polymeric Shields

    NASA Astrophysics Data System (ADS)

    Schiavone, Clinton Cleveland

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  13. Processing and Conversion of Algae to Bioethanol

    NASA Astrophysics Data System (ADS)

    Kampfe, Sara Katherine

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  14. The Development of the CALIPSO LiDAR Simulator

    NASA Astrophysics Data System (ADS)

    Powell, Kathleen A.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  15. Exploring a Novel Approach to Technical Nuclear Forensics Utilizing Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Peeke, Richard Scot

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  16. Modeling of Critically-Stratified Gravity Flows: Application to the Eel River Continental Shelf, Northern California

    NASA Astrophysics Data System (ADS)

    Scully, Malcolm E.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  17. Production of Cyclohexylene-Containing Diamines in Pursuit of Novel Radiation Shielding Materials

    NASA Astrophysics Data System (ADS)

    Bate, Norah G.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  18. Development of Boron-Containing Polyimide Materials and Poly(arylene Ether)s for Radiation Shielding

    NASA Astrophysics Data System (ADS)

    Collins, Brittani May

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  19. Magnetization Dynamics and Anisotropy in Ferromagnetic/Antiferromagnetic Ni/NiO Bilayers

    NASA Astrophysics Data System (ADS)

    Petersen, Andreas

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  20. Importance sampling large deviations in nonequilibrium steady states. I.

    PubMed

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T

    2018-03-28

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  1. Design and construction of a new steady-state apparatus for medium thermal conductivity measurement at high temperature.

    PubMed

    Wang, Yong; Xiao, Peng; Dai, Jingmin

    2017-10-01

    A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.

  2. Importance sampling large deviations in nonequilibrium steady states. I

    NASA Astrophysics Data System (ADS)

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.

    2018-03-01

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  3. Programmable temperature control system for biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  4. Design and construction of a new steady-state apparatus for medium thermal conductivity measurement at high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Xiao, Peng; Dai, Jingmin

    2017-10-01

    A new steady-state apparatus is designed and constructed for the measurement of thermal conductivity (up to 25 W/mK) on a square specimen (300 mm side) with a heating temperature range from 30 °C to 900 °C. A vacuum container, of which the pressure can reach to 1 Pa, is also built for materials which can be easily oxidized. The structure of the facility is different from that of traditional steady-state devices, especially for the design of heating plate and heat sink. To verify the temperature uniformity of the heating plate, a simulation analysis is carried out in this paper. Besides, the heating system, the heat sink, the measuring system, and the vacuum system are presented in detail. In addition, the thermal conductivities of a heat insulation tile, 304L stainless steel, n-docosane, and erythritol are measured by this apparatus. Finally, an uncertainty analysis is discussed depending on different temperatures and materials.

  5. Exact results for the finite time thermodynamic uncertainty relation

    NASA Astrophysics Data System (ADS)

    Manikandan, Sreekanth K.; Krishnamurthy, Supriya

    2018-03-01

    We obtain exact results for the recently discovered finite-time thermodynamic uncertainty relation, for the dissipated work W d , in a stochastically driven system with non-Gaussian work statistics, both in the steady state and transient regimes, by obtaining exact expressions for any moment of W d at arbitrary times. The uncertainty function (the Fano factor of W d ) is bounded from below by 2k_BT as expected, for all times τ, in both steady state and transient regimes. The lower bound is reached at τ=0 as well as when certain system parameters vanish (corresponding to an equilibrium state). Surprisingly, we find that the uncertainty function also reaches a constant value at large τ for all the cases we have looked at. For a system starting and remaining in steady state, the uncertainty function increases monotonically, as a function of τ as well as other system parameters, implying that the large τ value is also an upper bound. For the same system in the transient regime, however, we find that the uncertainty function can have a local minimum at an accessible time τm , for a range of parameter values. The large τ value for the uncertainty function is hence not a bound in this case. The non-monotonicity suggests, rather counter-intuitively, that there might be an optimal time for the working of microscopic machines, as well as an optimal configuration in the phase space of parameter values. Our solutions show that the ratios of higher moments of the dissipated work are also bounded from below by 2k_BT . For another model, also solvable by our methods, which never reaches a steady state, the uncertainty function, is in some cases, bounded from below by a value less than 2k_BT .

  6. Statistical Neurodynamics.

    NASA Astrophysics Data System (ADS)

    Paine, Gregory Harold

    1982-03-01

    The primary objective of the thesis is to explore the dynamical properties of small nerve networks by means of the methods of statistical mechanics. To this end, a general formalism is developed and applied to elementary groupings of model neurons which are driven by either constant (steady state) or nonconstant (nonsteady state) forces. Neuronal models described by a system of coupled, nonlinear, first-order, ordinary differential equations are considered. A linearized form of the neuronal equations is studied in detail. A Lagrange function corresponding to the linear neural network is constructed which, through a Legendre transformation, provides a constant of motion. By invoking the Maximum-Entropy Principle with the single integral of motion as a constraint, a probability distribution function for the network in a steady state can be obtained. The formalism is implemented for some simple networks driven by a constant force; accordingly, the analysis focuses on a study of fluctuations about the steady state. In particular, a network composed of N noninteracting neurons, termed Free Thinkers, is considered in detail, with a view to interpretation and numerical estimation of the Lagrange multiplier corresponding to the constant of motion. As an archetypical example of a net of interacting neurons, the classical neural oscillator, consisting of two mutually inhibitory neurons, is investigated. It is further shown that in the case of a network driven by a nonconstant force, the Maximum-Entropy Principle can be applied to determine a probability distribution functional describing the network in a nonsteady state. The above examples are reconsidered with nonconstant driving forces which produce small deviations from the steady state. Numerical studies are performed on simplified models of two physical systems: the starfish central nervous system and the mammalian olfactory bulb. Discussions are given as to how statistical neurodynamics can be used to gain a better understanding of the behavior of these systems.

  7. Relaxation versus adiabatic quantum steady-state preparation

    NASA Astrophysics Data System (ADS)

    Venuti, Lorenzo Campos; Albash, Tameem; Marvian, Milad; Lidar, Daniel; Zanardi, Paolo

    2017-04-01

    Adiabatic preparation of the ground states of many-body Hamiltonians in the closed-system limit is at the heart of adiabatic quantum computation, but in reality systems are always open. This motivates a natural comparison between, on the one hand, adiabatic preparation of steady states of Lindbladian generators and, on the other hand, relaxation towards the same steady states subject to the final Lindbladian of the adiabatic process. In this work we thus adopt the perspective that the goal is the most efficient possible preparation of such steady states, rather than ground states. Using known rigorous bounds for the open-system adiabatic theorem and for mixing times, we are then led to a disturbing conclusion that at first appears to doom efforts to build physical quantum annealers: relaxation seems to always converge faster than adiabatic preparation. However, by carefully estimating the adiabatic preparation time for Lindbladians describing thermalization in the low-temperature limit, we show that there is, after all, room for an adiabatic speedup over relaxation. To test the analytically derived bounds for the adiabatic preparation time and the relaxation time, we numerically study three models: a dissipative quasifree fermionic chain, a single qubit coupled to a thermal bath, and the "spike" problem of n qubits coupled to a thermal bath. Via these models we find that the answer to the "which wins" question depends for each model on the temperature and the system-bath coupling strength. In the case of the "spike" problem we find that relaxation during the adiabatic evolution plays an important role in ensuring a speedup over the final-time relaxation procedure. Thus, relaxation-assisted adiabatic preparation can be more efficient than both pure adiabatic evolution and pure relaxation.

  8. Mode locking and island suppression by resonant magnetic perturbations in Rutherford regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wenlong; Zhu, Ping, E-mail: pzhu@ustc.edu.cn

    We demonstrate in theory that tearing mode locking and magnetic island suppression by resonant magnetic perturbations (RMPs) can correspond to different states of a same dynamic system governed by the torque balance and the nonlinear island evolution in the Rutherford regime. In particular, mode locking corresponds to the exact steady state of this system. A new exact analytic solution has been obtained for such a steady state, which quantifies the dependence of the locked mode island width on RMP amplitude in different plasma regimes. Furthermore, two different branches of mode locking have been revealed with the new analytic solution andmore » the branch with suppressed island width turns out to be unstable in general. On the other hand, the system also admits stable states of island suppression achieved through the RMP modulation of tearing mode rotational frequency. When the RMP amplitude is above a certain threshold, the island suppression is transient until the tearing mode eventually gets locked. When the RMP amplitude is below the mode locking threshold, the island can be suppressed in a steady state on time-average, along with transient oscillations in rotational frequency and island width due to the absence of mode locking.« less

  9. Kinetics of motility-induced phase separation and swim pressure

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Yllanes, David; Marchetti, M. Cristina

    2017-01-01

    Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. Here we examine the pressure of ABPs in two dimensions in both closed boxes and systems with periodic boundary conditions and show that its nonmonotonic behavior with density is a general property of ABPs and is not the result of finite-size effects. We correlate the time evolution of the mean pressure towards its steady-state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase-separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady-state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems.

  10. A controlled rate freeze/thaw system for cryopreservation of biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.

    1979-01-01

    A system which allows programmable temperature-time control for a 5 cc sample volume of an arbitrary biological material was constructed. Steady state and dynamic temperature control was obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container was totally immersed into a cold heat sink. Sample volume thermodynamic property data were obtained by measurements of heater power and heat flux through the container walls. Using a mixture of dry ice and alcohol at -79 C, sample volume was controlled from +40 C to -60 C at rates from steady state to + or - 65 C/min. Steady state temperature precision was better than 0.2 C while the dynamic capability depends on the temperature rate of change as well as the thermal mass of the sample and the container.

  11. Stress Erythropoiesis Model Systems.

    PubMed

    Bennett, Laura F; Liao, Chang; Paulson, Robert F

    2018-01-01

    Bone marrow steady-state erythropoiesis maintains erythroid homeostasis throughout life. This process constantly generates new erythrocytes to replace the senescent erythrocytes that are removed by macrophages in the spleen. In contrast, anemic or hypoxic stress induces a physiological response designed to increase oxygen delivery to the tissues. Stress erythropoiesis is a key component of this response. It is best understood in mice where it is extramedullary occurring in the adult spleen and liver and in the fetal liver during development. Stress erythropoiesis utilizes progenitor cells and signals that are distinct from bone marrow steady-state erythropoiesis. Because of that observation many genes may play a role in stress erythropoiesis despite having no effect on steady-state erythropoiesis. In this chapter, we will discuss in vivo and in vitro techniques to study stress erythropoiesis in mice and how the in vitro culture system can be extended to study human stress erythropoiesis.

  12. An Introduction to System-Level, Steady-State and Transient Modeling and Optimization of High-Power-Density Thermoelectric Generator Devices Made of Segmented Thermoelectric Elements

    NASA Astrophysics Data System (ADS)

    Crane, D. T.

    2011-05-01

    High-power-density, segmented, thermoelectric (TE) elements have been intimately integrated into heat exchangers, eliminating many of the loss mechanisms of conventional TE assemblies, including the ceramic electrical isolation layer. Numerical models comprising simultaneously solved, nonlinear, energy balance equations have been created to simulate these novel architectures. Both steady-state and transient models have been created in a MATLAB/Simulink environment. The models predict data from experiments in various configurations and applications over a broad range of temperature, flow, and current conditions for power produced, efficiency, and a variety of other important outputs. Using the validated models, devices and systems are optimized using advanced multiparameter optimization techniques. Devices optimized for particular steady-state operating conditions can then be dynamically simulated in a transient operating model. The transient model can simulate a variety of operating conditions including automotive and truck drive cycles.

  13. Methods of computing steady-state voltage stability margins of power systems

    DOEpatents

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  14. Composing problem solvers for simulation experimentation: a case study on steady state estimation.

    PubMed

    Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M

    2014-01-01

    Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.

  15. Steady-state and transient operation of a heat-pipe radiator system

    NASA Technical Reports Server (NTRS)

    Sellers, J. P.

    1974-01-01

    Data obtained on a VCHP heat-pipe radiator system tested in a vacuum environment were studied. Analyses and interpretation of the steady-state results are presented along with an initial analysis of some of the transient data. Particular emphasis was placed on quantitative comparisons of the experimental data with computer model simulations. The results of the study provide a better understanding of the system but do not provide a complete explanation for the observed low VCHP performance and the relatively flat radiator panel temperature distribution. The results of the study also suggest hardware, software, and testing improvements.

  16. An ultrasonic flowmeter for measuring dynamic liquid flow

    NASA Technical Reports Server (NTRS)

    Carpini, T. D.; Monteith, J. H.

    1978-01-01

    A novel oscillating pipe system was developed to provide dynamic calibration wherein small sinusoidal signals with amplitudes of 0.5 to 10% of the steady-state flow were added to the steady-state flow by oscillating the flowmeter relative to the fixed pipes in the flow system. Excellent agreement was obtained between the dynamic velocities derived from an accelerometer mounted on the oscillating pipe system and those sensed by the flowmeter at frequencies of 7, 19, and 30 Hz. Also described were the signal processing techniques used to retrieve the small sinusoidal signals which were obscured by the fluid turbulence.

  17. A Summary of the Quasi-Steady Acceleration Environment on-Board STS-94 (MSL-1)

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin M.; Nati, Maurizio; Touboul, Pierre; Schuette, Andreas; Sablon, Gert

    1999-01-01

    The continuous free-fall state of a low Earth orbit experienced by NASA's Orbiters results in a unique reduced gravity environment. While microgravity science experiments are conducted in this reduced gravity environment, various accelerometer systems measure and record the microgravity acceleration environment for real-time and post-flight correlation with microgravity science data. This overall microgravity acceleration environment is comprised of quasi-steady, oscillatory, and transient contributions. The First Microgravity Science Laboratory (MSL-1) payload was dedicated to experiments studying various microgravity science disciplines, including combustion, fluid physics, and materials processing. In support of the MSL-1 payload, two systems capable of measuring the quasi-steady acceleration environment were flown: the Orbital Acceleration Research Experiment (OARE) and the Microgravity Measurement Assembly (MMA) system's Accelerometre Spatiale Triaxiale most evident in the quasi-steady acceleration regime. Utilizing such quasi-steady events, a comparison and summary of the quasi-steady acceleration environment for STS-94 will be presented

  18. Methods for Kinetic and Thermodynamic Analysis of Aminoacyl-tRNA Synthetases

    PubMed Central

    Francklyn, Christopher S.; First, Eric A.; Perona, John J.; Hou, Ya-Ming

    2008-01-01

    The accuracy of protein synthesis relies on the ability of aminoacyl-tRNA synthetases (aaRSs) to discriminate among true and near cognate substrates. To date, analysis of aaRSs function, including identification of residues of aaRS participating in amino acid and tRNA discrimination, has largely relied on the steady state kinetic pyrophosphate exchange and aminoacylation assays. Pre-steady state kinetic studies investigating a more limited set of aaRS systems have also been undertaken to assess the energetic contributions of individual enzyme-substrate interactions, particularly in the adenylation half reaction. More recently, a renewed interest in the use of rapid kinetics approaches for aaRSs has led to their application to several new aaRS systems, resulting in the identification of mechanistic differences that distinguish the two structurally distinct aaRS classes. Here, we review the techniques for thermodynamic and kinetic analysis of aaRS function. Following a brief survey of methods for the preparation of materials and for steady state kinetic analysis, this review will describe pre-steady state kinetic methods employing rapid quench and stopped-flow fluorescence for analysis of the activation and aminoacyl transfer reactions. Application of these methods to any aaRS system allows the investigator to derive detailed kinetic mechanisms for the activation and aminoacyl transfer reactions, permitting issues of substrate specificity, stereochemical mechanism, and inhibitor interaction to be addressed in a rigorous and quantitative fashion. PMID:18241792

  19. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  20. A simplified method for power-law modelling of metabolic pathways from time-course data and steady-state flux profiles.

    PubMed

    Kitayama, Tomoya; Kinoshita, Ayako; Sugimoto, Masahiro; Nakayama, Yoichi; Tomita, Masaru

    2006-07-17

    In order to improve understanding of metabolic systems there have been attempts to construct S-system models from time courses. Conventionally, non-linear curve-fitting algorithms have been used for modelling, because of the non-linear properties of parameter estimation from time series. However, the huge iterative calculations required have hindered the development of large-scale metabolic pathway models. To solve this problem we propose a novel method involving power-law modelling of metabolic pathways from the Jacobian of the targeted system and the steady-state flux profiles by linearization of S-systems. The results of two case studies modelling a straight and a branched pathway, respectively, showed that our method reduced the number of unknown parameters needing to be estimated. The time-courses simulated by conventional kinetic models and those described by our method behaved similarly under a wide range of perturbations of metabolite concentrations. The proposed method reduces calculation complexity and facilitates the construction of large-scale S-system models of metabolic pathways, realizing a practical application of reverse engineering of dynamic simulation models from the Jacobian of the targeted system and steady-state flux profiles.

  1. Na/sup +/-independent, phloretin-sensitive monosaccharide transport system in isolated intestinal epithelial cells. [Chickens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimmich, G.A.; Randles, J.

    1975-01-01

    A monosaccharide transport system in addition to the active Na/sup +/-dependent system characteristic of the brush border surface of vertebrate intestinal tissue has been identified in isolated chick intestinal epithelial cells. The newly described system differs in several characteristics from the Na/sup +/-dependent process, including function in the absence of Na/sup +/; a high sensitivity to phloretin, relative insensitivity to phlorizin; different substrate specificity; and a very high K/sub T/ and V/sub max/. The system apparently functions only in a facilitated diffusion manner so that it serves to move monosaccharide across the cell membrane down its chemical gradient. An appreciablemore » fraction of total sugar efflux occurs via the Na/sup +/-independent carrier from cells which have accumulated sugar to a steady state. Phloretin selectively blocks this efflux so that a normal steady-state sugar gradient of seven- to eightfold is transformed to a new steady-state gradient which is greater than 14-fold. Locus of the new system is tentatively ascribed to the serosal cell surface where it would serve for monosaccharide transfer between enterocyte and lamina propria of the villus. (auth)« less

  2. An extended harmonic balance method based on incremental nonlinear control parameters

    NASA Astrophysics Data System (ADS)

    Khodaparast, Hamed Haddad; Madinei, Hadi; Friswell, Michael I.; Adhikari, Sondipon; Coggon, Simon; Cooper, Jonathan E.

    2017-02-01

    A new formulation for calculating the steady-state responses of multiple-degree-of-freedom (MDOF) non-linear dynamic systems due to harmonic excitation is developed. This is aimed at solving multi-dimensional nonlinear systems using linear equations. Nonlinearity is parameterised by a set of 'non-linear control parameters' such that the dynamic system is effectively linear for zero values of these parameters and nonlinearity increases with increasing values of these parameters. Two sets of linear equations which are formed from a first-order truncated Taylor series expansion are developed. The first set of linear equations provides the summation of sensitivities of linear system responses with respect to non-linear control parameters and the second set are recursive equations that use the previous responses to update the sensitivities. The obtained sensitivities of steady-state responses are then used to calculate the steady state responses of non-linear dynamic systems in an iterative process. The application and verification of the method are illustrated using a non-linear Micro-Electro-Mechanical System (MEMS) subject to a base harmonic excitation. The non-linear control parameters in these examples are the DC voltages that are applied to the electrodes of the MEMS devices.

  3. Steady-state and dynamic characteristics of a 20-kHz spacecraft power system - Control of harmonic resonance

    NASA Technical Reports Server (NTRS)

    Wasynczuk, O.; Krause, P. C.; Biess, J. J.; Kapustka, R.

    1990-01-01

    A detailed computer simulation was used to illustrate the steady-state and dynamic operating characteristics of a 20-kHz resonant spacecraft power system. The simulated system consists of a parallel-connected set of DC-inductor resonant inverters (drivers), a 440-V cable, a node transformer, a 220-V cable, and a transformer-rectifier-filter (TRF) AC-to-DC receiver load. Also included in the system are a 1-kW 0.8-pf RL load and a double-LC filter connected at the receiving end of the 20-kHz AC system. The detailed computer simulation was used to illustrate the normal steady-state operating characteristics and the dynamic system performance following, for example, TRF startup. It is shown that without any filtering the given system exhibits harmonic resonances due to an interaction between the switching of the source and/or load converters and the AC system. However, the double-LC filter at the receiving-end of the AC system and harmonic traps connected in series with each of the drivers significantly reduce the harmonic distortion of the 20-kHz bus voltage. Significant additional improvement in the waveform quality can be achieved by including a double-LC filter with each driver.

  4. Quantum engineering. Confining the state of light to a quantum manifold by engineered two-photon loss.

    PubMed

    Leghtas, Z; Touzard, S; Pop, I M; Kou, A; Vlastakis, B; Petrenko, A; Sliwa, K M; Narla, A; Shankar, S; Hatridge, M J; Reagor, M; Frunzio, L; Schoelkopf, R J; Mirrahimi, M; Devoret, M H

    2015-02-20

    Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a specially engineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have confined the state of a superconducting resonator to the quantum manifold spanned by two coherent states of opposite phases and have observed a Schrödinger cat state spontaneously squeeze out of vacuum before decaying into a classical mixture. This experiment points toward robustly encoding quantum information in multidimensional steady-state manifolds. Copyright © 2015, American Association for the Advancement of Science.

  5. The number statistics and optimal history of non-equilibrium steady states of mortal diffusing particles

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch

    2015-05-01

    Suppose that a point-like steady source at x = 0 injects particles into a half-infinite line. The particles diffuse and die. At long times a non-equilibrium steady state sets in, and we assume that it involves many particles. If the particles are non-interacting, their total number N in the steady state is Poisson-distributed with mean \\bar{N} predicted from a deterministic reaction-diffusion equation. Here we determine the most likely density history of this driven system conditional on observing a given N. We also consider two prototypical examples of interacting diffusing particles: (i) a family of mortal diffusive lattice gases with constant diffusivity (as illustrated by the simple symmetric exclusion process with mortal particles), and (ii) random walkers that can annihilate in pairs. In both examples we calculate the variances of the (non-Poissonian) stationary distributions of N.

  6. Steady states of OQBM: Central Limit Theorem, Gaussian and non-Gaussian behavior

    NASA Astrophysics Data System (ADS)

    Petruccione, Francesco; Sinayskiy, Ilya

    Open Quantum Brownian Motion (OQBM) describes a Brownian particle with an additional internal quantum degree of freedom. Originally, it was introduced as a scaling limit of Open Quantum Walks (OQWs). Recently, it was noted, that for the model of free OQBM with a two-level system as an internal degree of freedom and decoherent coupling to a dissipative environment, one could use weak external driving of the internal degree of freedom to manipulate the steady-state position of the walker. This observation establishes a useful connection between controllable parameters of the OQBM, e.g. driving strengths and magnitude of detuning, and its steady state properties. Although OQWs satisfy a central limit theorem (CLT), it is known, that OQBM, in general, does not. The aim of this work is to derive steady states for some particular OQBMs and observe possible transitions from Gaussian to non-Gaussian behavior depending on the choice of quantum coin and as a function of diffusion coefficient and dissipation strength.

  7. The effect of flexural isostasy on the response time of orogenic systems

    NASA Astrophysics Data System (ADS)

    Braun, J.; Margirier, A.; Guerit, L.

    2017-12-01

    The concept of orogenic steady-state implies that mountain belts can reach a dynamic balance between uplift and erosion in order to maintain a quasi-constant shape. The final morphology of the mountain will be a function of the relative efficiency between uplift and erosion and is therefore likely to be modulated by climate. However, reaching such a steady-state cannot be instantaneous and there must exist a time lag between the onset of convergence and the full development of the mountain topography. Similarly, when an orogenic system is subject to a marked change in convergence rate or in climatic conditions, it takes a certain time for it to adapt to such a change and develop a new steady-state morphology. It is during these transient phases that the nature and efficiency of the interactions between tectonics and climate are most likely to be constrained by observations and understood. The duration of this transient stage remains, however, poorly constrained and understood. As shown by many authors (Whipple and Tucker, 1999, for example) the rate at which tectonic systems evolve to reach steady-state is likely controlled by climate and rock strength, which both determine the efficiency of erosional processes, and the rate of uplift. Here we show that isostasy also plays a very important role in determining the length of the transient phase and that, depending on the level of isostatic adjustment, which in turn depends on the flexural strength of the underlying lithosphere, isostasy can change the time it takes for an orogenic system to reach steady-state by an order of magnitude, i.,e. from a few millions to a few tens of millions of years. This has very important implications. It may explain why many young orogenic systems display an increase in uplift and erosion rate millions of years after the onset of collision and that, in these situations, such an increase does not require a steady change in tectonic and/or climate conditions/forcing. We also show that this "isostatic buffering" of orogenic response to abrupt changes in tectonic or climatic perturbations can not only lengthen the duration of the transient period, but also dampen the amplitude of the resulting erosional flux. This makes it sometimes difficult to extract the signature of these events from the sedimentary record.

  8. How should we understand non-equilibrium many-body steady states?

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  9. Extruder system for high-throughput/steady-state hydrogen ice supply and application for pellet fueling of reactor-scale fusion experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combs, S.K.; Foust, C.R.; Qualls, A.L.

    Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less

  10. Performance of a Brayton power system with a space type radiator

    NASA Technical Reports Server (NTRS)

    Nussle, R. C.; Prok, G. M.; Fenn, D. B.

    1974-01-01

    Test results of an experimental investigation to measure Brayton engine performance while operating at the sink temperatures of a typical low earth orbit are presented. The results indicate that the radiator area was slightly oversized. The steady state and transient responses of the power system to the sink temperatures in orbit were measured. During the orbital operation, the engine did not reach the steady state operation of either sun or shade conditions. The alternator power variation during orbit was + or - 4 percent from its mean value of 9.3 kilowatts.

  11. Energy repartition in the nonequilibrium steady state

    NASA Astrophysics Data System (ADS)

    Yan, Peng; Bauer, Gerrit E. W.; Zhang, Huaiwu

    2017-01-01

    The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as Newtonian liquids, elastic solids, and Josephson junctions.

  12. Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.

    PubMed

    Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J

    2014-03-01

    Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.

  13. Overview of EAST experiments on the development of high-performance steady-state scenario

    NASA Astrophysics Data System (ADS)

    Wan, B. N.; Liang, Y. F.; Gong, X. Z.; Li, J. G.; Xiang, N.; Xu, G. S.; Sun, Y. W.; Wang, L.; Qian, J. P.; Liu, H. Q.; Zhang, X. D.; Hu, L. Q.; Hu, J. S.; Liu, F. K.; Hu, C. D.; Zhao, Y. P.; Zeng, L.; Wang, M.; Xu, H. D.; Luo, G. N.; Garofalo, A. M.; Ekedahl, A.; Zhang, L.; Zhang, X. J.; Huang, J.; Ding, B. J.; Zang, Q.; Li, M. H.; Ding, F.; Ding, S. Y.; Lyu, B.; Yu, Y. W.; Zhang, T.; Zhang, Y.; Li, G. Q.; Xia, T. Y.; the EAST Team; Collaborators

    2017-10-01

    The EAST research program aims to demonstrate steady-state long-pulse advanced high-performance H-mode operations with ITER-like poloidal configuration and RF-dominated heating schemes. Since the 2014 IAEA FEC, EAST has been upgraded with all ITER-relevant auxiliary heating and current drive systems, enabling the investigation of plasma profile control by the coupling/integration of various auxiliary heating combinations. Fully non-inductive steady-state H-mode plasma (H 98,y2  >  1.1) was extended over 60 s for the first time with sole RF heating plus good power coupling and impurity and particle control. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and maintained at relatively high density, even up to n e ~ 4.5  ×  1019 m-3, where a current drive effect is still observed. Significant progress has been achieved on EAST, including: (i) demonstration of a steady-state scenario (fully non-inductive with V loop ~ 0.0 V at high β P ~ 1.8 and high-performance in upper single-null (ɛ ~ 1.6) configuration with the tungsten divertor; (ii) discovery of a stationary H-mode regime with no/small ELM using 4.6 GHz LHCD, and; (iii) achievement of ELM suppression in slowly rotating H-mode plasma with n  =  1 and 2 RMP compatible with long-pulse operations. The new advances in scenario development provide an integrated solution in achieving long-pulse steady-state operations on EAST.

  14. Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: Modeling, design and control

    NASA Astrophysics Data System (ADS)

    Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel

    2015-02-01

    Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.

  15. A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, C. Kristopher; Hauck, Cory D.

    In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less

  16. A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework

    DOE PAGES

    Garrett, C. Kristopher; Hauck, Cory D.

    2018-04-05

    In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less

  17. Dynamics and control of three-body tethered system in large elliptic orbits

    NASA Astrophysics Data System (ADS)

    Shi, Gefei; Zhu, Zhanxia; Zhu, Zheng H.

    2018-03-01

    This paper investigates the dynamic characteristics a three-body tethered satellite system in large elliptic orbits and the control strategy to suppress the libration of the system in orbital transfer process. The system is modeled by a two-piece dumbbell model in the domain of true anomaly. The model consists of one main satellite and two subsatellites connected with two straight, massless and inextensible tethers. Two control strategies based on the sliding mode control are developed to control the libration to the zero state and the steady state respectively. The results of numerical simulations show that the proposed control scheme has good performance in controlling the libration motion of a three-body tethered satellite system in an elliptic orbit with large eccentricity by limited control inputs. Furthermore, Hamiltonians in both states are examined and it shows that less control input is required to control the libration motion to the steady state than that of zero state.

  18. Innovative Bioreactor Development for Methanotrophic Biodegradation of Trichloroethylene

    DTIC Science & Technology

    1994-01-01

    biodegradation ot TCE for system optimization and process scaleup; 4. To determine the advantage of pulsed flow over steady-state operation through computer...TCE to nonhazardous products. The process is co-metabolic, i.e., the microorganisms do not derive any energetic advantage from degradation of the TCE...proces-. aleup; 4. To determine the advantage of pulsed flow over steady-state operation through computer process simulation using the empirical Alvarez

  19. Steady state statistical correlations predict bistability in reaction motifs.

    PubMed

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  20. EFFECTS OF SOG ON DPP-RECEPTOR BINDING*

    PubMed Central

    LOU, YUAN; NIE, QING; WAN, FREDERIC Y. M.

    2007-01-01

    Concentration gradients of morphogens are known to be instrumental in cell signaling and tissue patterning. Of interest here is how the presence of a competitor of BMP ligands affects cell signaling. The effects of Sog on the binding of Dpp with cell receptors are analyzed for dorsal-ventral morphogen gradient formation in vertebrate and Drosophila embryos. This prototype system includes diffusing ligands, degradation of morphogens, and cleavage of Dpp-Sog complexes by Tolloid to free up Dpp. Simple and biologically meaningful necessary and sufficient conditions for the existence of a steady state gradient configuration are established, and existence theorems are proved. For high Sog production rates (relative to the Dpp production rate), it is found that the steady state configuration exhibits a more intense Dpp-receptor concentration near the dorsal midline. Numerical simulations of the evolution of the system show that, beyond some threshold Sog production rate, the transient Dpp-receptor concentration at the dorsal midline would become more intense than that of the steady state, before subsiding and approaching a nonuniform steady state of lower magnitude. The magnitude of the transient concentration has been found to increase by several fold with increasing Sog production rate. The highly intense Dpp activity at and around the dorsal midline is consistent with available experimental observations and other analytical studies. PMID:17377624

  1. The orbital PDF: general inference of the gravitational potential from steady-state tracers

    NASA Astrophysics Data System (ADS)

    Han, Jiaxin; Wang, Wenting; Cole, Shaun; Frenk, Carlos S.

    2016-02-01

    We develop two general methods to infer the gravitational potential of a system using steady-state tracers, I.e. tracers with a time-independent phase-space distribution. Combined with the phase-space continuity equation, the time independence implies a universal orbital probability density function (oPDF) dP(λ|orbit) ∝ dt, where λ is the coordinate of the particle along the orbit. The oPDF is equivalent to Jeans theorem, and is the key physical ingredient behind most dynamical modelling of steady-state tracers. In the case of a spherical potential, we develop a likelihood estimator that fits analytical potentials to the system and a non-parametric method (`phase-mark') that reconstructs the potential profile, both assuming only the oPDF. The methods involve no extra assumptions about the tracer distribution function and can be applied to tracers with any arbitrary distribution of orbits, with possible extension to non-spherical potentials. The methods are tested on Monte Carlo samples of steady-state tracers in dark matter haloes to show that they are unbiased as well as efficient. A fully documented C/PYTHON code implementing our method is freely available at a GitHub repository linked from http://icc.dur.ac.uk/data/#oPDF.

  2. Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system.

    PubMed

    Zhang, Fan; Ren, Juanjuan; Duan, Xueke; Zhao, Chen; Gong, Qihuang; Gu, Ying

    2018-06-13

    Scalable integrated quantum information networks calls for controllable entanglement modulation at subwavelength scale. To reduce laser disturbance among adjacent nanostructures, here we theoretically demonstrate two-qubit entanglement modulated by an evanescent field of a dielectric nanowire in an emitter-AgNP coupled system. This coupled system is considered as a nano-cavity system embedded in an evanescent vacuum. Through varying the amplitude of evanescent field, the concurrence of steady-state entanglement can be modified from 0 to 0.75. Because the interaction between emitters and the nanowire is much weaker than that inside the coupled system, the range of modulation for two-qubit entanglement is insensitive to their distance. The evanescent field controlled entangled state engineering provides the possibility to avoid optical crosstalk for on-chip steady-state entanglement. © 2018 IOP Publishing Ltd.

  3. Stable long-term blood formation by stem cells in murine steady-state hematopoiesis.

    PubMed

    Zavidij, Oksana; Ball, Claudia R; Herbst, Friederike; Oppel, Felix; Fessler, Sylvia; Schmidt, Manfred; von Kalle, Christof; Glimm, Hanno

    2012-09-01

    Hematopoietic stem cells (HSCs) generate all mature blood cells during the whole lifespan of an individual. However, the clonal contribution of individual HSC and progenitor cells in steady-state hematopoiesis is poorly understood. To investigate the activity of HSCs under steady-state conditions, murine HSC and progenitor cells were genetically marked in vivo by integrating lentiviral vectors (LVs) encoding green fluorescent protein (GFP). Hematopoietic contribution of individual marked clones was monitored by determination of lentiviral integration sites using highly sensitive linear amplification-mediated-polymerase chain reaction. A remarkably stable small proportion of hematopoietic cells expressed GFP in LV-injected animals for up to 24 months, indicating stable marking of murine steady-state hematopoiesis. Analysis of the lentiviral integration sites revealed that multiple hematopoietic clones with both myeloid and lymphoid differentiation potential contributed to long-term hematopoiesis. In contrast to intrafemoral vector injection, intravenous administration of LV preferentially targeted short-lived progenitor cells. Myelosuppressive treatment of mice prior to LV-injection did not affect the marking efficiency. Our study represents the first continuous analysis of clonal behavior of genetically marked hematopoietic cells in an unmanipulated system, providing evidence that multiple clones are simultaneously active in murine steady-state hematopoiesis. Copyright © 2012 AlphaMed Press.

  4. Visual and auditory steady-state responses in attention-deficit/hyperactivity disorder.

    PubMed

    Khaleghi, Ali; Zarafshan, Hadi; Mohammadi, Mohammad Reza

    2018-05-22

    We designed a study to investigate the patterns of the steady-state visual evoked potential (SSVEP) and auditory steady-state response (ASSR) in adolescents with attention-deficit/hyperactivity disorder (ADHD) when performing a motor response inhibition task. Thirty 12- to 18-year-old adolescents with ADHD and 30 healthy control adolescents underwent an electroencephalogram (EEG) examination during steady-state stimuli when performing a stop-signal task. Then, we calculated the amplitude and phase of the steady-state responses in both visual and auditory modalities. Results showed that adolescents with ADHD had a significantly poorer performance in the stop-signal task during both visual and auditory stimuli. The SSVEP amplitude of the ADHD group was larger than that of the healthy control group in most regions of the brain, whereas the ASSR amplitude of the ADHD group was smaller than that of the healthy control group in some brain regions (e.g., right hemisphere). In conclusion, poorer task performance (especially inattention) and neurophysiological results in ADHD demonstrate a possible impairment in the interconnection of the association cortices in the parietal and temporal lobes and the prefrontal cortex. Also, the motor control problems in ADHD may arise from neural deficits in the frontoparietal and occipitoparietal systems and other brain structures such as cerebellum.

