Flexible Piezoelectric Sensor-Based Gait Recognition.
Cha, Youngsu; Kim, Hojoon; Kim, Doik
2018-02-05
Most motion recognition research has required tight-fitting suits for precise sensing. However, tight-suit systems have difficulty adapting to real applications, because people normally wear loose clothes. In this paper, we propose a gait recognition system with flexible piezoelectric sensors in loose clothing. The gait recognition system does not directly sense lower-body angles. It does, however, detect the transition between standing and walking. Specifically, we use the signals from the flexible sensors attached to the knee and hip parts on loose pants. We detect the periodic motion component using the discrete time Fourier series from the signal during walking. We adapt the gait detection method to a real-time patient motion and posture monitoring system. In the monitoring system, the gait recognition operates well. Finally, we test the gait recognition system with 10 subjects, for which the proposed system successfully detects walking with a success rate over 93 %.
Automated Detection of a Crossing Contact Based on Its Doppler Shift
2009-03-01
contacts in passive sonar systems. A common approach is the application of high- gain processing followed by successive classification criteria. Most...contacts in passive sonar systems. A common approach is the application of high-gain processing followed by successive classification criteria...RESEARCH MOTIVATION The trade-off between the false alarm and detection probability is fundamental in radar and sonar . (Chevalier, 2002) A common
A Review of Transmission Diagnostics Research at NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Zakajsek, James J.
1994-01-01
This paper presents a summary of the transmission diagnostics research work conducted at NASA Lewis Research Center over the last four years. In 1990, the Transmission Health and Usage Monitoring Research Team at NASA Lewis conducted a survey to determine the critical needs of the diagnostics community. Survey results indicated that experimental verification of gear and bearing fault detection methods, improved fault detection in planetary systems, and damage magnitude assessment and prognostics research were all critical to a highly reliable health and usage monitoring system. In response to this, a variety of transmission fault detection methods were applied to experimentally obtained fatigue data. Failure modes of the fatigue data include a variety of gear pitting failures, tooth wear, tooth fracture, and bearing spalling failures. Overall results indicate that, of the gear fault detection techniques, no one method can successfully detect all possible failure modes. The more successful methods need to be integrated into a single more reliable detection technique. A recently developed method, NA4, in addition to being one of the more successful gear fault detection methods, was also found to exhibit damage magnitude estimation capabilities.
The von Neumann model of measurement in quantum mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, Pier A.
2014-01-08
We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in a dynamical way. We first discuss single measurements, where the system proper is coupled to one probe with arbitrary coupling strength. The goal is to obtain information on the system detecting the probe position. We find the reduced density operator of the system, and show how Lüders rule emerges as the limiting case of strong coupling. The vonmore » Neumann model is then generalized to two probes that interact successively with the system proper. Now we find information on the system by detecting the position-position and momentum-position correlations of the two probes. The so-called 'Wigner's formula' emerges in the strong-coupling limit, while 'Kirkwood's quasi-probability distribution' is found as the weak-coupling limit of the above formalism. We show that successive measurements can be used to develop a state-reconstruction scheme. Finally, we find a generalized transform of the state and the observables based on the notion of successive measurements.« less
COBRA ATD minefield detection results for the Joint Countermine ACTD Demonstrations
NASA Astrophysics Data System (ADS)
Stetson, Suzanne P.; Witherspoon, Ned H.; Holloway, John H., Jr.; Suiter, Harold R.; Crosby, Frank J.; Hilton, Russell J.; McCarley, Karen A.
2000-08-01
The Coastal Battlefield Reconnaissance and Analysis)COBRA) system described here was a Marine Corps Advanced Technology Demonstration (ATD) development consisting of an unmanned aerial vehicle (UAV) airborne multispectral video sensor system and ground station which processes the multispectral video data to automatically detect minefields along the flight path. After successful completion of the ATD, the residual COBRA ATD system participated in the Joint Countermine (JCM) Advanced Concept Technology Demonstration (ACTD) Demo I held at Camp Lejeune, North Carolina in conjunction with JTFX97 and Demo II held in Stephenville, Newfoundland in conjunction with MARCOT98. These exercises demonstrated the COBRA ATD system in an operational environment, detecting minefields that included several different mine types in widely varying backgrounds. The COBRA system performed superbly during these demonstrations, detecting mines under water, in the surf zone, on the beach, and inland, and has transitioned to an acquisition program. This paper describes the COBRA operation and performance results for these demonstrations, which represent the first demonstrated capability for remote tactical minefield detection from a UAV. The successful COBRA technologies and techniques demonstrated for tactical UAV minefield detection in the Joint Countermine Advanced Concept Technology Demonstrations have formed the technical foundation for future developments in Marine Corps, Navy, and Army tactical remote airborne mine detection systems.
Nemoto, Mitsutaka; Hayashi, Naoto; Hanaoka, Shouhei; Nomura, Yukihiro; Miki, Soichiro; Yoshikawa, Takeharu
2017-10-01
We propose a generalized framework for developing computer-aided detection (CADe) systems whose characteristics depend only on those of the training dataset. The purpose of this study is to show the feasibility of the framework. Two different CADe systems were experimentally developed by a prototype of the framework, but with different training datasets. The CADe systems include four components; preprocessing, candidate area extraction, candidate detection, and candidate classification. Four pretrained algorithms with dedicated optimization/setting methods corresponding to the respective components were prepared in advance. The pretrained algorithms were sequentially trained in the order of processing of the components. In this study, two different datasets, brain MRA with cerebral aneurysms and chest CT with lung nodules, were collected to develop two different types of CADe systems in the framework. The performances of the developed CADe systems were evaluated by threefold cross-validation. The CADe systems for detecting cerebral aneurysms in brain MRAs and for detecting lung nodules in chest CTs were successfully developed using the respective datasets. The framework was shown to be feasible by the successful development of the two different types of CADe systems. The feasibility of this framework shows promise for a new paradigm in the development of CADe systems: development of CADe systems without any lesion specific algorithm designing.
Stewart, S C; Rapnicki, P; Lewis, J R; Perala, M
2007-09-01
The ability of a commercially available panel reader system to read International Standards Organization-compliant electronic identification devices under commercial dairy conditions was examined. Full duplex (FDX-B) and half-duplex (HDX) low frequency radio-frequency identification external ear tags were utilized. The study involved 498 Holstein cows in the final 6 wk of gestation. There were 516 total electronic identification devices (n = 334 HDX and n = 182 FDX-B). Eighteen FDX-B were replaced with HDX during the study due to repeated detection failure. There were 6,679 HDX and 3,401 FDX-B device detection attempts. There were 220 (2.2%) unsuccessful and 9,860 (97.8%) successful identification detection attempts. There were 9 unsuccessful detection attempts for HDX (6,670/6,679 = 99.9% successful detection attempts) and 211 unsuccessful detection attempts for FDX-B (3,190/3,401 = 93.8% successful detection attempts). These results demonstrate that this panel system can achieve high detection rates of HDX devices and meet the needs of the most demanding management applications. The FDX-B detection rate was not sufficient for the most demanding applications, requiring a high degree of detection by panel readers. The lower FDX-B rate may not be inherent in the device technology itself, but could be due to other factors, including the particular panel reader utilized or the tuning of the panel reader.
Fluorescence-Raman Dual Modal Endoscopic System for Multiplexed Molecular Diagnostics
NASA Astrophysics Data System (ADS)
Jeong, Sinyoung; Kim, Yong-Il; Kang, Homan; Kim, Gunsung; Cha, Myeong Geun; Chang, Hyejin; Jung, Kyung Oh; Kim, Young-Hwa; Jun, Bong-Hyun; Hwang, Do Won; Lee, Yun-Sang; Youn, Hyewon; Lee, Yoon-Sik; Kang, Keon Wook; Lee, Dong Soo; Jeong, Dae Hong
2015-03-01
Optical endoscopic imaging, which was recently equipped with bioluminescence, fluorescence, and Raman scattering, allows minimally invasive real-time detection of pathologies on the surface of hollow organs. To characterize pathologic lesions in a multiplexed way, we developed a dual modal fluorescence-Raman endomicroscopic system (FRES), which used fluorescence and surface-enhanced Raman scattering nanoprobes (F-SERS dots). Real-time, in vivo, and multiple target detection of a specific cancer was successful, based on the fast imaging capability of fluorescence signals and the multiplex capability of simultaneously detected SERS signals using an optical fiber bundle for intraoperative endoscopic system. Human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR) on the breast cancer xenografts in a mouse orthotopic model were successfully detected in a multiplexed way, illustrating the potential of FRES as a molecular diagnostic instrument that enables real-time tumor characterization of receptors during routine endoscopic procedures.
An Analysis of the Magneto-Optic Imaging System
NASA Technical Reports Server (NTRS)
Nath, Shridhar
1996-01-01
The Magneto-Optic Imaging system is being used for the detection of defects in airframes and other aircraft structures. The system has been successfully applied to detecting surface cracks, but has difficulty in the detection of sub-surface defects such as corrosion. The intent of the grant was to understand the physics of the MOI better, in order to use it effectively for detecting corrosion and for classifying surface defects. Finite element analysis, image classification, and image processing are addressed.
A universal DNA-based protein detection system.
Tran, Thua N N; Cui, Jinhui; Hartman, Mark R; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C; Lis, John T; Cui, Haixin; Luo, Dan
2013-09-25
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability.
A Universal DNA-Based Protein Detection System
Tran, Thua N. N.; Cui, Jinhui; Hartman, Mark R.; Peng, Songming; Funabashi, Hisakage; Duan, Faping; Yang, Dayong; March, John C.; Lis, John T.; Cui, Haixin; Luo, Dan
2014-01-01
Protein immune detection requires secondary antibodies which must be carefully selected in order to avoid interspecies cross-reactivity, and is therefore restricted by the limited availability of primary/secondary antibody pairs. Here we present a versatile DNA-based protein detection system using a universal adapter to interface between IgG antibodies and DNA-modified reporter molecules. As a demonstration of this capability, we successfully used DNA nano-barcodes, quantum dots, and horseradish peroxidase enzyme to detect multiple proteins using our DNA-based labeling system. Our system not only eliminates secondary antibodies but also serves as a novel method platform for protein detection with modularity, high capacity, and multiplexed capability. PMID:23978265
Choi, Won Jung; Moon, Jin-Hee; Min, Jae Seok; Song, Yong Keun; Lee, Seung A; Ahn, Jin Woo; Lee, Sang Hun; Jung, Ha Chul
2018-03-01
During minimally invasive surgery (MIS), it is impossible to directly detect marked clips around tumors via palpation. Therefore, we developed a novel method and device using Radio Frequency IDentification (RFID) technology to detect the position of clips during minimally invasive gastrectomy or colectomy. The feasibility of the RFID-based detection system was evaluated in an animal experiment consisting of seven swine. The primary outcome was to successfully detect the location of RFID clips in the stomach and colon. The secondary outcome measures were to detect time (time during the intracorporeal detection of the RFID clip), and accuracy (distance between the RFID clip and the detected site). A total of 25 detection attempts (14 in the stomach and 11 in the colon) using the RFID antenna had a 100% success rate. The median detection time was 32.5 s (range, 15-119 s) for the stomach and 28.0 s (range, 8-87 s) for the colon. The median detection distance was 6.5 mm (range, 4-18 mm) for the stomach and 6.0 mm (range, 3-13 mm) for the colon. We demonstrated favorable results for a RFID system that detects the position of gastric and colon tumors in real-time during MIS. © 2017 Wiley Periodicals, Inc.
Optimization of Second Fault Detection Thresholds to Maximize Mission POS
NASA Technical Reports Server (NTRS)
Anzalone, Evan
2018-01-01
In order to support manned spaceflight safety requirements, the Space Launch System (SLS) has defined program-level requirements for key systems to ensure successful operation under single fault conditions. To accommodate this with regards to Navigation, the SLS utilizes an internally redundant Inertial Navigation System (INS) with built-in capability to detect, isolate, and recover from first failure conditions and still maintain adherence to performance requirements. The unit utilizes multiple hardware- and software-level techniques to enable detection, isolation, and recovery from these events in terms of its built-in Fault Detection, Isolation, and Recovery (FDIR) algorithms. Successful operation is defined in terms of sufficient navigation accuracy at insertion while operating under worst case single sensor outages (gyroscope and accelerometer faults at launch). In addition to first fault detection and recovery, the SLS program has also levied requirements relating to the capability of the INS to detect a second fault, tracking any unacceptable uncertainty in knowledge of the vehicle's state. This detection functionality is required in order to feed abort analysis and ensure crew safety. Increases in navigation state error and sensor faults can drive the vehicle outside of its operational as-designed environments and outside of its performance envelope causing loss of mission, or worse, loss of crew. The criteria for operation under second faults allows for a larger set of achievable missions in terms of potential fault conditions, due to the INS operating at the edge of its capability. As this performance is defined and controlled at the vehicle level, it allows for the use of system level margins to increase probability of mission success on the operational edges of the design space. Due to the implications of the vehicle response to abort conditions (such as a potentially failed INS), it is important to consider a wide range of failure scenarios in terms of both magnitude and time. As such, the Navigation team is taking advantage of the INS's capability to schedule and change fault detection thresholds in flight. These values are optimized along a nominal trajectory in order to maximize probability of mission success, and reducing the probability of false positives (defined as when the INS would report a second fault condition resulting in loss of mission, but the vehicle would still meet insertion requirements within system-level margins). This paper will describe an optimization approach using Genetic Algorithms to tune the threshold parameters to maximize vehicle resilience to second fault events as a function of potential fault magnitude and time of fault over an ascent mission profile. The analysis approach, and performance assessment of the results will be presented to demonstrate the applicability of this process to second fault detection to maximize mission probability of success.
Turksoy, Kamuran; Samadi, Sediqeh; Feng, Jianyuan; Littlejohn, Elizabeth; Quinn, Laurie; Cinar, Ali
2016-01-01
A novel meal-detection algorithm is developed based on continuous glucose measurements. Bergman's minimal model is modified and used in an unscented Kalman filter for state estimations. The estimated rate of appearance of glucose is used for meal detection. Data from nine subjects are used to assess the performance of the algorithm. The results indicate that the proposed algorithm works successfully with high accuracy. The average change in glucose levels between the meals and the detection points is 16(±9.42) [mg/dl] for 61 successfully detected meals and snacks. The algorithm is developed as a new module of an integrated multivariable adaptive artificial pancreas control system. Meal detection with the proposed method is used to administer insulin boluses and prevent most of postprandial hyperglycemia without any manual meal announcements. A novel meal bolus calculation method is proposed and tested with the UVA/Padova simulator. The results indicate significant reduction in hyperglycemia.
Early distinction system of mine fire in underground by using a neural-network system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohga, Kotaro; Higuchi, Kiyoshi
1996-12-31
In our laboratory, a new detection system using smell detectors was developed to detect the spontaneous combustion of coal and the combustion of other materials used underground. The results of experiments clearly the combustion of materials can be detected earlier by this detection system than by conventional detectors for gas and smoke, and there were significant differences between output data from each smell detector for coal, rubber, oil and wood. In order to discern the source of combustion gases, we have been developing a distinction system using a neural-network system. It has shown successful results in laboratory tests. This papermore » describes our detection system using smell detectors and our distinction system which uses a neural-network system, and presents results of experiments using both systems.« less
Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection.
Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae
2017-06-12
Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan-Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities.
Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection †
Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae
2017-01-01
Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan–Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities. PMID:28604628
Low ground clearance vehicle detection and warning.
DOT National Transportation Integrated Search
2015-06-01
A Low Ground Clearance Vehicle Detection : System (LGCVDS) determines if a commercial : motor vehicle can successfully clear a highwayrail : grade crossing and notifies the driver when : his or her vehicle cannot safely traverse the : crossing. That ...
Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection
NASA Astrophysics Data System (ADS)
Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng
2018-02-01
Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.
Study on the Automatic Detection Method and System of Multifunctional Hydrocephalus Shunt
NASA Astrophysics Data System (ADS)
Sun, Xuan; Wang, Guangzhen; Dong, Quancheng; Li, Yuzhong
2017-07-01
Aiming to the difficulty of micro pressure detection and the difficulty of micro flow control in the testing process of hydrocephalus shunt, the principle of the shunt performance detection was analyzed.In this study, the author analyzed the principle of several items of shunt performance detection,and used advanced micro pressure sensor and micro flow peristaltic pump to overcome the micro pressure detection and micro flow control technology.At the same time,This study also puted many common experimental projects integrated, and successfully developed the automatic detection system for a shunt performance detection function, to achieve a test with high precision, high efficiency and automation.
Protecting against cyber threats in networked information systems
NASA Astrophysics Data System (ADS)
Ertoz, Levent; Lazarevic, Aleksandar; Eilertson, Eric; Tan, Pang-Ning; Dokas, Paul; Kumar, Vipin; Srivastava, Jaideep
2003-07-01
This paper provides an overview of our efforts in detecting cyber attacks in networked information systems. Traditional signature based techniques for detecting cyber attacks can only detect previously known intrusions and are useless against novel attacks and emerging threats. Our current research at the University of Minnesota is focused on developing data mining techniques to automatically detect attacks against computer networks and systems. This research is being conducted as a part of MINDS (Minnesota Intrusion Detection System) project at the University of Minnesota. Experimental results on live network traffic at the University of Minnesota show that the new techniques show great promise in detecting novel intrusions. In particular, during the past few months our techniques have been successful in automatically identifying several novel intrusions that could not be detected using state-of-the-art tools such as SNORT.
Multimodal sensing strategies for detecting transparent barriers indoors from a mobile platform
NASA Astrophysics Data System (ADS)
Acevedo, Isaiah; Kleine, R. Kaleb; Kraus, Dustan; Mascareñas, David
2015-04-01
There is currently an interest in developing mobile sensing platforms that fly indoors. The primary goal for these platforms is to be able to successfully navigate a building under various lighting and environmental conditions. There are numerous research challenges associated with this goal, one of which is the platform's ability to detect and identify the presence of transparent barriers. Transparent barriers could include windows, glass partitions, or skylights. For example, in order to successfully navigate inside of a structure, these platforms will need to sense if a space contains a transparent barrier and whether or not this space can be traversed. This project's focus has been developing a multimodal sensing system that can successfully identify such transparent barriers under various lighting conditions while aboard a mobile platform. Along with detecting transparent barriers, this sensing platform is capable of distinguishing between reflective, opaque, and transparent barriers. It will be critical for this system to be able to identify transparent barriers in real-time in order for the navigation system to maneuver accordingly. The properties associated with the interaction between various frequencies of light and transparent materials were one of the techniques leveraged to solve this problem.
A fiber-optic ice detection system for large-scale wind turbine blades
NASA Astrophysics Data System (ADS)
Kim, Dae-gil; Sampath, Umesh; Kim, Hyunjin; Song, Minho
2017-09-01
Icing causes substantial problems in the integrity of large-scale wind turbines. In this work, a fiber-optic sensor system for detection of icing with an arrayed waveguide grating is presented. The sensor system detects Fresnel reflections from the ends of the fibers. The transition in Fresnel reflection due to icing gives peculiar intensity variations, which categorizes the ice, the water, and the air medium on the wind turbine blades. From the experimental results, with the proposed sensor system, the formation of icing conditions and thickness of ice were identified successfully in real time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cester, D.; Lunardon, M.; Stevanato, L.
2015-07-01
MODES SNM project aimed to carry out technical research in order to develop a prototype for a mobile, modular detection system for radioactive sources and Special Nuclear Materials (SNM). Its main goal was to deliver a tested prototype of a modular mobile system capable of passively detecting weak or shielded radioactive sources with accuracy higher than that of currently available systems. By the end of the project all the objectives have been successfully achieved. Results from the laboratory commissioning and the field tests will be presented. (authors)
ERIC Educational Resources Information Center
Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.
2011-01-01
Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the…
Hazardous sign detection for safety applications in traffic monitoring
NASA Astrophysics Data System (ADS)
Benesova, Wanda; Kottman, Michal; Sidla, Oliver
2012-01-01
The transportation of hazardous goods in public streets systems can pose severe safety threats in case of accidents. One of the solutions for these problems is an automatic detection and registration of vehicles which are marked with dangerous goods signs. We present a prototype system which can detect a trained set of signs in high resolution images under real-world conditions. This paper compares two different methods for the detection: bag of visual words (BoW) procedure and our approach presented as pairs of visual words with Hough voting. The results of an extended series of experiments are provided in this paper. The experiments show that the size of visual vocabulary is crucial and can significantly affect the recognition success rate. Different code-book sizes have been evaluated for this detection task. The best result of the first method BoW was 67% successfully recognized hazardous signs, whereas the second method proposed in this paper - pairs of visual words and Hough voting - reached 94% of correctly detected signs. The experiments are designed to verify the usability of the two proposed approaches in a real-world scenario.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parmeter, J.E.; Custer, C.A.
This project was supported by LDRD funding for the development and preliminary testing of a portable narcotics detection system. The system developed combines a commercial trace detector known as an ion mobility spectrometer (IMS) with a preconcentrator originally designed by Department 5848 for the collection of explosives molecules. The detector and preconcentrator were combined along with all necessary accessories onto a push cart, thus yielding a fully portable detection unit. Preliminary testing with both explosives and narcotics molecules shown that the system is operational, and that it can successfully detect drugs as marijuana, methamphetamine (speed), and cocaine based on theirmore » characteristics IMS signatures.« less
2016-08-10
enable JCS managers to detect advanced cyber attacks, mitigate the effects of those attacks, and recover their networks following an attack. It also... managers of ICS networks to Detect, Mitigate, and Recover from nation-state-level cyber attacks (strategic, deliberate, well-trained, and funded...Successful Detection of cyber anomalies is best achieved when IT and ICS managers remain in close coordination. The Integrity Checks Table
Automatic laser beam alignment using blob detection for an environment monitoring spectroscopy
NASA Astrophysics Data System (ADS)
Khidir, Jarjees; Chen, Youhua; Anderson, Gary
2013-05-01
This paper describes a fully automated system to align an infra-red laser beam with a small retro-reflector over a wide range of distances. The component development and test were especially used for an open-path spectrometer gas detection system. Using blob detection under OpenCV library, an automatic alignment algorithm was designed to achieve fast and accurate target detection in a complex background environment. Test results are presented to show that the proposed algorithm has been successfully applied to various target distances and environment conditions.
SSME leak detection feasibility investigation by utilization of infrared sensor technology
NASA Technical Reports Server (NTRS)
Shohadaee, Ahmad A.; Crawford, Roger A.
1990-01-01
This investigation examined the potential of using state-of-the-art technology of infrared (IR) thermal imaging systems combined with computer, digital image processing and expert systems for Space Shuttle Main Engines (SSME) propellant path peak detection as an early warning system of imminent engine failure. A low-cost, laboratory experiment was devised and an experimental approach was established. The system was installed, checked out, and data were successfully acquired demonstrating the proof-of-concept. The conclusion from this investigation is that both numerical and experimental results indicate that the leak detection by using infrared sensor technology proved to be feasible for a rocket engine health monitoring system.
Danger detection and escape behaviour in wood crickets.
Dupuy, Fabienne; Casas, Jérôme; Body, Mélanie; Lazzari, Claudio R
2011-07-01
The wind-sensitive cercal system of Orthopteroid insects that mediates the detection of the approach of a predator is a very sensitive sensory system. It has been intensively analysed from a behavioural and neurobiological point of view, and constitutes a classical model system in neuroethology. The escape behaviour is triggered in orthopteroids by the detection of air-currents produced by approaching objects, allowing these insects to keep away from potential dangers. Nevertheless, escape behaviour has not been studied in terms of success. Moreover, an attacking predator is more than "air movement", it is also a visible moving entity. The sensory basis of predator detection is thus probably more complex than the perception of air movement by the cerci. We have used a piston mimicking an attacking running predator for a quantitative evaluation of the escape behaviour of wood crickets Nemobius sylvestris. The movement of the piston not only generates air movement, but it can be seen by the insect and can touch it as a natural predator. This procedure allowed us to study the escape behaviour in terms of detection and also in terms of success. Our results showed that 5-52% of crickets that detected the piston thrust were indeed touched. Crickets escaped to stimulation from behind better than to a stimulation from the front, even though they detected the approaching object similarly in both cases. After cerci ablation, 48% crickets were still able to detect a piston approaching from behind (compared with 79% of detection in intact insects) and 24% crickets escaped successfully (compared with 62% in the case of intact insects). So, cerci play a major role in the detection of an approaching object but other mechanoreceptors or sensory modalities are implicated in this detection. It is not possible to assure that other sensory modalities participate (in the case of intact animals) in the behaviour; rather, than in the absence of cerci other sensory modalities can partially mediate the behaviour. Nevertheless, neither antennae nor eyes seem to be used for detecting approaching objects, as their inactivation did not reduce their detection and escape abilities in the presence of cerci. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lawrence L.C. Jones; Martin G. Raphael
1993-01-01
Inexpensive camera systems have been successfully used to detect the occurrence of martens, fishers, and other wildlife species. The use of cameras is becoming widespread, and we give suggestions for standardizing techniques so that comparisons of data can occur across the geographic range of the target species. Details are given on equipment needs, setting up the...
Flight test results of the strapdown ring laser gyro tetrad inertial navigation system
NASA Technical Reports Server (NTRS)
Carestia, R. A.; Hruby, R. J.; Bjorkman, W. S.
1983-01-01
A helicopter flight test program undertaken to evaluate the performance of Tetrad (a strap down, laser gyro, inertial navigation system) is described. The results of 34 flights show a mean final navigational velocity error of 5.06 knots, with a standard deviation of 3.84 knots; a corresponding mean final position error of 2.66 n. mi., with a standard deviation of 1.48 n. mi.; and a modeled mean position error growth rate for the 34 tests of 1.96 knots, with a standard deviation of 1.09 knots. No laser gyro or accelerometer failures were detected during the flight tests. Off line parity residual studies used simulated failures with the prerecorded flight test and laboratory test data. The airborne Tetrad system's failure--detection logic, exercised during the tests, successfully demonstrated the detection of simulated ""hard'' failures and the system's ability to continue successfully to navigate by removing the simulated faulted sensor from the computations. Tetrad's four ring laser gyros provided reliable and accurate angular rate sensing during the 4 yr of the test program, and no sensor failures were detected during the evaluation of free inertial navigation performance.
Multiple sensory modalities used by squid in successful predator evasion throughout ontogeny.
York, Carly A; Bartol, Ian K; Krueger, Paul S
2016-09-15
Squid rely on multiple sensory systems for predator detection. In this study we examine the role of two sensory systems, the lateral line analogue and vision, in successful predator evasion throughout ontogeny. Squid Doryteuthis pealeii and Lolliguncula brevis were recorded using high-speed videography in the presence of natural predators under light and dark conditions with their lateral line analogue intact or ablated via a pharmacological technique. Paralarval squid showed reduced escape responses when ablated; however, no differences were found between light and dark conditions in non-ablated paralarvae, as was previously shown in juveniles and adults, indicating that the lateral line analogue is integral for predator detection early in life. However, vision does play a role in survival because ablated squid in dark conditions had lower levels of survival than all other treatments. Throughout ontogeny, squid oriented themselves anteriorly towards the oncoming predator, maximizing sensory input to the lateral line analogue system and providing better positioning for tail-first escape jetting, the preferred escape mode. Ablated juveniles and adults had lower response times, escape velocities and peak acceleration than non-ablated individuals, indicating that the lateral line analogue enables squid to respond quicker and with more powerful jets to a predator and maximize escape success. Our findings reveal that the lateral line analogue plays a role in predator detection and successful escape response at the earliest life stages, and continues to contribute to successful evasion by aiding visual cues in juvenile and adult squid. © 2016. Published by The Company of Biologists Ltd.
Inductive System Monitors Tasks
NASA Technical Reports Server (NTRS)
2008-01-01
The Inductive Monitoring System (IMS) software developed at Ames Research Center uses artificial intelligence and data mining techniques to build system-monitoring knowledge bases from archived or simulated sensor data. This information is then used to detect unusual or anomalous behavior that may indicate an impending system failure. Currently helping analyze data from systems that help fly and maintain the space shuttle and the International Space Station (ISS), the IMS has also been employed by data classes are then used to build a monitoring knowledge base. In real time, IMS performs monitoring functions: determining and displaying the degree of deviation from nominal performance. IMS trend analyses can detect conditions that may indicate a failure or required system maintenance. The development of IMS was motivated by the difficulty of producing detailed diagnostic models of some system components due to complexity or unavailability of design information. Successful applications have ranged from real-time monitoring of aircraft engine and control systems to anomaly detection in space shuttle and ISS data. IMS was used on shuttle missions STS-121, STS-115, and STS-116 to search the Wing Leading Edge Impact Detection System (WLEIDS) data for signs of possible damaging impacts during launch. It independently verified findings of the WLEIDS Mission Evaluation Room (MER) analysts and indicated additional points of interest that were subsequently investigated by the MER team. In support of the Exploration Systems Mission Directorate, IMS is being deployed as an anomaly detection tool on ISS mission control consoles in the Johnson Space Center Mission Operations Directorate. IMS has been trained to detect faults in the ISS Control Moment Gyroscope (CMG) systems. In laboratory tests, it has already detected several minor anomalies in real-time CMG data. When tested on archived data, IMS was able to detect precursors of the CMG1 failure nearly 15 hours in advance of the actual failure event. In the Aeronautics Research Mission Directorate, IMS successfully performed real-time engine health analysis. IMS was able to detect simulated failures and actual engine anomalies in an F/A-18 aircraft during the course of 25 test flights. IMS is also being used in colla
Nonadiabatic tapered optical fiber sensor for measuring interaction nicotine with DNA
NASA Astrophysics Data System (ADS)
Zibaii, M. I.; Latifi, H.; Pourbeyram, H.; Gholami, M.; Taghipour, Z.; Saeedian, Z.; Hosseini, S. M.
2011-05-01
A nonadiabatic tapered optical fiber sensor was utilized for studying of bimolecular interactions including DNA-DNA and DNA-Drug interaction. This work presents a simple evanescent wave sensing system based on an interferometric approach, suitable to meet the requirements of lable-free sensor systems for detecting biomolecular interactions. We have demonstrated the measuring refractive index and the real time detection of interactions between biomolecules. Furthermore basic experiments were carried out, for detecting the hybridization of 25-mer DNA with an immobilized counterpart on the surface. The overall shift after the successful DNA hybridization was 9.5 nm. In this work, a new approach for studying DNA-drug interactions was successfully tested. Nicotine as a carcinogenic compound in cigarette smoke plays an important role in interaction with DNA. Different concentrations of nicotine were applied to observe the Longmuir interaction with DNA.
Wang, Han; Liu, Zhongzheng; Kim, Sungman; Koo, Chiwan; Cho, Younghak; Jang, Dong-Young; Kim, Yong-Joe; Han, Arum
2014-03-07
Detecting and quantifying extremely low concentrations of oil from the environment have broad applications in oil spill monitoring in ocean and coastal areas as well as in oil leakage monitoring on land. Currently available methods for low-concentration oil detection are bulky or costly with limited sensitivities. Thus they are difficult to be used as portable and field-deployable detectors in the case of oil spills or for monitoring the long-term effects of dispersed oil on marine and coastal ecosystems. Here, we present a low-concentration oil droplet trapping and detection microfluidic system based on the acoustophoresis phenomenon where oil droplets in water having a negative acoustic contrast factor move towards acoustic pressure anti-nodes. By trapping oil droplets from water samples flowing through a microfluidic channel, even very low concentrations of oil droplets can be concentrated to a detectable level for further analyses, which is a significant improvement over currently available oil detection systems. Oil droplets in water were successfully trapped and accumulated in a circular acoustophoretic trapping chamber of the microfluidic device and detected using a custom-built compact fluorescent detector based on the natural fluorescence of the trapped crude oil droplets. After the on-line detection, crude oil droplets released from the trapping chamber were successfully separated into a collection outlet by acoustophoretic force for further off-chip analyses. The developed microfluidic system provides a new way of trapping, detecting, and separating low-concentration crude oil from environmental water samples and holds promise as a low-cost field-deployable oil detector with extremely high sensitivity. The microfluidic system and operation principle are expected to be utilized in a wide range of applications where separating, concentrating, and detecting small particles having a negative acoustic contrast factor are required.
Automated feature extraction in color retinal images by a model based approach.
Li, Huiqi; Chutatape, Opas
2004-02-01
Color retinal photography is an important tool to detect the evidence of various eye diseases. Novel methods to extract the main features in color retinal images have been developed in this paper. Principal component analysis is employed to locate optic disk; A modified active shape model is proposed in the shape detection of optic disk; A fundus coordinate system is established to provide a better description of the features in the retinal images; An approach to detect exudates by the combined region growing and edge detection is proposed. The success rates of disk localization, disk boundary detection, and fovea localization are 99%, 94%, and 100%, respectively. The sensitivity and specificity of exudate detection are 100% and 71%, correspondingly. The success of the proposed algorithms can be attributed to the utilization of the model-based methods. The detection and analysis could be applied to automatic mass screening and diagnosis of the retinal diseases.
Nozari, Nazbanou; Dell, Gary S.; Schwartz, Myrna F.
2011-01-01
Despite the existence of speech errors, verbal communication is successful because speakers can detect (and correct) their errors. The standard theory of speech-error detection, the perceptual-loop account, posits that the comprehension system monitors production output for errors. Such a comprehension-based monitor, however, cannot explain the double dissociation between comprehension and error-detection ability observed in the aphasic patients. We propose a new theory of speech-error detection which is instead based on the production process itself. The theory borrows from studies of forced-choice-response tasks the notion that error detection is accomplished by monitoring response conflict via a frontal brain structure, such as the anterior cingulate cortex. We adapt this idea to the two-step model of word production, and test the model-derived predictions on a sample of aphasic patients. Our results show a strong correlation between patients’ error-detection ability and the model’s characterization of their production skills, and no significant correlation between error detection and comprehension measures, thus supporting a production-based monitor, generally, and the implemented conflict-based monitor in particular. The successful application of the conflict-based theory to error-detection in linguistic, as well as non-linguistic domains points to a domain-general monitoring system. PMID:21652015
Feature Detection of Curve Traffic Sign Image on The Bandung - Jakarta Highway
NASA Astrophysics Data System (ADS)
Naseer, M.; Supriadi, I.; Supangkat, S. H.
2018-03-01
Unsealed roadside and problems with the road surface are common causes of road crashes, particularly when those are combined with curves. Curve traffic sign is an important component for giving early warning to driver on traffic, especially on high-speed traffic like on the highway. Traffic sign detection has became a very interesting research now, and in this paper will be discussed about the detection of curve traffic sign. There are two types of curve signs are discussed, namely the curve turn to the left and the curve turn to the right and the all data sample used are the curves taken / recorded from some signs on the Bandung - Jakarta Highway. Feature detection of the curve signs use Speed Up Robust Feature (SURF) method, where the detected scene image is 800x450. From 45 curve turn to the right images, the system can detect the feature well to 35 images, where the success rate is 77,78%, while from the 45 curve turn to the left images, the system can detect the feature well to 34 images and the success rate is 75,56%, so the average accuracy in the detection process is 76,67%. While the average time for the detection process is 0.411 seconds.
An airborne laser fluorosensor for the detection of oil on water
NASA Technical Reports Server (NTRS)
Kim, H. H.; Hickman, G. D.
1973-01-01
The successful operation of an airborne laser fluorosensor system is reported that makes it possible to detect and map surface oil, either of natural-seepage or spill origin, on large bodies of water. Preliminary results indicate that the sensitivity of the instrument exceeds that of conventional passive remote sensors currently available for oil spill detection.
Hazard detection and avoidance sensor for NASA's planetary landers
NASA Technical Reports Server (NTRS)
Lau, Brian; Chao, Tien-Hsin
1992-01-01
An optical terrain analysis based sensor system specifically designed for landing hazard detection as required for NASA's autonomous planetary landers is introduced. This optical hazard detection and avoidance (HDA) sensor utilizes an optoelectronic wedge-and-ting (WRD) filter for Fourier transformed feature extraction and an electronic neural network processor for pattern classification. A fully implemented optical HDA sensor would assure safe landing of the planetary landers. Computer simulation results of a successful feasibility study is reported. Future research for hardware system implementation is also provided.
NASA Astrophysics Data System (ADS)
Gao, Pengzhi; Wang, Meng; Chow, Joe H.; Ghiocel, Scott G.; Fardanesh, Bruce; Stefopoulos, George; Razanousky, Michael P.
2016-11-01
This paper presents a new framework of identifying a series of cyber data attacks on power system synchrophasor measurements. We focus on detecting "unobservable" cyber data attacks that cannot be detected by any existing method that purely relies on measurements received at one time instant. Leveraging the approximate low-rank property of phasor measurement unit (PMU) data, we formulate the identification problem of successive unobservable cyber attacks as a matrix decomposition problem of a low-rank matrix plus a transformed column-sparse matrix. We propose a convex-optimization-based method and provide its theoretical guarantee in the data identification. Numerical experiments on actual PMU data from the Central New York power system and synthetic data are conducted to verify the effectiveness of the proposed method.
NIITEK-NVESD AMDS program and interim field-ready system
NASA Astrophysics Data System (ADS)
Hibbard, Mark W.; Etebari, Ali
2010-04-01
NIITEK (Non-Intrusive Inspection Technology, Inc) develops and fields vehicle-mounted mine and buried threat detection systems. Since 2003, the NIITEK has developed and tested a remote robot-mounted mine detection system for use in the NVESD AMDS program. This paper will discuss the road map of development since the outset of the program, including transition from a data collection platform towards a militarized field-ready system for immediate use as a remote countermine and buried threat detection solution with real-time autonomous threat classification. The detection system payload has been integrated on both the iRobot Packbot and the Foster-Miller Talon robot. This brief will discuss the requirements for a successful near-term system, the progressive development of the system, our current real-time capabilities, and our planned upgrades for moving into and supporting field testing, evaluation, and ongoing operation.
Monitoring Fires from Space: a case study in transitioning from research to applications
NASA Astrophysics Data System (ADS)
Justice, C. O.; Giglio, L.; Vadrevu, K. P.; Csiszar, I. A.; Schroeder, W.; Davies, D.
2012-12-01
This paper discusses the heritage and relationships between science and applications in the context of global satellite-based fire monitoring. The development of algorithms for satellite-based fire detection has been supported primarily by NASA for the polar orbiters with a global focus, and initially by NOAA and more recently by EUMETSAT for the geostationary satellites, with a regional focus. As the feasibility and importance of space-based fire monitoring was recognized, satellite missions were designed to include fire detection capabilities. As a result, the algorithms and accuracy of the detections have improved. Due to the role of fire in the Earth System and its relevance to society, at each step in the development of the sensing capability the research has made a transition into fire-related applications to such an extent that there is now broad use of these data worldwide. The origin of the polar-orbiting satellite fire detection capability was with the AVHRR sensor beginning in the early 1980s, but was transformed with the launch of the EOS MODIS instruments, which included sensor characteristics specifically for fire detection. NASA gave considerable emphasis on the accuracy assessment of the fire detection and the development of fire characterization and burned area products from MODIS. Collaboration between the MODIS Fire Team and the RSAC USFS, initiated in the context of the Montana wildfires of 2001, prompted the development of a Rapid Response System for fire data and eventually led to operational use of MODIS data by the USFS for strategic fire monitoring. Building on this success, the Fire Information for Resource Management Systems (FIRMS) project was funded by NASA Applications to further develop products and services for the fire information community. The FIRMS was developed as a web-based geospatial tool, offering a range of geospatial data services, including SMS text messaging and is now widely used. This system, developed in the research domain, has now been successfully moved to an operational home at the UN FAO, as the Global Fire Information Management System (GFIMS). With a view to operational data continuity, the Suomi-NPP/JPSS VIIRS system was also designed with a fire detection capability, and is providing promising results for fire monitoring both from the standard operational production system and experimental product enhancements. International coordination on fire observations and outreach has been successfully developed under the GOFC GOLD program.
Li, Feng
2015-07-01
This review paper is based on our research experience in the past 30 years. The importance of radiologists' role is discussed in the development or evaluation of new medical images and of computer-aided detection (CAD) schemes in chest radiology. The four main topics include (1) introducing what diseases can be included in a research database for different imaging techniques or CAD systems and what imaging database can be built by radiologists, (2) understanding how radiologists' subjective judgment can be combined with technical objective features to improve CAD performance, (3) sharing our experience in the design of successful observer performance studies, and (4) finally, discussing whether the new images and CAD systems can improve radiologists' diagnostic ability in chest radiology. In conclusion, advanced imaging techniques and detection/classification of CAD systems have a potential clinical impact on improvement of radiologists' diagnostic ability, for both the detection and the differential diagnosis of various lung diseases, in chest radiology.
Interference Information Based Power Control for Cognitive Radio with Multi-Hop Cooperative Sensing
NASA Astrophysics Data System (ADS)
Yu, Youngjin; Murata, Hidekazu; Yamamoto, Koji; Yoshida, Susumu
Reliable detection of other radio systems is crucial for systems that share the same frequency band. In wireless communication channels, there is uncertainty in the received signal level due to multipath fading and shadowing. Cooperative sensing techniques in which radio stations share their sensing information can improve the detection probability of other systems. In this paper, a new cooperative sensing scheme that reduces the false detection probability while maintaining the outage probability of other systems is investigated. In the proposed system, sensing information is collected using multi-hop transmission from all sensing stations that detect other systems, and transmission decisions are based on the received sensing information. The proposed system also controls the transmit power based on the received CINRs from the sensing stations. Simulation results reveal that the proposed system can reduce the outage probability of other systems, or improve its link success probability.
Active Tensor Magnetic Gradiometer System
2007-11-01
Modify Forward Computer Models .............................................................................................2 Modify TMGS Simulator...active magnetic gradient measurement system are based upon the existing tensor magnetic gradiometer system ( TMGS ) developed under project MM-1328...Magnetic Gradiometer System ( TMGS ) for UXO Detection, Imaging, and Discrimination.” The TMGS developed under MM-1328 was successfully tested at the
Design and experiment of a neural signal detection using a FES driving system.
Zonghao, Huang; Zhigong, Wang; Xiaoying, Lu; Wenyuan, Li; Xiaoyan, Shen; Xintai, Zhao; Shushan, Xie; Haixian, Pan; Cunliang, Zhu
2010-01-01
The channel bridging, signal regenerating, and functional rebuilding of injured nerves is one of the most important issues in life science research. In recent years, some progresses in the research area have been made in repairing injured nerves with microelectronic neural bridge. Based on the previous work, this paper presents a neural signal detection and functional electrical stimulation (FES) driving system with using high performance operational amplifiers, which has been realized. The experimental results show that the designed system meets requirements. In animal experiments, sciatic nerve signal detection, regeneration and function rebuilding between two toads have been accomplished successfully by using the designed system.
Programmed Pathogen Sense and Destroy Circuits
2009-02-18
detection and the peptide-mediated Com QS system of Bacillus subtilis for gram-positive detection. Together these two prototype sentinel circuits cover a...and E. coli. We are currently in the process of constructing receivers for a gram-positive pathogen, Bacillus subtilis . Gram-negative...QS signals. Figure 11: Gram positive QS systems. Agr QS of Staphylococcus aureus (left) and Com QS of Bacillus subtilis . Following the successful
Redundancy management of multiple KT-70 inertial measurement units applicable to the space shuttle
NASA Technical Reports Server (NTRS)
Cook, L. J.
1975-01-01
Results of an investigation of velocity failure detection and isolation for 3 inertial measuring units (IMU) and 2 inertial measuring units (IMU) configurations are presented. The failure detection and isolation algorithm performance was highly successful and most types of velocity errors were detected and isolated. The failure detection and isolation algorithm also included attitude FDI but was not evaluated because of the lack of time and low resolution in the gimbal angle synchro outputs. The shuttle KT-70 IMUs will have dual-speed resolvers and high resolution gimbal angle readouts. It was demonstrated by these tests that a single computer utilizing a serial data bus can successfully control a redundant 3-IMU system and perform FDI.
Development of lightweight structural health monitoring systems for aerospace applications
NASA Astrophysics Data System (ADS)
Pearson, Matthew
This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy harvesting. A study into impact damage detection using the techniques showed the successful detection and location of damage. Also the feasibility of the embedded transducers for power generation was assessed..
Systemic diseases and their treatments in the elderly: impact on oral health.
Ghezzi, E M; Ship, J A
2000-01-01
The lifespan of the US population is increasing, with the elderly desiring successful aging. This goal is jeopardized as multiple systemic conditions and their treatments become more prevalent with age, causing impaired systemic and oral health and influencing an older person's quality of life. To obtain successful aging, a compression of morbidity must be obtained through prevention and management of disease. This paper describes the most common systemic diseases causing morbidity and mortality in persons aged 65+ years: diseases of the heart, malignant neoplasms, cerebrovascular diseases, chronic obstructive pulmonary disease, pneumonia, influenza, diabetes mellitus, trauma, Alzheimer's disease, renal diseases, septicemia, and liver diseases. Disease prevalence and the impact of medications and other therapeutic measures used to treat these conditions are discussed. Oral sequelae are reviewed with guidelines for early detection of these deleterious consequences, considerations for oral treatment, and patient management. An understanding of the impact of systemic diseases and treatment on oral health is imperative for dental practitioners to appropriately treat and manage older patients with these conditions. With a focus on early detection and prevention, oral health care providers can improve the quality of life of this population and aid in the attainment of successful aging.
A passive infrared ice detection technique for helicopter applications
NASA Technical Reports Server (NTRS)
Dershowitz, Adam L.; Hansman, R. John, Jr.
1991-01-01
A technique has been developed, and successfully tested, to detect icing remotely on helicopter rotor blades. Using passive infrared (IR) thermometry it is possible to detect the warming caused by latent heat released as supercooled water freezes. During icing, the ice accretion region on the leading edge of the blade is found to be warmer than the uniced trailing edge resulting in a chordwise temperature profile characteristic of icing. Preliminary tests, using an IR Thermal video system, were conducted on a static model in the NASA Icing Research Tunnel (IRT) for a variety of wet (glaze) and dry (rime) ice conditions. A prototype detector system was built consisting of a single point IR pyrometer, and experiments were run on a small scale rotor model. Using this prototype detector, the characteristic chordwise temperature profiles were again observed for a range of icing conditions. Several signal processing methods were investigated, to allow automatic recognition of the icing signature. Additionally, several implementation issues were considered. Based on both the static and subscale rotor tests, where ice was successfully detected, the passive IR technique appears to be promising for rotor ice detection.
Hot-Spot Fatigue and Impact Damage Detection on a Helicopter Tailboom
2011-09-01
other 14 PZT disks were used as sensors. Among the 28 PZT disks, 16 PZT disks were placed in the two fatigue hot-spot areas to detect cracks initiated...more efficient and effective airframe maintenance, fatigue cracking and impact damage detection technologies were developed and demonstrated on a...SHM system in successfully monitoring fatigue cracks initiated from cyclical loading conditions; detecting, locating and quantifying ballistic
B-Spline Filtering for Automatic Detection of Calcification Lesions in Mammograms
NASA Astrophysics Data System (ADS)
Bueno, G.; Sánchez, S.; Ruiz, M.
2006-10-01
Breast cancer continues to be an important health problem between women population. Early detection is the only way to improve breast cancer prognosis and significantly reduce women mortality. It is by using CAD systems that radiologist can improve their ability to detect, and classify lesions in mammograms. In this study the usefulness of using B-spline based on a gradient scheme and compared to wavelet and adaptative filtering has been investigated for calcification lesion detection and as part of CAD systems. The technique has been applied to different density tissues. A qualitative validation shows the success of the method.
Failure Detecting Method of Fault Current Limiter System with Rectifier
NASA Astrophysics Data System (ADS)
Tokuda, Noriaki; Matsubara, Yoshio; Asano, Masakuni; Ohkuma, Takeshi; Sato, Yoshibumi; Takahashi, Yoshihisa
A fault current limiter (FCL) is extensively needed to suppress fault current, particularly required for trunk power systems connecting high-voltage transmission lines, such as 500kV class power system which constitutes the nucleus of the electric power system. We proposed a new type FCL system (rectifier type FCL), consisting of solid-state diodes, DC reactor and bypass AC reactor, and demonstrated the excellent performances of this FCL by developing the small 6.6kV and 66kV model. It is important to detect the failure of power devices used in the rectifier under the normal operating condition, for keeping the excellent reliability of the power system. In this paper, we have proposed a new failure detecting method of power devices most suitable for the rectifier type FCL. This failure detecting system is simple and compact. We have adapted the proposed system to the 66kV prototype single-phase model and successfully demonstrated to detect the failure of power devices.
QUANTITATIVE MEASUREMENT OF HELICOBACTER PYLORI BY THE TAQMAN FLUOROGENIC PROBE SYSTEM
Culturing of H. pylori from environmental sources continues to be an obstacle in detecting and enumerating this organism. Successful methods of isolation and growth from water samples have not yet been developed. In this study a method involving real tme PCR product detection wit...
Fabrication of microfluidic integrated biosensor
NASA Astrophysics Data System (ADS)
Adam, Tijjani; Dhahi, Th S.; Mohammed, Mohammed; Hashim, U.; Noriman, N. Z.; Dahham, Omar S.
2017-09-01
An event of miniaturizing for sensor systems to carry out biological diagnostics are gaining wade spread acceptance. The system may contain several different sensor units for the detection of specific analyte, the analyte to be detected might be any kind of biological molecules (DNA, mRNA or proteins) or chemical substances. In most cases, the detection is based on receptor-ligand binding like DNA hybridization or antibody-antigen interaction, achieving this on a nanostructure. DNA or protein must be attached to certain locations within the structure. Critical for this is to have a robust binding chemistry to the surface in the microstructure. Here we successfully designed and fabricated microfluidics element for passive fluid delivery into polysilicon Nanowire sensing domain, we further demonstrated a very simple and effective way of integrating the two devices to give full functionalities of laboratory on a single chip. The sensing element was successfully surface modified and tested on real biomedical clinical sample for evaluation and validation.
A miniaturised image based fluorescence detection system for point-of-care-testing of cocaine abuse
NASA Astrophysics Data System (ADS)
Walczak, Rafał; Krüger, Jan; Moynihan, Shane
2015-08-01
In this paper, we describe a miniaturised image-based fluorescence detection system and demonstrate its viability as a highly sensitive tool for point-of-care-analysis of drugs of abuse in human sweat with a focus on monitor individuals for drugs of abuse. Investigations of miniaturised and low power optoelectronic configurations and methodologies for real-time image analysis were successfully carried out. The miniaturised fluorescence detection system was validated against a reference detection system under controlled laboratory conditions by analysing spiked sweat samples in dip stick and then strip with sample pad. As a result of the validation studies, a 1 ng mL-1 limit of detection of cocaine in sweat and full agreement of test results with the reference detection system can be reported. Results of the investigations open the way towards a detection system that integrates a hand-held fluorescence reader and a wearable skinpatch, and which can collect and in situ analyse sweat for the presence of cocaine at any point for up to tenths hours.
Anazawa, Takashi; Yamazaki, Motohiro
2017-12-05
Although multi-point, multi-color fluorescence-detection systems are widely used in various sciences, they would find wider applications if they are miniaturized. Accordingly, an ultra-small, four-emission-point and four-color fluorescence-detection system was developed. Its size (space between emission points and a detection plane) is 15 × 10 × 12 mm, which is three-orders-of-magnitude smaller than that of a conventional system. Fluorescence from four emission points with an interval of 1 mm on the same plane was respectively collimated by four lenses and split into four color fluxes by four dichroic mirrors. Then, a total of sixteen parallel color fluxes were directly input into an image sensor and simultaneously detected. The emission-point plane and the detection plane (the image-sensor surface) were parallel and separated by a distance of only 12 mm. The developed system was applied to four-capillary array electrophoresis and successfully achieved Sanger DNA sequencing. Moreover, compared with a conventional system, the developed system had equivalent high fluorescence-detection sensitivity (lower detection limit of 17 pM dROX) and 1.6-orders-of-magnitude higher dynamic range (4.3 orders of magnitude).
Development of a real-time microchip PCR system for portable plant disease diagnosis.
Koo, Chiwan; Malapi-Wight, Martha; Kim, Hyun Soo; Cifci, Osman S; Vaughn-Diaz, Vanessa L; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C; Shim, Won-Bo; Han, Arum
2013-01-01
Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25 × 16 × 8 cm(3) in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample.
Development of a Real-Time Microchip PCR System for Portable Plant Disease Diagnosis
Kim, Hyun Soo; Cifci, Osman S.; Vaughn-Diaz, Vanessa L.; Ma, Bo; Kim, Sungman; Abdel-Raziq, Haron; Ong, Kevin; Jo, Young-Ki; Gross, Dennis C.; Shim, Won-Bo; Han, Arum
2013-01-01
Rapid and accurate detection of plant pathogens in the field is crucial to prevent the proliferation of infected crops. Polymerase chain reaction (PCR) process is the most reliable and accepted method for plant pathogen diagnosis, however current conventional PCR machines are not portable and require additional post-processing steps to detect the amplified DNA (amplicon) of pathogens. Real-time PCR can directly quantify the amplicon during the DNA amplification without the need for post processing, thus more suitable for field operations, however still takes time and require large instruments that are costly and not portable. Microchip PCR systems have emerged in the past decade to miniaturize conventional PCR systems and to reduce operation time and cost. Real-time microchip PCR systems have also emerged, but unfortunately all reported portable real-time microchip PCR systems require various auxiliary instruments. Here we present a stand-alone real-time microchip PCR system composed of a PCR reaction chamber microchip with integrated thin-film heater, a compact fluorescence detector to detect amplified DNA, a microcontroller to control the entire thermocycling operation with data acquisition capability, and a battery. The entire system is 25×16×8 cm3 in size and 843 g in weight. The disposable microchip requires only 8-µl sample volume and a single PCR run consumes 110 mAh of power. A DNA extraction protocol, notably without the use of liquid nitrogen, chemicals, and other large lab equipment, was developed for field operations. The developed real-time microchip PCR system and the DNA extraction protocol were used to successfully detect six different fungal and bacterial plant pathogens with 100% success rate to a detection limit of 5 ng/8 µl sample. PMID:24349341
Acoustic intrusion detection and positioning system
NASA Astrophysics Data System (ADS)
Berman, Ohad; Zalevsky, Zeev
2002-08-01
Acoustic sensors are becoming more and more applicable as a military battlefield technology. Those sensors allow a detection and direciton estimation with low false alarm rate and high probability of detection. The recent technological progress related to these fields of reserach, together with an evolution of sophisticated algorithms, allow the successful integration of those sensoe in battlefield technologies. In this paper the performances of an acoustic sensor for a detection of avionic vessels is investigated and analyzed.
Flat Surface Damage Detection System (FSDDS)
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina
2013-01-01
The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bueno, G.; Ruiz, M.; Sanchez, S
Breast cancer continues to be an important health problem between women population. Early detection is the only way to improve breast cancer prognosis and significantly reduce women mortality. It is by using CAD systems that radiologist can improve their ability to detect, and classify lesions in mammograms. In this study the usefulness of using B-spline based on a gradient scheme and compared to wavelet and adaptative filtering has been investigated for calcification lesion detection and as part of CAD systems. The technique has been applied to different density tissues. A qualitative validation shows the success of the method.
Moghimi, Fatemeh Hoda; Cheung, Michael; Wickramasinghe, Nilmini
2013-01-01
Healthcare is an information rich industry where successful outcomes require the processing of multi-spectral data and sound decision making. The exponential growth of data and big data issues coupled with a rapid increase of service demands in healthcare contexts today, requires a robust framework enabled by IT (information technology) solutions as well as real-time service handling in order to ensure superior decision making and successful healthcare outcomes. Such a context is appropriate for the application of real time intelligent risk detection decision support systems using predictive analytic techniques such as data mining. To illustrate the power and potential of data science technologies in healthcare decision making scenarios, the use of an intelligent risk detection (IRD) model is proffered for the context of Congenital Heart Disease (CHD) in children, an area which requires complex high risk decisions that need to be made expeditiously and accurately in order to ensure successful healthcare outcomes.
Flight Tests of the Turbulence Prediction and Warning System (TPAWS)
NASA Technical Reports Server (NTRS)
Hamilton, David W.; Proctor, Fred H.; Ahmad, Nashat N.
2012-01-01
Flight tests of the National Aeronautics and Space Administration's Turbulence Prediction And Warning System (TPAWS) were conducted in the Fall of 2000 and Spring of 2002. TPAWS is a radar-based airborne turbulence detection system. During twelve flights, NASA's B-757 tallied 53 encounters with convectively induced turbulence. Analysis of data collected during 49 encounters in the Spring of 2002 showed that the TPAWS Airborne Turbulence Detection System (ATDS) successfully detected 80% of the events at least 30 seconds prior to the encounter, achieving FAA recommended performance criteria. Details of the flights, the prevailing weather conditions, and each of the turbulence events are presented in this report. Sensor and environmental characterizations are also provided.
Meyer, N; McMenamin, J; Robertson, C; Donaghy, M; Allardice, G; Cooper, D
2008-07-01
In 18 weeks, Health Protection Scotland (HPS) deployed a syndromic surveillance system to early-detect natural or intentional disease outbreaks during the G8 Summit 2005 at Gleneagles, Scotland. The system integrated clinical and non-clinical datasets. Clinical datasets included Accident & Emergency (A&E) syndromes, and General Practice (GPs) codes grouped into syndromes. Non-clinical data included telephone calls to a nurse helpline, laboratory test orders, and hotel staff absenteeism. A cumulative sum-based detection algorithm and a log-linear regression model identified signals in the data. The system had a fax-based track for real-time identification of unusual presentations. Ninety-five signals were triggered by the detection algorithms and four forms were faxed to HPS. Thirteen signals were investigated. The system successfully complemented a traditional surveillance system in identifying a small cluster of gastroenteritis among the police force and triggered interventions to prevent further cases.
NASA Technical Reports Server (NTRS)
Breckenridge, Jonathan T.; Johnson, Stephen B.
2013-01-01
This paper describes the core framework used to implement a Goal-Function Tree (GFT) based systems engineering process using the Systems Modeling Language. It defines a set of principles built upon by the theoretical approach described in the InfoTech 2013 ISHM paper titled "Goal-Function Tree Modeling for Systems Engineering and Fault Management" presented by Dr. Stephen B. Johnson. Using the SysML language, the principles in this paper describe the expansion of the SysML language as a baseline in order to: hierarchically describe a system, describe that system functionally within success space, and allocate detection mechanisms to success functions for system protection.
NASA Technical Reports Server (NTRS)
Borg, Stephen E.; Harper, Samuel E.
2001-01-01
This paper documents the design and development of the fiber-optic probes utilized in the flame detection systems used in NASA Langley Research Center's 8-Foot High Temperature Tunnel (8-ft HTT). Two independent flame detection systems are utilized to monitor the presence and stability of the main-burner and pilot-level flames during facility operation. Due to the harsh environment within the combustor, the successful development of a rugged and efficient fiber-optic probe was a critical milestone in the development of these flame detection systems. The final optical probe design for the two flame detection systems resulted from research that was conducted in Langley's 7-in High Temperature Pilot Tunnel (7-in HTT). A detailed description of the manufacturing process behind the optical probes used in the 8-ft HTT is provided in Appendix A of this report.
Remote sensing technologies are a class of instrument and sensor systems that include laser imageries, imaging spectrometers, and visible to thermal infrared cameras. These systems have been successfully used for gas phase chemical compound identification in a variety of field e...
Real-time radiography at the NECTAR facility
NASA Astrophysics Data System (ADS)
Bücherl, T.; Lierse von Gostomski, Ch.
2011-09-01
A feasibility study has shown that real-time radiography using fission neutrons is possible at the NECTAR facility, when using an improved detection system for fast variations (Bücherl et al., 2009 [1]). Continuing this study, real-time measurements of slowly varying processes like the water uptake in medium sized trunks (diameter about 12 cm) and of slow periodic processes (e.g. a slowly rotating iron disk) are investigated successfully using the existing detection system.
Change blindness and visual memory: visual representations get rich and act poor.
Varakin, D Alexander; Levin, Daniel T
2006-02-01
Change blindness is often taken as evidence that visual representations are impoverished, while successful recognition of specific objects is taken as evidence that they are richly detailed. In the current experiments, participants performed cover tasks that required each object in a display to be attended. Change detection trials were unexpectedly introduced and surprise recognition tests were given for nonchanging displays. For both change detection and recognition, participants had to distinguish objects from the same basic-level category, making it likely that specific visual information had to be used for successful performance. Although recognition was above chance, incidental change detection usually remained at floor. These results help reconcile demonstrations of poor change detection with demonstrations of good memory because they suggest that the capability to store visual information in memory is not reflected by the visual system's tendency to utilize these representations for purposes of detecting unexpected changes.
Zheng, Nuoyan; Huang, Xiahe; Yin, Bojiao; Wang, Dan; Xie, Qi
2012-12-01
Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.
NASA Astrophysics Data System (ADS)
Laudien, Robert; Schultze, Rainer; Wieser, Jochen
2010-10-01
In this contribution two analytical devices for the fast detection of security-relevant substances like narcotics and explosives are presented. One system is based on an ion trap mass spectrometer (ITMS) with single photon ionization (SPI). This soft ionization technique, unlike electron impact ionization (EI), reduces unwanted fragment ions in the mass spectra allowing the clear determination of characteristic (usually molecular) ions. Their enrichment in the ion trap and identification by tandem MS investigations (MS/MS) enables the detection of the target substances in complex matrices at low concentrations without time-consuming sample preparation. For SPI an electron beam pumped excimer light source of own fabrication (E-Lux) is used. The SPI-ITMS system was characterized by the analytical study of different drugs like cannabis, heroin, cocaine, amphetamines, and some precursors. Additionally, it was successfully tested on-site in a closed illegal drug laboratory, where low quantities of MDMA could be directly detected in samples from floors, walls and lab equipments. The second analytical system is based on an ion mobility (IM) spectrometer with resonant multiphoton ionization (REMPI). With the frequency quadrupled Nd:YAG laser (266 nm), used for ionization, a selective and sensitive detection of aromatic compounds is possible. By application of suited aromatic dopants, in addition, also non-aromatic polar compounds are accessible by ion molecule reactions like proton transfer or complex formation. Selected drug precursors could be successfully detected with this device as well, qualifying it to a lower-priced alternative or useful supplement of the SPI-ITMS system for security analysis.
NASA Technical Reports Server (NTRS)
Buechler, W.; Tucker, A. G.
1981-01-01
Several methods were employed to detect both the occurrence and source of errors in the operational software of the AN/SLQ-32. A large embedded real time electronic warfare command and control system for the ROLM 1606 computer are presented. The ROLM computer provides information about invalid addressing, improper use of privileged instructions, stack overflows, and unimplemented instructions. Additionally, software techniques were developed to detect invalid jumps, indices out of range, infinte loops, stack underflows, and field size errors. Finally, data are saved to provide information about the status of the system when an error is detected. This information includes I/O buffers, interrupt counts, stack contents, and recently passed locations. The various errors detected, techniques to assist in debugging problems, and segment simulation on a nontarget computer are discussed. These error detection techniques were a major factor in the success of finding the primary cause of error in 98% of over 500 system dumps.
Detecting Successful Student Profiles at an Open University: The Case of the UNED (Spain)
ERIC Educational Resources Information Center
Fernández-Avilés, Gema; Pérez-Zabaleta, Amelia; Martínez-Merino, Juan-Luis
2014-01-01
At present, one of the major issues and most interesting discussions within the European Higher Education Area is the rate of success in university-level study, and therefore the adaptation of today's university education system to society's requirements. Moreover, we have seen significant growth in distance education throughout recent decades, as…
Aerial surveillance for gas and liquid hydrocarbon pipelines using a flame ionization detector (FID)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riquetti, P.V.; Fletcher, J.I.; Minty, C.D.
1996-12-31
A novel application for the detection of airborne hydrocarbons has been successfully developed by means of a highly sensitive, fast responding Flame Ionization Detector (FID). The traditional way to monitor pipeline leaks has been by ground crews using specific sensors or by airborne crews highly trained to observe anomalies associated with leaks during periodic surveys of the pipeline right-of-way. The goal has been to detect leaks in a fast and cost effective way before the associated spill becomes a costly and hazardous problem. This paper describes a leak detection system combined with a global positioning system (GPS) and a computerizedmore » data output designed to pinpoint the presence of hydrocarbons in the air space of the pipeline`s right of way. Fixed wing aircraft as well as helicopters have been successfully used as airborne platforms. Natural gas, crude oil and finished products pipelines in Canada and the US have been surveyed using this technology with excellent correlation between the aircraft detection and in situ ground detection. The information obtained is processed with a proprietary software and reduced to simple coordinates. Results are transferred to ground crews to effect the necessary repairs.« less
USDA-ARS?s Scientific Manuscript database
Plant pathogen detection systems have been useful tools to monitor inoculum presence and initiate management schedules. More recently, a LAMP assay was successfully designed for field use in the grape powdery mildew pathosystem; however, false negatives or false positives were prevalent in grower-co...
DOT National Transportation Integrated Search
2015-04-01
California and Japan both experience frequent seismic activity, which is often damaging to infrastructure. Seismologists have : developed systems for detecting and analyzing earthquakes in real-time. JR East has developed systems to mitigate the : da...
Near-Earth Asteroid Tracking (NEAT): First Year Results
NASA Astrophysics Data System (ADS)
Helin, E. F.; Rabinowitz, D. L.; Pravdo, S. H.; Lawrence, K. J.
1997-07-01
The successful detection of Near-Earth Asteroids (NEAs) has been demonstrated by the Near-Earth Asteroid Tracking (NEAT) program at the Jet Propulsion Laboratory during its first year of operation. The NEAT CCD camera system is installed on the U. S. Air Force 1-m GEODSS telescope in Maui. Using state-of-the-art software and hardware, the system initiates nightly transmitted observing script from JPL, moves the telescopes for successive exposures of the selected fields, detects moving objects as faint as V=20.5 in 40 s exposures, determines their astrometric positions, and downloads the data for review at JPL in the morning. The NEAT system is detecting NEAs larger than 200m, comets, and other unique objects at a rate competitive with current operating systems, and bright enough for important physical studies on moderate-sized telescopes. NEAT has detected over 10,000 asteroids over a wide range of magnitudes, demonstrating the excellent capability of the NEAT system. Fifty-five percent of the detections are new objects and over 900 of them have been followed on a second night to receive designation from the Minor Planet Center. 14 NEAs (9 Amors, 4 Apollos, and 1 Aten) have been discovered since March 1996. Also, 2 long period comets and 1996 PW, an asteroidal object with an orbit of a long-period comet, with an eccentricity of 0.992 and orbital period of 5900 years. Program discoveries will be reviewed along with analysis of results pertaining to the discovery efficiency, distribution on the sky, range of orbits and magnitudes. Related abstract: Lawrence, K., et al., 1997 DPS
Damage Detection Sensor System for Aerospace and Multiple Applications
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy L.; Lane, John; Medelius, Pedro
2017-01-01
NASA has identified structural health monitoring and damage detection and verification as critical needs in multiple technology roadmaps. The sensor systems can be customized for detecting location, damage size, and depth, with velocity options and can be designed for particular environments for monitoring of impact or physical damage to a structure. The damage detection system has been successfully demonstrated in a harsh environment and remote integration tested over 1000 miles apart. Multiple applications includes: Spacecraft and Aircraft; Inflatable, Deployable and Expandable Structures; Space Debris Monitoring; Space Habitats; Military Shelters; Solar Arrays, Smart Garments and Wearables, Extravehicular activity (EVA) suits; Critical Hardware Enclosures; Embedded Composite Structures; and Flexible Hybrid Printed Electronics and Systems. For better implementation and infusion into more flexible architectures, important and improved designs in advancing embedded software and GUI interface, and increasing flexibility, modularity, and configurable capabilities of the system are currently being carried out.
Pino, Flavio; Ivandini, Tribidasari A; Nakata, Kazuya; Fujishima, Akira; Merkoçi, Arben; Einaga, Yasuaki
2015-01-01
A simple and reliable enzymatic system for organophosporus pesticide detection was successfully developed, by exploiting the synergy between the magnetic beads collection capacity and the outstanding electrochemistry property of boron-doped diamond electrodes. The determination of an organophosphate pesticide, chlorpyrifos (CPF), was performed based on the inhibition system of the enzyme acetylcholinesterase bonded to magnetic beads through a biotin-streptavidin complex system. A better sensitivity was found for a system with magnetic beads in the concentration range of 10(-9) to 10(-5) M. The estimated limits of detection based on IC10 (10% acetylcholinesterase (AChE) inhibition) have been detected and optimized to be 5.7 × 10(-10) M CPF. Spiked samples of water of Yokohama (Japan) have been measured to validate the efficiency of the enzymatic system. The results suggested that the use of magnetic beads to immobilize biomolecules or biosensing agents is suitable to maintain the superiority of BDD electrodes.
Optical demodulation system for digitally encoded suspension array in fluoroimmunoassay
NASA Astrophysics Data System (ADS)
He, Qinghua; Li, Dongmei; He, Yonghong; Guan, Tian; Zhang, Yilong; Shen, Zhiyuan; Chen, Xuejing; Liu, Siyu; Lu, Bangrong; Ji, Yanhong
2017-09-01
A laser-induced breakdown spectroscopy and fluorescence spectroscopy-coupled optical system is reported to demodulate digitally encoded suspension array in fluoroimmunoassay. It takes advantage of the plasma emissions of assembled elemental materials to digitally decode the suspension array, providing a more stable and accurate recognition to target biomolecules. By separating the decoding procedure of suspension array and adsorption quantity calculation of biomolecules into two independent channels, the cross talk between decoding and label signals in traditional methods had been successfully avoided, which promoted the accuracy of both processes and realized more sensitive quantitative detection of target biomolecules. We carried a multiplexed detection of several types of anti-IgG to verify the quantitative analysis performance of the system. A limit of detection of 1.48×10-10 M was achieved, demonstrating the detection sensitivity of the optical demodulation system.
Rickard, Rachel E; Young, Andrew M J; Gerdjikov, Todor V
2018-01-01
There is growing evidence that ongoing brain oscillations may represent a key regulator of attentional processes and as such may contribute to behavioral performance in psychophysical tasks. OFC appears to be involved in the top-down modulation of sensory processing; however, the specific contribution of ongoing OFC oscillations to perception has not been characterized. Here we used the rat whiskers as a model system to further characterize the relationship between cortical state and tactile detection. Head-fixed rats were trained to report the presence of a vibrotactile stimulus (frequency = 60 Hz, duration = 2 sec, deflection amplitude = 0.01-0.5 mm) applied to a single vibrissa. We calculated power spectra of local field potentials preceding the onset of near-threshold stimuli from microelectrodes chronically implanted in OFC and somatosensory cortex. We found a dissociation between slow oscillation power in the two regions in relation to detection probability: Higher OFC but not somatosensory delta power was associated with increased detection probability. Furthermore, coherence between OFC and barrel cortex was reduced preceding successful detection. Consistent with the role of OFC in attention, our results identify a cortical network whose activity is differentially modulated before successful tactile detection.
Online Phase Detection Using Wearable Sensors for Walking with a Robotic Prosthesis
Goršič, Maja; Kamnik, Roman; Ambrožič, Luka; Vitiello, Nicola; Lefeber, Dirk; Pasquini, Guido; Munih, Marko
2014-01-01
This paper presents a gait phase detection algorithm for providing feedback in walking with a robotic prosthesis. The algorithm utilizes the output signals of a wearable wireless sensory system incorporating sensorized shoe insoles and inertial measurement units attached to body segments. The principle of detecting transitions between gait phases is based on heuristic threshold rules, dividing a steady-state walking stride into four phases. For the evaluation of the algorithm, experiments with three amputees, walking with the robotic prosthesis and wearable sensors, were performed. Results show a high rate of successful detection for all four phases (the average success rate across all subjects >90%). A comparison of the proposed method to an off-line trained algorithm using hidden Markov models reveals a similar performance achieved without the need for learning dataset acquisition and previous model training. PMID:24521944
NASA Technical Reports Server (NTRS)
Delnore, Victor E. (Compiler)
1994-01-01
The Fifth (and Final) Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted jointly by the NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Hampton, Virginia, on September 28-30, 1993. The purpose of the meeting was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing; windshear modeling, flight management, and ground-based systems; airborne windshear detection systems; certification and regulatory issues; development and applications of sensors for wake vortex detection; and synthetic and enhanced vision systems.
Detection and Characterization of Micrometeoroid Impacts on LISA Pathfinder
NASA Astrophysics Data System (ADS)
Hourihane, S.; Littenberg, T.; Baker, J. G.; Pagane, N.; Slutsky, J. P.; Thorpe, J. I.
2017-12-01
LISA Pathfinder (LPF) was a joint ESA/NASA technology demonstration mission for the Laser Interferometer Space Antenna (LISA) gravitational wave observatory. LPF, the most sensitive accelerometer ever flown in space, was launched in December 2015 and successfully concluded its mission in July 2017. Due in part to LPFs success, LISA was selected by the European Space Agency for launch in the early 2030s. An ancillary benefit of LPFs capabilities made it a sensitive detector of micrometeoroid impacts. We report on the capabilities of LPF to detect and characterize impacts, and progress towards using those inferences to advance our understanding of the micrometeoroid environment in the solar system. In doing so, we assess the prospect of space-based gravitational wave observatories as micrometeoroid detection instruments.
Performance analysis of robust road sign identification
NASA Astrophysics Data System (ADS)
Ali, Nursabillilah M.; Mustafah, Y. M.; Rashid, N. K. A. M.
2013-12-01
This study describes performance analysis of a robust system for road sign identification that incorporated two stages of different algorithms. The proposed algorithms consist of HSV color filtering and PCA techniques respectively in detection and recognition stages. The proposed algorithms are able to detect the three standard types of colored images namely Red, Yellow and Blue. The hypothesis of the study is that road sign images can be used to detect and identify signs that are involved with the existence of occlusions and rotational changes. PCA is known as feature extraction technique that reduces dimensional size. The sign image can be easily recognized and identified by the PCA method as is has been used in many application areas. Based on the experimental result, it shows that the HSV is robust in road sign detection with minimum of 88% and 77% successful rate for non-partial and partial occlusions images. For successful recognition rates using PCA can be achieved in the range of 94-98%. The occurrences of all classes are recognized successfully is between 5% and 10% level of occlusions.
Automated System Checkout to Support Predictive Maintenance for the Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Patterson-Hine, Ann; Deb, Somnath; Kulkarni, Deepak; Wang, Yao; Lau, Sonie (Technical Monitor)
1998-01-01
The Propulsion Checkout and Control System (PCCS) is a predictive maintenance software system. The real-time checkout procedures and diagnostics are designed to detect components that need maintenance based on their condition, rather than using more conventional approaches such as scheduled or reliability centered maintenance. Predictive maintenance can reduce turn-around time and cost and increase safety as compared to conventional maintenance approaches. Real-time sensor validation, limit checking, statistical anomaly detection, and failure prediction based on simulation models are employed. Multi-signal models, useful for testability analysis during system design, are used during the operational phase to detect and isolate degraded or failed components. The TEAMS-RT real-time diagnostic engine was developed to utilize the multi-signal models by Qualtech Systems, Inc. Capability of predicting the maintenance condition was successfully demonstrated with a variety of data, from simulation to actual operation on the Integrated Propulsion Technology Demonstrator (IPTD) at Marshall Space Flight Center (MSFC). Playback of IPTD valve actuations for feature recognition updates identified an otherwise undetectable Main Propulsion System 12 inch prevalve degradation. The algorithms were loaded into the Propulsion Checkout and Control System for further development and are the first known application of predictive Integrated Vehicle Health Management to an operational cryogenic testbed. The software performed successfully in real-time, meeting the required performance goal of 1 second cycle time.
NASA Technical Reports Server (NTRS)
Trawny, Nikolas; Huertas, Andres; Luna, Michael E.; Villalpando, Carlos Y.; Martin, Keith E.; Carson, John M.; Johnson, Andrew E.; Restrepo, Carolina; Roback, Vincent E.
2015-01-01
The Hazard Detection System (HDS) is a component of the ALHAT (Autonomous Landing and Hazard Avoidance Technology) sensor suite, which together provide a lander Guidance, Navigation and Control (GN&C) system with the relevant measurements necessary to enable safe precision landing under any lighting conditions. The HDS consists of a stand-alone compute element (CE), an Inertial Measurement Unit (IMU), and a gimbaled flash LIDAR sensor that are used, in real-time, to generate a Digital Elevation Map (DEM) of the landing terrain, detect candidate safe landing sites for the vehicle through Hazard Detection (HD), and generate hazard-relative navigation (HRN) measurements used for safe precision landing. Following an extensive ground and helicopter test campaign, ALHAT was integrated onto the Morpheus rocket-powered terrestrial test vehicle in March 2014. Morpheus and ALHAT then performed five successful free flights at the simulated lunar hazard field constructed at the Shuttle Landing Facility (SLF) at Kennedy Space Center, for the first time testing the full system on a lunar-like approach geometry in a relevant dynamic environment. During these flights, the HDS successfully generated DEMs, correctly identified safe landing sites and provided HRN measurements to the vehicle, marking the first autonomous landing of a NASA rocket-powered vehicle in hazardous terrain. This paper provides a brief overview of the HDS architecture and describes its in-flight performance.
Laser Doppler technology applied to atmospheric environmental operating problems
NASA Technical Reports Server (NTRS)
Weaver, E. A.; Bilbro, J. W.; Dunkin, J. A.; Jeffreys, H. B.
1976-01-01
Carbon dioxide laser Doppler ground wind data were very favorably compared with data from standard anemometers. As a result of these measurements, two breadboard systems were developed for taking research data: a continuous wave velocimeter and a pulsed Doppler system. The scanning continuous wave laser Doppler velocimeter developed for detecting, tracking and measuring aircraft wake vortices was successfully tested at an airport where it located vortices to an accuracy of 3 meters at a range of 150 meters. The airborne pulsed laser Doppler system was developed to detect and measure clear air turbulence (CAT). This system was tested aboard an aircraft, but jet stream CAT was not encountered. However, low altitude turbulence in cumulus clouds near a mountain range was detected by the system and encountered by the aircraft at the predicted time.
Lensfree in-line holographic detection of bacteria
NASA Astrophysics Data System (ADS)
Poher, V.; Allier, C. P.; Coutard, J. G.; Hervé, L.; Dinten, J. M.
2011-07-01
Due to low light scattering, bacteria are difficult to detect using lensless imaging systems. In order to detect individual bacteria, we report a method based on a thin wetting film imaging that produces a micro-lens effect on top of each bacterium when the sample dries up. The imaging using a high-end CMOS sensor is combined with an in-line holographic reconstruction to improve positive detection rate up to 95% with micron-sized beads at high density of ~103 objects/mm2. The system allows detecting from single bacterium to densely packed objects (103 bacteria/μl) within 10μl sample. As an example, E.coli, Bacillus subtilis and Bacillus thuringiensis, has been successfully detected with strong signal to noise ratio across a 24mm2 field of view.
Detection of small molecules with a flow immunosensor
NASA Technical Reports Server (NTRS)
Kusterbeck, Anne W.; Ligler, Frances S.
1991-01-01
We describe the development of an easy-to-use sensor with widespread applications for detecting small molecules. The flow immunosensor can analyze discrete samples in under one minute or continuously monitor a flowing stream for the presence of specific analytes. This detection system is extremely specific, and achieves a level of sensitivity which meets or exceeds the detection limits reported for rival assays. Because the system is also compact, transportable, and automated, it has the potential to impact diverse areas. For example, the flow immunosensor has successfully detected drugs of abuse and explosives, and may well address many of the needs of the environmental community with respect to continuous monitoring for pollutants. Efforts are underway to engineer a portable device in the field.
NASA Astrophysics Data System (ADS)
Yamada, Masayoshi; Fukuzawa, Masayuki; Kitsunezuka, Yoshiki; Kishida, Jun; Nakamori, Nobuyuki; Kanamori, Hitoshi; Sakurai, Takashi; Kodama, Souichi
1995-05-01
In order to detect pulsation from a series of noisy ultrasound-echo moving images of a newborn baby's head for pediatric diagnosis, a digital image processing system capable of recording at the video rate and processing the recorded series of images was constructed. The time-sequence variations of each pixel value in a series of moving images were analyzed and then an algorithm based on Fourier transform was developed for the pulsation detection, noting that the pulsation associated with blood flow was periodically changed by heartbeat. Pulsation detection for pediatric diagnosis was successfully made from a series of noisy ultrasound-echo moving images of newborn baby's head by using the image processing system and the pulsation detection algorithm developed here.
NASA Astrophysics Data System (ADS)
Abdi, Abdi M.; Szu, Harold H.
2003-04-01
With the growing rate of interconnection among computer systems, network security is becoming a real challenge. Intrusion Detection System (IDS) is designed to protect the availability, confidentiality and integrity of critical network information systems. Today"s approach to network intrusion detection involves the use of rule-based expert systems to identify an indication of known attack or anomalies. However, these techniques are less successful in identifying today"s attacks. Hackers are perpetually inventing new and previously unanticipated techniques to compromise information infrastructure. This paper proposes a dynamic way of detecting network intruders on time serious data. The proposed approach consists of a two-step process. Firstly, obtaining an efficient multi-user detection method, employing the recently introduced complexity minimization approach as a generalization of a standard ICA. Secondly, we identified unsupervised learning neural network architecture based on Kohonen"s Self-Organizing Map for potential functional clustering. These two steps working together adaptively will provide a pseudo-real time novelty detection attribute to supplement the current intrusion detection statistical methodology.
Goal-Function Tree Modeling for Systems Engineering and Fault Management
NASA Technical Reports Server (NTRS)
Patterson, Jonathan D.; Johnson, Stephen B.
2013-01-01
The draft NASA Fault Management (FM) Handbook (2012) states that Fault Management (FM) is a "part of systems engineering", and that it "demands a system-level perspective" (NASAHDBK- 1002, 7). What, exactly, is the relationship between systems engineering and FM? To NASA, systems engineering (SE) is "the art and science of developing an operable system capable of meeting requirements within often opposed constraints" (NASA/SP-2007-6105, 3). Systems engineering starts with the elucidation and development of requirements, which set the goals that the system is to achieve. To achieve these goals, the systems engineer typically defines functions, and the functions in turn are the basis for design trades to determine the best means to perform the functions. System Health Management (SHM), by contrast, defines "the capabilities of a system that preserve the system's ability to function as intended" (Johnson et al., 2011, 3). Fault Management, in turn, is the operational subset of SHM, which detects current or future failures, and takes operational measures to prevent or respond to these failures. Failure, in turn, is the "unacceptable performance of intended function." (Johnson 2011, 605) Thus the relationship of SE to FM is that SE defines the functions and the design to perform those functions to meet system goals and requirements, while FM detects the inability to perform those functions and takes action. SHM and FM are in essence "the dark side" of SE. For every function to be performed (SE), there is the possibility that it is not successfully performed (SHM); FM defines the means to operationally detect and respond to this lack of success. We can also describe this in terms of goals: for every goal to be achieved, there is the possibility that it is not achieved; FM defines the means to operationally detect and respond to this inability to achieve the goal. This brief description of relationships between SE, SHM, and FM provide hints to a modeling approach to provide formal connectivity between the nominal (SE), and off-nominal (SHM and FM) aspects of functions and designs. This paper describes a formal modeling approach to the initial phases of the development process that integrates the nominal and off-nominal perspectives in a model that unites SE goals and functions of with the failure to achieve goals and functions (SHM/FM). This methodology and corresponding model, known as a Goal-Function Tree (GFT), provides a means to represent, decompose, and elaborate system goals and functions in a rigorous manner that connects directly to design through use of state variables that translate natural language requirements and goals into logical-physical state language. The state variable-based approach also provides the means to directly connect FM to the design, by specifying the range in which state variables must be controlled to achieve goals, and conversely, the failures that exist if system behavior go out-of-range. This in turn allows for the systems engineers and SHM/FM engineers to determine which state variables to monitor, and what action(s) to take should the system fail to achieve that goal. In sum, the GFT representation provides a unified approach to early-phase SE and FM development. This representation and methodology has been successfully developed and implemented using Systems Modeling Language (SysML) on the NASA Space Launch System (SLS) Program. It enabled early design trade studies of failure detection coverage to ensure complete detection coverage of all crew-threatening failures. The representation maps directly both to FM algorithm designs, and to failure scenario definitions needed for design analysis and testing. The GFT representation provided the basis for mapping of abort triggers into scenarios, both needed for initial, and successful quantitative analyses of abort effectiveness (detection and response to crew-threatening events).
Design of practical alignment device in KSTAR Thomson diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J. H., E-mail: jhlee@nfri.re.kr; University of Science and Technology; Lee, S. H.
2016-11-15
The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak’s Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broadmore » wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR’s Thomson scattering diagnostics.« less
Shuttlecock detection system for fully-autonomous badminton robot with two high-speed video cameras
NASA Astrophysics Data System (ADS)
Masunari, T.; Yamagami, K.; Mizuno, M.; Une, S.; Uotani, M.; Kanematsu, T.; Demachi, K.; Sano, S.; Nakamura, Y.; Suzuki, S.
2017-02-01
Two high-speed video cameras are successfully used to detect the motion of a flying shuttlecock of badminton. The shuttlecock detection system is applied to badminton robots that play badminton fully autonomously. The detection system measures the three dimensional position and velocity of a flying shuttlecock, and predicts the position where the shuttlecock falls to the ground. The badminton robot moves quickly to the position where the shuttle-cock falls to, and hits the shuttlecock back into the opponent's side of the court. In the game of badminton, there is a large audience, and some of them move behind a flying shuttlecock, which are a kind of background noise and makes it difficult to detect the motion of the shuttlecock. The present study demonstrates that such noises can be eliminated by the method of stereo imaging with two high-speed cameras.
Design of practical alignment device in KSTAR Thomson diagnostic.
Lee, J H; Lee, S H; Yamada, I
2016-11-01
The precise alignment of the laser path and collection optics in Thomson scattering measurements is essential for accurately determining electron temperature and density in tokamak experiments. For the last five years, during the development stage, the KSTAR tokamak's Thomson diagnostic system has had alignment fibers installed in its optical collection modules, but these lacked a proper alignment detection system. In order to address these difficulties, an alignment verifying detection device between lasers and an object field of collection optics is developed. The alignment detection device utilizes two types of filters: a narrow laser band wavelength for laser, and a broad wavelength filter for Thomson scattering signal. Four such alignment detection devices have been successfully developed for the KSTAR Thomson scattering system in this year, and these will be tested in KSTAR experiments in 2016. In this paper, we present the newly developed alignment detection device for KSTAR's Thomson scattering diagnostics.
Three-gas detection system with IR optical sensor based on NDIR technology
NASA Astrophysics Data System (ADS)
Tan, Qiulin; Tang, Licheng; Yang, Mingliang; Xue, Chenyang; Zhang, Wendong; Liu, Jun; Xiong, Jijun
2015-11-01
In this paper, a three-gas detection system with a environmental parameter compensation method is proposed based on Non-dispersive infra-red (NDIR) technique, which can be applied to detect multi-gas (methane, carbon dioxide and carbon monoxide). In this system, an IR source and four single-channel pyroelectric sensors are integrated in the miniature optical gas chamber successfully. Inner wall of the chamber coated with Au film is designed as paraboloids. The infrared light is reflected twice before reaching to detectors, thus increasing optical path. Besides, a compensation method is presented to overcome the influence in variation of environment (ambient temperature, humidity and pressure), thus leading to improve the accuracy in gas detection. Experimental results demonstrated that detection ranges are 0-50,000 ppm for CH4, 0-44,500 ppm for CO, 0-48,000 ppm for CO2 and the accuracy is ±0.05%.
ERIC Educational Resources Information Center
Humpherys, Sean LaMarc
2010-01-01
Given the increasing problem of fraud, crime, and national security threats, assessing credibility is a recurring research topic in Information Systems and in other disciplines. Decision support systems can help. But the success of the system depends on reliable cues that can distinguish deceptive/truthful behavior and on a proven classification…
Cizek, Karel; Prior, Chad; Thammakhet, Chongdee; Galik, Michal; Linker, Kevin; Tsui, Ray; Cagan, Avi; Wake, John; La Belle, Jeff; Wang, Joseph
2010-02-19
This article reports on an integrated explosive-preconcentration/electrochemical detection system for 2,4,6-trinitrotoluene (TNT) vapor. The challenges involved in such system integration are discussed. A hydrogel-coated screen-printed electrode is used for the detection of the thermally desorbed TNT from a preconcentration device using rapid square wave voltammetry. Optimization of the preconcentration system for desorption of TNT and subsequent electrochemical detection was conducted yielding a desorption temperature of 120 degrees C under a flow rate of 500 mL min(-1). Such conditions resulted in a characteristic electrochemical signal for TNT representing the multi-step reduction process. Quantitative measurements produced a linear signal dependence on TNT quantity exposed to the preconcentrator from 0.25 to 10 microg. Finally, the integrated device was successfully demonstrated using a sample of solid TNT located upstream of the preconcentrator. Copyright 2009 Elsevier B.V. All rights reserved.
Lee, Jinhee; Yoshida, Wataru; Abe, Koichi; Nakabayashi, Kazuhiko; Wakeda, Hironobu; Hata, Kenichiro; Marquette, Christophe A; Blum, Loïc J; Sode, Koji; Ikebukuro, Kazunori
2017-07-15
DNA methylation level at a certain gene region is considered as a new type of biomarker for diagnosis and its miniaturized and rapid detection system is required for diagnosis. Here we have developed a simple electrochemical detection system for DNA methylation using methyl CpG-binding domain (MBD) and a glucose dehydrogenase (GDH)-fused zinc finger protein. This analytical system consists of three steps: (1) methylated DNA collection by MBD, (2) PCR amplification of a target genomic region among collected methylated DNA, and (3) electrochemical detection of the PCR products using a GDH-fused zinc finger protein. With this system, we have successfully measured the methylation levels at the promoter region of the androgen receptor gene in 10 6 copies of genomic DNA extracted from PC3 and TSU-PR1 cancer cell lines. Since no sequence analysis or enzymatic digestion is required for this detection system, DNA methylation levels can be measured within 3h with a simple procedure. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Hoonsoo; Kim, Moon S; Lohumi, Santosh; Cho, Byoung-Kwan
2018-06-05
Extensive research has been conducted on non-destructive and rapid detection of melamine in powdered foods in the last decade. While Raman and near-infrared hyperspectral imaging techniques have been successful in terms of non-destructive and rapid measurement, they have limitations with respect to measurement time and detection capability, respectively. Therefore, the objective of this study was to develop a mercury cadmium telluride (MCT)-based short-wave infrared (SWIR) hyperspectral imaging system and algorithm to detect melamine quantitatively in milk powder. The SWIR hyperspectral imaging system consisted of a custom-designed illumination system, a SWIR hyperspectral camera, a data acquisition module and a sample transfer table. SWIR hyperspectral images were obtained for melamine-milk samples with different melamine concentrations, pure melamine and pure milk powder. Analysis of variance and the partial least squares regression method over the 1000-2500 nm wavelength region were used to develop an optimal model for detection. The results showed that a melamine concentration as low as 50 ppm in melamine-milk powder samples could be detected. Thus, the MCT-based SWIR hyperspectral imaging system has the potential for quantitative and qualitative detection of adulterants in powder samples.
Design and Development of Smart Medicine Box
NASA Astrophysics Data System (ADS)
Rosli, Ekbal; Husaini, Yusnira
2018-03-01
The Smart Medicine Box is successfully designed in helping the introvert patients taking their medicine without help of others. This project is to develop a robotic device that can assist patient to take medicine alone by implementing an IOT apps system for controlling the Smart Medicine Box where it will overcome an emotional disturbance experience by the introvert patients. There are four sensors such as PIR, IR, temperature and ultrasonic sensors use for the project. The purpose of PIR sensor is to detect hand movement near the device, while IR sensor is to detect the line follower on the floor. The LM 35 acts as the detection of the temperature inside the box and the ultrasonic acts as the detection of the obstacle in front of the device. The MIT Apps Invention 2 is used to develop an apps and collect the data from sensors through Arduino microcontroller. A proof of concept design has implemented and demonstrated successfully.
Towards a global flood detection system using social media
NASA Astrophysics Data System (ADS)
de Bruijn, Jens; de Moel, Hans; Jongman, Brenden; Aerts, Jeroen
2017-04-01
It is widely recognized that an early warning is critical in improving international disaster response. Analysis of social media in real-time can provide valuable information about an event or help to detect unexpected events. For successful and reliable detection systems that work globally, it is important that sufficient data is available and that the algorithm works both in data-rich and data-poor environments. In this study, both a new geotagging system and multi-level event detection system for flood hazards was developed using Twitter data. Geotagging algorithms that regard one tweet as a single document are well-studied. However, no algorithms exist that combine several sequential tweets mentioning keywords regarding a specific event type. Within the time frame of an event, multiple users use event related keywords that refer to the same place name. This notion allows us to treat several sequential tweets posted in the last 24 hours as one document. For all these tweets, we collect a series of spatial indicators given in the tweet metadata and extract additional topological indicators from the text. Using these indicators, we can reduce ambiguity and thus better estimate what locations are tweeted about. Using these localized tweets, Bayesian change-point analysis is used to find significant increases of tweets mentioning countries, provinces or towns. In data-poor environments detection of events on a country level is possible, while in other, data-rich, environments detection on a city level is achieved. Additionally, on a city-level we analyse the spatial dependence of mentioned places. If multiple places within a limited spatial extent are mentioned, detection confidence increases. We run the algorithm using 2 years of Twitter data with flood related keywords in 13 major languages and validate against a flood event database. We find that the geotagging algorithm yields significantly more data than previously developed algorithms and successfully deals with ambiguous place names. In addition, we show that our detection system can both quickly and reliably detect floods, even in countries where data is scarce, while achieving high detail in countries where more data is available.
P2P watch: personal health information detection in peer-to-peer file-sharing networks.
Sokolova, Marina; El Emam, Khaled; Arbuckle, Luk; Neri, Emilio; Rose, Sean; Jonker, Elizabeth
2012-07-09
Users of peer-to-peer (P2P) file-sharing networks risk the inadvertent disclosure of personal health information (PHI). In addition to potentially causing harm to the affected individuals, this can heighten the risk of data breaches for health information custodians. Automated PHI detection tools that crawl the P2P networks can identify PHI and alert custodians. While there has been previous work on the detection of personal information in electronic health records, there has been a dearth of research on the automated detection of PHI in heterogeneous user files. To build a system that accurately detects PHI in files sent through P2P file-sharing networks. The system, which we call P2P Watch, uses a pipeline of text processing techniques to automatically detect PHI in files exchanged through P2P networks. P2P Watch processes unstructured texts regardless of the file format, document type, and content. We developed P2P Watch to extract and analyze PHI in text files exchanged on P2P networks. We labeled texts as PHI if they contained identifiable information about a person (eg, name and date of birth) and specifics of the person's health (eg, diagnosis, prescriptions, and medical procedures). We evaluated the system's performance through its efficiency and effectiveness on 3924 files gathered from three P2P networks. P2P Watch successfully processed 3924 P2P files of unknown content. A manual examination of 1578 randomly selected files marked by the system as non-PHI confirmed that these files indeed did not contain PHI, making the false-negative detection rate equal to zero. Of 57 files marked by the system as PHI, all contained both personally identifiable information and health information: 11 files were PHI disclosures, and 46 files contained organizational materials such as unfilled insurance forms, job applications by medical professionals, and essays. PHI can be successfully detected in free-form textual files exchanged through P2P networks. Once the files with PHI are detected, affected individuals or data custodians can be alerted to take remedial action.
Incorporation of operator knowledge for improved HMDS GPR classification
NASA Astrophysics Data System (ADS)
Kennedy, Levi; McClelland, Jessee R.; Walters, Joshua R.
2012-06-01
The Husky Mine Detection System (HMDS) detects and alerts operators to potential threats observed in groundpenetrating RADAR (GPR) data. In the current system architecture, the classifiers have been trained using available data from multiple training sites. Changes in target types, clutter types, and operational conditions may result in statistical differences between the training data and the testing data for the underlying features used by the classifier, potentially resulting in an increased false alarm rate or a lower probability of detection for the system. In the current mode of operation, the automated detection system alerts the human operator when a target-like object is detected. The operator then uses data visualization software, contextual information, and human intuition to decide whether the alarm presented is an actual target or a false alarm. When the statistics of the training data and the testing data are mismatched, the automated detection system can overwhelm the analyst with an excessive number of false alarms. This is evident in the performance of and the data collected from deployed systems. This work demonstrates that analyst feedback can be successfully used to re-train a classifier to account for variable testing data statistics not originally captured in the initial training data.
Network Anomaly Detection Based on Wavelet Analysis
NASA Astrophysics Data System (ADS)
Lu, Wei; Ghorbani, Ali A.
2008-12-01
Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.
Okada, Sachiko; Nagase, Keisuke; Ito, Ayako; Ando, Fumihiko; Nakagawa, Yoshiaki; Okamoto, Kazuya; Kume, Naoto; Takemura, Tadamasa; Kuroda, Tomohiro; Yoshihara, Hiroyuki
2014-01-01
Comparison of financial indices helps to illustrate differences in operations and efficiency among similar hospitals. Outlier data tend to influence statistical indices, and so detection of outliers is desirable. Development of a methodology for financial outlier detection using information systems will help to reduce the time and effort required, eliminate the subjective elements in detection of outlier data, and improve the efficiency and quality of analysis. The purpose of this research was to develop such a methodology. Financial outliers were defined based on a case model. An outlier-detection method using the distances between cases in multi-dimensional space is proposed. Experiments using three diagnosis groups indicated successful detection of cases for which the profitability and income structure differed from other cases. Therefore, the method proposed here can be used to detect outliers. Copyright © 2013 John Wiley & Sons, Ltd.
Chen, Yuqi; Song, Yanyan; Wu, Fan; Liu, Wenting; Fu, Boshi; Feng, Bingkun; Zhou, Xiang
2015-04-25
A conveniently amplified DNA AND logic gate platform was designed for the highly sensitive detection of low-abundance DNA fragment inputs based on strand displacement reaction and rolling circle amplification strategy. Compared with others, this system can detect miRNAs in biological samples. The success of this strategy demonstrates the potential of DNA logic gates in disease diagnosis.
Li, Yongqian; Li, Xiaojuan; An, Qi; Zhang, Lixin
2017-01-01
A useful method for eliminating the detrimental effect of laser frequency instability on Brillouin signals by employing the self-heterodyne detection of Rayleigh and Brillouin scattering is presented. From the analysis of Brillouin scattering spectra from fibers with different lengths measured by heterodyne detection, the maximum usable pulse width immune to laser frequency instability is obtained to be about 4 µs in a self-heterodyne detection Brillouin optical time domain reflectometer (BOTDR) system using a broad-band laser with low frequency stability. Applying the self-heterodyne detection of Rayleigh and Brillouin scattering in BOTDR system, we successfully demonstrate that the detrimental effect of laser frequency instability on Brillouin signals can be eliminated effectively. Employing the broad-band laser modulated by a 130-ns wide pulse driven electro-optic modulator, the observed maximum errors in temperatures measured by the local heterodyne and self-heterodyne detection BOTDR systems are 7.9 °C and 1.2 °C, respectively. PMID:28335508
On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, H. T.
1998-09-08
A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less
Fibre optic portable rail vehicle detector
NASA Astrophysics Data System (ADS)
Kepak, Stanislav; Cubik, Jakub; Zavodny, Petr; Hejduk, Stanislav; Nedoma, Jan; Davidson, Alan; Vasinek, Vladimir
2016-12-01
During track maintenance operations, the early detection of oncoming rail vehicles is critical for the safety of maintenance personnel. In addition, the detection system should be simple to install at the trackside by minimally qualified personnel. Fibre optic based sensor systems have the inherent advantages of being passive, unaffected by radio frequency interference (RFI) and suffering very low signal attenuation. Such a system therefore represents a good alternative to conventional approaches such as ultrasonic based sensor systems. The proposed system consists of one or more passive fibre trackside sensors and an x86 processing unit located at the work site. The solid fibre connection between sensors and processing unit eliminates the risk of RFI. In addition, the detection system sensors are easy to install with no requirement for electrical power at the sensor site. The system was tested on a tram line in Ostrava with the results obtained indicating the successful detection of all the trams in the monitoring windows using a single sensor. However, the platform allows flexibility in configuring multiple sensors where required by system users.
NASA Astrophysics Data System (ADS)
Mahmoud, Seedahmed S.; Visagathilagar, Yuvaraja; Katsifolis, Jim
2012-09-01
The success of any perimeter intrusion detection system depends on three important performance parameters: the probability of detection (POD), the nuisance alarm rate (NAR), and the false alarm rate (FAR). The most fundamental parameter, POD, is normally related to a number of factors such as the event of interest, the sensitivity of the sensor, the installation quality of the system, and the reliability of the sensing equipment. The suppression of nuisance alarms without degrading sensitivity in fiber optic intrusion detection systems is key to maintaining acceptable performance. Signal processing algorithms that maintain the POD and eliminate nuisance alarms are crucial for achieving this. In this paper, a robust event classification system using supervised neural networks together with a level crossings (LCs) based feature extraction algorithm is presented for the detection and recognition of intrusion and non-intrusion events in a fence-based fiber-optic intrusion detection system. A level crossings algorithm is also used with a dynamic threshold to suppress torrential rain-induced nuisance alarms in a fence system. Results show that rain-induced nuisance alarms can be suppressed for rainfall rates in excess of 100 mm/hr with the simultaneous detection of intrusion events. The use of a level crossing based detection and novel classification algorithm is also presented for a buried pipeline fiber optic intrusion detection system for the suppression of nuisance events and discrimination of intrusion events. The sensor employed for both types of systems is a distributed bidirectional fiber-optic Mach-Zehnder (MZ) interferometer.
Oil defect detection of electrowetting display
NASA Astrophysics Data System (ADS)
Chiang, Hou-Chi; Tsai, Yu-Hsiang; Yan, Yung-Jhe; Huang, Ting-Wei; Mang, Ou-Yang
2015-08-01
In recent years, transparent display is an emerging topic in display technologies. Apply in many fields just like mobile device, shopping or advertising window, and etc. Electrowetting Display (EWD) is one kind of potential transparent display technology advantages of high transmittance, fast response time, high contrast and rich color with pigment based oil system. In mass production process of Electrowetting Display, oil defects should be found by Automated Optical Inspection (AOI) detection system. It is useful in determination of panel defects for quality control. According to the research of our group, we proposed a mechanism of AOI detection system detecting the different kinds of oil defects. This mechanism can detect different kinds of oil defect caused by oil overflow or material deteriorated after oil coating or driving. We had experiment our mechanism with a 6-inch Electrowetting Display panel from ITRI, using an Epson V750 scanner with 1200 dpi resolution. Two AOI algorithms were developed, which were high speed method and high precision method. In high precision method, oil jumping or non-recovered can be detected successfully. This mechanism of AOI detection system can be used to evaluate the oil uniformity in EWD panel process. In the future, our AOI detection system can be used in quality control of panel manufacturing for mass production.
Thermoplastic fusion bonding using a pressure-assisted boiling point control system.
Park, Taehyun; Song, In-Hyouk; Park, Daniel S; You, Byoung Hee; Murphy, Michael C
2012-08-21
A novel thermoplastic fusion bonding method using a pressure-assisted boiling point (PABP) control system was developed to apply precise temperatures and pressures during bonding. Hot embossed polymethyl methacrylate (PMMA) components containing microchannels were sealed using the PABP system. Very low aspect ratio structures (AR = 1/100, 10 μm in depth and 1000 μm in width) were successfully sealed without collapse or deformation. The integrity and strength of the bonds on the sealed PMMA devices were evaluated using leakage and rupture tests; no leaks were detected and failure during the rupture tests occurred at pressures greater than 496 kPa. The PABP system was used to seal 3D shaped flexible PMMA devices successfully.
A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring.
Wu, Jian; Cui, Xingmei; Xu, Yunpeng
2016-01-28
In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag's antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt's information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system.