  5. Kinetics of motility-induced phase separation and swim pressure

    NASA Astrophysics Data System (ADS)

    Patch, Adam; Yllanes, David; Marchetti, M. Cristina

    Active Brownian particles (ABPs) represent a minimal model of active matter consisting of self-propelled spheres with purely repulsive interactions and rotational noise. We correlate the time evolution of the mean pressure towards its steady state value with the kinetics of motility-induced phase separation. For parameter values corresponding to phase separated steady states, we identify two dynamical regimes. The pressure grows monotonically in time during the initial regime of rapid cluster formation, overshooting its steady state value and then quickly relaxing to it, and remains constant during the subsequent slower period of cluster coalescence and coarsening. The overshoot is a distinctive feature of active systems. NSF-DMR-1305184, NSF-DGE-1068780, ACI-1341006, FIS2015-65078-C02, BIFI-ZCAM.

  6. Development and Analysis of Hybrid Thermoelectric Refrigerator Systems

    NASA Astrophysics Data System (ADS)

    Saifizi, M.; Zakaria, M. S.; Yaacob, Sazali; Wan, Khairunizam

    2018-03-01

    Thermoelectric module (TEM) is a type of solid-state devices which has the capability to maintain the accuracy of small temperature variation application. In this study, a hybrid thermoelectric refrigerator system is introduced by utilizing TEMs; direct and air to air thermoelectric heat pump to cool down and maintain low temperature for vaccines storage. Two different materials which are aluminum and stainless steel are used as container in hybrid thermoelectric refrigerator (HTER) configuration to investigate the response of every system in transient and steady state mode. A proper temperature sensor calibration technique is implemented to make certain real time data acquisition of the systems are not affected very much from the noise generated. From step response analysis, it is indicated that HTER I (aluminum) has rapid settling time from transient to steady state than HTER II (stainless steel) since aluminum has better thermal conductivity as compared to stainless steel. It is found that HTER I is better in cooling capability with the same input current instead of HTER II which required a longer time to achieve steady state mode. Besides, in Pseudo Random Binary Sequence (PRBS) response analysis injected to both systems shows HTER I is very sensitive to current input as the sequence length of HTER I is shorter than HTER II. However both systems depict the varying temperature in the range of 4 oC due to differences in thermal conductivity of container.

  7. Entropy criteria applied to pattern selection in systems with free boundaries

    NASA Astrophysics Data System (ADS)

    Kirkaldy, J. S.

    1985-10-01

    The steady state differential or integral equations which describe patterned dissipative structures, typically to be identified with first order phase transformation morphologies like isothermal pearlites, are invariably degenerate in one or more order parameters (the lamellar spacing in the pearlite case). It is often observed that a different pattern is attained at the steady state for each initial condition (the hysteresis or metastable case). Alternatively, boundary perturbations and internal fluctuations during transition up to, or at the steady state, destroy the path coherence. In this case a statistical ensemble of imperfect patterns often emerges which represents a fluctuating but recognizably patterned and unique average steady state. It is cases like cellular, lamellar pearlite, involving an assembly of individual cell patterns which are regularly perturbed by local fluctuation and growth processes, which concern us here. Such weakly fluctuating nonlinear steady state ensembles can be arranged in a thought experiment so as to evolve as subsystems linking two very large mass-energy reservoirs in isolation. Operating on this discontinuous thermodynamic ideal, Onsager’s principle of maximum path probability for isolated systems, which we interpret as a minimal time correlation function connecting subsystem and baths, identifies the stable steady state at a parametric minimum or maximum (or both) in the dissipation rate. This nonlinear principle is independent of the Principle of Minimum Dissipation which is applicable in the linear regime of irreversible thermodynamics. The statistical argument is equivalent to the weak requirement that the isolated system entropy as a function of time be differentiable to the second order despite the macroscopic pattern fluctuations which occur in the subsystem. This differentiability condition is taken for granted in classical stability theory based on the 2nd Law. The optimal principle as applied to isothermal and forced velocity pearlites (in this case maximal) possesses a Le Chatelier (perturbation) Principle which can be formulated exactly via Langer’s conjecture that “each lamella must grow in a direction which is perpendicular to the solidification front”. This is the first example of such an equivalence to be experimentally and theoretically recognized in nonlinear irreversible thermodynamics. A further application to binary solidification cells is reviewed. In this case the optimum in the dissipation is a minimum and the closure between theory and experiment is excellent. Other applications in thermal-hydraulics, biology, and solid state physics are briefy described.

  8. The VERRUN and VERNAL software systems for steady-state visual evoked response experimentation

    NASA Technical Reports Server (NTRS)

    Levison, W. H.; Zacharias, G. L.

    1984-01-01

    Two digital computer programs were developed for use in experiments involving steady-state visual evoked response (VER): VERRUN, whose primary functions are to generate a sum-of-sines (SOS) stimulus and to digitize and store electro-cortical response; and VERNAL, which provides both time- and frequency-domain metrics of the evoked response. These programs were coded in FORTRAN for operation on the PDP-11/34, using the RSX-11 Operating System, and the PDP-11/23, using the RT-11 Operating System. Users' and programmers' guides to these programs are provided, and guidelines for model analysis of VER data are suggested.

  9. Is applicable thermodynamics of negative temperature for living organisms?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2017-11-01

    During organismal development the moment of sexual maturity can be characterizes by nearly maximum basal metabolic rate and body mass. Once the living organism reaches extreme values of the mass and the basal metabolic rate, it reaches near equilibrium thermodynamic steady state physiological level with maximum organismal complexity. Such thermodynamic systems that reach equilibrium steady state level at maximum mass-energy characteristics can be regarded from the prospective of thermodynamics of negative temperature. In these systems the increase of the internal and free energy is accompanied with decrease of the entropy. In our study we show the possibility the living organisms to regard as thermodynamic system with negative temperature

  10. Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors

    NASA Astrophysics Data System (ADS)

    Green, K.; Champneys, A. R.; Lieven, N. J.

    2006-04-01

    We present a nonlinear bifurcation analysis of the dynamics of an automatic dynamic balancing mechanism for rotating machines. The principle of operation is to deploy two or more masses that are free to travel around a race at a fixed distance from the hub and, subsequently, balance any eccentricity in the rotor. Mathematically, we start from a Lagrangian description of the system. It is then shown how under isotropic conditions a change of coordinates into a rotating frame turns the problem into a regular autonomous dynamical system, amenable to a full nonlinear bifurcation analysis. Using numerical continuation techniques, curves are traced of steady states, limit cycles and their bifurcations as parameters are varied. These results are augmented by simulations of the system trajectories in phase space. Taking the case of a balancer with two free masses, broad trends are revealed on the existence of a stable, dynamically balanced steady-state solution for specific rotation speeds and eccentricities. However, the analysis also reveals other potentially attracting states—non-trivial steady states, limit cycles, and chaotic motion—which are not in balance. The transient effects which lead to these competing states, which in some cases coexist, are investigated.

  11. Many-Body Spectral Functions from Steady State Density Functional Theory.

    PubMed

    Jacob, David; Kurth, Stefan

    2018-03-14

    We propose a scheme to extract the many-body spectral function of an interacting many-electron system from an equilibrium density functional theory (DFT) calculation. To this end we devise an ideal scanning tunneling microscope (STM) setup and employ the recently proposed steady-state DFT formalism (i-DFT) which allows one to calculate the steady current through a nanoscopic region coupled to two biased electrodes. In our setup, one of the electrodes serves as a probe ("STM tip"), which is weakly coupled to the system we want to measure. In the ideal STM limit of vanishing coupling to the tip, the system is restored to quasi-equilibrium and the normalized differential conductance yields the exact equilibrium many-body spectral function. Calculating this quantity from i-DFT, we derive an exact relation expressing the interacting spectral function in terms of the Kohn-Sham one. As illustrative examples, we apply our scheme to calculate the spectral functions of two nontrivial model systems, namely the single Anderson impurity model and the Constant Interaction Model.

  12. A CMOS enhanced solid-state nanopore based single molecule detection platform.

    PubMed

    Chen, Chinhsuan; Yemenicioglu, Sukru; Uddin, Ashfaque; Corgliano, Ellie; Theogarajan, Luke

    2013-01-01

    Solid-state nanopores have emerged as a single molecule label-free electronic detection platform. Existing transimpedance stages used to measure ionic current nanopores suffer from dynamic range limitations resulting from steady-state baseline currents. We propose a digitally-assisted baseline cancellation CMOS platform that circumvents this issue. Since baseline cancellation is a form of auto-zeroing, the 1/f noise of the system is also reduced. Our proposed design can tolerate a steady state baseline current of 10µA and has a usable bandwidth of 750kHz. Quantitative DNA translocation experiments on 5kbp DNA was performed using a 5nm silicon nitride pore using both the CMOS platform and a commercial system. Comparison of event-count histograms show that the CMOS platform clearly outperforms the commercial system, allowing for unambiguous interpretation of the data.

  13. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  14. Steady-state dynamic behavior of an auxiliary bearing supported rotor system

    NASA Technical Reports Server (NTRS)

    Xie, Huajun; Flowers, George T.; Lawrence, Charles

    1995-01-01

    This paper investigates the steady-state responses of a rotor system supported by auxiliary bearings in which there is a clearance between the rotor and the inner race of the bearing. A simulation model based upon the rotor of a production jet engine is developed and its steady-state behavior is explored over a wide range of operating conditions for various parametric configurations. Specifically, the influence of rotor imbalance, support stiffness, and damping is studied. It is found that imbalance may change the rotor responses dramatically in terms of frequency contents at certain operating speeds. Subharmonic responses of 2nd order through 10th order are all observed except the 9th order. Chaotic phenomenon is also observed. Jump phenomena (or double-valued responses) of both hard-spring type and soft-spring type are shown to occur at low operating speeds for systems with low auxiliary bearing damping or large clearance even with relatively small imbalance. The effect of friction between the shaft and the inner race of the bearing is also discussed.

  15. Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements

    NASA Astrophysics Data System (ADS)

    Genoni, Marco G.; Zhang, Jinglei; Millen, James; Barker, Peter F.; Serafini, Alessio

    2015-07-01

    With the purpose of controlling the steady state of a dielectric nanosphere levitated within an optical cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-continuous measurement of either the output cavity mode or the nanosphere’s position. We find that the average phonon number, purity and quantum squeezing of the steady-states can all be made more non-classical through the addition of time-continuous measurement. We predict that the continuous monitoring of the system, together with Markovian feedback, allows one to stabilize the dynamics for any value of the laser frequency driving the cavity. By considering state of the art values of the experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-state with an average phonon number {n}{ph}≈ 0.5.

  16. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    PubMed

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  17. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    PubMed

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  18. Noise-induced creation and annihilation of dissipative solitons (DS) in a passively mode-locked laser

    NASA Astrophysics Data System (ADS)

    Teamir, Tesfay; Elahi, Parviz; Makey, Ghaith; Fatih, Ilday

    Passive mode-locking, resulting in self-organized formation of femtoseconds-long laser pulses, constitutes a far-from-equilibrium steady state. Mode-locking is not only important for laser technology, but also of fundamental interest for broad class of systems. Despite numerous studies on their nonlinear dynamics, there is little understanding of the transitions that intrinsic noise can induce. We show that transitions between single-DS and multi-DS states can be triggered. Near critical points, DS states are observed to repeatedly exchange energy among themselves, form DS clusters with varying or vibrating temporal separation, often followed by random transformations among different states. This critical behavior appears to be caused by soliton-soliton or soliton-generated dispersive wave interactions. Irrespective of the specifics of the state, the measured noise level of the laser starts at a moderate value, is then reduced, as the DS's energy is increased. Further increases in power (nonlinearity) drives it towards a noisy critical state, where creation or annihilation of pulses occurs just before a new steady state is formed. These noise-induced transitions between steady states can shed light on the thermodynamics of far-from-equilibrium systems. TàBITAK (113F319) and ERC CoG (617521).

  19. Dynamic Modeling of ALS Systems

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    The purpose of dynamic modeling and simulation of Advanced Life Support (ALS) systems is to help design them. Static steady state systems analysis provides basic information and is necessary to guide dynamic modeling, but static analysis is not sufficient to design and compare systems. ALS systems must respond to external input variations and internal off-nominal behavior. Buffer sizing, resupply scheduling, failure response, and control system design are aspects of dynamic system design. We develop two dynamic mass flow models and use them in simulations to evaluate systems issues, optimize designs, and make system design trades. One model is of nitrogen leakage in the space station, the other is of a waste processor failure in a regenerative life support system. Most systems analyses are concerned with optimizing the cost/benefit of a system at its nominal steady-state operating point. ALS analysis must go beyond the static steady state to include dynamic system design. All life support systems exhibit behavior that varies over time. ALS systems must respond to equipment operating cycles, repair schedules, and occasional off-nominal behavior or malfunctions. Biological components, such as bioreactors, composters, and food plant growth chambers, usually have operating cycles or other complex time behavior. Buffer sizes, material stocks, and resupply rates determine dynamic system behavior and directly affect system mass and cost. Dynamic simulation is needed to avoid the extremes of costly over-design of buffers and material reserves or system failure due to insufficient buffers and lack of stored material.

  20. Responses of many-species predator-prey systems to perturbations

    NASA Astrophysics Data System (ADS)

    Esmaily, Shadi; Pleimling, Michel

    2015-03-01

    We study the responses of many-species predator-prey systems, both in the well-mixed case as well as on a two-dimensional lattice, to permanent and transient perturbations. In the case of a weak transient perturbation the system returns to the original steady state, whereas a permanent perturbation pushes the system into a new steady state. Using Monte Carlo simulations, we monitor the approach to stationarity after a perturbation through a variety of quantities, as for example time-dependent particle densities and correlation functions. Different types of perturbations are studied, ranging from a change in reaction rates to the injection of additional individuals into the system, the latter perturbation mimicking immigration. This work is supported by the US National Science Foundation through Grant DMR-1205309.

  1. Steady-state simulation program for attitude control propulsion systems

    NASA Technical Reports Server (NTRS)

    Heinmiller, P. J.

    1973-01-01

    The formulation and the engineering equations employed in the steady state attitude control propulsion system simulation program are presented. The objective of this program is to aid in the preliminary design and development of propulsion systems used for spacecraft attitude control. The program simulates the integrated operation of the many interdependent components typically comprising an attitude control propulsion system. Flexibility, generality, ease of operation, and speed consistent with adequate accuracy were overriding considerations during the development of this program. Simulation modules were developed representing the various types of fluid components typically encountered in an attitude control propulsion system. These modules are basically self-contained and may be arranged by the program user into desired configuration through the program input data.

  2. Steady-State Cycle Deck Launcher Developed for Numerical Propulsion System Simulation

    NASA Technical Reports Server (NTRS)

    VanDrei, Donald E.

    1997-01-01

    One of the objectives of NASA's High Performance Computing and Communications Program's (HPCCP) Numerical Propulsion System Simulation (NPSS) is to reduce the time and cost of generating aerothermal numerical representations of engines, called customer decks. These customer decks, which are delivered to airframe companies by various U.S. engine companies, numerically characterize an engine's performance as defined by the particular U.S. airframe manufacturer. Until recently, all numerical models were provided with a Fortran-compatible interface in compliance with the Society of Automotive Engineers (SAE) document AS681F, and data communication was performed via a standard, labeled common structure in compliance with AS681F. Recently, the SAE committee began to develop a new standard: AS681G. AS681G addresses multiple language requirements for customer decks along with alternative data communication techniques. Along with the SAE committee, the NPSS Steady-State Cycle Deck project team developed a standard Application Program Interface (API) supported by a graphical user interface. This work will result in Aerospace Recommended Practice 4868 (ARP4868). The Steady-State Cycle Deck work was validated against the Energy Efficient Engine customer deck, which is publicly available. The Energy Efficient Engine wrapper was used not only to validate ARP4868 but also to demonstrate how to wrap an existing customer deck. The graphical user interface for the Steady-State Cycle Deck facilitates the use of the new standard and makes it easier to design and analyze a customer deck. This software was developed following I. Jacobson's Object-Oriented Design methodology and is implemented in C++. The AS681G standard will establish a common generic interface for U.S. engine companies and airframe manufacturers. This will lead to more accurate cycle models, quicker model generation, and faster validation leading to specifications. The standard will facilitate cooperative work between industry and NASA. The NPSS Steady-State Cycle Deck team released a batch version of the Steady-State Cycle Deck in March 1996. Version 1.1 was released in June 1996. During fiscal 1997, NPSS accepted enhancements and modifications to the Steady-State Cycle Deck launcher. Consistent with NPSS' commercialization plan, these modifications will be done by a third party that can provide long-term software support.

  3. NASA Glenn Steady-State Heat Pipe Code GLENHP: Compilation for 64- and 32-Bit Windows Platforms

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K.; Geng, Steven M.

    2016-01-01

    A new version of the NASA Glenn Steady State Heat Pipe Code, designated "GLENHP," is introduced here. This represents an update to the disk operating system (DOS) version LERCHP reported in NASA/TM-2000-209807. The new code operates on 32- and 64-bit Windows-based platforms from within the 32-bit command prompt window. An additional evaporator boundary condition and other features are provided.

  4. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; ...

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less

  5. High-Performance Nanocomposites Designed for Radiation Shielding in Space and an Application of GIS for Analyzing Nanopowder Dispersion in Polymer Matrixes

    NASA Astrophysics Data System (ADS)

    Auslander, Joseph Simcha

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  6. Time-Resolved Magneto-Optical Imaging of Superconducting YBCO Thin Films in the High-Frequency AC Current Regime

    NASA Astrophysics Data System (ADS)

    Frey, Alexander

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  7. Use of Remote Sensing to Identify Essential Habitat for Aeschynomene virginica (L.) BSP, a Threatened Tidal Freshwater Wetland Plant

    NASA Astrophysics Data System (ADS)

    Mountz, Elizabeth M.

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  8. Silver-Polyimide Nanocomposite Films: Single-Stage Synthesis and Analysis of Metalized Partially-Fluorinated Polyimide BTDA/4-BDAF Prepared from Silver(I) Complexes

    NASA Astrophysics Data System (ADS)

    Abelard, Joshua Erold Robert

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  9. Multifunctional Polymer Synthesis and Incorporation of Gadolinium Compounds and Modified Tungsten Nanoparticles for Improvement of Radiation Shielding for use in Outer Space

    NASA Astrophysics Data System (ADS)

    Harbert, Emily Grace

    We begin by defining the concept of `open' Markov processes, which are continuous-time Markov chains where probability can flow in and out through certain `boundary' states. We study open Markov processes which in the absence of such boundary flows admit equilibrium states satisfying detailed balance, meaning that the net flow of probability vanishes between all pairs of states. External couplings which fix the probabilities of boundary states can maintain such systems in non-equilibrium steady states in which non-zero probability currents flow. We show that these non-equilibrium steady states minimize a quadratic form which we call 'dissipation.' This is closely related to Prigogine's principle of minimum entropy production. We bound the rate of change of the entropy of a driven non-equilibrium steady state relative to the underlying equilibrium state in terms of the flow of probability through the boundary of the process. We then consider open Markov processes as morphisms in a symmetric monoidal category by splitting up their boundary states into certain sets of `inputs' and `outputs.' Composition corresponds to gluing the outputs of one such open Markov process onto the inputs of another so that the probability flowing out of the first process is equal to the probability flowing into the second. Tensoring in this category corresponds to placing two such systems side by side. We construct a `black-box' functor characterizing the behavior of an open Markov process in terms of the space of possible steady state probabilities and probability currents along the boundary. The fact that this is a functor means that the behavior of a composite open Markov process can be computed by composing the behaviors of the open Markov processes from which it is composed. We prove a similar black-boxing theorem for reaction networks whose dynamics are given by the non-linear rate equation. Along the way we describe a more general category of open dynamical systems where composition corresponds to gluing together open dynamical systems.

  10. Non-steady state mass action dynamics without rate constants: dynamics of coupled reactions using chemical potentials

    NASA Astrophysics Data System (ADS)

    Cannon, William R.; Baker, Scott E.

    2017-10-01

    Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.

  11. Chemotactic and hydrodynamic effects on collective dynamics of self-diffusiophoretic Janus motors

    NASA Astrophysics Data System (ADS)

    Huang, Mu-Jie; Schofield, Jeremy; Kapral, Raymond

    2017-12-01

    Collective motion in nonequilibrium steady state suspensions of self-propelled Janus motors driven by chemical reactions can arise due to interactions coming from direct intermolecular forces, hydrodynamic flow effects, or chemotactic effects mediated by chemical gradients. The relative importance of these interactions depends on the reactive characteristics of the motors, the way in which the system is maintained in a steady state, and properties of the suspension, such as the volume fraction. From simulations of a microscopic hard collision model for the interaction of fluid particles with the Janus motor we show that dynamic cluster states exist and determine the interaction mechanisms that are responsible for their formation. The relative importance of chemotactic and hydrodynamic effects is identified by considering a microscopic model in which chemotactic effects are turned off while the full hydrodynamic interactions are retained. The system is maintained in a steady state by means of a bulk reaction in which product particles are reconverted into fuel particles. The influence of the bulk reaction rate on the collective dynamics is also studied.

  12. Differential equation methods for simulation of GFP kinetics in non-steady state experiments.

    PubMed

    Phair, Robert D

    2018-03-15

    Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  13. Segregating gas from melt: an experimental study of the Ostwald ripening of vapor bubbles in magmas

    USGS Publications Warehouse

    Lautze, Nicole C.; Sisson, Thomas W.; Mangan, Margaret T.; Grove, Timothy L.

    2011-01-01

    Diffusive coarsening (Ostwald ripening) of H2O and H2O-CO2 bubbles in rhyolite and basaltic andesite melts was studied with elevated temperature–pressure experiments to investigate the rates and time spans over which vapor bubbles may enlarge and attain sufficient buoyancy to segregate in magmatic systems. Bubble growth and segregation are also considered in terms of classical steady-state and transient (non-steady-state) ripening theory. Experimental results are consistent with diffusive coarsening as the dominant mechanism of bubble growth. Ripening is faster in experiments saturated with pure H2O than in those with a CO2-rich mixed vapor probably due to faster diffusion of H2O than CO2 through the melt. None of the experimental series followed the time1/3 increase in mean bubble radius and time-1 decrease in bubble number density predicted by classical steady-state ripening theory. Instead, products are interpreted as resulting from transient regime ripening. Application of transient regime theory suggests that bubbly magmas may require from days to 100 years to reach steady-state ripening conditions. Experimental results, as well as theory for steady-state ripening of bubbles that are immobile or undergoing buoyant ascent, indicate that diffusive coarsening efficiently eliminates micron-sized bubbles and would produce mm-sized bubbles in 102–104 years in crustal magma bodies. Once bubbles attain mm-sizes, their calculated ascent rates are sufficient that they could transit multiple kilometers over hundreds to thousands of years through mafic and silicic melt, respectively. These results show that diffusive coarsening can facilitate transfer of volatiles through, and from, magmatic systems by creating bubbles sufficiently large for rapid ascent.

  14. Evaluating steady-state soil thickness by coupling uranium series and 10Be cosmogenic radionuclides

    NASA Astrophysics Data System (ADS)

    Vanacker, Veerle; Schoonejans, Jerome; Opfergelt, Sophie; Granet, Matthieu; Christl, Marcus; Chabaux, Francois

    2017-04-01

    Within the Critical Zone, the development of the regolith mantle is controlled by the downwards propagation of the weathering front into the bedrock and denudation at the surface of the regolith by mass movements, water and wind erosion. When the removal of surface material is approximately balanced by the soil production, the soil system is assumed to be in steady-state. The steady state soil thickness (or so-called SSST) can be considered as a dynamic equilibrium of the system, where the thickness of the soil mantle stays relatively constant over time. In this study, we present and compare analytical data from two independent isotopic techniques: in-situ produced cosmogenic nuclides and U-series disequilibria to constrain soil development under semi-arid climatic conditions. The Spanish Betic Cordillera (Southeast Spain) was selected for this study, as it offers us a unique opportunity to analyze soil thickness steady-state conditions for thin soils of semiarid environments. Three soil profiles were sampled across the Betic Ranges, at the ridge crest of zero-order catchments with distinct topographic relief, hillslope gradient and 10Be-derived denudation rate. The magnitude of soil production rates determined based on U-series isotopes (238U, 234U, 230Th and 226Ra) is in the same order of magnitude as the 10Be-derived denudation rates, suggesting steady state soil thickness in two out of three sampling sites. The results suggest that coupling U-series isotopes with in-situ produced radionuclides can provide new insights in the rates of soil development; and also illustrate the potential frontiers in applying U-series disequilibria to track soil production in rapidly eroding landscapes characterized by thin weathering depths.

  15. Steady State Dendritic Cells Present Parenchymal Self-Antigen and Contribute to, but Are Not Essential for, Tolerization of Naive and Th1 Effector CD4 Cells1

    PubMed Central

    Hagymasi, Adam T.; Slaiby, Aaron M.; Mihalyo, Marianne A.; Qui, Harry Z.; Zammit, David J.; Lefrançois, Leo; Adler, Adam J.

    2010-01-01

    Bone marrow-derived APC are critical for both priming effector/memory T cell responses to pathogens and inducing peripheral tolerance in self-reactive T cells. In particular, dendritic cells (DC) can acquire peripheral self-Ags under steady state conditions and are thought to present them to cognate T cells in a default tolerogenic manner, whereas exposure to pathogen-associated inflammatory mediators during the acquisition of pathogen-derived Ags appears to reprogram DCs to prime effector and memory T cell function. Recent studies have confirmed the critical role of DCs in priming CD8 cell effector responses to certain pathogens, although the necessity of steady state DCs in programming T cell tolerance to peripheral self-Ags has not been directly tested. In the current study, the role of steady state DCs in programming self-reactive CD4 cell peripheral tolerance was assessed by combining the CD11c-diphtheria toxin receptor transgenic system, in which DC can be depleted via treatment with diphtheria toxin, with a TCR-transgenic adoptive transfer system in which either naive or Th1 effector CD4 cells are induced to undergo tolerization after exposure to cognate parenchymally derived self-Ag. Although steady state DCs present parenchymal self-Ag and contribute to the tolerization of cognate naive and Th1 effector CD4 cells, they are not essential, indicating the involvement of a non-DC tolerogenic APC population(s). Tolerogenic APCs, however, do not require the cooperation of CD4+CD25+ regulatory T cells. Similarly, DC were required for maximal priming of naive CD4 cells to vaccinia viral-Ag, but priming could still occur in the absence of DC. PMID:17641018

  16. Stabilizing Entanglement via Symmetry-Selective Bath Engineering in Superconducting Qubits.

    PubMed

    Kimchi-Schwartz, M E; Martin, L; Flurin, E; Aron, C; Kulkarni, M; Tureci, H E; Siddiqi, I

    2016-06-17

    Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate nontrivial steady states, is a tantalizing alternative to gate- and measurement-based quantum science. Here, we demonstrate dissipative stabilization of entanglement between two superconducting transmon qubits in a symmetry-selective manner. We utilize the engineered symmetries of the dissipative environment to stabilize a target Bell state; we further demonstrate suppression of the Bell state of opposite symmetry due to parity selection rules. This implementation is resource efficient, achieves a steady-state fidelity F=0.70, and is scalable to multiple qubits.

  17. Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.

    PubMed

    Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø

    2003-10-07

    The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.

  18. Orbiter CCTV video signal noise analysis

    NASA Technical Reports Server (NTRS)

    Lawton, R. M.; Blanke, L. R.; Pannett, R. F.

    1977-01-01

    The amount of steady state and transient noise which will couple to orbiter CCTV video signal wiring is predicted. The primary emphasis is on the interim system, however, some predictions are made concerning the operational system wiring in the cabin area. Noise sources considered are RF fields from on board transmitters, precipitation static, induced lightning currents, and induced noise from adjacent wiring. The most significant source is noise coupled to video circuits from associated circuits in common connectors. Video signal crosstalk is the primary cause of steady state interference, and mechanically switched control functions cause the largest induced transients.

  19. Application of dynamical systems theory to nonlinear aircraft dynamics

    NASA Technical Reports Server (NTRS)

    Culick, Fred E. C.; Jahnke, Craig C.

    1988-01-01

    Dynamical systems theory has been used to study nonlinear aircraft dynamics. A six degree of freedom model that neglects gravity has been analyzed. The aerodynamic model, supplied by NASA, is for a generic swept wing fighter and includes nonlinearities as functions of the angle of attack. A continuation method was used to calculate the steady states of the aircraft, and bifurcations of these steady states, as functions of the control deflections. Bifurcations were used to predict jump phenomena and the onset of periodic motion for roll coupling instabilities and high angle of attack maneuvers. The predictions were verified with numerical simulations.

  20. Direct model reference adaptive control with application to flexible robots

    NASA Technical Reports Server (NTRS)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory W.

    1992-01-01

    A modification to a direct command generator tracker-based model reference adaptive control (MRAC) system is suggested in this paper. This modification incorporates a feedforward into the reference model's output as well as the plant's output. Its purpose is to eliminate the bounded model following error present in steady state when previous MRAC systems were used. The algorithm was evaluated using the dynamics for a single-link flexible-joint arm. The results of these simulations show a response with zero steady state model following error. These results encourage further use of MRAC for various types of nonlinear plants.

  1. Time-dependent generalized Gibbs ensembles in open quantum systems

    NASA Astrophysics Data System (ADS)

    Lange, Florian; Lenarčič, Zala; Rosch, Achim

    2018-04-01

    Generalized Gibbs ensembles have been used as powerful tools to describe the steady state of integrable many-particle quantum systems after a sudden change of the Hamiltonian. Here, we demonstrate numerically that they can be used for a much broader class of problems. We consider integrable systems in the presence of weak perturbations which break both integrability and drive the system to a state far from equilibrium. Under these conditions, we show that the steady state and the time evolution on long timescales can be accurately described by a (truncated) generalized Gibbs ensemble with time-dependent Lagrange parameters, determined from simple rate equations. We compare the numerically exact time evolutions of density matrices for small systems with a theory based on block-diagonal density matrices (diagonal ensemble) and a time-dependent generalized Gibbs ensemble containing only a small number of approximately conserved quantities, using the one-dimensional Heisenberg model with perturbations described by Lindblad operators as an example.

  2. Quench dynamics in superconducting nanojunctions: Metastability and dynamical Yang-Lee zeros

    NASA Astrophysics Data System (ADS)

    Souto, R. Seoane; Martín-Rodero, A.; Yeyati, A. Levy

    2017-10-01

    We study the charge transfer dynamics following the formation of a phase or voltage biased superconducting nanojunction using a full counting statistics analysis. We demonstrate that the evolution of the zeros of the generating function allows one to identify the population of different many body states much in the same way as the accumulation of Yang-Lee zeros of the partition function in equilibrium statistical mechanics is connected to phase transitions. We give an exact expression connecting the dynamical zeros to the charge transfer cumulants and discuss when an approximation based on "dominant" zeros is valid. We show that, for generic values of the parameters, the system gets trapped into a metastable state characterized by a nonequilibrium population of the many body states which is dependent on the initial conditions. We study in particular the effect of the switching rates in the dynamics showing that, in contrast to intuition, the deviation from thermal equilibrium increases for the slower rates. In the voltage biased case the steady state is reached independent of the initial conditions. Our method allows us to obtain accurate results for the steady state current and noise in quantitative agreement with steady state methods developed to describe the multiple Andreev reflections regime. Finally, we discuss the system dynamics after a sudden voltage drop showing the possibility of tuning the many body states population by an appropriate choice of the initial voltage, providing a feasible experimental way to access the quench dynamics and control the state of the system.

  3. Ising game: Nonequilibrium steady states of resource-allocation systems

    NASA Astrophysics Data System (ADS)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  4. Onsager's variational principle for the dynamics of a vesicle in a Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Oya, Yutaka; Kawakatsu, Toshihiro

    2018-03-01

    We propose a systematic formulation of the migration behaviors of a vesicle in a Poiseuille flow based on Onsager's variational principle, which can be used to determine the most stable steady state. Our model is described by a combination of the phase field theory for the vesicle and the hydrodynamics for the flow field. The dynamics is governed by the bending elastic energy and the dissipation functional, the latter being composed of viscous dissipation of the flow field, dissipation of the bending energy of the vesicle, and the friction between the vesicle and the flow field. We performed a series of simulations on 2-dimensional systems by changing the bending elasticity of the membrane and observed 3 types of steady states, i.e., those with slipper shape, bullet shape, and snaking motion, and a quasi-steady state with zig-zag motion. We show that the transitions among these steady states can be quantitatively explained by evaluating the dissipation functional, which is determined by the competition between the friction on the vesicle surface and the viscous dissipation in the bulk flow.

  5. Motion control of musculoskeletal systems with redundancy.

    PubMed

    Park, Hyunjoo; Durand, Dominique M

    2008-12-01

    Motion control of musculoskeletal systems for functional electrical stimulation (FES) is a challenging problem due to the inherent complexity of the systems. These include being highly nonlinear, strongly coupled, time-varying, time-delayed, and redundant. The redundancy in particular makes it difficult to find an inverse model of the system for control purposes. We have developed a control system for multiple input multiple output (MIMO) redundant musculoskeletal systems with little prior information. The proposed method separates the steady-state properties from the dynamic properties. The dynamic control uses a steady-state inverse model and is implemented with both a PID controller for disturbance rejection and an artificial neural network (ANN) feedforward controller for fast trajectory tracking. A mechanism to control the sum of the muscle excitation levels is also included. To test the performance of the proposed control system, a two degree of freedom ankle-subtalar joint model with eight muscles was used. The simulation results show that separation of steady-state and dynamic control allow small output tracking errors for different reference trajectories such as pseudo-step, sinusoidal and filtered random signals. The proposed control method also demonstrated robustness against system parameter and controller parameter variations. A possible application of this control algorithm is FES control using multiple contact cuff electrodes where mathematical modeling is not feasible and the redundancy makes the control of dynamic movement difficult.

  6. Local parametric instability near elliptic points in vortex flows under shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru; Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022; Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950

    The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, themore » size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.« less

  7. A numerical scheme to solve unstable boundary value problems

    NASA Technical Reports Server (NTRS)

    Kalnay-Rivas, E.

    1977-01-01

    The considered scheme makes it possible to determine an unstable steady state solution in cases in which, because of lack of symmetry, such a solution cannot be obtained analytically, and other time integration or relaxation schemes, because of instability, fail to converge. The iterative solution of a single complex equation is discussed and a nonlinear system of equations is considered. Described applications of the scheme are related to a steady state solution with shear instability, an unstable nonlinear Ekman boundary layer, and the steady state solution of a baroclinic atmosphere with asymmetric forcing. The scheme makes use of forward and backward time integrations of the original spatial differential operators and of an approximation of the adjoint operators. Only two computations of the time derivative per iteration are required.

  8. Integrating Kinetic Model of E. coli with Genome Scale Metabolic Fluxes Overcomes Its Open System Problem and Reveals Bistability in Central Metabolism

    PubMed Central

    Mannan, Ahmad A.; Toya, Yoshihiro; Shimizu, Kazuyuki; McFadden, Johnjoe; Kierzek, Andrzej M.; Rocco, Andrea

    2015-01-01

    An understanding of the dynamics of the metabolic profile of a bacterial cell is sought from a dynamical systems analysis of kinetic models. This modelling formalism relies on a deterministic mathematical description of enzyme kinetics and their metabolite regulation. However, it is severely impeded by the lack of available kinetic information, limiting the size of the system that can be modelled. Furthermore, the subsystem of the metabolic network whose dynamics can be modelled is faced with three problems: how to parameterize the model with mostly incomplete steady state data, how to close what is now an inherently open system, and how to account for the impact on growth. In this study we address these challenges of kinetic modelling by capitalizing on multi-‘omics’ steady state data and a genome-scale metabolic network model. We use these to generate parameters that integrate knowledge embedded in the genome-scale metabolic network model, into the most comprehensive kinetic model of the central carbon metabolism of E. coli realized to date. As an application, we performed a dynamical systems analysis of the resulting enriched model. This revealed bistability of the central carbon metabolism and thus its potential to express two distinct metabolic states. Furthermore, since our model-informing technique ensures both stable states are constrained by the same thermodynamically feasible steady state growth rate, the ensuing bistability represents a temporal coexistence of the two states, and by extension, reveals the emergence of a phenotypically heterogeneous population. PMID:26469081

  9. Evaluation of diffusion coefficients by means of an approximate steady-state condition in sedimentation velocity distributions.

    PubMed

    Scott, David J; Harding, Stephen E; Winzor, Donald J

    2015-12-01

    This investigation examined the feasibility of manipulating the rotor speed in sedimentation velocity experiments to spontaneously generate an approximate steady-state condition where the extent of diffusional spreading is matched exactly by the boundary sharpening arising from negative s-c dependence. Simulated sedimentation velocity distributions based on the sedimentation characteristics for a purified mucin preparation were used to illustrate a simple procedure for determining the diffusion coefficient from such steady-state distributions in situations where the concentration dependence of the sedimentation coefficient, s = s(0)/(1 + Kc), was quantified in terms of the limiting sedimentation coefficient as c → 0 (s(0)) and the concentration coefficient (K). Those simulations established that spontaneous generation of the approximate steady state could well be a feature of sedimentation velocity distributions for many unstructured polymer systems because the requirement that Kcoω(2)s(0)/D be between 46 and 183 cm(-2) is not unduly restrictive. Although spontaneous generation of the approximate steady state is also a theoretical prediction for structured macromolecular solutes exhibiting linear concentration dependence of the sedimentation coefficient, s = s(0)(1 - kc), the required value of k is far too large for any practical advantage to be taken of this approach with globular proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Quasi-steady state conditions in heterogeneous aquifers during pumping tests

    NASA Astrophysics Data System (ADS)

    Zha, Yuanyuan; Yeh, Tian-Chyi J.; Shi, Liangsheng; Huang, Shao-Yang; Wang, Wenke; Wen, Jet-Chau

    2017-08-01

    Classical Thiem's well hydraulic theory, other aquifer test analyses, and flow modeling efforts often assume the existence of ;quasi-steady; state conditions. That is, while drawdowns due to pumping continue to grow, the hydraulic gradient in the vicinity of the pumping well does not change significantly. These conditions have built upon two-dimensional and equivalent homogeneous conceptual models, but few field data have been available to affirm the existence of these conditions. Moreover, effects of heterogeneity and three-dimensional flow on this quasi-steady state concept have not been thoroughly investigated and discussed before. In this study, we first present a quantitative definition of quasi-steady state (or steady-shape conditions) and steady state conditions based on the analytical solution of two- or three-dimensional flow induced by pumping in unbounded, homogeneous aquifers. Afterward, we use a stochastic analysis to investigate the influence of heterogeneity on the quasi-steady state concept in heterogeneous aquifers. The results of the analysis indicate that the time to reach an approximate quasi-steady state in a heterogeneous aquifer could be quite different from that estimated based on a homogeneous model. We find that heterogeneity of aquifer properties, especially hydraulic conductivity, impedes the development of the quasi-steady state condition before the flow reaching steady state. Finally, 280 drawdown-time data from the hydraulic tomographic survey conducted at a field site corroborate our finding that the quasi-steady state condition likely would not take place in heterogeneous aquifers unless pumping tests last a long period. Research significance (1) Approximate quasi-steady and steady state conditions are defined for two- or three-dimensional flow induced by pumping in unbounded, equivalent homogeneous aquifers. (2) Analysis demonstrates effects of boundary condition, well screen interval, and heterogeneity of parameters on the existence of the quasi-steady, and validity of approximate quasi-steady concept. (3) Temporal evaluation of information content about heterogeneity in head observations are analyzed in heterogeneous aquifer. (4) 280 observed drawdown-time data corroborate the stochastic analysis that quasi-steady is difficult to reach in highly heterogeneous aquifers.

  11. Laser-induced polarization of a quantum spin system in the steady-state regime

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2016-05-01

    The effect of the circularly polarized laser field on quantum spin systems in the steady-state regime, in which relaxation plays the central role, has been studied. The dynamical mean-field-like theory predicts several general results for the behavior of the time-average magnetization caused by the laser field. The induced magnetization oscillates with the frequency of the laser field (while Rabi-like oscillations, which modulate the latter in the dynamical regime, are damped by the relaxation in the steady-state regime). At high frequencies, that magnetization is determined by the value to which the relaxation process is directed. At low frequencies the slope of that magnetization as a function of the frequency is determined by the strength of the laser field. The anisotropy determines the resonance behavior of the time-averaged magnetization in both the ferromagnetic and antiferromagnetic cases with nonzero magnetic anisotropy. Nonlinear effects (in the magnitude of the laser field) have been considered. The effect of the laser field on quantum spin systems is maximal in resonance, where the time-averaged magnetization, caused by the laser field, is changed essentially. Out of resonance the changes in the magnetization are relatively small. The resonance effect is caused by the nonzero magnetic anisotropy. The resonance frequency is small (proportional to the anisotropy value) for spin systems with ferromagnetic interactions and enhanced by exchange interactions in the spin systems with antiferromagnetic couplings. We show that it is worthwhile to study the laser-field-induced magnetization of quantum spin systems caused by the high-frequency laser field in the steady-state regime in "easy-axis" antiferromagnetic spin systems (e.g., in Ising-like antiferromagnetic spin-chain materials). The effects of the Dzyaloshinskii-Moriya interaction and the spin-frustration couplings (in the case of the zigzag spin chain) have been analyzed.

  12. Multi-flexible-body analysis for application to wind turbine control design

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon

    The objective of the present research is to build a theoretical and computational framework for the aeroelastic analysis of flexible rotating systems, more specifically with special application to a wind turbine control design. The methodology is based on the integration of Kane's approach for the analysis of the multi-rigid-body subsystem and a mixed finite element method for the analysis of the flexible-body subsystem. The combined analysis is then strongly coupled with an aerodynamic model based on Blade Element Momentum theory for inflow model. The unified framework from the analysis of subsystems is represented as, in a symbolic manner, a set of nonlinear ordinary differential equations with time-variant, periodic coefficients, which describe the aeroelastic behavior of whole system. The framework can be directly applied to control design due to its symbolic characteristics. The solution procedures for the equations are presented for the study of nonlinear simulation, periodic steady-state solution, and Floquet stability of the linearized system about the steady-state solution. Finally the linear periodic system equation can be obtained with both system and control matrices as explicit functions of time, which can be directly applicable to control design. The structural model is validated by comparison of its results with those from software, some of which is commercial. The stability of the linearized system about periodic steady-state solution is different from that obtained about a constant steady-state solution, which have been conventional in the field of wind turbine dynamics. Parametric studies are performed on a wind turbine model with various pitch angles, precone angles, and rotor speeds. Combined with composite material, their effects on wind turbine aeroelastic stability are investigated. Finally it is suggested that the aeroelastic stability analysis and control design for the whole system is crucial for the design of wind turbines, and the present research breaks new ground in the ability to treat the issue.

  13. A Two-Stage Approach for Improving the Convergence of Least-Mean-Square Adaptive Decision-Feedback Equalizers in the Presence of Severe Narrowband Interference

    NASA Astrophysics Data System (ADS)

    Batra, Arun; Zeidler, James R.; Beex, A. A. Louis

    2007-12-01

    It has previously been shown that a least-mean-square (LMS) decision-feedback filter can mitigate the effect of narrowband interference (L.-M. Li and L. Milstein, 1983). An adaptive implementation of the filter was shown to converge relatively quickly for mild interference. It is shown here, however, that in the case of severe narrowband interference, the LMS decision-feedback equalizer (DFE) requires a very large number of training symbols for convergence, making it unsuitable for some types of communication systems. This paper investigates the introduction of an LMS prediction-error filter (PEF) as a prefilter to the equalizer and demonstrates that it reduces the convergence time of the two-stage system by as much as two orders of magnitude. It is also shown that the steady-state bit-error rate (BER) performance of the proposed system is still approximately equal to that attained in steady-state by the LMS DFE-only. Finally, it is shown that the two-stage system can be implemented without the use of training symbols. This two-stage structure lowers the complexity of the overall system by reducing the number of filter taps that need to be adapted, while incurring a slight loss in the steady-state BER.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Theisen, Matthew K.; Lafontaine Rivera, Jimmy G.; Liao, James C.

    Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are used. Without stability, some metabolites may accumulate or deplete leading to the irreversible loss of the desired operating point. Even if initial enzyme amounts achieve a stable steady state, changes in enzyme amount due to stochastic variations or environmental changes may move the system to the unstable region and lose the steady-state or quasi-steady-state flux. This situation is distinct from the phenomenon characterized by typical sensitivity analysis, which focuses on the smooth change before loss of stability. Here we show that metabolic networks differ significantlymore » in their intrinsic ability to attain stability due to the network structure and kinetic forms, and that after achieving stability, some enzymes are prone to cause instability upon changes in enzyme amounts. We use Ensemble Modelling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems when enzyme amounts are changed. Loss of stability in continuous systems can lead to lower production even when the system is tested experimentally in batch experiments. The predictions of instability by EMRA are supported by the lower productivity in batch experimental tests. Finally, the EMRA method incorporates properties of network structure, including stoichiometry and kinetic form, but does not require specific parameter values of the enzymes.« less

  15. Algorithms for the Euler and Navier-Stokes equations for supercomputers

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1985-01-01

    The steady state Euler and Navier-Stokes equations are considered for both compressible and incompressible flow. Methods are found for accelerating the convergence to a steady state. This acceleration is based on preconditioning the system so that it is no longer time consistent. In order that the acceleration technique be scheme-independent, this preconditioning is done at the differential equation level. Applications are presented for very slow flows and also for the incompressible equations.

  16. Ribosome flow model with positive feedback

    PubMed Central

    Margaliot, Michael; Tuller, Tamir

    2013-01-01

    Eukaryotic mRNAs usually form a circular structure; thus, ribosomes that terminatae translation at the 3′ end can diffuse with increased probability to the 5′ end of the transcript, initiating another cycle of translation. This phenomenon describes ribosomal flow with positive feedback—an increase in the flow of ribosomes terminating translating the open reading frame increases the ribosomal initiation rate. The aim of this paper is to model and rigorously analyse translation with feedback. We suggest a modified version of the ribosome flow model, called the ribosome flow model with input and output. In this model, the input is the initiation rate and the output is the translation rate. We analyse this model after closing the loop with a positive linear feedback. We show that the closed-loop system admits a unique globally asymptotically stable equilibrium point. From a biophysical point of view, this means that there exists a unique steady state of ribosome distributions along the mRNA, and thus a unique steady-state translation rate. The solution from any initial distribution will converge to this steady state. The steady-state distribution demonstrates a decrease in ribosome density along the coding sequence. For the case of constant elongation rates, we obtain expressions relating the model parameters to the equilibrium point. These results may perhaps be used to re-engineer the biological system in order to obtain a desired translation rate. PMID:23720534

  17. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    PubMed Central

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-01-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η − γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment. PMID:27682811

  18. Steady-state equation of water vapor sorption for CaCl2-based chemical sorbents and its application

    NASA Astrophysics Data System (ADS)

    Zhang, Haiquan; Yuan, Yanping; Sun, Qingrong; Cao, Xiaoling; Sun, Liangliang

    2016-09-01

    Green CaCl2-based chemical sorbent has been widely used in sorption refrigeration, air purification and air desiccation. Methods to improve the sorption rate have been extensively investigated, but the corresponding theoretical formulations have not been reported. In this paper, a sorption system of solid-liquid coexistence is established based on the hypothesis of steady-state sorption. The combination of theoretical analysis and experimental results indicates that the system can be described by steady-state sorption process. The steady-state sorption equation, μ = (η - γT) , was obtained in consideration of humidity, temperature and the surface area. Based on engineering applications and this equation, two methods including an increase of specific surface area and adjustment of the critical relative humidity (γ) for chemical sorbents, have been proposed to increase the sorption rate. The results indicate that the CaCl2/CNTs composite with a large specific surface area can be obtained by coating CaCl2 powder on the surface of carbon nanotubes (CNTs). The composite reached sorption equilibrium within only 4 h, and the sorption capacity was improved by 75% compared with pure CaCl2 powder. Furthermore, the addition of NaCl powder to saturated CaCl2 solution could significantly lower the solution’s γ. The sorption rate was improved by 30% under the same environment.

  19. Steady-state and dynamic models for particle engulfment during solidification

    NASA Astrophysics Data System (ADS)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  20. Steady-state propagation speed of rupture fronts along one-dimensional frictional interfaces.

    PubMed

    Amundsen, David Skålid; Trømborg, Jørgen Kjoshagen; Thøgersen, Kjetil; Katzav, Eytan; Malthe-Sørenssen, Anders; Scheibert, Julien

    2015-09-01

    The rupture of dry frictional interfaces occurs through the propagation of fronts breaking the contacts at the interface. Recent experiments have shown that the velocities of these rupture fronts range from quasistatic velocities proportional to the external loading rate to velocities larger than the shear wave speed. The way system parameters influence front speed is still poorly understood. Here we study steady-state rupture propagation in a one-dimensional (1D) spring-block model of an extended frictional interface for various friction laws. With the classical Amontons-Coulomb friction law, we derive a closed-form expression for the steady-state rupture velocity as a function of the interfacial shear stress just prior to rupture. We then consider an additional shear stiffness of the interface and show that the softer the interface, the slower the rupture fronts. We provide an approximate closed form expression for this effect. We finally show that adding a bulk viscosity on the relative motion of blocks accelerates steady-state rupture fronts and we give an approximate expression for this effect. We demonstrate that the 1D results are qualitatively valid in 2D. Our results provide insights into the qualitative role of various key parameters of a frictional interface on its rupture dynamics. They will be useful to better understand the many systems in which spring-block models have proved adequate, from friction to granular matter and earthquake dynamics.

  1. A surface renewal model for unsteady-state mass transfer using the generalized Danckwerts age distribution function.

    PubMed

    Horvath, Isabelle R; Chatterjee, Siddharth G

    2018-05-01

    The recently derived steady-state generalized Danckwerts age distribution is extended to unsteady-state conditions. For three different wind speeds used by researchers on air-water heat exchange on the Heidelberg Aeolotron, calculations reveal that the distribution has a sharp peak during the initial moments, but flattens out and acquires a bell-shaped character with process time, with the time taken to attain a steady-state profile being a strong and inverse function of wind speed. With increasing wind speed, the age distribution narrows significantly, its skewness decreases and its peak becomes larger. The mean eddy renewal time increases linearly with process time initially but approaches a final steady-state value asymptotically, which decreases dramatically with increased wind speed. Using the distribution to analyse the transient absorption of a gas into a large body of liquid, assuming negligible gas-side mass-transfer resistance, estimates are made of the gas-absorption and dissolved-gas transfer coefficients for oxygen absorption in water at 25°C for the three different wind speeds. Under unsteady-state conditions, these two coefficients show an inverse behaviour, indicating a heightened accumulation of dissolved gas in the surface elements, especially during the initial moments of absorption. However, the two mass-transfer coefficients start merging together as the steady state is approached. Theoretical predictions of the steady-state mass-transfer coefficient or transfer velocity are in fair agreement (average absolute error of prediction = 18.1%) with some experimental measurements of the same for the nitrous oxide-water system at 20°C that were made in the Heidelberg Aeolotron.

  2. Emergence of hysteresis loop in social contagions on complex networks.

    PubMed

    Su, Zhen; Wang, Wei; Li, Lixiang; Xiao, Jinghua; Stanley, H Eugene

    2017-07-21

    Understanding the spreading mechanisms of social contagions in complex network systems has attracted much attention in the physics community. Here we propose a generalized threshold model to describe social contagions. Using extensive numerical simulations and theoretical analyses, we find that a hysteresis loop emerges in the system. Specifically, the steady state of the system is sensitive to the initial conditions of the dynamics of the system. In the steady state, the adoption size increases discontinuously with the transmission probability of information about social contagions, and trial size exhibits a non-monotonic pattern, i.e., it first increases discontinuously then decreases continuously. Finally we study social contagions on heterogeneous networks and find that network topology does not qualitatively affect our results.

  3. Phononic heat transport in nanomechanical structures: steady-state and pumping

    NASA Astrophysics Data System (ADS)

    Sena-Junior, Marcone I.; Lima, Leandro R. F.; Lewenkopf, Caio H.

    2017-10-01

    We study the heat transport due to phonons in nanomechanical structures using a phase space representation of non-equilibrium Green’s functions. This representation accounts for the atomic degrees of freedom making it particularly suited for the description of small (molecular) junctions systems. We rigorously show that for the steady state limit our formalism correctly recovers the heuristic Landauer-like heat conductance for a quantum coherent molecular system coupled to thermal reservoirs. We find general expressions for the non-stationary heat current due to an external periodic drive. In both cases we discuss the quantum thermodynamic properties of the systems. We apply our formalism to the case of a diatomic molecular junction.

  4. Optimizing Synchronization Stability of the Kuramoto Model in Complex Networks and Power Grids

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wong, K. Y. Michael

    Maintaining the stability of synchronization state is crucial for the functioning of many natural and artificial systems. For the Kuramoto model on general weighted networks, the synchronization stability, measured by the dominant Lyapunov exponent at the steady state, is shown to have intricate and nonlinear dependence on the network topology and the dynamical parameters. Specifically, the dominant Lyapunov exponent corresponds to the algebraic connectivity of a meta-graph whose edge weight depends nonlinearly on the steady states. In this study, we utilize the cut-set space (DC) approximation to estimate the nonlinear steady state and simplify the calculation of the stability measure, based on which we further derive efficient algorithms to optimize the synchronization stability. The properties of the optimized networks and application in power grid stability are also discussed. This work is supported by a Grant from the Research Grant Council of Hong Kong (Grant Numbers 605813 and 16322616).

  5. Non-Markovian Complexity in the Quantum-to-Classical Transition

    PubMed Central

    Xiong, Heng-Na; Lo, Ping-Yuan; Zhang, Wei-Min; Feng, Da Hsuan; Nori, Franco

    2015-01-01

    The quantum-to-classical transition is due to environment-induced decoherence, and it depicts how classical dynamics emerges from quantum systems. Previously, the quantum-to-classical transition has mainly been described with memory-less (Markovian) quantum processes. Here we study the complexity of the quantum-to-classical transition through general non-Markovian memory processes. That is, the influence of various reservoirs results in a given initial quantum state evolving into one of the following four scenarios: thermal state, thermal-like state, quantum steady state, or oscillating quantum nonstationary state. In the latter two scenarios, the system maintains partial or full quantum coherence due to the strong non-Markovian memory effect, so that in these cases, the quantum-to-classical transition never occurs. This unexpected new feature provides a new avenue for the development of future quantum technologies because the remaining quantum oscillations in steady states are decoherence-free. PMID:26303002

  6. Enhancing emotional-based target prediction

    NASA Astrophysics Data System (ADS)

    Gosnell, Michael; Woodley, Robert

    2008-04-01

    This work extends existing agent-based target movement prediction to include key ideas of behavioral inertia, steady states, and catastrophic change from existing psychological, sociological, and mathematical work. Existing target prediction work inherently assumes a single steady state for target behavior, and attempts to classify behavior based on a single emotional state set. The enhanced, emotional-based target prediction maintains up to three distinct steady states, or typical behaviors, based on a target's operating conditions and observed behaviors. Each steady state has an associated behavioral inertia, similar to the standard deviation of behaviors within that state. The enhanced prediction framework also allows steady state transitions through catastrophic change and individual steady states could be used in an offline analysis with additional modeling efforts to better predict anticipated target reactions.

  7. Detonation propagation in annular arcs of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa

    2017-11-01

    We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.

  8. Preliminary results of steady state characterization of near term electric vehicle breadboard propulsion system

    NASA Technical Reports Server (NTRS)

    Sargent, N. B.

    1980-01-01

    The steady state test results on a breadboard version of the General Electric Near Term Electric Vehicle (ETV-1) are discussed. The breadboard was built using exact duplicate vehicle propulsion system components with few exceptions. Full instrumentation was provided to measure individual component efficiencies. Tests were conducted on a 50 hp dynamometer in a road load simulator facility. Characterization of the propulsion system over the lower half of the speed-torque operating range has shown the system efficiency to be composed of a predominant motor loss plus a speed dependent transaxle loss. At the lower speeds with normal road loads the armature chopper loss is also a significant factor. At the conditions corresponding to a cycle for which the vehicle system was specifically designed, the efficiencies are near optimum.

  9. Topologically protected modes in non-equilibrium stochastic systems.

    PubMed

    Murugan, Arvind; Vaikuntanathan, Suriyanarayanan

    2017-01-10

    Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.

  10. Understanding resonance graphs using Easy Java Simulations (EJS) and why we use EJS

    NASA Astrophysics Data System (ADS)

    Wee, Loo Kang; Lee, Tat Leong; Chew, Charles; Wong, Darren; Tan, Samuel

    2015-03-01

    This paper reports a computer model simulation created using Easy Java Simulation (EJS) for learners to visualize how the steady-state amplitude of a driven oscillating system varies with the frequency of the periodic driving force. The simulation shows (N = 100) identical spring-mass systems being subjected to (1) a periodic driving force of equal amplitude but different driving frequencies, and (2) different amounts of damping. The simulation aims to create a visually intuitive way of understanding how the series of amplitude versus driving frequency graphs are obtained by showing how the displacement of the system changes over time as it transits from the transient to the steady state. A suggested ‘how to use’ the model is added to help educators and students in their teaching and learning, where we explain the theoretical steady-state equation time conditions when the model begins to allow data recording of maximum amplitudes to closely match the theoretical equation, and the steps to collect different runs of the degree of damping. We also discuss two of the design features in our computer model: displaying the instantaneous oscillation together with the achieved steady-state amplitudes, and the explicit world view overlay with scientific representation with different degrees of damping runs. Three advantages of using EJS include: (1) open source codes and creative commons attribution licenses for scaling up of interactively engaging educational practices; (2) the models made can run on almost any device, including Android and iOS; and (3) it allows the redefinition of physics educational practices through computer modeling.

  11. A digital simulation of the glacial-aquifer system in the northern three-fourths of Brown County, South Dakota

    USGS Publications Warehouse

    Emmons, P.J.

    1990-01-01

    A digital model was developed to simulate groundwater flow in a complex glacial-aquifer system that includes the Elm, Middle James, and Deep James aquifers in South Dakota. The average thickness of the aquifers ranges from 16 to 32 ft and the average hydraulic conductivity ranges from 240 to 300 ft/day. The maximum steady-state recharge to the aquifer system was estimated to be 7.0 in./yr, and the maximum potential steady- state evapotranspiration was estimated to be 35.4 in/yr. Maximum monthly recharge for 1985 ranged from zero in the winter to 2.5 in in May. The potential monthly evapotranspiration for 1985 ranged from zero in the winter to 7.0 in in July. The average difference between the simulated and observed water levels from steady-state conditions (pre-1983) was 0. 78 ft and the average absolute difference was 4.59 ft for aquifer layer 1 (the Elm aquifer) from 22 observation wells and 3.49 ft and 5.10 ft, respectively, for aquifer layer 2 (the Middle James aquifer) from 13 observation wells. The average difference between the simulated and observed water levels from simulated monthly potentiometric heads for 1985 in aquifer layer 1 ranged from -2.54 ft in July to 0.59 ft in May and in aquifer layer 2 ranged from -1.22 ft in April to 4.98 ft in November. Sensitivity analysis of the steady-state model indicates that it is most sensitive to changes in recharge and least sensitive to changes in hydraulic conductivity. (USGS)

  12. Preliminary design of an auxiliary power unit for the space shuttle. Volume 5: Selected system cycle performance data

    NASA Technical Reports Server (NTRS)

    Hamilton, M. L.; Burriss, W. L.

    1972-01-01

    Detailed cycle steady-state performance data are presented for the final auxiliary power unit (APU) system configuration. The selection configuration is a hydrogen-oxygen APU incorporating a recuperator to utilize the exhaust energy and using the cycle hydrogen flow as a means of cooling the component heat loads. The data are given in the form of computer printouts and provide the following: (1) verification of the adequacy of the design to meet the problem statement for steady-state performance; (2) overall system performance data for the vehicle system analyst to determine propellant consumption and hydraulic fluid temperature as a function for varying mission profiles, propellant inlet conditions, etc.; and (3) detailed component performance and cycle state point data to show what is happening in the cycle as a function of the external forcing functions.

  13. Interfacing a General Purpose Fluid Network Flow Program with the SINDA/G Thermal Analysis Program

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Popok, Daniel

    1999-01-01

    A general purpose, one dimensional fluid flow code is currently being interfaced with the thermal analysis program Systems Improved Numerical Differencing Analyzer/Gaski (SINDA/G). The flow code, Generalized Fluid System Simulation Program (GFSSP), is capable of analyzing steady state and transient flow in a complex network. The flow code is capable of modeling several physical phenomena including compressibility effects, phase changes, body forces (such as gravity and centrifugal) and mixture thermodynamics for multiple species. The addition of GFSSP to SINDA/G provides a significant improvement in convective heat transfer modeling for SINDA/G. The interface development is conducted in multiple phases. This paper describes the first phase of the interface which allows for steady and quasi-steady (unsteady solid, steady fluid) conjugate heat transfer modeling.

  14. A mathematical model of liver metabolism: from steady state to dynamic

    NASA Astrophysics Data System (ADS)

    Calvetti, D.; Kuceyeski, A.; Somersalo, E.

    2008-07-01

    The increase in Type 2 diabetes and other metabolic disorders has led to an intense focus on the areas of research related to metabolism. Because the liver is essential in regulating metabolite concentrations that maintain life, it is especially important to have good knowledge of the functions within this organ. In silico mathematical models that can adequately describe metabolite concentrations, flux and transport rates in the liver in vivo can be a useful predictive tool. Fully dynamic models, which contain expressions for Michaelis-Menten reaction kinetics can be utilized to investigate different metabolic states, for example exercise, fed or starved state. In this paper we describe a two compartment (blood and tissue) spatially lumped liver metabolism model. First, we use Bayesian Flux Balance Analysis (BFBA) to estimate the values of flux and transport rates at steady state, which agree closely with values from the literature. These values are then used to find a set of Michaelis-Menten parameters and initial concentrations which identify a dynamic model that can be used for exploring different metabolic states. In particular, we investigate the effect of doubling the concentration of lactate entering the system via the hepatic artery and portal vein. This change in lactate concentration forces the system to a new steady state, where glucose production is increased.

  15. Bifurcation Phenomena of Opinion Dynamics in Complex Networks

    NASA Astrophysics Data System (ADS)

    Guo, Long; Cai, Xu

    In this paper, we study the opinion dynamics of Improved Deffuant model (IDM), where the convergence parameter μ is a function of the opposite’s degree K according to the celebrity effect, in small-world network (SWN) and scale-free network (SFN). Generically, the system undergoes a phase transition from the plurality state to the polarization state and to the consensus state as the confidence parameter ɛ increasing. Furthermore, the evolution of the steady opinion s * as a function of ɛ, and the relation between the minority steady opinion s_{*}^{min} and the individual connectivity k also have been analyzed. Our present work shows the crucial role of the confidence parameter and the complex system topology in the opinion dynamics of IDM.

  16. Steady States, Fluctuation-Dissipation Theorems and Homogenization for Reversible Diffusions in a Random Environment

    NASA Astrophysics Data System (ADS)

    Mathieu, P.; Piatnitski, A.

    2018-04-01

    Prolongating our previous paper on the Einstein relation, we study the motion of a particle diffusing in a random reversible environment when subject to a small external forcing. In order to describe the long time behavior of the particle, we introduce the notions of steady state and weak steady state. We establish the continuity of weak steady states for an ergodic and uniformly elliptic environment. When the environment has finite range of dependence, we prove the existence of the steady state and weak steady state and compute its derivative at a vanishing force. Thus we obtain a complete `fluctuation-dissipation Theorem' in this context as well as the continuity of the effective variance.

  17. Stability analysis of hybrid-driven underwater glider

    NASA Astrophysics Data System (ADS)

    Niu, Wen-dong; Wang, Shu-xin; Wang, Yan-hui; Song, Yang; Zhu, Ya-qiang

    2017-10-01

    Hybrid-driven underwater glider is a new type of unmanned underwater vehicle, which combines the advantages of autonomous underwater vehicles and traditional underwater gliders. The autonomous underwater vehicles have good maneuverability and can travel with a high speed, while the traditional underwater gliders are highlighted by low power consumption, long voyage, long endurance and good stealth characteristics. The hybrid-driven underwater gliders can realize variable motion profiles by their own buoyancy-driven and propeller propulsion systems. Stability of the mechanical system determines the performance of the system. In this paper, the Petrel-II hybrid-driven underwater glider developed by Tianjin University is selected as the research object and the stability of hybrid-driven underwater glider unitedly controlled by buoyancy and propeller has been targeted and evidenced. The dimensionless equations of the hybrid-driven underwater glider are obtained when the propeller is working. Then, the steady speed and steady glide path angle under steady-state motion have also been achieved. The steady-state operating conditions can be calculated when the hybrid-driven underwater glider reaches the desired steady-state motion. And the steadystate operating conditions are relatively conservative at the lower bound of the velocity range compared with the range of the velocity derived from the method of the composite Lyapunov function. By calculating the hydrodynamic coefficients of the Petrel-II hybrid-driven underwater glider, the simulation analysis has been conducted. In addition, the results of the field trials conducted in the South China Sea and the Danjiangkou Reservoir of China have been presented to illustrate the validity of the analysis and simulation, and to show the feasibility of the method of the composite Lyapunov function which verifies the stability of the Petrel-II hybrid-driven underwater glider.

  18. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses

    NASA Astrophysics Data System (ADS)

    Baek, Hyun Jae; Kim, Hyun Seok; Heo, Jeong; Lim, Yong Gyu; Park, Kwang Suk

    2013-04-01

    Objective. Brain-computer interface (BCI) technologies have been intensely studied to provide alternative communication tools entirely independent of neuromuscular activities. Current BCI technologies use electroencephalogram (EEG) acquisition methods that require unpleasant gel injections, impractical preparations and clean-up procedures. The next generation of BCI technologies requires practical, user-friendly, nonintrusive EEG platforms in order to facilitate the application of laboratory work in real-world settings. Approach. A capacitive electrode that does not require an electrolytic gel or direct electrode-scalp contact is a potential alternative to the conventional wet electrode in future BCI systems. We have proposed a new capacitive EEG electrode that contains a conductive polymer-sensing surface, which enhances electrode performance. This paper presents results from five subjects who exhibited visual or auditory steady-state responses according to BCI using these new capacitive electrodes. The steady-state visual evoked potential (SSVEP) spelling system and the auditory steady-state response (ASSR) binary decision system were employed. Main results. Offline tests demonstrated BCI performance high enough to be used in a BCI system (accuracy: 95.2%, ITR: 19.91 bpm for SSVEP BCI (6 s), accuracy: 82.6%, ITR: 1.48 bpm for ASSR BCI (14 s)) with the analysis time being slightly longer than that when wet electrodes were employed with the same BCI system (accuracy: 91.2%, ITR: 25.79 bpm for SSVEP BCI (4 s), accuracy: 81.3%, ITR: 1.57 bpm for ASSR BCI (12 s)). Subjects performed online BCI under the SSVEP paradigm in copy spelling mode and under the ASSR paradigm in selective attention mode with a mean information transfer rate (ITR) of 17.78 ± 2.08 and 0.7 ± 0.24 bpm, respectively. Significance. The results of these experiments demonstrate the feasibility of using our capacitive EEG electrode in BCI systems. This capacitive electrode may become a flexible and non-intrusive tool fit for various applications in the next generation of BCI technologies.

  19. Steady state volcanism - Evidence from eruption histories of polygenetic volcanoes

    NASA Technical Reports Server (NTRS)

    Wadge, G.

    1982-01-01

    Cumulative volcano volume curves are presented as evidence for steady-state behavior at certain volcanoes and to develop a model of steady-state volcanism. A minimum criteria of five eruptions over a year was chosen to characterize a steady-state volcano. The subsequent model features a constant head of magmatic pressure from a reservoir supplied from depth, a sawtooth curve produced by the magma arrivals or discharge from the subvolcanic reservoir, large volume eruptions with long repose periods, and conditions of nonsupply of magma. The behavior of Mts. Etna, Nyamuragira, and Kilauea are described and show continuous levels of plasma output resulting in cumulative volume increases. Further discussion is made of steady-state andesitic and dacitic volcanism, long term patterns of the steady state, and magma storage, and the lack of a sufficient number of steady-state volcanoes in the world is taken as evidence that further data is required for a comprehensive model.

  20. Size distribution spectrum of noninertial particles in turbulence

    NASA Astrophysics Data System (ADS)

    Saito, Izumi; Gotoh, Toshiyuki; Watanabe, Takeshi

    2018-05-01

    Collision-coalescence growth of noninertial particles in three-dimensional homogeneous isotropic turbulence is studied. Smoluchowski's coagulation equation describes the evolution of the size distribution of particles in this system. By applying a methodology based on turbulence theory, the equation is shown to have a steady-state solution, which corresponds to the Kolmogorov-type power-law spectrum. Direct numerical simulations of turbulence and Lagrangian particles are conducted. The result shows that the size distribution in a statistically steady state agrees accurately with the theoretical prediction.

  1. Internal energy fluctuations of a granular gas under steady uniform shear flow.

    PubMed

    Brey, J Javier; García de Soria, M I; Maynar, P

    2012-09-01

    The stochastic properties of the total internal energy of a dilute granular gas in the steady uniform shear flow state are investigated. A recent theory formulated for fluctuations about the homogeneous cooling state is extended by analogy with molecular systems. The theoretical predictions are compared with molecular dynamics simulation results. Good agreement is found in the limit of weak inelasticity, while systematic and relevant discrepancies are observed when the inelasticity increases. The origin of this behavior is discussed.

  2. Dynamic Data-Driven Reduced-Order Models of Macroscale Quantities for the Prediction of Equilibrium System State for Multiphase Porous Medium Systems

    NASA Astrophysics Data System (ADS)

    Talbot, C.; McClure, J. E.; Armstrong, R. T.; Mostaghimi, P.; Hu, Y.; Miller, C. T.

    2017-12-01

    Microscale simulation of multiphase flow in realistic, highly-resolved porous medium systems of a sufficient size to support macroscale evaluation is computationally demanding. Such approaches can, however, reveal the dynamic, steady, and equilibrium states of a system. We evaluate methods to utilize dynamic data to reduce the cost associated with modeling a steady or equilibrium state. We construct data-driven models using extensions to dynamic mode decomposition (DMD) and its connections to Koopman Operator Theory. DMD and its variants comprise a class of equation-free methods for dimensionality reduction of time-dependent nonlinear dynamical systems. DMD furnishes an explicit reduced representation of system states in terms of spatiotemporally varying modes with time-dependent oscillation frequencies and amplitudes. We use DMD to predict the steady and equilibrium macroscale state of a realistic two-fluid porous medium system imaged using micro-computed tomography (µCT) and simulated using the lattice Boltzmann method (LBM). We apply Koopman DMD to direct numerical simulation data resulting from simulations of multiphase fluid flow through a 1440x1440x4320 section of a full 1600x1600x5280 realization of imaged sandstone. We determine a representative set of system observables via dimensionality reduction techniques including linear and kernel principal component analysis. We demonstrate how this subset of macroscale quantities furnishes a representation of the time-evolution of the system in terms of dynamic modes, and discuss the selection of a subset of DMD modes yielding the optimal reduced model, as well as the time-dependence of the error in the predicted equilibrium value of each macroscale quantity. Finally, we describe how the above procedure, modified to incorporate methods from compressed sensing and random projection techniques, may be used in an online fashion to facilitate adaptive time-stepping and parsimonious storage of system states over time.