A Novel RFID-Based Sensing Method for Low-Cost Bolt Loosening Monitoring
Wu, Jian; Cui, Xingmei; Xu, Yunpeng
2016-01-01
In coal mines, bolt loosening in the cage guide is affected by the harsh environmental factors and cage hoist vibration, leading to significant threats to work safety. It is crucial, to this effect, to successfully detect the status of multipoint bolts of guide structures. This paper proposes a system to monitor bolt status in harsh environments established based on the RFID technique. A proof-of-concept model was demonstrated consisting of a bolt gearing system, passive UHF RFID tags, a reader, and monitoring software. A tinfoil metal film is fixed on the retaining plate and an RFID tag bonded to a large gear, with the bolt to be detected fixed in the center of a smaller gear. The radio-frequency signal cannot be received by the reader if the tag is completely obscured by the tinfoil, and if the bolt is loose, the tag’s antenna is exposed when the gear revolves. A radio-frequency signal that carries corresponding bolt’s information is transmitted by the RFID tag to the RFID reader due to coil coupling, identifying loose bolt location and reporting them in the software. Confirmatory test results revealed that the system indeed successfully detects bolt loosening and comparative test results (based on a reed switch multipoint bolt loosening monitor system) provided valuable information regarding the strengths and weaknesses of the proposed system. PMID:26828498
Dong, Yi; Wang, Wen-Ping; Mao, Feng; Ji, Zheng-Biao; Huang, Bei-Jian
2016-04-01
The aim of this study is to explore the value of volume navigation image fusion-assisted contrast-enhanced ultrasound (CEUS) in detection for radiofrequency ablation guidance of hepatocellular carcinomas (HCCs), which were undetectable on conventional ultrasound. From May 2012 to May 2014, 41 patients with 49 HCCs were included in this study. All lesions were detected by dynamic magnetic resonance imaging (MRI) and planned for radiofrequency ablation but were undetectable on conventional ultrasound. After a bolus injection of 2.4 ml SonoVue® (Bracco, Italy), LOGIQ E9 ultrasound system with volume navigation system (version R1.0.5, GE Healthcare, Milwaukee, WI, USA) was used to fuse CEUS and MRI images. The fusion time, fusion success rate, lesion enhancement pattern, and detection rate were analyzed. Image fusions were conducted successfully in 49 HCCs, the technical success rate was 100%. The average fusion time was (9.2 ± 2.1) min (6-12 min). The mean diameter of HCCs was 25.2 ± 5.3 mm (mean ± SD), and mean depth was 41.8 ± 17.2 mm. The detection rate of HCCs using CEUS/MRI imaging fusion (95.9%, 47/49) was significantly higher than CEUS (42.9%, 21/49) (P < 0.05). For small HCCs (diameter, 1-2 cm), the detection rate using imaging fusion (96.9%, 32/33) was also significantly higher than CEUS (18.2%, 6/33) (P < 0.01). All HCCs displayed a rapid wash-in pattern in the arterial phase of CEUS. Imaging fusion combining CEUS and MRI is a promising technique to improve the detection, precise localization, and accurate diagnosis of undetectable HCCs on conventional ultrasound, especially small and atypical HCCs. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Detection and diagnosis of bearing and cutting tool faults using hidden Markov models
NASA Astrophysics Data System (ADS)
Boutros, Tony; Liang, Ming
2011-08-01
Over the last few decades, the research for new fault detection and diagnosis techniques in machining processes and rotating machinery has attracted increasing interest worldwide. This development was mainly stimulated by the rapid advance in industrial technologies and the increase in complexity of machining and machinery systems. In this study, the discrete hidden Markov model (HMM) is applied to detect and diagnose mechanical faults. The technique is tested and validated successfully using two scenarios: tool wear/fracture and bearing faults. In the first case the model correctly detected the state of the tool (i.e., sharp, worn, or broken) whereas in the second application, the model classified the severity of the fault seeded in two different engine bearings. The success rate obtained in our tests for fault severity classification was above 95%. In addition to the fault severity, a location index was developed to determine the fault location. This index has been applied to determine the location (inner race, ball, or outer race) of a bearing fault with an average success rate of 96%. The training time required to develop the HMMs was less than 5 s in both the monitoring cases.
Martinez-Cisneros, Cynthia; da Rocha, Zaira; Seabra, Antonio; Valdés, Francisco; Alonso-Chamarro, Julián
2018-06-05
The successful integration of sample pretreatment stages, sensors, actuators and electronics in microfluidic devices enables the attainment of complete micro total analysis systems, also known as lab-on-a-chip devices. In this work, we present a novel monolithic autonomous microanalyzer that integrates microfluidics, electronics, a highly sensitive photometric detection system and a sample pretreatment stage consisting on an embedded microcolumn, all in the same device, for on-line determination of relevant environmental parameters. The microcolumn can be filled/emptied with any resin or powder substrate whenever required, paving the way for its application to several analytical processes: separation, pre-concentration or ionic-exchange. To promote its autonomous operation, avoiding issues caused by bubbles in photometric detection systems, an efficient monolithic bubble removal structure was also integrated. To demonstrate its feasibility, the microanalyzer was successfully used to determine nitrate and nitrite in continuous flow conditions, providing real time and continuous information.
SU-G-JeP4-03: Anomaly Detection of Respiratory Motion by Use of Singular Spectrum Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotoku, J; Kumagai, S; Nakabayashi, S
Purpose: The implementation and realization of automatic anomaly detection of respiratory motion is a very important technique to prevent accidental damage during radiation therapy. Here, we propose an automatic anomaly detection method using singular value decomposition analysis. Methods: The anomaly detection procedure consists of four parts:1) measurement of normal respiratory motion data of a patient2) calculation of a trajectory matrix representing normal time-series feature3) real-time monitoring and calculation of a trajectory matrix of real-time data.4) calculation of an anomaly score from the similarity of the two feature matrices. Patient motion was observed by a marker-less tracking system using a depthmore » camera. Results: Two types of motion e.g. cough and sudden stop of breathing were successfully detected in our real-time application. Conclusion: Automatic anomaly detection of respiratory motion using singular spectrum analysis was successful in the cough and sudden stop of breathing. The clinical use of this algorithm will be very hopeful. This work was supported by JSPS KAKENHI Grant Number 15K08703.« less
NASA Astrophysics Data System (ADS)
Krishnan, M.; Bhowmik, B.; Tiwari, A. K.; Hazra, B.
2017-08-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using recursive principal component analysis (RPCA) in conjunction with online damage indicators is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal modes in online using the rank-one perturbation method, and subsequently utilized to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/nonlinear-states that indicate damage. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. An online condition indicator (CI) based on the L2 norm of the error between actual response and the response projected using recursive eigenvector matrix updates over successive iterations is proposed. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data. The proposed CI, named recursive residual error, is also adopted for simultaneous spatio-temporal damage detection. Numerical simulations performed on five-degree of freedom nonlinear system under white noise and El Centro excitations, with different levels of nonlinearity simulating the damage scenarios, demonstrate the robustness of the proposed algorithm. Successful results obtained from practical case studies involving experiments performed on a cantilever beam subjected to earthquake excitation, for full sensors and underdetermined cases; and data from recorded responses of the UCLA Factor building (full data and its subset) demonstrate the efficacy of the proposed methodology as an ideal candidate for real-time, reference free structural health monitoring.
Advanced instrumentation concepts for environmental control subsystems
NASA Technical Reports Server (NTRS)
Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.
1978-01-01
Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.
Remote detection of riverine traffic using an ad hoc wireless sensor network
NASA Astrophysics Data System (ADS)
Athan, Stephan P.
2005-05-01
Trafficking of illegal drugs on riverine and inland waterways continues to proliferate in South America. While there has been a successful joint effort to cut off overland and air trafficking routes, there exists a vast river network and Amazon region consisting of over 13,000 water miles that remains difficult to adequately monitor, increasing the likelihood of narcotics moving along this extensive river system. Hence, an effort is underway to provide remote unattended riverine detection in lieu of manned or attended detection measures.
Tsunami Detection Systems for International Requirements
NASA Astrophysics Data System (ADS)
Lawson, R. A.
2007-12-01
Results are presented regarding the first commercially available, fully operational, tsunami detection system to have passed stringent U.S. government testing requirements and to have successfully demonstrated its ability to detect an actual tsunami at sea. Spurred by the devastation of the December 26, 2004, Indian Ocean tsunami that killed more than 230,000 people, the private sector actively supported the Intergovernmental Oceanographic Commission's (IOC"s) efforts to develop a tsunami warning system and mitigation plan for the Indian Ocean region. As each country in the region developed its requirements, SAIC recognized that many of these underdeveloped countries would need significant technical assistance to fully execute their plans. With the original focus on data fusion, consequence assessment tools, and warning center architecture, it was quickly realized that the cornerstone of any tsunami warning system would be reliable tsunami detection buoys that could meet very stringent operational standards. Our goal was to leverage extensive experience in underwater surveillance and oceanographic sensing to produce an enhanced and reliable deep water sensor that could meet emerging international requirements. Like the NOAA Deep-ocean Assessment and Recording of Tsunamis (DART TM ) buoy, the SAIC Tsunami Buoy (STB) system consists of three subsystems: a surfaccommunications buoy subsystem, a bottom pressure recorder subsystem, and a buoy mooring subsystem. With the operational success that DART has demonstrated, SAIC decided to build and test to the same high standards. The tsunami detection buoy system measures small changes in the depth of the deep ocean caused by tsunami waves as they propagate past the sensor. This is accomplished by using an extremely sensitive bottom pressure sensor/recorder to measure very small changes in pressure as the waves move past the buoy system. The bottom pressure recorder component includes a processor with algorithms that recognize these characteristics, and then immediately alerts a tsunami warning center through the communications buoy when the processor senses one of these waves. In addition to the tsunami detection buoy system, an end-to-end tsunami warning system was developed that builds upon the country's existing disaster warning infrastructure. This warning system includes 1) components that receive, process, and analyze buoy, seismic and tide gauge data; 2) predictive tools and a consequence assessment tool set to provide decision support; 3) operation center design and implementation; and 4) tsunami buoy operations and maintenance support. The first buoy was deployed Oct. 25, 2006, approximately 200 nautical miles west of San Diego in 3,800 meters of water. Just three weeks later, it was put to the test during an actual tsunami event. On Nov. 15, 2006, an 8.3 magnitude earthquake rocked the Kuril Islands, located between Japan and the Kamchatka Peninsula of Russia. That quake generated a small tsunami. Waves from the tsunami propagated approximately 4,000 nautical miles across the Pacific Ocean in about nine hours-- a speed of about 445 nautical miles per hour when this commercial buoy first detected them. Throughout that event, the tsunami buoy system showed excellent correlation with data collected by a NOAA DART buoy located 28 nautical miles north of it. Subsequent analysis revealed that the STB matched DART operational capabilities and performed flawlessly. The buoy proved its capabilities again on Jan. 13, 2007, when an 8.1 magnitude earthquake occurred in the same region, and the STB detected the seismic event. As a result of the successes of this entire project, SAIC recently applied for and received a license from NOAA to build DART systems.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Lu, Fei; Zou, Kai; Yan, Hong; Wan, Min; Kuang, Yan; Zhou, Yanqing
2018-03-01
An ultra-high angular velocity and minor-caliber high-precision stably control technology application for active-optics image-motion compensation, is put forward innovatively in this paper. The image blur problem due to several 100°/s high-velocity relative motion between imaging system and target is theoretically analyzed. The velocity match model of detection system and active optics compensation system is built, and active optics image motion compensation platform experiment parameters are designed. Several 100°/s high-velocity high-precision control optics compensation technology is studied and implemented. The relative motion velocity is up to 250°/s, and image motion amplitude is more than 20 pixel. After the active optics compensation, motion blur is less than one pixel. The bottleneck technology of ultra-high angular velocity and long exposure time in searching and infrared detection system is successfully broke through.
Abortion and subsequent excretion of chlamydiae from the reproductive tract of sheep during estrus.
Papp, J R; Shewen, P E; Gartley, C J
1994-01-01
Chlamydia psittaci serovar 1 infection in pregnant sheep typically causes abortion or the birth of weak lambs. Eight sheep that experienced chlamydia-induced abortion during their first pregnancy were successfully rebred yearly for the past 2 years. Chlamydia-specific lipopolysaccharide was detectable for approximately 3 weeks in vaginal swabs taken from the experimentally infected sheep following abortion. There was no evidence of chlamydiae in vaginal, placental, or neonatal samples obtained immediately after each subsequent successful pregnancy. Sera collected from the experimentally infected sheep had persistent, high antibody levels to C. psittaci, suggesting continued exposure of the immune system to the organism. Examination of vaginal specimens obtained during various stages of the estrus cycle revealed detectable levels of chlamydiae only when the animal was near ovulation. Chlamydiae were not detected in swabs from sheep that did not experience abortion. Enhanced chlamydial excretion during the periovulation period of sheep may provide sufficient stimulation of the immune system to account for the persistent antibody response. Furthermore, the association between estrus and chlamydial shedding has important implications for transmission of infection to other ewes during breeding. PMID:8063395
[Efficient packaging retrovirus and construction of transgenic chicken technical platform].
Man, Chaolai; Zhang, Qing; Chen, Yan; Zhu, Dahai
2007-10-01
Transgenic chicken and oviduct bioreactor are growing to be one of the hotspot of scientific study in the field of biology. The most successful method of producing transgenic chicken is pseudotyped retrovirus vector system, but no one has reported the production of transgenic chicken by retrovirus system recently in our country. In order to accelerate our study in this field, we introduced the relevant technical methods such as packaging retrovirus and vesicular stomatitis virus G glycoprotein (VSV-G) pseudotyped retrovirus, optimizing the conditions of packaging retrovirus, concentrating VSV-G pseudotyped retrovirus, helper virus assays, and microinjection of retrovirus. Furthermore, we successfully conducted in vivo study for detecting the marker gene EGFP of chicken embryo as well as in vitro study for detecting that gene of chicken embryo myoblast (CFM), thus we have provided an applied technical platform for studies of transgenic chicken in the future.
NASA Astrophysics Data System (ADS)
Abdullah, Jaafar; Hassan, Hearie; Shari, Mohamad Rabaie; Mohd, Salzali; Mustapha, Mahadi; Mahmood, Airwan Affendi; Jamaludin, Shahrizan; Ngah, Mohd Rosdi; Hamid, Noor Hisham
2013-03-01
Detection of the oil palm stem rot disease Ganoderma is a major issue in estate management and production in Malaysia. Conventional diagnostic techniques are difficult and time consuming when using visual inspection, and destructive and expensive when based on the chemical analysis of root or stem tissue. As an alternative, a transportable gamma-ray computed tomography system for the early detection of basal stem rot (BSR) of oil palms due to Ganoderma was developed locally at the Malaysian Nuclear Agency, Kajang, Malaysia. This system produces high quality tomographic images that clearly differentiate between healthy and Ganoderma infected oil palm stems. It has been successfully tested and used to detect the extent of BSR damage in oil palm plantations in Malaysia without the need to cut down the trees. This method offers promise for in situ inspection of oil palm stem diseases compared to the more conventional methods.
Detection and tracking of a low energy swell system off the U.S. East Coast with the Seasat SAR
NASA Technical Reports Server (NTRS)
Beal, R. C.
1980-01-01
It is noted that on the morning of September 28, 1978, at 1520 GMT, Seasat approached the East Coast of the U.S. with the 100 km swath of its synthetic aperture radar (SAR) running approximately parallel to the coast but displayed eastward by about 20 km. This pass is analyzed and the following conclusions are drawn: (1) the SAR can successfully detect low-energy swell systems with wave heights under 1 m (actually 0.65 + or - 0.25 m); (2) the refraction of low-energy but well-organized swells deriving from changes in the local depth of the ocean is clearly detectable in both wavelength and direction; and (3) the complexity of the ocean spectrum (whether composed of more than one system or spread in direction and wave number) appears to have little bearing on the threshold detection limits.
P2P Watch: Personal Health Information Detection in Peer-to-Peer File-Sharing Networks
El Emam, Khaled; Arbuckle, Luk; Neri, Emilio; Rose, Sean; Jonker, Elizabeth
2012-01-01
Background Users of peer-to-peer (P2P) file-sharing networks risk the inadvertent disclosure of personal health information (PHI). In addition to potentially causing harm to the affected individuals, this can heighten the risk of data breaches for health information custodians. Automated PHI detection tools that crawl the P2P networks can identify PHI and alert custodians. While there has been previous work on the detection of personal information in electronic health records, there has been a dearth of research on the automated detection of PHI in heterogeneous user files. Objective To build a system that accurately detects PHI in files sent through P2P file-sharing networks. The system, which we call P2P Watch, uses a pipeline of text processing techniques to automatically detect PHI in files exchanged through P2P networks. P2P Watch processes unstructured texts regardless of the file format, document type, and content. Methods We developed P2P Watch to extract and analyze PHI in text files exchanged on P2P networks. We labeled texts as PHI if they contained identifiable information about a person (eg, name and date of birth) and specifics of the person’s health (eg, diagnosis, prescriptions, and medical procedures). We evaluated the system’s performance through its efficiency and effectiveness on 3924 files gathered from three P2P networks. Results P2P Watch successfully processed 3924 P2P files of unknown content. A manual examination of 1578 randomly selected files marked by the system as non-PHI confirmed that these files indeed did not contain PHI, making the false-negative detection rate equal to zero. Of 57 files marked by the system as PHI, all contained both personally identifiable information and health information: 11 files were PHI disclosures, and 46 files contained organizational materials such as unfilled insurance forms, job applications by medical professionals, and essays. Conclusions PHI can be successfully detected in free-form textual files exchanged through P2P networks. Once the files with PHI are detected, affected individuals or data custodians can be alerted to take remedial action. PMID:22776692
Evaluation of a novel chemical sensor system to detect clinical mastitis in bovine milk.
Mottram, Toby; Rudnitskaya, Alisa; Legin, Andrey; Fitzpatrick, Julie L; Eckersall, P David
2007-05-15
Automatic detection of clinical mastitis is an essential part of high performance and robotic milking. Currently available technology (conductivity monitoring) is unable to achieve acceptable specificity or sensitivity of detection of clinical mastitis or other clinical diseases. Arrays of sensors with high cross-sensitivity have been successfully applied for recognition and quantitative analysis of other multicomponent liquids. An experiment was conducted to determine whether a multisensor system ("electronic tongue") based on an array of chemical sensors and suitable data processing could be used to discriminate between milk secretions from infected and healthy glands. Measurements were made with a multisensor system of milk samples from two different farms in two experiments. A total of 67 samples of milk from both mastitic and healthy glands were in two sets. It was demonstrated that the multisensor system could distinguish between control and clinically mastitic milk samples (p=0.05). The sensitivity and specificity of the sensor system (93 and 96% correspondingly) showed an improvement over conductivity (56 and 82% correspondingly). The multisensor system offers a novel method of improving mastitis detection.
Low Cost Night Vision System for Intruder Detection
NASA Astrophysics Data System (ADS)
Ng, Liang S.; Yusoff, Wan Azhar Wan; R, Dhinesh; Sak, J. S.
2016-02-01
The growth in production of Android devices has resulted in greater functionalities as well as lower costs. This has made previously more expensive systems such as night vision affordable for more businesses and end users. We designed and implemented robust and low cost night vision systems based on red-green-blue (RGB) colour histogram for a static camera as well as a camera on an unmanned aerial vehicle (UAV), using OpenCV library on Intel compatible notebook computers, running Ubuntu Linux operating system, with less than 8GB of RAM. They were tested against human intruders under low light conditions (indoor, outdoor, night time) and were shown to have successfully detected the intruders.
Cryo-balloon catheter localization in fluoroscopic images
NASA Astrophysics Data System (ADS)
Kurzendorfer, Tanja; Brost, Alexander; Jakob, Carolin; Mewes, Philip W.; Bourier, Felix; Koch, Martin; Kurzidim, Klaus; Hornegger, Joachim; Strobel, Norbert
2013-03-01
Minimally invasive catheter ablation has become the preferred treatment option for atrial fibrillation. Although the standard ablation procedure involves ablation points set by radio-frequency catheters, cryo-balloon catheters have even been reported to be more advantageous in certain cases. As electro-anatomical mapping systems do not support cryo-balloon ablation procedures, X-ray guidance is needed. However, current methods to provide support for cryo-balloon catheters in fluoroscopically guided ablation procedures rely heavily on manual user interaction. To improve this, we propose a first method for automatic cryo-balloon catheter localization in fluoroscopic images based on a blob detection algorithm. Our method is evaluated on 24 clinical images from 17 patients. The method successfully detected the cryoballoon in 22 out of 24 images, yielding a success rate of 91.6 %. The successful localization achieved an accuracy of 1.00 mm +/- 0.44 mm. Even though our methods currently fails in 8.4 % of the images available, it still offers a significant improvement over manual methods. Furthermore, detecting a landmark point along the cryo-balloon catheter can be a very important step for additional post-processing operations.
NASA Astrophysics Data System (ADS)
Minakuchi, Shu; Tsukamoto, Haruka; Takeda, Nobuo
2009-03-01
This study proposes novel hierarchical sensing concept for detecting damages in composite structures. In the hierarchical system, numerous three-dimensionally structured sensor devices are distributed throughout the whole structural area and connected with the optical fiber network through transducing mechanisms. The distributed "sensory nerve cell" devices detect the damage, and the fiber optic "spinal cord" network gathers damage signals and transmits the information to a measuring instrument. This study began by discussing the basic concept of the hierarchical sensing system thorough comparison with existing fiber optic based systems and nerve systems in the animal kingdom. Then, in order to validate the proposed sensing concept, impact damage detection system for the composite structure was proposed. The sensor devices were developed based on Comparative Vacuum Monitoring (CVM) system and the Brillouin based distributed strain sensing was utilized to gather the damage signals from the distributed devices. Finally a verification test was conducted using prototype devices. Occurrence of barely visible impact damage was successfully detected and it was clearly indicated that the hierarchical system has better repairability, higher robustness, and wider monitorable area compared to existing systems utilizing embedded optical fiber sensors.
García-Diego, Fernando-Juan; Bravo, José María; Pérez-Miralles, Juan; Estrada, Héctor; Fernández-Navajas, Angel
2012-01-01
Non-destructive methods are of great interest for the analysis of cultural heritage. Among the different possible techniques, this paper presents a low cost prototype based on the emission and reception of airborne ultrasound without direct contact with the test specimen. We successfully performed a method test for the detection of brick joints under a XV th century Renaissance fresco of the Metropolitan Cathedral of the city of Valencia (Spain). Both laboratory and in situ results are in agreement. Using this prototype system, an early moisture detection system has been installed in the dome that supports the fresco. The result is encouraging and opens interesting prospects for future research.
Detection of gait characteristics for scene registration in video surveillance system.
Havasi, László; Szlávik, Zoltán; Szirányi, Tamás
2007-02-01
This paper presents a robust walk-detection algorithm, based on our symmetry approach which can be used to extract gait characteristics from video-image sequences. To obtain a useful descriptor of a walking person, we temporally track the symmetries of a person's legs. Our method is suitable for use in indoor or outdoor surveillance scenes. Determining the leading leg of the walking subject is important, and the presented method can identify this from two successive walk steps (one walk cycle). We tested the accuracy of the presented walk-detection method in a possible application: Image registration methods are presented which are applicable to multicamera systems viewing human subjects in motion.
Li, Weifeng; Ling, Wencui; Liu, Suoxiang; Zhao, Jing; Liu, Ruiping; Chen, Qiuwen; Qiang, Zhimin; Qu, Jiuhui
2011-01-01
Water leakage in drinking water distribution systems is a serious problem for many cities and a huge challenge for water utilities. An integrated system for the detection, early warning, and control of pipeline leakage has been developed and successfully used to manage the pipeline networks in selected areas of Beijing. A method based on the geographic information system has been proposed to quickly and automatically optimize the layout of the instruments which detect leaks. Methods are also proposed to estimate the probability of each pipe segment leaking (on the basis of historic leakage data), and to assist in locating the leakage points (based on leakage signals). The district metering area (DMA) strategy is used. Guidelines and a flowchart for establishing a DMA to manage the large-scale looped networks in Beijing are proposed. These different functions have been implemented into a central software system to simplify the day-to-day use of the system. In 2007 the system detected 102 non-obvious leakages (i.e., 14.2% of the total detected in Beijing) in the selected areas, which was estimated to save a total volume of 2,385,000 m3 of water. These results indicate the feasibility, efficiency and wider applicability of this system.
NASA Technical Reports Server (NTRS)
Tian, Jialin; Madaras, Eric I.
2009-01-01
The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.
Design and measurement technique of surface-enhanced Raman scattering for detection of bisphenol A
NASA Astrophysics Data System (ADS)
Abu Bakar, Norhayati; Mat Salleh, Muhamad; Umar, Akrajas Ali; Shapter, Joseph George
2017-06-01
Surface-enhanced Raman scattering (SERS) is a highly sensitive measurement technique that provides Raman peaks at different Raman shift for different molecule structures. The SERS sensor is potentially used to detect food contamination and monitor environmental pollutants. A self-developed SERS system for specific analysis with low development cost is a challenging issue. This study attempts to develop a simple SERS sensor system for detection of bisphenol A (BPA) molecule using SERS substrate of silver nanoplate film. A SERS sensor system was developed, consisting of a light source to excite analyte molecules, Inphotonic Raman probe, sensor chamber and spectrophotometer as an analyser system. A duplex fibre optic is used to transmit light from the source to the probe and from the probe to the spectrophotometer. For SERS measurement, BPA detection was done by comparing the Raman signal spectra of the BPA on the quartz substrate and BPA on the silver nanoplate film. This SERS sensor successfully sensed BPA with SERS enhancement factor (EF) 5.55 × 103 and a detection limit of BPA concentration at 1 mM.
Decision support system for the detection and grading of hard exudates from color fundus photographs
NASA Astrophysics Data System (ADS)
Jaafar, Hussain F.; Nandi, Asoke K.; Al-Nuaimy, Waleed
2011-11-01
Diabetic retinopathy is a major cause of blindness, and its earliest signs include damage to the blood vessels and the formation of lesions in the retina. Automated detection and grading of hard exudates from the color fundus image is a critical step in the automated screening system for diabetic retinopathy. We propose novel methods for the detection and grading of hard exudates and the main retinal structures. For exudate detection, a novel approach based on coarse-to-fine strategy and a new image-splitting method are proposed with overall sensitivity of 93.2% and positive predictive value of 83.7% at the pixel level. The average sensitivity of the blood vessel detection is 85%, and the success rate of fovea localization is 100%. For exudate grading, a polar fovea coordinate system is adopted in accordance with medical criteria. Because of its competitive performance and ability to deal efficiently with images of variable quality, the proposed technique offers promising and efficient performance as part of an automated screening system for diabetic retinopathy.
Underwater detection by using ultrasonic sensor
NASA Astrophysics Data System (ADS)
Bakar, S. A. A.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.
2017-09-01
This paper described the low cost implementation of hardware and software in developing the system of ultrasonic which can visualize the feedback of sound in the form of measured distance through mobile phone and monitoring the frequency of detection by using real time graph of Java application. A single waterproof transducer of JSN-SR04T had been used to determine the distance of an object based on operation of the classic pulse echo detection method underwater. In this experiment, the system was tested by placing the housing which consisted of Arduino UNO, Bluetooth module of HC-06, ultrasonic sensor and LEDs at the top of the box and the transducer was immersed in the water. The system which had been tested for detection in vertical form was found to be capable of reporting through the use of colored LEDs as indicator to the relative proximity of object distance underwater form the sensor. As a conclusion, the system can detect the presence of an object underwater within the range of ultrasonic sensor and display the measured distance onto the mobile phone and the real time graph had been successfully generated.
A high-throughput method for GMO multi-detection using a microfluidic dynamic array.
Brod, Fábio Cristiano Angonesi; van Dijk, Jeroen P; Voorhuijzen, Marleen M; Dinon, Andréia Zilio; Guimarães, Luis Henrique S; Scholtens, Ingrid M J; Arisi, Ana Carolina Maisonnave; Kok, Esther J
2014-02-01
The ever-increasing production of genetically modified crops generates a demand for high-throughput DNA-based methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the number of GMOs that is potentially present in an individual sample. The present work presents the results of an innovative approach in genetically modified crops analysis by DNA based methods, which is the use of a microfluidic dynamic array as a high throughput multi-detection system. In order to evaluate the system, six test samples with an increasing degree of complexity were prepared, preamplified and subsequently analysed in the Fluidigm system. Twenty-eight assays targeting different DNA elements, GM events and species-specific reference genes were used in the experiment. The large majority of the assays tested presented expected results. The power of low level detection was assessed and elements present at concentrations as low as 0.06 % were successfully detected. The approach proposed in this work presents the Fluidigm system as a suitable and promising platform for GMO multi-detection.
Event-specific real-time detection and quantification of genetically modified Roundup Ready soybean.
Huang, Chia-Chia; Pan, Tzu-Ming
2005-05-18
The event-specific real-time detection and quantification of Roundup Ready soybean (RRS) using an ABI PRISM 7700 sequence detection system with light upon extension (LUX) primer was developed in this study. The event-specific primers were designed, targeting the junction of the RRS 5' integration site and the endogenous gene lectin1. Then, a standard reference plasmid was constructed that carried both of the targeted sequences for quantitative analysis. The detection limit of the LUX real-time PCR system was 0.05 ng of 100% RRS genomic DNA, which was equal to 20.5 copies. The range of quantification was from 0.1 to 100%. The sensitivity and range of quantification successfully met the requirement of the labeling rules in the European Union and Taiwan.
NASA Astrophysics Data System (ADS)
Sepantaie, Marc M.; Namazi, Nader M.; Sepantaie, Amir M.
2016-05-01
This paper is devoted to addressing the synchronization, and detection of random binary data exposed to inherent channel variations existing in Free Space Optical (FSO) communication systems. This task is achieved by utilizing the identical synchronization methodology of Lorenz chaotic communication system, and its synergetic interaction in adversities imposed by the FSO channel. Moreover, the Lorenz system has been analyzed, and revealed to induce Stochastic Resonance (SR) once exposed to Additive White Gaussian Noise (AWGN). In particular, the resiliency of the Lorenz chaotic system, in light of channel adversities, has been attributed to the success of the proposed communication system. Furthermore, this paper advocates the use of Haar wavelet transform for enhanced detection capability of the proposed chaotic communication system, which utilizes Chaotic Parameter Modulation (CPM) technique for means of transmission.
NASA Astrophysics Data System (ADS)
Zou, Xianmei; Liu, Yi; Zhu, Xingjun; Chen, Min; Yao, Liming; Feng, Wei; Li, Fuyou
2015-02-01
Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems.Excessive or misplaced production of ClO- in living systems is usually associated with many human diseases. Therefore, it is of great importance to develop an effective and sensitive method to detect ClO- in living systems. Herein, we designed an 808 nm excited upconversion luminescence nanosystem, composed of the Nd3+-sensitized core-shell upconversion nanophosphor NaYF4:30%Yb,1%Nd,0.5%Er@NaYF4:20%Nd, which serves as an energy donor, and the ClO--responsive cyanine dye hCy3, which acts as an energy acceptor, for ratiometric upconversion luminescence (UCL) monitoring of ClO-. The detection limit of ClO- for this nanoprobe in aqueous solution is 27 ppb and the nanoprobe was successfully used to detect the ClO- in the living cells by ratiometric upconversion luminescence. Importantly, the nanoprobe realized the detection of ClO- in a mouse model of arthritis, which produced an excess of ROS, under 808 nm irradiation in vivo. The excitation laser efficiently reduced the heating effect, compared to the commonly used 980 nm laser for upconversion systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr06407k
Reliability of unstable periodic orbit based control strategies in biological systems.
Mishra, Nagender; Hasse, Maria; Biswal, B; Singh, Harinder P
2015-04-01
Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.
Reliability of unstable periodic orbit based control strategies in biological systems
NASA Astrophysics Data System (ADS)
Mishra, Nagender; Hasse, Maria; Biswal, B.; Singh, Harinder P.
2015-04-01
Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry of the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.
System and method for introduction and stabilization of genes in Thermus sp.
Kayser, Kevin J.; Park, Ho-Shin; Kilbane, II, John J.
2005-03-01
A method for introducing and stabilizing heterologous and recombinant genes in a thermophilic host in which a characteristic gene defining a detectable host characteristic is inactivated or deleted from the thermophilic host, resulting in a modified thermophilic host expressing an absence of the detectable host characteristic. A DNA fragment of interest is inserted into the modified thermophilic host together with an intact characteristic gene, whereby the detectable host characteristic is restored to the thermophilic host, thereby enabling detection and confirmation of successful transformation using plasmid vectors and integration of the DNA fragment into the chromosome of the thermophilic host.
On deception detection in multi-agent systems and deception intent
NASA Astrophysics Data System (ADS)
Santos, Eugene, Jr.; Li, Deqing; Yuan, Xiuqing
2008-04-01
Deception detection plays an important role in the military decision-making process, but detecting deception is a challenging task. The deception planning process involves a number of human factors. It is intent-driven where intentions are usually hidden or not easily observable. As a result, in order to detect deception, any adversary model must have the capability to capture the adversary's intent. This paper discusses deception detection in multi-agent systems and in adversary modeling. We examined psychological and cognitive science research on deception and implemented various theories of deception within our approach. First, in multi-agent expert systems, one detection method uses correlations between agents to predict reasonable opinions/responses of other agents (Santos & Johnson, 2004). We further explore this idea and present studies that show the impact of different factors on detection success rate. Second, from adversary modeling, our detection method focuses on inferring adversary intent. By combining deception "branches" with intent inference models, we can estimate an adversary's deceptive activities and at the same time enhance intent inference. Two major kinds of deceptions are developed in this approach in different fashions. Simulative deception attempts to find inconsistency in observables, while dissimulative deception emphasizes the inference of enemy intentions.
Field Tests of a Tractor Rollover Detection and Emergency Notification System.
Liu, B; Koc, A B
2015-04-01
The objective of this research was to assess the feasibility of a rollover detection and emergency notification system for farm tractors using field tests. The emergency notification system was developed based on a tractor stability model and implemented on a mobile electronic device with the iOS operating system. A complementary filter was implemented to combine the data from the accelerometer and gyroscope sensors to improve their accuracies in calculating the roll and pitch angles and the roll and pitch rates. The system estimates a stability index value during tractor operation, displays feedback messages when the stability index is lower than a preset threshold value, and transmits emergency notification messages when an overturn happens. Ten tractor rollover tests were conducted on a field track. The developed system successfully monitored the stability of the tractor during all of the tests. The iOS application was able to detect rollover accidents and transmit emergency notifications in the form of a phone call and email when an accident was detected. The system can be a useful tool for training and education in safe tractor operation. The system also has potential for stability monitoring and emergency notification of other on-road and off-road motorized vehicles.
An IEEE802.15.4-Based System for Locating Children on Their School Commutes
NASA Astrophysics Data System (ADS)
Sugiura, Akihiko; Baba, Ryoichi; Kobayashi, Hideyuki
With the increasing number of crimes and accidents in which children are becoming involved, there is a growing demand for devices to safeguard children's security by detecting their locations on their way to and from school. This paper proposes a system that uses an IEEE802.15.4-standard network to detect children's locations. To overcome the susceptibility of radio interference from nearby wireless LANs, frequency division multiplexing is applied to this IEEE802.15.4-based network, toward improving data acquisition from terminal units. The effectiveness of the system was field-tested with elementary school students who used about 400 IEEE 802.15.4-compliant terminal units. An experiment verified that the use of frequency division multiplexing in an environment where radio interference by wireless LANs is strong allowed the network to double the success rate of information communication from terminal units relative to that without frequency division multiplexing. In the experiment for detecting elementary schoolers' arrival at and departure from school, the terminal detection rate was 99% and the terminal detection rate on the designated school routes was 90%. These results prove the effectiveness of the system in detecting locations.
NASA Astrophysics Data System (ADS)
McStay, D.; McIlroy, J.; Forte, A.; Lunney, F.; Greenway, T.; Thabeth, K.; Dean, G.
2005-06-01
A new 2000 m depth rated subsea sensor that can effectively, rapidly and remotely detect leaks of fluorescein dye, leak detection chemicals and hydraulic fluids from underwater structures is reported. The system utilizes ultra-bright LED technology to project a structured beam of light, at a wavelength suitable to excite the fluorescence of the target material, into the water column. The resultant fluorescence is collected and digital signal processing used to extract the intensity. The system is capable of detecting ppm concentrations of fluorescein at a range of 2.5 m in water in real time. The ability to stand-off from subsea structures, while rapidly detecting the chemicals makes the system highly suited to subsea leak inspections with remotely operated vehicles or autonomous underwater vehicles, as it allows the vehicles to be flown quickly and safely over the structure to be inspected. This increases both the speed and effectiveness of the inspection. The remote detection capability is also highly effective for probing complex underwater structures. The system has been successfully used in real subsea survey applications and has been found to be effective, user friendly and to dramatically reduce inspection times and hence costs.
NASA Astrophysics Data System (ADS)
Sinha, V.; Srivastava, A.; Lee, H. K.; Liu, X.
2013-05-01
The successful creation and operation of a neutron and X-ray combined computed tomography (NXCT) system has been demonstrated by researchers at the Missouri University of Science and Technology. The NXCT system has numerous applications in the field of material characterization and object identification in materials with a mixture of atomic numbers represented. Presently, the feasibility studies have been performed for explosive detection and homeland security applications, particularly in concealed material detection and determination of the light atomic number materials. These materials cannot be detected using traditional X-ray imaging. The new system has the capability to provide complete structural and compositional information due to the complementary nature of X-ray and neutron interactions with materials. The design of the NXCT system facilitates simultaneous and instantaneous imaging operation, promising enhanced detection capabilities of explosive materials, low atomic number materials and illicit materials for homeland security applications. In addition, a sample positioning system allowing the user to remotely and automatically manipulate the sample makes the system viable for commercial applications. Several explosives and weapon simulants have been imaged and the results are provided. The fusion algorithms which combine the data from the neutron and X-ray imaging produce superior images. This paper is a compete overview of the NXCT system for feasibility studies of explosive detection and homeland security applications. The design of the system, operation, algorithm development, and detection schemes are provided. This is the first combined neutron and X-ray computed tomography system in operation. Furthermore, the method of fusing neutron and X-ray images together is a new approach which provides high contrast images of the desired object. The system could serve as a standardized tool in nondestructive testing of many applications, especially in explosives detection and homeland security research.
Detection of Mycoplasma hyopneumoniae by Air Sampling with a Nested PCR Assay
Stärk, Katharina D. C.; Nicolet, Jacques; Frey, Joachim
1998-01-01
This article describes the first successful detection of airborne Mycoplasma hyopneumoniae under experimental and field conditions with a new nested PCR assay. Air was sampled with polyethersulfone membranes (pore size, 0.2 μm) mounted in filter holders. Filters were processed by dissolution and direct extraction of DNA for PCR analysis. For the PCR, two nested pairs of oligonucleotide primers were designed by using an M. hyopneumoniae-specific DNA sequence of a repeated gene segment. A nested PCR assay was developed and used to analyze samples collected in eight pig houses where respiratory problems had been common. Air was also sampled from a mycoplasma-free herd. The nested PCR was highly specific and 104 times as sensitive as a one-step PCR. Under field conditions, the sampling system was able to detect airborne M. hyopneumoniae on 80% of farms where acute respiratory disease was present. No airborne M. hyopneumoniae was detected on infected farms without acute cases. The chance of successful detection was increased if air was sampled at several locations within a room and at a lower air humidity. PMID:9464391
Current Progresses of Midass: Microbial Detection in Air System for Space
NASA Astrophysics Data System (ADS)
Abaibou, Hafid; Lasseur, Christophe; Mabilat, Claude; Storrs-Mabilat, Michele; Guy, Michel; Raffestin, Stephanie; Sole Bosquet, Jaume
For the long term manned missions, microbial contamination is a major risk for crew members and hardware. This risk has first been documented by Russian scientists then by other organizations as a consequence of the contamination of metabolic consumables (water, air), and also the hardware degradation. Rapid molecular biology techniques offer an attractive alternative to traditional culture-based methods. They allow fast time to results for contamination detection and quick implementation of appropriate corrective action when required. However, to date, there are no such available system due to the technical challenges required to meet the sensitivity and specificity needs of the test and the requirement for full automation, from sampling to results interpretation. In response to this, over the last decade, the European Space Agency (ESA) and bioMérieux initiated a co-development of MIDASS, the world’s first fully automated system for the monitoring of the environmental microbial load in confined spaces, including clean rooms and hospital wards. The system is based on molecular technologies (sample preparation/amplification/detection) and enables rapid and simple determination of the microbiological contamination level in less than 3 hours. It relies on NASBA-amplification for the detection of selected micro-organisms (indicators or pathogens) at determined risk-levels (200 and 1 CFU /m3 air, respectively). Successful progresses were recently made for the space-application workpackage of this project: a lab-on-a-card design for air-testing in a first scope was endorsed by a successful ESA Preliminary Design Review, paving the way to spatialization steps (phases C and D). Data will be presented with regards to system design and biological performances.
NASA Technical Reports Server (NTRS)
Milner, G. Martin; Black, Mike; Hovenga, Mike; Mcclure, Paul; Miller, Patrice
1988-01-01
The application of vibration monitoring to the rotating machinery typical of ECLSS components in advanced NASA spacecraft was studied. It is found that the weighted summation of the accelerometer power spectrum is the most successful detection scheme for a majority of problem types. Other detection schemes studied included high-frequency demodulation, cepstrum, clustering, and amplitude processing.
Lip boundary detection techniques using color and depth information
NASA Astrophysics Data System (ADS)
Kim, Gwang-Myung; Yoon, Sung H.; Kim, Jung H.; Hur, Gi Taek
2002-01-01
This paper presents our approach to using a stereo camera to obtain 3-D image data to be used to improve existing lip boundary detection techniques. We show that depth information as provided by our approach can be used to significantly improve boundary detection systems. Our system detects the face and mouth area in the image by using color, geometric location, and additional depth information for the face. Initially, color and depth information can be used to localize the face. Then we can determine the lip region from the intensity information and the detected eye locations. The system has successfully been used to extract approximate lip regions using RGB color information of the mouth area. Merely using color information is not robust because the quality of the results may vary depending on light conditions, background, and the human race. To overcome this problem, we used a stereo camera to obtain 3-D facial images. 3-D data constructed from the depth information along with color information can provide more accurate lip boundary detection results as compared to color only based techniques.
2013-01-01
Background Intraoperative detection of 18F-FDG-avid tissue sites during 18F-FDG-directed surgery can be very challenging when utilizing gamma detection probes that rely on a fixed target-to-background (T/B) ratio (ratiometric threshold) for determination of probe positivity. The purpose of our study was to evaluate the counting efficiency and the success rate of in situ intraoperative detection of 18F-FDG-avid tissue sites (using the three-sigma statistical threshold criteria method and the ratiometric threshold criteria method) for three different gamma detection probe systems. Methods Of 58 patients undergoing 18F-FDG-directed surgery for known or suspected malignancy using gamma detection probes, we identified nine 18F-FDG-avid tissue sites (from amongst seven patients) that were seen on same-day preoperative diagnostic PET/CT imaging, and for which each 18F-FDG-avid tissue site underwent attempted in situ intraoperative detection concurrently using three gamma detection probe systems (K-alpha probe, and two commercially-available PET-probe systems), and then were subsequently surgical excised. Results The mean relative probe counting efficiency ratio was 6.9 (± 4.4, range 2.2–15.4) for the K-alpha probe, as compared to 1.5 (± 0.3, range 1.0–2.1) and 1.0 (± 0, range 1.0–1.0), respectively, for two commercially-available PET-probe systems (P < 0.001). Successful in situ intraoperative detection of 18F-FDG-avid tissue sites was more frequently accomplished with each of the three gamma detection probes tested by using the three-sigma statistical threshold criteria method than by using the ratiometric threshold criteria method, specifically with the three-sigma statistical threshold criteria method being significantly better than the ratiometric threshold criteria method for determining probe positivity for the K-alpha probe (P = 0.05). Conclusions Our results suggest that the improved probe counting efficiency of the K-alpha probe design used in conjunction with the three-sigma statistical threshold criteria method can allow for improved detection of 18F-FDG-avid tissue sites when a low in situ T/B ratio is encountered. PMID:23496877
Real-time stereo vision-based lane detection system
NASA Astrophysics Data System (ADS)
Fan, Rui; Dahnoun, Naim
2018-07-01
The detection of multiple curved lane markings on a non-flat road surface is still a challenging task for vehicular systems. To make an improvement, depth information can be used to enhance the robustness of the lane detection systems. In this paper, a proposed lane detection system is developed from our previous work where the estimation of the dense vanishing point is further improved using the disparity information. However, the outliers in the least squares fitting severely affect the accuracy when estimating the vanishing point. Therefore, in this paper we use random sample consensus to update the parameters of the road model iteratively until the percentage of the inliers exceeds our pre-set threshold. This significantly helps the system to overcome some suddenly changing conditions. Furthermore, we propose a novel lane position validation approach which computes the energy of each possible solution and selects all satisfying lane positions for visualisation. The proposed system is implemented on a heterogeneous system which consists of an Intel Core i7-4720HQ CPU and an NVIDIA GTX 970M GPU. A processing speed of 143 fps has been achieved, which is over 38 times faster than our previous work. Moreover, in order to evaluate the detection precision, we tested 2495 frames including 5361 lanes. It is shown that the overall successful detection rate is increased from 98.7% to 99.5%.
Architectural Analysis of a LLNL LWIR Sensor System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Essex J.; Curry, Jim R.; LaFortune, Kai N.
The architecture of an LLNL airborne imaging and detection system is considered in this report. The purpose of the system is to find the location of substances of interest by detecting their chemical signatures using a long-wave infrared (LWIR) imager with geo-registration capability. The detection system consists of an LWIR imaging spectrometer as well as a network of computer hardware and analysis software for analyzing the images for the features of interest. The system has been in the operations phase now for well over a year, and as such, there is enough use data and feedback from the primary beneficiarymore » to assess the current successes and shortcomings of the LWIR system architecture. LWIR system has been successful in providing reliable data collection and the delivery of a report with results. The weakness of the architecture has been identified in two areas: with the network of computer hardware and software and with the feedback of the state of the system health. Regarding the former, the system computers and software that carry out the data acquisition are too complicated for routine operations and maintenance. With respect to the latter, the primary beneficiary of the instrument’s data does not have enough metrics to use to filter the large quantity of data to determine its utility. In addition to the needs in these two areas, a latent need of one of the stakeholders is identified. This report documents the strengths and weaknesses, as well as proposes a solution for enhancing the architecture that simultaneously addresses the two areas of weakness and leverages them to meet the newly identified latent need.« less
da Silva, Dayse L P; Rüttinger, Hans H; Mrestani, Yahia; Baum, Walter F; Neubert, Reinhard H H
2006-06-01
CE methods have been developed for the determination of taurine in pharmaceutical formulation (microemulsion) and in biological media such as sweat. The CE system with end-column pulsed amperometric detection has been found to be an interesting method in comparison with UV and fluorescence detection for its simplicity and rapidity. A gold-disk electrode of 100 mm diameter was used as the working electrode. The effects of a field decoupler at the end of the capillary, separation voltage, injection and pressure times were investigated. A detection limit of 4 x 10(-5) mol/L was reached using integrated pulsed amperometric detection, a method successfully applied to taurine analysis of the biological samples such as sweat. For taurine analysis of oil-in-water microemulsion, fluorescence detector was the favored method, the detection limit of which was 4 x 10(-11) mol/L.
Woodman, Geoffrey F.; Vogel, Edward K.; Luck, Steven J.
2012-01-01
Many recent studies of visual working memory have used change-detection tasks in which subjects view sequential displays and are asked to report whether they are identical or if one object has changed. A key question is whether the memory system used to perform this task is sufficiently flexible to detect changes in object identity independent of spatial transformations, but previous research has yielded contradictory results. To address this issue, the present study compared standard change-detection tasks with tasks in which the objects varied in size or position between successive arrays. Performance was nearly identical across the standard and transformed tasks unless the task implicitly encouraged spatial encoding. These results resolve the discrepancies in prior studies and demonstrate that the visual working memory system can detect changes in object identity across spatial transformations. PMID:22287933
NASA Astrophysics Data System (ADS)
Kuo, Ju-Nan; Chen, Wei-Lun; Jywe, Wen-Yuh
2009-08-01
We present a bio-detection system integrated with an adjustable micro-concave mirror. The bio-detection system consists of an adjustable micro-concave mirror, micro flow cytometer chip and optical detection module. The adjustable micro-concave mirror can be fabricated with ease using commercially available MEMS foundry services (such as multiuser MEMS processes, MUMPs) and its curvature can be controlled utilizing thermal or electrical effects. Experimental results show that focal lengths of the micro-concave mirror ranging from 313.5 to 2275.0 μm are achieved. The adjustable micro-concave mirror can be used to increase the efficiency of optical detection and provide a high signal-to-noise ratio. The developed micro-concave mirror is integrated with a micro flow cytometer for cell counting applications. Successful counting of fluorescent-labeled beads is demonstrated using the developed method.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2003-01-01
A diagnostic tool for detecting damage to gears was developed. Two different measurement technologies, oil debris analysis and vibration were integrated into a health monitoring system for detecting surface fatigue pitting damage on gears. This integrated system showed improved detection and decision-making capabilities as compared to using individual measurement technologies. This diagnostic tool was developed and evaluated experimentally by collecting vibration and oil debris data from fatigue tests performed in the NASA Glenn Spur Gear Fatigue Rig. An oil debris sensor and the two vibration algorithms were adapted as the diagnostic tools. An inductance type oil debris sensor was selected for the oil analysis measurement technology. Gear damage data for this type of sensor was limited to data collected in the NASA Glenn test rigs. For this reason, this analysis included development of a parameter for detecting gear pitting damage using this type of sensor. The vibration data was used to calculate two previously available gear vibration diagnostic algorithms. The two vibration algorithms were selected based on their maturity and published success in detecting damage to gears. Oil debris and vibration features were then developed using fuzzy logic analysis techniques, then input into a multi sensor data fusion process. Results show combining the vibration and oil debris measurement technologies improves the detection of pitting damage on spur gears. As a result of this research, this new diagnostic tool has significantly improved detection of gear damage in the NASA Glenn Spur Gear Fatigue Rigs. This research also resulted in several other findings that will improve the development of future health monitoring systems. Oil debris analysis was found to be more reliable than vibration analysis for detecting pitting fatigue failure of gears and is capable of indicating damage progression. Also, some vibration algorithms are as sensitive to operational effects as they are to damage. Another finding was that clear threshold limits must be established for diagnostic tools. Based on additional experimental data obtained from the NASA Glenn Spiral Bevel Gear Fatigue Rig, the methodology developed in this study can be successfully implemented on other geared systems.
Artificial Neural Network applied to lightning flashes
NASA Astrophysics Data System (ADS)
Gin, R. B.; Guedes, D.; Bianchi, R.
2013-05-01
The development of video cameras enabled cientists to study lightning discharges comportment with more precision. The main goal of this project is to create a system able to detect images of lightning discharges stored in videos and classify them using an Artificial Neural Network (ANN)using C Language and OpenCV libraries. The developed system, can be split in two different modules: detection module and classification module. The detection module uses OpenCV`s computer vision libraries and image processing techniques to detect if there are significant differences between frames in a sequence, indicating that something, still not classified, occurred. Whenever there is a significant difference between two consecutive frames, two main algorithms are used to analyze the frame image: brightness and shape algorithms. These algorithms detect both shape and brightness of the event, removing irrelevant events like birds, as well as detecting the relevant events exact position, allowing the system to track it over time. The classification module uses a neural network to classify the relevant events as horizontal or vertical lightning, save the event`s images and calculates his number of discharges. The Neural Network was implemented using the backpropagation algorithm, and was trained with 42 training images , containing 57 lightning events (one image can have more than one lightning). TheANN was tested with one to five hidden layers, with up to 50 neurons each. The best configuration achieved a success rate of 95%, with one layer containing 20 neurons (33 test images with 42 events were used in this phase). This configuration was implemented in the developed system to analyze 20 video files, containing 63 lightning discharges previously manually detected. Results showed that all the lightning discharges were detected, many irrelevant events were unconsidered, and the event's number of discharges was correctly computed. The neural network used in this project achieved a success rate of 90%. The videos used in this experiment were acquired by seven video cameras installed in São Bernardo do Campo, Brazil, that continuously recorded lightning events during the summer. The cameras were disposed in a 360 loop, recording all data at a time resolution of 33ms. During this period, several convective storms were recorded.