  3. Stability of Ensemble Models Predicts Productivity of Enzymatic Systems

    DOE PAGES

    Theisen, Matthew K.; Lafontaine Rivera, Jimmy G.; Liao, James C.

    2016-03-10

    Stability in a metabolic system may not be obtained if incorrect amounts of enzymes are used. Without stability, some metabolites may accumulate or deplete leading to the irreversible loss of the desired operating point. Even if initial enzyme amounts achieve a stable steady state, changes in enzyme amount due to stochastic variations or environmental changes may move the system to the unstable region and lose the steady-state or quasi-steady-state flux. This situation is distinct from the phenomenon characterized by typical sensitivity analysis, which focuses on the smooth change before loss of stability. Here we show that metabolic networks differ significantlymore » in their intrinsic ability to attain stability due to the network structure and kinetic forms, and that after achieving stability, some enzymes are prone to cause instability upon changes in enzyme amounts. We use Ensemble Modelling for Robustness Analysis (EMRA) to analyze stability in four cell-free enzymatic systems when enzyme amounts are changed. Loss of stability in continuous systems can lead to lower production even when the system is tested experimentally in batch experiments. The predictions of instability by EMRA are supported by the lower productivity in batch experimental tests. Finally, the EMRA method incorporates properties of network structure, including stoichiometry and kinetic form, but does not require specific parameter values of the enzymes.« less

  4. Cannibalism in discrete-time predator-prey systems.

    PubMed

    Chow, Yunshyong; Jang, Sophia R-J

    2012-01-01

    In this study, we propose and investigate a two-stage population model with cannibalism. It is shown that cannibalism can destabilize and lower the magnitude of the interior steady state. However, it is proved that cannibalism has no effect on the persistence of the population. Based on this model, we study two systems of predator-prey interactions where the prey population is cannibalistic. A sufficient condition based on the nontrivial boundary steady state for which both populations can coexist is derived. It is found via numerical simulations that introduction of the predator population may either stabilize or destabilize the prey dynamics, depending on cannibalism coefficients and other vital parameters.

  5. Modeling static and dynamic human cardiovascular responses to exercise.

    PubMed

    Stremel, R W; Bernauer, E M; Harter, L W; Schultz, R A; Walters, R F

    1975-08-01

    A human performance model has been developed and described [9] which portrays the human circulatory, thermo regulatory and energy-exchange systems as an intercoupled set. In this model, steady state or static relationships are used to describe oxygen consumption and blood flow. For example, heart rate (HTRT) is calculated as a function of the oxygen and the thermo-regulatory requirements of each body compartment, using the steady state work values of cardiac output (CO, sum of all compartment blood flows) and stroke volume (SV, assumed maximal after 40% maximal oxygen consumption): HTRT=CO/SV. The steady state model has proven to be an acceptable first approximation, but the inclusion of transient characteristics are essential in describing the overall systems' adjustment to exercise stress. In the present study, the dynamic transient characteristics of heart rate, stroke volume and cardiac output were obtained from experiments utilizing step and sinusoidal forcing of work. The gain and phase relationships reveal a probable first order system with a six minute time constant, and are utilized to model the transient characteristics of these parameters. This approach leads to a more complex model but a more accurate representation of the physiology involved. The instrumentation and programming essential to these experiments are described.

  6. Propensity approach to nonequilibrium thermodynamics of a chemical reaction network: Controlling single E-coli β-galactosidase enzyme catalysis through the elementary reaction stepsa)

    NASA Astrophysics Data System (ADS)

    Das, Biswajit; Banerjee, Kinshuk; Gangopadhyay, Gautam

    2013-12-01

    In this work, we develop an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the elementary reaction propensities. The method is akin to the microscopic formulation of the dissipation function in terms of the Kullback-Leibler distance of phase space trajectories in Hamiltonian system. The formalism is applied to a single oligomeric enzyme kinetics at chemiostatic condition that leads the reaction system to a nonequilibrium steady state, characterized by a positive total entropy production rate. Analytical expressions are derived, relating the individual reaction contributions towards the total entropy production rate with experimentally measurable reaction velocity. Taking a real case of Escherichia coli β-galactosidase enzyme obeying Michaelis-Menten kinetics, we thoroughly analyze the temporal as well as the steady state behavior of various thermodynamic quantities for each elementary reaction. This gives a useful insight in the relative magnitudes of various energy terms and the dissipated heat to sustain a steady state of the reaction system operating far-from-equilibrium. It is also observed that, the reaction is entropy-driven at low substrate concentration and becomes energy-driven as the substrate concentration rises.

  7. Overshoot in biological systems modelled by Markov chains: a non-equilibrium dynamic phenomenon.

    PubMed

    Jia, Chen; Qian, Minping; Jiang, Daquan

    2014-08-01

    A number of biological systems can be modelled by Markov chains. Recently, there has been an increasing concern about when biological systems modelled by Markov chains will perform a dynamic phenomenon called overshoot. In this study, the authors found that the steady-state behaviour of the system will have a great effect on the occurrence of overshoot. They showed that overshoot in general cannot occur in systems that will finally approach an equilibrium steady state. They further classified overshoot into two types, named as simple overshoot and oscillating overshoot. They showed that except for extreme cases, oscillating overshoot will occur if the system is far from equilibrium. All these results clearly show that overshoot is a non-equilibrium dynamic phenomenon with energy consumption. In addition, the main result in this study is validated with real experimental data.

  8. Implicit Total Variation Diminishing (TVD) schemes for steady-state calculations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1983-01-01

    The application of a new implicit unconditionally stable high resolution total variation diminishing (TVD) scheme to steady state calculations. It is a member of a one parameter family of explicit and implicit second order accurate schemes developed by Harten for the computation of weak solutions of hyperbolic conservation laws. This scheme is guaranteed not to generate spurious oscillations for a nonlinear scalar equation and a constant coefficient system. Numerical experiments show that this scheme not only has a rapid convergence rate, but also generates a highly resolved approximation to the steady state solution. A detailed implementation of the implicit scheme for the one and two dimensional compressible inviscid equations of gas dynamics is presented. Some numerical computations of one and two dimensional fluid flows containing shocks demonstrate the efficiency and accuracy of this new scheme.

  9. A gradual update method for simulating the steady-state solution of stiff differential equations in metabolic circuits.

    PubMed

    Shiraishi, Emi; Maeda, Kazuhiro; Kurata, Hiroyuki

    2009-02-01

    Numerical simulation of differential equation systems plays a major role in the understanding of how metabolic network models generate particular cellular functions. On the other hand, the classical and technical problems for stiff differential equations still remain to be solved, while many elegant algorithms have been presented. To relax the stiffness problem, we propose new practical methods: the gradual update of differential-algebraic equations based on gradual application of the steady-state approximation to stiff differential equations, and the gradual update of the initial values in differential-algebraic equations. These empirical methods show a high efficiency for simulating the steady-state solutions for the stiff differential equations that existing solvers alone cannot solve. They are effective in extending the applicability of dynamic simulation to biochemical network models.

  10. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    NASA Astrophysics Data System (ADS)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (<1.2 ka) to pinpoint the onset of the steady-state regime. We investigated the Post-Pizzo (PP) pyroclastic sequence (∼1.7-1.5 ka) and one of the Early Paroxysms (EP) of the Present-day activity, focusing on the clinopyroxene population. Whole rock and clinopyroxene compositional variation among the PP and EP magmas is consistent with the time progression of the Stromboli system towards more mafic and lower 87Sr/86Sr compositions, pointing to the chemical and isotopic signature of the Present-day activity. Clinopyroxenes from both PP and EP record a complex history with compositional zoning that reflects growth in three different melt domains: a high-Mg# proto-lp recharging magma, a low-Mg# proto-hp resident magma, and a transient intermediate-Mg# magma. These are the result of complex turbulent flow fields and mixing regimes produced by repeated injections of the proto-lp magma in the shallow proto-hp magma reservoir. During the PP period the magmatic system was already able to regain the pre-input proto-hp composition, gradually changing toward a less evolved signature after the injection(s) of the more mafic proto-lp magma, owing to efficient (days to a few years) stirring and melt homogenisation (i.e., homogenisation time < residence time). Based upon Fe-Mg diffusion in clinopyroxene the total residence time during PP and EP periods, from the arrival of the mafic magma in the shallow system until the eruption, ranges from 1 to ∼50 years. Longer residence times (up to 150 years) have been recorded in the initial phase of the PP sequence, possibly testifying to the transition from a closed- to the open-conduit, steady-state regime of the Present-day activity. Some clinopyroxenes from the PP recorded the mafic triggering event of the feeding proto-lp magma occurring within few months to a few days before eruption. Remarkably, other clinopyroxene portions crystallised and captured the rapid timescales (a few days) of the on-going mixing and homogenisation process between the proto-lp and the proto-hp magmas leading to the eruption. The modelling of clinopyroxene zoning events at Stromboli provides evidence for growth and storage in three different melt domains, and sets robust constraints on their residence time from lp-magma recharge(s) to eruption, along with the timescales of melt homogenisation and triggering events. The lifetime history captured by Fe-Mg zoning of Stromboli clinopyroxenes suggests that the interplay between rapid mixing and short storage timescales can be a key parameter controlling the dynamics of the plumbing system of steady-state volcanoes.

  11. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    NASA Astrophysics Data System (ADS)

    Raz, Oren; Subasi, Yigit; Jarzynski, Christopher

    Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents: to generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS) characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters - also known as a stochastic pump (SP) - reaches a periodic state with non-vanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems we establish a mapping between NESS and SP. Given a NESS characterized by a particular set of stationary probabilities, currents and entropy production rates, we show how to construct a SP with exactly the same (time-averaged) values. The mapping works in the opposite direction as well. These results establish a proof of principle: they show that SP are able to mimic the behavior of NESS, and vice-versa, within the theoretical framework of discrete-state stochastic thermodynamics.

  12. Dynamical tides in highly eccentric binaries: chaos, dissipation, and quasi-steady state

    NASA Astrophysics Data System (ADS)

    Vick, Michelle; Lai, Dong

    2018-05-01

    Highly eccentric binary systems appear in many astrophysical contexts, ranging from tidal capture in dense star clusters, precursors of stellar disruption by massive black holes, to high-eccentricity migration of giant planets. In a highly eccentric binary, the tidal potential of one body can excite oscillatory modes in the other during a pericentre passage, resulting in energy exchange between the modes and the binary orbit. These modes exhibit one of three behaviours over multiple passages: low-amplitude oscillations, large-amplitude oscillations corresponding to a resonance between the orbital frequency and the mode frequency, and chaotic growth, with the mode energy reaching a level comparable to the orbital binding energy. We study these phenomena with an iterative map that includes mode dissipation, fully exploring how the mode evolution depends on the orbital and mode properties of the system. The dissipation of mode energy drives the system towards a quasi-steady state, with gradual orbital decay punctuated by resonances. We quantify the quasi-steady state and the long-term evolution of the system. A newly captured star around a black hole can experience significant orbital decay and heating due to the chaotic growth of the mode amplitude and dissipation. A giant planet pushed into a high-eccentricity orbit may experience a similar effect and become a hot or warm Jupiter.

  13. Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4. Numerical modeling of kinetic reaction paths

    NASA Astrophysics Data System (ADS)

    Zhu, Chen; Lu, Peng; Zheng, Zuoping; Ganor, Jiwchar

    2010-07-01

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures. This is the fourth paper in our series of "Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems". In our third paper, we demonstrated via speciation-solubility modeling that partial equilibrium between secondary minerals and aqueous solutions was not attained in feldspar hydrolysis batch reactors at 90-300 °C and that a strong coupling between dissolution and precipitation reactions follows as a consequence of the slower precipitation of secondary minerals ( Zhu and Lu, 2009). Here, we develop this concept further by using numerical reaction path models to elucidate how the dissolution and precipitation reactions are coupled. Modeling results show that a quasi-steady state was reached. At the quasi-steady state, dissolution reactions proceeded at rates that are orders of magnitude slower than the rates measured at far from equilibrium. The quasi-steady state is determined by the relative rate constants, and strongly influenced by the function of Gibbs free energy of reaction ( ΔG) in the rate laws. To explore the potential effects of fluid flow rates on the coupling of reactions, we extrapolate a batch system ( Ganor et al., 2007) to open systems and simulated one-dimensional reactive mass transport for oligoclase dissolution and kaolinite precipitation in homogeneous porous media. Different steady states were achieved at different locations along the one-dimensional domain. The time-space distribution and saturation indices (SI) at the steady states were a function of flow rates for a given kinetic model. Regardless of the differences in SI, the ratio between oligoclase dissolution rates and kaolinite precipitation rates remained 1.626, as in the batch system case ( Ganor et al., 2007). Therefore, our simulation results demonstrated coupling among dissolution, precipitation, and flow rates. Results reported in this communication lend support to our hypothesis that slow secondary mineral precipitation explains part of the well-known apparent discrepancy between lab measured and field estimated feldspar dissolution rates ( Zhu et al., 2004). Here we show how the slow secondary mineral precipitation provides a regulator to explain why the systems are held close to equilibrium and show how the most often-quoted "near equilibrium" explanation for an apparent field-lab discrepancy can work quantitatively. The substantiated hypothesis now offers the promise of reconciling part of the apparent field-lab discrepancy.

  14. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  15. On the existence of a scaling relation in the evolution of cellular systems

    NASA Astrophysics Data System (ADS)

    Fortes, M. A.

    1994-05-01

    A mean field approximation is used to analyze the evolution of the distribution of sizes in systems formed by individual 'cells,' each of which grows or shrinks, in such a way that the total number of cells decreases (e.g. polycrystals, soap froths, precipitate particles in a matrix). The rate of change of the size of a cell is defined by a growth function that depends on the size (x) of the cell and on moments of the size distribution, such as the average size (bar-x). Evolutionary equations for the distribution of sizes and of reduced sizes (i.e. x/bar-x) are established. The stationary (or steady state) solutions of the equations are obtained for various particular forms of the growth function. A steady state of the reduced size distribution is equivalent to a scaling behavior. It is found that there are an infinity of steady state solutions which form a (continuous) one-parameter family of functions, but they are not, in general, reached from an arbitrary initial state. These properties are at variance from those that can be derived from models based on von Neumann-Mullins equation.

  16. A surface renewal model for unsteady-state mass transfer using the generalized Danckwerts age distribution function

    PubMed Central

    Horvath, Isabelle R.

    2018-01-01

    The recently derived steady-state generalized Danckwerts age distribution is extended to unsteady-state conditions. For three different wind speeds used by researchers on air–water heat exchange on the Heidelberg Aeolotron, calculations reveal that the distribution has a sharp peak during the initial moments, but flattens out and acquires a bell-shaped character with process time, with the time taken to attain a steady-state profile being a strong and inverse function of wind speed. With increasing wind speed, the age distribution narrows significantly, its skewness decreases and its peak becomes larger. The mean eddy renewal time increases linearly with process time initially but approaches a final steady-state value asymptotically, which decreases dramatically with increased wind speed. Using the distribution to analyse the transient absorption of a gas into a large body of liquid, assuming negligible gas-side mass-transfer resistance, estimates are made of the gas-absorption and dissolved-gas transfer coefficients for oxygen absorption in water at 25°C for the three different wind speeds. Under unsteady-state conditions, these two coefficients show an inverse behaviour, indicating a heightened accumulation of dissolved gas in the surface elements, especially during the initial moments of absorption. However, the two mass-transfer coefficients start merging together as the steady state is approached. Theoretical predictions of the steady-state mass-transfer coefficient or transfer velocity are in fair agreement (average absolute error of prediction = 18.1%) with some experimental measurements of the same for the nitrous oxide–water system at 20°C that were made in the Heidelberg Aeolotron. PMID:29892429

  17. Application of the Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.

  18. Steady-state bumpless transfer under controller uncertainty using the state/output feedback topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, K.; Lee, A.H.; Bentsman, J.

    2006-01-15

    Linear quadratic (LQ) bumpless transfer design introduced recently by Turner and Walker gives a very convenient and straightforward computational procedure for the steady-state bumpless transfer operator synthesis. It is, however, found to be incapable of providing convergence of the output of the offline controller to that of the online controller in several industrial applications, producing bumps in the plant output in the wake of controller transfer. An examination of this phenomenon reveals that the applications in question are characterized by a significant mismatch, further referred to as controller uncertainty, between the dynamics of the implemented controllers and their models usedmore » in the transfer operator computation. To address this problem, while retaining the convenience of the Turner and Walker design, a novel state/output feedback bumpless transfer topology is introduced that employs the nominal state of the offline controller and, through the use of an additional controller/model mismatch compensator, also the offline controller output. A corresponding steady-state bumpless transfer design procedure along with the supporting theory is developed for a large class of systems. Due to these features, it is demonstrated to solve a long-standing problem of high-quality steady-state bumpless transfer from the industry standard low-order nonlinear multiloop PID-based controllers to the modern multiinput-multioutput (MIMO) robust controllers in the megawatt/throttle pressure control of a typical coal-fired boiler/turbine unit.« less

  19. Quasispecies theory for evolution of modularity.

    PubMed

    Park, Jeong-Man; Niestemski, Liang Ren; Deem, Michael W

    2015-01-01

    Biological systems are modular, and this modularity evolves over time and in different environments. A number of observations have been made of increased modularity in biological systems under increased environmental pressure. We here develop a quasispecies theory for the dynamics of modularity in populations of these systems. We show how the steady-state fitness in a randomly changing environment can be computed. We derive a fluctuation dissipation relation for the rate of change of modularity and use it to derive a relationship between rate of environmental changes and rate of growth of modularity. We also find a principle of least action for the evolved modularity at steady state. Finally, we compare our predictions to simulations of protein evolution and find them to be consistent.

  20. Numerical continuation and bifurcation analysis in aircraft design: an industrial perspective.

    PubMed

    Sharma, Sanjiv; Coetzee, Etienne B; Lowenberg, Mark H; Neild, Simon A; Krauskopf, Bernd

    2015-09-28

    Bifurcation analysis is a powerful method for studying the steady-state nonlinear dynamics of systems. Software tools exist for the numerical continuation of steady-state solutions as parameters of the system are varied. These tools make it possible to generate 'maps of solutions' in an efficient way that provide valuable insight into the overall dynamic behaviour of a system and potentially to influence the design process. While this approach has been employed in the military aircraft control community to understand the effectiveness of controllers, the use of bifurcation analysis in the wider aircraft industry is yet limited. This paper reports progress on how bifurcation analysis can play a role as part of the design process for passenger aircraft. © 2015 The Author(s).

  1. Space radiator simulation manual for computer code

    NASA Technical Reports Server (NTRS)

    Black, W. Z.; Wulff, W.

    1972-01-01

    A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.

  2. Inferring the parameters of a Markov process from snapshots of the steady state

    NASA Astrophysics Data System (ADS)

    Dettmer, Simon L.; Berg, Johannes

    2018-02-01

    We seek to infer the parameters of an ergodic Markov process from samples taken independently from the steady state. Our focus is on non-equilibrium processes, where the steady state is not described by the Boltzmann measure, but is generally unknown and hard to compute, which prevents the application of established equilibrium inference methods. We propose a quantity we call propagator likelihood, which takes on the role of the likelihood in equilibrium processes. This propagator likelihood is based on fictitious transitions between those configurations of the system which occur in the samples. The propagator likelihood can be derived by minimising the relative entropy between the empirical distribution and a distribution generated by propagating the empirical distribution forward in time. Maximising the propagator likelihood leads to an efficient reconstruction of the parameters of the underlying model in different systems, both with discrete configurations and with continuous configurations. We apply the method to non-equilibrium models from statistical physics and theoretical biology, including the asymmetric simple exclusion process (ASEP), the kinetic Ising model, and replicator dynamics.

  3. Computational studies of steady-state sound field and reverberant sound decay in a system of two coupled rooms

    NASA Astrophysics Data System (ADS)

    Meissner, Mirosław

    2007-09-01

    The acoustical properties of an irregularly shaped room consisting of two connected rectangular subrooms were studied. An eigenmode method supported by a numerical implementation has been used to predict acoustic characteristics of the coupled system, such as the distribution of the sound pressure in steady-state and the reverberation time. In the theoretical model a low-frequency limit was considered. In this case the eigenmodes are lightly damped, thusthey were approximated by normal acoustic modes of a hard-walled room. The eigenfunctions and eigenfrequencies were computed numerically via application of a forced oscillator method with a finite difference algorithm. The influence of coupling between subrooms on acoustic parameters of the enclosure was demonstrated in numerical simulations where different distributions of absorbing materials on the walls of the subrooms and various positions of the sound source were assumed. Calculation results have shown that for large differences in the absorption coefficient in the subrooms the effect of modal localization contributes to peaks of RMS pressure in steady-state and a large increase in the reverberation time.

  4. Transition from amplitude to oscillation death in a network of oscillators

    NASA Astrophysics Data System (ADS)

    Nandan, Mauparna; Hens, C. R.; Pal, Pinaki; Dana, Syamal K.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determine the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.

  5. Transition from amplitude to oscillation death in a network of oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandan, Mauparna; Department of Mathematics, National Institute of Technology, Durgapur 713209; Hens, C. R.

    2014-12-01

    We report a transition from a homogeneous steady state (HSS) to inhomogeneous steady states (IHSSs) in a network of globally coupled identical oscillators. We perturb a synchronized population of oscillators in the network with a few local negative or repulsive mean field links. The whole population splits into two clusters for a certain number of repulsive mean field links and a range of coupling strength. For further increase of the strength of interaction, these clusters collapse into a HSS followed by a transition to IHSSs where all the oscillators populate either of the two stable steady states. We analytically determinemore » the origin of HSS and its transition to IHSS in relation to the number of repulsive mean-field links and the strength of interaction using a reductionism approach to the model network. We verify the results with numerical examples of the paradigmatic Landau-Stuart limit cycle system and the chaotic Rössler oscillator as dynamical nodes. During the transition from HSS to IHSSs, the network follows the Turing type symmetry breaking pitchfork or transcritical bifurcation depending upon the system dynamics.« less

  6. In-situ analysis of hydrazine decomposition products

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Whalen, Margaret V.

    1987-01-01

    A gas analyzer utilizing a nondispersive infrared (NDIR) detection system was used to monitor the ammonia and water vapor content of the products of a previously unused hydrazine gas generator. This provided an in-situ measurement of the generator's efficiency difficult to obtain by other means. The analyzer was easily installed in both the calibration and hydrazine systems, required no maintenance other than periodic zero adjustments, and performed well for extended periods in the operating range tested. The catalyst bed operated smoothly and repeatably during the 28 hr of testing. No major transients were observed on startup or during steady state operation. The amount of ammonia in the output stream of the gas generator was found to be a strong function of temperature at catalyst bed temperatures below 450 C. At temperatures above this, the efficiency remained nearly constant. On startup the gas generator efficiency was found to decrease with time until a steady state value was attained. Elevated catalyst bed temperatures in the periods before steady state operation was found to be responsible for this phenomenon.

  7. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  8. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow

    PubMed Central

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size. PMID:26901652

  9. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    PubMed

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  10. Application of digital computer APU modeling techniques to control system design.

    NASA Technical Reports Server (NTRS)

    Bailey, D. A.; Burriss, W. L.

    1973-01-01

    Study of the required controls for a H2-O2 auxiliary power unit (APU) technology program for the Space Shuttle. A steady-state system digital computer program was prepared and used to optimize initial system design. Analytical models of each system component were included. The program was used to solve a nineteen-dimensional problem, and then time-dependent differential equations were added to the computer program to simulate transient APU system and control. Some system parameters were considered quasi-steady-state, and others were treated as differential variables. The dynamic control analysis proceeded from initial ideal control modeling (which considered one control function and assumed the others to be ideal), stepwise through the system (adding control functions), until all of the control functions and their interactions were considered. In this way, the adequacy of the final control design over the required wide range of APU operating conditions was established.

  11. Predicted performance of an integrated modular engine system

    NASA Technical Reports Server (NTRS)

    Binder, Michael; Felder, James L.

    1993-01-01

    Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.

  12. Steady-state and dynamic evaluation of the electric propulsion system test bed vehicle on a road load simulator

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.

    1983-01-01

    The propulsion system of the Lewis Research Center's electric propulsion system test bed vehicle was tested on the road load simulator under the DOE Electric and Hybrid Vehicle Program. This propulsion system, consisting of a series-wound dc motor controlled by an infinitely variable SCR chopper and an 84-V battery pack, is typical of those used in electric vehicles made in 1976. Steady-state tests were conducted over a wide range of differential output torques and vehicle speeds. Efficiencies of all of the components were determined. Effects of temperature and voltage variations on the motor and the effect of voltage changes on the controller were examined. Energy consumption and energy efficiency for the system were determined over the B and C driving schedules of the SAE J227a test procedure.

  13. Results from a scaled reactor cavity cooling system with water at steady state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisowski, D. D.; Albiston, S. M.; Tokuhiro, A.

    We present a summary of steady-state experiments performed with a scaled, water-cooled Reactor Cavity Cooling System (RCCS) at the Univ. of Wisconsin - Madison. The RCCS concept is used for passive decay heat removal in the Next Generation Nuclear Plant (NGNP) design and was based on open literature of the GA-MHTGR, HTR-10 and AVR reactor. The RCCS is a 1/4 scale model of the full scale prototype system, with a 7.6 m structure housing, a 5 m tall test section, and 1,200 liter water storage tank. Radiant heaters impose a heat flux onto a three riser tube test section, representingmore » a 5 deg. radial sector of the actual 360 deg. RCCS design. The maximum heat flux and power levels are 25 kW/m{sup 2} and 42.5 kW, and can be configured for variable, axial, or radial power profiles to simulate prototypic conditions. Experimental results yielded measurements of local surface temperatures, internal water temperatures, volumetric flow rates, and pressure drop along the test section and into the water storage tank. The majority of the tests achieved a steady state condition while remaining single-phase. A selected number of experiments were allowed to reach saturation and subsequently two-phase flow. RELAP5 simulations with the experimental data have been refined during test facility development and separate effects validation of the experimental facility. This test series represents the completion of our steady-state testing, with future experiments investigating normal and off-normal accident scenarios with two-phase flow effects. The ultimate goal of the project is to combine experimental data from UW - Madison, UI, ANL, and Texas A and M, with system model simulations to ascertain the feasibility of the RCCS as a successful long-term heat removal system during accident scenarios for the NGNP. (authors)« less

  14. Illustrating the Steady-State Condition and the Single-Molecule Kinetic Method with the NMDA Receptor

    ERIC Educational Resources Information Center

    Kosman, Daniel J.

    2009-01-01

    The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…

  15. Keeping the secret: Insights from repeated catchment-scale tracer experiments under transient conditions

    NASA Astrophysics Data System (ADS)

    Bogner, Christina; Hauhs, Michael; Lange, Holger

    2016-04-01

    Catchment-level tracer experiments are generally performed to identify site-specific hydrological response functions of the catchment. The existence and uniqueness of these response functions are hardly ever questioned. Here, we report on a series of replicated tracer experiments in two small first-order catchments, G1 (0.6 ha, roofed) and F4 (2.3 ha, without roof) at Gårdsjön in SW Sweden. The soils in both catchments are shallow (< 50 cm) with the bedrock partly visible at the surface. In G1 (irrigated area approximately 1000 m2), tracer experiments were conducted under a roof between 1993 and 2003 during steady state flow conditions. In contrast, in F4 (irrigated area approximately 500 m2) the experiments were done without a roof mostly at transient conditions. The catchment F4 was equipped with a sprinkler system with a watering capacity of around 38-45 m3 day-1. Natural rainfall comes in addition. A bromide tracer solution was injected to groundwater at a single location about 40 m upstream the weir over a period of less than an hour, and was monitored using a set of groundwater tubes and the weir at the outlet over the following 4 days. In addition, discharge was measured. The experiments were repeated each summer from 2007 to 2015. While steady state conditions were guaranteed in G1, steady runoff has been achieved only four times in F4. We investigated tracer recovery rates against cumulated runoff since tracer application. Substantially different transit times and qualitatively different behaviour of the breakthrough curves were observed, even under steady state conditions. In G1, no single system response function could be identified in 5 replicates. Similarly, the catchment response functions in F4 under steady state differed between experiments. However, they remained in a similar range as in G1. Based on these results, we question the identifiability of flow paths and system properties, such as saturated water content or hydrologic transmissivity, at the catchment scale using tracer experiments. Rather, the series demonstrate the utter importance of the initial and boundary conditions which largely determine the response of the system to inert tracer pulses.

  16. Temperature effects on stocks and stability of a phytoplankton-zooplankton model and the dependence on light and nutrients

    USGS Publications Warehouse

    Norberg, J.; DeAngelis, D.L.

    1997-01-01

    A model of a closed phytoplankton—zooplankton ecosystem was analyzed for effects of temperature on stocks and stability and the dependence of these effects on light and total nutrient concentration of the system. An analysis of the steady state equations showed that the effect of temperature on zooplankton and POM biomass was levelled when primary production is nutrient limited. Temperature increase had a generally negative effect on all biomasses at high nutrient levels due to increased maintenance costs. Nutrient limitation of net primary production is the main factor governing the effect of stocks and flows as well as the stability of the system. All components of the system, except for phytoplankton biomass, are proportional to net production and thus to the net effect of light on photosynthesis. However, temperature determines the slope of that relationship. The resilience of the system was measured by calculating the eigenvalues of the steady state. Under oligotrophic conditions, the system can be stable, but an increase in temperature can cause instability or a decrease in resilience. This conclusion is discussed in the face of recent models that take spatial heterogeneity into account and display far more stable behavior, in better agreement to empirical data. Using simulations, we found that the amplitude of fluctuations of the herbivore stock increases with temperature while the mean biomass and minimum values decrease in comparison with steady state predictions

  17. Steady state and a general scale law of deformation

    NASA Astrophysics Data System (ADS)

    Huang, Yan

    2017-07-01

    Steady state deformation has been characterized based on the experimental results for dilute single-phase aluminium alloys. It was found that although characteristic properties such as flow stress and grain size remained constant with time, a continuous loss of grain boundaries occurred as an essential feature at steady state. A physical model, which takes into account the activity of grain boundary dislocations, was developed to describe the kinetics of steady state deformation. According to this model, the steady state as a function of strain rate and temperature defines the limit of the conventional grain size and strength relationship, i.e., the Hall-Petch relation holds when the grain size is larger than that at the steady state, and an inverse Hall-Petch relation takes over if grain size is smaller than the steady state value. The transition between the two relationships relating grain size and strength is a phenomenon that depends on deformation conditions, rather than an intrinsic property as generally perceived. A general scale law of deformation is established accordingly.

  18. Phased array ghost elimination (PAGE) for segmented SSFP imaging with interrupted steady-state.

    PubMed

    Kellman, Peter; Guttman, Michael A; Herzka, Daniel A; McVeigh, Elliot R

    2002-12-01

    Steady-state free precession (SSFP) has recently proven to be valuable for cardiac imaging due to its high signal-to-noise ratio and blood-myocardium contrast. Data acquired using ECG-triggered, segmented sequences during the approach to steady-state, or return to steady-state after interruption, may have ghost artifacts due to periodic k-space distortion. Schemes involving several preparatory RF pulses have been proposed to restore steady-state, but these consume imaging time during early systole. Alternatively, the phased-array ghost elimination (PAGE) method may be used to remove ghost artifacts from the first several frames. PAGE was demonstrated for cardiac cine SSFP imaging with interrupted steady-state using a simple alpha/2 magnetization preparation and storage scheme and a spatial tagging preparation.

  19. Endogenous Thrombin Potential Changes during the First Cycle of Oral Contraceptive Use

    PubMed Central

    Westhoff, Carolyn L.; Pike, Malcolm C.; Cremers, Serge; Eisenberger, Andrew; Thomassen, Stella; Rosing, Jan

    2017-01-01

    Objectives Venous thromboembolism (VTE) risk increases within months of combination oral contraceptive (COC) initiation. Because elevated endogenous thrombin potential (ETP) has been found in several studies to be a VTE risk factor, we evaluated the extent of ETP changes during the initial cycle of an ethinyl estradiol (EE) and levonorgestrel (LNG) COC. We also assessed the relationship between ETP changes and systemic EE and LNG concentrations. Study Design Participants provided multiple blood samples during a first 21-day cycle of a 30 µg EE/150 µg LNG COC and after a further 7 days without an active COC. Thrombin generation measured with and without addition of activated protein C (APC) yielded ETP+APC and ETP−APC and the normalized APC sensitivity ratio (nAPCsr). EE and LNG pharmacokinetic analyses were conducted over 24 hours after the first COC tablet and again at steady state. Results Thrombin generation was determined in 16 of the 17 women who completed the study. Mean ETP−APC increased steadily to 21% above baseline at 24 hours after the 6th COC tablet (COC624; p < 0.001) and to 28% above baseline at steady state (COC21; p < 0.001). Mean ETP+APC increased considerably more – by 54% at COC624 and by 79% at steady state. Mean nAPCsr increased by 28% at COC624 and by 41% at steady state. Higher concentrations of EE or LNG were not correlated with greater increases in ETP. Conclusions ETP increases during the first COC cycle were substantial. Implications The early increases in ETP may provide biological support for the rapid increase in VTE risk during initial COC use. The lack of association between this clotting system perturbation and the systemic EE concentration is surprising and deserves further study. PMID:28088496

  20. Order reduction for a model of marine bacteriophage evolution

    NASA Astrophysics Data System (ADS)

    Pagliarini, Silvia; Korobeinikov, Andrei

    2017-02-01

    A typical mechanistic model of viral evolution necessary includes several time scales which can differ by orders of magnitude. Such a diversity of time scales makes analysis of these models difficult. Reducing the order of a model is highly desirable when handling such a model. A typical approach applied to such slow-fast (or singularly perturbed) systems is the time scales separation technique. Constructing the so-called quasi-steady-state approximation is the usual first step in applying the technique. While this technique is commonly applied, in some cases its straightforward application can lead to unsatisfactory results. In this paper we construct the quasi-steady-state approximation for a model of evolution of marine bacteriophages based on the Beretta-Kuang model. We show that for this particular model the quasi-steady-state approximation is able to produce only qualitative but not quantitative fit.

  1. Electronic Thermometer Readings

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Stennis' adaptive predictive algorithm for electronic thermometers uses sample readings during the initial rise in temperature and applies an algorithm that accurately and rapidly predicts the steady state temperature. The final steady state temperature of an object can be calculated based on the second-order logarithm of the temperature signals acquired by the sensor and predetermined variables from the sensor characteristics. These variables are calculated during tests of the sensor. Once the variables are determined, relatively little data acquisition and data processing time by the algorithm is required to provide a near-accurate approximation of the final temperature. This reduces the delay in the steady state response time of a temperature sensor. This advanced algorithm can be implemented in existing software or hardware with an erasable programmable read-only memory (EPROM). The capability for easy integration eliminates the expense of developing a whole new system that offers the benefits provided by NASA Stennis' technology.

  2. Anomalous current diffusion and improved confinement in the HT-6M tohamak

    NASA Astrophysics Data System (ADS)

    Gao, X.; Li, J. G.; Wan, Y. X.; Huo, Y. P.; Guo, W. K.; Fan, S. P.; Yu, C. X.; Luo, J. R.; Yin, F. X.; Meng, Y. D.; Zheng, L.; Yin, F.; Lin, B. L.; Zhang, S. Y.; Wang, S. Y.; Lu, H. J.; Liu, S. X.; Tong, X. D.; Ding, L. C.; Wu, Z. Y.; Yin, X. J.; Guo, Q. L.; Gong, X. Z.; Wu, X. C.; Zhao, J. Y.; Xi, J. S.

    1994-10-01

    Current diffusion was studied during edge ohmic heating (EOH) experiments in the HT-6M tokamak. The EOH power system makes the plasma current linearly ramp up from an initial steady state ( Ip=55kA) to a second steady state ( Ip=60kA) at a fast ramp rate of 12 MA/s. A stable discharge of an improved confinement was observed experimentally in the HT-6M tokamak after the plasma current was ramped to rise rapidly to a second steady state. The plasma current is ramped up much faster than both the classical skin time and neoclassical skin time. Fast current ramp up increases the anomalous current diffusion. The measured values of {β P+l i}/{2} and the soft X-ray sawtooth inversion radius imply the anomalous current penetration. The mechanism of anomalous penetration and improved confinement is discussed.

  3. Diagnostics and control for the steady state and pulsed tokamak DEMO

    NASA Astrophysics Data System (ADS)

    Orsitto, F. P.; Villari, R.; Moro, F.; Todd, T. N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Duran, I.; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.

    2016-02-01

    The present paper is devoted to a first assessment of the DEMO diagnostics systems and controls in the context of pulsed and steady state reactor design under study in Europe. In particular, the main arguments treated are: (i) The quantities to be measured in DEMO and the requirements for the measurements; (ii) the present capability of the diagnostic and control technology, determining the most urgent gaps, and (iii) the program and strategy of the research and development (R&D) needed to fill the gaps. Burn control, magnetohydrodynamic stability, and basic machine protection require improvements to the ITER technology, and moderated efforts in R&D can be dedicated to infrared diagnostics (reflectometry, electron cyclotron emission, polarimetry) and neutron diagnostics. Metallic Hall sensors appear to be a promising candidate for magnetic measurements in the high neutron fluence and long/steady state discharges of DEMO.

  4. Non-equilibrium steady states in supramolecular polymerization

    NASA Astrophysics Data System (ADS)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  5. Sliding mode controller with modified sliding function for DC-DC Buck Converter.

    PubMed

    Naik, B B; Mehta, A J

    2017-09-01

    This article presents design of Sliding Mode Controller with proportional integral type sliding function for DC-DC Buck Converter for the controlled power supply. The converter with conventional sliding mode controller results in a steady state error in load voltage. The proposed modified sliding function improves the steady state and dynamic performance of the Convertor and facilitates better choices of controller tuning parameters. The conditions for existence of sliding modes for proposed control scheme are derived. The stability of the closed loop system with proposed sliding mode control is proved and improvement in steady state performance is exemplified. The idea of adaptive tuning for the proposed controller to compensate load variations is outlined. The comparative study of conventional and proposed control strategy is presented. The efficacy of the proposed strategy is endowed by the simulation and experimental results. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  6. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity.more » The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.« less

  7. Current limiter circuit system

    DOEpatents

    Witcher, Joseph Brandon; Bredemann, Michael V.

    2017-09-05

    An apparatus comprising a steady state sensing circuit, a switching circuit, and a detection circuit. The steady state sensing circuit is connected to a first, a second and a third node. The first node is connected to a first device, the second node is connected to a second device, and the steady state sensing circuit causes a scaled current to flow at the third node. The scaled current is proportional to a voltage difference between the first and second node. The switching circuit limits an amount of current that flows between the first and second device. The detection circuit is connected to the third node and the switching circuit. The detection circuit monitors the scaled current at the third node and controls the switching circuit to limit the amount of the current that flows between the first and second device when the scaled current is greater than a desired level.

  8. Availability analysis of mechanical systems with condition-based maintenance using semi-Markov and evaluation of optimal condition monitoring interval

    NASA Astrophysics Data System (ADS)

    Kumar, Girish; Jain, Vipul; Gandhi, O. P.

    2018-03-01

    Maintenance helps to extend equipment life by improving its condition and avoiding catastrophic failures. Appropriate model or mechanism is, thus, needed to quantify system availability vis-a-vis a given maintenance strategy, which will assist in decision-making for optimal utilization of maintenance resources. This paper deals with semi-Markov process (SMP) modeling for steady state availability analysis of mechanical systems that follow condition-based maintenance (CBM) and evaluation of optimal condition monitoring interval. The developed SMP model is solved using two-stage analytical approach for steady-state availability analysis of the system. Also, CBM interval is decided for maximizing system availability using Genetic Algorithm approach. The main contribution of the paper is in the form of a predictive tool for system availability that will help in deciding the optimum CBM policy. The proposed methodology is demonstrated for a centrifugal pump.

  9. Crank inertial load has little effect on steady-state pedaling coordination.

    PubMed

    Fregly, B J; Zajac, F E; Dairaghi, C A

    1996-12-01

    Inertial load can affect the control of a dynamic system whenever parts of the system are accelerated or decelerated. During steady-state pedaling, because within-cycle variations in crank angular acceleration still exist, the amount of crank inertia present (which varies widely with road-riding gear ratio) may affect the within-cycle coordination of muscles. However, the effect of inertial load on steady-state pedaling coordination is almost always assumed to be negligible, since the net mechanical energy per cycle developed by muscles only depends on the constant cadence and workload. This study test the hypothesis that under steady-state conditions, the net joint torques produced by muscles at the hip, knee, and ankle are unaffected by crank inertial load. To perform the investigation, we constructed a pedaling apparatus which could emulate the low inertial load of a standard ergometer or the high inertial load of a road bicycle in high gear. Crank angle and bilateral pedal force and angle data were collected from ten subjects instructed to pedal steadily (i.e., constant speed across cycles) and smoothly (i.e., constant speed within a cycle) against both inertias at a constant workload. Virtually no statistically significant changes were found in the net hip and knee muscle joint torques calculated from an inverse dynamics analysis. Though the net ankle muscle joint torque, as well as the one- and two-legged crank torque, showed statistically significant increases at the higher inertia, the changes were small. In contrast, large statistically significant reductions were found in crank kinematic variability both within a cycle and between cycles (i.e., cadence), primarily because a larger inertial load means a slower crank dynamic response. Nonetheless, the reduction in cadence variability was somewhat attenuated by a large statistically significant increase in one-legged crank torque variability. We suggest, therefore, that muscle coordination during steady-state pedaling is largely unaffected, though less well regulated, when crank inertial load is increased.

  10. Mechanism of energy coupling to entry and exit of neutral and branched chain amino acids in membrane vesicles of Streptococcus cremoris.

    PubMed

    Driessen, A J; Hellingwerf, K J; Konings, W N

    1987-09-15

    The energetics of neutral and branched chain amino acid transport by membrane vesicles from Streptococcus cremoris have been studied with a novel model system in which beef heart mitochondrial cytochrome c oxidase functions as a proton-motive force (delta p) generating system. In the presence of reduced cytochrome c, a large delta p was generated with a maximum value at pH 6.0. Apparent H+/amino acid stoichiometries (napp) have been determined at external pH values between 5.5 and 8.0 from the steady state levels of accumulation and the delta p. For L-leucine napp (0.8) was nearly independent of the pH. For L-alanine and L-serine napp decreased from 0.9-1.0 at pH 5.5 to 0-0.2 at pH 8.0. The napp for the different amino acids decreased with increasing external amino acid concentration. At pH 6.0, first order rate constants for amino acid exit (kex) under steady state conditions for L-leucine, L-alanine, and L-serine were 1.1-1.3, 0.084, and 0.053 min-1, respectively. From the pH dependence of kex it is concluded that amino acid exit in steady state is the sum of two processes, pH-dependent carrier-mediated amino acid exit and pH-independent passive diffusion (external leak). The first order rate constant for passive diffusion increased with increasing hydrophobicity of the side chain of the amino acids. As a result of these processes the kinetic steady state attained is less than the amino acid accumulation ratio predicted by thermodynamic equilibrium. The napp determined from the steady state accumulation represents, therefore, a lower limit. It is concluded that the mechanistic stoichiometry (n) for L-leucine, L-alanine, and L-serine transport most likely equals 1.

  11. Steady states and stability in metabolic networks without regulation.

    PubMed

    Ivanov, Oleksandr; van der Schaft, Arjan; Weissing, Franz J

    2016-07-21

    Metabolic networks are often extremely complex. Despite intensive efforts many details of these networks, e.g., exact kinetic rates and parameters of metabolic reactions, are not known, making it difficult to derive their properties. Considerable effort has been made to develop theory about properties of steady states in metabolic networks that are valid for any values of parameters. General results on uniqueness of steady states and their stability have been derived with specific assumptions on reaction kinetics, stoichiometry and network topology. For example, deep results have been obtained under the assumptions of mass-action reaction kinetics, continuous flow stirred tank reactors (CFSTR), concordant reaction networks and others. Nevertheless, a general theory about properties of steady states in metabolic networks is still missing. Here we make a step further in the quest for such a theory. Specifically, we study properties of steady states in metabolic networks with monotonic kinetics in relation to their stoichiometry (simple and general) and the number of metabolites participating in every reaction (single or many). Our approach is based on the investigation of properties of the Jacobian matrix. We show that stoichiometry, network topology, and the number of metabolites that participate in every reaction have a large influence on the number of steady states and their stability in metabolic networks. Specifically, metabolic networks with single-substrate-single-product reactions have disconnected steady states, whereas in metabolic networks with multiple-substrates-multiple-product reactions manifolds of steady states arise. Metabolic networks with simple stoichiometry have either a unique globally asymptotically stable steady state or asymptotically stable manifolds of steady states. In metabolic networks with general stoichiometry the steady states are not always stable and we provide conditions for their stability. In order to demonstrate the biological relevance we illustrate the results on the examples of the TCA cycle, the mevalonate pathway and the Calvin cycle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Energy flow in non-equilibrium conformal field theory

    NASA Astrophysics Data System (ADS)

    Bernard, Denis; Doyon, Benjamin

    2012-09-01

    We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.

  13. Output control using feedforward and cascade controllers

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    An open-loop solution to the output control problem in SISO (single-input, single-output) systems by means of feedforward and cascade controllers is investigated. A simple characterization of feedforward controllers, which achieve steady-state disturbance rejection, is given in a transfer-function setting. Cascade controllers which cause steady-state command tracking are characterized. Disturbance decoupling and command matching controllers are identified. Conditions for existence of feedforward and cascade controllers are given. For unstable systems, it is shown that a stabilizing feedback controller can be used without affecting the feedforward and cascade controllers used for output control; hence, the three controllers can be designed independently. Output control by a combination of feedforward and feedback is discussed.

  14. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Naval Station Mayport, Florida

    USGS Publications Warehouse

    Halford, K.J.

    1998-01-01

    Ground-water flow through the surficial aquifer system at Naval Station Mayport near Jacksonville, Florida, was simulated with a two-layer finite-difference model as part of an investigation conducted by the U.S. Geological Survey. The model was calibrated to 229 water-level measurements from 181 wells during three synoptic surveys (July 17, 1995; July 31, 1996; and October 24, 1996). A quantifiable understanding of ground-water flow through the surficial aquifer was needed to evaluate remedial-action alternatives under consideration by the Naval Station Mayport to control the possible movement of contaminants from sites on the station. Multi-well aquifer tests, single-well tests, and slug tests were conducted to estimate the hydraulic properties of the surficial aquifer system, which was divided into three geohydrologic units?an S-zone and an I-zone separated by a marsh-muck confining unit. The recharge rate was estimated to range from 4 to 15 inches per year (95 percent confidence limits), based on a chloride-ratio method. Most of the simulations following model calibration were based on a recharge rate of 8 inches per year to unirrigated pervious areas. The advective displacement of saline pore water during the last 200 years was simulated using a particle-tracking routine, MODPATH, applied to calibrated steady-state and transient models of the Mayport peninsula. The surficial aquifer system at Naval Station Mayport has been modified greatly by natural and anthropogenic forces so that the freshwater flow system is expanding and saltwater is being flushed from the system. A new MODFLOW package (VAR1) was written to simulate the temporal variation of hydraulic properties caused by construction activities at Naval Station Mayport. The transiently simulated saltwater distribution after 200 years of displacement described the chloride distribution in the I-zone (determined from measurements made during 1993 and 1996) better than the steady-state simulation. The advective movement of contaminants from selected sites within the solid waste management units to discharge points was simulated using MODPATH. Most of the particles were discharged to the nearest surface-water feature after traveling less than 1,000 feet in the ground-water system. Most areas within 1,000 feet of a surface-water feature or storm sewer had traveltimes of less than 50 years, based on an effective porosity of 40 percent. Contributing areas, traveltimes, and pathlines were identified for 224 wells at Naval Station Mayport under steady-state and transient conditions by back-tracking a particle from the midpoint of the wetted screen of each well. Traveltimes to contributing areas that ranged between 15 and 50 years, estimated by the steady-state model, differed most from the transient traveltime estimates. Estimates of traveltimes and pathlines based on steady-state model results typically were 10 to 20 years more and about twice as long as corresponding estimates from the transient model. The models differed because the steady-state model simulated 1996 conditions when Naval Station Mayport had more impervious surfaces than at any earlier time. The expansion of the impervious surfaces increased the average distance between contributing areas and observation wells.

  15. High-Temperature Nonequilibrium Bose Condensation Induced by a Hot Needle.

    PubMed

    Schnell, Alexander; Vorberg, Daniel; Ketzmerick, Roland; Eckardt, André

    2017-10-06

    We investigate theoretically a one-dimensional ideal Bose gas that is driven into a steady state far from equilibrium via the coupling to two heat baths: a global bath of temperature T and a "hot needle," a bath of temperature T_{h}≫T with localized coupling to the system. Remarkably, this system features a crossover to finite-size Bose condensation at temperatures T that are orders of magnitude larger than the equilibrium condensation temperature. This counterintuitive effect is explained by a suppression of long-wavelength excitations resulting from the competition between both baths. Moreover, for sufficiently large needle temperatures ground-state condensation is superseded by condensation into an excited state, which is favored by its weaker coupling to the hot needle. Our results suggest a general strategy for the preparation of quantum degenerate nonequilibrium steady states with unconventional properties and at large temperatures.

  16. Modeling pressure rise in gas targets

    NASA Astrophysics Data System (ADS)

    Jahangiri, P.; Lapi, S. E.; Publicover, J.; Buckley, K.; Martinez, D. M.; Ruth, T. J.; Hoehr, C.

    2017-05-01

    The purpose of this work is to introduce a universal mathematical model to explain a gas target behaviour at steady-state time scale. To obtain our final goal, an analytical model is proposed to study the pressure rise in the targets used to produce medical isotopes on low-energy cyclotrons. The model is developed based on the assumption that during irradiation the system reaches steady-state. The model is verified by various experiments performed at different beam currents, gas type, and initial pressures at 13 MeV cyclotron at TRIUMF. Excellent agreement is achieved.

  17. Vortex creep and the internal temperature of neutron stars. I - General theory

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.

    1984-01-01

    The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.

  18. Stochastic ontogenetic growth model

    NASA Astrophysics Data System (ADS)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  19. Thermal preparation of an entangled steady state of distant driven spin ensembles

    NASA Astrophysics Data System (ADS)

    Teper, Natalia

    2018-02-01

    Entanglement properties are studied in the continuous-variable system of three nitrogen-vacancy center ensembles cou-pled to separate transmission line resonators interconnected by current-biased Josephson junction. The circuit is enhanced by Josephson parametric amplifier, which serves as source of squeezed microwave field. Bosonic modes of nitrogen-vacancy-center ensembles exhibit steady state entanglement for certain range of parameters. Squeezed microwave field can be consider as a driving force of entanglement. Proposed scheme provides generating entanglement for each of the three pairs of spin ensembles.

  20. Choice of Variables and Preconditioning for Time Dependent Problems

    NASA Technical Reports Server (NTRS)

    Turkel, Eli; Vatsa, Verr N.

    2003-01-01

    We consider the use of low speed preconditioning for time dependent problems. These are solved using a dual time step approach. We consider the effect of this dual time step on the parameter of the low speed preconditioning. In addition, we compare the use of two sets of variables, conservation and primitive variables, to solve the system. We show the effect of these choices on both the convergence to a steady state and the accuracy of the numerical solutions for low Mach number steady state and time dependent flows.

  1. Self-induced steady-state magnetic field in the negative ion sources with localized rf power deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shivarova, A.; Todorov, D., E-mail: dimitar-tdrv@phys.uni-sofia-bg; Lishev, St.

    2016-02-15

    The study is in the scope of a recent activity on modeling of SPIDER (Source for Production of Ions of Deuterium Extracted from RF plasma) which is under development regarding the neutral beam injection heating system of ITER. The regime of non-ambipolarity in the source, established before, is completed here by introducing in the model the steady state magnetic field, self-induced in the discharge due to the dc current flowing in it. Strong changes in the discharge structure are reported.

  2. A new method for predicting response in complex linear systems. II. [under random or deterministic steady state excitation

    NASA Technical Reports Server (NTRS)

    Bogdanoff, J. L.; Kayser, K.; Krieger, W.

    1977-01-01

    The paper describes convergence and response studies in the low frequency range of complex systems, particularly with low values of damping of different distributions, and reports on the modification of the relaxation procedure required under these conditions. A new method is presented for response estimation in complex lumped parameter linear systems under random or deterministic steady state excitation. The essence of the method is the use of relaxation procedures with a suitable error function to find the estimated response; natural frequencies and normal modes are not computed. For a 45 degree of freedom system, and two relaxation procedures, convergence studies and frequency response estimates were performed. The low frequency studies are considered in the framework of earlier studies (Kayser and Bogdanoff, 1975) involving the mid to high frequency range.

  3. Application of dynamical systems theory to the high angle of attack dynamics of the F-14

    NASA Technical Reports Server (NTRS)

    Jahnke, Craig C.; Culick, Fred E. C.

    1990-01-01

    Dynamical systems theory has been used to study the nonlinear dynamics of the F-14. An eight degree of freedom model that does not include the control system present in operational F-14s has been analyzed. The aerodynamic model, supplied by NASA, includes nonlinearities as functions of the angles of attack and sideslip, the rotation rate, and the elevator deflection. A continuation method has been used to calculate the steady states of the F-14 as continuous functions of the control surface deflections. Bifurcations of these steady states have been used to predict the onset of wing rock, spiral divergence, and jump phenomena which cause the aircraft to enter a spin. A simple feedback control system was designed to eliminate the wing rock and spiral divergence instabilities. The predictions were verified with numerical simulations.

  4. New Methodology for Evaluating Optimal Pricing for Primary Regulation of Deregulated Power Systems under Steady State Condition

    NASA Astrophysics Data System (ADS)

    Satyaramesh, P. V.; RadhaKrishna, C.

    2013-06-01

    A generalized pricing structure for procurement of power under frequency ancillary service is developed in this paper. It is a frequency linked-price model and suitable for deregulation market environment. This model takes into consideration: governor characteristics and frequency characteristics of generator as additional parameters in load flow method. The main objective of the new approach proposed in this paper is to establish bidding price structure for frequency regulation services in competitive ancillary electrical markets under steady state condition. Lot of literatures are available for calculating the frequency deviations with respect to load changes by using dynamic simulation methods. But in this paper, the model computes the frequency deviations for additional requirements of power under steady state with considering power system network topology. An attempt is also made in this paper to develop optimal bidding price structure for the frequency-regulated systems. It gives a signal to traders or bidders that the power demand can be assessed more accurately much closer to real time and helps participants bid more accurate quantities on day-ahead market. The recent trends of frequency linked-price model existing in Indian power systems issues required for attention are also dealt in this paper. Test calculations have been performed on 30-bus system. The paper also explains adoptability of 33 this model to practical Indian power system. The results presented are analyzed and useful conclusions are drawn.

  5. Core signalling motif displaying multistability through multi-state enzymes.

    PubMed

    Feng, Song; Sáez, Meritxell; Wiuf, Carsten; Feliu, Elisenda; Soyer, Orkun S

    2016-10-01

    Bistability, and more generally multistability, is a key system dynamics feature enabling decision-making and memory in cells. Deciphering the molecular determinants of multistability is thus crucial for a better understanding of cellular pathways and their (re)engineering in synthetic biology. Here, we show that a key motif found predominantly in eukaryotic signalling systems, namely a futile signalling cycle, can display bistability when featuring a two-state kinase. We provide necessary and sufficient mathematical conditions on the kinetic parameters of this motif that guarantee the existence of multiple steady states. These conditions foster the intuition that bistability arises as a consequence of competition between the two states of the kinase. Extending from this result, we find that increasing the number of kinase states linearly translates into an increase in the number of steady states in the system. These findings reveal, to our knowledge, a new mechanism for the generation of bistability and multistability in cellular signalling systems. Further the futile cycle featuring a two-state kinase is among the smallest bistable signalling motifs. We show that multi-state kinases and the described competition-based motif are part of several natural signalling systems and thereby could enable them to implement complex information processing through multistability. These results indicate that multi-state kinases in signalling systems are readily exploited by natural evolution and could equally be used by synthetic approaches for the generation of multistable information processing systems at the cellular level. © 2016 The Authors.

  6. The effects of boundary conditions on the steady-state response of three hypothetical ground-water systems; results and implications of numerical experiments

    USGS Publications Warehouse

    Franke, O. Lehn; Reilly, Thomas E.

    1987-01-01

    The most critical and difficult aspect of defining a groundwater system or problem for conceptual analysis or numerical simulation is the selection of boundary conditions . This report demonstrates the effects of different boundary conditions on the steady-state response of otherwise similar ground-water systems to a pumping stress. Three series of numerical experiments illustrate the behavior of three hypothetical groundwater systems that are rectangular sand prisms with the same dimensions but with different combinations of constant-head, specified-head, no-flow, and constant-flux boundary conditions. In the first series of numerical experiments, the heads and flows in all three systems are identical, as are the hydraulic conductivity and system geometry . However, when the systems are subjected to an equal stress by a pumping well in the third series, each differs significantly in its response . The highest heads (smallest drawdowns) and flows occur in the systems most constrained by constant- or specified-head boundaries. These and other observations described herein are important in steady-state calibration, which is an integral part of simulating many ground-water systems. Because the effects of boundary conditions on model response often become evident only when the system is stressed, a close match between the potential distribution in the model and that in the unstressed natural system does not guarantee that the model boundary conditions correctly represent those in the natural system . In conclusion, the boundary conditions that are selected for simulation of a ground-water system are fundamentally important to groundwater systems analysis and warrant continual reevaluation and modification as investigation proceeds and new information and understanding are acquired.

  7. Analysis of an algae-based CELSS. I - Model development

    NASA Technical Reports Server (NTRS)

    Holtzapple, Mark T.; Little, Frank E.; Makela, Merry E.; Patterson, C. O.

    1989-01-01

    A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food, O2, the recycle of human waste and trash, H2O, N2, and food production/supply. A simple noniterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.

  8. Analysis of an algae-based CELSS. Part 1: model development

    NASA Technical Reports Server (NTRS)

    Holtzapple, M. T.; Little, F. E.; Makela, M. E.; Patterson, C. O.

    1989-01-01

    A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food. O2, the recycle of human waste and trash, H2O, N2, and food production supply. A simple non-iterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.

  9. Nonconservative dynamics in long atomic wires

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian; Todorov, Tchavdar N.; Dundas, Daniel

    2014-09-01

    The effect of nonconservative current-induced forces on the ions in a defect-free metallic nanowire is investigated using both steady-state calculations and dynamical simulations. Nonconservative forces were found to have a major influence on the ion dynamics in these systems, but their role in increasing the kinetic energy of the ions decreases with increasing system length. The results illustrate the importance of nonconservative effects in short nanowires and the scaling of these effects with system size. The dependence on bias and ion mass can be understood with the help of a simple pen and paper model. This material highlights the benefit of simple preliminary steady-state calculations in anticipating aspects of brute-force dynamical simulations, and provides rule of thumb criteria for the design of stable quantum wires.

  10. An Intuitive Approach to Steady-State Kinetics.

    ERIC Educational Resources Information Center

    Raines, Ronald T.; Hansen, David E.

    1988-01-01

    Attempts to provide an intuitive understanding of steady state kinetics. Discusses the meaning of steady state and uses free energy profiles to illustrate and follow complex kinetic and thermodynamic relationships. Provides examples with explanations. (MVL)

  11. Effect of flaw size and temperature on the matrix cracking behavior of a brittle ceramic matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandakumar, U.; Webb, J.E.; Singh, R.N.

    The matrix cracking behavior of a zircon matrix - uniaxial SCS 6 fiber composite was studied as a function of initial flaw size and temperature. The composites were fabricated by a tape casting and hot pressing technique. Surface flaws of controlled size were introduced using a vicker`s indenter. The composite samples were tested in three point flexure at three different temperatures to study the non steady state and steady state matrix cracking behavior. The composite samples exhibited steady state and non steady matrix cracking behavior at all temperatures. The steady state matrix cracking stress and steady state crack size increasedmore » with increasing temperature. The results of the study correlated well with the results predicted by the matrix cracking models.« less

  12. A global model for steady state and transient S.I. engine heat transfer studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohac, S.V.; Assanis, D.N.; Baker, D.M.

    1996-09-01

    A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less

  13. Analysis of rig test data for an axial/centrifugal compressor in the 12 kg/sec

    NASA Technical Reports Server (NTRS)

    Owen, A. K.

    1994-01-01

    Extensive testing was done on a T55-L-712 turboshaft engine compressor in a compressor test rig at TEXTRON/Lycoming. These rig tests will be followed by a series of engine tests to occur at the NASA Lewis Research Center beginning in the last quarter of 1993. The goals of the rig testing were: (1) map the steady state compressor operation from 20 percent to 100 percent design speed, (2) quantify the effects of compressor bleed on the operation of the compressor, and (3) explore and measure the operation of the compressor in the flow ranges 'beyond' the normal compressor stall line. Instrumentation consisted of 497 steady state pressure sensors, 153 temperature sensors and 34 high response transducers for transient analysis in the pre- and post-stall operating regime. These measurements allow for generation of detailed stage characteristics as well as overall mapping. Transient data is being analyzed for the existence of modal disturbances at the front face of the compression system ('stall precursors'). This paper presents some preliminary results of the ongoing analysis and a description of the current and future program plans. It will primarily address the unsteady events at the front face of the compression system that occur as the system transitions from steady state to unsteady (stall/surge) operation.

  14. Increasing EDV Range through Intelligent Cabin Air Handling Strategies: Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighton, Daniel; Rugh, John

    Computational fluid dynamics (CFD) simulations of a Ford Focus Electric demonstrated that a split flow heating, ventilating and air conditioning (HVAC) system with rear recirculation ducts can reduce cabin heating loads by up to 57.4% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 deg C). Simulations also showed that implementing a continuous recirculation fraction control system into the original equipment manufacturer (OEM) HVAC system can reduce cabin heating loads by up to 50.0% relative to full fresh air usage under some conditions (steady state, four passengers, ambient temperature of -5 degmore » C). Identified that continuous fractional recirculation control of the OEM system can provide significant energy savings for EVs at minimal additional cost, while a split flow HVAC system with rear recirculation ducts only provides minimal additional improvement at significant additional cost.« less

  15. Dynamics from a mathematical model of a two-state gas laser

    NASA Astrophysics Data System (ADS)

    Kleanthous, Antigoni; Hua, Tianshu; Manai, Alexandre; Yawar, Kamran; Van Gorder, Robert A.

    2018-05-01

    Motivated by recent work in the area, we consider the behavior of solutions to a nonlinear PDE model of a two-state gas laser. We first review the derivation of the two-state gas laser model, before deriving a non-dimensional model given in terms of coupled nonlinear partial differential equations. We then classify the steady states of this system, in order to determine the possible long-time asymptotic solutions to this model, as well as corresponding stability results, showing that the only uniform steady state (the zero motion state) is unstable, while a linear profile in space is stable. We then provide numerical simulations for the full unsteady model. We show for a wide variety of initial conditions that the solutions tend toward the stable linear steady state profiles. We also consider traveling wave solutions, and determine the unique wave speed (in terms of the other model parameters) which allows wave-like solutions to exist. Despite some similarities between the model and the inviscid Burger's equation, the solutions we obtain are much more regular than the solutions to the inviscid Burger's equation, with no evidence of shock formation or loss of regularity.

  16. New approaches to the analysis of complex samples using fluorescence lifetime techniques and organized media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hertz, P.R.

    Fluorescence spectroscopy is a highly sensitive and selective tool for the analysis of complex systems. In order to investigate the efficacy of several steady state and dynamic techniques for the analysis of complex systems, this work focuses on two types of complex, multicomponent samples: petrolatums and coal liquids. It is shown in these studies dynamic, fluorescence lifetime-based measurements provide enhanced discrimination between complex petrolatum samples. Additionally, improved quantitative analysis of multicomponent systems is demonstrated via incorporation of organized media in coal liquid samples. This research provides the first systematic studies of (1) multifrequency phase-resolved fluorescence spectroscopy for dynamic fluorescence spectralmore » fingerprinting of complex samples, and (2) the incorporation of bile salt micellar media to improve accuracy and sensitivity for characterization of complex systems. In the petroleum studies, phase-resolved fluorescence spectroscopy is used to combine spectral and lifetime information through the measurement of phase-resolved fluorescence intensity. The intensity is collected as a function of excitation and emission wavelengths, angular modulation frequency, and detector phase angle. This multidimensional information enhances the ability to distinguish between complex samples with similar spectral characteristics. Examination of the eigenvalues and eigenvectors from factor analysis of phase-resolved and steady state excitation-emission matrices, using chemometric methods of data analysis, confirms that phase-resolved fluorescence techniques offer improved discrimination between complex samples as compared with conventional steady state methods.« less

  17. Non-equilibrium steady states in the Klein-Gordon theory

    NASA Astrophysics Data System (ADS)

    Doyon, Benjamin; Lucas, Andrew; Schalm, Koenraad; Bhaseen, M. J.

    2015-03-01

    We construct non-equilibrium steady states in the Klein-Gordon theory in arbitrary space dimension d following a local quench. We consider the approach where two independently thermalized semi-infinite systems, with temperatures {{T}L} and {{T}R}, are connected along a d-1-dimensional hypersurface. A current-carrying steady state, described by thermally distributed modes with temperatures {{T}L} and {{T}R} for left and right-moving modes, respectively, emerges at late times. The non-equilibrium density matrix is the exponential of a non-local conserved charge. We obtain exact results for the average energy current and the complete distribution of energy current fluctuations. The latter shows that the long-time energy transfer can be described by a continuum of independent Poisson processes, for which we provide the exact weights. We further describe the full time evolution of local observables following the quench. Averages of generic local observables, including the stress-energy tensor, approach the steady state with a power-law in time, where the exponent depends on the initial conditions at the connection hypersurface. We describe boundary conditions and special operators for which the steady state is reached instantaneously on the connection hypersurface. A semiclassical analysis of freely propagating modes yields the average energy current at large distances and late times. We conclude by comparing and contrasting our findings with results for interacting theories and provide an estimate for the timescale governing the crossover to hydrodynamics. As a modification of our Klein-Gordon analysis we also include exact results for free Dirac fermions.

  18. On the time to steady state: insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Goren, L.; Willett, S.; McCoy, S. W.; Perron, J.

    2013-12-01

    How fast do fluvial landscapes approach steady state after an application of tectonic or climatic perturbation? While theory and some numerical models predict that the celerity of the advective wave (knickpoint) controls the response time for perturbations, experiments and other landscape evolution models demonstrate that the time to steady state is much longer than the theoretically predicted response time. We posit that the longevity of transient features and the time to steady state are controlled by the stability of the topology and geometry of channel networks. Evolution of a channel network occurs by a combination of discrete capture events and continuous migration of water divides, processes, which are difficult to represent accurately in landscape evolution models. We therefore address the question of the time to steady state using the DAC landscape evolution model that solves accurately for the location of water divides, using a combination of analytical solution for hillslopes and low-order channels together with a numerical solution for higher order channels. DAC also includes an explicit capture criterion. We have tested fundamental predictions from DAC and show that modeled networks reproduce natural network characteristics such as the Hack's exponent and coefficient and the fractal dimension. We define two steady-state criteria: a topographic steady state, defined by global, pointwise steady elevation, and a topological steady state defined as the state in which no further reorganization of the drainage network takes place. Analyzing block uplift simulations, we find that the time to achieve either topographic or topological steady state exceeds by an order of magnitude the theoretical response time of the fluvial network. The longevity of the transient state is the result of the area feedback, by which, migration of a divide changes the local contributing area. This change propagates downstream as a slope adjustment, forcing further divide migrations and area change in adjacent tributaries and basins. In order to characterize the evolution of the drainage network on its way to steady state, we define a proxy to steady state elevation, χ, which is also the characteristic parameter of the transient stream power PDE. Through simulations of tectonic tilting we find that reorganization tends to minimize moments of the χ distribution of the landscape and of Δχ across divides.

  19. FISHER INFORMATION OF DYNAMIC REGIME TRANSITIONS IN ECOLOGICAL SYSTEMS

    EPA Science Inventory

    Ecosystems often exhibit transitions between multiple dynamic regimes (or steady states). As ecosystems experience perturbations of varying regularity and intensity, they may either remain within the state space neighborhood of the current regime, or ?flip? into the neighborhood ...

  20. Role of Dynamic Nucleation at Moving Boundaries in Phase and Microstructure Selection

    NASA Technical Reports Server (NTRS)

    Karma, Alain; Trivedi, Rohit

    1999-01-01

    Solidification microstructures that form under steady-state growth conditions (cells, dendrites, regular eutectics, etc.) are reasonably well understood in comparison to other, more complex microstructures, which form under intrinsically non-steady-state growth conditions due to the competition between the nucleation and growth of several phases. Some important practical examples in this latter class include microstructures forming in peritectic systems in highly undercooled droplets, and in strip cast stainless steels. Prediction of phase and microstructure selection in these systems has been traditionally based on (1) heterogeneous nucleation on a static interface, and (2) comparing the relative growth rate of different phase/microstructures under steady-state growth conditions. The formation of new phases, however, occurs via nucleation on, or ahead of, a moving boundary. In addition, the actual selection process is controlled by a complex interaction between the nucleation process and the growth competition between the nuclei and the pre-existing phase under non-steady-state conditions. As a result, it is often difficult to predict which microstructure will form and which phases will be selected under prescribed processing conditions. This research addresses this critical role of nucleation at moving boundaries in the selection of phases and solidification microstructures through quantitative experiments and numerical modeling in peritectic systems. In order to create a well characterized system in which to study this problem, we focus on the directional solidification of hypo- and hyper-peritectic alloys in the two-phase region, imposing a large enough ratio of temperature gradient/growth rate (G/V(sub p)) to suppress the morphological instability of both the parent (alpha) and peritectic (Beta) phases, i.e. each phase alone would grow as a planar front. Our combined experimental and theoretical results show that, already in this simplified case, the growth competition of these two phases leads to a rich variety of microstructures that depend sensitively upon the relative importance of nucleation, diffusion, and convection.

  1. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    DOEpatents

    Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  2. Quasi-steady-state analysis of coupled flashing ratchets.

    PubMed

    Levien, Ethan; Bressloff, Paul C

    2015-10-01

    We perform a quasi-steady-state (QSS) reduction of a flashing ratchet to obtain a Brownian particle in an effective potential. The resulting system is analytically tractable and yet preserves essential dynamical features of the full model. We first use the QSS reduction to derive an explicit expression for the velocity of a simple two-state flashing ratchet. In particular, we determine the relationship between perturbations from detailed balance, which are encoded in the transitions rates of the flashing ratchet, and a tilted-periodic potential. We then perform a QSS analysis of a pair of elastically coupled flashing ratchets, which reduces to a Brownian particle moving in a two-dimensional vector field. We suggest that the fixed points of this vector field accurately approximate the metastable spatial locations of the coupled ratchets, which are, in general, impossible to identify from the full system.

  3. Steady-state solidification of aqueous ammonium chloride

    NASA Astrophysics Data System (ADS)

    Peppin, S. S. L.; Huppert, Herbert E.; Worster, M. Grae

    We report on a series of experiments in which a Hele-Shaw cell containing aqueous solutions of NH4Cl was translated at prescribed rates through a steady temperature gradient. The salt formed the primary solid phase of a mushy layer as the solution solidified, with the salt-depleted residual fluid driving buoyancy-driven convection and the development of chimneys in the mushy layer. Depending on the operating conditions, several morphological transitions occurred. A regime diagram is presented quantifying these transitions as a function of freezing rate and the initial concentration of the solution. In general, for a given concentration, increasing the freezing rate caused the steady-state system to change from a convecting mushy layer with chimneys to a non-convecting mushy layer below a relatively quiescent liquid, and then to a much thinner mushy layer separated from the liquid by a region of active secondary nucleation. At higher initial concentrations the second of these states did not occur. At lower concentrations, but still above the eutectic, the mushy layer disappeared. A simple mathematical model of the system is developed which compares well with the experimental measurements of the intermediate, non-convecting state and serves as a benchmark against which to understand some of the effects of convection. Movies are available with the online version of the paper.