NASA Technical Reports Server (NTRS)
Lee, Harry
1994-01-01
A highly accurate transmission line fault locator based on the traveling-wave principle was developed and successfully operated within B.C. Hydro. A transmission line fault produces a fast-risetime traveling wave at the fault point which propagates along the transmission line. This fault locator system consists of traveling wave detectors located at key substations which detect and time tag the leading edge of the fault-generated traveling wave as if passes through. A master station gathers the time-tagged information from the remote detectors and determines the location of the fault. Precise time is a key element to the success of this system. This fault locator system derives its timing from the Global Positioning System (GPS) satellites. System tests confirmed the accuracy of locating faults to within the design objective of +/-300 meters.
NASA Technical Reports Server (NTRS)
Smoot, G. F.
1981-01-01
Large-angular-scale anisotropies in the 3 K primordial black-body radiation were detected and mapped with a sensitivity of 2 x to the minus 4 power K and an angular resolution of about 10 deg. The motion of the Earth with respect to the distant matter of the Universe ("Aether Drift") was measured and the homogeneity and isotropy of the Universe (the "Cosmological Principle") was probed. The experiment uses two Dicke radiometers, one at 33 GHz to detect the cosmic anisotropy, and one at 54 GHz to detect anisotropies in the residual oxygen above the detectors. The system was installed in the NASA-Ames Earth survey aircraft (U-2), and operated successfully in a series of flights in both the Northern and Southern Hemispheres. Data taking and analysis to measure the anisotropy were successful.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Hariri, Mohamad; Faddel, Samy; Mohammed, Osama
Decentralized and hierarchical microgrid control strategies have lain the groundwork for shaping the future smart grid. Such control approaches require the cooperation between microgrid operators in control centers, intelligent microcontrollers, and remote terminal units via secure and reliable communication networks. In order to enhance the security and complement the work of network intrusion detection systems, this paper presents an artificially intelligent physical model-checking that detects tampered-with circuit breaker switching control commands whether, due to a cyber-attack or human error. In this technique, distributed agents, which are monitoring sectionalized areas of a given microgrid, will be trained and continuously adapted tomore » verify that incoming control commands do not violate the physical system operational standards and do not put the microgrid in an insecure state. The potential of this approach has been tested by deploying agents that monitor circuit breakers status commands on a 14-bus IEEE benchmark system. The results showed the accuracy of the proposed framework in characterizing the power system and successfully detecting malicious and/or erroneous control commands.« less
Kinect-Based Virtual Game for the Elderly that Detects Incorrect Body Postures in Real Time
Saenz-de-Urturi, Zelai; Garcia-Zapirain Soto, Begonya
2016-01-01
Poor posture can result in loss of physical function, which is necessary to preserving independence in later life. Its decline is often the determining factor for loss of independence in the elderly. To avoid this, a system to correct poor posture in the elderly, designed for Kinect-based indoor applications, is proposed in this paper. Due to the importance of maintaining a healthy life style in senior citizens, the system has been integrated into a game which focuses on their physical stimulation. The game encourages users to perform physical activities while the posture correction system helps them to adopt proper posture. The system captures limb node data received from the Kinect sensor in order to detect posture variations in real time. The DTW algorithm compares the original posture with the current one to detect any deviation from the original correct position. The system was tested and achieved a successful detection percentage of 95.20%. Experimental tests performed in a nursing home with different users show the effectiveness of the proposed solution. PMID:27196903
O'Connor, Michael K; Morrow, Melissa M; Tran, Thuy; Hruska, Carrie B; Conners, Amy L; Hunt, Katie N
2017-02-01
The purpose of this study was to perform a pilot evaluation of an integrated molecular breast imaging/ultrasound (MBI/US) system designed to enable, in real-time, the registration of US to MBI and diagnostic evaluation of breast lesions detected on MBI. The MBI/US system was constructed by modifying an existing dual-head cadmium zinc telluride (CZT)-based MBI gamma camera. The upper MBI detector head was replaced with a mesh panel, which allowed an ultrasound probe to access the breast. An optical tracking system was used to monitor the location of the ultrasound transducer, referenced to the MBI detector. The lesion depth at which ultrasound was targeted was estimated from analysis of previously acquired dual-head MBI datasets. A software tool was developed to project the US field of view onto the current MBI image. Correlation of lesion location between both modalities with real-time MBI/US scanning was confirmed in a breast phantom model and assessed in 12 patients with a breast lesion detected on MBI. Combined MBI/US scanning allowed for registration of lesions detected on US and MBI as validated in phantom experiments. In patient studies, successful registration was achieved in 8 of 12 (67%) patients, with complete registration achieved in seven and partial registration achieved in one patient. In 4 of 12 (37%) patients, lesion registration was not achieved, partially attributed to uncertainty in lesion depth estimates from MBI. The MBI/US system enabled successful registration of US to MBI in over half of patients studied in this pilot evaluation. Future studies are needed to determine if real-time, registered US imaging of MBI-detected lesions may obviate the need to proceed to more expensive procedures such as contrast-enhanced breast MRI for diagnostic workup or biopsy of MBI findings. © 2016 American Association of Physicists in Medicine.
Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali
2017-12-01
Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.
Configuration of electro-optic fire source detection system
NASA Astrophysics Data System (ADS)
Fabian, Ram Z.; Steiner, Zeev; Hofman, Nir
2007-04-01
The recent fighting activities in various parts of the world have highlighted the need for accurate fire source detection on one hand and fast "sensor to shooter cycle" capabilities on the other. Both needs can be met by the SPOTLITE system which dramatically enhances the capability to rapidly engage hostile fire source with a minimum of casualties to friendly force and to innocent bystanders. Modular system design enable to meet each customer specific requirements and enable excellent future growth and upgrade potential. The design and built of a fire source detection system is governed by sets of requirements issued by the operators. This can be translated into the following design criteria: I) Long range, fast and accurate fire source detection capability. II) Different threat detection and classification capability. III) Threat investigation capability. IV) Fire source data distribution capability (Location, direction, video image, voice). V) Men portability. ) In order to meet these design criteria, an optimized concept was presented and exercised for the SPOTLITE system. Three major modular components were defined: I) Electro Optical Unit -Including FLIR camera, CCD camera, Laser Range Finder and Marker II) Electronic Unit -including system computer and electronic. III) Controller Station Unit - Including the HMI of the system. This article discusses the system's components definition and optimization processes, and also show how SPOTLITE designers successfully managed to introduce excellent solutions for other system parameters.
Automated detection of optical counterparts to GRBs with RAPTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wozniak, P. R.; Vestrand, W. T.; Evans, S.
2006-05-19
The RAPTOR system (RAPid Telescopes for Optical Response) is an array of several distributed robotic telescopes that automatically respond to GCN localization alerts. Raptor-S is a 0.4-m telescope with 24 arc min. field of view employing a 1k x 1k Marconi CCD detector, and has already detected prompt optical emission from several GRBs within the first minute of the explosion. We present a real-time data analysis and alert system for automated identification of optical transients in Raptor-S GRB response data down to the sensitivity limit of {approx} 19 mag. Our custom data processing pipeline is designed to minimize the timemore » required to reliably identify transients and extract actionable information. The system utilizes a networked PostgreSQL database server for catalog access and distributes email alerts with successful detections.« less
Pathmanathan, Ishani; Date, Anand; Coggin, William L; Nkengasong, John; Piatek, Amy S; Alexander, Heather
2017-03-31
To eliminate preventable deaths, disease and suffering due to tuberculosis (TB), improved diagnostic capacity is critical. The Cepheid Xpert ® MTB/RIF assay is recommended by the World Health Organization as the initial diagnostic test for people with suspected HIV-associated TB. However, despite high expectations, its scale-up in real-world settings has faced challenges, often due to the systems that support it. In this commentary we discuss needs and opportunities for systems strengthening to support widespread scale-up of Xpert ® MTB/RIF as they relate to each step within the TB diagnostic cascade, from finding presumptive patients, to collecting, transporting and testing sputum specimens, to reporting and receiving results, to initiating and monitoring treatment and, ultimately, to ensuring successful and timely treatment and cure. Investments in evidence-based interventions at each step along the cascade and within the system as a whole will augment not only the utility of Xpert ® MTB/RIF, but also the successful implementation of future diagnostic tests. Xpert ® MTB/RIF will only improve patient outcomes if optimally implemented within the context of strong TB programs and systems. Roll-out of this technology to people living with HIV and others in resource-limited settings offers the opportunity to leverage current TB and HIV laboratory, diagnostic and programmatic investments, while also addressing challenges and strengthening coordination between laboratory systems, laboratory-program interfaces, and TB-HIV program interfaces. If successful, the benefits of this tool could extend beyond progress towards global End TB Strategy goals, to improve system-wide capacity for global disease detection and control.
Fiberoptic metal detector capable of profile detection.
Hua, Wei-Shu; Hooks, Joshua R; Erwin, Nicholas A; Wu, Wen-Jong; Wang, Wei-Chih
2011-03-31
The purpose of this paper is to develop a novel ferromagnetic polymeric metal detector system by using a fiber-optic Mach-Zehnder interferometer with a newly developed ferromagnetic polymer as the magnetostrictive sensing device. This ferromagnetic polymeric metal detector system is simple to fabricate, small in size, and resistant to RF interference (which is common in typical electromagnetic type metal detectors). Metal detection is made possible by disrupting the magnetic flux density present on the magnetostrictive sensor. This paper discusses the magnetic properties of the ferromagnetic polymers. In addition, the preliminary results of successful sensing of different geometrical metal shapes will be discussed.
Eddy Current System for Material Inspection and Flaw Visualization
NASA Technical Reports Server (NTRS)
Bachnak, R.; King, S.; Maeger, W.; Nguyen, T.
2007-01-01
Eddy current methods have been successfully used in a variety of non-destructive evaluation applications including detection of cracks, measurements of material thickness, determining metal thinning due to corrosion, measurements of coating thickness, determining electrical conductivity, identification of materials, and detection of corrosion in heat exchanger tubes. This paper describes the development of an eddy current prototype that combines positional and eddy-current data to produce a C-scan of tested material. The preliminary system consists of an eddy current probe, a position tracking mechanism, and basic data visualization capability. Initial test results of the prototype are presented in this paper.
NASA Technical Reports Server (NTRS)
Oubre, Cherie; Khodadad, Christina; Castro, Victoria; Ott, Mark; Pollack, Lawrence; Roman, Monsi
2017-01-01
The RAZOR EX (Registered Trademark) PCR unit was initially developed by the DoD as part of an SBIR project to detect and identify biothreats during field deployment. The system was evaluated by NASA as a commercial technology for future microbial monitoring requirements and has been successfully demonstrated in microgravity on-board the International Space Station.
SQUID sensor application for small metallic particle detection
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Suzuki, Shuichi
2009-04-01
High-Tc superconducting quantum interference device (SQUID) is an ultra-sensitive magnetic sensor. Since the performance of the SQUID is improved and stabilized, now it is ready for application. One strong candidate for application is a detection system of magnetic foreign matters in industrial products or beverages. There is a possibility that ultra-small metallic foreign matter has been accidentally mixed with industrial products such as lithium ion batteries. If this happens, the manufacturer of the product suffers a great loss recalling products. The outer dimension of metallic particles less than 100 μm cannot be detected by an X-ray imaging, which is commonly used for the inspection. Ionization of the material is also a big issue for beverages in the case of the X-ray imaging. Therefore a highly sensitive and safety detection system for small foreign matters is required. We developed detection systems based on high-Tc SQUID with a high-performance magnetic shield. We could successfully measure small iron particles of 100 μm on a belt conveyer and stainless steel balls of 300 μm in water. These detection levels were hard to be achieved by a conventional X-ray detection or other methods.
Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates.
Borsa, Baris A; Tuna, Bilge G; Hernandez, Frank J; Hernandez, Luiza I; Bayramoglu, Gulay; Arica, M Yakup; Ozalp, V Cengiz
2016-12-15
A fast, specific and sensitive homogeneous assay for Staphylococcus aureus detection was developed by measuring the activity of secreted nuclease from the bacteria via a modified DNA oligonucleotide. As biosensor format, an effective system, Nanokeepers as previously reported, were used for triggered release of confined fluorophores, and hence specific detection of S. aureus on nuclease activity was obtained. The interference from blood components for fluorescent quantification was eliminated by a pre-purification by aptamer-functionalized silica magnetic nanoparticles. The reported assay system was exclusively formed by nucleic acid oligos and magnetic or mesoporous silica nanoparticles, that can be used on blood samples in a stepwise manner. The assay was successfully used as a sensing platform for the specific detection of S. aureus cells as low as 682 CFU in whole blood. Copyright © 2016 Elsevier B.V. All rights reserved.
On-chip wavelength multiplexed detection of cancer DNA biomarkers in blood
Cai, H.; Stott, M. A.; Ozcelik, D.; Parks, J. W.; Hawkins, A. R.; Schmidt, H.
2016-01-01
We have developed an optofluidic analysis system that processes biomolecular samples starting from whole blood and then analyzes and identifies multiple targets on a silicon-based molecular detection platform. We demonstrate blood filtration, sample extraction, target enrichment, and fluorescent labeling using programmable microfluidic circuits. We detect and identify multiple targets using a spectral multiplexing technique based on wavelength-dependent multi-spot excitation on an antiresonant reflecting optical waveguide chip. Specifically, we extract two types of melanoma biomarkers, mutated cell-free nucleic acids —BRAFV600E and NRAS, from whole blood. We detect and identify these two targets simultaneously using the spectral multiplexing approach with up to a 96% success rate. These results point the way toward a full front-to-back chip-based optofluidic compact system for high-performance analysis of complex biological samples. PMID:28058082
Sign detection for autonomous navigation
NASA Astrophysics Data System (ADS)
Goodsell, Thomas G.; Snorrason, Magnus S.; Cartwright, Dustin; Stube, Brian; Stevens, Mark R.; Ablavsky, Vitaly X.
2003-09-01
Mobile robots currently cannot detect and read arbitrary signs. This is a major hindrance to mobile robot usability, since they cannot be tasked using directions that are intuitive to humans. It also limits their ability to report their position relative to intuitive landmarks. Other researchers have demonstrated some success on traffic sign recognition, but using template based methods limits the set of recognizable signs. There is a clear need for a sign detection and recognition system that can process a much wider variety of signs: traffic signs, street signs, store-name signs, building directories, room signs, etc. We are developing a system for Sign Understanding in Support of Autonomous Navigation (SUSAN), that detects signs from various cues common to most signs: vivid colors, compact shape, and text. We have demonstrated the feasibility of our approach on a variety of signs in both indoor and outdoor locations.
Detection of ocean waste in the New York Bight
NASA Technical Reports Server (NTRS)
Philpot, W.; Klemas, V.
1979-01-01
The application of remote sensing to detection and monitoring of ocean waste disposal in the New York Bight is discussed. Attention is focused on the two major pollutants in this area--sewage sludge and iron-acid waste--and on detecting and identifying these pollutants. The emphasis is on the use of LANDSAT multispectral data in identifying these pollutants and distinguishing them from other substances. The analysis technique applied to the LANDSAT data is the eigenvector. This approach proved to be quite successful in detecting iron-acid waste of the coast of Delaware and is applied here with relatively minor modifications. The results of the New York Bight work are compared to the Delaware results. Finally, other remote sensing systems (Nimbus G, aircraft photography and multispectral scanner systems) are discussed as possible complements of or replacements for the Landsat observations.
Real-time 3D change detection of IEDs
NASA Astrophysics Data System (ADS)
Wathen, Mitch; Link, Norah; Iles, Peter; Jinkerson, John; Mrstik, Paul; Kusevic, Kresimir; Kovats, David
2012-06-01
Road-side bombs are a real and continuing threat to soldiers in theater. CAE USA recently developed a prototype Volume based Intelligence Surveillance Reconnaissance (VISR) sensor platform for IED detection. This vehicle-mounted, prototype sensor system uses a high data rate LiDAR (1.33 million range measurements per second) to generate a 3D mapping of roadways. The mapped data is used as a reference to generate real-time change detection on future trips on the same roadways. The prototype VISR system is briefly described. The focus of this paper is the methodology used to process the 3D LiDAR data, in real-time, to detect small changes on and near the roadway ahead of a vehicle traveling at moderate speeds with sufficient warning to stop the vehicle at a safe distance from the threat. The system relies on accurate navigation equipment to geo-reference the reference run and the change-detection run. Since it was recognized early in the project that detection of small changes could not be achieved with accurate navigation solutions alone, a scene alignment algorithm was developed to register the reference run with the change detection run prior to applying the change detection algorithm. Good success was achieved in simultaneous real time processing of scene alignment plus change detection.
Ziemann, Alexandra; Fouillet, Anne; Brand, Helmut; Krafft, Thomas
2016-01-01
Introduction Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. Materials and Methods We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. Results We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. Conclusions We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings. PMID:27182731
Ziemann, Alexandra; Fouillet, Anne; Brand, Helmut; Krafft, Thomas
2016-01-01
Syndromic surveillance aims at augmenting traditional public health surveillance with timely information. To gain a head start, it mainly analyses existing data such as from web searches or patient records. Despite the setup of many syndromic surveillance systems, there is still much doubt about the benefit of the approach. There are diverse interactions between performance indicators such as timeliness and various system characteristics. This makes the performance assessment of syndromic surveillance systems a complex endeavour. We assessed if the comparison of several syndromic surveillance systems through Qualitative Comparative Analysis helps to evaluate performance and identify key success factors. We compiled case-based, mixed data on performance and characteristics of 19 syndromic surveillance systems in Europe from scientific and grey literature and from site visits. We identified success factors by applying crisp-set Qualitative Comparative Analysis. We focused on two main areas of syndromic surveillance application: seasonal influenza surveillance and situational awareness during different types of potentially health threatening events. We found that syndromic surveillance systems might detect the onset or peak of seasonal influenza earlier if they analyse non-clinical data sources. Timely situational awareness during different types of events is supported by an automated syndromic surveillance system capable of analysing multiple syndromes. To our surprise, the analysis of multiple data sources was no key success factor for situational awareness. We suggest to consider these key success factors when designing or further developing syndromic surveillance systems. Qualitative Comparative Analysis helped interpreting complex, mixed data on small-N cases and resulted in concrete and practically relevant findings.
García-Diego, Fernando-Juan; Bravo, José María; Pérez-Miralles, Juan; Estrada, Héctor; Fernández-Navajas, Angel
2012-01-01
Non-destructive methods are of great interest for the analysis of cultural heritage. Among the different possible techniques, this paper presents a low cost prototype based on the emission and reception of airborne ultrasound without direct contact with the test specimen. We successfully performed a method test for the detection of brick joints under a XVth century Renaissance fresco of the Metropolitan Cathedral of the city of Valencia (Spain). Both laboratory and in situ results are in agreement. Using this prototype system, an early moisture detection system has been installed in the dome that supports the fresco. The result is encouraging and opens interesting prospects for future research. PMID:22438711
Collision Detection for Underwater ROV Manipulator Systems
Rossi, Matija; Dooly, Gerard; Toal, Daniel
2018-01-01
Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations. PMID:29642396
Collision Detection for Underwater ROV Manipulator Systems.
Sivčev, Satja; Rossi, Matija; Coleman, Joseph; Omerdić, Edin; Dooly, Gerard; Toal, Daniel
2018-04-06
Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.
Detection of Iberian ham aroma by a semiconductor multisensorial system.
Otero, Laura; Horrillo, M A Carmen; García, María; Sayago, Isabel; Aleixandre, Manuel; Fernández, M A Jesús; Arés, Luis; Gutiérrez, Javier
2003-11-01
A semiconductor multisensorial system, based on tin oxide, to control the quality of dry-cured Iberian hams is described. Two types of ham (submitted to different drying temperatures) were selected. Good responses were obtained from the 12 elements forming the multisensor for different operating temperatures. Discrimination between the two types of ham was successfully realised through principal component analysis (PCA).
A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application.
Vivacqua, Rafael; Vassallo, Raquel; Martins, Felipe
2017-10-16
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle's backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation.
A Low Cost Sensors Approach for Accurate Vehicle Localization and Autonomous Driving Application
Vassallo, Raquel
2017-01-01
Autonomous driving in public roads requires precise localization within the range of few centimeters. Even the best current precise localization system based on the Global Navigation Satellite System (GNSS) can not always reach this level of precision, especially in an urban environment, where the signal is disturbed by surrounding buildings and artifacts. Laser range finder and stereo vision have been successfully used for obstacle detection, mapping and localization to solve the autonomous driving problem. Unfortunately, Light Detection and Ranging (LIDARs) are very expensive sensors and stereo vision requires powerful dedicated hardware to process the cameras information. In this context, this article presents a low-cost architecture of sensors and data fusion algorithm capable of autonomous driving in narrow two-way roads. Our approach exploits a combination of a short-range visual lane marking detector and a dead reckoning system to build a long and precise perception of the lane markings in the vehicle’s backwards. This information is used to localize the vehicle in a map, that also contains the reference trajectory for autonomous driving. Experimental results show the successful application of the proposed system on a real autonomous driving situation. PMID:29035334
NASA Astrophysics Data System (ADS)
Doll, William E.; Bell, David T.; Gamey, T. Jeffrey; Beard, Les P.; Sheehan, Jacob R.; Norton, Jeannemarie
2010-04-01
Over the past decade, notable progress has been made in the performance of airborne geophysical systems for mapping and detection of unexploded ordnance in terrestrial and shallow marine environments. For magnetometer systems, the most significant improvements include development of denser magnetometer arrays and vertical gradiometer configurations. In prototype analyses and recent Environmental Security Technology Certification Program (ESTCP) assessments using new production systems the greatest sensitivity has been achieved with a vertical gradiometer configuration, despite model-based survey design results which suggest that dense total-field arrays would be superior. As effective as magnetometer systems have proven to be at many sites, they are inadequate at sites where basalts and other ferrous geologic formations or soils produce anomalies that approach or exceed those of target ordnance items. Additionally, magnetometer systems are ineffective where detection of non-ferrous ordnance items is of primary concern. Recent completion of the Battelle TEM-8 airborne time-domain electromagnetic system represents the culmination of nearly nine years of assessment and development of airborne electromagnetic systems for UXO mapping and detection. A recent ESTCP demonstration of this system in New Mexico showed that it was able to detect 99% of blind-seeded ordnance items, 81mm and larger, and that it could be used to map in detail a bombing target on a basalt flow where previous airborne magnetometer surveys had failed. The probability of detection for the TEM-8 in the blind-seeded study area was better than that reported for a dense-array total-field magnetometer demonstration of the same blind-seeded site, and the TEM-8 system successfully detected these items with less than half as many anomaly picks as the dense-array total-field magnetometer system.
Aerosol mass spectrometry systems and methods
Fergenson, David P.; Gard, Eric E.
2013-08-20
A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.
Skylab Medical Experiments Altitude Test /SMEAT/ facility design and operation.
NASA Technical Reports Server (NTRS)
Hinners, A. H., Jr.; Correale, J. V.
1973-01-01
This paper presents the design approaches and test facility operation methods used to successfully accomplish a 56-day test for Skylab to permit evaluation of selected Skylab medical experiments in a ground test simulation of the Skylab environment with an astronaut crew. The systems designed for this test include the two-gas environmental control system, the fire suppression and detection system, equipment transfer lock, ground support equipment, safety systems, potable water system, waste management system, lighting and power system, television monitoring, communications and recreation systems, and food freezer.
Chen, Zhanguang; Qian, Sihua; Chen, Junhui; Cai, Jie; Wu, Shuyan; Cai, Ziping
2012-05-30
In this contribution, bovine serum albumin stabilized gold nanoclusters as novel fluorescent probes were successfully utilized for the detection of ciprofloxacin for the first time. Our prepared gold nanoclusters exhibited strong emission with peak maximum at 635 nm. Cu(2+) was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of ciprofloxacin caused the fluorescence intensity restoration of the Cu(2+)-gold nanoclusters system. The increase in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by ciprofloxacin allows the sensitive detection of ciprofloxacin in the range of 0.4 ng mL(-1) to 50 ng mL(-1). The detection limit for ciprofloxacin is 0.3 ng mL(-1) at a signal-to-noise ratio of 3. The present sensor for ciprofloxacin detection possesses a low detection limit and wide linear range. In addition, the real samples were analyzed with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.
Schuurman, Teska; Veersema, Sebastiaan
2011-01-01
This case report describes a successful hysteroscopic sterilisation using the Essure Permanent Birth Control device (Conceptus Inc., Mountain View, California, United States) after a failed procedure of the Adiana Permanent Contraception system (Hologic, Inc., Bedford, Maryland, United States). The delivery catheter of the Adiana system was able to be inserted into the left fallopian tube without difficulty and per manufacturer specifications. However, the position detection array was unable to sense four-quadrant tissue contact. The same issue occurred at the contralateral tube. Using the Essure system, the coils were able to be placed in both ostia easily and adequately. In patients in whom the Adiana system fails to occlude the fallopian tubes due to procedural, anatomic or device-related factors, the Essure procedure may be an efficient alternative. PMID:22689274
Cephalometric landmark detection in dental x-ray images using convolutional neural networks
NASA Astrophysics Data System (ADS)
Lee, Hansang; Park, Minseok; Kim, Junmo
2017-03-01
In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.
NASA Astrophysics Data System (ADS)
Hatsukade, Yoshimi; Kosugi, Akifumi; Mori, Kazuaki; Tanaka, Saburo
2004-11-01
An eddy-current-based nondestructive inspection (NDI) system using superconducting quantum interference device (SQUID) cooled using a coaxial pulse tube cryocooler was constructed for the inspection of microflaws on copper tubes employing a high-Tc SQUID gradiometer and a Helmholtz-like coil inducer. The detection of artificial flaws several tens of μm in depth on copper tubes 6.35 mm in outer diameter and 0.825 mm in thickness was demonstrated using the SQUID-NDI system. With an excitation field of 1.6 μT at 5 kHz, a 30-μm-depth flaw was successfully detected by the system at an SN ratio of at least 20. The magnetic signal amplitude due to the flaw was proportional to both excitation frequency and the square of flaw depth. With consideration of the system’s sensitivity, the results indicate that sub-10-μm-depth flaws are detectable by the SQUID-NDI system.
Chandrasekaran, Arvind; Packirisamy, Muthukumaran
2009-01-01
The advent of microoptoelectromechanical systems (MOEMS) and its integration with other technologies such as microfluidics, microthermal, immunoproteomics, etc. has led to the concept of an integrated micro-total-analysis systems (microTAS) or Lab-on-a-Chip for chemical and biological applications. Recently, research and development of microTAS have attained a significant growth rate over several biodetection sciences, in situ medical diagnoses, and point-of-care testing applications. However, it is essential to develop suitable biophysical label-free detection methods for the success, reliability, and ease of use of the microTAS. We proposed an infrared (IR)-based evanescence wave detection system on the silicon-on-insulator platform for biodetection with microTAS. The system operates on the principle of bio-optical interaction that occurs due to the evanescence of light from the waveguide device. The feasibility of biodetection has been experimentally investigated by the detection of horse radish peroxidase upon its reaction with hydrogen peroxide.
Lee, Young-Sook; Chung, Wan-Young
2012-01-01
Vision-based abnormal event detection for home healthcare systems can be greatly improved using visual sensor-based techniques able to detect, track and recognize objects in the scene. However, in moving object detection and tracking processes, moving cast shadows can be misclassified as part of objects or moving objects. Shadow removal is an essential step for developing video surveillance systems. The goal of the primary is to design novel computer vision techniques that can extract objects more accurately and discriminate between abnormal and normal activities. To improve the accuracy of object detection and tracking, our proposed shadow removal algorithm is employed. Abnormal event detection based on visual sensor by using shape features variation and 3-D trajectory is presented to overcome the low fall detection rate. The experimental results showed that the success rate of detecting abnormal events was 97% with a false positive rate of 2%. Our proposed algorithm can allow distinguishing diverse fall activities such as forward falls, backward falls, and falling asides from normal activities. PMID:22368486
Liu, Jing; Gupta, Naveen K; Wise, Kensall D; Gianchandani, Yogesh B; Fan, Xudong
2011-10-21
This paper reports the investigation of a micro-gas chromatography (μGC) system that utilizes an array of miniaturized motionless Knudsen pumps (KPs) as well as microfabricated separation columns and optical detectors. A prototype system was built to achieve a flow rate of 1 mL min(-1) and 0.26 mL min(-1) for helium and dry air, respectively, when they were used as carrier gas. This system was then employed to evaluate GC performance compromises and demonstrate the ability to separate and detect gas mixtures containing analytes of different volatilities and polarities. Furthermore, the use of pressure programming of the KP array was demonstrated to significantly shorten the analysis time while maintaining a high detection resolution. Using this method, we obtained a high resolution detection of 5 alkanes of different volatilities within 5 min. Finally, we successfully detected gas mixtures of various polarities using a tandem-column μGC configuration by installing two on-column optical detectors to obtain complementary chromatograms.
Detection of pulsed bremsstrahlung-induced prompt neutron capture gamma rays with a HPGe detector
NASA Astrophysics Data System (ADS)
Jones, James L.
1997-02-01
The Idaho National Engineering Laboratory (INEL) is developing a novel photoneutron-based nondestructive evaluation technique which uses a pulsed, high-energy electron accelerator and gamma-ray spectrometry. Highly penetrating pulses of bremsstrahlung photons are produced by each pulse of electrons. Interrogating neutrons are generated by the bremsstrahlung photons interacting within a photoneutron source material. The interactions of the neutrons within a target result in the emission of elemental characteristic gamma-rays. Spectrometry is performed by analyzing the photoneutron-induced, prompt gama-rays acquired between accelerator pulses with a unique, high- purity germanium gamma-ray detection system using a modified transistor reset preamplifier. The detection system, the experimental configuration, and the accelerator operation used to characterize the detection systems performance are described. Using a 6.5-MeV electron accelerator and a beryllium metal photoneutron source, gamma-ray spectra were successfully acquired for Al, Cu, polyethylene, NaCl, and depleted uranium targets as soon as 30 microsecond(s) after each bremsstrahlung flash.
Swensen, James S.; Xiao, Yi; Ferguson, Brian S.; Lubin, Arica A.; Lai, Rebecca Y.; Heeger, Alan J.; Plaxco, Kevin W.; Soh, H. Tom.
2009-01-01
The development of a biosensor system capable of continuous, real-time measurement of small-molecule analytes directly in complex, unprocessed aqueous samples has been a significant challenge, and successful implementation has been achieved for only a limited number of targets. Towards a general solution to this problem, we report here the Microfluidic Electrochemical Aptamer-based Sensor (MECAS) chip wherein we integrate target-specific DNA aptamers that fold, and thus generate an electrochemical signal, in response to the analyte with a microfluidic detection system. As a model, we demonstrate the continuous, real-time (~1 minute time resolution) detection of the small molecule drug cocaine at near physiological, low micromolar concentrations directly in undiluted, otherwise unmodified blood serum. We believe our approach of integrating folding-based electrochemical sensors with miniaturized detection systems may lay the ground work for the real-time, point-of-care detection of a wide variety of molecular targets. PMID:19271708
Detection of incipient defects in cables by partial discharge signal analysis
NASA Astrophysics Data System (ADS)
Martzloff, F. D.; Simmon, E.; Steiner, J. P.; Vanbrunt, R. J.
1992-07-01
As one of the objectives of a program aimed at assessing test methods for in-situ detection of incipient defects in cables due to aging, a laboratory test system was implemented to demonstrate that the partial discharge analysis method can be successfully applied to low-voltage cables. Previous investigations generally involved cables rated 5 kV or higher, while the objective of the program focused on the lower voltages associated with the safety systems of nuclear power plants. The defect detection system implemented for the project was based on commercially available signal analysis hardware and software packages, customized for the specific purposes of the project. The test specimens included several cables of the type found in nuclear power plants, including artificial defects introduced at various points of the cable. The results indicate that indeed, partial discharge analysis is capable of detecting incipient defects in low-voltage cables. There are, however, some limitations of technical and non-technical nature that need further exploration before this method can be accepted in the industry.
Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system.
Chen, Ming; Liu, Minghua; Yu, Lili; Cai, Guoru; Chen, Qinghai; Wu, Rong; Wang, Feng; Zhang, Bo; Jiang, Tianlun; Fu, Welling
2005-08-01
A novel 2 x 5 clamped style piezoelectric gene sensor microarray has been successfully constructed. Every crystal unit of the fabricated gene sensor can oscillate independently without interfering with each other. The bis-peptide nucleic acid (bis-PNA) probe, which can combine with target DNA or RNA sequences more effectively and specifically than a DNA probe, was designed and immobilized on the surface of the gene sensor microarray to substitute the conventional DNA probe for direct detection of the hepatitis B virus (HBV) genomic DNA. Detection conditions were then explored and optimized. Results showed that PBS buffer of pH 6.8, an ion concentration of 20 mmol/liter, and a probe concentration of 1.5 micromol/liter were optimal for the detection system. Under such optimized experimental conditions, the specificity of bis-PNA was proved much higher than that of DNA probe. The relationship between quantity of target and decrease of frequency showed a typical saturation curve when concentrations of target HBV DNA varied from 10 pg/liter to 100 microg/liter, and 10 microg/liter was the watershed, with a statistic linear regression equation of I gC = -2.7455 + 0.0691 deltaF and the correlating coefficient of 0.9923. Fortunately, this is exactly the most ordinary variant range of the HBV virus concentration in clinical hepatitis samples. So, a good technical platform is successfully constructed and it will be applied to detect HBV quantitatively in clinical samples.
On the use of multi-agent systems for the monitoring of industrial systems
NASA Astrophysics Data System (ADS)
Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil
2016-03-01
The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.
NASA Technical Reports Server (NTRS)
Dunham, Edward W.
2000-01-01
We developed the CCD camera system for the laboratory test demonstration and designed the optical system for this test. The camera system was delivered to Ames in April, 1999 with continuing support mostly in the software area as the test progressed. The camera system has been operating successfully since delivery. The optical system performed well during the test. The laboratory demonstration activity is now nearly complete and is considered to be successful by the Technical Advisory Group, which met on 8 February, 2000 at the SETI Institute. A final report for the Technical Advisory Group and NASA Headquarters will be produced in the next few months. This report will be a comprehensive report on all facets of the test including those covered under this grant. A copy will be forwarded, if desired, when it is complete.
FogEye UV Sensor System : Low Visibility Landing Test (Phase IV Report)
DOT National Transportation Integrated Search
2004-03-01
The potential of FogEye solar blind UV technology to contribute to safe and swift throughput operations at airports has been demonstrated. One application, use of FogEye (Safety Sentry), as an aircraft surface detection sensor has been successfully o...
Yoshie, Susumu; Ito, Jun; Shirasawa, Sakiko; Yokoyama, Tadayuki; Fujimura, Yuu; Takeda, Kazuo; Mizuguchi, Masahiro; Matsumoto, Ken; Tomotsune, Daihachiro; Sasaki, Katsunori
2012-01-01
Hepatocytes derived from embryonic stem cells (ESCs) are expected to be useful for basic research and clinical applications. However, in several studies, genetic methods used to detect and obtain them are difficult and pose major safety problems. Therefore, in this study, we established a novel detection system for hepatocytes by using indocyanine green (ICG), which is selectively taken up by hepatocytes, based on nongenetic manipulation. ICG has maximum light absorption near 780 nm, and it fluoresces between 800 and 900 nm. Making use of these properties, we developed flow cytometry equipped with an excitation lazer of 785 nm and specific bandpass filters and successfully detected ESC-derived ICG-positive cells that were periodic acid-Schiff positive and expressed hepatocyte phenotypic mRNAs. These results demonstrate that this detection system based on nongenetic manipulation with ICG will lead to isolate hepatocytes generated from ESCs and provide the appropriate levels of stability, quality, and safety required for cell source for cell-based therapy and pharmaceutical studies such as toxicology.
Clone tag detection in distributed RFID systems.
Kamaludin, Hazalila; Mahdin, Hairulnizam; Abawajy, Jemal H
2018-01-01
Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy.
Object tracking via background subtraction for monitoring illegal activity in crossroad
NASA Astrophysics Data System (ADS)
Ghimire, Deepak; Jeong, Sunghwan; Park, Sang Hyun; Lee, Joonwhoan
2016-07-01
In the field of intelligent transportation system a great number of vision-based techniques have been proposed to prevent pedestrians from being hit by vehicles. This paper presents a system that can perform pedestrian and vehicle detection and monitoring of illegal activity in zebra crossings. In zebra crossing, according to the traffic light status, to fully avoid a collision, a driver or pedestrian should be warned earlier if they possess any illegal moves. In this research, at first, we detect the traffic light status of pedestrian and monitor the crossroad for vehicle pedestrian moves. The background subtraction based object detection and tracking is performed to detect pedestrian and vehicles in crossroads. Shadow removal, blob segmentation, trajectory analysis etc. are used to improve the object detection and classification performance. We demonstrate the experiment in several video sequences which are recorded in different time and environment such as day time and night time, sunny and raining environment. Our experimental results show that such simple and efficient technique can be used successfully as a traffic surveillance system to prevent accidents in zebra crossings.
An airborne FLIR detection and warning system for low altitude wind shear
NASA Technical Reports Server (NTRS)
Sinclair, Peter C.; Kuhn, Peter M.
1991-01-01
It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter.
Technology transfer: Transportation
NASA Technical Reports Server (NTRS)
Anyos, T.; Christy, L.; Lizak, R.; Wilhelm, J.
1978-01-01
The successful application of aerospace technology to problems related to highways and rail and rapid transit systems is described with emphasis on the use of corrosion resistant paints, fire retardant materials, and law enforcement. Possible areas for the use of spinoff from NASA technology by the California State Department of Corrections are identified. These include drug detection, security and warning systems, and the transportation and storage of food. A communication system for emergency services is also described.
Reliability of unstable periodic orbit based control strategies in biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Nagender; Singh, Harinder P.; Hasse, Maria
2015-04-15
Presence of recurrent and statistically significant unstable periodic orbits (UPOs) in time series obtained from biological systems is now routinely used as evidence for low dimensional chaos. Extracting accurate dynamical information from the detected UPO trajectories is vital for successful control strategies that either aim to stabilize the system near the fixed point or steer the system away from the periodic orbits. A hybrid UPO detection method from return maps that combines topological recurrence criterion, matrix fit algorithm, and stringent criterion for fixed point location gives accurate and statistically significant UPOs even in the presence of significant noise. Geometry ofmore » the return map, frequency of UPOs visiting the same trajectory, length of the data set, strength of the noise, and degree of nonstationarity affect the efficacy of the proposed method. Results suggest that establishing determinism from unambiguous UPO detection is often possible in short data sets with significant noise, but derived dynamical properties are rarely accurate and adequate for controlling the dynamics around these UPOs. A repeat chaos control experiment on epileptic hippocampal slices through more stringent control strategy and adaptive UPO tracking is reinterpreted in this context through simulation of similar control experiments on an analogous but stochastic computer model of epileptic brain slices. Reproduction of equivalent results suggests that far more stringent criteria are needed for linking apparent success of control in such experiments with possible determinism in the underlying dynamics.« less
A food contaminant detection system based on high-Tc SQUIDs
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Fujita, H.; Hatsukade, Y.; Nagaishi, T.; Nishi, K.; Ota, H.; Otani, T.; Suzuki, S.
2006-05-01
We have designed and constructed a computer controlled food contaminant detection system for practical use, based on high-Tc SQUID detectors. The system, which features waterproof stainless steel construction, is acceptable under the HACCP (Hazard Analysis and Critical Control Point) programme guidelines. The outer dimensions of the system are 1500 mm length × 477 mm width × 1445 mm height, and it can accept objects up to 200 mm wide × 80 mm high. An automatic liquid nitrogen filling system was installed in the standard model. This system employed a double-layered permeable metallic shield with a thickness of 1 mm as a magnetically shielded box. The distribution of the magnetic field in the box was simulated by FEM; the gap between each shield layer was optimized before fabrication. A shielding factor of 732 in the Z-component was achieved. This value is high enough to safely operate the system in a non-laboratory environment, i.e., a factory. During testing, we successfully detected a steel contaminant as small as 0.3 mm in diameter at a distance of 75 mm.
Use of Indocyanine Green for Sentinel Lymph Node Biopsy: Case Series and Methods Comparison.
McGregor, Andrew; Pavri, Sabrina N; Tsay, Cynthia; Kim, Samuel; Narayan, Deepak
2017-11-01
Sentinel lymph node biopsy is indicated for patients with biopsy-proven thickness melanoma greater than 1.0 mm. Use of lymphoscintigraphy along with vital blue dyes is the gold standard for identifying sentinel lymph nodes intraoperatively. Indocyanine green (ICG) has recently been used as a method of identifying sentinel lymph nodes. We herein describe a case series of patients who have successfully undergone ICG-assisted sentinel lymph node biopsy for melanoma. We compare 2 imaging systems that are used for ICG-assisted sentinel lymph node biopsy. Fourteen patients underwent ICG-assisted sentinel lymph node biopsy for melanoma using the SPY Elite system (Novadaq, Mississigua, Canada) and the Hamamatsu PDE-Neo probe system (Mitaka USA, Park City, Utah). We analyzed costs for 2 systems that utilize ICG for sentinel lymph node biopsies. Intraoperative use of ICG for sentinel lymph node biopsies was successful in correctly identifying sentinel lymph nodes. There was no difference between the Hamamatsu PDE-Neo probe and SPY Elite systems in the ability to detect sentinel lymph nodes; however, the former was associated with a lower operating cost and ease of use compared with the latter. ICG-assisted sentinel lymph biopsy using the SPY Elite or the Hamamatsu PDE-Neo probe systems for melanoma are comparable in terms of sentinel node detection. The Neo probe system delivers pertinent clinical data with the advantages of lower cost and ease of operation.
An Approach to V&V of Embedded Adaptive Systems
NASA Technical Reports Server (NTRS)
Liu, Yan; Yerramalla, Sampath; Fuller, Edgar; Cukic, Bojan; Gururajan, Srikaruth
2004-01-01
Rigorous Verification and Validation (V&V) techniques are essential for high assurance systems. Lately, the performance of some of these systems is enhanced by embedded adaptive components in order to cope with environmental changes. Although the ability of adapting is appealing, it actually poses a problem in terms of V&V. Since uncertainties induced by environmental changes have a significant impact on system behavior, the applicability of conventional V&V techniques is limited. In safety-critical applications such as flight control system, the mechanisms of change must be observed, diagnosed, accommodated and well understood prior to deployment. In this paper, we propose a non-conventional V&V approach suitable for online adaptive systems. We apply our approach to an intelligent flight control system that employs a particular type of Neural Networks (NN) as the adaptive learning paradigm. Presented methodology consists of a novelty detection technique and online stability monitoring tools. The novelty detection technique is based on Support Vector Data Description that detects novel (abnormal) data patterns. The Online Stability Monitoring tools based on Lyapunov's Stability Theory detect unstable learning behavior in neural networks. Cases studies based on a high fidelity simulator of NASA's Intelligent Flight Control System demonstrate a successful application of the presented V&V methodology. ,
UAV-borne X-band radar for MAV collision avoidance
NASA Astrophysics Data System (ADS)
Moses, Allistair A.; Rutherford, Matthew J.; Kontitsis, Michail; Valavanis, Kimon P.
2011-05-01
Increased use of Miniature (Unmanned) Aerial Vehicles (MAVs) is coincidentally accompanied by a notable lack of sensors suitable for enabling further increases in levels of autonomy and consequently, integration into the National Airspace System (NAS). The majority of available sensors suitable for MAV integration are based on infrared detectors, focal plane arrays, optical and ultrasonic rangefinders, etc. These sensors are generally not able to detect or identify other MAV-sized targets and, when detection is possible, considerable computational power is typically required for successful identification. Furthermore, performance of visual-range optical sensor systems can suffer greatly when operating in the conditions that are typically encountered during search and rescue, surveillance, combat, and most common MAV applications. However, the addition of a miniature radar system can, in consort with other sensors, provide comprehensive target detection and identification capabilities for MAVs. This trend is observed in manned aviation where radar systems are the primary detection and identification sensor system. Within this document a miniature, lightweight X-Band radar system for use on a miniature (710mm rotor diameter) rotorcraft is described. We present analyses of the performance of the system in a realistic scenario with two MAVs. Additionally, an analysis of MAV navigation and collision avoidance behaviors is performed to determine the effect of integrating radar systems into MAV-class vehicles.
Surface-enhanced Raman spectroscopy of half-mustard agent.
Stuart, Douglas A; Biggs, Kevin B; Van Duyne, Richard P
2006-04-01
The detection and identification of chemical warfare agents is an important analytical goal. Herein, it is demonstrated that 2-chloroethyl ethyl sulfide (half-mustard, CEES) can be successfully analysed using surface-enhanced Raman spectroscopy (SERS). A critical component in this detection system is the fabrication of a robust, yet highly enhancing, sensor surface. Recent advances in substrate fabrication and in the fundamental understanding of the SERS phenomenon enable the development of improved substrates for practical SERS applications.
Analytical and Experimental Vibration Analysis of a Faulty Gear System.
1994-10-01
Wigner - Ville Distribution ( WVD ) was used to give a comprehensive comparison of the predicted and...experimental results. The WVD method applied to the experimental results were also compared to other fault detection techniques to verify the WVD’s ability to...of the damaged test gear and the predicted vibration from the model with simulated gear tooth pitting damage. Results also verified that the WVD method can successfully detect and locate gear tooth wear and pitting damage.
NASA Astrophysics Data System (ADS)
Christensen-Dalsgaard, Jakob
Anuran amphibians (frogs and toads) of most of the 3,500 species that exist today are highly vocal animals. In most frogs, males will spend considerable energy on calling and incur sizeable predation risks and the females’ detection and localization of the calls of conspecific males is often a prerequisite for successful mating. Therefore, acoustic communication is evidently evolutionarily important in the anurans, and their auditory system is probably shaped by the selective pressures associated with production, detection and localization of the communication calls.
NASA Astrophysics Data System (ADS)
Takahashi, Hideyuki; Okamoto, Tsubasa; Ohmichi, Eiji; Ohta, Hitoshi
Electron spin resonance spectroscopy in the terahertz region (THz-ESR) is a promising technique to study biological materials such as metalloproteins because it directly probes the metal ion sites that play an important role in the emergence of functionality. By combining THz-ESR with force detection, the samples mass is reduced to the order of ng. This feature is of great advantage because the sample preparation process of biological materials is time-consuming. We developed a force-detected THz-ESR system utilizing optical interferometry for precise cantilever displacement measurement. In order to suppress the sensitivity fluctuation and instability of cantilever dynamics under high magnetic field, the tuning of interferometer is feedback-controlled during a measurement. By using this system, we successfully observed the ESR signal of hemin, which is a model substance of hemoglobin and myoglobin, in THz region.
The Lord of the Rings - Deep Learning Craters on the Moon and Other Bodies
NASA Astrophysics Data System (ADS)
Silburt, Ari; Ali-Dib, Mohamad; Zhu, Chenchong; Jackson, Alan; Valencia, Diana; Kissin, Yevgeni; Tamayo, Daniel; Menou, Kristen
2018-01-01
Crater detection has traditionally been done via manual inspection of images, leading to statistically significant disagreements between scientists for the Moon's crater distribution. In addition, there are millions of uncategorized craters on the Moon and other Solar System bodies that will never be classified by humans due to the time required to manually detect craters. I will show that a deep learning model trained on the near-side of the Moon can successfully reproduce the crater distribution on the far-side, as well as detect thousands of small, new craters that were previously uncharacterized. In addition, this Moon-trained model can be transferred to accurately classify craters on Mercury. It is therefore likely that this model can be extended to classify craters on all Solar System bodies with Digital Elevation Maps. This will facilitate, for the first time ever, a systematic, accurate, and reproducible study of the crater records throughout the Solar System.
Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez
2013-05-14
This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process.
A plastic scintillator-based muon tomography system with an integrated muon spectrometer
NASA Astrophysics Data System (ADS)
Anghel, V.; Armitage, J.; Baig, F.; Boniface, K.; Boudjemline, K.; Bueno, J.; Charles, E.; Drouin, P.-L.; Erlandson, A.; Gallant, G.; Gazit, R.; Godin, D.; Golovko, V. V.; Howard, C.; Hydomako, R.; Jewett, C.; Jonkmans, G.; Liu, Z.; Robichaud, A.; Stocki, T. J.; Thompson, M.; Waller, D.
2015-10-01
A muon scattering tomography system which uses extruded plastic scintillator bars for muon tracking and a dedicated muon spectrometer that measures scattering through steel slabs has been constructed and successfully tested. The atmospheric muon detection efficiency is measured to be 97% per plane on average and the average intrinsic hit resolution is 2.5 mm. In addition to creating a variety of three-dimensional images of objects of interest, a quantitative study has been carried out to investigate the impact of including muon momentum measurements when attempting to detect high-density, high-Z material. As expected, the addition of momentum information improves the performance of the system. For a fixed data-taking time of 60 s and a fixed false positive fraction, the probability to detect a target increases when momentum information is used. This is the first demonstration of the use of muon momentum information from dedicated spectrometer measurements in muon scattering tomography.
Svečko, Rajko; Kusić, Dragan; Kek, Tomaž; Sarjaš, Andrej; Hančič, Aleš; Grum, Janez
2013-01-01
This paper presents an improved monitoring system for the failure detection of engraving tool steel inserts during the injection molding cycle. This system uses acoustic emission PZT sensors mounted through acoustic waveguides on the engraving insert. We were thus able to clearly distinguish the defect through measured AE signals. Two engraving tool steel inserts were tested during the production of standard test specimens, each under the same processing conditions. By closely comparing the captured AE signals on both engraving inserts during the filling and packing stages, we were able to detect the presence of macro-cracks on one engraving insert. Gabor wavelet analysis was used for closer examination of the captured AE signals' peak amplitudes during the filling and packing stages. The obtained results revealed that such a system could be used successfully as an improved tool for monitoring the integrity of an injection molding process. PMID:23673677
Chen, Yongyao; Liu, Haijun; Reilly, Michael; Bae, Hyungdae; Yu, Miao
2014-10-15
Acoustic sensors play an important role in many areas, such as homeland security, navigation, communication, health care and industry. However, the fundamental pressure detection limit hinders the performance of current acoustic sensing technologies. Here, through analytical, numerical and experimental studies, we show that anisotropic acoustic metamaterials can be designed to have strong wave compression effect that renders direct amplification of pressure fields in metamaterials. This enables a sensing mechanism that can help overcome the detection limit of conventional acoustic sensing systems. We further demonstrate a metamaterial-enhanced acoustic sensing system that achieves more than 20 dB signal-to-noise enhancement (over an order of magnitude enhancement in detection limit). With this system, weak acoustic pulse signals overwhelmed by the noise are successfully recovered. This work opens up new vistas for the development of metamaterial-based acoustic sensors with improved performance and functionalities that are highly desirable for many applications.
Zuo, Peng; Li, XiuJun; Dominguez, Delfina C; Ye, Bang-Ce
2013-10-07
Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL(-1). We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step 'turn on' pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens.
Zuo, Peng; Dominguez, Delfina C.; Ye, Bang-Ce
2014-01-01
Infectious pathogens often cause serious public health concerns throughout the world. There is an increasing demand for simple, rapid and sensitive approaches for multiplexed pathogen detection. In this paper we have developed a polydimethylsiloxane (PDMS)/paper/glass hybrid microfluidic system integrated with aptamer-functionalized graphene oxide (GO) nano-biosensors for simple, one-step, multiplexed pathogen detection. The paper substrate used in this hybrid microfluidic system facilitated the integration of aptamer biosensors on the microfluidic biochip, and avoided complicated surface treatment and aptamer probe immobilization in a PDMS or glass-only microfluidic system. Lactobacillus acidophilus was used as a bacterium model to develop the microfluidic platform with a detection limit of 11.0 cfu mL−1. We have also successfully extended this method to the simultaneous detection of two infectious pathogens - Staphylococcus aureus and Salmonella enterica. This method is simple and fast. The one-step ‘turn on’ pathogen assay in a ready-to-use microfluidic device only takes ~10 min to complete on the biochip. Furthermore, this microfluidic device has great potential in rapid detection of a wide variety of different other bacterial and viral pathogens. PMID:23929394
Hosseini, Samira; Aeinehvand, Mohammad M; Uddin, Shah M; Benzina, Abderazak; Rothan, Hussin A; Yusof, Rohana; Koole, Leo H; Madou, Marc J; Djordjevic, Ivan; Ibrahim, Fatimah
2015-11-09
The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres' specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness.