  4. The non-steady state growth of pearlite outside the Hultgren extrapolation

    DOE PAGES

    Martin-Aranda, Maria; Rementeria, Rosalia; Hackenberg, Robert Errol; ...

    2016-12-14

    Here, the goal of this paper is to analyse the effect of adding Al on the non-steady pearlite growth occurring in a Fe–C–Mn system. The results are discussed in terms of the partitioning of elements across the austenite/ferrite and austenite/cementite interfaces, and the modification of the pearlite driving force related to the change in carbon activity in austenite.

  5. Transient Nonequilibrium Molecular Dynamic Simulations of Thermal Conductivity: 1. Simple Fluids

    NASA Astrophysics Data System (ADS)

    Hulse, R. J.; Rowley, R. L.; Wilding, W. V.

    2005-01-01

    Thermal conductivity has been previously obtained from molecular dynamics (MD) simulations using either equilibrium (EMD) simulations (from Green--Kubo equations) or from steady-state nonequilibrium (NEMD) simulations. In the case of NEMD, either boundary-driven steady states are simulated or constrained equations of motion are used to obtain steady-state heat transfer rates. Like their experimental counterparts, these nonequilibrium steady-state methods are time consuming and may have convection problems. Here we report a new transient method developed to provide accurate thermal conductivity predictions from MD simulations. In the proposed MD method, molecules that lie within a specified volume are instantaneously heated. The temperature decay of the system of molecules inside the heated volume is compared to the solution of the transient energy equation, and the thermal diffusivity is regressed. Since the density of the fluid is set in the simulation, only the isochoric heat capacity is needed in order to obtain the thermal conductivity. In this study the isochoric heat capacity is determined from energy fluctuations within the simulated fluid. The method is valid in the liquid, vapor, and critical regions. Simulated values for the thermal conductivity of a Lennard-Jones (LJ) fluid were obtained using this new method over a temperature range of 90 to 900 K and a density range of 1-35 kmol · m-3. These values compare favorably with experimental values for argon. The new method has a precision of ±10%. Compared to other methods, the algorithm is quick, easy to code, and applicable to small systems, making the simulations very efficient.

  6. Flow dynamics and salt transport in a coastal aquifer driven by a stratified saltwater body: Lab experiment and numerical modeling

    NASA Astrophysics Data System (ADS)

    Oz, Imri; Shalev, Eyal; Yechieli, Yoseph; Gavrieli, Ittai; Gvirtzman, Haim

    2014-04-01

    This paper examines the transient development and the steady-state configuration of groundwater within a coastal aquifer adjacent to a stratified saltwater body. Such systems consist of three different water types: the regional fresh groundwater, and low and high salinity brines forming the upper and lower water layers of the stratified water body, respectively. The dynamics, location and the geometry of the interfaces and the density-driven circulation flows that develop in the aquifer are examined using laboratory experiments and numerical modeling at the same scale. The results show that the transient intrusion of the different water bodies into the aquifer takes place at different rates, and that the locations of the interfaces between them change with time, before reaching steady-state. Under steady-state conditions both the model and the experiments show the existence of three interfaces between the three water types. The numerical model, which is calibrated against the salinity distribution and groundwater discharge rate in the laboratory experiments, allows the quantification of the flow rates and flow patterns within the aquifer. These flow patterns, which cannot be derived from laboratory experiments, show the transient development of three circulation cells which are confined between the three interfaces. These results confirm the hypothesis that has been previously suggested based solely on a steady-state numerical modeling defined by a conceptual understanding. Parametric analysis shows that the creation of three circulation cells and three interfaces is limited to certain conditions and defines the ranges for the creation of this unique system.

  7. CD44-mediated hyaluronan binding marks proliferating hematopoietic progenitor cells and promotes bone marrow engraftment

    PubMed Central

    Lee-Sayer, Sally S. M.; Dougan, Meghan N.; Cooper, Jesse; Sanderson, Leslie; Dosanjh, Manisha; Maxwell, Christopher A.

    2018-01-01

    CD44 is a widely expressed cell adhesion molecule that binds to the extracellular matrix component, hyaluronan. However, this interaction is not constitutive in most immune cells at steady state, as the ability of CD44 to engage hyaluronan is highly regulated. While activated T cells and macrophages gain the ability to bind hyaluronan by CD44, the status in other immune cells is less studied. Here we found a percentage of murine eosinophils, natural killer and natural killer T cells were capable of interacting with hyaluronan at steady state. To further investigate the consequences of hyaluronan binding by CD44 in the hematopoietic system, point mutations of CD44 that either cannot bind hyaluronan (LOF-CD44) or have an increased affinity for hyaluronan (GOF-CD44) were expressed in CD44-deficient bone marrow. Competitive bone marrow reconstitution of irradiated mice revealed an early preference for GOF-CD44 over WT-CD44 expressing cells, and for WT-CD44 over LOF-CD44 expressing cells, in the hematopoietic progenitor cell compartment. The advantage of the hyaluronan-binding cells was observed in the hematopoietic stem and progenitor populations, and was maintained throughout the immune system. Hematopoietic stem cells bound minimal hyaluronan at steady state, and this was increased when the cells were induced to proliferate whereas multipotent progenitors had an increased ability to bind hyaluronan at steady state. In vitro, the addition of hyaluronan promoted their proliferation. Thus, proliferating hematopoietic progenitors bind hyaluronan, and hyaluronan binding cells have a striking competitive advantage in bone marrow engraftment. PMID:29684048

  8. Steady-state protein focusing in carrier ampholyte based isoelectric focusing: Part I-Analytical solution.

    PubMed

    Shim, Jaesool; Yoo, Kisoo; Dutta, Prashanta

    2017-03-01

    The determination of an analytical solution to find the steady-state protein concentration distribution in IEF is very challenging due to the nonlinear coupling between mass and charge conservation equations. In this study, approximate analytical solutions are obtained for steady-state protein distribution in carrier ampholyte based IEF. Similar to the work of Svensson, the final concentration profile for proteins is assumed to be Gaussian, but appropriate expressions are presented in order to obtain the effective electric field and pH gradient in the focused protein band region. Analytical results are found from iterative solutions of a system of coupled algebraic equations using only several iterations for IEF separation of three plasma proteins: albumin, cardiac troponin I, and hemoglobin. The analytical results are compared with numerically predicted results for IEF, showing excellent agreement. Analytically obtained electric field and ionic conductivity distributions show significant deviation from their nominal values, which is essential in finding the protein focusing behavior at isoelectric points. These analytical solutions can be used to determine steady-state protein concentration distribution for experiment design of IEF considering any number of proteins and ampholytes. Moreover, the model presented herein can be used to find the conductivity, electric field, and pH field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Role of step stiffness and kinks in the relaxation of vicinal (001) with zigzag [110] steps

    NASA Astrophysics Data System (ADS)

    Mahjoub, B.; Hamouda, Ajmi BH.; Einstein, TL.

    2017-08-01

    We present a kinetic Monte Carlo study of the relaxation dynamics and steady state configurations of 〈110〉 steps on a vicinal (001) simple cubic surface. This system is interesting because 〈110〉 (fully kinked) steps have different elementary excitation energetics and favor step diffusion more than 〈100〉 (nominally straight) steps. In this study we show how this leads to different relaxation dynamics as well as to different steady state configurations, including that 2-bond breaking processes are rate determining for 〈110〉 steps in contrast to 3-bond breaking processes for 〈100〉-steps found in previous work [Surface Sci. 602, 3569 (2008)]. The analysis of the terrace-width distribution (TWD) shows a significant role of kink-generation-annihilation processes during the relaxation of steps: the kinetic of relaxation, toward the steady state, is much faster in the case of 〈110〉-zigzag steps, with a higher standard deviation of the TWD, in agreement with a decrease of step stiffness due to orientation. We conclude that smaller step stiffness leads inexorably to faster step dynamics towards the steady state. The step-edge anisotropy slows the relaxation of steps and increases the strength of step-step effective interactions.

  10. Mean Field Analysis of Stochastic Neural Network Models with Synaptic Depression

    NASA Astrophysics Data System (ADS)

    Yasuhiko Igarashi,; Masafumi Oizumi,; Masato Okada,

    2010-08-01

    We investigated the effects of synaptic depression on the macroscopic behavior of stochastic neural networks. Dynamical mean field equations were derived for such networks by taking the average of two stochastic variables: a firing-state variable and a synaptic variable. In these equations, the average product of thesevariables is decoupled as the product of their averages because the two stochastic variables are independent. We proved the independence of these two stochastic variables assuming that the synaptic weight Jij is of the order of 1/N with respect to the number of neurons N. Using these equations, we derived macroscopic steady-state equations for a network with uniform connections and for a ring attractor network with Mexican hat type connectivity and investigated the stability of the steady-state solutions. An oscillatory uniform state was observed in the network with uniform connections owing to a Hopf instability. For the ring network, high-frequency perturbations were shown not to affect system stability. Two mechanisms destabilize the inhomogeneous steady state, leading to two oscillatory states. A Turing instability leads to a rotating bump state, while a Hopf instability leads to an oscillatory bump state, which was previously unreported. Various oscillatory states take place in a network with synaptic depression depending on the strength of the interneuron connections.

  11. Nonconstant Positive Steady States and Pattern Formation of 1D Prey-Taxis Systems

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Song, Yang; Shao, Lingjie

    2017-02-01

    Prey-taxis is the process that predators move preferentially toward patches with highest density of prey. It is well known to have an important role in biological control and the maintenance of biodiversity. To model the coexistence and spatial distributions of predator and prey species, this paper concerns nonconstant positive steady states of a wide class of prey-taxis systems with general functional responses over 1D domain. Linearized stability of the positive equilibrium is analyzed to show that prey-taxis destabilizes prey-predator homogeneity when prey repulsion (e.g., due to volume-filling effect in predator species or group defense in prey species) is present, and prey-taxis stabilizes the homogeneity otherwise. Then, we investigate the existence and stability of nonconstant positive steady states to the system through rigorous bifurcation analysis. Moreover, we provide detailed and thorough calculations to determine properties such as pitchfork and turning direction of the local branches. Our stability results also provide a stable wave mode selection mechanism for thee reaction-advection-diffusion systems including prey-taxis models considered in this paper. Finally, we provide numerical studies of prey-taxis systems with Holling-Tanner kinetics to illustrate and support our theoretical findings. Our numerical simulations demonstrate that the 2× 2 prey-taxis system is able to model the formation and evolution of various striking patterns, such as spikes, periodic oscillations, and coarsening even when the domain is one-dimensional. These dynamics can model the coexistence and spatial distributions of interacting prey and predator species. We also give some insights on how system parameters influence pattern formation in these models.

  12. A straightforward method to compute average stochastic oscillations from data samples.

    PubMed

    Júlvez, Jorge

    2015-10-19

    Many biological systems exhibit sustained stochastic oscillations in their steady state. Assessing these oscillations is usually a challenging task due to the potential variability of the amplitude and frequency of the oscillations over time. As a result of this variability, when several stochastic replications are averaged, the oscillations are flattened and can be overlooked. This can easily lead to the erroneous conclusion that the system reaches a constant steady state. This paper proposes a straightforward method to detect and asses stochastic oscillations. The basis of the method is in the use of polar coordinates for systems with two species, and cylindrical coordinates for systems with more than two species. By slightly modifying these coordinate systems, it is possible to compute the total angular distance run by the system and the average Euclidean distance to a reference point. This allows us to compute confidence intervals, both for the average angular speed and for the distance to a reference point, from a set of replications. The use of polar (or cylindrical) coordinates provides a new perspective of the system dynamics. The mean trajectory that can be obtained by averaging the usual cartesian coordinates of the samples informs about the trajectory of the center of mass of the replications. In contrast to such a mean cartesian trajectory, the mean polar trajectory can be used to compute the average circular motion of those replications, and therefore, can yield evidence about sustained steady state oscillations. Both, the coordinate transformation and the computation of confidence intervals, can be carried out efficiently. This results in an efficient method to evaluate stochastic oscillations.

  13. Prediction and verification of creep behavior in metallic materials and components, for the space shuttle thermal protection system. Volume 1, phase 1: Cyclic materials creep predictions

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Cramer, B. A.

    1974-01-01

    Cyclic creep response was investigated and design methods applicable to thermal protection system structures were developed. The steady-state (constant temperature and load) and cyclic creep response characteristics of four alloys were studied. Steady-state creep data were gathered through a literature survey to establish reference data bases. These data bases were used to develop empirical equations describing creep as a function of time, temperature, and stress and as a basis of comparison for test data. Steady-state creep tests and tensile cyclic tests were conducted. The following factors were investigated: material thickness and rolling direction; material cyclic creep response under varying loads and temperatures; constant stress and temperature cycles representing flight conditions; changing stresses present in a creeping beam as a result of stress redistribution; and complex stress and temperature profiles representative of space shuttle orbiter trajectories. A computer program was written, applying creep hardening theories and empirical equations for creep, to aid in analysis of test data. Results are considered applicable to a variety of structures which are cyclicly exposed to creep producing thermal environments.

  14. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    NASA Astrophysics Data System (ADS)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  15. Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo

    This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less

  16. Steady-State Modeling of Modular Multilevel Converter Under Unbalanced Grid Conditions

    DOE PAGES

    Shi, Xiaojie M.; Wang, Zhiqiang; Liu, Bo; ...

    2016-11-16

    This paper presents a steady-state model of MMC for the second-order phase voltage ripple prediction under unbalanced conditions, taking the impact of negative-sequence current control into account. From the steady-state model, a circular relationship is found among current and voltage quantities, which can be used to evaluate the magnitudes and initial phase angles of different circulating current components. Moreover, in order to calculate the circulating current in a point-to-point MMC-based HVdc system under unbalanced grid conditions, the derivation of equivalent dc impedance of an MMC is discussed as well. According to the dc impedance model, an MMC inverter can bemore » represented as a series connected R-L-C branch, with its equivalent resistance and capacitance directly related to the circulating current control parameters. Experimental results from a scaled-down three-phase MMC system under an emulated single-line-to-ground fault are provided to support the theoretical analysis and derived model. In conclusion, this new models provides an insight into the impact of different control schemes on the fault characteristics and improves the understanding of the operation of MMC under unbalanced conditions.« less

  17. Contribution of highway capital to industry and national productivity growth

    DOT National Transportation Integrated Search

    1973-10-01

    The report contains the authors initial efforts aimed at extending the steady state freeway model for optimizing freeway traffic flow to a non-steady state model. The steady-state model does not allow reaction to continuously changing conditions whic...

  18. Glacial reorganization of topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, Byron; Ehlers, Todd

    2016-04-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns, and not tectonic rock uplift rates. Alpine glaciers drastically altered the relief structure of the Olympic Mountains. The details of these relief changes are recorded in channel profiles as overdeepenings, reduced slopes, and associated knickpoints. We find the position of these relief changes within the orogen is dependent on the position of the Pleistocene ELA. While alpine glaciers overdeepened valleys in regions near the Pleistocene ELA (which has a tendency to increase relief), headward erosion of west and north flowing glacier systems captured significant area from opposing systems and caused drainage divide lowering. This divide lowering reduced relief throughout the range. We demonstrate similar topographic effects recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  19. Dynamics and Steady States in Excitable Mobile Agent Systems

    NASA Astrophysics Data System (ADS)

    Peruani, Fernando; Sibona, Gustavo J.

    2008-04-01

    We study the spreading of excitations in 2D systems of mobile agents where the excitation is transmitted when a quiescent agent keeps contact with an excited one during a nonvanishing time. We show that the steady states strongly depend on the spatial agent dynamics. Moreover, the coupling between exposition time (ω) and agent-agent contact rate (CR) becomes crucial to understand the excitation dynamics, which exhibits three regimes with CR: no excitation for low CR, an excited regime in which the number of quiescent agents (S) is inversely proportional to CR, and, for high CR, a novel third regime, model dependent, where S scales with an exponent ξ-1, with ξ being the scaling exponent of ω with CR.

  20. Determining "small parameters" for quasi-steady state

    NASA Astrophysics Data System (ADS)

    Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva

    2015-08-01

    For a parameter-dependent system of ordinary differential equations we present a systematic approach to the determination of parameter values near which singular perturbation scenarios (in the sense of Tikhonov and Fenichel) arise. We call these special values Tikhonov-Fenichel parameter values. The principal application we intend is to equations that describe chemical reactions, in the context of quasi-steady state (or partial equilibrium) settings. Such equations have rational (or even polynomial) right-hand side. We determine the structure of the set of Tikhonov-Fenichel parameter values as a semi-algebraic set, and present an algorithmic approach to their explicit determination, using Groebner bases. Examples and applications (which include the irreversible and reversible Michaelis-Menten systems) illustrate that the approach is rather easy to implement.

  1. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties

    NASA Astrophysics Data System (ADS)

    Kargovsky, A. V.; Chichigina, O. A.; Anashkina, E. I.; Valenti, D.; Spagnolo, B.

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  2. Relaxation dynamics in the presence of pulse multiplicative noise sources with different correlation properties.

    PubMed

    Kargovsky, A V; Chichigina, O A; Anashkina, E I; Valenti, D; Spagnolo, B

    2015-10-01

    The relaxation dynamics of a system described by a Langevin equation with pulse multiplicative noise sources with different correlation properties is considered. The solution of the corresponding Fokker-Planck equation is derived for Gaussian white noise. Moreover, two pulse processes with regulated periodicity are considered as a noise source: the dead-time-distorted Poisson process and the process with fixed time intervals, which is characterized by an infinite correlation time. We find that the steady state of the system is dependent on the correlation properties of the pulse noise. An increase of the noise correlation causes the decrease of the mean value of the solution at the steady state. The analytical results are in good agreement with the numerical ones.

  3. Acclimatization Study for Biohydrogen Production from Palm Oil Mill Effluent (POME) in Continuous-flow System

    NASA Astrophysics Data System (ADS)

    Idris, N.; Lutpi, N. A.; Wong, Y. S.; Tengku Izhar, T. N.

    2018-03-01

    This research aims to study the acclimatization phase for biohydrogen production from palm oil mill effluent (POME) by adapting the microorganism to the new environment in continuous-flow system of thermophilic bioreactor. The thermophilic fermentation was continuously loaded with 0.4 L/day of raw POME for 35 days to acclimatize the microorganism until a steady state of biohydrogen production was obtained. The significance effect of acclimatization phase on parameter such as pH, microbial growth, chemical oxygen demand (COD), and alkalinity were also studied besides the production of biogas. This study had found that the thermophilic bioreactor reach its steady state with 1960 mL/d of biogas produced, which consist of 894 ppm of hydrogen composition.

  4. Performance of Superconducting Current Feeder System for SST-1

    NASA Astrophysics Data System (ADS)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  5. Development of visible spectroscopy diagnostics for W sources assessment in WEST

    NASA Astrophysics Data System (ADS)

    Meyer, O.; Jones, O. M.; Giacalone, J. C.; Pascal, J. Y.; Raulin, D.; Xu, H.; Aumeunier, M. H.; Baude, R.; Escarguel, A.; Gil, C.; Harris, J. H.; Hatchressian, J.-C.; Klepper, C. C.; Larroque, S.; Lotte, Ph.; Moreau, Ph.; Pégourié, B.; Vartanian, S.

    2016-11-01

    The present work concerns the development of a W sources assessment system in the framework of the tungsten-W environment in steady state tokamak project that aims at equipping the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFCs) in view of preparing ITER operation. The goal is to assess W sources and D recycling with spectral, spatial, and temporal resolution adapted to the PFCs observed. The originality of the system is that all optical elements are installed in the vacuum vessel and compatible with steady state operation. Our system is optimized to measure radiance as low as 1016 Ph/(m2 s sr). A total of 240 optical fibers will be deployed to the detection systems such as the "Filterscope," developed by Oak Ridge National Laboratory (USA) and consisting of photomultiplier tubes and filters, or imaging spectrometers dedicated to Multiview analysis.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, Gilberto; Bennion, Kevin; King, Charles

    Thermal management strategies for automotive power electronic systems have evolved over time to reduce system cost and to improve reliability and thermal performance. In this study, we characterized the power electronic thermal management systems of two electric-drive vehicles--the 2012 Nissan LEAF and 2014 Honda Accord Hybrid. Tests were conducted to measure the insulated-gate bipolar transistor-to-coolant thermal resistances for both steady-state and transient conditions at various coolant flow rates. Water-ethylene glycol at a temperature of 65 degrees C was used as the coolant for these experiments. Computational fluid dynamics and finite element analysis models of the vehicle's power electronics thermal managementmore » system were then created and validated using experimentally obtained results. Results indicate that the Accord module provides lower steady-state thermal resistance as compared with the LEAF module. However, the LEAF design may provide improved performance in transient conditions and may have cost benefits.« less

  7. Thermodynamic performance testing of the orbiter flash evaporator system

    NASA Technical Reports Server (NTRS)

    Jaax, J. R.; Melgares, M. A.; Frahm, J. P.

    1980-01-01

    System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.

  8. Rapid Start-up and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    NASA Technical Reports Server (NTRS)

    Meyer, Caitlin E.; Pensinger, Stuart; Pickering, Karen D.; Barta, Daniel; Shull, Sarah A.; Vega, Letticia M.; Christenson, Dylan; Jackson, W. Andrew

    2015-01-01

    Membrane aerated bioreactors (MABR) are attached-growth biological systems used for simultaneous nitrification and denitrification to reclaim water from waste. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal and implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to under two weeks, and that despite low ammonium removal rates, the MABRs are oversized.

  9. Computer program determines gas flow rates in piping systems

    NASA Technical Reports Server (NTRS)

    Franke, R.

    1966-01-01

    Computer program calculates the steady state flow characteristics of an ideal compressible gas in a complex piping system. The program calculates the stagnation and total temperature, static and total pressure, loss factor, and forces on each element in the piping system.

  10. A survey of the role of thermodynamic stability in viscous flow

    NASA Technical Reports Server (NTRS)

    Horne, W. C.; Smith, C. A.; Karamcheti, K.

    1991-01-01

    The stability of near-equilibrium states has been studied as a branch of the general field of nonequilibrium thermodynamics. By treating steady viscous flow as an open thermodynamic system, nonequilibrium principles such as the condition of minimum entropy-production rate for steady, near-equilibrium processes can be used to generate flow distributions from variational analyses. Examples considered in this paper are steady heat conduction, channel flow, and unconstrained three-dimensional flow. The entropy-production-rate condition has also been used for hydrodynamic stability criteria, and calculations of the stability of a laminar wall jet support this interpretation.

  11. Critical threshold behavior for steady-state internal transport barriers in burning plasmas.

    PubMed

    García, J; Giruzzi, G; Artaud, J F; Basiuk, V; Decker, J; Imbeaux, F; Peysson, Y; Schneider, M

    2008-06-27

    Burning tokamak plasmas with internal transport barriers are investigated by means of integrated modeling simulations. The barrier sustainment in steady state, differently from the barrier formation process, is found to be characterized by a critical behavior, and the critical number of the phase transition is determined. Beyond a power threshold, alignment of self-generated and noninductively driven currents occurs and steady state becomes possible. This concept is applied to simulate a steady-state scenario within the specifications of the International Thermonuclear Experimental Reactor.

  12. Model-Based Therapeutic Correction of Hypothalamic-Pituitary-Adrenal Axis Dysfunction

    PubMed Central

    Ben-Zvi, Amos; Vernon, Suzanne D.; Broderick, Gordon

    2009-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is a major system maintaining body homeostasis by regulating the neuroendocrine and sympathetic nervous systems as well modulating immune function. Recent work has shown that the complex dynamics of this system accommodate several stable steady states, one of which corresponds to the hypocortisol state observed in patients with chronic fatigue syndrome (CFS). At present these dynamics are not formally considered in the development of treatment strategies. Here we use model-based predictive control (MPC) methodology to estimate robust treatment courses for displacing the HPA axis from an abnormal hypocortisol steady state back to a healthy cortisol level. This approach was applied to a recent model of HPA axis dynamics incorporating glucocorticoid receptor kinetics. A candidate treatment that displays robust properties in the face of significant biological variability and measurement uncertainty requires that cortisol be further suppressed for a short period until adrenocorticotropic hormone levels exceed 30% of baseline. Treatment may then be discontinued, and the HPA axis will naturally progress to a stable attractor defined by normal hormone levels. Suppression of biologically available cortisol may be achieved through the use of binding proteins such as CBG and certain metabolizing enzymes, thus offering possible avenues for deployment in a clinical setting. Treatment strategies can therefore be designed that maximally exploit system dynamics to provide a robust response to treatment and ensure a positive outcome over a wide range of conditions. Perhaps most importantly, a treatment course involving further reduction in cortisol, even transient, is quite counterintuitive and challenges the conventional strategy of supplementing cortisol levels, an approach based on steady-state reasoning. PMID:19165314

  13. Steady-state LPO is not always reached in high-strain shear zones

    NASA Astrophysics Data System (ADS)

    Kumamoto, K. M.; Warren, J. M.

    2017-12-01

    Seismic anisotropy in the upper mantle results from the alignment of olivine crystal lattices during flow by dislocation creep. Experiments on the evolution of olivine lattice preferred orientation (LPO) as a function of shear strain have found that high strains (>10) are necessary to achieve a steady-state LPO (i.e., the dominant slip system does not change appreciably with further strain) when a pre-existing LPO is present. At lower strain ( 2), a pseudo-steady-state fabric is reached, in which the [100] axes of olivine reach a steady orientation relative to the deformation kinematics, but the [010] and [001] axes continue to evolve (e.g. Hansen et al., 2014). To constrain LPO evolution at mantle conditions, we looked at the LPO variation across three high temperature mantle shear zones in the Josephine Peridotite of SW Oregon. These shear zones provide a rare opportunity to examine LPO evolution in natural samples as a function of shear strain, due to the presence of a pyroxene foliation that serves as a strain marker. Observations of two of these shear zones are consistent with experimental observations (Warren et al., 2008; Skemer et al., 2010). Shear Zone G reaches a steady-state LPO at a strain of >20. Shear Zone P reaches a pseudo-steady-state LPO, with a consistent [100] axis orientation, at a strain of 3.5. However, a steady-state orientation is not reached in the [010] or [001] axes at the maximum strain of 5.25. The third shear zone, Shear Zone A, does not appear to reach even a pseudo-steady-state LPO, despite reaching strains >20 at its center. Instead, the dominant slip plane switches back and forth between the (010) and (001) planes with increasing strain, while the [100] axis orientations continue to evolve. Unusually, at peak strain, the [100] axes are oriented 40° past the shear plane. In contrast, the other two shear zones, along with other natural and experimental examples, have the [100] axes oriented approximately parallel to the shear direction at very high strain. The high angle of the [100] axes to the shear direction at high strain in SZA may explain angular offsets between plate motion and fast seismic direction, for instance as seen in the MELT experiment (Wolfe and Solomon, 1998). Hansen et al., 2014, EPSLSkemer et al., 2010, J. Pet. Warren et al., 2008, EPSLWolfe and Solomon, 1998, Science

  14. Composition, morphology, and growth of clusters in a gas of particles with random interactions

    NASA Astrophysics Data System (ADS)

    Azizi, Itay; Rabin, Yitzhak

    2018-03-01

    We use Langevin dynamics simulations to study the growth kinetics and the steady-state properties of condensed clusters in a dilute two-dimensional system of particles that are all different (APD) in the sense that each particle is characterized by a randomly chosen interaction parameter. The growth exponents, the transition temperatures, and the steady-state properties of the clusters and of the surrounding gas phase are obtained and compared with those of one-component systems. We investigate the fractionation phenomenon, i.e., how particles of different identities are distributed between the coexisting mother (gas) and daughter (clusters) phases. We study the local organization of particles inside clusters, according to their identity—neighbourhood identity ordering (NIO)—and compare the results with those of previous studies of NIO in dense APD systems.

  15. A Novel Chronic Opioid Monitoring Tool to Assess Prescription Drug Steady State Levels in Oral Fluid.

    PubMed

    Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth

    2017-11-01

    Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Interaction-stabilized steady states in the driven O (N ) model

    NASA Astrophysics Data System (ADS)

    Chandran, Anushya; Sondhi, S. L.

    2016-05-01

    We study periodically driven bosonic scalar field theories in the infinite N limit. It is well known that the free theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff and driving frequency. The steady state has nontrivial correlations and is synchronized with the drive. The O (N ) model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite temperature at any drive frequency.

  17. Advanced Reactors-Intermediate Heat Exchanger (IHX) Coupling: Theoretical Modeling and Experimental Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utgikar, Vivek; Sun, Xiaodong; Christensen, Richard

    2016-12-29

    The overall goal of the research project was to model the behavior of the advanced reactorintermediate heat exchange system and to develop advanced control techniques for off-normal conditions. The specific objectives defined for the project were: 1. To develop the steady-state thermal hydraulic design of the intermediate heat exchanger (IHX); 2. To develop mathematical models to describe the advanced nuclear reactor-IHX-chemical process/power generation coupling during normal and off-normal operations, and to simulate models using multiphysics software; 3. To develop control strategies using genetic algorithm or neural network techniques and couple these techniques with the multiphysics software; 4. To validate themore » models experimentally The project objectives were accomplished by defining and executing four different tasks corresponding to these specific objectives. The first task involved selection of IHX candidates and developing steady state designs for those. The second task involved modeling of the transient and offnormal operation of the reactor-IHX system. The subsequent task dealt with the development of control strategies and involved algorithm development and simulation. The last task involved experimental validation of the thermal hydraulic performances of the two prototype heat exchangers designed and fabricated for the project at steady state and transient conditions to simulate the coupling of the reactor- IHX-process plant system. The experimental work utilized the two test facilities at The Ohio State University (OSU) including one existing High-Temperature Helium Test Facility (HTHF) and the newly developed high-temperature molten salt facility.« less

  18. Evaluation of the Navys Sea/Shore Flow Policy

    DTIC Science & Technology

    2016-06-01

    Std. Z39.18 i Abstract CNA developed an independent Discrete -Event Simulation model to evaluate and assess the effect of...a more steady manning level, but the variability remains, even if the system is optimized. In building a Discrete -Event Simulation model, we...steady-state model. In FY 2014, CNA developed a Discrete -Event Simulation model to evaluate the impact of sea/shore flow policy (the DES-SSF model

  19. Chemical potential in active systems: predicting phase equilibrium from bulk equations of state?

    NASA Astrophysics Data System (ADS)

    Paliwal, Siddharth; Rodenburg, Jeroen; van Roij, René; Dijkstra, Marjolein

    2018-01-01

    We derive a microscopic expression for a quantity μ that plays the role of chemical potential of active Brownian particles (ABPs) in a steady state in the absence of vortices. We show that μ consists of (i) an intrinsic chemical potential similar to passive systems, which depends on density and self-propulsion speed, but not on the external potential, (ii) the external potential, and (iii) a newly derived one-body swim potential due to the activity of the particles. Our simulations on ABPs show good agreement with our Fokker-Planck calculations, and confirm that μ (z) is spatially constant for several inhomogeneous active fluids in their steady states in a planar geometry. Finally, we show that phase coexistence of ABPs with a planar interface satisfies not only mechanical but also diffusive equilibrium. The coexistence can be well-described by equating the bulk chemical potential and bulk pressure obtained from bulk simulations for systems with low activity but requires explicit evaluation of the interfacial contributions at high activity.

  20. Some modifications of Newton's method for the determination of the steady-state response of nonlinear oscillatory circuits

    NASA Astrophysics Data System (ADS)

    Grosz, F. B., Jr.; Trick, T. N.

    1982-07-01

    It is proposed that nondominant states should be eliminated from the Newton algorithm in the steady-state analysis of nonlinear oscillatory systems. This technique not only improves convergence, but also reduces the size of the sensitivity matrix so that less computation is required for each iteration. One or more periods of integration should be performed after each periodic state estimation before the sensitivity computations are made for the next periodic state estimation. These extra periods of integration between Newton iterations are found to allow the fast states due to parasitic effects to settle, which enables the Newton algorithm to make a better prediction. In addition, the reliability of the algorithm is improved in high Q oscillator circuits by both local and global damping in which the amount of damping is proportional to the difference between the initial and final state values.

  1. Integrated modeling of high βN steady state scenario on DIII-D

    DOE PAGES

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.; ...

    2018-01-10

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  2. Study of dynamics of glucose-glucose oxidase-ferricyanide reaction

    NASA Astrophysics Data System (ADS)

    Nováková, A.; Schreiberová, L.; Schreiber, I.

    2011-12-01

    This work is focused on dynamics of the glucose-glucose oxidase-ferricyanide enzymatic reaction with or without sodium hydroxide in a continuous-flow stirred tank reactor (CSTR) and in a batch reactor. This reaction exhibits pH-variations having autocatalytic character and is reported to provide nonlinear dynamic behavior (bistability, excitability). The dynamical behavior of the reaction was examined within a wide range of inlet parameters. The main inlet parameters were the ratio of concentrations of sodium hydroxide and ferricyanide and the flow rate. In a batch reactor we observed an autocatalytic drop of pH from slightly basic to medium acidic values. In a CSTR our aim was to find bistability in the presence of sodium hydroxide. However, only a basic steady state was found. In order to reach an acidic steady state, we investigated the system in the absence of sodium hydroxide. Under these conditions the transition from the basic to the acidic steady state was observed when inlet glucose concentration was increased.

  3. Motor Oil Classification Based on Time-Resolved Fluorescence

    PubMed Central

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439

  4. Noise induced stabilization of chaotic free-running laser diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Virte, Martin, E-mail: mvirte@b-phot.org

    In this paper, we investigate theoretically the stabilization of a free-running vertical-cavity surface-emitting laser exhibiting polarization chaos dynamics. We report the existence of a boundary isolating the chaotic attractor on one side and a steady-state on the other side and identify the unstable periodic orbit playing the role of separatrix. In addition, we highlight a small range of parameters where the chaotic attractor passes through this boundary, and therefore where chaos only appears as a transient behaviour. Then, including the effect of spontaneous emission noise in the laser, we demonstrate that, for realistic levels of noise, the system is systematicallymore » pushed over the separating solution. As a result, we show that the chaotic dynamics cannot be sustained unless the steady-state on the other side of the separatrix becomes unstable. Finally, we link the stability of this steady-state to a small value of the birefringence in the laser cavity and discuss the significance of this result on future experimental work.« less

  5. Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.

    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less

  6. Integrated modeling of high βN steady state scenario on DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jin Myung; Ferron, J. R.; Holcomb, Christopher T.

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with β N > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state ( d/dt = 0) solutions and reproduces most features of DIII-D high β N discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high q min > 2 scenario achieves stable operation at β N as high as 5 by using a very broadmore » current density profile to improve the ideal-wall stabilization of low- n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high β N steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.« less

  7. Technical note: Simultaneous fully dynamic characterization of multiple input–output relationships in climate models

    DOE PAGES

    Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...

    2017-02-17

    We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less

  8. Integrated modeling of high βN steady state scenario on DIII-D

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Ferron, J. R.; Holcomb, C. T.; Buttery, R. J.; Solomon, W. M.; Batchelor, D. B.; Elwasif, W.; Green, D. L.; Kim, K.; Meneghini, O.; Murakami, M.; Snyder, P. B.