A Multiple Sensor Machine Vision System Technology for the Hardwood
Richard W. Conners; D.Earl Kline; Philip A. Araman
1995-01-01
For the last few years the authors have been extolling the virtues of a multiple sensor approach to hardwood defect detection. Since 1989 the authors have actively been trying to develop such a system. This paper details some of the successes and failures that have been experienced to date. It also discusses what remains to be done and gives time lines for the...
Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying
2016-07-13
A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO₄(2-) in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05'40'' N, 120°31'32'' E) in October 2014. To detect chl-a, CDOM, carotenoids and SO₄(2-), the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO₄(2-). To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO₄(2-) concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO₄(2-) in the ocean.
An Autonomous Sensor System Architecture for Active Flow and Noise Control Feedback
NASA Technical Reports Server (NTRS)
Humphreys, William M, Jr.; Culliton, William G.
2008-01-01
Multi-channel sensor fusion represents a powerful technique to simply and efficiently extract information from complex phenomena. While the technique has traditionally been used for military target tracking and situational awareness, a study has been successfully completed that demonstrates that sensor fusion can be applied equally well to aerodynamic applications. A prototype autonomous hardware processor was successfully designed and used to detect in real-time the two-dimensional flow reattachment location generated by a simple separated-flow wind tunnel model. The success of this demonstration illustrates the feasibility of using autonomous sensor processing architectures to enhance flow control feedback signal generation.
Brosseau, Christa L; Gambardella, Alessa; Casadio, Francesca; Grzywacz, Cecily M; Wouters, Jan; Van Duyne, Richard P
2009-04-15
Tailored ad-hoc methods must be developed for successful identification of minute amounts of natural dyes on works of art using Surface-Enhanced Raman Spectroscopy (SERS). This article details two of these successful approaches using silver film over nanosphere (AgFON) substrates and silica gel coupled with citrate-reduced Ag colloids. The latter substrate functions as the test system for the coupling of thin-layer chromatography and SERS (TLC-SERS), which has been used in the current research to separate and characterize a mixture of several artists' dyes. The poor limit of detection of TLC is overcome by coupling with SERS, and dyes which co-elute to nearly the same spot can be distinguished from each other. In addition, in situ extractionless non-hydrolysis SERS was used to analyze dyed reference fibers, as well as historical textile fibers. Colorants such as alizarin, purpurin, carminic acid, lac dye, crocin, and Cape jasmine were thus successfully identified.
A flexible and miniaturized hair dye based photodetector via chemiluminescence pathway.
Lin, Ching-Chang; Sun, Da-Shiuan; Lin, Ya-Lin; Tsai, Tsung-Tso; Cheng, Chieh; Sun, Wen-Hsien; Ko, Fu-Hsiang
2017-04-15
A flexible and miniaturized metal semiconductor metal (MSM) biomolecular photodetector was developed as the core photocurrent system through chemiluminescence for hydrogen peroxide sensing. The flexible photocurrent sensing system was manufactured on a 30-µm-thick crystalline silicon chip by chemical etching process, which produced a flexible silicon chip. A surface texturization design on the flexible device enhanced the light-trapping effect and minimized reflectivity losses from the incident light. The model protein streptavidin bound to horseradish peroxidase (HRP) was successfully immobilized onto the sensor surface through high-affinity conjugation with biotin. The luminescence reaction occurred with luminol, hydrogen peroxide and HRP enzyme, and the emission of light from the catalytic reaction was detected by underlying flexible photodetector. The chemiluminescence in the miniaturized photocurrent sensing system was successfully used to determine the hydrogen peroxide concentration in real-time analyses. The hydrogen peroxide detection limit of the flexible MSM photodetector was 2.47mM. The performance of the flexible MSM photodetector maintained high stability under bending at various bending radii. Moreover, for concave bending, a significant improvement in detection signal intensity (14.5% enhancement compared with a flat configuration) was observed because of the increased photocurrent, which was attributed to enhancement of light trapping. Additionally, this detector was used to detect hydrogen peroxide concentrations in commercial hair dye products, which is a significant issue in the healthcare field. The development of this novel, flexible and miniaturized MSM biomolecular photodetector with excellent mechanical flexibility and high sensitivity demonstrates the applicability of this approach to future wearable sensor development efforts. Copyright © 2016 Elsevier B.V. All rights reserved.
Optical detection of two-color-fluorophore barcode for nanopore DNA sensing
NASA Astrophysics Data System (ADS)
Zhang, M.; Sychugov, I.; Schmidt, T.; Linnros, J.
2015-06-01
A simple schematic on parallel optical detection of two-fluorophore barcode for single-molecule nanopore sensing is presented. The chosen two fluorophores, ATTO-532 and DY-521-XL, emitting in well-separated spectrum range can be excited at the same wavelength. A beam splitter was employed to separate signals from the two fluorophores and guide them to the same CCD camera. Based on a conventional microscope, sources of background in the nanopore sensing system, including membranes, compounds in buffer solution, and a detection cell was characterized. By photoluminescence excitation measurements, it turned out that silicon membrane has a negligible photoluminescence under the examined excitation from 440 nm to 560 nm, in comparison with a silicon nitrite membrane. Further, background signals from the detection cell were suppressed. Brownian motion of 450 bps DNA labelled with single ATTO-532 or DY-521-XL was successfully recorded by our optical system.
Radial line method for rear-view mirror distortion detection
NASA Astrophysics Data System (ADS)
Rahmah, Fitri; Kusumawardhani, Apriani; Setijono, Heru; Hatta, Agus M.; Irwansyah, .
2015-01-01
An image of the object can be distorted due to a defect in a mirror. A rear-view mirror is an important component for the vehicle safety. One of standard parameters of the rear-view mirror is a distortion factor. This paper presents a radial line method for distortion detection of the rear-view mirror. The rear-view mirror was tested for the distortion detection by using a system consisting of a webcam sensor and an image-processing unit. In the image-processing unit, the captured image from the webcam were pre-processed by using smoothing and sharpening techniques and then a radial line method was used to define the distortion factor. It was demonstrated successfully that the radial line method could be used to define the distortion factor. This detection system is useful to be implemented such as in Indonesian's automotive component industry while the manual inspection still be used.
Drivers of Emerging Infectious Disease Events as a Framework for Digital Detection.
Olson, Sarah H; Benedum, Corey M; Mekaru, Sumiko R; Preston, Nicholas D; Mazet, Jonna A K; Joly, Damien O; Brownstein, John S
2015-08-01
The growing field of digital disease detection, or epidemic intelligence, attempts to improve timely detection and awareness of infectious disease (ID) events. Early detection remains an important priority; thus, the next frontier for ID surveillance is to improve the recognition and monitoring of drivers (antecedent conditions) of ID emergence for signals that precede disease events. These data could help alert public health officials to indicators of elevated ID risk, thereby triggering targeted active surveillance and interventions. We believe that ID emergence risks can be anticipated through surveillance of their drivers, just as successful warning systems of climate-based, meteorologically sensitive diseases are supported by improved temperature and precipitation data. We present approaches to driver surveillance, gaps in the current literature, and a scientific framework for the creation of a digital warning system. Fulfilling the promise of driver surveillance will require concerted action to expand the collection of appropriate digital driver data.
SERS-based pesticide detection by using nanofinger sensors
NASA Astrophysics Data System (ADS)
Kim, Ansoon; Barcelo, Steven J.; Li, Zhiyong
2015-01-01
Simple, sensitive, and rapid detection of trace levels of extensively used and highly toxic pesticides are in urgent demand for public health. Surface-enhanced Raman scattering (SERS)-based sensor was designed to achieve ultrasensitive and simple pesticide sensing. We developed a portable sensor system composed of high performance and reliable gold nanofinger sensor strips and a custom-built portable Raman spectrometer. Compared to the general procedure and previously reported studies that are limited to laboratory settings, our analytical method is simple, sensitive, rapid, and cost-effective. Based on the SERS results, the chemical interaction of two pesticides, chlorpyrifos (CPF) and thiabendazole (TBZ), with gold nanofingers was studied to determine a fingerprint for each pesticide. The portable SERS-sensor system was successfully demonstrated to detect CPF and TBZ pesticides within 15 min with a detection limit of 35 ppt in drinking water and 7 ppb on apple skin, respectively.
DOT National Transportation Integrated Search
1998-05-01
The Smart Sign project has successfully demonstrated the merging of two separate technological disciplines of highway messaging and on-road vehicle emissions sensing into an advanced ITS public information system. This operational test has demonstrat...
Determinants of successful arthropod eradication programs
Patrick C. Tobin; John M. Kean; David Maxwell Suckling; Deborah G. McCullough; Daniel A. Herms; Lloyd D. Stringer
2014-01-01
Despite substantial increases in public awareness and biosecurity systems, introductions of non-native arthropods remain an unwelcomed consequence of escalating rates of international trade and travel. Detection of an established but unwanted nonnative organism can elicit a range of responses, including implementation of an eradication program. Previous studies have...
Vision-based method for detecting driver drowsiness and distraction in driver monitoring system
NASA Astrophysics Data System (ADS)
Jo, Jaeik; Lee, Sung Joo; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie
2011-12-01
Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new driver-monitoring method considering both factors. We make the following contributions. First, if the driver is looking ahead, drowsiness detection is performed; otherwise, distraction detection is performed. Thus, the computational cost and eye-detection error can be reduced. Second, we propose a new eye-detection algorithm that combines adaptive boosting, adaptive template matching, and blob detection with eye validation, thereby reducing the eye-detection error and processing time significantly, which is hardly achievable using a single method. Third, to enhance eye-detection accuracy, eye validation is applied after initial eye detection, using a support vector machine based on appearance features obtained by principal component analysis (PCA) and linear discriminant analysis (LDA). Fourth, we propose a novel eye state-detection algorithm that combines appearance features obtained using PCA and LDA, with statistical features such as the sparseness and kurtosis of the histogram from the horizontal edge image of the eye. Experimental results showed that the detection accuracies of the eye region and eye states were 99 and 97%, respectively. Both driver drowsiness and distraction were detected with a success rate of 98%.
Scherer, James R; Liu, Peng; Mathies, Richard A
2010-11-01
We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ~20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex(®) 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.
NASA Astrophysics Data System (ADS)
Scherer, James R.; Liu, Peng; Mathies, Richard A.
2010-11-01
We have developed a compact, laser-induced fluorescence detection scanner, the multichannel capillary array electrophoresis portable scanner (McCAEPs) as a platform for electrophoretic detection and control of high-throughput, integrated microfluidic devices for genetic and other analyses. The instrument contains a confocal optical system with a rotary objective for detecting four different fluorescence signals, a pneumatic system consisting of two pressure/vacuum pumps and 28 individual addressable solenoid valves for control of on-chip microvalves and micropumps, four Polymerase Chain Reaction (PCR) temperature control systems, and four high voltage power supplies for electrophoresis. The detection limit of the instrument is ˜20 pM for on-chip capillary electrophoresis of fluorescein dyes. To demonstrate the system performance for forensic short tandem repeat (STR) analysis, two experiments were conducted: (i) electrophoretic separation and detection of STR samples on a 96-lane microfabricated capillary array electrophoresis microchip. Fully resolved PowerPlex® 16 STR profiles amplified from 1 ng of 9947A female standard DNA were successfully obtained; (ii) nine-plex STR amplification, sample injection, separation, and fluorescence detection of 100-copy 9948 male standard DNA in a single integrated PCR- capillary electrophoresis microchip. These results demonstrate that the McCAEPs can be used as a versatile control and detection instrument that operates integrated microfluidic devices for high-performance forensic human identification.
NASA Astrophysics Data System (ADS)
Zang, Lixin; Zhao, Huimin; Zhang, Zhiguo; Cao, Wenwu
2017-02-01
Photodynamic therapy (PDT) is currently an advanced optical technology in medical applications. However, the application of PDT is limited by the detection of photosensitizers. This work focuses on the application of fluorescence spectroscopy and imaging in the detection of an effective photosenzitizer, hematoporphyrin monomethyl ether (HMME). Optical properties of HMME were measured and analyzed based on its absorption and fluorescence spectra. The production mechanism of its fluorescence emission was analyzed. The detection device for HMME based on fluorescence spectroscopy was designed. Ratiometric method was applied to eliminate the influence of intensity change of excitation sources, fluctuates of excitation sources and photo detectors, and background emissions. The detection limit of this device is 6 μg/L, and it was successfully applied to the diagnosis of the metabolism of HMME in the esophageal cancer cells. To overcome the limitation of the point measurement using fluorescence spectroscopy, a two-dimensional (2D) fluorescence imaging system was established. The algorithm of the 2D fluorescence imaging system is deduced according to the fluorescence ratiometric method using bandpass filters. The method of multiple pixel point addition (MPPA) was used to eliminate fluctuates of signals. Using the method of MPPA, SNR was improved by about 30 times. The detection limit of this imaging system is 1.9 μg/L. Our systems can be used in the detection of porphyrins to improve the PDT effect.
Raman Life Detection Instrument Development for Icy Worlds
NASA Technical Reports Server (NTRS)
Thomson, Seamus; Allen, A'Lester; Gutierrez, Daniel; Quinn, Richard C.; Chen, Bin; Koehne, Jessica E.
2017-01-01
The objective of this project is to develop a compact, high sensitivity Raman sensor for detection of life signatures in a flow cell configuration to enable bio-exploration and life detection during future mission to our Solar Systems Icy Worlds. The specific project objectives are the following: 1) Develop a Raman spectroscopy liquid analysis sensor for biosignatures; 2) Demonstrate applicability towards a future Enceladus or other Icy Worlds missions; 3) Establish key parameters for integration with the ARC Sample Processor for Life on Icy Worlds (SPLIce); 4) Position ARC for a successful response to upcoming Enceladus or other Icy World mission instrument opportunities.
Optical tomograph optimized for tumor detection inside highly absorbent organs
NASA Astrophysics Data System (ADS)
Boutet, Jérôme; Koenig, Anne; Hervé, Lionel; Berger, Michel; Dinten, Jean-Marc; Josserand, Véronique; Coll, Jean-Luc
2011-05-01
This paper presents a tomograph for small animal fluorescence imaging. The compact and cost-effective system described in this article was designed to address the problem of tumor detection inside highly absorbent heterogeneous organs, such as lungs. To validate the tomograph's ability to detect cancerous nodules inside lungs, in vivo tumor growth was studied on seven cancerous mice bearing murine mammary tumors marked with Alexa Fluor 700. They were successively imaged 10, 12, and 14 days after the primary tumor implantation. The fluorescence maps were compared over this time period. As expected, the reconstructed fluorescence increases with the tumor growth stage.
New advances in non-dispersive IR technology for CO2 detection
NASA Technical Reports Server (NTRS)
Small, John W.; Odegard, Wayne L.
1988-01-01
This paper discusses new technology developments in CO2 detection using Non-Dispersive Infrared (NDIR) techniques. The method described has successfully been used in various applications and environments. It has exhibited extremely reliable long-term stability without the need of routine calibration. The analysis employs a dual wavelength, differential detection approach with compensating circuitry for component aging and dirt accumulation on optical surfaces. The instrument fails 'safe' and provides the operator with a 'fault' alarm in the event of a system failure. The NDIR analyzer described has been adapted to NASA Space Station requirements.
NASA Technical Reports Server (NTRS)
Delnore, Victor E. (Compiler)
1994-01-01
The Fifth Combined Manufacturers' and Technologists' Airborne Windshear Review Meeting was hosted by the NASA Langley Research Center and the Federal Aviation Administration in Hampton, Virginia, on September 28-30, 1993. The purpose was to report on the highly successful windshear experiments conducted by government, academic institutions, and industry; to transfer the results to regulators, manufacturers, and users; and to set initiatives for future aeronautics technology research. The formal sessions covered recent developments in windshear flight testing, windshear modeling, flight management, and ground-based systems, airborne windshear detection systems, certification and regulatory issues, and development and applications of sensors for wake vortices and for synthetic and enhanced vision systems. This report was compiled to record and make available the technology updates and materials from the conference.
Stand-off thermal IR minefield survey: system concept and experimental results
NASA Astrophysics Data System (ADS)
Cremer, Frank; Nguyen, Thanh T.; Yang, Lixin; Sahli, Hichem
2005-06-01
A detailed description of the CLEARFAST system for thermal IR stand-off minefield survey is given. The system allows (i) a stand-off diurnal observation of hazardous area, (ii) detecting anomalies, i.e. locating and searching for targets which are thermally and spectrally distinct from their surroundings, (iii) estimating the physical parameters, i.e. depth and thermal diffusivity, of the detected anomalies, and (iv) providing panoramic (mosaic) images indicating the locations of suspect objects and known markers. The CLEARFAST demonstrator has been successfully deployed and operated, in November 2004, in a real minefield within the United Nations Buffer Zone in Cyprus. The paper describes the main principles of the system and illustrates the processing chain on a set of real minefield images, together with qualitative and quantitative results.
Structural monitoring for rare events in remote locations
NASA Astrophysics Data System (ADS)
Hale, J. M.
2005-01-01
A structural monitoring system has been developed for use on high value engineering structures, which is particularly suitable for use in remote locations where rare events such as accidental impacts, seismic activity or terrorist attack might otherwise go undetected. The system comprises a low power intelligent on-site data logger and a remote analysis computer that communicate with one another using the internet and mobile telephone technology. The analysis computer also generates e-mail alarms and maintains a web page that displays detected events in near real-time to authorised users. The application of the prototype system to pipeline monitoring is described in which the analysis of detected events is used to differentiate between impacts and pressure surges. The system has been demonstrated successfully and is ready for deployment.
Ambulatory REACT: real-time seizure detection with a DSP microprocessor.
McEvoy, Robert P; Faul, Stephen; Marnane, William P
2010-01-01
REACT (Real-Time EEG Analysis for event deteCTion) is a Support Vector Machine based technology which, in recent years, has been successfully applied to the problem of automated seizure detection in both adults and neonates. This paper describes the implementation of REACT on a commercial DSP microprocessor; the Analog Devices Blackfin®. The primary aim of this work is to develop a prototype system for use in ambulatory or in-ward automated EEG analysis. Furthermore, the complexity of the various stages of the REACT algorithm on the Blackfin processor is analysed; in particular the EEG feature extraction stages. This hardware profile is used to select a reduced, platform-aware feature set, in order to evaluate the seizure classification accuracy of a lower-complexity, lower-power REACT system.
Directed dynamical influence is more detectable with noise
Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng
2016-01-01
Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence. PMID:27066763
Directed dynamical influence is more detectable with noise.
Jiang, Jun-Jie; Huang, Zi-Gang; Huang, Liang; Liu, Huan; Lai, Ying-Cheng
2016-04-12
Successful identification of directed dynamical influence in complex systems is relevant to significant problems of current interest. Traditional methods based on Granger causality and transfer entropy have issues such as difficulty with nonlinearity and large data requirement. Recently a framework based on nonlinear dynamical analysis was proposed to overcome these difficulties. We find, surprisingly, that noise can counterintuitively enhance the detectability of directed dynamical influence. In fact, intentionally injecting a proper amount of asymmetric noise into the available time series has the unexpected benefit of dramatically increasing confidence in ascertaining the directed dynamical influence in the underlying system. This result is established based on both real data and model time series from nonlinear ecosystems. We develop a physical understanding of the beneficial role of noise in enhancing detection of directed dynamical influence.
Wang, Chao; Dong, Baoli; Kong, Xiuqi; Zhang, Nan; Song, Wenhui; Lin, Weiying
2018-06-21
1,4-Dithiothreitol (DTT) has wide applications in cell biology and biochemistry. Development of effective methods for monitoring DTT in biological systems is important for the safe handling and study of toxicity to humans. Herein, we describe a two-photon fluorescence probe (Rh-DTT) to detect DTT in living systems for the first time. Rh-DTT showed high selectivity and sensitivity to DTT. Rh-DTT can be successfully used for the two-photon imaging of DTT in living cells, and also can detect DTT in living tissues and mice. © 2018 John Wiley & Sons, Ltd.
Validation of the CME Geomagnetic Forecast Alerts Under the COMESEP Alert System
NASA Astrophysics Data System (ADS)
Dumbović, Mateja; Srivastava, Nandita; Rao, Yamini K.; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano
2017-08-01
Under the European Union 7th Framework Programme (EU FP7) project Coronal Mass Ejections and Solar Energetic Particles (COMESEP, http://comesep.aeronomy.be), an automated space weather alert system has been developed to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. The COMESEP alert system uses the automated detection tool called Computer Aided CME Tracking (CACTus) to detect potentially threatening CMEs, a drag-based model (DBM) to predict their arrival, and a CME geoeffectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, the DBM calculates its arrival time at Earth and the CGFT calculates its geomagnetic risk level. The geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geoeffectiveness, as well as an estimate of the geomagnetic storm duration. We present the evaluation of the CME risk level forecast with the COMESEP alert system based on a study of geoeffective CMEs observed during 2014. The validation of the forecast tool is made by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of the DBM and CGFT (independent tools available at the Hvar Observatory website, http://oh.geof.unizg.hr). The results indicate that the success rate of the forecast in its current form is unacceptably low for a realistic operation system. Human intervention improves the forecast, but the false-alarm rate remains unacceptably high. We discuss these results and their implications for possible improvement of the COMESEP alert system.
Demonstrating artificial intelligence for space systems - Integration and project management issues
NASA Technical Reports Server (NTRS)
Hack, Edmund C.; Difilippo, Denise M.
1990-01-01
As part of its Systems Autonomy Demonstration Project (SADP), NASA has recently demonstrated the Thermal Expert System (TEXSYS). Advanced real-time expert system and human interface technology was successfully developed and integrated with conventional controllers of prototype space hardware to provide intelligent fault detection, isolation, and recovery capability. Many specialized skills were required, and responsibility for the various phases of the project therefore spanned multiple NASA centers, internal departments and contractor organizations. The test environment required communication among many types of hardware and software as well as between many people. The integration, testing, and configuration management tools and methodologies which were applied to the TEXSYS project to assure its safe and successful completion are detailed. The project demonstrated that artificial intelligence technology, including model-based reasoning, is capable of the monitoring and control of a large, complex system in real time.
Gao, Tang; Cao, Xiaozheng; Ge, Peng; Dong, Jie; Yang, Shuqi; Xu, Huan; Wu, Yong; Gao, Feng; Zeng, Wenbin
2017-05-23
Sulfur dioxide (SO 2 ) is a widely distributed air pollutant, and humans can easily be exposed to sulfite by inhaling SO 2 , thus inducing respiratory responses and diseases. Hence, to develop a rapid, sensitive and selective method for detection of sulfites is of great importance. Herein, we designed and synthesized a novel tetraphenyl imidazole compound TIBM with aggregation-induced emission enhancement (AIEE). TIBM can self-assemble into well-organized nanoparticles and is reported as an excellent probe for detection of sulfite with high selectivity and sensitivity. The nanoprobe performed very well for the detection of sulfite with an ultrafast detection time (15 s) and an ultralow detection limit (7.4 nM), which is superior to most of the reported probes. Moreover, the nanoprobe was successfully used to detect sulfite in food samples with a favorable accuracy. In addition, we developed paper-based devices for point-of-care detection of sulfite with naked eyes. Furthermore, due to its high water solubility, cell membrane permeability and good biocompatibility, the nanoproboe was further applied to detect sulfite in living systems. This study may offer some helpful insights for designing other AIE-based fluorescent nanosensors for various analytes.
Martin-Sanchez, Pedro M; Gorbushina, Anna A; Kunte, Hans-Jörg; Toepel, Jörg
2016-07-01
A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms.
Near-Infrared Imaging for Detecting Caries and Structural Deformities in Teeth.
Angelino, Keith; Edlund, David A; Shah, Pratik
2017-01-01
2-D radiographs, while commonly used for evaluating sub-surface hard structures of teeth, have low sensitivity for early caries lesions, particularly those on tooth occlusal surfaces. Radiographs are also frequently refused by patients over safety concerns. Translucency of teeth in the near-infrared (NIR) range offers a non-ionizing and safe approach to detect dental caries. We report the construction of an NIR (850 nm) LED imaging system, comprised of an NIR source and an intraoral camera for rapid dental evaluations. The NIR system was used to image teeth of ten consenting human subjects and successfully detected secondary, amalgam-occluded and early caries lesions without supplementary image processing. The camera-wand system was also capable of revealing demineralized areas, deep and superficial cracks, and other clinical features of teeth usually visualized by X-rays. The NIR system's clinical utility, simplistic design, low cost, and user friendliness make it an effective dental caries screening technology in conjunction or in place of radiographs.
León-Ortega, Mario; Jiménez-Franco, María V; Martínez, José E; Calvo, José F
2017-01-01
Modelling territorial occupancy and reproductive success is a key issue for better understanding the population dynamics of territorial species. This study aimed to investigate these ecological processes in a Eurasian Eagle-owl (Bubo bubo) population in south-eastern Spain during a seven-year period. A multi-season, multi-state modelling approach was followed to estimate the probabilities of occupancy and reproductive success in relation to previous state, time and habitat covariates, and accounting for imperfect detection. The best estimated models showed past breeding success in the territories to be the most important factor determining a high probability of reoccupation and reproductive success in the following year. In addition, alternative occupancy models suggested the positive influence of crops on the probability of territory occupation. By contrast, the best reproductive model revealed strong interannual variations in the rates of breeding success, which may be related to changes in the abundance of the European Rabbit, the main prey of the Eurasian Eagle-owl. Our models also estimated the probabilities of detecting the presence of owls in a given territory and the probability of detecting evidence of successful reproduction. Estimated detection probabilities were high throughout the breeding season, decreasing in time for unsuccessful breeders but increasing for successful breeders. The probability of detecting reproductive success increased with time, being close to one in the last survey. These results suggest that reproduction failure in the early stages of the breeding season is a determinant factor in the probability of detecting occupancy and reproductive success.
León-Ortega, Mario; Jiménez-Franco, María V.; Martínez, José E.
2017-01-01
Modelling territorial occupancy and reproductive success is a key issue for better understanding the population dynamics of territorial species. This study aimed to investigate these ecological processes in a Eurasian Eagle-owl (Bubo bubo) population in south-eastern Spain during a seven-year period. A multi-season, multi-state modelling approach was followed to estimate the probabilities of occupancy and reproductive success in relation to previous state, time and habitat covariates, and accounting for imperfect detection. The best estimated models showed past breeding success in the territories to be the most important factor determining a high probability of reoccupation and reproductive success in the following year. In addition, alternative occupancy models suggested the positive influence of crops on the probability of territory occupation. By contrast, the best reproductive model revealed strong interannual variations in the rates of breeding success, which may be related to changes in the abundance of the European Rabbit, the main prey of the Eurasian Eagle-owl. Our models also estimated the probabilities of detecting the presence of owls in a given territory and the probability of detecting evidence of successful reproduction. Estimated detection probabilities were high throughout the breeding season, decreasing in time for unsuccessful breeders but increasing for successful breeders. The probability of detecting reproductive success increased with time, being close to one in the last survey. These results suggest that reproduction failure in the early stages of the breeding season is a determinant factor in the probability of detecting occupancy and reproductive success. PMID:28399175
NASA Astrophysics Data System (ADS)
Lieberman, Robert; Kwong, Heston; Liu, Brent; Huang, H. K.
2009-02-01
The chest x-ray radiological features of tuberculosis patients are well documented, and the radiological features that change in response to successful pharmaceutical therapy can be followed with longitudinal studies over time. The patients can also be classified as either responsive or resistant to pharmaceutical therapy based on clinical improvement. We have retrospectively collected time series chest x-ray images of 200 patients diagnosed with tuberculosis receiving the standard pharmaceutical treatment. Computer algorithms can be created to utilize image texture features to assess the temporal changes in the chest x-rays of the tuberculosis patients. This methodology provides a framework for a computer-assisted detection (CAD) system that may provide physicians with the ability to detect poor treatment response earlier in pharmaceutical therapy. Early detection allows physicians to respond with more timely treatment alternatives and improved outcomes. Such a system has the potential to increase treatment efficacy for millions of patients each year.
NASA Technical Reports Server (NTRS)
Wincheski, Buzz; Williams, Phillip; Simpson, John
2007-01-01
The use of eddy current techniques for the detection of outer diameter damage in tubing and many complex aerospace structures often requires the use of an inner diameter probe due to a lack of access to the outside of the part. In small bore structures the probe size and orientation are constrained by the inner diameter of the part, complicating the optimization of the inspection technique. Detection of flaws through a significant remaining wall thickness becomes limited not only by the standard depth of penetration, but also geometrical aspects of the probe. Recently, an orthogonal eddy current probe was developed for detection of such flaws in Space Shuttle Primary Reaction Control System (PRCS) Thrusters. In this case, the detection of deeply buried stress corrosion cracking by an inner diameter eddy current probe was sought. Probe optimization was performed based upon the limiting spatial dimensions, flaw orientation, and required detection sensitivity. Analysis of the probe/flaw interaction was performed through the use of finite and boundary element modeling techniques. Experimental data for the flaw detection capabilities, including a probability of detection study, will be presented along with the simulation data. The results of this work have led to the successful deployment of an inspection system for the detection of stress corrosion cracking in Space Shuttle Primary Reaction Control System (PRCS) Thrusters.
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Butler, Ricky W.; Maddalon, Jeffrey M.; Hagen, George E.; Lewis, Timothy A.
2015-01-01
The performance of the conflict detection function in a separation assurance system is dependent on the content and quality of the data available to perform that function. Specifically, data quality and data content available to the conflict detection function have a direct impact on the accuracy of the prediction of an aircraft's future state or trajectory, which, in turn, impacts the ability to successfully anticipate potential losses of separation (detect future conflicts). Consequently, other separation assurance functions that rely on the conflict detection function - namely, conflict resolution - are prone to negative performance impacts. The many possible allocations and implementations of the conflict detection function between centralized and distributed systems drive the need to understand the key relationships that impact conflict detection performance, with respect to differences in data available. This paper presents the preliminary results of an analysis technique developed to investigate the impacts of data quality and data content on conflict detection performance. Flight track data recorded from a day of the National Airspace System is time-shifted to create conflicts not present in the un-shifted data. A methodology is used to smooth and filter the recorded data to eliminate sensor fusion noise, data drop-outs and other anomalies in the data. The metrics used to characterize conflict detection performance are presented and a set of preliminary results is discussed.
Distant touch hydrodynamic imaging with an artificial lateral line.
Yang, Yingchen; Chen, Jack; Engel, Jonathan; Pandya, Saunvit; Chen, Nannan; Tucker, Craig; Coombs, Sheryl; Jones, Douglas L; Liu, Chang
2006-12-12
Nearly all underwater vehicles and surface ships today use sonar and vision for imaging and navigation. However, sonar and vision systems face various limitations, e.g., sonar blind zones, dark or murky environments, etc. Evolved over millions of years, fish use the lateral line, a distributed linear array of flow sensing organs, for underwater hydrodynamic imaging and information extraction. We demonstrate here a proof-of-concept artificial lateral line system. It enables a distant touch hydrodynamic imaging capability to critically augment sonar and vision systems. We show that the artificial lateral line can successfully perform dipole source localization and hydrodynamic wake detection. The development of the artificial lateral line is aimed at fundamentally enhancing human ability to detect, navigate, and survive in the underwater environment.
Ultrasensitive Detection of Shigella Species in Blood and Stool.
Luo, Jieling; Wang, Jiapeng; Mathew, Anup S; Yau, Siu-Tung
2016-02-16
A modified immunosensing system with voltage-controlled signal amplification was used to detect Shigella in stool and blood matrixes at the single-digit CFU level. Inactivated Shigella was spiked in these matrixes and detected directly. The detection was completed in 78 min. Detection limits of 21 CFU/mL and 18 CFU/mL were achieved in stool and blood, respectively, corresponding to 2-7 CFUs immobilized on the detecting electrode. The outcome of the detection of extremely low bacterium concentration, i.e., below 100 CFU/mL, blood samples show a random nature. An analysis of the detection probabilities indicates the correlation between the sample volume and the success of detection and suggests that sample volume is critical for ultrasensitive detection of bacteria. The calculated detection limit is qualitatively in agreement with the empirically determined detection limit. The demonstrated ultrasensitive detection of Shigella on the single-digit CFU level suggests the feasibility of the direct detection of the bacterium in the samples without performing a culture.
Apperl, Benjamin; Pressl, Alexander; Schulz, Karsten
2017-01-01
The cost effective maintenance of underwater pressure pipes for sewage disposal in Austria requires the detection and localization of leakages. Extrusion of wastewater in lakes can heavily influence the water and bathing quality of surrounding waters. The Distributed Temperature Sensing (DTS) technology is a widely used technique for oil and gas pipeline leakage detection. While in pipeline leakage detection, fiber optic cables are installed permanently at the outside or within the protective sheathing of the pipe; this paper aims at testing the feasibility of detecting leakages with temporary introduced fiber optic cable inside the pipe. The detection and localization were tested in a laboratory experiment. The intrusion of water from leakages into the pipe, producing a local temperature drop, served as indicator for leakages. Measurements were taken under varying measurement conditions, including the number of leakages as well as the positioning of the fiber optic cable. Experiments showed that leakages could be detected accurately with the proposed methodology, when measuring resolution, temperature gradient and measurement time were properly selected. Despite the successful application of DTS for leakage detection in this lab environment, challenges in real system applications may arise from temperature gradients within the pipe system over longer distances and the placement of the cable into the real pipe system.
Miss-distance indicator for tank main guns
NASA Astrophysics Data System (ADS)
Bornstein, Jonathan A.; Hillis, David B.
1996-06-01
Tank main gun systems must possess extremely high levels of accuracy to perform successfully in battle. Under some circumstances, the first round fired in an engagement may miss the intended target, and it becomes necessary to rapidly correct fire. A breadboard automatic miss-distance indicator system was previously developed to assist in this process. The system, which would be mounted on a 'wingman' tank, consists of a charged-coupled device (CCD) camera and computer-based image-processing system, coupled with a separate infrared sensor to detect muzzle flash. For the system to be successfully employed with current generation tanks, it must be reliable, be relatively low cost, and respond rapidly maintaining current firing rates. Recently, the original indicator system was developed further in an effort to assist in achieving these goals. Efforts have focused primarily upon enhanced image-processing algorithms, both to improve system reliability and to reduce processing requirements. Intelligent application of newly refined trajectory models has permitted examination of reduced areas of interest and enhanced rejection of false alarms, significantly improving system performance.
Chen, Guanyu; Yu, Yu; Zhang, Xinliang
2016-08-01
We propose and fabricate an on-chip mode division multiplexed (MDM) photonic interconnection system. Such a monolithically photonic integrated circuit (PIC) is composed of a grating coupler, two micro-ring modulators, mode multiplexer/demultiplexer, and two germanium photodetectors. The signals' generation, multiplexing, transmission, demultiplexing, and detection are successfully demonstrated on the same chip. Twenty Gb/s MDM signals are successfully processed with clear and open eye diagrams, validating the feasibility of the proposed circuit. The measured power penalties show a good performance of the MDM link. The proposed on-chip MDM system can be potentially used for large-capacity optical interconnection in future high-performance computers and big data centers.
Infrared-laser-based fundus angiography
NASA Astrophysics Data System (ADS)
Klingbeil, Ulrich; Canter, Joseph M.; Lesiecki, Michael L.; Reichel, Elias
1994-06-01
Infrared fundus angiography, using the fluorescent dye indocyanine green (ICG), has shown great potential in delineating choroidal neovascularization (CNV) otherwise not detectable. A digital retinal imaging system containing a diode laser for illumination has been developed and optimized to perform high sensitivity ICG angiography. The system requires less power and generates less pseudo-fluorescence background than nonlaser devices. During clinical evaluation at three retinal centers more than 200 patients, the majority of which had age-related macular degeneration, were analyzed. Laser based ICG angiography was successful in outlining many of the ill-defined or obscure CNV as defined by fluorescein angiography. The procedure was not as successful with classic CNV. ICG angiograms were used to prepare and guide laser treatment.
Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers
NASA Astrophysics Data System (ADS)
Choa, Fow-Sen
2013-12-01
Photoacoustic (PA) effect is a sensitive spectroscopic technique for chemical sensing. In recent years, with the development of quantum cascade lasers (QCLs), significant progress has been achieved for PA sensing applications. Using high-power, tunable mid-IR QCLs as laser sources, PA chemical sensor systems have demonstrated parts-pertrillion- level detection sensitivity. Many of these high sensitivity measurements were demonstrated locally in PA cells. Recently, we have demonstrated standoff PA detection of isopropanol vapor for more than 41 feet distance using a quantum cascade laser and a microphone with acoustic reflectors. We also further demonstrated solid phase TNT detections at a standoff distance of 8 feet. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. Standoff detection of gas samples with calibrated concentration of 2.3 ppm was achieved at a detection distance of more than 2 feet. An extended detection distance up to 14 feet was observed for a higher gas concentration of 13.9 ppm. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated that the signal and noise spectra of the 4 microphone/4 reflector system with a combined SNR of 12.48 dB. For the 16-microphone and one reflector case, an SNR of 17.82 was achieved. These successful chemical sensing demonstrations will likely create new demands for widely tunable QCLs with ultralow threshold (for local fire-alarm size detection systems) and high-power (for standoff detection systems) performances.
NASA Technical Reports Server (NTRS)
Griffin, Timothy P.; Naylor, Guy R.; Haskell, William D.; Breznik, Greg S.; Mizell, Carolyn A.; Helms, William R.; Steinrock, T. (Technical Monitor)
2001-01-01
An on-line gas monitoring system was developed to replace the older systems used to monitor for cryogenic leaks on the Space Shuttles before launch. The system uses a mass spectrometer to monitor multiple locations in the process, which allows the system to monitor all gas constituents of interest in a nearly simultaneous manner. The system is fully redundant and meets all requirements for ground support equipment (GSE). This includes ruggedness to withstand launch on the Mobile Launcher Platform (MLP), ease of operation, and minimal operator intervention. The system can be fully automated so that an operator is notified when an unusual situation or fault is detected. User inputs are through personal computer using mouse and keyboard commands. The graphical user interface is very intuitive and easy to operate. The system has successfully supported four launches to date. It is currently being permanently installed as the primary system monitoring the Space Shuttles during ground processing and launch operations. Time and cost savings will be substantial over the current systems when it is fully implemented in the field. Tests were performed to demonstrate the performance of the system. Low limits-of-detection coupled with small drift make the system a major enhancement over the current systems. Though this system is currently optimized for detecting cryogenic leaks, many other gas constituents could be monitored using the Hazardous Gas Detection System (HGDS) 2000.
Are Brazil’s Deforesters Avoiding Detection?
Richards, Peter; Arima, Eugenio; VanWey, Leah; Cohn, Avery; Bhattarai, Nishan
2017-01-01
Rates of deforestation reported by Brazil’s official deforestation monitoring system have declined dramatically in the Brazilian Amazon. Much of Brazil’s success in its fight against deforestation has been credited to a series of policy changes put into place between 2004 and 2008. In this research, we posit that one of these policies, the decision to use the country’s official system for monitoring forest loss in the Amazon as a policing tool, has incentivized landowners to deforest in ways and places that evade Brazil’s official monitoring and enforcement system. As a consequence, we a) show or b) provide several pieces of suggestive evidence that recent successes in protecting monitored forests in the Brazilian Amazon may be doing less to protect the region’s forests than previously assumed. PMID:29270225
A Study of User's Acceptance on Situational Mashups in Situational Language Teaching
ERIC Educational Resources Information Center
Huang, Angus F. M.; Yang, Stephen J. H.; Liaw, Shu-Sheng
2012-01-01
Situational awareness and mashups are two key factors influencing the success of situational language teaching. However, traditional situational language teaching cannot smoothly conduct relevant learning activities in changing learning context. This study developed a situational mashups system for detecting users' context and proposed a research…
Osteosarcoma and MFH of Bone Treatment (PDQ®)—Health Professional Version
Osteosarcoma and malignant fibrous histiocytoma (MFH) of bone are most successfully treated with a combination of systemic chemotherapy and complete resection of all clinically detectable disease. Get detailed information about the presentation, diagnosis, genomics, prognosis and treatment of osteosarcoma and MFH in this summary for clinicians.
Chen, Jun; Liu, You-Sheng; Zhang, Jin-Na; Yang, Yong-Qiang; Hu, Li-Xin; Yang, Yuan-Yuan; Zhao, Jian-Liang; Chen, Fan-Rong; Ying, Guang-Guo
2017-08-01
This study aimed to investigate the removal efficiency and mechanism for antibiotics in swine wastewater by a biological aerated filter system (BAF system) in combination with laboratory aerobic and anaerobic incubation experiments. Nine antibiotics including sulfamonomethoxine, sulfachloropyridazine, sulfamethazine, trimethoprim, norfloxacin, ofloxacin, lincomycin, leucomycin and oxytetracycline were detected in the wastewater with concentrations up to 192,000ng/L. The results from this pilot study showed efficient removals (>82%) of the conventional wastewater pollutants (BOD 5 , COD, TN and NH 3 -N) and the detected nine antibiotics by the BAF system. Laboratory simulation experiment showed first-order dissipation kinetics for the nine antibiotics in the wastewater under aerobic and anaerobic conditions. The biodegradation kinetic parameters successfully predicted the fate of the nine antibiotics in the BAF system. This suggests that biodegradation was the dominant process for antibiotic removal in the BAF system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Detection beyond Debye's length with an electrolyte-gated organic field-effect transistor.
Palazzo, Gerardo; De Tullio, Donato; Magliulo, Maria; Mallardi, Antonia; Intranuovo, Francesca; Mulla, Mohammad Yusuf; Favia, Pietro; Vikholm-Lundin, Inger; Torsi, Luisa
2015-02-04
Electrolyte-gated organic field-effect transistors are successfully used as biosensors to detect binding events occurring at distances from the transistor electronic channel that are much larger than the Debye length in highly concentrated solutions. The sensing mechanism is mainly capacitive and is due to the formation of Donnan's equilibria within the protein layer, leading to an extra capacitance (CDON) in series to the gating system. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wide-field airborne laser diode array illuminator: demonstration results
NASA Astrophysics Data System (ADS)
Suiter, H. R.; Holloway, J. H., Jr.; Tinsley, K. R.; Pham, C. N.; Kloess, E. C., III; Witherspoon, N. H.; Stetson, S.; Crosby, F.; Nevis, A.; McCarley, K. A.; Seales, T. C.
2005-06-01
The Airborne Littoral Reconnaissance Technology (ALRT) program has successfully demonstrated the Wide-Field Airborne Laser Diode Array Illuminator (ALDAI-W). This illuminator is designed to illuminate a large area from the air with limited power, weight, and volume. A detection system, of which the ALDAI-W is a central portion, is capable of detecting surface-laid minefields in absolute darkness, extending the allowed mission times to night operations. This will be an overview report, giving processing results and suggested paths for additional development.
Scoliosis and school screening for spinal deformity.
Kane, W J; Brown, J C; Hensinger, R N; Keller, R B
1978-05-01
The onset of "idiopathic" scoliosis is gradual. It goes unnoticed by parent and child alike. The problem is often not detected until the curvature has progressed. Severe scoliosis has serious long-term systemic, cosmetic and psychologic effects. School-based screening programs are very effective in reducing the number of operations required. These programs can be carried out by school nurses, physical education teachers and volunteers who are trained by a knowledgeable physician. Brace treatment is successful when scoliosis is detected only.
On-line measurement of diameter of hot-rolled steel tube
NASA Astrophysics Data System (ADS)
Zhu, Xueliang; Zhao, Huiying; Tian, Ailing; Li, Bin
2015-02-01
In order to design a online diameter measurement system for Hot-rolled seamless steel tube production line. On one hand, it can play a stimulate part in the domestic pipe measuring technique. On the other hand, it can also make our domestic hot rolled seamless steel tube enterprises gain a strong product competitiveness with low input. Through the analysis of various detection methods and techniques contrast, this paper choose a CCD camera-based online caliper system design. The system mainly includes the hardware measurement portion and the image processing section, combining with software control technology and image processing technology, which can complete online measurement of heat tube diameter. Taking into account the complexity of the actual job site situation, it can choose a relatively simple and reasonable layout. The image processing section mainly to solve the camera calibration and the application of a function in Matlab, to achieve the diameter size display directly through the algorithm to calculate the image. I build a simulation platform in the design last phase, successfully, collect images for processing, to prove the feasibility and rationality of the design and make error in less than 2%. The design successfully using photoelectric detection technology to solve real work problems
THz Solar Observations on Board of a Trans-Antarctic Stratospheric Balloon Flight
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Abrantes, A.; Bortolucci, E. C.; Caspi, A.; Fernandes, L. O. T.; Kropotov, G.; Kudaka, A. S.; Laurent, G.; Machado, N.; Marcon, R.;
2016-01-01
A new system of two photometers was built to observe the Sun at 3 and 7 THz from space, named SOLART. It has been flown coupled to U.C. Berkeley GRIPS experiment on a NASA stratospheric balloon flight over Antarctica, 19-30 January 2016. The mission was successfully accomplished. We describe the system performance, solar brightness determination and the first THz impulsive burst detected.
Size and Velocity Distributions of Particles and Droplets in Spray Combustion Systems.
1984-11-01
constructed, calibrated, and successfully applied. Our efforts to verify the performance and accuracy of this diagnostic led to a parallel research...array will not be an acceptable detection system for size distribution measurements by this method. VI. Conclusions This study has led to the following...radiation is also useful particle size analysis by ensemble multiangle scattering. One problem for all multiwavelength or multiaricle diagnostics for
Goal-Function Tree Modeling for Systems Engineering and Fault Management
NASA Technical Reports Server (NTRS)
Johnson, Stephen B.; Breckenridge, Jonathan T.
2013-01-01
The draft NASA Fault Management (FM) Handbook (2012) states that Fault Management (FM) is a "part of systems engineering", and that it "demands a system-level perspective" (NASAHDBK- 1002, 7). What, exactly, is the relationship between systems engineering and FM? To NASA, systems engineering (SE) is "the art and science of developing an operable system capable of meeting requirements within often opposed constraints" (NASA/SP-2007-6105, 3). Systems engineering starts with the elucidation and development of requirements, which set the goals that the system is to achieve. To achieve these goals, the systems engineer typically defines functions, and the functions in turn are the basis for design trades to determine the best means to perform the functions. System Health Management (SHM), by contrast, defines "the capabilities of a system that preserve the system's ability to function as intended" (Johnson et al., 2011, 3). Fault Management, in turn, is the operational subset of SHM, which detects current or future failures, and takes operational measures to prevent or respond to these failures. Failure, in turn, is the "unacceptable performance of intended function." (Johnson 2011, 605) Thus the relationship of SE to FM is that SE defines the functions and the design to perform those functions to meet system goals and requirements, while FM detects the inability to perform those functions and takes action. SHM and FM are in essence "the dark side" of SE. For every function to be performed (SE), there is the possibility that it is not successfully performed (SHM); FM defines the means to operationally detect and respond to this lack of success. We can also describe this in terms of goals: for every goal to be achieved, there is the possibility that it is not achieved; FM defines the means to operationally detect and respond to this inability to achieve the goal. This brief description of relationships between SE, SHM, and FM provide hints to a modeling approach to provide formal connectivity between the nominal (SE), and off-nominal (SHM and FM) aspects of functions and designs. This paper describes a formal modeling approach to the initial phases of the development process that integrates the nominal and off-nominal perspectives in a model that unites SE goals and functions of with the failure to achieve goals and functions (SHM/FM).
Ximenes, Camila; Brandão, Eduardo; Oliveira, Paula; Rocha, Abraham; Rego, Tamisa; Medeiros, Rafael; Aguiar-Santos, Ana; Ferraz, João; Reis, Christian; Araujo, Paulo; Carvalho, Luiz; Melo, Fabio L
2014-12-01
The Global Program for the Elimination of Lymphatic Filariasis (GPELF) aims to eliminate this disease by the year 2020. However, the development of more specific and sensitive tests is important for the success of the GPELF. The present study aimed to standardise polymerase chain reaction (PCR)-based systems for the diagnosis of filariasis in serum and urine. Twenty paired biological urine and serum samples from individuals already known to be positive for Wuchereria bancrofti were collected during the day. Conventional PCR and semi-nested PCR assays were optimised. The detection limit of the technique for purified W. bancrofti DNA extracted from adult worms was 10 fg for the internal systems (WbF/Wb2) and 0.1 fg by using semi-nested PCR. The specificity of the primers was confirmed experimentally by amplification of 1 ng of purified genomic DNA from other species of parasites. Evaluation of the paired urine and serum samples by the semi-nested PCR technique indicated only two of the 20 tested individuals were positive, whereas the simple internal PCR system (WbF/Wb2), which has highly promising performance, revealed that all the patients were positive using both samples. This study successfully demonstrated the possibility of using the PCR technique on urine for the diagnosis of W. bancrofti infection.
A graph-based system for network-vulnerability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.
1998-06-01
This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks,more » broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less
NASA Astrophysics Data System (ADS)
Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu
2018-02-01
In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.
Park, Yeonkyung; Lee, Chang Yeol; Kang, Shinyoung; Kim, Hansol; Park, Ki Soo; Park, Hyun Gyu
2018-02-23
In this work, we developed a novel, label-free, and enzyme-free strategy for the colorimetric detection of microRNA (miRNA), which relies on a target-catalyzed toehold-mediated strand displacement (TMSD) reaction. The system employs a detection probe that specifically binds to the target miRNA and sequentially releases a catalyst strand (CS) intended to trigger the subsequent TMSD reaction. Thus, the presence of target miRNA releases the CS that mediates the formation of an active G-quadruplex DNAzyme which is initially caged and inactivated by a blocker strand. In addition, a fuel strand that is supplemented for the recycling of the CS promotes another TMSD reaction, consequently generating a large number of active G-quadruplex DNAzymes. As a result, a distinct colorimetric signal is produced by the ABTS oxidation promoted by the peroxidase mimicking activity of the released G-quadruplex DNAzymes. Based on this novel strategy, we successfully detected miR-141, a promising biomarker for human prostate cancer, with high selectivity. The diagnostic capability of this system was also demonstrated by reliably determining target miR-141 in human serum, showing its great potential towards real clinical applications. Importantly, the proposed approach is composed of separate target recognition and signal transduction modules. Thus, it could be extended to analyze different target miRNAs by simply redesigning the detection probe while keeping the same signal transduction module as a universal signal amplification unit, which was successfully demonstrated by analyzing another target miRNA, let-7d.
Evolutionary neural networks for anomaly detection based on the behavior of a program.
Han, Sang-Jun; Cho, Sung-Bae
2006-06-01
The process of learning the behavior of a given program by using machine-learning techniques (based on system-call audit data) is effective to detect intrusions. Rule learning, neural networks, statistics, and hidden Markov models (HMMs) are some of the kinds of representative methods for intrusion detection. Among them, neural networks are known for good performance in learning system-call sequences. In order to apply this knowledge to real-world problems successfully, it is important to determine the structures and weights of these call sequences. However, finding the appropriate structures requires very long time periods because there are no suitable analytical solutions. In this paper, a novel intrusion-detection technique based on evolutionary neural networks (ENNs) is proposed. One advantage of using ENNs is that it takes less time to obtain superior neural networks than when using conventional approaches. This is because they discover the structures and weights of the neural networks simultaneously. Experimental results with the 1999 Defense Advanced Research Projects Agency (DARPA) Intrusion Detection Evaluation (IDEVAL) data confirm that ENNs are promising tools for intrusion detection.
Hanko, Valoran P.; Heckenberg, Andrea; Rohrer, Jeffrey S.
2004-01-01
Anion-exchange chromatography with integrated pulsed amperometric detection (AE-IPAD) separates and directly detects amino acids, carbohydrates, alditols, and glycols in the same injection without pre- or post-column derivatization. These separations use a combination of NaOH and NaOH/sodium acetate eluents. We previously published the successful use of this technique, also known as AAA-Direct, to determine free amino acids in cell culture and fermentation broth media. We showed that retention of carbohydrates varies with eluent NaOH concentration differently than amino acids, and thus separations can be optimized by varying the initial NaOH concentration and its duration. Unfortunately, some amino acids eluting in the acetate gradient portion of the method were not completely resolved from system-related peaks and from unknown peaks in complex cell culture and fermentation media. In this article, we present changes in method that improve amino acid resolution and system ruggedness. The success of these changes and their compatibility with the separations previously designed for fermentation and cell culture are demonstrated with yeast extract-peptone-dextrose broth, M199, Dulbecco’s modified Eagle’s (with F-12), L-15 (Leibovitz), and McCoy’s 5A cell culture media. PMID:15585828
A Multimodal Emotion Detection System during Human-Robot Interaction
Alonso-Martín, Fernando; Malfaz, María; Sequeira, João; Gorostiza, Javier F.; Salichs, Miguel A.
2013-01-01
In this paper, a multimodal user-emotion detection system for social robots is presented. This system is intended to be used during human–robot interaction, and it is integrated as part of the overall interaction system of the robot: the Robotics Dialog System (RDS). Two modes are used to detect emotions: the voice and face expression analysis. In order to analyze the voice of the user, a new component has been developed: Gender and Emotion Voice Analysis (GEVA), which is written using the Chuck language. For emotion detection in facial expressions, the system, Gender and Emotion Facial Analysis (GEFA), has been also developed. This last system integrates two third-party solutions: Sophisticated High-speed Object Recognition Engine (SHORE) and Computer Expression Recognition Toolbox (CERT). Once these new components (GEVA and GEFA) give their results, a decision rule is applied in order to combine the information given by both of them. The result of this rule, the detected emotion, is integrated into the dialog system through communicative acts. Hence, each communicative act gives, among other things, the detected emotion of the user to the RDS so it can adapt its strategy in order to get a greater satisfaction degree during the human–robot dialog. Each of the new components, GEVA and GEFA, can also be used individually. Moreover, they are integrated with the robotic control platform ROS (Robot Operating System). Several experiments with real users were performed to determine the accuracy of each component and to set the final decision rule. The results obtained from applying this decision rule in these experiments show a high success rate in automatic user emotion recognition, improving the results given by the two information channels (audio and visual) separately. PMID:24240598
Validation of the CME Geomagnetic forecast alerts under COMESEP alert system
NASA Astrophysics Data System (ADS)
Dumbovic, Mateja; Srivastava, Nandita; Khodia, Yamini; Vršnak, Bojan; Devos, Andy; Rodriguez, Luciano
2017-04-01
An automated space weather alert system has been developed under the EU FP7 project COMESEP (COronal Mass Ejections and Solar Energetic Particles: http://comesep.aeronomy.be) to forecast solar energetic particles (SEP) and coronal mass ejection (CME) risk levels at Earth. COMESEP alert system uses automated detection tool CACTus to detect potentially threatening CMEs, drag-based model (DBM) to predict their arrival and CME geo-effectiveness tool (CGFT) to predict their geomagnetic impact. Whenever CACTus detects a halo or partial halo CME and issues an alert, DBM calculates its arrival time at Earth and CGFT calculates its geomagnetic risk level. Geomagnetic risk level is calculated based on an estimation of the CME arrival probability and its likely geo-effectiveness, as well as an estimate of the geomagnetic-storm duration. We present the evaluation of the CME risk level forecast with COMESEP alert system based on a study of geo-effective CMEs observed during 2014. The validation of the forecast tool is done by comparing the forecasts with observations. In addition, we test the success rate of the automatic forecasts (without human intervention) against the forecasts with human intervention using advanced versions of DBM and CGFT (self standing tools available at Hvar Observatory website: http://oh.geof.unizg.hr). The results implicate that the success rate of the forecast is higher with human intervention and using more advanced tools. This work has received funding from the European Commission FP7 Project COMESEP (263252). We acknowledge the support of Croatian Science Foundation under the project 6212 „Solar and Stellar Variability".
Artificial Intelligence Methods Applied to Parameter Detection of Atrial Fibrillation
NASA Astrophysics Data System (ADS)
Arotaritei, D.; Rotariu, C.
2015-09-01
In this paper we present a novel method to develop an atrial fibrillation (AF) based on statistical descriptors and hybrid neuro-fuzzy and crisp system. The inference of system produce rules of type if-then-else that care extracted to construct a binary decision system: normal of atrial fibrillation. We use TPR (Turning Point Ratio), SE (Shannon Entropy) and RMSSD (Root Mean Square of Successive Differences) along with a new descriptor, Teager- Kaiser energy, in order to improve the accuracy of detection. The descriptors are calculated over a sliding window that produce very large number of vectors (massive dataset) used by classifier. The length of window is a crisp descriptor meanwhile the rest of descriptors are interval-valued type. The parameters of hybrid system are adapted using Genetic Algorithm (GA) algorithm with fitness single objective target: highest values for sensibility and sensitivity. The rules are extracted and they are part of the decision system. The proposed method was tested using the Physionet MIT-BIH Atrial Fibrillation Database and the experimental results revealed a good accuracy of AF detection in terms of sensitivity and specificity (above 90%).
A fully automated liquid–liquid extraction system utilizing interface detection
Maslana, Eugene; Schmitt, Robert; Pan, Jeffrey
2000-01-01
The development of the Abbott Liquid-Liquid Extraction Station was a result of the need for an automated system to perform aqueous extraction on large sets of newly synthesized organic compounds used for drug discovery. The system utilizes a cylindrical laboratory robot to shuttle sample vials between two loading racks, two identical extraction stations, and a centrifuge. Extraction is performed by detecting the phase interface (by difference in refractive index) of the moving column of fluid drawn from the bottom of each vial containing a biphasic mixture. The integration of interface detection with fluid extraction maximizes sample throughput. Abbott-developed electronics process the detector signals. Sample mixing is performed by high-speed solvent injection. Centrifuging of the samples reduces interface emulsions. Operating software permits the user to program wash protocols with any one of six solvents per wash cycle with as many cycle repeats as necessary. Station capacity is eighty, 15 ml vials. This system has proven successful with a broad spectrum of both ethyl acetate and methylene chloride based chemistries. The development and characterization of this automated extraction system will be presented. PMID:18924693
Development and applicability of a ready-to-use PCR system for GMO screening.
Rosa, Sabrina F; Gatto, Francesco; Angers-Loustau, Alexandre; Petrillo, Mauro; Kreysa, Joachim; Querci, Maddalena
2016-06-15
With the growing number of GMOs introduced to the market, testing laboratories have seen their workload increase significantly. Ready-to-use multi-target PCR-based detection systems, such as pre-spotted plates (PSP), reduce analysis time while increasing capacity. This paper describes the development and applicability to GMO testing of a screening strategy involving a PSP and its associated web-based Decision Support System. The screening PSP was developed to detect all GMOs authorized in the EU in one single PCR experiment, through the combination of 16 validated assays. The screening strategy was successfully challenged in a wide inter-laboratory study on real-life food/feed samples. The positive outcome of this study could result in the adoption of a PSP screening strategy across the EU; a step that would increase harmonization and quality of GMO testing in the EU. Furthermore, this system could represent a model for other official control areas where high-throughput DNA-based detection systems are needed. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Using advanced computer vision algorithms on small mobile robots
NASA Astrophysics Data System (ADS)
Kogut, G.; Birchmore, F.; Biagtan Pacis, E.; Everett, H. R.
2006-05-01
The Technology Transfer project employs a spiral development process to enhance the functionality and autonomy of mobile robot systems in the Joint Robotics Program (JRP) Robotic Systems Pool by converging existing component technologies onto a transition platform for optimization. An example of this approach is the implementation of advanced computer vision algorithms on small mobile robots. We demonstrate the implementation and testing of the following two algorithms useful on mobile robots: 1) object classification using a boosted Cascade of classifiers trained with the Adaboost training algorithm, and 2) human presence detection from a moving platform. Object classification is performed with an Adaboost training system developed at the University of California, San Diego (UCSD) Computer Vision Lab. This classification algorithm has been used to successfully detect the license plates of automobiles in motion in real-time. While working towards a solution to increase the robustness of this system to perform generic object recognition, this paper demonstrates an extension to this application by detecting soda cans in a cluttered indoor environment. The human presence detection from a moving platform system uses a data fusion algorithm which combines results from a scanning laser and a thermal imager. The system is able to detect the presence of humans while both the humans and the robot are moving simultaneously. In both systems, the two aforementioned algorithms were implemented on embedded hardware and optimized for use in real-time. Test results are shown for a variety of environments.
NASA Technical Reports Server (NTRS)
Davis, Robert N.; Polites, Michael E.; Trevino, Luis C.
2004-01-01
This paper details a novel scheme for autonomous component health management (ACHM) with failed actuator detection and failed sensor detection, identification, and avoidance. This new scheme has features that far exceed the performance of systems with triple-redundant sensing and voting, yet requires fewer sensors and could be applied to any system with redundant sensing. Relevant background to the ACHM scheme is provided, and the simulation results for the application of that scheme to a single-axis spacecraft attitude control system with a 3rd order plant and dual-redundant measurement of system states are presented. ACHM fulfills key functions needed by an integrated vehicle health monitoring (IVHM) system. It is: autonomous; adaptive; works in realtime; provides optimal state estimation; identifies failed components; avoids failed components; reconfigures for multiple failures; reconfigures for intermittent failures; works for hard-over, soft, and zero-output failures; and works for both open- and closed-loop systems. The ACHM scheme combines a prefilter that generates preliminary state estimates, detects and identifies failed sensors and actuators, and avoids the use of failed sensors in state estimation with a fixed-gain Kalman filter that generates optimal state estimates and provides model-based state estimates that comprise an integral part of the failure detection logic. The results show that ACHM successfully isolates multiple persistent and intermittent hard-over, soft, and zero-output failures. It is now ready to be tested on a computer model of an actual system.
The Seasat SAR Wind and Ocean Wave Monitoring Capabilities: A case study for pass 1339m
NASA Technical Reports Server (NTRS)
Beal, R. C.
1980-01-01
A well organized low energy 11 sec. swell system off the East Coast of the U.S. was detected with the Seasat Synthetic Aperture Radar and successfully tracked from deep water, across the continental shelf, and into shallow water. In addition, a less organized 7 sec. system was tentatively identified in the imagery. Both systems were independently confirmed with simultaneous wave spectral measurements from a research pier, aircraft laser profilometer data, and Fleet Numerical Spectral Ocean Wave Models.
Summary of vulnerability related technologies based on machine learning
NASA Astrophysics Data System (ADS)
Zhao, Lei; Chen, Zhihao; Jia, Qiong
2018-04-01
As the scale of information system increases by an order of magnitude, the complexity of system software is getting higher. The vulnerability interaction from design, development and deployment to implementation stages greatly increases the risk of the entire information system being attacked successfully. Considering the limitations and lags of the existing mainstream security vulnerability detection techniques, this paper summarizes the development and current status of related technologies based on the machine learning methods applied to deal with massive and irregular data, and handling security vulnerabilities.
Photoacoustic imaging of hidden dental caries by using a fiber-based probing system
NASA Astrophysics Data System (ADS)
Koyama, Takuya; Kakino, Satoko; Matsuura, Yuji
2017-04-01
Photoacoustic method to detect hidden dental caries is proposed. It was found that high frequency ultrasonic waves are generated from hidden carious part when radiating laser light to occlusal surface of model tooth. By making a map of intensity of these high frequency components, photoacoustic images of hidden caries were successfully obtained. A photoacoustic imaging system using a bundle of hollow optical fiber was fabricated for using clinical application, and clear photoacoustic image of hidden caries was also obtained by this system.
A Complex Systems Approach to Causal Discovery in Psychiatry.
Saxe, Glenn N; Statnikov, Alexander; Fenyo, David; Ren, Jiwen; Li, Zhiguo; Prasad, Meera; Wall, Dennis; Bergman, Nora; Briggs, Ernestine C; Aliferis, Constantin
2016-01-01
Conventional research methodologies and data analytic approaches in psychiatric research are unable to reliably infer causal relations without experimental designs, or to make inferences about the functional properties of the complex systems in which psychiatric disorders are embedded. This article describes a series of studies to validate a novel hybrid computational approach--the Complex Systems-Causal Network (CS-CN) method-designed to integrate causal discovery within a complex systems framework for psychiatric research. The CS-CN method was first applied to an existing dataset on psychopathology in 163 children hospitalized with injuries (validation study). Next, it was applied to a much larger dataset of traumatized children (replication study). Finally, the CS-CN method was applied in a controlled experiment using a 'gold standard' dataset for causal discovery and compared with other methods for accurately detecting causal variables (resimulation controlled experiment). The CS-CN method successfully detected a causal network of 111 variables and 167 bivariate relations in the initial validation study. This causal network had well-defined adaptive properties and a set of variables was found that disproportionally contributed to these properties. Modeling the removal of these variables resulted in significant loss of adaptive properties. The CS-CN method was successfully applied in the replication study and performed better than traditional statistical methods, and similarly to state-of-the-art causal discovery algorithms in the causal detection experiment. The CS-CN method was validated, replicated, and yielded both novel and previously validated findings related to risk factors and potential treatments of psychiatric disorders. The novel approach yields both fine-grain (micro) and high-level (macro) insights and thus represents a promising approach for complex systems-oriented research in psychiatry.
Autonomous mine detection system (AMDS) neutralization payload module
NASA Astrophysics Data System (ADS)
Majerus, M.; Vanaman, R.; Wright, N.
2010-04-01
The Autonomous Mine Detection System (AMDS) program is developing a landmine and explosive hazards standoff detection, marking, and neutralization system for dismounted soldiers. The AMDS Capabilities Development Document (CDD) has identified the requirement to deploy three payload modules for small robotic platforms: mine detection and marking, explosives detection and marking, and neutralization. This paper addresses the neutralization payload module. There are a number of challenges that must be overcome for the neutralization payload module to be successfully integrated into AMDS. The neutralizer must meet stringent size, weight, and power (SWaP) requirements to be compatible with a small robot. The neutralizer must be effective against a broad threat, to include metal and plastic-cased Anti-Personnel (AP) and Anti-Tank (AT) landmines, explosive devices, and Unexploded Explosive Ordnance (UXO.) It must adapt to a variety of threat concealments, overburdens, and emplacement methods, to include soil, gravel, asphalt, and concrete. A unique neutralization technology is being investigated for adaptation to the AMDS Neutralization Module. This paper will describe review this technology and how the other two payload modules influence its design for minimizing SWaP. Recent modeling and experimental efforts will be included.
Clone tag detection in distributed RFID systems
Kamaludin, Hazalila; Mahdin, Hairulnizam
2018-01-01
Although Radio Frequency Identification (RFID) is poised to displace barcodes, security vulnerabilities pose serious challenges for global adoption of the RFID technology. Specifically, RFID tags are prone to basic cloning and counterfeiting security attacks. A successful cloning of the RFID tags in many commercial applications can lead to many serious problems such as financial losses, brand damage, safety and health of the public. With many industries such as pharmaceutical and businesses deploying RFID technology with a variety of products, it is important to tackle RFID tag cloning problem and improve the resistance of the RFID systems. To this end, we propose an approach for detecting cloned RFID tags in RFID systems with high detection accuracy and minimal overhead thus overcoming practical challenges in existing approaches. The proposed approach is based on consistency of dual hash collisions and modified count-min sketch vector. We evaluated the proposed approach through extensive experiments and compared it with existing baseline approaches in terms of execution time and detection accuracy under varying RFID tag cloning ratio. The results of the experiments show that the proposed approach outperforms the baseline approaches in cloned RFID tag detection accuracy. PMID:29565982
Feasibility of full-spectrum endoscopy: Korea’s first full-spectrum endoscopy colonoscopic trial
Song, Jeong-Yeop; Cho, Youn Hee; Kim, Mi A; Kim, Jeong-Ae; Lee, Chun Tek; Lee, Moon Sung
2016-01-01
AIM: To evaluate the full-spectrum endoscopy (FUSE) colonoscopy system as the first report on the utility thereof in a Korean population. METHODS: We explored the efficacy of the FUSE colonoscopy in a retrospective, single-center feasibility study performed between February 1 and July 20, 2015. A total of 262 subjects (age range: 22-80) underwent the FUSE colonoscopy for colorectal cancer screening, polyp surveillance, or diagnostic evaluation. The cecal intubation success rate, the polyp detection rate (PDR), the adenoma detection rate (ADR), and the diverticulum detection rate (DDR), were calculated. Also, the success rates of therapeutic interventions were evaluated with biopsy confirmation. RESULTS: All patients completed the study and the success rates of cecal and terminal ileal intubation were 100% with the FUSE colonoscope; we found 313 polyps in 142 patients and 173 adenomas in 95. The overall PDR, ADR and DDR were 54.2%, 36.3%, and 25.2%, respectively, and were higher in males, and increased with age. The endoscopists and nurses involved considered that the full-spectrum colonoscope improved navigation and orientation within the colon. No colonoscopy was aborted because of colonoscope malfunction. CONCLUSION: The FUSE colonoscopy yielded a higher PDR, ADR, DDR than did traditional colonoscopy, without therapeutic failure or complications, showing feasible, effective, and safe in this first Korean trial. PMID:26937150
[Construction of a low-pH-sensing system in Streptococcus mutans].
Di, Kang; Yuqing, Li; Xuedong, Zhou
2017-06-01
To construct a low-pH-sensing system in Streptococcus mutans (S. mutans) and to visually detect the pH in situ. Promoter of ureaseⅠ(PureⅠ) and green fluorescence protein (gfp) DNA fragments were amplified by polymerase chain reaction (PCR) from the genome of Streptococcus salivarius 57.I and S. mutans containing the gfp fragment. The two amplified DNA fragments were ligated together and further integrated into pDL278 to construct the recombinant plasmid pDL278-pureⅠ-gfp. This recombinant plasmid was then transformed into S. mutans UA159 cells. Subsequently, the intensity of the optical density per unit area of the low-pH-sensing system was measured and compared under different pH conditions and different processing times. PureⅠ and gfp DNA fragments were amplified successfully with the correct molecule sizes (450 and 717 bp, respectively). The recombinant plasmid pDL278-pureⅠ-gfp was constructed and further verified by PCR and sequencing. The intensity of the optical density per unit area of the low-pH-sensing system increased with decreasing pH and increasing processing time. A low-pH-sensing system was constructed successfully in S. mutans. Our research verified that pureⅠ of Streptococcus salivarius can function well in S. mutans as an acid induced promoter, and provided a new method of detecting the pH of plaque biofilms in situ.
Chang, Liang-Yu; Chuang, Ming-Yen; Zan, Hsiao-Wen; Meng, Hsin-Fei; Lu, Chia-Jung; Yeh, Ping-Hung; Chen, Jian-Nan
2017-04-28
In this work, we successfully demonstrate a fast method to determine the fish freshness by using a sensing system containing an ultrasensitive amine gas sensor to detect the volatile amine gas from the raw fish meat. When traditional titration method takes 4 h and complicated steps to test the total volatile basic nitrogen (TVB-N) as a worldwide standard for fish freshness, our sensor takes 1 min to deliver an electrical sensing response that is highly correlated with the TVB-N value. When detecting a fresh fish with a TVB-N as 18 mg/100 g, the sensor delivers an effective ammonia concentration as 100 ppb. For TVB-N as 28-35 mg/100 g, a well-accepted freshness limit, the effective ammonia concentration is as 200-300 ppb. The ppb-regime sensitivity of the sensor and the humidity control in the sensing system are the keys to realizing fast and accurate detection. It is expected that the results in this report enable the development of on-site freshness detection and real-time monitoring in a fish factory.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers.
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A
2016-08-17
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers.
Mining IP to Domain Name Interactions to Detect DNS Flood Attacks on Recursive DNS Servers
Alonso, Roberto; Monroy, Raúl; Trejo, Luis A.
2016-01-01
The Domain Name System (DNS) is a critical infrastructure of any network, and, not surprisingly a common target of cybercrime. There are numerous works that analyse higher level DNS traffic to detect anomalies in the DNS or any other network service. By contrast, few efforts have been made to study and protect the recursive DNS level. In this paper, we introduce a novel abstraction of the recursive DNS traffic to detect a flooding attack, a kind of Distributed Denial of Service (DDoS). The crux of our abstraction lies on a simple observation: Recursive DNS queries, from IP addresses to domain names, form social groups; hence, a DDoS attack should result in drastic changes on DNS social structure. We have built an anomaly-based detection mechanism, which, given a time window of DNS usage, makes use of features that attempt to capture the DNS social structure, including a heuristic that estimates group composition. Our detection mechanism has been successfully validated (in a simulated and controlled setting) and with it the suitability of our abstraction to detect flooding attacks. To the best of our knowledge, this is the first time that work is successful in using this abstraction to detect these kinds of attacks at the recursive level. Before concluding the paper, we motivate further research directions considering this new abstraction, so we have designed and tested two additional experiments which exhibit promising results to detect other types of anomalies in recursive DNS servers. PMID:27548169
A new-speckle interferometry system for the MAMA detector
NASA Technical Reports Server (NTRS)
Horch, E.; Morgan, J. S.; Giaretta, G.; Kasle, D. B.
1992-01-01
We have developed a new system for making speckle observations with the multianode microchannel array (MAMA) detector. This system is a true photon-counting imaging device which records the arrival time of every detected photon and allows for reconstruction of image features near the diffraction limit of the telescope. We present a description of the system and summary of observational results obtained at the Lick Observatory 1-m reflector in 1991 September. The diffraction limit of the 1-m telescope at 5029 A is about 0.125 arcsec and we have successfully resolved the catalogued interferometric binary HD 202582 with a separation of 0.157 +/- 0.031 arcsec. A pair of stars in the open cluster Chi Persei separated by 2.65 +/- 0.22 arcsec with approximate V magnitudes 8.6 and 11.5 has also been successfully analyzed with the speckle technique.
Quality control in the year 2000.
Schade, B
1992-01-01
'Just-in-time' production is a prerequisite for a company to meet the challenges of competition. Manufacturing cycles have been so successfully optimized that release time now has become a significant factor. A vision for a major quality-control (QC) contribution to profitability in this decade seems to be the just-in-time release. Benefits will go beyond cost savings for lower inventory. The earlier detection of problems will reduce rejections and scrap. In addition, problem analysis and problem-solving will be easier. To achieve just-in-time release, advanced automated systems like robots will become the workhorses in QC for high volume pharmaceutical production. The requirements for these systems are extremely high in terms of quality, reliability and ruggedness. Crucial for the success might be advances in use of microelectronics for error checks, system recording, trouble shooting, etc. as well as creative new approaches (for example the use of redundant assay systems).
Quality control in the year 2000
Schade, Bernd
1992-01-01
‘Just-in-time’ production is a prerequisite for a company to meet the challenges of competition. Manufacturing cycles have been so successfully optimized that release time now has become a significant factor. A vision for a major quality-control (QC) contribution to profitability in this decade seems to be the just-in-time release. Benefits will go beyond cost savings for lower inventory. The earlier detection of problems will reduce rejections and scrap. In addition, problem analysis and problem-solving will be easier. To achieve just-in-time release, advanced automated systems like robots will become the workhorses in QC for high volume pharmaceutical production. The requirements for these systems are extremely high in terms of quality, reliability and ruggedness. Crucial for the success might be advances in use of microelectronics for error checks, system recording, trouble shooting, etc. as well as creative new approaches (for example the use of redundant assay systems). PMID:18924930
Flight evaluation results for a digital electronic engine control in an F-15 airplane
NASA Technical Reports Server (NTRS)
Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.
1983-01-01
A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.
On buffer overflow duration in a finite-capacity queueing system with multiple vacation policy
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-buffer queueing system with Poisson arrivals and generally distributed processing times, operating under multiple vacation policy, is considered. Each time when the system becomes empty, the service station takes successive independent and identically distributed vacation periods, until, at the completion epoch of one of them, at least one job waiting for service is detected in the buffer. Applying analytical approach based on the idea of embedded Markov chain, integral equations and linear algebra, the compact-form representation for the cumulative distribution function (CDF for short) of the first buffer overflow duration is found. Hence, the formula for the CDF of next such periods is obtained. Moreover, probability distributions of the number of job losses in successive buffer overflow periods are found. The considered queueing system can be efficienly applied in modelling energy saving mechanisms in wireless network communication.
Nose, M.; Iyemori, T.; Takeda, M.; Kamei, T.; Milling, D.K.; Orr, D.; Singer, H.J.; Worthington, E.W.; Sumitomo, N.
1998-01-01
Wavelet analysis is suitable for investigating waves, such as Pi 2 pulsations, which are limited in both time and frequency. We have developed an algorithm to detect Pi 2 pulsations by wavelet analysis. We tested the algorithm and found that the results of Pi 2 detection are consistent with those obtained by visual inspection. The algorithm is applied in a project which aims at the nowcasting of substorm onsets. In this project we use real-time geomagnetic field data, with a sampling rate of 1 second, obtained at mid- and low-latitude stations (Mineyama in Japan, the York SAMNET station in the U.K., and Boulder in the U.S.). These stations are each separated by about 120??in longitude, so at least one station is on the nightside at all times. We plan to analyze the real-time data at each station using the Pi 2 detection algorithm, and to exchange the detection results among these stations via the Internet. Therefore we can obtain information about substorm onsets in real-time, even if we are on the dayside. We have constructed a system to detect Pi 2 pulsations automatically at Mineyama observatory. The detection results for the period of February to August 1996 showed that the rate of successful detection of Pi 2 pulsations was 83.4% for the nightside (18-06MLT) and 26.5% for the dayside (06-18MLT). The detection results near local midnight (20-02MLT) give the rate of successful detection of 93.2%.
NASA Technical Reports Server (NTRS)
Kemmerer, Catherine C.; Jacoby, Joseph A.; Lomness, Janice K.; Hintze, Paul E.; Russell, Richard W.
2007-01-01
The detection of corrosion beneath Space Shuttle Orbiter thermal protective system is traditionally accomplished by removing the Reusable Surface Insulation tiles and performing a visual inspection of the aluminum substrate and corrosion protection system. This process is time consuming and has the potential to damage high cost tiles. To evaluate non-intrusive NDE methods, a Proof of Concept (PoC) experiment was designed and test panels were manufactured. The objective of the test plan was three-fold: establish the ability to detect corrosion hidden from view by tiles; determine the key factor affecting detectability; roughly quantify the detection threshold. The plan consisted of artificially inducing dimensionally controlled corrosion spots in two panels and rebonding tile over the spots to model the thermal protective system of the orbiter. The corrosion spot diameter ranged from 0.100" to 0.600" inches and the depth ranged from 0.003" to 0.020". One panel consisted of a complete factorial array of corrosion spots with and without tile coverage. The second panel consisted of randomized factorial points replicated and hidden by tile. Conventional methods such as ultrasonics, infrared, eddy current and microwave methods have shortcomings. Ultrasonics and IR cannot sufficiently penetrate the tiles, while eddy current and microwaves have inadequate resolution. As such, the panels were interrogated using Backscatter Radiography and Terahertz Imaging. The terahertz system successfully detected artificially induced corrosion spots under orbiter tile and functional testing is in-work in preparation for implementation.
Tu, Yiheng; Hung, Yeung Sam; Hu, Li; Huang, Gan; Hu, Yong; Zhang, Zhiguo
2014-12-01
This study aims (1) to develop an automated and fast approach for detecting visual evoked potentials (VEPs) in single trials and (2) to apply the single-trial VEP detection approach in designing a real-time and high-performance brain-computer interface (BCI) system. The single-trial VEP detection approach uses common spatial pattern (CSP) as a spatial filter and wavelet filtering (WF) a temporal-spectral filter to jointly enhance the signal-to-noise ratio (SNR) of single-trial VEPs. The performance of the joint spatial-temporal-spectral filtering approach was assessed in a four-command VEP-based BCI system. The offline classification accuracy of the BCI system was significantly improved from 67.6±12.5% (raw data) to 97.3±2.1% (data filtered by CSP and WF). The proposed approach was successfully implemented in an online BCI system, where subjects could make 20 decisions in one minute with classification accuracy of 90%. The proposed single-trial detection approach is able to obtain robust and reliable VEP waveform in an automatic and fast way and it is applicable in VEP based online BCI systems. This approach provides a real-time and automated solution for single-trial detection of evoked potentials or event-related potentials (EPs/ERPs) in various paradigms, which could benefit many applications such as BCI and intraoperative monitoring. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Chen, Jing; Ye, Wangquan; Guo, Jinjia; Luo, Zhao; Li, Ying
2016-01-01
A newly developed integrated fluorescence-Raman spectral system (λex = 532 nm) for detecting Chlorophyll-a (chl-a), Chromophoric Dissolved Organic Matter (CDOM), carotenoids and SO42− in situ was used to successfully investigate the diurnal variability of all above. Simultaneously using the integration of fluorescence spectroscopy and Raman spectroscopy techniques provided comprehensive marine information due to the complementarity between the different excitation mechanisms and different selection rules. The investigation took place in offshore seawater of the Yellow Sea (36°05′40′′ N, 120°31′32′′ E) in October 2014. To detect chl-a, CDOM, carotenoids and SO42−, the fluorescence-Raman spectral system was deployed. It was found that troughs of chl-a and CDOM fluorescence signal intensity were observed during high tides, while the signal intensity showed high values with larger fluctuations during ebb-tide. Chl-a and carotenoids were influenced by solar radiation within a day cycle by different detection techniques, as well as displaying similar and synchronous tendency. CDOM fluorescence cause interference to the measurement of SO42−. To avoid such interference, the backup Raman spectroscopy system with λex = 785 nm was employed to detect SO42− concentration on the following day. The results demonstrated that the fluorescence-Raman spectral system has great potential in detection of chl-a, carotenoids, CDOM and SO42− in the ocean. PMID:27420071
Humidity compensation of bad-smell sensing system using a detector tube and a built-in camera
NASA Astrophysics Data System (ADS)
Hirano, Hiroyuki; Nakamoto, Takamichi
2011-09-01
We developed a low-cost sensing system robust against humidity change for detecting and estimating concentration of bad smell, such as hydrogen sulfide and ammonia. In the previous study, we developed automated measurement system for a gas detector tube using a built-in camera instead of the conventional manual inspection of the gas detector tube. Concentration detectable by the developed system ranges from a few tens of ppb to a few tens of ppm. However, we previously found that the estimated concentration depends not only on actual concentration, but on humidity. Here, we established the method to correct the influence of humidity by creating regression function with its inputs of discoloration rate and humidity. We studied 2 methods (Backpropagation, Radial basis function network) to get regression function and evaluated them. Consequently, the system successfully estimated the concentration on a practical level even when humidity changes.
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality.
Stone, Scott A; Tata, Matthew S
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible.
Electronic Nose: Evaluation of Kamina Prototype Unit
NASA Technical Reports Server (NTRS)
Schattke, Nathan
2001-01-01
The Kamina, Sam and Cyranose electronic nose systems were evaluated and partially trained. Much work was performed on the Kamina as it has the ability to respond to low (less than 10 ppb) concentrations of hydrazine compounds. We were able to tell the difference between Hydrazine (Hz) and Monomethylhydrazine (MMH) in standard clean humid air. We were able to detect MMH in reduced pressure (1/3 atm) at about 250 ppb, however the training set was to far from the real situation to be useful now. Various engineering and usability aspects of both the noses was noted, especially the software. One serious physical engineering flaw was remedied in the Kamina system. A gas flow manifold was created for the Sam system. Different chips were evaluated for the Kamina system. It is still unclear if they can be exchanged without retraining the software.The Sam Detect commercial unit was evaluated for solvent detection and evaluation. It was able to successfully identify some solvents. The Cyranose, was observed and evaluated for two days. It has the ability to detect gasses in the 100 parts per million level but not the 10 parts per billion level. It is very sensitive to humidity changes; there is software to partially handle this.
Rendering visual events as sounds: Spatial attention capture by auditory augmented reality
Tata, Matthew S.
2017-01-01
Many salient visual events tend to coincide with auditory events, such as seeing and hearing a car pass by. Information from the visual and auditory senses can be used to create a stable percept of the stimulus. Having access to related coincident visual and auditory information can help for spatial tasks such as localization. However not all visual information has analogous auditory percepts, such as viewing a computer monitor. Here, we describe a system capable of detecting and augmenting visual salient events into localizable auditory events. The system uses a neuromorphic camera (DAVIS 240B) to detect logarithmic changes of brightness intensity in the scene, which can be interpreted as salient visual events. Participants were blindfolded and asked to use the device to detect new objects in the scene, as well as determine direction of motion for a moving visual object. Results suggest the system is robust enough to allow for the simple detection of new salient stimuli, as well accurately encoding direction of visual motion. Future successes are probable as neuromorphic devices are likely to become faster and smaller in the future, making this system much more feasible. PMID:28792518
Automated eye blink detection and correction method for clinical MR eye imaging.
Wezel, Joep; Garpebring, Anders; Webb, Andrew G; van Osch, Matthias J P; Beenakker, Jan-Willem M
2017-07-01
To implement an on-line monitoring system to detect eye blinks during ocular MRI using field probes, and to reacquire corrupted k-space lines by means of an automatic feedback system integrated with the MR scanner. Six healthy subjects were scanned on a 7 Tesla MRI whole-body system using a custom-built receive coil. Subjects were asked to blink multiple times during the MR-scan. The local magnetic field changes were detected with an external fluorine-based field probe which was positioned close to the eye. The eye blink produces a field shift greater than a threshold level, this was communicated in real-time to the MR system which immediately reacquired the motion-corrupted k-space lines. The uncorrected images, using the original motion-corrupted data, showed severe artifacts, whereas the corrected images, using the reacquired data, provided an image quality similar to images acquired without blinks. Field probes can successfully detect eye blinks during MRI scans. By automatically reacquiring the eye blink-corrupted data, high quality MR-images of the eye can be acquired. Magn Reson Med 78:165-171, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
An affordable modular vehicle radar for landmine and IED detection
NASA Astrophysics Data System (ADS)
Daniels, David; Curtis, Paul; Dittmer, Jon; Hunt, Nigel; Graham, Blair; Allan, Robert
2009-05-01
This paper describes a vehicle mounted 8-channel radar system suitable for buried landmine and IED detection. The system is designed to find Anti Tank (AT) landmines and buried Improvised Explosive Devices (IEDs). The radar uses field-proven ground penetrating radar sub-system modules and is scalable to 16, 32 or 64 channels, for covering greater swathe widths and for providing higher cross track resolution. This offers the capability of detecting smaller targets down to a minimum dimension of 100mm. The current rate of advance of the technology demonstrator is 10 kph; this can be increased to 20 kph where required. The data output is triggered via shaft encoder or via GPS and, for each forward increment; the data output is variable from a single byte per channel through to the 512 samples per channel. Trials using an autonomous vehicle, combined with a COFDM wireless link for data and telemetry back to a base station, have proven successful and the system architecture is described in this paper. The GPR array can be used as a standalone sensor or can be integrated with off-the-shelf software and a metal detection array.
Hetényi, Anasztázia; Hegedűs, Zsófia; Fajka-Boja, Roberta; Monostori, Éva; Kövér, Katalin E; Martinek, Tamás A
2016-12-01
Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein-ligand interactions is a key element. 1 H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed 15 N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A 15 N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.
NASA Astrophysics Data System (ADS)
Tam, Le Thi; Dinh, Ngo Xuan; Van Cuong, Nguyen; Van Quy, Nguyen; Huy, Tran Quang; Ngo, Duc-The; Mølhave, Kristian; Le, Anh-Tuan
2016-10-01
In this work, a multi-functional hybrid system consisting of graphene oxide and silver nanoparticles (GO-Ag NPs) was successfully synthesized by using a two-step chemical process. We firstly demonstrated noticeable bactericidal ability of the GO-Ag hybrid system. We provide more chemo-physical evidence explaining the antibacterial behavior of GO-Ag nanohybrid against Gram-negative Escherichia Coli and Gram-positive Staphylococcus aureus in light of ultrastructural damage analyses and Ag1+ ions release rate onto the cells/medium. A further understanding of the mode of antimicrobial action is very important for designing and developing advanced antimicrobial systems. Secondly, we have also demonstrated that the GO-Ag nanohybrid material could be used as a potential surface enhanced Raman scattering (SERS) substrate to detect and quantify organic dyes, e.g., methylene blue (MB), in aqueous media. Our findings revealed that the GO-Ag hybrid system showed better SERS performance of MB detection than that of pure Ag-NPs. MB could be detected at a concentration as low as 1 ppm. The GO-Ag-based SERS platform can be effectively used to detect trace concentrations of various types of organic dyes in aqueous media. With the aforementioned properties, the GO-Ag hybrid system is found to be very promising as a multi-functional material for advanced biomedicine and environmental monitoring applications.
A flow injection chemiluminescence system for the determination of isoniazid.
Huang, Y; Zhang, Z; Zhang, D; Lv, J
2000-10-01
A chemiluminescence (CL) flow system is described for the determination of isoniazid based on its enhancement on the chemiluminescence (CL) emission produced upon mixing a hexacyanoferrate(III) solution with an alkaline luminol solution. The system responds linearly to isoniazid concentration in the range 0-1 mg/L with a detection limit (3sigma) of 0.03 microg/L, relative standard deviation (RSD) of 1.2% for 0.1 mg/L isoniazid (n = 11). The system has been successfully applied to the determination of isoniazid in pharmaceutical preparations.
Microneedle-mediated transdermal bacteriophage delivery
Ryan, Elizabeth; Garland, Martin J.; Singh, Thakur Raghu Raj; Bambury, Eoin; O’Dea, John; Migalska, Katarzyna; Gorman, Sean P.; McCarthy, Helen O.; Gilmore, Brendan F.; Donnelly, Ryan F.
2012-01-01
Interest in bacteriophages as therapeutic agents has recently been reawakened. Parenteral delivery is the most routinely-employed method of administration. However, injection of phages has numerous disadvantages, such as the requirement of a health professional for administration and the possibility of cross-contamination. Transdermal delivery offers one potential means of overcoming many of these problems. The present study utilized a novel poly (carbonate) (PC) hollow microneedle (MN) device for the transdermal delivery of Escherichia coli-specific T4 bacteriophages both in vitro and in vivo. MN successfully achieved bacteriophage delivery in vitro across dermatomed and full thickness skin. A concentration of 2.67 × 106 PFU/ml (plaque forming units per ml) was detected in the receiver compartment when delivered across dermatomed skin and 4.0 × 103 PFU/ml was detected in the receiver compartment when delivered across full thickness skin. An in vivo study resulted in 4.13 × 103 PFU/ml being detected in blood 30 min following initial MN-mediated phage administration. Clearance occurred rapidly, with phages being completely cleared from the systemic circulation within 24 h, which was expected in the absence of infection. We have shown here that MN-mediated delivery allows successful systemic phage absorption. Accordingly, bacteriophage-based therapeutics may now have an alternative route for systemic delivery. Once fully-investigated, this could lead to more widespread investigation of these interesting therapeutic viruses. PMID:22750416
Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng
2018-05-01
The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.
NASA Astrophysics Data System (ADS)
Yang, Lei; Zhou, Weihua; Xue, Kaihua; Wei, Rupeng; Ling, Zheng
2018-05-01
The enormous potential as an alternative energy resource has made natural gas hydrates a material of intense research interest. Their exploration and sample characterization require a quick and effective analysis of the hydrate-bearing cores recovered under in situ pressures. Here a novel Pressure Core Ultrasonic Test System (PCUTS) for on-board analysis of sediment cores containing gas hydrates at in situ pressures is presented. The PCUTS is designed to be compatible with an on-board pressure core transfer device and a long gravity-piston pressure-retained corer. It provides several advantages over laboratory core analysis including quick and non-destructive detection, in situ and successive acoustic property acquisition, and remission of sample storage and transportation. The design of the unique assembly units to ensure the in situ detection is demonstrated, involving the U-type protecting jackets, transducer precession device, and pressure stabilization system. The in situ P-wave velocity measurements make the detection of gas hydrate existence in the sediments possible on-board. Performance tests have verified the feasibility and sensitivity of the ultrasonic test unit, showing the dependence of P-wave velocity on gas hydrate saturation. The PCUTS has been successfully applied for analysis of natural samples containing gas hydrates recovered from the South China Sea. It is indicated that on-board P-wave measurements could provide a quick and effective understanding of the hydrate occurrence in natural samples, which can assist further resource exploration, assessment, and subsequent detailed core analysis.
Cankar, Katarina; Ravnikar, Maja; Zel, Jana; Gruden, Kristina; Toplak, Natasa
2005-01-01
Labeling of genetically modified organisms (GMOs) is now in place in many countries, including the European Union, in order to guarantee the consumer's choice between GM and non-GM products. Screening of samples is performed by polymerase chain reaction (PCR) amplification of regulatory sequences frequently introduced into genetically modified plants. Primers for the 35S promoter from Cauliflower mosaic virus (CaMV) are those most frequently used. In virus-infected plants or in samples contaminated with plant material carrying the virus, false-positive results can consequently occur. A system for real-time PCR using a TaqMan minor groove binder probe was designed that allows recognition of virus coat protein in the sample, thus allowing differentiation between transgenic and virus-infected samples. We measured the efficiency of PCR amplification, limits of detection and quantification, range of linearity, and repeatability of the assay in order to assess the applicability of the assay for routine analysis. The specificity of the detection system was tested on various virus isolates and plant species. All 8 CaMV isolates were successfully amplified using the designed system. No cross-reactivity was detected with DNA from 3 isolates of the closely related Carnation etched ring virus. Primers do not amplify plant DNA from available genetically modified maize and soybean lines or from different species of Brassicaceae or Solanaceae that are natural hosts for CaMV. We evaluated the assay for different food matrixes by spiking CaMV DNA into DNA from food samples and have successfully amplified CaMV from all samples. The assay was tested on rapeseed samples from routine GMO testing that were positive in the 35S screening assay, and the presence of the virus was confirmed.
An electrochemical albumin-sensing system utilizing microfluidic technology
NASA Astrophysics Data System (ADS)
Huang, Chao-June; Lu, Chiu-Chun; Lin, Thong-Yueh; Chou, Tse-Chuan; Lee, Gwo-Bin
2007-04-01
This paper reports an integrated microfluidic chip capable of detecting the concentration of albumin in urine by using an electrochemical method in an automatic format. The integrated microfluidic chip was fabricated by using microelectromechanical system techniques. The albumin detection was conducted by using the electrochemical sensing method, in which the albumin in urine was detected by measuring the difference of peak currents between a bare reference electrode and an albumin-adsorption electrode. To perform the detection of the albumin in an automatic format, pneumatic microvalves and micropumps were integrated onto the microfluidic chip. The albumin sample and interference mixture solutions such as homovanillic acid, dopamine, norepinephrine and epinephrine were first stored in one of the three reservoirs. Then the solution comprising the albumin sample and interference solutions was transported to pass through the detection zone utilizing the pneumatic micropump. Experimental data showed that the developed system can successfully detect the concentration of the albumin in the existence of interference materials. When compared with the traditional albumin-sensing method, smaller amounts of samples were required to perform faster detection by using the integrated microfluidic chip. Additionally, the microfluidic chip integrated with pneumatic micropumps and microvalves facilitates the transportation of the samples in an automatic mode with lesser human intervention. The development of the integrated microfluidic albumin-sensing system may be promising for biomedical applications. Preliminary results of the current paper were presented at the 2nd International Meeting on Microsensors and Microsystems 2006 (National Cheng Kung University, Tainan, Taiwan, 15-18 January).
Toh, U; Iwakuma, N; Mishima, M; Okabe, M; Nakagawa, S; Akagi, Y
2015-09-01
A new sensitive fluorescence imaging system was developed for the real-time identification of sentinel lymph nodes (SLNs) in patients with early breast cancer. The purpose of this study was to evaluate the utility of a color charge-coupled device camera system for the intraoperative detection of SLNs and to determine its clinical efficacy and sensitivity in patients with operable breast cancer. We assessed a total of 168 patients diagnosed with or suspected of having early-stage breast cancer without metastasis in SLNs. The intraoperative detection of SLNs was performed using the conventional Indigo Carmine dye (indigotindisulfonate sodium) technique combined with a new Indocyanine green (ICG) imaging system (HyperEye Medical System: HEMS, MIZUHO IKAKOGYO, Japan) to map SLNs, in which the lymphatic vessels and SLNs were visualized transcutaneously with illuminating ICG fluorescence. Between January 2012 and May 2013, SLNs were successfully identified in all 168 patients (detection rate: 100%). By histopathology, the sensitivity was 93.8% for the detection of the metastatic involvement of SLNs (15 of 16 nodal-positive patients). After a median follow-up of 30.5 months, none of the patients presented with axillary recurrence. These results suggest that the HEMS imaging system is a feasible and effective method for the detection of SLNs in breast cancer. Furthermore, the HEMS device permitted the transcutaneous visualization of lymphatic vessels under light conditions, thus facilitating the identification and detection of SLNs without affecting the surgical procedure, together with a high sensitivity and specificity.
Hosseini, Samira; Aeinehvand, Mohammad M.; Uddin, Shah M.; Benzina, Abderazak; Rothan, Hussin A.; Yusof, Rohana; Koole, Leo H.; Madou, Marc J.; Djordjevic, Ivan; Ibrahim, Fatimah
2015-01-01
The application of microfluidic devices in diagnostic systems is well-established in contemporary research. Large specific surface area of microspheres, on the other hand, has secured an important position for their use in bioanalytical assays. Herein, we report a combination of microspheres and microfluidic disk in a unique hybrid platform for highly sensitive and selective detection of dengue virus. Surface engineered polymethacrylate microspheres with carefully designed functional groups facilitate biorecognition in a multitude manner. In order to maximize the utility of the microspheres’ specific surface area in biomolecular interaction, the microfluidic disk was equipped with a micromixing system. The mixing mechanism (microballoon mixing) enhances the number of molecular encounters between spheres and target analyte by accessing the entire sample volume more effectively, which subsequently results in signal amplification. Significant reduction of incubation time along with considerable lower detection limits were the prime motivations for the integration of microspheres inside the microfluidic disk. Lengthy incubations of routine analytical assays were reduced from 2 hours to 5 minutes while developed system successfully detected a few units of dengue virus. Obtained results make this hybrid microsphere-microfluidic approach to dengue detection a promising avenue for early detection of this fatal illness. PMID:26548806
Enhanced fluorescence detection using liquid-liquid extraction in a microfluidic droplet system.
Chen, Yan-Yu; Chen, Zhao-Ming; Wang, Hsiang-Yu
2012-11-07
Reducing the fluorescence background in microfluidic assays is important in obtaining accurate outcomes and enhancing the quality of detections. This study demonstrates an integrated process including cell labelling, fluorescence background reduction, and biomolecule detection using liquid-liquid extraction in a microfluidic droplet system. The cellular lipids in Chlorella vulgaris and NIH/3T3 cells were labelled with a hydrophobic dye, Nile red, to investigate the performance of the proposed method. The fluorescence background of the lipid detection can be reduced by 85% and the removal efficiency increased with the volume of continuous phase surrounding a droplet. The removal rate of the fluorescence background increased as the surface area to volume ratio of a droplet increased. Before Nile red was removed from the droplet, the signal to noise ratio was as low as 1.30 and it was difficult to distinguish cells from the background. Removing Nile red increased the signal to noise ratio to 22 and 34 for Chlorella vulgaris and NIH/3T3, respectively, and these were 17 fold and 10 fold of the values before extraction. The proposed method successfully demonstrates the enhancement of fluorescence detection of cellular lipids and has great potential in improving other fluorescence-based detections in microfluidic systems.
Ultra-sensitive and selective Hg{sup 2+} detection based on fluorescent carbon dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ruihua; Li, Haitao; Kong, Weiqian
2013-07-15
Graphical abstract: Fluorescent carbon dots were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from PEG and demonstrated to show high selectivity toward Hg2+ ions detection. - Highlights: • FCDs were synthesized by one-step sodium hydroxide-assisted reflux method from PEG. • The FCDs emit blue photoluminescence and have upconversion fluorescent property. • The FCDs show ultra-sensitive detective ability for Hg{sup 2+} ions. - Abstract: Fluorescent carbon dots (FCDs) were efficiently synthesized by one-step sodium hydroxide-assisted reflux method from poly(ethylene glycol) (PEG). The obtained FCDs exhibit excellent water-solubility and high stability. Under the UV irradiation, the FCDs could emit bright bluemore » photoluminescence, and also they were found to show excellent up-conversion fluorescence. It was further demonstrated that such FCDs can serve as effective fluorescent sensing platform for Hg{sup 2+} ions detection with ultra-sensitivity and selectivity. The sensing system achieved a limit of detection as low as 1 fM, which is much lower than all the previous reported sensing systems for Hg{sup 2+} ions detection. This FCDs sensing system has been successfully applied for the analysis of Hg{sup 2+} ions in water samples from river, lake, and tap water, showing good practical feasibility.« less
Design and application of 8-channel SOI-based AWG demultiplexer for CWDM-system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juhari, Nurjuliana; Menon, P. Susthitha; Ehsan, Abang Annuar
2015-04-24
Arrayed Waveguide Grating (AWG) serving as a demultiplexer (demux) has been designed on SOI platform and was utilized in a Coarse Wavelength Division Multiplexing (CWDM) system ranging from 1471 nm to 1611 nm. The investigation was carried out at device and system levels. At device level, 20 nm (∼ 2500 GHz) channel spacing was successfully simulated using beam propagation method (BPM) under TE mode polarization with a unique double S-shape pattern at arrays region. The performance of optical properties gave the low values of 0.96 dB dB for insertion loss and – 22.38 dB for optical crosstalk. AWG device wasmore » then successfully used as demultiplexer in CWDM system when 10 Gb/s data rate was applied in the system. Limitation of signal power due to attenuation and fiber dispersion detected by BER analyzer =10{sup −9} of the system was compared with theoretical value. Hence, the maximum distance of optical fiber can be achieved.« less
The rf coil as a sensitive motion detector for magnetic resonance imaging.
Buikman, D; Helzel, T; Röschmann, P
1988-01-01
A new sensor principle for detection of patient movement in magnetic resonance imaging has been successfully applied for the reduction of motion artifacts. It uses a device that is already present in every MRI system, namely the rf coil. Patient movement within the coil causes changes in the rf impedance match of the coil, which can be measured as variations in the reflected rf power. The principle used for the detection of respiratory and cardiac motion is described, and experimental results measured with several coil arrangements are given. Images are presented which were acquired with respiratory gating derived from the rf body coil of a 2 Tesla whole body MRI system.
Identification of Matra Region and Overlapping Characters for OCR of Printed Bengali Scripts
NASA Astrophysics Data System (ADS)
Goswami, Subhra Sundar
One of the important reasons for poor recognition rate in optical character recognition (OCR) system is the error in character segmentation. In case of Bangla scripts, the errors occur due to several reasons, which include incorrect detection of matra (headline), over-segmentation and under-segmentation. We have proposed a robust method for detecting the headline region. Existence of overlapping characters (in under-segmented parts) in scanned printed documents is a major problem in designing an effective character segmentation procedure for OCR systems. In this paper, a predictive algorithm is developed for effectively identifying overlapping characters and then selecting the cut-borders for segmentation. Our method can be successfully used in achieving high recognition result.
Vitellogenin (Vg) gene expression in adult male fathead minnows (FHM) has previously been used successfully to detect exposures to estrogenic compounds in aquatic systems; however, sample volume(s)required for >24h exposure durations and the logistics of sampling pose some limita...