    2018-01-01

    Theory-based integrated modeling validated against DIII-D experiments predicts that fully non-inductive DIII-D operation with βN > 4.5 is possible with certain upgrades. IPS-FASTRAN is a new iterative numerical procedure that integrates models of core transport, edge pedestal, equilibrium, stability, heating, and current drive self-consistently to find steady-state (d/dt = 0) solutions and reproduces most features of DIII-D high βN discharges with a stationary current profile. Projecting forward to scenarios possible on DIII-D with future upgrades, the high qmin > 2 scenario achieves stable operation at βN as high as 5 by using a very broad current density profile to improve the ideal-wall stabilization of low-n instabilities along with confinement enhancement from low magnetic shear. This modeling guides the necessary upgrades of the heating and current drive system to realize reactor-relevant high βN steady-state scenarios on DIII-D by simultaneous optimization of the current and pressure profiles.

  9. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    NASA Astrophysics Data System (ADS)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  10. Thermodynamic Bethe ansatz for non-equilibrium steady states: exact energy current and fluctuations in integrable QFT

    NASA Astrophysics Data System (ADS)

    Castro-Alvaredo, Olalla; Chen, Yixiong; Doyon, Benjamin; Hoogeveen, Marianne

    2014-03-01

    We evaluate the exact energy current and scaled cumulant generating function (related to the large-deviation function) in non-equilibrium steady states with energy flow, in any integrable model of relativistic quantum field theory (IQFT) with diagonal scattering. Our derivations are based on various recent results of Bernard and Doyon. The steady states are built by connecting homogeneously two infinite halves of the system thermalized at different temperatures Tl, Tr, and waiting for a long time. We evaluate the current J(Tl, Tr) using the exact QFT density matrix describing these non-equilibrium steady states and using Zamolodchikov’s method of the thermodynamic Bethe ansatz (TBA). The scaled cumulant generating function is obtained from the extended fluctuation relations which hold in integrable models. We verify our formula in particular by showing that the conformal field theory (CFT) result is obtained in the high-temperature limit. We analyze numerically our non-equilibrium steady-state TBA equations for three models: the sinh-Gordon model, the roaming trajectories model, and the sine-Gordon model at a particular reflectionless point. Based on the numerics, we conjecture that an infinite family of non-equilibrium c-functions, associated with the scaled cumulants, can be defined, which we interpret physically. We study the full scaled distribution function and find that it can be described by a set of independent Poisson processes. Finally, we show that the ‘additivity’ property of the current, which is known to hold in CFT and was proposed to hold more generally, does not hold in general IQFT—that is, J(Tl, Tr) is not of the form f(Tl) - f(Tr).

  11. Exponentially Enhanced Light-Matter Interaction, Cooperativities, and Steady-State Entanglement Using Parametric Amplification

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Miranowicz, Adam; Li, Peng-Bo; Lü, Xin-You; You, J. Q.; Nori, Franco

    2018-03-01

    We propose an experimentally feasible method for enhancing the atom-field coupling as well as the ratio between this coupling and dissipation (i.e., cooperativity) in an optical cavity. It exploits optical parametric amplification to exponentially enhance the atom-cavity interaction and, hence, the cooperativity of the system, with the squeezing-induced noise being completely eliminated. Consequently, the atom-cavity system can be driven from the weak-coupling regime to the strong-coupling regime for modest squeezing parameters, and even can achieve an effective cooperativity much larger than 100. Based on this, we further demonstrate the generation of steady-state nearly maximal quantum entanglement. The resulting entanglement infidelity (which quantifies the deviation of the actual state from a maximally entangled state) is exponentially smaller than the lower bound on the infidelities obtained in other dissipative entanglement preparations without applying squeezing. In principle, we can make an arbitrarily small infidelity. Our generic method for enhancing atom-cavity interaction and cooperativities can be implemented in a wide range of physical systems, and it can provide diverse applications for quantum information processing.

  12. Availability Analysis of Dual Mode Systems

    DOT National Transportation Integrated Search

    1974-04-01

    The analytical procedures presented define a method of evaluating the effects of failures in a complex dual-mode system based on a worst case steady-state analysis. The computed result is an availability figure of merit and not an absolute prediction...

  13. Dynamic thermal analysis of a concentrated photovoltaic system

    NASA Astrophysics Data System (ADS)

    Avrett, John T., II; Cain, Stephen C.; Pochet, Michael

    2012-02-01

    Concentrated photovoltaic (PV) technology represents a growing market in the field of terrestrial solar energy production. As the demand for renewable energy technologies increases, further importance is placed upon the modeling, design, and simulation of these systems. Given the U.S. Air Force cultural shift towards energy awareness and conservation, several concentrated PV systems have been installed on Air Force installations across the country. However, there has been a dearth of research within the Air Force devoted to understanding these systems in order to possibly improve the existing technologies. This research presents a new model for a simple concentrated PV system. This model accurately determines the steady state operating temperature as a function of the concentration factor for the optical part of the concentrated PV system, in order to calculate the optimum concentration that maximizes power output and efficiency. The dynamic thermal model derived is validated experimentally using a commercial polysilicon solar cell, and is shown to accurately predict the steady state temperature and ideal concentration factor.

  14. Modified septic tank-anaerobic filter unit as a two-stage onsite domestic wastewater treatment system.

    PubMed

    Sharma, Meena Kumari; Khursheed, Anwar; Kazmi, Absar Ahmad

    2014-01-01

    This study demonstrates the performance evaluation of a uniquely designed two-stage system for onsite treatment of domestic wastewater. The system consisted of two upflow anaerobic bioreactors, a modified septic tank followed by an upflow anaerobic filter, accommodated within a single cylindrical unit. The system was started up without inoculation at 24 h hydraulic retention time (HRT). It achieved a steady-state condition after 120 days. The system was observed to be remarkably efficient in removing pollutants during steady-state condition with the average removal efficiency of 88.6 +/- 3.7% for chemical oxygen demand, 86.3 +/- 4.9% for biochemical oxygen demand and 91.2 +/- 9.7% for total suspended solids. The microbial analysis revealed a high reduction (>90%) capacity of the system for indicator organism and pathogens. It also showed a very good endurance against imposed hydraulic shock load. Tracer study showed that the flow pattern was close to plug flow reactor. Mean HRT was also found to be close to the designed value.

  15. Accretion disk dynamics in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Peris, Charith Srian

    Accreting X-ray binaries consist of a normal star which orbits a compact object with the former transferring matter onto the later via an accretion disk. These accretion disks emit radiation across the entire electromagnetic spectrum. This thesis exploits two regions of the spectrum, exploring the (1) inner disk regions of an accreting black hole binary, GRS1915+105, using X-ray spectral analysis and (2) the outer accretion disks of a set of neutron star and black hole binaries using Doppler Tomography applied on optical observations. X-ray spectral analysis of black hole binary GRS1915+105: GRS1915+105 stands out as an exceptional black hole primarily due to the wild variability exhibited by about half of its X-ray observations. This study focused on the steady X-ray observations of the source, which were found to exhibit significant curvature in the harder coronal component within the RXTE/PCA band-pass. The roughly constant inner-disk radius seen in a majority of the steady-soft observations is strongly reminiscent of canonical soft state black-hole binaries. Remarkably, the steady-hard observations show the presence of growing truncation in the inner-disk. A majority of the steady observations of GRS1915+105 map to the states observed in canonical black hole binaries which suggests that within the complexity of this source is a simpler underlying basis of states. Optical tomography of X-ray binary systems: Doppler tomography was applied to the strong line features present in the optical spectra of X-ray binaries in order to determine the geometric structure of the systems' emitting regions. The point where the accretion stream hits the disk, also referred to as the "hotspot'', is clearly identified in the neutron star system V691 CrA and the black hole system Nova Muscae 1991. Evidence for stream-disk overflows exist in both systems, consistent with relatively high accretion rates. In contrast, V926 Sco does not show evidence for the presence of a hotspot which is consistent with its lower accretion state. The donor stars in V691 CrA and Nova Muscae 1991 were also detected.

  16. Flux line relaxation kinetics following current quenches in disordered type-II superconductors

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Harshwardhan; Assi, Hiba; Dobramysl, Ulrich; Pleimling, Michel; Täuber, Uwe

    We describe the disordered vortex system in type-II superconductors with an elastic line model, whose dynamics we investigate numerically by means of Langevin Molecular Dynamics. A system of driven interacting flux lines in a sample with randomly distributed point pinning centers is subjected to drive quench from a moving non-equilibrium steady state into one of three regimes viz. moving (steady state), pinned (glassy) or depinning (critical). The first yields fast exponential relaxation to the new non-equilibrium stationary state while the second displays algebraically slow relaxation and aging scaling with non-universal exponents. Our most recent work consists of aging and finite temperature scaling studies for drive quenches into the critical depinning regime. This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  17. Dynamic optimization and adaptive controller design

    NASA Astrophysics Data System (ADS)

    Inamdar, S. R.

    2010-10-01

    In this work I present a new type of controller which is an adaptive tracking controller which employs dynamic optimization for optimizing current value of controller action for the temperature control of nonisothermal continuously stirred tank reactor (CSTR). We begin with a two-state model of nonisothermal CSTR which are mass and heat balance equations and then add cooling system dynamics to eliminate input multiplicity. The initial design value is obtained using local stability of steady states where approach temperature for cooling action is specified as a steady state and a design specification. Later we make a correction in the dynamics where material balance is manipulated to use feed concentration as a system parameter as an adaptive control measure in order to avoid actuator saturation for the main control loop. The analysis leading to design of dynamic optimization based parameter adaptive controller is presented. The important component of this mathematical framework is reference trajectory generation to form an adaptive control measure.

  18. 40 CFR 1039.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1039.505 Section 1039.505 Protection of Environment... duty cycles, including ramped-modal testing? This section describes how to test engines under steady-state conditions. In some cases, we allow you to choose the appropriate steady-state duty cycle for an...

  19. SteadyCom: Predicting microbial abundances while ensuring community stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Siu Hung Joshua; Simons, Margaret N.; Maranas, Costas D.

    Genome-scale metabolic modeling has become widespread for analyzing microbial metabolism. Extending this established paradigm to more complex microbial communities is emerging as a promising way to unravel the interactions and biochemical repertoire of these omnipresent systems. While several modeling techniques have been developed for microbial communities, little emphasis has been placed on the need to impose a time-averaged constant growth rate across all members for a community to ensure co-existence and stability. In the absence of this constraint, the faster growing organism will ultimately displace all other microbes in the community. This is particularly important for predicting steady-state microbiota compositionmore » as it imposes significant restrictions on the allowable community membership, composition and phenotypes. In this study, we introduce the SteadyCom optimization framework for predicting metabolic flux distributions consistent with the steady-state requirement. SteadyCom can be rapidly converged by iteratively solving linear programming (LP) problem and the number of iterations is independent of the number of organisms. A significant advantage of SteadyCom is compatibility with flux variability analysis. SteadyCom is first demonstrated for a community of four E. coli double auxotrophic mutants and is then applied to a gut microbiota model consisting of nine species, with representatives from the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. In contrast to the direct use of FBA, SteadyCom is able to predict the change in species abundance in response to changes in diets with minimal additional imposed constraints on the model. Furthermore, by randomizing the uptake rates of microbes, an abundance profile with a good agreement to experimental gut microbiota is inferred. SteadyCom provides an important step towards the cross-cutting task of predicting the composition of a microbial community in a given environment.« less

  20. SteadyCom: Predicting microbial abundances while ensuring community stability

    DOE PAGES

    Chan, Siu Hung Joshua; Simons, Margaret N.; Maranas, Costas D.; ...

    2017-05-15

    Genome-scale metabolic modeling has become widespread for analyzing microbial metabolism. Extending this established paradigm to more complex microbial communities is emerging as a promising way to unravel the interactions and biochemical repertoire of these omnipresent systems. While several modeling techniques have been developed for microbial communities, little emphasis has been placed on the need to impose a time-averaged constant growth rate across all members for a community to ensure co-existence and stability. In the absence of this constraint, the faster growing organism will ultimately displace all other microbes in the community. This is particularly important for predicting steady-state microbiota compositionmore » as it imposes significant restrictions on the allowable community membership, composition and phenotypes. In this study, we introduce the SteadyCom optimization framework for predicting metabolic flux distributions consistent with the steady-state requirement. SteadyCom can be rapidly converged by iteratively solving linear programming (LP) problem and the number of iterations is independent of the number of organisms. A significant advantage of SteadyCom is compatibility with flux variability analysis. SteadyCom is first demonstrated for a community of four E. coli double auxotrophic mutants and is then applied to a gut microbiota model consisting of nine species, with representatives from the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria. In contrast to the direct use of FBA, SteadyCom is able to predict the change in species abundance in response to changes in diets with minimal additional imposed constraints on the model. Furthermore, by randomizing the uptake rates of microbes, an abundance profile with a good agreement to experimental gut microbiota is inferred. SteadyCom provides an important step towards the cross-cutting task of predicting the composition of a microbial community in a given environment.« less

  1. Evaluating litter decomposition and soil organic matter dynamics in earth system models: contrasting analysis of long-term litter decomposition and steady-state soil carbon

    NASA Astrophysics Data System (ADS)

    Bonan, G. B.; Wieder, W. R.

    2012-12-01

    Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual litterfall and model-derived climatic decomposition index. While comparison with the LIDET 10-year litterbag study reveals sharp contrasts between CLM4 and DAYCENT, simulations of steady-state soil carbon show less difference between models. Both CLM4 and DAYCENT significantly underestimate soil carbon. Sensitivity analyses highlight causes of the low soil carbon bias. The terrestrial biogeochemistry of earth system models must be critically tested with observations, and the consequences of particular model choices must be documented. Long-term litter decomposition experiments such as LIDET provide a real-world process-oriented benchmark to evaluate models and can critically inform model development. Analysis of steady-state soil carbon estimates reveal additional, but here different, inferences about model performance.

  2. Adsorption and biodegradation of 2-chlorophenol by mixed culture using activated carbon as a supporting medium-reactor performance and model verification

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Hui

    2017-11-01

    A non-steady-state mathematical model system for the kinetics of adsorption and biodegradation of 2-chlorophenol (2-CP) by attached and suspended biomass on activated carbon process was derived. The mechanisms in the model system included 2-CP adsorption by activated carbon, 2-CP mass transport diffusion in biofilm, and biodegradation by attached and suspended biomass. Batch kinetic tests were performed to determine surface diffusivity of 2-CP, adsorption parameters for 2-CP, and biokinetic parameters of biomass. Experiments were conducted using a biological activated carbon (BAC) reactor system with high recycled rate to approximate a completely mixed flow reactor for model verification. Concentration profiles of 2-CP by model predictions indicated that biofilm bioregenerated the activated carbon by lowering the 2-CP concentration at the biofilm-activated carbon interface as the biofilm grew thicker. The removal efficiency of 2-CP by biomass was approximately 98.5% when 2-CP concentration in the influent was around 190.5 mg L-1 at a steady-state condition. The concentration of suspended biomass reached up to about 25.3 mg L-1 while the thickness of attached biomass was estimated to be 636 μm at a steady-state condition by model prediction. The experimental results agree closely with the results of the model predictions.

  3. A Method for Generating Reduced-Order Linear Models of Multidimensional Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Chicatelli, Amy; Hartley, Tom T.

    1998-01-01

    Simulation of high speed propulsion systems may be divided into two categories, nonlinear and linear. The nonlinear simulations are usually based on multidimensional computational fluid dynamics (CFD) methodologies and tend to provide high resolution results that show the fine detail of the flow. Consequently, these simulations are large, numerically intensive, and run much slower than real-time. ne linear simulations are usually based on large lumping techniques that are linearized about a steady-state operating condition. These simplistic models often run at or near real-time but do not always capture the detailed dynamics of the plant. Under a grant sponsored by the NASA Lewis Research Center, Cleveland, Ohio, a new method has been developed that can be used to generate improved linear models for control design from multidimensional steady-state CFD results. This CFD-based linear modeling technique provides a small perturbation model that can be used for control applications and real-time simulations. It is important to note the utility of the modeling procedure; all that is needed to obtain a linear model of the propulsion system is the geometry and steady-state operating conditions from a multidimensional CFD simulation or experiment. This research represents a beginning step in establishing a bridge between the controls discipline and the CFD discipline so that the control engineer is able to effectively use multidimensional CFD results in control system design and analysis.

  4. Disturbance torque rejection properties of the NASA/JPL 70-meter antenna axis servos

    NASA Technical Reports Server (NTRS)

    Hill, R. E.

    1989-01-01

    Analytic methods for evaluating pointing errors caused by external disturbance torques are developed and applied to determine the effects of representative values of wind and friction torque. The expressions relating pointing errors to disturbance torques are shown to be strongly dependent upon the state estimator parameters, as well as upon the state feedback gain and the flow versus pressure characteristics of the hydraulic system. Under certain conditions, when control is derived from an uncorrected estimate of integral position error, the desired type 2 servo properties are not realized and finite steady-state position errors result. Methods for reducing these errors to negligible proportions through the proper selection of control gain and estimator correction parameters are demonstrated. The steady-state error produced by a disturbance torque is found to be directly proportional to the hydraulic internal leakage. This property can be exploited to provide a convenient method of determining system leakage from field measurements of estimator error, axis rate, and hydraulic differential pressure.

  5. Dissipative preparation of steady Greenberger-Horne-Zeilinger states for Rydberg atoms with quantum Zeno dynamics

    NASA Astrophysics Data System (ADS)

    Shao, X. Q.; Wu, J. H.; Yi, X. X.; Long, Gui-Lu

    2017-12-01

    Inspired by a recent work [F. Reiter, D. Reeb, and A. S. Sørensen, Phys. Rev. Lett. 117, 040501 (2016), 10.1103/PhysRevLett.117.040501], we present a simplified proposal for dissipatively preparing a Greenberger-Horne-Zeilinger (GHZ) state of three Rydberg atoms in a cavity. The Z pumping is implemented under the action of the spontaneous emission of Λ -type atoms and the quantum Zeno dynamics induced by strong continuous coupling. In the meantime, a dissipative Rydberg pumping breaks up the stability of the state | GHZ+〉 in the process of Z pumping, making | GHZ-〉 the unique steady state of the system. Compared with the former scheme, the number of driving fields acting on atoms is greatly reduced and only a single-mode cavity is required. The numerical simulation of the full master equation reveals that a high fidelity ˜98 % can be obtained with the currently achievable parameters in the Rydberg-atom-cavity system.

  6. Quantum thermodynamics of nanoscale steady states far from equilibrium

    NASA Astrophysics Data System (ADS)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  7. Integration of Steady-State and Temporal Gene Expression Data for the Inference of Gene Regulatory Networks

    PubMed Central

    Wang, Yi Kan; Hurley, Daniel G.; Schnell, Santiago; Print, Cristin G.; Crampin, Edmund J.

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data. PMID:23967277

  8. Oxidation and Volatilization of Silica-Formers in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    At high temperatures SiC and Si3N4 react with water vapor to form a silica scale. Silica scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming silica and the other removing silica, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved, After steady state is achieved, the oxide found on the surface is a constant thickness and recession of the underlying material occurs at a linear rate. The steady state oxide thickness, the time to achieve steady state, and the steady state recession rate can all be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate can also be determined from parameters that describe a water vapor-containing environment. Accordingly, maps have been developed to show these steady state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of silica formers in water-vapor containing environments such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4

  9. Excess Entropy Production in Quantum System: Quantum Master Equation Approach

    NASA Astrophysics Data System (ADS)

    Nakajima, Satoshi; Tokura, Yasuhiro

    2017-12-01

    For open systems described by the quantum master equation (QME), we investigate the excess entropy production under quasistatic operations between nonequilibrium steady states. The average entropy production is composed of the time integral of the instantaneous steady entropy production rate and the excess entropy production. We propose to define average entropy production rate using the average energy and particle currents, which are calculated by using the full counting statistics with QME. The excess entropy production is given by a line integral in the control parameter space and its integrand is called the Berry-Sinitsyn-Nemenman (BSN) vector. In the weakly nonequilibrium regime, we show that BSN vector is described by ln \\breve{ρ }_0 and ρ _0 where ρ _0 is the instantaneous steady state of the QME and \\breve{ρ }_0 is that of the QME which is given by reversing the sign of the Lamb shift term. If the system Hamiltonian is non-degenerate or the Lamb shift term is negligible, the excess entropy production approximately reduces to the difference between the von Neumann entropies of the system. Additionally, we point out that the expression of the entropy production obtained in the classical Markov jump process is different from our result and show that these are approximately equivalent only in the weakly nonequilibrium regime.

  10. X-Ray Spectral Analysis of the Steady States of GRS1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-05-01

    We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.

  11. Restructuring the California State University: A Call to Action

    ERIC Educational Resources Information Center

    Yamada, Teri

    2010-01-01

    California's public higher education system has for a long time been lauded as one of the finest in the world. But for the last several decades, budget cuts and privatization have resulted in the steady erosion of this system, as well as K-12 education in the state and other public sector services. It was told that privatization and choice--in the…

  12. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems.

    PubMed

    Taylor, David D J; Slocum, Alexander H; Whittle, Andrew J

    2018-01-01

    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers' homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%.

  13. Analytical scaling relations to evaluate leakage and intrusion in intermittent water supply systems

    PubMed Central

    Slocum, Alexander H.; Whittle, Andrew J.

    2018-01-01

    Intermittent water supplies (IWS) deliver piped water to one billion people; this water is often microbially contaminated. Contaminants that accumulate while IWS are depressurized are flushed into customers’ homes when these systems become pressurized. In addition, during the steady-state phase of IWS, contaminants from higher-pressure sources (e.g., sewers) may continue to intrude where pipe pressure is low. To guide the operation and improvement of IWS, this paper proposes an analytic model relating supply pressure, supply duration, leakage, and the volume of intruded, potentially-contaminated, fluids present during flushing and steady-state. The proposed model suggests that increasing the supply duration may improve water quality during the flushing phase, but decrease the subsequent steady-state water quality. As such, regulators and academics should take more care in reporting if water quality samples are taken during flushing or steady-state operational conditions. Pipe leakage increases with increased supply pressure and/or duration. We propose using an equivalent orifice area (EOA) to quantify pipe quality. This provides a more stable metric for regulators and utilities tracking pipe repairs. Finally, we show that the volume of intruded fluid decreases in proportion to reductions in EOA. The proposed relationships are applied to self-reported performance indicators for IWS serving 108 million people described in the IBNET database and in the Benchmarking and Data Book of Water Utilities in India. This application shows that current high-pressure, continuous water supply targets will require extensive EOA reductions. For example, in order to achieve national targets, utilities in India will need to reduce their EOA by a median of at least 90%. PMID:29775462

  14. An analytical model for contaminant transport in landfill composite liners considering coupled effect of consolidation, diffusion, and degradation.

    PubMed

    Xie, Haijian; Yan, Huaxiang; Feng, Shijin; Wang, Qiao; Chen, Peixiong

    2016-10-01

    One-dimensional mathematical model is developed to investigate the behavior of contaminant transport in landfill composite liner system considering coupled effect of consolidation, diffusion, and degradation. The first- and second-type bottom boundary conditions are used to derive the steady-state and quasi-steady-state analytical solutions. The concentration profiles obtained by the proposed analytical solution are in good agreement with those obtained by the laboratory tests. The bottom concentration and flux of the soil liners can be greatly reduced when the degradation effect and porosity changing are considered. For the case under steady-state, the bottom flux and concentration for the case with t 1/2 =10 years can be 2.8 and 5.5 times lower than those of the case with t 1/2 =100 years, respectively. The bottom concentration and flux of the soil liners can be greatly reduced when the coefficient of volume compressibility decreases. For quasi-steady-state and with t 1/2 = 10 years, the bottom flux and concentration for the case with m v  = 0.02/MPa can be 17.4 and 21 times lower than the case with m v  = 0.5/MPa. This may be due to the fact that the true fluid velocity induced by consolidation is greater for the case with high coefficient of volume compressibility. The bottom flux for the case with single compacted clay liner (CCL) can be 1.5 times larger than that for the case with GMB/CCL considering diffusion and consolidation for DCM. The proposed analytical model can be used for verification of more complicated numerical models and assessment of the coupled effect of diffusion, consolidation, and degradation on contaminant transport in landfill liner systems.

  15. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. Part 2; Global Asymptotic Behavior of Time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 11 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDEs.

  16. Dynamical Approach Study of Spurious Steady-State Numerical Solutions of Nonlinear Differential Equations. 2; Global Asymptotic Behavior of Time Discretizations; 2. Global Asymptotic Behavior of time Discretizations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1995-01-01

    The global asymptotic nonlinear behavior of 1 1 explicit and implicit time discretizations for four 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODES) is analyzed. The objectives are to gain a basic understanding of the difference in the dynamics of numerics between the scalars and systems of nonlinear autonomous ODEs and to set a baseline global asymptotic solution behavior of these schemes for practical computations in computational fluid dynamics. We show how 'numerical' basins of attraction can complement the bifurcation diagrams in gaining more detailed global asymptotic behavior of time discretizations for nonlinear differential equations (DEs). We show how in the presence of spurious asymptotes the basins of the true stable steady states can be segmented by the basins of the spurious stable and unstable asymptotes. One major consequence of this phenomenon which is not commonly known is that this spurious behavior can result in a dramatic distortion and, in most cases, a dramatic shrinkage and segmentation of the basin of attraction of the true solution for finite time steps. Such distortion, shrinkage and segmentation of the numerical basins of attraction will occur regardless of the stability of the spurious asymptotes, and will occur for unconditionally stable implicit linear multistep methods. In other words, for the same (common) steady-state solution the associated basin of attraction of the DE might be very different from the discretized counterparts and the numerical basin of attraction can be very different from numerical method to numerical method. The results can be used as an explanation for possible causes of error, and slow convergence and nonconvergence of steady-state numerical solutions when using the time-dependent approach for nonlinear hyperbolic or parabolic PDES.

  17. Detecting number processing and mental calculation in patients with disorders of consciousness using a hybrid brain-computer interface system.

    PubMed

    Li, Yuanqing; Pan, Jiahui; He, Yanbin; Wang, Fei; Laureys, Steven; Xie, Qiuyou; Yu, Ronghao

    2015-12-15

    For patients with disorders of consciousness such as coma, a vegetative state or a minimally conscious state, one challenge is to detect and assess the residual cognitive functions in their brains. Number processing and mental calculation are important brain functions but are difficult to detect in patients with disorders of consciousness using motor response-based clinical assessment scales such as the Coma Recovery Scale-Revised due to the patients' motor impairments and inability to provide sufficient motor responses for number- and calculation-based communication. In this study, we presented a hybrid brain-computer interface that combines P300 and steady state visual evoked potentials to detect number processing and mental calculation in Han Chinese patients with disorders of consciousness. Eleven patients with disorders of consciousness who were in a vegetative state (n = 6) or in a minimally conscious state (n = 3) or who emerged from a minimally conscious state (n = 2) participated in the brain-computer interface-based experiment. During the experiment, the patients with disorders of consciousness were instructed to perform three tasks, i.e., number recognition, number comparison, and mental calculation, including addition and subtraction. In each experimental trial, an arithmetic problem was first presented. Next, two number buttons, only one of which was the correct answer to the problem, flickered at different frequencies to evoke steady state visual evoked potentials, while the frames of the two buttons flashed in a random order to evoke P300 potentials. The patients needed to focus on the target number button (the correct answer). Finally, the brain-computer interface system detected P300 and steady state visual evoked potentials to determine the button to which the patients attended, further presenting the results as feedback. Two of the six patients who were in a vegetative state, one of the three patients who were in a minimally conscious state, and the two patients that emerged from a minimally conscious state achieved accuracies significantly greater than the chance level. Furthermore, P300 potentials and steady state visual evoked potentials were observed in the electroencephalography signals from the five patients. Number processing and arithmetic abilities as well as command following were demonstrated in the five patients. Furthermore, our results suggested that through brain-computer interface systems, many cognitive experiments may be conducted in patients with disorders of consciousness, although they cannot provide sufficient behavioral responses.

  18. 40 CFR 1048.505 - How do I test engines using steady-state duty cycles, including ramped-modal testing?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-state duty cycles, including ramped-modal testing? 1048.505 Section 1048.505 Protection of Environment... SPARK-IGNITION ENGINES Test Procedures § 1048.505 How do I test engines using steady-state duty cycles... some cases, we allow you to choose the appropriate steady-state duty cycle for an engine. In these...

  19. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We calculate the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t =0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. The solution describes the non-equilibrium steady state of the system. We use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, yielding the I-V characteristic. The calculation is non-perturbative and exact. Research supported by NSF Grant DMR 1410583.

  20. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    NASA Astrophysics Data System (ADS)

    Culver, Adrian; Andrei, Natan

    We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.

  1. Identification of visual evoked response parameters sensitive to pilot mental state

    NASA Technical Reports Server (NTRS)

    Zacharias, G. L.

    1988-01-01

    Systems analysis techniques were developed and demonstrated for modeling the electroencephalographic (EEG) steady state visual evoked response (ssVER), for use in EEG data compression and as an indicator of mental workload. The study focused on steady state frequency domain stimulation and response analysis, implemented with a sum-of-sines (SOS) stimulus generator and an off-line describing function response analyzer. Three major tasks were conducted: (1) VER related systems identification material was reviewed; (2) Software for experiment control and data analysis was developed and implemented; and (3) ssVER identification and modeling was demonstrated, via a mental loading experiment. It was found that a systems approach to ssVER functional modeling can serve as the basis for eventual development of a mental workload indicator. The review showed how transient visual evoked response (tVER) and ssVER research are related at the functional level, the software development showed how systems techniques can be used for ssVER characterization, and the pilot experiment showed how a simple model can be used to capture the basic dynamic response of the ssVER, under varying loads.

  2. X-ray spectral analysis of the steady states of GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Peris, Charith; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa Dil; Varniere, Peggy; Rodriguez, Jerome; Pooley, Guy G.

    2016-04-01

    Of the black hole binaries (BHBs) discovered thus far, GRS 1915+105 stands out as an exceptional source primarily due to its wild X-ray variability, the diversity of which has not been replicated in any other stellar-mass black hole. Although extreme variability is commonplace in its light-curve, about half of the observations of GRS1915+105 show fairly steady X-ray intensity. We report on the X-ray spectral behavior within these steady observations. Our work is based on a vast RXTE/PCA data set obtained on GRS 1915+105 during the course of its entire mission and 10 years of radio data from the Ryle Telescope, which overlap the X-ray data. We find that the steady observations within the X-ray data set naturally separate into two regions in a color-color diagram, which we refer to as steady-soft and steady-hard. GRS 1915+105 displays significant curvature in the Comptonization component within the PCA band pass suggesting significantly heating from a hot disk present in all states. A new Comptonization model 'simplcut' was developed in order to model this curvature to best effect. A majority of the steady-soft observations display a roughly constant inner disk radius, remarkably reminiscent of canonical soft state black hole binaries. In contrast, the steady-hard observations display a growing disk truncation that is correlated to the mass accretion rate through the disk, which suggests a magnetically truncated disk. A comparison of X-ray model parameters to the canonical state definitions show that almost all steady-soft observations match the criteria of either thermal or steep power law state, while the thermal state observations dominate the constant radius branch. A large portion 80 % of the steady-hard observations matches the hard state criteria when the disk fraction constraint is neglected. These results combine to suggest that within the complexity of this source is a simpler underlying basis of states, which map to those observed in canonical BHBs.

  3. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

    PubMed Central

    Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing

    2012-01-01

    An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849

  4. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.

    2018-05-01

    The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.

  5. Dissipative dark matter halos: The steady state solution. II.

    NASA Astrophysics Data System (ADS)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  6. Nonequilibrium steady state of a weakly-driven Kardar–Parisi–Zhang equation

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Sasorov, Pavel V.; Vilenkin, Arkady

    2018-05-01

    We consider an infinite interface of d  >  2 dimensions, governed by the Kardar–Parisi–Zhang (KPZ) equation with a weak Gaussian noise which is delta-correlated in time and has short-range spatial correlations. We study the probability distribution of the interface height H at a point of the substrate, when the interface is initially flat. We show that, in stark contrast with the KPZ equation in d  <  2, this distribution approaches a non-equilibrium steady state. The time of relaxation toward this state scales as the diffusion time over the correlation length of the noise. We study the steady-state distribution using the optimal-fluctuation method. The typical, small fluctuations of height are Gaussian. For these fluctuations the activation path of the system coincides with the time-reversed relaxation path, and the variance of can be found from a minimization of the (nonlocal) equilibrium free energy of the interface. In contrast, the tails of are nonequilibrium, non-Gaussian and strongly asymmetric. To determine them we calculate, analytically and numerically, the activation paths of the system, which are different from the time-reversed relaxation paths. We show that the slower-decaying tail of scales as , while the faster-decaying tail scales as . The slower-decaying tail has important implications for the statistics of directed polymers in random potential.

  7. Bridge permeameter

    DOEpatents

    Graf, Darin C.; Warpinski, Norman R.

    1996-01-01

    A system for single-phase, steady-state permeability measurements of porous rock utilizes a fluid bridge arrangement analogous to a Wheatstone bridge. The arms of the bridge contain the sample and calibrated flow resistors.

  8. Steady-State Electrodiffusion from the Nernst-Planck Equation Coupled to Local Equilibrium Monte Carlo Simulations.

    PubMed

    Boda, Dezső; Gillespie, Dirk

    2012-03-13

    We propose a procedure to compute the steady-state transport of charged particles based on the Nernst-Planck (NP) equation of electrodiffusion. To close the NP equation and to establish a relation between the concentration and electrochemical potential profiles, we introduce the Local Equilibrium Monte Carlo (LEMC) method. In this method, Grand Canonical Monte Carlo simulations are performed using the electrochemical potential specified for the distinct volume elements. An iteration procedure that self-consistently solves the NP and flux continuity equations with LEMC is shown to converge quickly. This NP+LEMC technique can be used in systems with diffusion of charged or uncharged particles in complex three-dimensional geometries, including systems with low concentrations and small applied voltages that are difficult for other particle simulation techniques.

  9. Nuclear electric propulsion technologies - Overview of the NASA/DoE/DoD Nuclear Electric Propulsion Workshop

    NASA Technical Reports Server (NTRS)

    Barnett, John W.

    1991-01-01

    Nuclear propulsion technology offers substantial benefits to the ambitious piloted and robotic solar system exploration missions of the Space Exploration Initiative (SEI). This paper summarizes a workshop jointly sponsored by NASA, DoE, and DoD to assess candidate nuclear electric propulsion technologies. Twenty-one power and propulsion concepts are reviewed. Nuclear power concepts include solid and gaseous fuel concepts, with static and dynamic power conversion. Propulsion concepts include steady state and pulsed electromagnetic engines, a pulsed electrothermal engine, and a steady state electrostatic engine. The technologies vary widely in maturity. The workshop review panels concluded that compelling benefits would accrue from the development of nuclear electric propulsion systems, and that a focused, well-funded program is required to prepare the technologies for SEI missions.

  10. Activity of a social dynamics model

    NASA Astrophysics Data System (ADS)

    Reia, Sandro M.; Neves, Ubiraci P. C.

    2015-10-01

    Axelrod's model was proposed to study interactions between agents and the formation of cultural domains. It presents a transition from a monocultural to a multicultural steady state which has been studied in the literature by evaluation of the relative size of the largest cluster. In this article, we propose new measurements based on the concept of activity per agent to study the Axelrod's model on the square lattice. We show that the variance of system activity can be used to indicate the critical points of the transition. Furthermore the frequency distribution of the system activity is able to show a coexistence of phases typical of a first order phase transition. Finally, we verify a power law dependence between cluster activity and cluster size for multicultural steady state configurations at the critical point.

  11. A second perspective on the Amann-Schmiedl-Seifert criterion for non-equilibrium in a three-state system

    NASA Astrophysics Data System (ADS)

    Jia, Chen; Chen, Yong

    2015-05-01

    In the work of Amann, Schmiedl and Seifert (2010 J. Chem. Phys. 132 041102), the authors derived a sufficient criterion to identify a non-equilibrium steady state (NESS) in a three-state Markov system based on the coarse-grained information of two-state trajectories. In this paper, we present a mathematical derivation and provide a probabilistic interpretation of the Amann-Schmiedl-Seifert (ASS) criterion. Moreover, the ASS criterion is compared with some other criterions for a NESS.

  12. [A wireless smart home system based on brain-computer interface of steady state visual evoked potential].