Study on development system of increasing gearbox for high-performance wind-power generator
NASA Astrophysics Data System (ADS)
Xu, Hongbin; Yan, Kejun; Zhao, Junyu
2005-12-01
Based on the analysis of the development potentiality of wind-power generator and domestic manufacture of its key parts in China, an independent development system of the Increasing Gearbox for High-performance Wind-power Generator (IGHPWG) was introduced. The main elements of the system were studied, including the procedure design, design analysis system, manufacturing technology and detecting system, and the relative important technologies were analyzed such as mixed optimal joint transmission structure of the first planetary drive with two grade parallel axle drive based on equal strength, tooth root round cutting technology before milling hard tooth surface, high-precise tooth grinding technology, heat treatment optimal technology and complex surface technique, and rig test and detection technique of IGHPWG. The development conception was advanced the data share and quality assurance system through all the elements of the development system. The increasing Gearboxes for 600KW and 1MW Wind-power Generator have been successfully developed through the application of the development system.
Analyzing and Detecting Problems in Systems of Systems
NASA Technical Reports Server (NTRS)
Lindvall, Mikael; Ackermann, Christopher; Stratton, William C.; Sibol, Deane E.; Godfrey, Sally
2008-01-01
Many software systems are evolving complex system of systems (SoS) for which inter-system communication is mission-critical. Evidence indicates that transmission failures and performance issues are not uncommon occurrences. In a NASA-supported Software Assurance Research Program (SARP) project, we are researching a new approach addressing such problems. In this paper, we are presenting an approach for analyzing inter-system communications with the goal to uncover both transmission errors and performance problems. Our approach consists of a visualization and an evaluation component. While the visualization of the observed communication aims to facilitate understanding, the evaluation component automatically checks the conformance of an observed communication (actual) to a desired one (planned). The actual and the planned are represented as sequence diagrams. The evaluation algorithm checks the conformance of the actual to the planned diagram. We have applied our approach to the communication of aerospace systems and were successful in detecting and resolving even subtle and long existing transmission problems.
Portable Holographic Interferometry Testing System: Application to crack patching quality control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heslehurst, R.B.; Baird, J.P.; Williamson, H.M.
Over recent years the repair of metallic structures has been improved through the use of patches fabricated from composite materials and adhesively bonded to the damaged area. This technology is termed crack patching, and has been successfully and extensively used by the RAAF and the USAF. However, application of the technology to civilian registered aircraft has had limited success due to the apparent lack of suitable quality assurance testing methods and the airworthiness regulators concern overpatch adhesion integrity. Holographic interferometry has previously shown the advantages of detecting out-of-plane deformations of the order of the wavelength of light (1{mu}). Evidence willmore » be presented that holography is able to detect changes in load path due to debonds and weakened adhesion in an adhesively bonded patch. A Portable Holographic Interferometry Testing System (PHITS) which overcomes the vibration isolation problem associated with conventional holography techniques has been developed. The application of PHITS to crack patching technology now provides a suitable method to verify the integrity of bonded patches in-situ.« less
Facial recognition trial: biometric identification of non-compliant subjects using CCTV
NASA Astrophysics Data System (ADS)
Best, Tim
2007-10-01
LogicaCMG were provided with an opportunity to deploy a facial recognition system in a realistic scenario. 12 cameras were installed at an international airport covering all entrances to the immigration hall. The evaluation took place over several months with numerous adjustments to both the hardware (i.e. cameras, servers and capture cards) and software. The learning curve has been very steep but a stage has now been reached where both LogicaCMG and the client are confident that, subject to the right environmental conditions (lighting and camera location) an effective system can be defined with a high probability of successful detection of the target individual, with minimal false alarms. To the best of our knowledge, results with a >90% detection rate, of non-compliant subjects 'at range' has not been achieved anywhere else. This puts this location at the forefront of capability in this area. The results achieved demonstrate that, given optimised conditions, it is possible to achieve a long range biometric identification of a non compliant subject, with a high rate of success.
Analyses via automated mass spectrometry (MS/DS)
NASA Technical Reports Server (NTRS)
Koenig, T.
1985-01-01
New or improved uses of the Finnigan 4000 quadrupole mass spectrometer (MS) with its associated INCOS data system (DS) were investigated. The first phase involved an evaluative activity in which specific problems with miscalibration and gas chromatographic column conditioning were identified. This also revealed one solution to the problem of detection of substances not visible in the gas chromatography detection mode. A second phase was to seek useful applications of the direct inlet systems. This mode of sample introduction has not been previously utilized on the existing equipment and was successfully applied to the analysis of the components of TONOX 60/40 and in the thermal degradation products of some polymeric materials. Suggestions are made for improving and expanding the use of the MS/DS system in materials development and testing.
NASA Astrophysics Data System (ADS)
Adhikary, Ramkrishna; Bose, Sayantan; Casey, Thomas A.; Gapsch, Al; Rasmussen, Mark A.; Petrich, Jacob W.
2010-02-01
Applications of fluorescence spectroscopy that enable the real-time or rapid detection of fecal contamination on beef carcasses and the presence of central nervous system tissue in meat products are discussed. The former is achieved by employing spectroscopic signatures of chlorophyll metabolites; the latter, by exploiting the characteristic structure and intensity of lipofuscin in central nervous system tissue. The success of these techniques has led us to investigate the possibility of diagnosing scrapie in sheep by obtaining fluorescence spectra of the retina. Crucial to this diagnosis is the ability to obtain baseline correlations of lipofuscin fluorescence with age. A murine model was employed as a proof of principle of this correlation.
16S rRNA beacons for bacterial monitoring during human space missions.
Larios-Sanz, Maia; Kourentzi, Katerina D; Warmflash, David; Jones, Jeffrey; Pierson, Duane L; Willson, Richard C; Fox, George E
2007-04-01
Microorganisms are unavoidable in space environments and their presence has, at times, been a source of problems. Concerns about disease during human space missions are particularly important considering the significant changes the immune system incurs during spaceflight and the history of microbial contamination aboard the Mir space station. Additionally, these contaminants may have adverse effects on instrumentation and life-support systems. A sensitive, highly specific system to detect, characterize, and monitor these microbial populations is essential. Herein we describe a monitoring approach that uses 16S rRNA targeted molecular beacons to successfully detect several specific bacterial groupings. This methodology will greatly simplify in-flight monitoring by minimizing sample handling and processing. We also address and provide solutions to target accessibility problems encountered in hybridizations that target 16S rRNA.
Distance and Cable Length Measurement System
Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay
2009-01-01
A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169
A machine learning evaluation of an artificial immune system.
Glickman, Matthew; Balthrop, Justin; Forrest, Stephanie
2005-01-01
ARTIS is an artificial immune system framework which contains several adaptive mechanisms. LISYS is a version of ARTIS specialized for the problem of network intrusion detection. The adaptive mechanisms of LISYS are characterized in terms of their machine-learning counterparts, and a series of experiments is described, each of which isolates a different mechanism of LISYS and studies its contribution to the system's overall performance. The experiments were conducted on a new data set, which is more recent and realistic than earlier data sets. The network intrusion detection problem is challenging because it requires one-class learning in an on-line setting with concept drift. The experiments confirm earlier experimental results with LISYS, and they study in detail how LISYS achieves success on the new data set.
NASA Astrophysics Data System (ADS)
Wu, W.; Chen, G. Y.; Kang, R.; Xia, J. C.; Huang, Y. P.; Chen, K. J.
2017-07-01
During slaughtering and further processing, chicken carcasses are inevitably contaminated by microbial pathogen contaminants. Due to food safety concerns, many countries implement a zero-tolerance policy that forbids the placement of visibly contaminated carcasses in ice-water chiller tanks during processing. Manual detection of contaminants is labor consuming and imprecise. Here, a successive projections algorithm (SPA)-multivariable linear regression (MLR) classifier based on an optimal performance threshold was developed for automatic detection of contaminants on chicken carcasses. Hyperspectral images were obtained using a hyperspectral imaging system. A regression model of the classifier was established by MLR based on twelve characteristic wavelengths (505, 537, 561, 562, 564, 575, 604, 627, 656, 665, 670, and 689 nm) selected by SPA , and the optimal threshold T = 1 was obtained from the receiver operating characteristic (ROC) analysis. The SPA-MLR classifier provided the best detection results when compared with the SPA-partial least squares (PLS) regression classifier and the SPA-least squares supported vector machine (LS-SVM) classifier. The true positive rate (TPR) of 100% and the false positive rate (FPR) of 0.392% indicate that the SPA-MLR classifier can utilize spatial and spectral information to effectively detect contaminants on chicken carcasses.
Cognitive ability is heritable and predicts the success of an alternative mating tactic
Smith, Carl; Philips, André; Reichard, Martin
2015-01-01
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits—the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection. PMID:26041347
Cognitive ability is heritable and predicts the success of an alternative mating tactic.
Smith, Carl; Philips, André; Reichard, Martin
2015-06-22
The ability to attract mates, acquire resources for reproduction, and successfully outcompete rivals for fertilizations may make demands on cognitive traits--the mechanisms by which an animal acquires, processes, stores and acts upon information from its environment. Consequently, cognitive traits potentially undergo sexual selection in some mating systems. We investigated the role of cognitive traits on the reproductive performance of male rose bitterling (Rhodeus ocellatus), a freshwater fish with a complex mating system and alternative mating tactics. We quantified the learning accuracy of males and females in a spatial learning task and scored them for learning accuracy. Males were subsequently allowed to play the roles of a guarder and a sneaker in competitive mating trials, with reproductive success measured using paternity analysis. We detected a significant interaction between male mating role and learning accuracy on reproductive success, with the best-performing males in maze trials showing greater reproductive success in a sneaker role than as a guarder. Using a cross-classified breeding design, learning accuracy was demonstrated to be heritable, with significant additive maternal and paternal effects. Our results imply that male cognitive traits may undergo intra-sexual selection. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Active optical sensors for tree stem detection and classification in nurseries.
Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J; Hanson, Bradley D; Slaughter, David C
2014-06-19
Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, W.R.; Campbell, T.M.; Sturdivant, V.R.
1980-09-26
Shallow underground voids resulting from early coal mining and other resource recovery activities over the past several decades are now being recognized as a significant cause of ground subsidence problems in developing urban areas. Uncertain knowledge of abandoned coal mines also imposes potential hazards in coal excavation operations since water inundation or the release of methane gas is a principal hazard when mine excavation operations break into an abandoned mine. US Army requirements for an effective method for detecting and mapping subversive abandoned tunnels have resulted in a surface-operated automatic earth resistivity survey system with a digital computer data processingmore » system. Field tests aimed at demonstrating the system performance resulted in successful detection of tunnels having depth-to-diameter ratios up to 15 to 1. Under the sponsorship of the Bureau of Mines, a similar system was designed and constructed for use in the detection of coal mine workings. This report discusses the hardware and software aspects of the system and the application of the high-resolution earth resistivity method to the survey and mapping of abandoned coal mine workings. In the field tests reported, the targets of interest were both air- and water-filled workings.« less
Fast internal marker tracking algorithm for onboard MV and kV imaging systems
Mao, W.; Wiersma, R. D.; Xing, L.
2008-01-01
Intrafraction organ motion can limit the advantage of highly conformal dose techniques such as intensity modulated radiation therapy (IMRT) due to target position uncertainty. To ensure high accuracy in beam targeting, real-time knowledge of the target location is highly desired throughout the beam delivery process. This knowledge can be gained through imaging of internally implanted radio-opaque markers with fluoroscopic or electronic portal imaging devices (EPID). In the case of MV based images, marker detection can be problematic due to the significantly lower contrast between different materials in comparison to their kV-based counterparts. This work presents a fully automated algorithm capable of detecting implanted metallic markers in both kV and MV images with high consistency. Using prior CT information, the algorithm predefines the volumetric search space without manual region-of-interest (ROI) selection by the user. Depending on the template selected, both spherical and cylindrical markers can be detected. Multiple markers can be simultaneously tracked without indexing confusion. Phantom studies show detection success rates of 100% for both kV and MV image data. In addition, application of the algorithm to real patient image data results in successful detection of all implanted markers for MV images. Near real-time operational speeds of ∼10 frames∕sec for the detection of five markers in a 1024×768 image are accomplished using an ordinary PC workstation. PMID:18561670
Graph distance for complex networks
NASA Astrophysics Data System (ADS)
Shimada, Yutaka; Hirata, Yoshito; Ikeguchi, Tohru; Aihara, Kazuyuki
2016-10-01
Networks are widely used as a tool for describing diverse real complex systems and have been successfully applied to many fields. The distance between networks is one of the most fundamental concepts for properly classifying real networks, detecting temporal changes in network structures, and effectively predicting their temporal evolution. However, this distance has rarely been discussed in the theory of complex networks. Here, we propose a graph distance between networks based on a Laplacian matrix that reflects the structural and dynamical properties of networked dynamical systems. Our results indicate that the Laplacian-based graph distance effectively quantifies the structural difference between complex networks. We further show that our approach successfully elucidates the temporal properties underlying temporal networks observed in the context of face-to-face human interactions.
VoIP attacks detection engine based on neural network
NASA Astrophysics Data System (ADS)
Safarik, Jakub; Slachta, Jiri
2015-05-01
The security is crucial for any system nowadays, especially communications. One of the most successful protocols in the field of communication over IP networks is Session Initiation Protocol. It is an open-source project used by different kinds of applications, both open-source and proprietary. High penetration and text-based principle made SIP number one target in IP telephony infrastructure, so security of SIP server is essential. To keep up with hackers and to detect potential malicious attacks, security administrator needs to monitor and evaluate SIP traffic in the network. But monitoring and following evaluation could easily overwhelm the security administrator in networks, typically in networks with a number of SIP servers, users and logically or geographically separated networks. The proposed solution lies in automatic attack detection systems. The article covers detection of VoIP attacks through a distributed network of nodes. Then the gathered data analyze aggregation server with artificial neural network. Artificial neural network means multilayer perceptron network trained with a set of collected attacks. Attack data could also be preprocessed and verified with a self-organizing map. The source data is detected by distributed network of detection nodes. Each node contains a honeypot application and traffic monitoring mechanism. Aggregation of data from each node creates an input for neural networks. The automatic classification on a centralized server with low false positive detection reduce the cost of attack detection resources. The detection system uses modular design for easy deployment in final infrastructure. The centralized server collects and process detected traffic. It also maintains all detection nodes.
Human Location Detection System Using Micro-Electromechanical Sensor for Intelligent Fan
NASA Astrophysics Data System (ADS)
Parnin, S.; Rahman, M. M.
2017-03-01
This paper presented the development of sensory system for detection of both the presence and the location of human in a room spaces using MEMS Thermal sensor. The system is able to detect the surface temperature of occupants by a non-contact detection at the maximum of 6 meters far. It can be integrated to any swing type of electrical appliances such as standing fan or a similar devices. Differentiating human from other moving and or static object by heat variable is nearly impossible since human, animals and electrical appliances produce heat. The uncontrollable heat properties which can change and transfer will add to the detection issue. Integrating the low cost MEMS based thermal sensor can solve the first of human sensing problem by its ability to detect human in stationary. Further discrimination and analysis must therefore be made to the measured temperature data to distinguish human from other objects. In this project, the fan is properly designed and program in such a way that it can adapt to different events starting from the human sensing stage to its dynamic and mechanical moving parts. Up to this stage initial testing to the Omron D6T microelectromechanical thermal sensor is currently under several experimental stages. Experimental result of the sensor tested on stationary and motion state of human are behaviorally differentiable and successfully locate the human position by detecting the maximum temperature of each sensor reading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turri, P.; McConnachie, A. W.; Stetson, P. B.
2015-10-01
The Extremely Large Telescopes currently under construction have a collecting area that is an order of magnitude larger than the present largest optical telescopes. For seeing-limited observations the performance will scale as the collecting area, but with the successful use of adaptive optics (AO), for many applications it will scale as D{sup 4} (where D is the diameter of the primary mirror). Central to the success of the ELTs, therefore, is the successful use of multi-conjugate adaptive optics (MCAO) which applies a high degree of correction over a field of view larger than the few arcseconds that limits classical AOmore » systems. In this Letter, we report on the analysis of crowded field images taken on the central region of the galactic globular cluster NGC 1851 in the K{sub s} band using the Gemini Multi-conjugate Adaptive Optics System (GeMS) at the Gemini South Telescope, the only science-grade MCAO system in operation. We use this cluster as a benchmark to verify the ability to achieve precise near-infrared photometry by presenting the deepest K{sub s} photometry in crowded fields ever obtained from the ground. We construct a color–magnitude diagram in combination with the F606W band from the Hubble Space Telescope/Advanced Camera for Surveys. As well as detecting the “knee” in the lower main sequence at K{sub s} ≃ 20.5, we also detect the double subgiant branch of NGC 1851, which demonstrates the high photometric accuracy of GeMS in crowded fields.« less
Online boosting for vehicle detection.
Chang, Wen-Chung; Cho, Chih-Wei
2010-06-01
This paper presents a real-time vision-based vehicle detection system employing an online boosting algorithm. It is an online AdaBoost approach for a cascade of strong classifiers instead of a single strong classifier. Most existing cascades of classifiers must be trained offline and cannot effectively be updated when online tuning is required. The idea is to develop a cascade of strong classifiers for vehicle detection that is capable of being online trained in response to changing traffic environments. To make the online algorithm tractable, the proposed system must efficiently tune parameters based on incoming images and up-to-date performance of each weak classifier. The proposed online boosting method can improve system adaptability and accuracy to deal with novel types of vehicles and unfamiliar environments, whereas existing offline methods rely much more on extensive training processes to reach comparable results and cannot further be updated online. Our approach has been successfully validated in real traffic environments by performing experiments with an onboard charge-coupled-device camera in a roadway vehicle.
Multisensor system for toxic gases detection generated on indoor environments
NASA Astrophysics Data System (ADS)
Durán, C. M.; Monsalve, P. A. G.; Mosquera, C. J.
2016-11-01
This work describes a wireless multisensory system for different toxic gases detection generated on indoor environments (i.e., Underground coal mines, etc.). The artificial multisensory system proposed in this study was developed through a set of six chemical gas sensors (MQ) of low cost with overlapping sensitivities to detect hazardous gases in the air. A statistical parameter was implemented to the data set and two pattern recognition methods such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were used for feature selection. The toxic gases categories were classified with a Probabilistic Neural Network (PNN) in order to validate the results previously obtained. The tests were carried out to verify feasibility of the application through a wireless communication model which allowed to monitor and store the information of the sensor signals for the appropriate analysis. The success rate in the measures discrimination was 100%, using an artificial neural network where leave-one-out was used as cross validation method.
Near-Infrared Imaging for Detecting Caries and Structural Deformities in Teeth
Angelino, Keith; Edlund, David A.
2017-01-01
2-D radiographs, while commonly used for evaluating sub-surface hard structures of teeth, have low sensitivity for early caries lesions, particularly those on tooth occlusal surfaces. Radiographs are also frequently refused by patients over safety concerns. Translucency of teeth in the near-infrared (NIR) range offers a non-ionizing and safe approach to detect dental caries. We report the construction of an NIR (850 nm) LED imaging system, comprised of an NIR source and an intraoral camera for rapid dental evaluations. The NIR system was used to image teeth of ten consenting human subjects and successfully detected secondary, amalgam–occluded and early caries lesions without supplementary image processing. The camera-wand system was also capable of revealing demineralized areas, deep and superficial cracks, and other clinical features of teeth usually visualized by X-rays. The NIR system’s clinical utility, simplistic design, low cost, and user friendliness make it an effective dental caries screening technology in conjunction or in place of radiographs. PMID:28507826
A computer-aided diagnosis system of nuclear cataract.
Li, Huiqi; Lim, Joo Hwee; Liu, Jiang; Mitchell, Paul; Tan, Ava Grace; Wang, Jie Jin; Wong, Tien Yin
2010-07-01
Cataracts are the leading cause of blindness worldwide, and nuclear cataract is the most common form of cataract. An algorithm for automatic diagnosis of nuclear cataract is investigated in this paper. Nuclear cataract is graded according to the severity of opacity using slit lamp lens images. Anatomical structure in the lens image is detected using a modified active shape model. On the basis of the anatomical landmark, local features are extracted according to clinical grading protocol. Support vector machine regression is employed for grade prediction. This is the first time that the nucleus region can be detected automatically in slit lamp images. The system is validated using clinical images and clinical ground truth on >5000 images. The success rate of structure detection is 95% and the average grading difference is 0.36 on a 5.0 scale. The automatic diagnosis system can improve the grading objectivity and potentially be used in clinics and population studies to save the workload of ophthalmologists.
Weakly electric fish for biomonitoring water quality.
Clausen, Juergen; van Wijk, Roeland; Albrecht, Henning
2012-06-01
Environmental pollution is a major issue that calls for suitable monitoring systems. The number of possible pollutants of municipal and industrial water grows annually as new chemicals are developed. Technical devices for pollutant detection are constructed in a way to detect a specific and known array of pollutants. Biological systems react to lethal or non-lethal environmental changes without pre-adjustment, and a wide variety have been employed as broad-range monitors for water quality. Weakly electric fish have proven particularly useful for the purpose of biomonitoring municipal and industrial waters. The frequency of their electric organ discharges directly correlates with the quality of the surrounding water and, in this way, concentrations of toxicants down to the nanomolar range have been successfully detected by these organisms. We have reviewed the literature on biomonitoring studies to date, comparing advantages and disadvantages of this test system and summarizing the lowest concentrations of various toxicants tested. Eighteen publications were identified investigating 35 different chemical substances and using six different species of weakly electric fish.
Reith, S; Hoy, S
2018-02-01
Efficient detection of estrus is a permanent challenge for successful reproductive performance in dairy cattle. In this context, comprehensive knowledge of estrus-related behaviors is fundamental to achieve optimal estrus detection rates. This review was designed to identify the characteristics of behavioral estrus as a necessary basis for developing strategies and technologies to improve the reproductive management on dairy farms. The focus is on secondary symptoms of estrus (mounting, activity, aggressive and agonistic behaviors) which seem more indicative than standing behavior. The consequences of management, housing conditions and cow- and environmental-related factors impacting expression and detection of estrus as well as their relative importance are described in order to increase efficiency and accuracy of estrus detection. As traditional estrus detection via visual observation is time-consuming and ineffective, there has been a considerable advancement of detection aids during the last 10 years. By now, a number of fully automated technologies including pressure sensing systems, activity meters, video cameras, recordings of vocalization as well as measurements of body temperature and milk progesterone concentration are available. These systems differ in many aspects regarding sustainability and efficiency as keys to their adoption for farm use. As being most practical for estrus detection a high priority - according to the current research - is given to the detection based on sensor-supported activity monitoring, especially accelerometer systems. Due to differences in individual intensity and duration of estrus multivariate analysis can support herd managers in determining the onset of estrus. Actually, there is increasing interest in investigating the potential of combining data of activity monitoring and information of several other methods, which may lead to the best results concerning sensitivity and specificity of detection. Future improvements will likely require more multivariate detection by data and systems already existing on farms.
Early Oscillation Detection for DC/DC Converter Fault Diagnosis
NASA Technical Reports Server (NTRS)
Wang, Bright L.
2011-01-01
The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.
Halim, Zahid; Abbas, Ghulam
2015-01-01
Sign language provides hearing and speech impaired individuals with an interface to communicate with other members of the society. Unfortunately, sign language is not understood by most of the common people. For this, a gadget based on image processing and pattern recognition can provide with a vital aid for detecting and translating sign language into a vocal language. This work presents a system for detecting and understanding the sign language gestures by a custom built software tool and later translating the gesture into a vocal language. For the purpose of recognizing a particular gesture, the system employs a Dynamic Time Warping (DTW) algorithm and an off-the-shelf software tool is employed for vocal language generation. Microsoft(®) Kinect is the primary tool used to capture video stream of a user. The proposed method is capable of successfully detecting gestures stored in the dictionary with an accuracy of 91%. The proposed system has the ability to define and add custom made gestures. Based on an experiment in which 10 individuals with impairments used the system to communicate with 5 people with no disability, 87% agreed that the system was useful.
NASA Astrophysics Data System (ADS)
Wan, Y.; Halter, R.; Borsic, A.; Manwaring, P.; Hartov, A.; Paulsen, K.
2010-04-01
In 2009, prostate cancer ranks as the most common cancer and the second most fatal cancer in men in the United States. Unfortunately, the current clinical diagnostic methods (e.g. prostate-specific antigen (PSA), digital rectal examination, endorectal MRI, transrectal ultrasound, biopsy) used for detecting and staging prostate cancer are limited. It has been shown that cancerous prostate tissue has significantly different electrical properties when compared to benign tissues. Based on these electrical property findings, a TransRectal Electrical Impedance Tomography (TREIT) system is proposed as a novel prostate imaging modality. The TREIT system is comprised of an array of electrodes interfaced with a clinical TransRectal UltraSound (TRUS) probe. We evaluate this imaging system through series of phantom imaging experiments to assess the system's ability to image high and low contrast objects at various positions. We found that the TREIT system can easily discern high contrast inclusions of 1 cm in diameter at distances centered at 2 times the radius of the TREIT probe away from the probe surface. Furthermore, this technology's ability to detect low contrast inclusions suggests that it has the potential to successfully detect prostate cancer.
[Establishment of systemic lupus erythematosus-like murine model with Sm mimotope].
Xie, Hong-Fu; Feng, Hao; Zeng, Hai-Yan; Li, Ji; Shi, Wei; Yi, Mei; Wu, Bin
2007-04-01
To establish systemic lupus erythematosus (SLE) -like murine model by immunizing BALB/C mice with Sm mimotope. Sm mimotope was identified by screening a 12-mer random peptide library with monoclonal anti-Smith antibody. Sm mimotope was initially defined with sandwich ELISA, DNA sequencing, and deduced amino acid sequence; and BALB/C mice were subcutaneously injected with mixture phages clones. Sera Sm antibody, anti-double stranded DNA (dsDNA) antibody, and antinuclear antibody (ANA) of mice were detected using direct immunofluorescence; kidney histological changes were examined by HE staining. Five randomly selected peptides were sequenced and the amino acid sequences IR, SQ, and PP were detected in a higher frequency. High-titer IgG autoantibodies of dsDNA, Sm, and ANA in the sera of experiment group were detected by ELISA 28 days after having been immunized by Sm mimotope. Proteinuria was detected 33 days later; immune complex and nephritis were observed in kidney specimens. SLE-like murine model can be successfully induced by Sm phage mimotope.
Latent error detection: A golden two hours for detection.
Saward, Justin R E; Stanton, Neville A
2017-03-01
Undetected error in safety critical contexts generates a latent condition that can contribute to a future safety failure. The detection of latent errors post-task completion is observed in naval air engineers using a diary to record work-related latent error detection (LED) events. A systems view is combined with multi-process theories to explore sociotechnical factors associated with LED. Perception of cues in different environments facilitates successful LED, for which the deliberate review of past tasks within two hours of the error occurring and whilst remaining in the same or similar sociotechnical environment to that which the error occurred appears most effective. Identified ergonomic interventions offer potential mitigation for latent errors; particularly in simple everyday habitual tasks. It is thought safety critical organisations should look to engineer further resilience through the application of LED techniques that engage with system cues across the entire sociotechnical environment, rather than relying on consistent human performance. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Fluorescence spectroscopy using indocyanine green for lymph node mapping
NASA Astrophysics Data System (ADS)
Haj-Hosseini, Neda; Behm, Pascal; Shabo, Ivan; Wârdell, Karin
2014-02-01
The principles of cancer treatment has for years been radical resection of the primary tumor. In the oncologic surgeries where the affected cancer site is close to the lymphatic system, it is as important to detect the draining lymph nodes for metastasis (lymph node mapping). As a replacement for conventional radioactive labeling, indocyanine green (ICG) has shown successful results in lymph node mapping; however, most of the ICG fluorescence detection techniques developed are based on camera imaging. In this work, fluorescence spectroscopy using a fiber-optical probe was evaluated on a tissue-like ICG phantom with ICG concentrations of 6-64 μM and on breast tissue from five patients. Fiber-optical based spectroscopy was able to detect ICG fluorescence at low intensities; therefore, it is expected to increase the detection threshold of the conventional imaging systems when used intraoperatively. The probe allows spectral characterization of the fluorescence and navigation in the tissue as opposed to camera imaging which is limited to the view on the surface of the tissue.
Yuan, Jipei; Guo, Weiwei; Wang, Erkang
2008-02-15
In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots-enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be approximately 10(-7) mol L(-1). The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.
NASA Astrophysics Data System (ADS)
Monnin, P.; Verdun, F. R.; Bosmans, H.; Rodríguez Pérez, S.; Marshall, N. W.
2017-07-01
This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place.
Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel; Konofagou, Elisa E
2017-04-01
Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood-brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood-brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo.
Sierra, Carlos; Acosta, Camilo; Chen, Cherry; Wu, Shih-Ying; Karakatsani, Maria E; Bernal, Manuel
2016-01-01
Focused ultrasound in conjunction with lipid microbubbles has fully demonstrated its ability to induce non-invasive, transient, and reversible blood–brain barrier opening. This study was aimed at testing the feasibility of our lipid-coated microbubbles as a vector for targeted drug delivery in the treatment of central nervous system diseases. These microbubbles were labeled with the fluorophore 5-dodecanoylaminfluorescein. Focused ultrasound targeted mouse brains in vivo in the presence of these microbubbles for trans-blood–brain barrier delivery of 5-dodecanoylaminfluorescein. This new approach, compared to previously studies of our group, where fluorescently labeled dextrans and microbubbles were co-administered, represents an appreciable improvement in safety outcome and targeted drug delivery. This novel technique allows the delivery of 5-dodecanoylaminfluorescein at the region of interest unlike the alternative of systemic exposure. 5-dodecanoylaminfluorescein delivery was assessed by ex vivo fluorescence imaging and by in vivo transcranial passive cavitation detection. Stable and inertial cavitation doses were quantified. The cavitation dose thresholds for estimating, a priori, successful targeted drug delivery were, for the first time, identified with inertial cavitation were concluded to be necessary for successful delivery. The findings presented herein indicate the feasibility and safety of the proposed microbubble-based targeted drug delivery and that, if successful, can be predicted by cavitation detection in vivo. PMID:27278929
Noise detection in heart sound recordings.
Zia, Mohammad K; Griffel, Benjamin; Fridman, Vladimir; Saponieri, Cesare; Semmlow, John L
2011-01-01
Coronary artery disease (CAD) is the leading cause of death in the United States. Although progression of CAD can be controlled using drugs and diet, it is usually detected in advanced stages when invasive treatment is required. Current methods to detect CAD are invasive and/or costly, hence not suitable as a regular screening tool to detect CAD in early stages. Currently, we are developing a noninvasive and cost-effective system to detect CAD using the acoustic approach. This method identifies sounds generated by turbulent flow through partially narrowed coronary arteries to detect CAD. The limiting factor of this method is sensitivity to noises commonly encountered in the clinical setting. Because the CAD sounds are faint, these noises can easily obscure the CAD sounds and make detection impossible. In this paper, we propose a method to detect and eliminate noise encountered in the clinical setting using a reference channel. We show that our method is effective in detecting noise, which is essential to the success of the acoustic approach.
Facial recognition in education system
NASA Astrophysics Data System (ADS)
Krithika, L. B.; Venkatesh, K.; Rathore, S.; Kumar, M. Harish
2017-11-01
Human beings exploit emotions comprehensively for conveying messages and their resolution. Emotion detection and face recognition can provide an interface between the individuals and technologies. The most successful applications of recognition analysis are recognition of faces. Many different techniques have been used to recognize the facial expressions and emotion detection handle varying poses. In this paper, we approach an efficient method to recognize the facial expressions to track face points and distances. This can automatically identify observer face movements and face expression in image. This can capture different aspects of emotion and facial expressions.
New double-byte error-correcting codes for memory systems
NASA Technical Reports Server (NTRS)
Feng, Gui-Liang; Wu, Xinen; Rao, T. R. N.
1996-01-01
Error-correcting or error-detecting codes have been used in the computer industry to increase reliability, reduce service costs, and maintain data integrity. The single-byte error-correcting and double-byte error-detecting (SbEC-DbED) codes have been successfully used in computer memory subsystems. There are many methods to construct double-byte error-correcting (DBEC) codes. In the present paper we construct a class of double-byte error-correcting codes, which are more efficient than those known to be optimum, and a decoding procedure for our codes is also considered.
NASA Technical Reports Server (NTRS)
Hughitt, Brian; Generazio, Edward (Principal Investigator); Nichols, Charles; Myers, Mika (Principal Investigator); Spencer, Floyd (Principal Investigator); Waller, Jess (Principal Investigator); Wladyka, Jordan (Principal Investigator); Aldrin, John; Burke, Eric; Cerecerez, Laura;
2016-01-01
NASA-STD-5009 requires that successful flaw detection by NDE methods be statistically qualified for use on fracture critical metallic components, but does not standardize practices. This task works towards standardizing calculations and record retention with a web-based tool, the NNWG POD Standards Library or NPSL. Test methods will also be standardized with an appropriately flexible appendix to -5009 identifying best practices. Additionally, this appendix will describe how specimens used to qualify NDE systems will be cataloged, stored and protected from corrosion, damage, or loss.
New/Future Approaches to Explosive/Chemicals Detection
NASA Astrophysics Data System (ADS)
Valkovic, Vlado
2009-03-01
Although there has been some reported progress in many systems used for threat material detection and identification a promising one seems to be the use of tagged fast neutrons generated in d+t→α+n nuclear reaction. Among others, EU-FP6 project EURITRACK has been a successful demonstration of the use of tagged neutrons for ship container inspections. It has been shown that the deployment of the same technology under-water is a feasibility to be realized in the near future (i.e. EU-FP7 project UNCOSS).
Optical coherence tomography used for internal biometrics
NASA Astrophysics Data System (ADS)
Chang, Shoude; Sherif, Sherif; Mao, Youxin; Flueraru, Costel
2007-06-01
Traditional biometric technologies used for security and person identification essentially deal with fingerprints, hand geometry and face images. However, because all these technologies use external features of human body, they can be easily fooled and tampered with by distorting, modifying or counterfeiting these features. Nowadays, internal biometrics which detects the internal ID features of an object is becoming increasingly important. Being capable of exploring under-skin structure, optical coherence tomography (OCT) system can be used as a powerful tool for internal biometrics. We have applied fiber-optic and full-field OCT systems to detect the multiple-layer 2D images and 3D profile of the fingerprints, which eventually result in a higher discrimination than the traditional 2D recognition methods. More importantly, the OCT based fingerprint recognition has the ability to easily distinguish artificial fingerprint dummies by analyzing the extracted layered surfaces. Experiments show that our OCT systems successfully detected the dummy, which was made of plasticene and was used to bypass the commercially available fingerprint scanning system with a false accept rate (FAR) of 100%.
Anazawa, Takashi; Uchiho, Yuichi; Yokoi, Takahide; Chalkidis, George; Yamazaki, Motohiro
2017-06-27
A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.
Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M
2015-04-01
We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.
GOES-16 Geostationary Lightning Mapper Comparison with the Earth Networks Total Lightning Network
NASA Astrophysics Data System (ADS)
Lapierre, J. L.; Stock, M.; Zhu, Y.
2017-12-01
Lightning location systems have shown to be an integral part of weather research and forecasting. The launch of the GOES-16 Geostationary Lightning Mapper (GLM) will provide a new tool to help improve lightning detection throughout the Americas and ocean regions. However, before this data can be effectively used, there must be a thorough analysis of its performance to validate the data it produces. Here, we compare GLM data to data from the Earth Networks Total Lightning Network (ENTLN). We analyze data during the months of May and June of 2017 to determine the detection efficiency of each system. A successful match occurs when two flashes overlap in time and are less than 0.2 degrees apart. Of the flashes detected by ENTLN, GLM detects about 50% overall. The highest DEs for GLM are over the ocean and South America, and lowest are in Central America and the Northeastern and Western parts of the U.S. Of the flashes detected by GLM, ENTLN detected over 80% in the Central and Eastern parts of the U.S. and 10-20% in Central and South America. Finally, we determined all the unique flashes detected by both systems and determined the DE of both systems from this unique flash dataset. We find that GLM does very well in South America, over the tropical islands in the Caribbean Sea as well as Northern U.S. It detects above 50% of the unique flashes over Central and off the Eastern Coast of the U.S. as well as in Mexico. GLM detects less than 50% of the unique flashes over Florida, the Mid-Atlantic, Mid-West, and Southwestern U.S., areas where ENTLN is expected to perform well.
A ZigBee-Based Location-Aware Fall Detection System for Improving Elderly Telecare
Huang, Chih-Ning; Chan, Chia-Tai
2014-01-01
Falls are the primary cause of accidents among the elderly and frequently cause fatal and non-fatal injuries associated with a large amount of medical costs. Fall detection using wearable wireless sensor nodes has the potential of improving elderly telecare. This investigation proposes a ZigBee-based location-aware fall detection system for elderly telecare that provides an unobstructed communication between the elderly and caregivers when falls happen. The system is based on ZigBee-based sensor networks, and the sensor node consists of a motherboard with a tri-axial accelerometer and a ZigBee module. A wireless sensor node worn on the waist continuously detects fall events and starts an indoor positioning engine as soon as a fall happens. In the fall detection scheme, this study proposes a three-phase threshold-based fall detection algorithm to detect critical and normal falls. The fall alarm can be canceled by pressing and holding the emergency fall button only when a normal fall is detected. On the other hand, there are three phases in the indoor positioning engine: path loss survey phase, Received Signal Strength Indicator (RSSI) collection phase and location calculation phase. Finally, the location of the faller will be calculated by a k-nearest neighbor algorithm with weighted RSSI. The experimental results demonstrate that the fall detection algorithm achieves 95.63% sensitivity, 73.5% specificity, 88.62% accuracy and 88.6% precision. Furthermore, the average error distance for indoor positioning is 1.15 ± 0.54 m. The proposed system successfully delivers critical information to remote telecare providers who can then immediately help a fallen person. PMID:24743841
Kubota, M; Sakakihara, Y; Uchiyama, Y; Nara, A; Nagata, T; Nitta, H; Ishimoto, K; Oka, A; Horio, K; Yanagisawa, M
2000-01-01
A non-contact communication system was developed for a ventilator-assisted patient with Werdnig-Hoffmann disease who had lost all voluntary movements except for those of the eye. The system detects the extraocular movements and converts them to either a 'yes' signal (produced by one lateral eyeball movement) or a 'no' signal (produced by two successive lateral eyeball movements) using a video camera placed outside the patient's visual field. The patient is thus able to concentrate on performing a task without any intrusion from the detection system. Once the setting conditions of the device have been selected, there is no need for any resetting, as the patient is unable to move his body. In addition to playing television games, the child can use the device to select television channels, compose music, and learn written Japanese and Chinese characters. This seems to broaden the patient's daily world and promote mental development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oakley, P. H. H.; Cash, W.
2009-08-01
The orbital light curve of a terrestrial exoplanet will likely contain valuable information about the surface and atmospheric features of the planet, both in its overall shape and hourly variations. We have constructed an empirically based code capable of simulating observations of the Earth from any orientation, at any time of year with continuously updated cloud and snow coverage with a New Worlds Observatory. By simulating these observations over a full orbital revolution at a distance of 10 pc we determine that the detection of an obliquity or seasonal terrain change is possible at low inclinations. In agreement with othermore » studies, a 4 m New Worlds Observer can accurately determine the rotation rate of the planet at a success rate from {approx}30% to 80% with only 5 days of observations depending on the signal to noise of the observations. We also attempt simple inversions of these diurnal light curves to sketch a map of the reflecting planet's surface features. This mapping technique is only successful with highly favorable systems and in particular requires that the cloud coverage must be lower than the Earth's average. Our test case of a 2 M {sub +} planet at 7 pc distance with low exo-zodiacal light and 25% cloud coverage produced crude, but successful results. Additionally, with these highly favorable systems NWO may be able to discern the presence of liquid surface water (or other smooth surfaces) though it requires a complex detection available only at crescent phases in high inclination systems.« less
Detection of Terrestrial Planets Using Transit Photometry
NASA Technical Reports Server (NTRS)
Koch, David; Witteborn, Fred; Jenkins, Jon; Dunham, Edward; Boruci, William; DeVincenzi, Donald (Technical Monitor)
2001-01-01
Transit photometry detection of planets offers many advantages: an ability to detect terrestrial size planets, direct determination of the planet's size, applicability to all main-sequence stars, and a differential brightness change of the periodic signature being independent of stellar distance or planetary orbital semi-major axis. Ground and space based photometry have already been successful in detecting transits of the giant planet HD209458b. However, photometry 100 times better is required to detect terrestrial planets. We present results of laboratory measurements of an end-to-end photometric system incorporating all of the important confounding noise features of both the sky and a space based photometer including spacecraft jitter. In addition to demonstrating an instrumental noise of less than 10 ppm (an Earth transit of a solar-like star is 80 ppm), the brightnesses of individual stars were dimmed to simulate Earth-size transit signals. These 'transits' were reliably detected as part of the tests.
Soft-Fault Detection Technologies Developed for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.
2004-01-01
The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
Motion-compensated detection of heart rate based on the time registration adaptive filter
NASA Astrophysics Data System (ADS)
Yang, Lei; Zhou, Jinsong; Jing, Juanjuan; Li, Yacan; Wei, Lidong; Feng, Lei; He, Xiaoying; Bu, Meixia; Fu, Xilu
2018-01-01
A non-contact heart rate detection method based on the dual-wavelength technique is proposed and demonstrated experimentally. The heart rate is obtained based on the PhotoPlethysmoGraphy (PPG). Each detection module uses the reflection detection probe which is composed of the LED and the photodiode. It is a well-known fact that the differences in the circuits of two detection modules result in different responses of two modules for motion artifacts. It will cause a time delay between the two signals. This poses a great challenge to compensate the motion artifacts during measurements. In order to solve this problem, we have firstly used the time registration and translated the signals to ensure that the two signals are consistent in time domain. Then the adaptive filter is used to compensate the motion artifacts. Moreover, the data obtained by using this non-contact detection system is compared with those of the conventional finger blood volume pulse (BVP) sensor by simultaneously measuring the heart rate of the subject. During the experiment, the left hand remains stationary and is detected by a conventional finger BVP sensor. Meanwhile, the moving palm of right hand is detected by the proposed system. The data obtained from the proposed non-contact system are consistent and comparable with that of the BVP sensor. This method can effectively suppress the interference caused by the two circuit differences and successfully compensate the motion artifacts. This technology can be used in medical and daily heart rate measurement.
Fusion of 3D laser scanner and depth images for obstacle recognition in mobile applications
NASA Astrophysics Data System (ADS)
Budzan, Sebastian; Kasprzyk, Jerzy
2016-02-01
The problem of obstacle detection and recognition or, generally, scene mapping is one of the most investigated problems in computer vision, especially in mobile applications. In this paper a fused optical system using depth information with color images gathered from the Microsoft Kinect sensor and 3D laser range scanner data is proposed for obstacle detection and ground estimation in real-time mobile systems. The algorithm consists of feature extraction in the laser range images, processing of the depth information from the Kinect sensor, fusion of the sensor information, and classification of the data into two separate categories: road and obstacle. Exemplary results are presented and it is shown that fusion of information gathered from different sources increases the effectiveness of the obstacle detection in different scenarios, and it can be used successfully for road surface mapping.
Vision based object pose estimation for mobile robots
NASA Technical Reports Server (NTRS)
Wu, Annie; Bidlack, Clint; Katkere, Arun; Feague, Roy; Weymouth, Terry
1994-01-01
Mobile robot navigation using visual sensors requires that a robot be able to detect landmarks and obtain pose information from a camera image. This paper presents a vision system for finding man-made markers of known size and calculating the pose of these markers. The algorithm detects and identifies the markers using a weighted pattern matching template. Geometric constraints are then used to calculate the position of the markers relative to the robot. The selection of geometric constraints comes from the typical pose of most man-made signs, such as the sign standing vertical and the dimensions of known size. This system has been tested successfully on a wide range of real images. Marker detection is reliable, even in cluttered environments, and under certain marker orientations, estimation of the orientation has proven accurate to within 2 degrees, and distance estimation to within 0.3 meters.
A short-orbit spectrometer for low-energy pion detection in electroproduction experiments at MAMI
NASA Astrophysics Data System (ADS)
Baumann, D.; Ding, M.; Friščić, I.; Böhm, R.; Bosnar, D.; Distler, M. O.; Merkel, H.; Müller, U.; Walcher, Th.; Wendel, M.
2017-12-01
A new Short-Orbit Spectrometer (SOS) has been constructed and installed within the experimental facility of the A1 collaboration at Mainz Microtron (MAMI), with the goal to detect low-energy pions. It is equipped with a Browne-Buechner magnet and a detector system consisting of two helium-ethane based drift chambers and a scintillator telescope made of five layers. The detector system allows detection of pions in the momentum range of 50-147 MeV/c, which corresponds to 8.7-63 MeV kinetic energy. The spectrometer can be placed at a distance range of 54-66 cm from the target center. Two collimators are available for the measurements, one having 1.8 msr aperture and the other having 7 msr aperture. The Short-Orbit Spectrometer has been successfully calibrated and used in coincidence measurements together with the standard magnetic spectrometers of the A1 collaboration.
NASA Astrophysics Data System (ADS)
Yu, Fei; Wu, Yongjun; Yu, Songcheng; Zhang, Huili; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B.
With alkaline phosphatase (ALP)-adamantane (AMPPD) system as the chemiluminescence (CL) detection system, a highly sensitive, specific and simple competitive chemiluminescence enzyme immunoassay (CLEIA) was developed for the measurement of enrofloxacin (ENR). The physicochemical parameters, such as the chemiluminescent assay mediums, the dilution buffer of ENR-McAb, the volume of dilution buffer, the monoclonal antibody concentration, the incubation time, and other relevant variables of the immunoassay have been optimized. Under the optimal conditions, the detection linear range of 350-1000 pg/mL and the detection limit of 0.24 ng/mL were provided by the proposed method. The relative standard deviations were less than 15% for both intra and inter-assay precision. This method has been successfully applied to determine ENR in spiked samples with the recovery of 103%-96%. It showed that CLEIA was a good potential method in the analysis of residues of veterinary drugs after treatment of related diseases.
Kishimoto, M; Yoshida, T; Hayasaka, T; Mori, D; Imai, Y; Matsuki, N; Ishikawa, T; Yamaguchi, T
2009-01-01
An effective way for preventing injuries and diseases among the elderly is to monitor their daily lives. In this regard, we propose the use of a "Hyper Hospital Network", which is an information support system for elderly people and patients. In the current study, we developed a wearable system for monitoring electromyography (EMG) and acceleration using the Hyper Hospital Network plan. The current system is an upgraded version of our previous system for gait analysis (Yoshida et al. [13], Telemedicine and e-Health 13 703-714), and lets us monitor decreases in exercise and the presence of a hemiplegic gait more accurately. To clarify the capabilities and reliability of the system, we performed three experimental evaluations: one to verify the performance of the wearable system, a second to detect a hemiplegic gait, and a third to monitor EMG and accelerations simultaneously. Our system successfully detected a lack of exercise by monitoring the iEMG in healthy volunteers. Moreover, by using EMG and acceleration signals simultaneously, the reliability of the Hampering Index (HI) for detecting hemiplegia walking was improved significantly. The present study provides useful knowledge for the development of a wearable computer designed to monitor the physical conditions of older persons and patients.
Frequency-scanning MALDI linear ion trap mass spectrometer for large biomolecular ion detection.
Lu, I-Chung; Lin, Jung Lee; Lai, Szu-Hsueh; Chen, Chung-Hsuan
2011-11-01
This study presents the first report on the development of a matrix-assisted laser desorption ionization (MALDI) linear ion trap mass spectrometer for large biomolecular ion detection by frequency scan. We designed, installed, and tested this radio frequency (RF) scan linear ion trap mass spectrometer and its associated electronics to dramatically extend the mass region to be detected. The RF circuit can be adjusted from 300 to 10 kHz with a set of operation amplifiers. To trap the ions produced by MALDI, a high pressure of helium buffer gas was employed to quench extra kinetic energy of the heavy ions produced by MALDI. The successful detection of the singly charged secretory immunoglobulin A ions indicates that the detectable mass-to-charge ratio (m/z) of this system can reach ~385 000 or beyond.
NASA Astrophysics Data System (ADS)
El-Saba, A. M.; Alam, M. S.; Surpanani, A.
2006-05-01
Important aspects of automatic pattern recognition systems are their ability to efficiently discriminate and detect proper targets with low false alarms. In this paper we extend the applications of passive imaging polarimetry to effectively discriminate and detect different color targets of identical shapes using color-blind imaging sensor. For this case of study we demonstrate that traditional color-blind polarization-insensitive imaging sensors that rely only on the spatial distribution of targets suffer from high false detection rates, especially in scenarios where multiple identical shape targets are present. On the other hand we show that color-blind polarization-sensitive imaging sensors can successfully and efficiently discriminate and detect true targets based on their color only. We highlight the main advantages of using our proposed polarization-encoded imaging sensor.
[Micron]ADS-B Detect and Avoid Flight Tests on Phantom 4 Unmanned Aircraft System
NASA Technical Reports Server (NTRS)
Arteaga, Ricardo; Dandachy, Mike; Truong, Hong; Aruljothi, Arun; Vedantam, Mihir; Epperson, Kraettli; McCartney, Reed
2018-01-01
Researchers at the National Aeronautics and Space Administration Armstrong Flight Research Center in Edwards, California and Vigilant Aerospace Systems collaborated for the flight-test demonstration of an Automatic Dependent Surveillance-Broadcast based collision avoidance technology on a small unmanned aircraft system equipped with the uAvionix Automatic Dependent Surveillance-Broadcast transponder. The purpose of the testing was to demonstrate that National Aeronautics and Space Administration / Vigilant software and algorithms, commercialized as the FlightHorizon UAS"TM", are compatible with uAvionix hardware systems and the DJI Phantom 4 small unmanned aircraft system. The testing and demonstrations were necessary for both parties to further develop and certify the technology in three key areas: flights beyond visual line of sight, collision avoidance, and autonomous operations. The National Aeronautics and Space Administration and Vigilant Aerospace Systems have developed and successfully flight-tested an Automatic Dependent Surveillance-Broadcast Detect and Avoid system on the Phantom 4 small unmanned aircraft system. The Automatic Dependent Surveillance-Broadcast Detect and Avoid system architecture is especially suited for small unmanned aircraft systems because it integrates: 1) miniaturized Automatic Dependent Surveillance-Broadcast hardware; 2) radio data-link communications; 3) software algorithms for real-time Automatic Dependent Surveillance-Broadcast data integration, conflict detection, and alerting; and 4) a synthetic vision display using a fully-integrated National Aeronautics and Space Administration geobrowser for three dimensional graphical representations for ownship and air traffic situational awareness. The flight-test objectives were to evaluate the performance of Automatic Dependent Surveillance-Broadcast Detect and Avoid collision avoidance technology as installed on two small unmanned aircraft systems. In December 2016, four flight tests were conducted at Edwards Air Force Base. Researchers in the ground control station looking at displays were able to verify the Automatic Dependent Surveillance-Broadcast target detection and collision avoidance resolutions.
Effects of Disinfection on Legionella spp., Eukarya, and Biofilms in a Hot Water System
Moletta-Denat, Marina; Frère, Jacques; Onillon, Séverine; Trouilhé, Marie-Cécile; Robine, Enric
2012-01-01
Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms. PMID:22820326
Detecting terrorist nuclear weapons at sea: The 10th door problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaughter, D R
2008-09-15
While screening commercial cargo containers for the possible presence of WMD is important and necessary smugglers have successfully exploited the many other vehicles transporting cargo into the US including medium and small vessels at sea. These vessels provide a venue that is currently not screened and widely used. Physics limits that make screening of large vessels prohibitive impractical do not prohibit effective screening of the smaller vessels. While passive radiation detection is probably ineffective at sea active interrogation may provide a successful approach. The physics limits of active interrogation of ships at sea from standoff platforms are discussed. Autonomous platformsmore » that could carry interrogation systems at sea, both airborne and submersible, are summarized and their utilization discussed. An R&D program to investigate the limits of this approach to screening ships at sea is indicated and limitations estimated.« less
Towards General Models of Effective Science Inquiry in Virtual Performance Assessments
ERIC Educational Resources Information Center
Baker, R. S.; Clarke-Midura, J.; Ocumpaugh, J.
2016-01-01
Recent interest in online assessment of scientific inquiry has led to several new online systems that attempt to assess these skills, but producing models that detect when students are successfully practising these skills can be challenging. In this paper, we study models that assess student inquiry in an immersive virtual environment, where a…
Imaging free zinc levels in vivo - what can be learned?