    PubMed

    Zhao, Li; Xing, Xiao; Guo, Xuhong; Liu, Zehua; He, Yang

    2014-10-01

    Brain-computer interface (BCI) system is a system that achieves communication and control among humans and computers and other electronic equipment with the electroencephalogram (EEG) signals. This paper describes the working theory of the wireless smart home system based on the BCI technology. We started to get the steady-state visual evoked potential (SSVEP) using the single chip microcomputer and the visual stimulation which composed by LED lamp to stimulate human eyes. Then, through building the power spectral transformation on the LabVIEW platform, we processed timely those EEG signals under different frequency stimulation so as to transfer them to different instructions. Those instructions could be received by the wireless transceiver equipment to control the household appliances and to achieve the intelligent control towards the specified devices. The experimental results showed that the correct rate for the 10 subjects reached 100%, and the control time of average single device was 4 seconds, thus this design could totally achieve the original purpose of smart home system.

  13. Rapid Startup and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    NASA Technical Reports Server (NTRS)

    Meyer, Caitlin; Vega, Leticia

    2014-01-01

    The Membrane Aerated Bioreactor (MABR) is an attached-growth biological system for simultaneous nitrification and denitrification. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal. Implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to two weeks and that the surface area to volume ratio baseline used in the Alternative Water Processor (AWP) test was higher than what was needed to remove the organic carbon and ammonium from the system.

  14. Testing and model-aided analysis of a 2 kW el PEMFC CHP-system

    NASA Astrophysics Data System (ADS)

    König, P.; Weber, A.; Lewald, N.; Aicher, T.; Jörissen, L.; Ivers-Tiffée, E.; Szolak, R.; Brendel, M.; Kaczerowski, J.

    A prototype PEMFC CHP-system (combined heat and power) for decentralised energy supply in domestic applications has been installed in the Fuel Cell Testing Laboratory at the Institut für Werkstoffe der Elektrotechnik (IWE), Universität Karlsruhe (TH). The system, which was developed at the Zentrum für Sonnenenergie- und Wasserstoff-Forschung ZSW, Ulm (FC-stack) and the Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg (reformer) is operated and tested in close cooperation with the Stadtwerke Karlsruhe. The tests are carried out as part of the strategic project EDISon, which is supported by the German Federal Ministry of Economics and Technology (BMWA). The performance of the system is evaluated for different operating conditions. The tests include steady state measurements under different electrical and thermal loads as well as an analysis of the dynamic behaviour of the system during load changes. First results of these steady state and dynamic operation characteristics will be presented in this paper.

  15. Simulation of advective flow under steady-state and transient recharge conditions, Camp Edwards, Massachusetts Military Reservation, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Walter, Donald A.; Masterson, John P.

    2003-01-01

    The U.S. Geological Survey has developed several ground-water models in support of an investigation of ground-water contamination being conducted by the Army National Guard Bureau at Camp Edwards, Massachusetts Military Reservation on western Cape Cod, Massachusetts. Regional and subregional steady-state models and regional transient models were used to (1) improve understanding of the hydrologic system, (2) simulate advective transport of contaminants, (3) delineate recharge areas to municipal wells, and (4) evaluate how model discretization and time-varying recharge affect simulation results. A water-table mound dominates ground-water-flow patterns. Near the top of the mound, which is within Camp Edwards, hydraulic gradients are nearly vertically downward and horizontal gradients are small. In downgradient areas that are further from the top of the water-table mound, the ratio of horizontal to vertical gradients is larger and horizontal flow predominates. The steady-state regional model adequately simulates advective transport in some areas of the aquifer; however, simulation of ground-water flow in areas with local hydrologic boundaries, such as ponds, requires more finely discretized subregional models. Subregional models also are needed to delineate recharge areas to municipal wells that are inadequately represented in the regional model or are near other pumped wells. Long-term changes in recharge rates affect hydraulic heads in the aquifer and shift the position of the top of the water-table mound. Hydraulic-gradient directions do not change over time in downgradient areas, whereas they do change substantially with temporal changes in recharge near the top of the water-table mound. The assumption of steady-state hydraulic conditions is valid in downgradient area, where advective transport paths change little over time. In areas closer to the top of the water-table mound, advective transport paths change as a function of time, transient and steady-state paths do not coincide, and the assumption of steady-state conditions is not valid. The simulation results indicate that several modeling tools are needed to adequately simulate ground-water flow at the site and that the utility of a model varies according to hydrologic conditions in the specific areas of interest.

  16. Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics

    DOE PAGES

    Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; ...

    2016-01-06

    Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less

  17. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  18. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete-mode cycle. 86.1363-2007 Section 86.1363-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section...

  19. AEROSOL GROWTH IN A STEADY-STATE, CONTINUOUS FLOW CHAMBER: APPLICATION TO STUDIES OF SECONDARY AEROSOL FORMATION

    EPA Science Inventory

    An analytical solution for the steady-state aerosol size distribution achieved in a steady-state, continuous flow chamber is derived, where particle growth is occurring by gas-to-particle conversion and particle loss is occurring by deposition to the walls of the chamber. The s...

  20. Complete analysis of steady and transient missile aerodynamic/propulsive/plume flowfield interactions

    NASA Astrophysics Data System (ADS)

    York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.

    1992-07-01

    The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.

  1. Dissipation-based entanglement via quantum Zeno dynamics and Rydberg antiblockade

    NASA Astrophysics Data System (ADS)

    Shao, X. Q.; Wu, J. H.; Yi, X. X.

    2017-06-01

    A scheme is proposed for dissipative generation of maximally entanglement between two Rydberg atoms in the context of cavity QED. The spontaneous emission of atoms combined with quantum Zeno dynamics and the Rydberg antiblockade guarantees a unique steady solution of the master equation of the system, which just corresponds to the antisymmetric Bell state |S > . The convergence rate can be accelerated by the ground-state blockade mechanism of Rydberg atoms. Meanwhile the effect of cavity decay is suppressed by the Zeno requirement, leading to a steady-state fidelity about 90 % as the single-atom cooperativity parameter C ≡g2/(κ γ ) =10 , and this restriction is further relaxed to C =5.2 once the quantum-jump-based feedback control is exploited.

  2. Steady-State Density Functional Theory for Finite Bias Conductances.

    PubMed

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  3. RELAP5-3D Results for Phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW Benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerhard Strydom

    2012-06-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2.« less

  4. RELAP5-3D results for phase I (Exercise 2) of the OECD/NEA MHTGR-350 MW benchmark

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strydom, G.; Epiney, A. S.

    2012-07-01

    The coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been initiated at the Idaho National Laboratory (INL) to provide a fully coupled prismatic Very High Temperature Reactor (VHTR) system modeling capability as part of the NGNP methods development program. The PHISICS code consists of three modules: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. As part of the verification and validation activities, steady state results have been obtained for Exercise 2 of Phase I of the newly-defined OECD/NEA MHTGR-350 MW Benchmark. This exercise requiresmore » participants to calculate a steady-state solution for an End of Equilibrium Cycle 350 MW Modular High Temperature Reactor (MHTGR), using the provided geometry, material, and coolant bypass flow description. The paper provides an overview of the MHTGR Benchmark and presents typical steady state results (e.g. solid and gas temperatures, thermal conductivities) for Phase I Exercise 2. Preliminary results are also provided for the early test phase of Exercise 3 using a two-group cross-section library and the Relap5-3D model developed for Exercise 2. (authors)« less

  5. Metronidazole and hydroxymetronidazole central nervous system distribution: 1. microdialysis assessment of brain extracellular fluid concentrations in patients with acute brain injury.

    PubMed

    Frasca, Denis; Dahyot-Fizelier, Claire; Adier, Christophe; Mimoz, Olivier; Debaene, Bertrand; Couet, William; Marchand, Sandrine

    2014-01-01

    The distribution of metronidazole in the central nervous system has only been described based on cerebrospinal fluid data. However, extracellular fluid (ECF) concentrations may better predict its antimicrobial effect and/or side effects. We sought to explore by microdialysis brain ECF metronidazole distribution in patients with acute brain injury. Four brain-injured patients monitored by cerebral microdialysis received 500 mg of metronidazole over 0.5 h every 8 h. Brain dialysates and blood samples were collected at steady state over 8 h. Probe recoveries were evaluated by in vivo retrodialysis in each patient for metronidazole. Metronidazole and OH-metronidazole were assayed by high-pressure liquid chromatography, and a noncompartmental pharmacokinetic analysis was performed. Probe recovery was equal to 78.8% ± 1.3% for metronidazole in patients. Unbound brain metronidazole concentration-time curves were delayed compared to unbound plasma concentration-time curves but with a mean metronidazole unbound brain/plasma AUC0-τ ratio equal to 102% ± 19% (ranging from 87 to 124%). The unbound plasma concentration-time profiles for OH-metronidazole were flat, with mean average steady-state concentrations equal to 4.0 ± 0.7 μg ml(-1). This microdialysis study describes the steady-state brain distribution of metronidazole in patients and confirms its extensive distribution.

  6. Fractal dimension and fuzzy logic systems for broken rotor bar detection in induction motors at start-up and steady-state regimes

    NASA Astrophysics Data System (ADS)

    Amezquita-Sanchez, Juan P.; Valtierra-Rodriguez, Martin; Perez-Ramirez, Carlos A.; Camarena-Martinez, David; Garcia-Perez, Arturo; Romero-Troncoso, Rene J.

    2017-07-01

    Squirrel-cage induction motors (SCIMs) are key machines in many industrial applications. In this regard, the monitoring of their operating condition aiming at avoiding damage and reducing economical losses has become a demanding task for industry. In the literature, several techniques and methodologies to detect faults that affect the integrity and performance of SCIMs have been proposed. However, they have only been focused on analyzing either the start-up transient or the steady-state operation regimes, two common operating scenarios in real practice. In this work, a novel methodology for broken rotor bar (BRB) detection in SCIMs during both start-up and steady-state operation regimes is proposed. It consists of two main steps. In the first one, the analysis of three-axis vibration signals using fractal dimension (FD) theory is carried out. Since different FD-based algorithms can give different results, three algorithms named Katz’ FD, Higuchi’s FD, and box dimension, are tested. In the second step, a fuzzy logic system for each regime is presented for automatic diagnosis. To validate the proposal, a motor with different damage levels has been tested: one with a partially BRB, a second with one fully BRB, and the third with two BRBs. The obtained results demonstrate the proposed effectiveness.

  7. Patterns of primary productivity and biomass in a coastal upwelling region

    NASA Astrophysics Data System (ADS)

    Small, Lawrence F.; Menzies, David W.

    1981-02-01

    Average distributions of chlorophyll α during upwelling in areas of smooth bathymetry off Oregon have been computed from historical data. Chlorophyll concentrations in cross-shelf sections over the Oregon continental shelf (44°40'N) were similar to those in cross-shelf sections off northwest Africa during JOINT-1 studies but differed from those in similar sections over an adjacent narrow region of the Oregon shelf (44°55'N to 45°12'N). The fact that larger concentration differences can occur along short sections of one coastline than between upwelling regions half a world apart bears on the time and space scales of sampling and might have bearing on the support and distributions of other trophic levels. Relationships between the local winds and the broader-scale BAKUN (1975) upwelling indices were used to classify various phytoplankton biomass and primary productivity distributions according to whether they were in strong upwelling steady state, weak upwelling steady state, or one of two transition states. The upwelling steady state conforms to the 'upwelling event' scale (about 3 to 10 days) of WALSH, WHITLEDGE, KELLEY, HUNTSMAN and PILLSBURY (1977) and the transition state of approximately one-day duration might specify the critical scale for driving the upwelling off Oregon. Under strong steady-state upwelling in early summer a single band of high primary productivity and biomass develops in the surface layer parallel to the bottom contours, but under similar upwelling conditions in later summer a two-celled zonal circulation occurs and two parallel bands develop. Our strong upwelling distributions are discussed in light of current models of the Oregon upwelling system. Maintenance of biological properties through time in the upwelling bands is also discussed. Under weak steady-state upwelling the primary productivity and biomass bands are farther inshore or immediately against the coast. Productivity in the weak upwelling bands can be twice that of the strong upwelling bands and often 20 times that in surrounding water. Under transient conditions in which the local winds are favorable for strong upwelling but the slower-responding Bakun index indicates weak upwelling, chlorophyll distributions change within a day to resemble distributions during strong steady-state upwelling. Under transient conditions in which the local winds weaken dramatically but the Bakun index still indicates strong upwelling, chlorophyll concentrations are high and widely distributed throughout the upwelling region.

  8. Chemical event chain model of coupled genetic oscillators.

    PubMed

    Jörg, David J; Morelli, Luis G; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  9. A multi-level solution algorithm for steady-state Markov chains

    NASA Technical Reports Server (NTRS)

    Horton, Graham; Leutenegger, Scott T.

    1993-01-01

    A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is presented. The method utilizes a set of recursively coarsened representations of the original system to achieve accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial differential equations. Initial results of numerical experiments are reported, showing significant reductions in computation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal SOR algorithms for a variety of test problems. The multi-level method is compared and contrasted with the iterative aggregation-disaggregation algorithm of Takahashi.

  10. Stochastic Galerkin methods for the steady-state Navier–Stokes equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sousedík, Bedřich, E-mail: sousedik@umbc.edu; Elman, Howard C., E-mail: elman@cs.umd.edu

    2016-07-01

    We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmarkmore » problems.« less

  11. Current correlations for the transport of interacting electrons through parallel quantum dots in a photon cavity

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Vidar; Abdullah, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei

    2018-06-01

    We calculate the current correlations for the steady-state electron transport through multi-level parallel quantum dots embedded in a short quantum wire, that is placed in a non-perfect photon cavity. We account for the electron-electron Coulomb interaction, and the para- and diamagnetic electron-photon interactions with a stepwise scheme of configuration interactions and truncation of the many-body Fock spaces. In the spectral density of the temporal current-current correlations we identify all the transitions, radiative and non-radiative, active in the system in order to maintain the steady state. We observe strong signs of two types of Rabi oscillations.

  12. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components

    NASA Astrophysics Data System (ADS)

    Müller-Putz, Gernot R.; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  13. Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components.

    PubMed

    Müller-Putz, Gernot R; Scherer, Reinhold; Brauneis, Christian; Pfurtscheller, Gert

    2005-12-01

    Brain-computer interfaces (BCIs) can be realized on the basis of steady-state evoked potentials (SSEPs). These types of brain signals resulting from repetitive stimulation have the same fundamental frequency as the stimulation but also include higher harmonics. This study investigated how the classification accuracy of a 4-class BCI system can be improved by incorporating visually evoked harmonic oscillations. The current study revealed that the use of three SSVEP harmonics yielded a significantly higher classification accuracy than was the case for one or two harmonics. During feedback experiments, the five subjects investigated reached a classification accuracy between 42.5% and 94.4%.

  14. Chemical event chain model of coupled genetic oscillators

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Morelli, Luis G.; Jülicher, Frank

    2018-03-01

    We introduce a stochastic model of coupled genetic oscillators in which chains of chemical events involved in gene regulation and expression are represented as sequences of Poisson processes. We characterize steady states by their frequency, their quality factor, and their synchrony by the oscillator cross correlation. The steady state is determined by coupling and exhibits stochastic transitions between different modes. The interplay of stochasticity and nonlinearity leads to isolated regions in parameter space in which the coupled system works best as a biological pacemaker. Key features of the stochastic oscillations can be captured by an effective model for phase oscillators that are coupled by signals with distributed delays.

  15. Anderson localization of a Tonks-Girardeau gas in potentials with controlled disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radic, J.; Bacic, V.; Jukic, D.

    We theoretically demonstrate features of Anderson localization in a Tonks-Girardeau gas confined in one-dimensional potentials with controlled disorder. That is, we investigate the evolution of the single-particle density and correlations of a Tonks-Girardeau wave packet in such disordered potentials. The wave packet is initially trapped, the trap is suddenly turned off, and after some time the system evolves into a localized steady state due to Anderson localization. The density tails of the steady state decay exponentially, while the coherence in these tails increases. The latter phenomenon corresponds to the same effect found in incoherent optical solitons.

  16. The SPAR thermal analyzer: Present and future

    NASA Astrophysics Data System (ADS)

    Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.

    The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.

  17. The SPAR thermal analyzer: Present and future

    NASA Technical Reports Server (NTRS)

    Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.

    1982-01-01

    The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.

  18. Voltage profile program for the Kennedy Space Center electric power distribution system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Kennedy Space Center voltage profile program computes voltages at all busses greater than 1 Kv in the network under various conditions of load. The computation is based upon power flow principles and utilizes a Newton-Raphson iterative load flow algorithm. Power flow conditions throughout the network are also provided. The computer program is designed for both steady state and transient operation. In the steady state mode, automatic tap changing of primary distribution transformers is incorporated. Under transient conditions, such as motor starts etc., it is assumed that tap changing is not accomplished so that transformer secondary voltage is allowed to sag.

  19. Stochastic Galerkin methods for the steady-state Navier–Stokes equations

    DOE PAGES

    Sousedík, Bedřich; Elman, Howard C.

    2016-04-12

    We study the steady-state Navier–Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galerkin method, and we explore properties of the resulting stochastic solutions. We also propose a preconditioner for solving the linear systems of equations arising at each step of the stochastic (Galerkin) nonlinear iteration and demonstrate its effectiveness for solving a set of benchmarkmore » problems.« less

  20. Stochastic methods for analysis of power flow in electric networks

    NASA Astrophysics Data System (ADS)

    1982-09-01

    The modeling and effects of probabilistic behavior on steady state power system operation were analyzed. A solution to the steady state network flow equations which adhere both to Kirchoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques was obtained. The development of sound techniques for producing meaningful data to serve as input is examined. Electric demand modeling, equipment failure analysis, and algorithm development are investigated. Two major development areas are described: a decomposition of stochastic processes which gives stationarity, ergodicity, and even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

  1. Theoretical studies of solar-pumped lasers

    NASA Technical Reports Server (NTRS)

    Harries, W. L.

    1982-01-01

    Solar-pumped lasers were investigated by comparing experimental results from pulse experiments with steady state calculations. The time varying behavior of an IBr laser is studied. The analysis is only approximate, but indicates that conditions occurring in a pulsed experiment are quite different from those at steady state. The possibility of steady-state lasing in an IBr laser is determined. The effects of high temperatures on the quenching and recombination rates are examined. Although uncertainties in the values of the rate coefficients make it difficult to draw firm conclusions, it seems steady state running may be possible at high temperatures.

  2. Three is much more than two in coarsening dynamics of cyclic competitions

    NASA Astrophysics Data System (ADS)

    Mitarai, Namiko; Gunnarson, Ivar; Pedersen, Buster Niels; Rosiek, Christian Anker; Sneppen, Kim

    2016-04-01

    The classical game of rock-paper-scissors has inspired experiments and spatial model systems that address the robustness of biological diversity. In particular, the game nicely illustrates that cyclic interactions allow multiple strategies to coexist for long-time intervals. When formulated in terms of a one-dimensional cellular automata, the spatial distribution of strategies exhibits coarsening with algebraically growing domain size over time, while the two-dimensional version allows domains to break and thereby opens the possibility for long-time coexistence. We consider a quasi-one-dimensional implementation of the cyclic competition, and study the long-term dynamics as a function of rare invasions between parallel linear ecosystems. We find that increasing the complexity from two to three parallel subsystems allows a transition from complete coarsening to an active steady state where the domain size stays finite. We further find that this transition happens irrespective of whether the update is done in parallel for all sites simultaneously or done randomly in sequential order. In both cases, the active state is characterized by localized bursts of dislocations, followed by longer periods of coarsening. In the case of the parallel dynamics, we find that there is another phase transition between the active steady state and the coarsening state within the three-line system when the invasion rate between the subsystems is varied. We identify the critical parameter for this transition and show that the density of active boundaries has critical exponents that are consistent with the directed percolation universality class. On the other hand, numerical simulations with the random sequential dynamics suggest that the system may exhibit an active steady state as long as the invasion rate is finite.

  3. Fundamental aspects of steady-state conversion of heat to work at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benenti, Giuliano; Casati, Giulio; Saito, Keiji; Whitney, Robert S.

    2017-06-01

    In recent years, the study of heat to work conversion has been re-invigorated by nanotechnology. Steady-state devices do this conversion without any macroscopic moving parts, through steady-state flows of microscopic particles such as electrons, photons, phonons, etc. This review aims to introduce some of the theories used to describe these steady-state flows in a variety of mesoscopic or nanoscale systems. These theories are introduced in the context of idealized machines which convert heat into electrical power (heat-engines) or convert electrical power into a heat flow (refrigerators). In this sense, the machines could be categorized as thermoelectrics, although this should be understood to include photovoltaics when the heat source is the sun. As quantum mechanics is important for most such machines, they fall into the field of quantum thermodynamics. In many cases, the machines we consider have few degrees of freedom, however the reservoirs of heat and work that they interact with are assumed to be macroscopic. This review discusses different theories which can take into account different aspects of mesoscopic and nanoscale physics, such as coherent quantum transport, magnetic-field induced effects (including topological ones such as the quantum Hall effect), and single electron charging effects. It discusses the efficiency of thermoelectric conversion, and the thermoelectric figure of merit. More specifically, the theories presented are (i) linear response theory with or without magnetic fields, (ii) Landauer scattering theory in the linear response regime and far from equilibrium, (iii) Green-Kubo formula for strongly interacting systems within the linear response regime, (iv) rate equation analysis for small quantum machines with or without interaction effects, (v) stochastic thermodynamic for fluctuating small systems. In all cases, we place particular emphasis on the fundamental questions about the bounds on ideal machines. Can magnetic-fields change the bounds on power or efficiency? What is the relationship between quantum theories of transport and the laws of thermodynamics? Does quantum mechanics place fundamental bounds on heat to work conversion which are absent in the thermodynamics of classical systems?

  4. Prospective treatment planning to improve locoregional hyperthermia for oesophageal cancer.

    PubMed

    Kok, H P; van Haaren, P M A; van de Kamer, J B; Zum Vörde Sive Vörding, P J; Wiersma, J; Hulshof, M C C M; Geijsen, E D; van Lanschot, J J B; Crezee, J

    2006-08-01

    In the Academic Medical Center (AMC) Amsterdam, locoregional hyperthermia for oesophageal tumours is applied using the 70 MHz AMC-4 phased array system. Due to the occurrence of treatment-limiting hot spots in normal tissue and systemic stress at high power, the thermal dose achieved in the tumour can be sub-optimal. The large number of degrees of freedom of the heating device, i.e. the amplitudes and phases of the antennae, makes it difficult to avoid treatment-limiting hot spots by intuitive amplitude/phase steering. Prospective hyperthermia treatment planning combined with high resolution temperature-based optimization was applied to improve hyperthermia treatment of patients with oesophageal cancer. All hyperthermia treatments were performed with 'standard' clinical settings. Temperatures were measured systemically, at the location of the tumour and near the spinal cord, which is an organ at risk. For 16 patients numerically optimized settings were obtained from treatment planning with temperature-based optimization. Steady state tumour temperatures were maximized, subject to constraints to normal tissue temperatures. At the start of 48 hyperthermia treatments in these 16 patients temperature rise (DeltaT) measurements were performed by applying a short power pulse with the numerically optimized amplitude/phase settings, with the clinical settings and with mixed settings, i.e. numerically optimized amplitudes combined with clinical phases. The heating efficiency of the three settings was determined by the measured DeltaT values and the DeltaT-ratio between the DeltaT in the tumour (DeltaToes) and near the spinal cord (DeltaTcord). For a single patient the steady state temperature distribution was computed retrospectively for all three settings, since the temperature distributions may be quite different. To illustrate that the choice of the optimization strategy is decisive for the obtained settings, a numerical optimization on DeltaT-ratio was performed for this patient and the steady state temperature distribution for the obtained settings was computed. A higher DeltaToes was measured with the mixed settings compared to the calculated and clinical settings; DeltaTcord was higher with the mixed settings compared to the clinical settings. The DeltaT-ratio was approximately 1.5 for all three settings. These results indicate that the most effective tumour heating can be achieved with the mixed settings. DeltaT is proportional to the Specific Absorption Rate (SAR) and a higher SAR results in a higher steady state temperature, which implies that mixed settings are likely to provide the most effective heating at steady state as well. The steady state temperature distributions for the clinical and mixed settings, computed for the single patient, showed some locations where temperatures exceeded the normal tissue constraints used in the optimization. This demonstrates that the numerical optimization did not prescribe the mixed settings, because it had to comply with the constraints set to the normal tissue temperatures. However, the predicted hot spots are not necessarily clinically relevant. Numerical optimization on DeltaT-ratio for this patient yielded a very high DeltaT-ratio ( approximately 380), albeit at the cost of excessive heating of normal tissue and lower steady state tumour temperatures compared to the conventional optimization. Treatment planning can be valuable to improve hyperthermia treatments. A thorough discussion on clinically relevant objectives and constraints is essential.

  5. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...

  6. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...

  7. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 2 2014-07-01 2014-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...

  8. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 2 2012-07-01 2012-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...

  9. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...(seconds) Engine speed Torque(percent) 1, 2 1a Steady-state 53 Engine governed 100. 1b Transition 20 Engine...

  10. Steady-state and quench-dependent relaxation of a quantum dot coupled to one-dimensional leads

    NASA Astrophysics Data System (ADS)

    Nuss, Martin; Ganahl, Martin; Evertz, Hans Gerd; Arrigoni, Enrico; von der Linden, Wolfgang

    2013-07-01

    We study the time evolution and steady state of the charge current in a single-impurity Anderson model, using matrix product states techniques. A nonequilibrium situation is imposed by applying a bias voltage across one-dimensional tight-binding leads. Focusing on particle-hole symmetry, we extract current-voltage characteristics from universal low-bias up to high-bias regimes, where band effects start to play a dominant role. We discuss three quenches, which after strongly quench-dependent transients yield the same steady-state current. Among these quenches we identify those favorable for extracting steady-state observables. The period of short-time oscillations is shown to compare well to real-time renormalization group results for a simpler model of spinless fermions. We find indications that many-body effects play an important role at high-bias voltage and finite bandwidth of the metallic leads. The growth of entanglement entropy after a certain time scale ∝Δ-1 is the major limiting factor for calculating the time evolution. We show that the magnitude of the steady-state current positively correlates with entanglement entropy. The role of high-energy states for the steady-state current is explored by considering a damping term in the time evolution.

  11. Steady-state pattern electroretinogram and short-duration transient visual evoked potentials in glaucomatous and healthy eyes.

    PubMed

    Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V

    2018-01-01

    This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  12. Time density curve analysis for C-arm FDCT PBV imaging.

    PubMed

    Kamran, Mudassar; Byrne, James V

    2016-04-01

    Parenchymal blood volume (PBV) estimation using C-arm flat detector computed tomography (FDCT) assumes a steady-state contrast concentration in cerebral vasculature for the scan duration. Using time density curve (TDC) analysis, we explored if the steady-state assumption is met for C-arm CT PBV scans, and how consistent the contrast-material dynamics in cerebral vasculature are across patients. Thirty C-arm FDCT datasets of 26 patients with aneurysmal-SAH, acquired as part of a prospective study comparing C-arm CT PBV with MR-PWI, were analysed. TDCs were extracted from the 2D rotational projections. Goodness-of-fit of TDCs to a steady-state horizontal-line-model and the statistical similarity among the individual TDCs were tested. Influence of the differences in TDC characteristics on the agreement of resulting PBV measurements with MR-CBV was calculated. Despite identical scan parameters and contrast-injection-protocol, the individual TDCs were statistically non-identical (p < 0.01). Using Dunn's multiple comparisons test, of the total 435 individual comparisons among the 30 TDCs, 330 comparisons (62%) reached statistical significance for difference. All TDCs deviated significantly (p < 0.01) from the steady-state horizontal-line-model. PBV values of those datasets for which the TDCs showed largest deviations from the steady-state model demonstrated poor agreement and correlation with MR-CBV, compared with the PBV values of those datasets for which the TDCs were closer to steady-state. For clinical C-arm CT PBV examinations, the administered contrast material does not reach the assumed 'ideal steady-state' for the duration of scan. Using a prolonged injection protocol, the degree to which the TDCs approximate the ideal steady-state influences the agreement of resulting PBV measurements with MR-CBV. © The Author(s) 2016.

  13. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady state technique

    NASA Astrophysics Data System (ADS)

    Grah, Aleksander; Dreyer, Michael E.

    2010-01-01

    Spacecraft technology provides a series of applications for capillary channel flow. It can serve as a reliable means for positioning and transport of liquids under low gravity conditions. Basically, capillary channels provide liquid paths with one or more free surfaces. A problem may be flow instabilities leading to a collapse of the liquid surfaces. A result is undesired gas ingestion and a two phase flow which can in consequence cause several technical problems. The presented capillary channel consists of parallel plates with two free liquid surfaces. The flow rate is established by a pump at the channel outlet, creating a lower pressure within the channel. Owing to the pressure difference between the liquid phase and the ambient gas phase the free surfaces bend inwards and remain stable as long as they are able to resist the steady and unsteady pressure effects. For the numerical prediction of the flow stability two very different models are used. The one-dimensional unsteady model is mainly based on the Bernoulli equation, the continuity equation, and the Gauss-Laplace equation. For three-dimensional evaluations an open source computational fluid dynamics (CFD) tool is applied. For verifications the numerical results are compared with quasisteady and unsteady data of a sounding rocket experiment. Contrary to previous experiments this one results in a significantly longer observation sequence. Furthermore, the critical point of the steady flow instability could be approached by a quasisteady technique. As in previous experiments the comparison to the numerical model evaluation shows a very good agreement for the movement of the liquid surfaces and for the predicted flow instability. The theoretical prediction of the flow instability is related to the speed index, based on characteristic velocities of the capillary channel flow. Stable flow regimes are defined by stability criteria for steady and unsteady flow. The one-dimensional computation of the speed index is based on the technique of the equivalent steady system, which is published for the first time in the present paper. This approach assumes that for every unsteady state an equivalent steady state with a special boundary condition can be formulated. The equivalent steady state technique enables a reformulation of the equation system and an efficient and reliable speed index computation. Furthermore, the existence of the numerical singularity at the critical point of the steady flow instability, postulated in previous publication, is demonstrated in detail. The numerical singularity is related to the stability criterion for steady flow and represents the numerical consequence of the liquid surface collapse. The evaluation and generation of the pressure diagram is demonstrated in detail with a series of numerical dynamic flow studies. The stability diagram, based on one-dimensional computation, gives a detailed overview of the stable and instable flow regimes. This prediction is in good agreement with the experimentally observed critical flow conditions and results of three-dimensional CFD computations.

  14. Prediction of elemental creep. [steady state and cyclic data from regression analysis

    NASA Technical Reports Server (NTRS)

    Davis, J. W.; Rummler, D. R.

    1975-01-01

    Cyclic and steady-state creep tests were performed to provide data which were used to develop predictive equations. These equations, describing creep as a function of stress, temperature, and time, were developed through the use of a least squares regression analyses computer program for both the steady-state and cyclic data sets. Comparison of the data from the two types of tests, revealed that there was no significant difference between the cyclic and steady-state creep strains for the L-605 sheet under the experimental conditions investigated (for the same total time at load). Attempts to develop a single linear equation describing the combined steady-state and cyclic creep data resulted in standard errors of estimates higher than obtained for the individual data sets. A proposed approach to predict elemental creep in metals uses the cyclic creep equation and a computer program which applies strain and time hardening theories of creep accumulation.

  15. Quasi steady-state aerodynamic model development for race vehicle simulations

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  16. Climate dominated topography in a tectonically active mountain range

    NASA Astrophysics Data System (ADS)

    Adams, B. A.; Ehlers, T. A.

    2015-12-01

    Tests of the interactions between tectonic and climate forcing on Earth's topography often focus on the concept of steady-state whereby processes of rock deformation and erosion are opposing and equal. However, when conditions change such as the climate or tectonic rock uplift, then surface processes act to restore the balance between rock deformation and erosion by adjusting topography. Most examples of canonical steady-state mountain ranges lie within the northern hemisphere, which underwent a radical change in the Quaternary due to the onset of widespread glaciation. The activity of glaciers changed erosion rates and topography in many of these mountain ranges, which likely violates steady-state assumptions. With new topographic analysis, and existing patterns of climate and rock uplift, we explore a mountain range previously considered to be in steady-state, the Olympic Mountains, USA. The broad spatial trend in channel steepness values suggests that the locus of high rock uplift rates is coincident with the rugged range core, in a similar position as high temperature and pressure lithologies, but not in the low lying foothills as has been previously suggested by low-temperature thermochronometry. The details of our analysis suggest the dominant topographic signal in the Olympic Mountains is a spatial, and likely temporal, variation in erosional efficiency dictated by orographic precipitation, and Pleistocene glacier ELA patterns. We demonstrate the same topographic effects are recorded in the basin hypsometries of other Cenozoic mountain ranges around the world. The significant glacial overprint on topography makes the argument of mountain range steadiness untenable in significantly glaciated settings. Furthermore, our results suggest that most glaciated Cenozoic ranges are likely still in a mode of readjustment as fluvial systems change topography and erosion rates to equilibrate with rock uplift rates.

  17. Radiation Chemistry in Organized Assemblies.

    ERIC Educational Resources Information Center

    Thomas, J. K.; Chen, T. S.

    1981-01-01

    Expands the basic concepts regarding the radiation chemistry of simple aqueous systems to more complex, but well defined, organized assemblies. Discusses the differences in behavior in comparison to simple systems. Reviews these techniques: pulse radiolysis, laser flash, photolysis, and steady state irradiation by gamma rays or light. (CS)

  18. Emission Enhancement in Quantum Emitters - Plasmonic Nanostructures Systems

    NASA Astrophysics Data System (ADS)

    Muqri, Aeshah; Suh, Jae Yong; Michogan Technological University Team

    In this poster, the emission enhancement probed by spectroscopic and dynamic means will be presented. Systems composed of quantum emitters ensembles in the vicinity of plasmonic structures were fabricated. Their coupling strength were investigated by measuring the reflection, steady state photoluminescence, and time resolved fluorescence.

  19. Structure in sheared supercooled liquids: Dynamical rearrangements of an effective system of icosahedra.

    PubMed

    Pinney, Rhiannon; Liverpool, Tanniemola B; Royall, C Patrick

    2016-12-21

    We consider a binary Lennard-Jones glassformer whose super-Arrhenius dynamics are correlated with the formation of particles organized into icosahedra under simple steady state shear. We recast this glassformer as an effective system of icosahedra [Pinney et al., J. Chem. Phys. 143, 244507 (2015)]. From the observed population of icosahedra in each steady state, we obtain an effective temperature which is linearly dependent on the shear rate in the range considered. Upon shear banding, the system separates into a region of high shear rate and a region of low shear rate. The effective temperatures obtained in each case show that the low shear regions correspond to a significantly lower temperature than the high shear regions. Taking a weighted average of the effective temperature of these regions (weight determined by region size) yields an estimate of the effective temperature which compares well with an effective temperature based on the global mesocluster population of the whole system.

  20. Development of visible spectroscopy diagnostics for W sources assessment in WEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, O., E-mail: olivier.meyer@cea.fr; Giacalone, J. C.; Pascal, J. Y.

    2016-11-15

    The present work concerns the development of a W sources assessment system in the framework of the tungsten-W environment in steady state tokamak project that aims at equipping the existing Tore Supra device with a tungsten divertor in order to test actively cooled tungsten Plasma Facing Components (PFCs) in view of preparing ITER operation. The goal is to assess W sources and D recycling with spectral, spatial, and temporal resolution adapted to the PFCs observed. The originality of the system is that all optical elements are installed in the vacuum vessel and compatible with steady state operation. Our system ismore » optimized to measure radiance as low as 10{sup 16} Ph/(m{sup 2} s sr). A total of 240 optical fibers will be deployed to the detection systems such as the “Filterscope,” developed by Oak Ridge National Laboratory (USA) and consisting of photomultiplier tubes and filters, or imaging spectrometers dedicated to Multiview analysis.« less

Top