De Leon-Rodriguez, Luis; Lubag, Angelo Josue M; Sherry, A Dean
2012-12-01
Our ever-expanding knowledge about the role of zinc in biology includes its role in redox modulation, immune response, neurotransmission, reproduction, diabetes, cancer, and Alzheimers disease is galvanizing interest in detecting and monitoring the various forms of Zn(II) in biological systems. This paper reviews reported strategies for detecting and tracking of labile or "free" unchelated Zn(II) in tissues. While different bound structural forms of Zn(II) have been identified and studied in vitro by multiple techniques, very few molecular imaging methods have successfully tracked the ion in vivo. A number of MRI and optical strategies have now been reported for detection of free Zn(II) in cells and tissues but only a few have been applied successfully in vivo. A recent report of a MRI sensor for in vivo tracking of Zn(II) released from pancreatic β-cells during insulin secretion exemplifies the promise of rational design of new Zn(II) sensors for tracking this biologically important ion in vivo. Such studies promise to provide new insights into zinc trafficking in vivo and the critical role of this ion in many human diseases.
A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems
NASA Technical Reports Server (NTRS)
Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon
2009-01-01
Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.
Diagnostic tool for early detection of ovarian cancers using Raman spectroscopy
NASA Astrophysics Data System (ADS)
Lieber, Chad A.; Molpus, Kelly; Brader, Kevin; Mahadevan-Jansen, Anita
2000-05-01
With an overall survival rate of about 35 percent, ovarian cancer claims more than 13,000 women in the US each year. It is estimated that roughly 1 in 70 women will develop ovarian cancer. Current screening techniques are challenged due to cost-effectiveness, variable false-positive results, and the asymptomatic nature of the early stages of ovarian cancer. The predominant screening method for ovarian cancers is transvaginal sonography (TVS). TVS is fairly accomplished at ovarian cancer detection, however it is inefficient in distinguishing between benign and malignant masses. Accurate diagnosis of the ovarian tumor relies on exploratory laparotomy, thus increasing the cost and hazard of false- positive screening methods. Raman spectroscopy has been sued successfully as a diagnostic tool in several organ systems in vitro. These studies have shown that Raman spectroscopy can be used to provide diagnosis of subtle changes in tissue pathology with high accuracy. Based on this success, we have developed a Raman spectroscopic system for application in the ovary. Using this system, the Raman signatures of normal and various types of non-normal human ovarian tissues were characterized in vitro. Raman spectra are being analyzed, and empirical as well as multivariate discriminatory algorithms developed. Based on the result of this study, a strategy for in vivo trials will be planned.
Wang, Yudan; Wen, Guojun; Chen, Han
2017-04-27
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.
Wang, Yudan; Wen, Guojun; Chen, Han
2017-01-01
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445
Yang, Xiupei; Qian, Fan; Xie, Linxiang; Yang, Xiaocui; Cheng, Xiumei; Choi, Martin M F
2014-03-01
This paper proposes a novel strategy to enhance detection of doxorubicin in human plasma, using homemade CE combined with normal stacking mode (NSM). The detection system of CE named as in-column tapered optic-fiber light-emitting diode induced fluorescence detection system is economic and more sensitive that has been demonstrated in our previous work. The influence of sample matrix, BGE, applied voltage, and injection time on the efficiency of NSM were systematically investigated. The clean extracts were subjected to CE separation with optimal experimental conditions: Ethanol-water (1:1, v/v) was used as sample matrix, pH 4.12 15 mM sodium phosphate buffer solution containing 70% v/v ACN, applied voltage 23 kV and 45 s hydrodynamic injection at a height of 20 cm. The detection system displayed linear dynamic range from 6.4 to 1.13 × 10(3) ng/mL with a correlation coefficient of 0.9990 and LOD 2.2 ng/mL for doxorubicin (DOX). The proposed CE method has been successfully applied to determine DOX in human plasma which the recoveries of standard DOX added to human plasma were found to been the range of 93.8-104.6%. The results obtained demonstrate that our detection system combined with NSM is a good idea to enhance sensitivity in CE for routine determination of DOX in some biological specimens. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed Health Monitoring System for Reusable Liquid Rocket Engines
NASA Technical Reports Server (NTRS)
Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.
2009-01-01
The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.
Critical fault patterns determination in fault-tolerant computer systems
NASA Technical Reports Server (NTRS)
Mccluskey, E. J.; Losq, J.
1978-01-01
The method proposed tries to enumerate all the critical fault-patterns (successive occurrences of failures) without analyzing every single possible fault. The conditions for the system to be operating in a given mode can be expressed in terms of the static states. Thus, one can find all the system states that correspond to a given critical mode of operation. The next step consists in analyzing the fault-detection mechanisms, the diagnosis algorithm and the process of switch control. From them, one can find all the possible system configurations that can result from a failure occurrence. Thus, one can list all the characteristics, with respect to detection, diagnosis, and switch control, that failures must have to constitute critical fault-patterns. Such an enumeration of the critical fault-patterns can be directly used to evaluate the overall system tolerance to failures. Present research is focused on how to efficiently make use of these system-level characteristics to enumerate all the failures that verify these characteristics.
Neural Network Target Identification System for False Alarm Reduction
NASA Technical Reports Server (NTRS)
Ye, David; Edens, Weston; Lu, Thomas T.; Chao, Tien-Hsin
2009-01-01
A multi-stage automated target recognition (ATR) system has been designed to perform computer vision tasks with adequate proficiency in mimicking human vision. The system is able to detect, identify, and track targets of interest. Potential regions of interest (ROIs) are first identified by the detection stage using an Optimum Trade-off Maximum Average Correlation Height (OT-MACH) filter combined with a wavelet transform. False positives are then eliminated by the verification stage using feature extraction methods in conjunction with neural networks. Feature extraction transforms the ROIs using filtering and binning algorithms to create feature vectors. A feed forward back propagation neural network (NN) is then trained to classify each feature vector and remove false positives. This paper discusses the test of the system performance and parameter optimizations process which adapts the system to various targets and datasets. The test results show that the system was successful in substantially reducing the false positive rate when tested on a sonar image dataset.
Microprocessor implementation of an FFT for ionospheric VLF observations
NASA Technical Reports Server (NTRS)
Elvidge, J.; Kintner, P.; Holzworth, R.
1984-01-01
A fast Fourier transform algorithm is implemented on a CMOS microprocessor for application to very low-frequency electric fields (less than 10 kHz) sensed on high-altitude scientific balloons. Two FFT's are calculated simultaneously by associating them with conjugate symmetric and conjugate antisymmetric results. One goal of the system was to detect spectral signatures associated with fast time variations present in natural signals such as whistlers and chorus. Although a full evaluation of the system was not possible for operational reasons, a measure of the system's success has been defined and evaluated.
Detection of abnormal item based on time intervals for recommender systems.
Gao, Min; Yuan, Quan; Ling, Bin; Xiong, Qingyu
2014-01-01
With the rapid development of e-business, personalized recommendation has become core competence for enterprises to gain profits and improve customer satisfaction. Although collaborative filtering is the most successful approach for building a recommender system, it suffers from "shilling" attacks. In recent years, the research on shilling attacks has been greatly improved. However, the approaches suffer from serious problem in attack model dependency and high computational cost. To solve the problem, an approach for the detection of abnormal item is proposed in this paper. In the paper, two common features of all attack models are analyzed at first. A revised bottom-up discretized approach is then proposed based on time intervals and the features for the detection. The distributions of ratings in different time intervals are compared to detect anomaly based on the calculation of chi square distribution (χ(2)). We evaluated our approach on four types of items which are defined according to the life cycles of these items. The experimental results show that the proposed approach achieves a high detection rate with low computational cost when the number of attack profiles is more than 15. It improves the efficiency in shilling attacks detection by narrowing down the suspicious users.
Detection limits of intraoperative near infrared imaging for tumor resection.
Thurber, Greg M; Figueiredo, Jose-Luiz; Weissleder, Ralph
2010-12-01
The application of fluorescent molecular imaging to surgical oncology is a developing field with the potential to reduce morbidity and mortality. However, the detection thresholds and other requirements for successful intervention remain poorly understood. Here we modeled and experimentally validated depth and size of detection of tumor deposits, trade-offs in coverage and resolution of areas of interest, and required pharmacokinetics of probes based on differing levels of tumor target presentation. Three orthotopic tumor models were imaged by widefield epifluorescence and confocal microscopes, and the experimental results were compared with pharmacokinetic models and light scattering simulations to determine detection thresholds. Widefield epifluorescence imaging can provide sufficient contrast to visualize tumor margins and detect tumor deposits 3-5 mm deep based on labeled monoclonal antibodies at low objective magnification. At higher magnification, surface tumor deposits at cellular resolution are detectable at TBR ratios achieved with highly expressed antigens. A widefield illumination system with the capability for macroscopic surveying and microscopic imaging provides the greatest utility for varying surgical goals. These results have implications for system and agent designs, which ultimately should aid complete resection in most surgical beds and provide real-time feedback to obtain clean margins. © 2010 Wiley-Liss, Inc.
Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang
2016-03-01
The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Explosives (and other threats) detection using pulsed neutron interrogation and optimized detectors
NASA Astrophysics Data System (ADS)
Strellis, Dan A.; Elsalim, Mashal; Gozani, Tsahi
2011-06-01
We have previously reported results from a human-portable system using neutron interrogation to detect contraband and explosives. We summarized our methodology for distinguishing threat materials such as narcotics, C4, and mustard gas in the myriad of backgrounds present in the maritime environment. We are expanding our mission for the Domestic Nuclear Detection Office (DNDO) to detect Special Nuclear Material (SNM) through the detection of multiple fission signatures without compromising the conventional threat detection performance. This paper covers our initial investigations into using neutrons from compact pulsed neutron generators via the d(D,n)3He or d(T,n)α reactions with energies of ~2.5 and 14 MeV, respectively, for explosives (and other threats) detection along with a variety of gamma-ray detectors. Fast neutrons and thermal neutrons (after successive collisions) can stimulate the emission of various threat detection signatures. For explosives detection, element-specific gamma-ray signatures via the (n,n'γ) inelastic scattering reaction and the (n,'γ) thermal capture reaction are detected. For SNM, delayed gamma-rays following fission can be measured with the same detector. Our initial trade-off investigations of several gamma-ray detectors types (NaI, CsI, LaBr3, HPGe) for measuring gamma-ray signatures in a pulsed neutron environment for potential application in a human-portable active interrogation system are covered in this paper.
NASA Astrophysics Data System (ADS)
Parker, T.; Farhadiroushan, M.; Clarke, A.; Miller, D.; Gillies, A.; Shatalin, S.; Naldrett, G.; Milne, C.
2016-12-01
The benefits of Distributed Acoustic Sensors (DAS) have been demonstrated in number of seismic applications. Over the past few years Silixa have successfully used DAS to record microseismic events during hydraulic fracturing and re-fracking operations. Detection has been successful in a number of configurations, where the fibre has been in a horizontal treatment well, horizontal well adjacent to the treatment, or vertical observation well. We will discuss the sensitivity of the measurement, range of measurement, ability to localise the events and characteristics of the microseismic event. In addition to discussing the theory we will present case studies showing the detection and localisation and how these compare to conventional microseismic detection techniques.We also discuss the benefit of the low frequency response of DAS for measuring the strain field induced along the sensing fibre cable during the treatment and while monitoring the adjacent wells. In addition a step change in performance can be offered by the new engineered Carina fibre optic sensing system developed by Silixa. The Carina sensing system is being tested and it has been demonstrated that an improvement in signal-to-noise performance by a factor of hundred (100x) can be achieved. The initial results demonstrate the potential for acquiring high definition seismic data in the most challenging environments beyond the capabilities of current geophones.
NASA Astrophysics Data System (ADS)
Parker, T.; Farhadiroushan, M.; Clarke, A.; Miller, D.; Gillies, A.; Shatalin, S.; Naldrett, G.; Milne, C.
2017-12-01
The benefits of Distributed Acoustic Sensors (DAS) have been demonstrated in number of seismic applications. Over the past few years Silixa have successfully used DAS to record microseismic events during hydraulic fracturing and re-fracking operations. Detection has been successful in a number of configurations, where the fibre has been in a horizontal treatment well, horizontal well adjacent to the treatment, or vertical observation well. We will discuss the sensitivity of the measurement, range of measurement, ability to localise the events and characteristics of the microseismic event. In addition to discussing the theory we will present case studies showing the detection and localisation and how these compare to conventional microseismic detection techniques.We also discuss the benefit of the low frequency response of DAS for measuring the strain field induced along the sensing fibre cable during the treatment and while monitoring the adjacent wells. In addition a step change in performance can be offered by the new engineered Carina fibre optic sensing system developed by Silixa. The Carina sensing system is being tested and it has been demonstrated that an improvement in signal-to-noise performance by a factor of hundred (100x) can be achieved. The initial results demonstrate the potential for acquiring high definition seismic data in the most challenging environments beyond the capabilities of current geophones.
Control system of hexacopter using color histogram footprint and convolutional neural network
NASA Astrophysics Data System (ADS)
Ruliputra, R. N.; Darma, S.
2017-07-01
The development of unmanned aerial vehicles (UAV) has been growing rapidly in recent years. The use of logic thinking which is implemented into the program algorithms is needed to make a smart system. By using visual input from a camera, UAV is able to fly autonomously by detecting a target. However, some weaknesses arose as usage in the outdoor environment might change the target's color intensity. Color histogram footprint overcomes the problem because it divides color intensity into separate bins that make the detection tolerant to the slight change of color intensity. Template matching compare its detection result with a template of the reference image to determine the target position and use it to position the vehicle in the middle of the target with visual feedback control based on Proportional-Integral-Derivative (PID) controller. Color histogram footprint method localizes the target by calculating the back projection of its histogram. It has an average success rate of 77 % from a distance of 1 meter. It can position itself in the middle of the target by using visual feedback control with an average positioning time of 73 seconds. After the hexacopter is in the middle of the target, Convolutional Neural Networks (CNN) classifies a number contained in the target image to determine a task depending on the classified number, either landing, yawing, or return to launch. The recognition result shows an optimum success rate of 99.2 %.
An overload behavior detection system for engineering transport vehicles based on deep learning
NASA Astrophysics Data System (ADS)
Zhou, Libo; Wu, Gang
2018-04-01
This paper builds an overloaded truck detect system called ITMD to help traffic department automatically identify the engineering transport vehicles (commonly known as `dirt truck') in CCTV and determine whether the truck is overloaded or not. We build the ITMD system based on the Single Shot MultiBox Detector (SSD) model. By constructing the image dataset of the truck and adjusting hyper-parameters of the original SSD neural network, we successfully trained a basic network model which the ITMD system depends on. The basic ITMD system achieves 83.01% mAP on classifying overload/non-overload truck, which is a not bad result. Still, some shortcomings of basic ITMD system have been targeted to enhance: it is easy for the ITMD system to misclassify other similar vehicle as truck. In response to this problem, we optimized the basic ITMD system, which effectively reduced basic model's false recognition rate. The optimized ITMD system achieved 86.18% mAP on the test set, which is better than the 83.01% mAP of the basic ITMD system.
Deep Neural Network Detects Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki
2018-03-01
We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.
Matsunag, Daichi; Izumi, Shintaro; Okuno, Keisuke; Kawaguchi, Hiroshi; Yoshimoto, Masahiko
2015-01-01
This paper describes a non-contact and noise-tolerant heart beat monitoring system. The proposed system comprises a microwave Doppler sensor and range imagery using Microsoft Kinect™. The possible application of the proposed system is a driver health monitoring. We introduce the sensor fusion approach to minimize the heart beat detection error. The proposed algorithm can subtract a body motion artifact from Doppler sensor output using time-frequency analysis. The body motion artifact is a crucially important problem for biosignal monitoring using microwave Doppler sensor. The body motion speed is obtainable from range imagery, which has 5-mm resolution at 30-cm distance. Measurement results show that the success rate of the heart beat detection is improved about 75% on average when the Doppler wave is degraded by the body motion artifact.
Li, R; Li, C T; Zhao, S M; Li, H X; Li, L; Wu, R G; Zhang, C C; Sun, H Y
2017-04-01
To establish a query table of IBS critical value and identification power for the detection systems with different numbers of STR loci under different false judgment standards. Samples of 267 pairs of full siblings and 360 pairs of unrelated individuals were collected and 19 autosomal STR loci were genotyped by Golden e ye™ 20A system. The full siblings were determined using IBS scoring method according to the 'Regulation for biological full sibling testing'. The critical values and identification power for the detection systems with different numbers of STR loci under different false judgment standards were calculated by theoretical methods. According to the formal IBS scoring criteria, the identification power of full siblings and unrelated individuals was 0.764 0 and the rate of false judgment was 0. The results of theoretical calculation were consistent with that of sample observation. The query table of IBS critical value for identification of full sibling detection systems with different numbers of STR loci was successfully established. The IBS scoring method defined by the regulation has high detection efficiency and low false judgment rate, which provides a relatively conservative result. The query table of IBS critical value for identification of full sibling detection systems with different numbers of STR loci provides an important reference data for the result judgment of full sibling testing and owns a considerable practical value. Copyright© by the Editorial Department of Journal of Forensic Medicine
Kohl, Felix J; Montealegre, Cristina; Neusüß, Christian
2016-04-01
CE is becoming more and more important in many fields of bioanalytical chemistry. Besides optical detection, hyphenation to ESI-MS detection is increasingly applied for sensitive identification purposes. Unfortunately, many CE techniques and methods established in research and industry are not compatible to ESI-MS since essential components of the background electrolyte interfere in ES ionization. In order to identify unknown peaks in established CE methods, here, a heart-cut 2D-CE separation system is introduced using a fully isolated mechanical valve with an internal loop of only 20 nL. In this system, the sample is separated using potentially any non-ESI compatible method in the first separation dimension. Subsequently, the portion of interest is cut by the internal sample loop of the valve and reintroduced to the second dimension where the interfering compounds are removed, followed by ESI-MS detection. When comparing the separation efficiency of the system with the valve to a system using a continuous capillary only a slight increase in peak width is observed. Ultraviolet/visible detection is integrated in the first dimension for switching time determination, enabling reproducible cutting of peaks of interest. The feasibility of the system is successfully demonstrated by a 2D analysis of a BSA tryptic digest sample using a nonvolatile (phosphate based) background electrolyte in the first dimension. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bienzymatic Biosensor for Rapid Detection of Aspartame by Flow Injection Analysis
Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian
2014-01-01
A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h−1 with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 μM for methanol and 0.2 μM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement. PMID:24412899
Bienzymatic biosensor for rapid detection of aspartame by flow injection analysis.
Radulescu, Maria-Cristina; Bucur, Bogdan; Bucur, Madalina-Petruta; Radu, Gabriel Lucian
2014-01-09
A rapid, simple and stable biosensor for aspartame detection was developed. Alcohol oxidase (AOX), carboxyl esterase (CaE) and bovine serum albumin (BSA) were immobilised with glutaraldehyde (GA) onto screen-printed electrodes modified with cobalt-phthalocyanine (CoPC). The biosensor response was fast. The sample throughput using a flow injection analysis (FIA) system was 40 h⁻¹ with an RSD of 2.7%. The detection limits for both batch and FIA measurements were 0.1 µM for methanol and 0.2 µM for aspartame, respectively. The enzymatic biosensor was successfully applied for aspartame determination in different sample matrices/commercial products (liquid and solid samples) without any pre-treatment step prior to measurement.
NASA Astrophysics Data System (ADS)
Yang, Yutao; Zhou, Tingting; Bai, Bozan; Yin, Caixia; Xu, Wenzhi; Li, Wei
2018-05-01
Two mitochondria-targeted colorimetric and ratiometric fluorescent probes for SO2 derivatives were constructed based on the SO2 derivatives-triggered Michael addition reaction. The probes exhibit high specificity toward HSO3-/SO32- by interrupting their conjugation system resulting in a large ratiometric blue shift of 46-121 nm in their emission spectrum. The two well-resolved emission bands can ensure accurate detection of HSO3-. The detection limits were calculated to be 1.09 and 1.35 μM. Importantly, probe 1 and probe 2 were successfully used to fluorescence ratiometric imaging of endogenous HSO3- in BT-474 cells.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser
NASA Astrophysics Data System (ADS)
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm-1. Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N2O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
NASA Astrophysics Data System (ADS)
Fan, Wenhui; Li, Qing; Hu, Liang; Yan, Siqi; Wen, Wanxin; Chai, Zhifang; Liu, Hanzhou
2017-01-01
To simply and multitudinously synthesize hollow microspheres in a pure system is important for relevant research and application. Here, a simple and novel one-pot synthetic strategy to prepare polystyrene (PS) hollow microspheres via irradiation-assisted free-radical polymerizing and self-assembly (IFPS) approach under γ-ray irradiation with no additives introduced into the system is presented. And PS/2,5-Diphenyloxazole (PPO) fluorescent microspheres have been prepared successfully by IFPS reaction, which can be used as scintillators for the detection of ionizing radiation. A linear relationship between emitted luminescence and dose-activity in water is obtained, which suggests that composite microspheres could be used as liquid scintillation in specific environment.
Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser.
Sun, Juan; Deng, Hao; Liu, Ningwu; Wang, Hongliang; Yu, Benli; Li, Jingsong
2016-12-01
We developed a laser absorption sensor based on a pulsed, broadband tunable external cavity quantum cascade laser (ECQCL) centered at 1285 cm -1 . Unlike traditional infrared spectroscopy system, a quartz crystal tuning fork (QCTF) as a light detector was used for laser signal detection. Fast Fourier transform was applied to extract vibration intensity information of QCTF. The sensor system is successfully tested on nitrous oxide (N 2 O) spectroscopy measurements and compared with a standard infrared detector. The wide wavelength tunability of ECQCL will allow us to access the fundamental vibrational bands of many chemical agents, which are well-suited for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis.
Phenotype detection in morphological mutant mice using deformation features.
Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S
2013-01-01
Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.
Phase-Space Detection of Cyber Events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hernandez Jimenez, Jarilyn M; Ferber, Aaron E; Prowell, Stacy J
Energy Delivery Systems (EDS) are a network of processes that produce, transfer and distribute energy. EDS are increasingly dependent on networked computing assets, as are many Industrial Control Systems. Consequently, cyber-attacks pose a real and pertinent threat, as evidenced by Stuxnet, Shamoon and Dragonfly. Hence, there is a critical need for novel methods to detect, prevent, and mitigate effects of such attacks. To detect cyber-attacks in EDS, we developed a framework for gathering and analyzing timing data that involves establishing a baseline execution profile and then capturing the effect of perturbations in the state from injecting various malware. The datamore » analysis was based on nonlinear dynamics and graph theory to improve detection of anomalous events in cyber applications. The goal was the extraction of changing dynamics or anomalous activity in the underlying computer system. Takens' theorem in nonlinear dynamics allows reconstruction of topologically invariant, time-delay-embedding states from the computer data in a sufficiently high-dimensional space. The resultant dynamical states were nodes, and the state-to-state transitions were links in a mathematical graph. Alternatively, sequential tabulation of executing instructions provides the nodes with corresponding instruction-to-instruction links. Graph theorems guarantee graph-invariant measures to quantify the dynamical changes in the running applications. Results showed a successful detection of cyber events.« less
NASA Astrophysics Data System (ADS)
Shirata, Kento; Inden, Yuki; Kasai, Seiya; Oya, Takahide; Hagiwara, Yosuke; Kaeriyama, Shunichi; Nakamura, Hideyuki
2016-04-01
We investigated the robust detection of surface electromyogram (EMG) signals based on the stochastic resonance (SR) phenomenon, in which the response to weak signals is optimized by adding noise, combined with multiple surface electrodes. Flexible carbon nanotube composite paper (CNT-cp) was applied to the surface electrode, which showed good performance that is comparable to that of conventional Ag/AgCl electrodes. The SR-based EMG signal system integrating an 8-Schmitt-trigger network and the multiple-CNT-cp-electrode array successfully detected weak EMG signals even when the subject’s body is in the motion, which was difficult to achieve using the conventional technique. The feasibility of the SR-based EMG detection technique was confirmed by demonstrating its applicability to robot hand control.
Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela
2015-03-05
This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations.
Conesa-Muñoz, Jesús; Gonzalez-de-Soto, Mariano; Gonzalez-de-Santos, Pablo; Ribeiro, Angela
2015-01-01
This paper describes a supervisor system for monitoring the operation of automated agricultural vehicles. The system analyses all of the information provided by the sensors and subsystems on the vehicles in real time and notifies the user when a failure or potentially dangerous situation is detected. In some situations, it is even able to execute a neutralising protocol to remedy the failure. The system is based on a distributed and multi-level architecture that divides the supervision into different subsystems, allowing for better management of the detection and repair of failures. The proposed supervision system was developed to perform well in several scenarios, such as spraying canopy treatments against insects and diseases and selective weed treatments, by either spraying herbicide or burning pests with a mechanical-thermal actuator. Results are presented for selective weed treatment by the spraying of herbicide. The system successfully supervised the task; it detected failures such as service disruptions, incorrect working speeds, incorrect implement states, and potential collisions. Moreover, the system was able to prevent collisions between vehicles by taking action to avoid intersecting trajectories. The results show that the proposed system is a highly useful tool for managing fleets of autonomous vehicles. In particular, it can be used to manage agricultural vehicles during treatment operations. PMID:25751079
Standoff detection of explosive molecules using nanosecond gated Raman spectroscopy
NASA Astrophysics Data System (ADS)
Chung, Jin Hyuk; Cho, Soo Gyeong
2013-06-01
Recently, improvised explosive device (IED) has been a serious threat for many countries. One of the approaches to alleviate this threat is standoff detection of explosive molecules used in IEDs. Raman spectroscopy is a prospective method among many technologies under research to achieve this goal. It provides unique information of the target materials, through which the ingredients used in IEDs can be analyzed and identified. The main problem of standoff Raman spectroscopic detection is the large background noise hindering weak Raman signals from the target samples. Typical background noise comes from both ambient fluorescent lights indoor and sunlight outdoor whose intensities are usually much larger than that of Raman scattering from the sample. Under the proper condition using pulse laser and ICCD camera with nanosecond pulse width and gating technology, we succeed to separate and remove these background noises from Raman signals. For this experiment, we build an optical system for standoff detection of explosive molecules. We use 532 nm, 10 Hz, Q-switching Nd:YAG laser as light source, and ICCD camera triggered by laser Qswitching time with proper gate delay regarding the flight time of Raman from target materials. Our detection system is successfully applied to detect and identify more than 20 ingredients of IEDs including TNT, RDX, and HMX which are located 10 to 54 meters away from the system.
Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment
NASA Astrophysics Data System (ADS)
Scanlon, Michael V.
2008-04-01
The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Passarge, M; Fix, M K; Manser, P
Purpose: To create and test an accurate EPID-frame-based VMAT QA metric to detect gross dose errors in real-time and to provide information about the source of error. Methods: A Swiss cheese model was created for an EPID-based real-time QA process. The system compares a treatmentplan- based reference set of EPID images with images acquired over each 2° gantry angle interval. The metric utilizes a sequence of independent consecutively executed error detection Methods: a masking technique that verifies infield radiation delivery and ensures no out-of-field radiation; output normalization checks at two different stages; global image alignment to quantify rotation, scaling andmore » translation; standard gamma evaluation (3%, 3 mm) and pixel intensity deviation checks including and excluding high dose gradient regions. Tolerances for each test were determined. For algorithm testing, twelve different types of errors were selected to modify the original plan. Corresponding predictions for each test case were generated, which included measurement-based noise. Each test case was run multiple times (with different noise per run) to assess the ability to detect introduced errors. Results: Averaged over five test runs, 99.1% of all plan variations that resulted in patient dose errors were detected within 2° and 100% within 4° (∼1% of patient dose delivery). Including cases that led to slightly modified but clinically equivalent plans, 91.5% were detected by the system within 2°. Based on the type of method that detected the error, determination of error sources was achieved. Conclusion: An EPID-based during-treatment error detection system for VMAT deliveries was successfully designed and tested. The system utilizes a sequence of methods to identify and prevent gross treatment delivery errors. The system was inspected for robustness with realistic noise variations, demonstrating that it has the potential to detect a large majority of errors in real-time and indicate the error source. J. V. Siebers receives funding support from Varian Medical Systems.« less
Zhang, Peng; Liu, Hui; Ma, Suzhen; Men, Shuai; Li, Qingzhou; Yang, Xin; Wang, Hongning; Zhang, Anyun
2016-06-15
The harm of Salmonella enteritidis (S. enteritidis ) to public health mainly by contaminating fresh food and water emphasizes the urgent need for rapid detection techniques to help control the spread of the pathogen. In this assay, an newly designed capture probe complex that contained specific S. enteritidis-aptamer and hybridized signal target sequence was used for viable S. enteritidis recognition directly. In the presence of the target S. enteritidis, single-stranded target sequences were liberated and initiated the replication-cleavage reaction, producing numerous G-quadruplex structures with a linker on the 3'-end. And then, the sensing system took innovative advantage of quadratic linker-induced strand-displacement for the first time to release target sequence in succession, leading to the cyclic reuse of the target sequences and cascade signal amplification, thereby achieving the successive production of G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binded to these G-quadruplex structures and generated significantly enhanced fluorescent signals to achieve highly sensitive detection of S. enteritidis down to 60 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. By coupling the cascade two-stage target sequences-recyclable toehold strand-displacement with aptamer-based target recognition successfully, it is the first report on a novel non-label, modification-free and DNA extraction-free ultrasensitive fluorescence biosensor for detecting viable S. enteritidis directly, which can discriminate from dead S. enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.
Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data
Dobra, Adrian; Williams, Nathalie E.; Eagle, Nathan
2015-01-01
With the aim to contribute to humanitarian response to disasters and violent events, scientists have proposed the development of analytical tools that could identify emergency events in real-time, using mobile phone data. The assumption is that dramatic and discrete changes in behavior, measured with mobile phone data, will indicate extreme events. In this study, we propose an efficient system for spatiotemporal detection of behavioral anomalies from mobile phone data and compare sites with behavioral anomalies to an extensive database of emergency and non-emergency events in Rwanda. Our methodology successfully captures anomalous behavioral patterns associated with a broad range of events, from religious and official holidays to earthquakes, floods, violence against civilians and protests. Our results suggest that human behavioral responses to extreme events are complex and multi-dimensional, including extreme increases and decreases in both calling and movement behaviors. We also find significant temporal and spatial variance in responses to extreme events. Our behavioral anomaly detection system and extensive discussion of results are a significant contribution to the long-term project of creating an effective real-time event detection system with mobile phone data and we discuss the implications of our findings for future research to this end. PMID:25806954
Xu, Yan; Wang, Weilong; Li, Sam Fong Yau
2007-05-01
This report describes a method to simultaneously determine 11 low-molecular-weight (LMW) organic acids and 16 chlorinated acid herbicides within a single run by a portable CE system with contactless conductivity detection (CCD) in a poly(vinyl alcohol) (PVA)-coated capillary. Under the optimized condition, the LODs of CE-CCD ranged from 0.056 to 0.270 ppm, which were better than for indirect UV (IUV) detection of the 11 LMW organic acids or UV detection of the 16 chlorinated acid herbicides. Combined with an on-line field-amplified sample stacking (FASS) procedure, sensitivity enhancement of 632- to 1078-fold was achieved, with satisfactory reproducibility (RSDs of migration times less than 2.2%, and RSDs of peak areas less than 5.1%). The FASS-CE-CCD method was successfully applied to determine the two groups of acidic pollutants in two kinds of environmental water samples. The portable CE-CCD system shows advantages such as simplicity, cost effectiveness, and miniaturization. Therefore, the method presented in this report has great potential for onsite analysis of various pollutants at the trace level.
Spoof Detection for Finger-Vein Recognition System Using NIR Camera.
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-10-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods.
Spoof Detection for Finger-Vein Recognition System Using NIR Camera
Nguyen, Dat Tien; Yoon, Hyo Sik; Pham, Tuyen Danh; Park, Kang Ryoung
2017-01-01
Finger-vein recognition, a new and advanced biometrics recognition method, is attracting the attention of researchers because of its advantages such as high recognition performance and lesser likelihood of theft and inaccuracies occurring on account of skin condition defects. However, as reported by previous researchers, it is possible to attack a finger-vein recognition system by using presentation attack (fake) finger-vein images. As a result, spoof detection, named as presentation attack detection (PAD), is necessary in such recognition systems. Previous attempts to establish PAD methods primarily focused on designing feature extractors by hand (handcrafted feature extractor) based on the observations of the researchers about the difference between real (live) and presentation attack finger-vein images. Therefore, the detection performance was limited. Recently, the deep learning framework has been successfully applied in computer vision and delivered superior results compared to traditional handcrafted methods on various computer vision applications such as image-based face recognition, gender recognition and image classification. In this paper, we propose a PAD method for near-infrared (NIR) camera-based finger-vein recognition system using convolutional neural network (CNN) to enhance the detection ability of previous handcrafted methods. Using the CNN method, we can derive a more suitable feature extractor for PAD than the other handcrafted methods using a training procedure. We further process the extracted image features to enhance the presentation attack finger-vein image detection ability of the CNN method using principal component analysis method (PCA) for dimensionality reduction of feature space and support vector machine (SVM) for classification. Through extensive experimental results, we confirm that our proposed method is adequate for presentation attack finger-vein image detection and it can deliver superior detection results compared to CNN-based methods and other previous handcrafted methods. PMID:28974031
Note: Unshielded bilateral magnetoencephalography system using two-dimensional gradiometers
NASA Astrophysics Data System (ADS)
Seki, Yusuke; Kandori, Akihiko; Ogata, Kuniomi; Miyashita, Tsuyoshi; Kumagai, Yukio; Ohnuma, Mitsuru; Konaka, Kuni; Naritomi, Hiroaki
2010-09-01
Magnetoencephalography (MEG) noninvasively measures neuronal activity with high temporal resolution. The aim of this study was to develop a new type of MEG system that can measure bilateral MEG waveforms without a magnetically shielded room, which is an obstacle to reducing both the cost and size of an MEG system. An unshielded bilateral MEG system was developed using four two-dimensional (2D) gradiometers and two symmetric cryostats. The 2D gradiometer, which is based on a low-Tc superconducting quantum interference device and wire-wound pickup coil detects a magnetic-field gradient in two orthogonal directions, or ∂/∂x(∂2Bz/∂z2), and reduces environmental magnetic-field noise by more than 50 dB. The cryostats can be symmetrically positioned in three directions: vertical, horizontal, and rotational. This makes it possible to detect bilateral neuronal activity in the cerebral cortex simultaneously. Bilateral auditory-evoked fields (AEF) of 18 elderly subjects were measured in an unshielded hospital environment using the MEG system. As a result, both the ipsilateral and the contralateral AEF component N100m, which is the magnetic counterpart of electric N100 in electroencephalography and appears about 100 ms after the onset of an auditory stimulus, were successfully detected for all the subjects. Moreover, the ipsilateral P50m and the contralateral P50m were also detected for 12 (67%) and 16 (89%) subjects, respectively. Experimental results demonstrate that the unshielded bilateral MEG system can detect MEG waveforms, which are associated with brain dysfunction such as epilepsy, Alzheimer's disease, and Down syndrome.
A tsunami early warning system for the coastal area modeling
NASA Astrophysics Data System (ADS)
Soebroto, Arief Andy; Sunaryo, Suhartanto, Ery
2015-04-01
The tsunami disaster is a potential disaster in the territory of Indonesia. Indonesia is an archipelago country and close to the ocean deep. The tsunami occurred in Aceh province in 2004. Early prevention efforts have been carried out. One of them is making "tsunami buoy" which has been developed by BPPT. The tool puts sensors on the ocean floor near the coast to detect earthquakes on the ocean floor. Detection results are transmitted via satellite by a transmitter placed floating on the sea surface. The tool will cost billions of dollars for each system. Another constraint was the transmitter theft "tsunami buoy" in the absence of guard. In this study of the system has a transmission system using radio frequency and focused on coastal areas where costs are cheaper, so that it can be applied at many beaches in Indonesia are potentially affected by the tsunami. The monitoring system sends the detection results to the warning system using a radio frequency with a capability within 3 Km. Test results on the sub module sensor monitoring system generates an error of 0.63% was taken 10% showed a good quality sensing. The test results of data transmission from the transceiver of monitoring system to the receiver of warning system produces 100% successful delivery and reception of data. The test results on the whole system to function 100% properly.
Connolly, P.J.; Jezorek, I.G.; Prentice, E.F.
2005-01-01
We have developed detector systems for fish implanted with Passive Integrated Transponder (PIT) tags to assess their movement behavior and habitat use within fast flowing streams. Fish tested have primarily been wild anadromous and resident forms of rainbow trout Oncorhynchus mykiss and cutthroat trout O. clarki. Longitudinal arrangements of two- and six-antennas allow determination of direction of movement and efficiency of detection. Our first detector system became operational in August 2001, with subsequent improvements over time. In tests with a two-antenna system, detection efficiency of tagged, downstreammoving fish was high (96%) during low flows, but less (69%) during high flows. With an increase in the number of antennas to six, arranged in a 2x3 array, the detection efficiency of downstream-moving fish was increased to 95-100% at all flows. Detection efficiency of upstream-moving fish was high (95-100%) in both the two-and six-antenna system during all flows. Antennas were anchored to the substrate and largely spanned the bank-full width. Modifications to the methods used to anchor antennas have increased the likelihood of the system remaining intact and running at full detection capability during challenging flow and debris conditions, largely achieving our goal to have continuous monitoring of fish movement throughout an annual cycle. In August 2004, we placed a similar detector system in another watershed. Success has much relied on the quality of transceivers and electrical power. Detection of tagged fish passing our static PIT-tag detectors has produced valuable information on how selected fish species use the network of streams in a watershed. Integrating information from our detectors in tributary streams with that from detectors downstream at dams in the Columbia River has promise to be a powerful tool for monitoring movement patterns of anadromous fish species and to understanding full lifecycle fish behavior and habitat use.
Yazmir, Boris; Reiner, Miriam
2018-05-15
Any motor action is, by nature, potentially accompanied by human errors. In order to facilitate development of error-tailored Brain-Computer Interface (BCI) correction systems, we focused on internal, human-initiated errors, and investigated EEG correlates of user outcome successes and errors during a continuous 3D virtual tennis game against a computer player. We used a multisensory, 3D, highly immersive environment. Missing and repelling the tennis ball were considered, as 'error' (miss) and 'success' (repel). Unlike most previous studies, where the environment "encouraged" the participant to perform a mistake, here errors happened naturally, resulting from motor-perceptual-cognitive processes of incorrect estimation of the ball kinematics, and can be regarded as user internal, self-initiated errors. Results show distinct and well-defined Event-Related Potentials (ERPs), embedded in the ongoing EEG, that differ across conditions by waveforms, scalp signal distribution maps, source estimation results (sLORETA) and time-frequency patterns, establishing a series of typical features that allow valid discrimination between user internal outcome success and error. The significant delay in latency between positive peaks of error- and success-related ERPs, suggests a cross-talk between top-down and bottom-up processing, represented by an outcome recognition process, in the context of the game world. Success-related ERPs had a central scalp distribution, while error-related ERPs were centro-parietal. The unique characteristics and sharp differences between EEG correlates of error/success provide the crucial components for an improved BCI system. The features of the EEG waveform can be used to detect user action outcome, to be fed into the BCI correction system. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Real-time pose invariant logo and pattern detection
NASA Astrophysics Data System (ADS)
Sidla, Oliver; Kottmann, Michal; Benesova, Wanda
2011-01-01
The detection of pose invariant planar patterns has many practical applications in computer vision and surveillance systems. The recognition of company logos is used in market studies to examine the visibility and frequency of logos in advertisement. Danger signs on vehicles could be detected to trigger warning systems in tunnels, or brand detection on transport vehicles can be used to count company-specific traffic. We present the results of a study on planar pattern detection which is based on keypoint detection and matching of distortion invariant 2d feature descriptors. Specifically we look at the keypoint detectors of type: i) Lowe's DoG approximation from the SURF algorithm, ii) the Harris Corner Detector, iii) the FAST Corner Detector and iv) Lepetit's keypoint detector. Our study then compares the feature descriptors SURF and compact signatures based on Random Ferns: we use 3 sets of sample images to detect and match 3 logos of different structure to find out which combinations of keypoint detector/feature descriptors work well. A real-world test tries to detect vehicles with a distinctive logo in an outdoor environment under realistic lighting and weather conditions: a camera was mounted on a suitable location for observing the entrance to a parking area so that incoming vehicles could be monitored. In this 2 hour long recording we can successfully detect a specific company logo without false positives.
Detection of inter-frame forgeries in digital videos.
K, Sitara; Mehtre, B M
2018-05-26
Videos are acceptable as evidence in the court of law, provided its authenticity and integrity are scientifically validated. Videos recorded by surveillance systems are susceptible to malicious alterations of visual content by perpetrators locally or remotely. Such malicious alterations of video contents (called video forgeries) are categorized into inter-frame and intra-frame forgeries. In this paper, we propose inter-frame forgery detection techniques using tamper traces from spatio-temporal and compressed domains. Pristine videos containing frames that are recorded during sudden camera zooming event, may get wrongly classified as tampered videos leading to an increase in false positives. To address this issue, we propose a method for zooming detection and it is incorporated in video tampering detection. Frame shuffling detection, which was not explored so far is also addressed in our work. Our method is capable of differentiating various inter-frame tamper events and its localization in the temporal domain. The proposed system is tested on 23,586 videos of which 2346 are pristine and rest of them are candidates of inter-frame forged videos. Experimental results show that we have successfully detected frame shuffling with encouraging accuracy rates. We have achieved improved accuracy on forgery detection in frame insertion, frame deletion and frame duplication. Copyright © 2018. Published by Elsevier B.V.
Automated Software Vulnerability Analysis
NASA Astrophysics Data System (ADS)
Sezer, Emre C.; Kil, Chongkyung; Ning, Peng
Despite decades of research, software continues to have vulnerabilities. Successful exploitations of these vulnerabilities by attackers cost millions of dollars to businesses and individuals. Unfortunately, most effective defensive measures, such as patching and intrusion prevention systems, require an intimate knowledge of the vulnerabilities. Many systems for detecting attacks have been proposed. However, the analysis of the exploited vulnerabilities is left to security experts and programmers. Both the human effortinvolved and the slow analysis process are unfavorable for timely defensive measure to be deployed. The problem is exacerbated by zero-day attacks.
Interference Rejection and Management
2009-07-01
performance of a DS CDMA receiver. And it was shown in [34] that in order to successfully have a CDMA system overlay narrowband users, i.e., to deploy... CDMA transmitters and the CDMA receivers. 9.2.1.2 Multicarrier Direct Sequence In a multicarrier DS system, multiple narrowband DS waveforms, each at...1)] mmax(i−1) m=mmin(i−1) Detection of the (i−1)th path Pi,Di Pi−1,Di−1 channel estimator \\ data detector Fig. 9.1 Low-pass equivalent of the DS / CDMA
Distributed optical fiber vibration sensor based on spectrum analysis of Polarization-OTDR system.
Zhang, Ziyi; Bao, Xiaoyi
2008-07-07
A fully distributed optical fiber vibration sensor is demonstrated based on spectrum analysis of Polarization-OTDR system. Without performing any data averaging, vibration disturbances up to 5 kHz is successfully demonstrated in a 1km fiber link with 10m spatial resolution. The FFT is performed at each spatial resolution; the relation of the disturbance at each frequency component versus location allows detection of multiple events simultaneously with different and the same frequency components.
Vision inspection system and method
NASA Technical Reports Server (NTRS)
Huber, Edward D. (Inventor); Williams, Rick A. (Inventor)
1997-01-01
An optical vision inspection system (4) and method for multiplexed illuminating, viewing, analyzing and recording a range of characteristically different kinds of defects, depressions, and ridges in a selected material surface (7) with first and second alternating optical subsystems (20, 21) illuminating and sensing successive frames of the same material surface patch. To detect the different kinds of surface features including abrupt as well as gradual surface variations, correspondingly different kinds of lighting are applied in time-multiplexed fashion to the common surface area patches under observation.
System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.
Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae
2017-11-18
Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.
A comparative study of sensor fault diagnosis methods based on observer for ECAS system
NASA Astrophysics Data System (ADS)
Xu, Xing; Wang, Wei; Zou, Nannan; Chen, Long; Cui, Xiaoli
2017-03-01
The performance and practicality of electronically controlled air suspension (ECAS) system are highly dependent on the state information supplied by kinds of sensors, but faults of sensors occur frequently. Based on a non-linearized 3-DOF 1/4 vehicle model, different methods of fault detection and isolation (FDI) are used to diagnose the sensor faults for ECAS system. The considered approaches include an extended Kalman filter (EKF) with concise algorithm, a strong tracking filter (STF) with robust tracking ability, and the cubature Kalman filter (CKF) with numerical precision. We propose three filters of EKF, STF, and CKF to design a state observer of ECAS system under typical sensor faults and noise. Results show that three approaches can successfully detect and isolate faults respectively despite of the existence of environmental noise, FDI time delay and fault sensitivity of different algorithms are different, meanwhile, compared with EKF and STF, CKF method has best performing FDI of sensor faults for ECAS system.
Development of a leak location system for use on underground electric power transmission cable
NASA Astrophysics Data System (ADS)
Williams, J. A.
1982-10-01
This report describes a study to evaluate methods for locating leaks of dielectric fluid from buried high voltage cable systems. Two primary types of leak location systems were investigated: (1) systems that will rapidly isolate the leak within a manhole section, typically 1000 m long on a feeder that might be 30 km long; and (2) systems that will then pinpoint the location of the leak. Rapid leak isolation was accomplished by developing an enhanced conductivity oil probe which allows the injection of a small quantity of conductive oil and which indicates the path of the oil as it drifts downstream in the direction of the leak. Two methods for pinpointing the leak were proven. The more successful method was the use of trained leak location dogs which were found to have far better sensitivity than instruments and which could detect cable oil alone without the need for additives. A tracer gas injection and detection scheme was developed for use in areas where the dogs may be unsuitable.
Hastings, K L
2001-02-02
Immune-based systemic hypersensitivities account for a significant number of adverse drug reactions. There appear to be no adequate nonclinical models to predict systemic hypersensitivity to small molecular weight drugs. Although there are very good methods for detecting drugs that can induce contact sensitization, these have not been successfully adapted for prediction of systemic hypersensitivity. Several factors have made the development of adequate models difficult. The term systemic hypersensitivity encompases many discrete immunopathologies. Each type of immunopathology presumably is the result of a specific cluster of immunologic and biochemical phenomena. Certainly other factors, such as genetic predisposition, metabolic idiosyncrasies, and concomitant diseases, further complicate the problem. Therefore, it may be difficult to find common mechanisms upon which to construct adequate models to predict specific types of systemic hypersensitivity reactions. There is some reason to hope, however, that adequate methods could be developed for at least identifying drugs that have the potential to produce signs indicative of a general hazard for immune-based reactions.
NASA Astrophysics Data System (ADS)
Hsiu, Feng-Ming; Chen, Shean-Jen; Tsai, Chien-Hung; Tsou, Chia-Yuan; Su, Y.-D.; Lin, G.-Y.; Huang, K.-T.; Chyou, Jin-Jung; Ku, Wei-Chih; Chiu, S.-K.; Tzeng, C.-M.
2002-09-01
Surface plasmon resonance (SPR) imaging system is presented as a novel technique based on modified Mach-Zehnder phase-shifting interferometry (PSI) for biomolecular interaction analysis (BIA), which measures the spatial phase variation of a resonantly reflected light in biomolecular interaction. In this technique, the micro-array SPR biosensors with over a thousand probe NDA spots can be detected simultaneously. Owing to the feasible and swift measurements, the micro-array SPR biosensors can be extensively applied to the nonspecific adsorption of protein, the membrane/protein interactions, and DNA hybridization. The detection sensitivity of the SPR PSI imaging system is improved to about 1 pg/mm2 for each spot over the conventional SPR imaging systems. The SPR PSI imaging system and its SPR sensors have been successfully used to observe slightly index change in consequence of argon gas flow through the nitrogen in real time, with high sensitivity, and at high-throughout screening rates.
A novel pulse height analysis technique for nuclear spectroscopic and imaging systems
NASA Astrophysics Data System (ADS)
Tseng, H. H.; Wang, C. Y.; Chou, H. P.
2005-08-01
The proposed pulse height analysis technique is based on the constant and linear relationship between pulse width and pulse height generated from front-end electronics of nuclear spectroscopic and imaging systems. The present technique has successfully implemented into the sump water radiation monitoring system in a nuclear power plant. The radiation monitoring system uses a NaI(Tl) scintillator to detect radioactive nuclides of Radon daughters brought down by rain. The technique is also used for a nuclear medical imaging system. The system uses a position sensitive photomultiplier tube coupled with a scintillator. The proposed techniques has greatly simplified the electronic design and made the system a feasible one for potable applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somayaji, Anil B.; Amai, Wendy A.; Walther, Eleanor A.
This reports describes the successful extension of artificial immune systems from the domain of computer security to the domain of real time control systems for robotic vehicles. A biologically-inspired computer immune system was added to the control system of two different mobile robots. As an additional layer in a multi-layered approach, the immune system is complementary to traditional error detection and error handling techniques. This can be thought of as biologically-inspired defense in depth. We demonstrated an immune system can be added with very little application developer effort, resulting in little to no performance impact. The methods described here aremore » extensible to any system that processes a sequence of data through a software interface.« less
VerifEYE: a real-time meat inspection system for the beef processing industry
NASA Astrophysics Data System (ADS)
Kocak, Donna M.; Caimi, Frank M.; Flick, Rick L.; Elharti, Abdelmoula
2003-02-01
Described is a real-time meat inspection system developed for the beef processing industry by eMerge Interactive. Designed to detect and localize trace amounts of contamination on cattle carcasses in the packing process, the system affords the beef industry an accurate, high speed, passive optical method of inspection. Using a method patented by United States Department of Agriculture and Iowa State University, the system takes advantage of fluorescing chlorophyll found in the animal's diet and therefore the digestive track to allow detection and imaging of contaminated areas that may harbor potentially dangerous microbial pathogens. Featuring real-time image processing and documentation of performance, the system can be easily integrated into a processing facility's Hazard Analysis and Critical Control Point quality assurance program. This paper describes the VerifEYE carcass inspection and removal verification system. Results indicating the feasibility of the method, as well as field data collected using a prototype system during four university trials conducted in 2001 are presented. Two successful demonstrations using the prototype system were held at a major U.S. meat processing facility in early 2002.
Active Optical Sensors for Tree Stem Detection and Classification in Nurseries
Garrido, Miguel; Perez-Ruiz, Manuel; Valero, Constantino; Gliever, Chris J.; Hanson, Bradley D.; Slaughter, David C.
2014-01-01
Active optical sensing (LIDAR and light curtain transmission) devices mounted on a mobile platform can correctly detect, localize, and classify trees. To conduct an evaluation and comparison of the different sensors, an optical encoder wheel was used for vehicle odometry and provided a measurement of the linear displacement of the prototype vehicle along a row of tree seedlings as a reference for each recorded sensor measurement. The field trials were conducted in a juvenile tree nursery with one-year-old grafted almond trees at Sierra Gold Nurseries, Yuba City, CA, United States. Through these tests and subsequent data processing, each sensor was individually evaluated to characterize their reliability, as well as their advantages and disadvantages for the proposed task. Test results indicated that 95.7% and 99.48% of the trees were successfully detected with the LIDAR and light curtain sensors, respectively. LIDAR correctly classified, between alive or dead tree states at a 93.75% success rate compared to 94.16% for the light curtain sensor. These results can help system designers select the most reliable sensor for the accurate detection and localization of each tree in a nursery, which might allow labor-intensive tasks, such as weeding, to be automated without damaging crops. PMID:24949638
Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox
2015-01-01
A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186
Diana, Michele; Usmaan, Hameed; Legnèr, Andras; Yu-Yin, Liu; D'Urso, Antonio; Halvax, Peter; Nagao, Yoshihiro; Pessaux, Patrick; Marescaux, Jacques
2016-07-01
Bile leakage is a serious complication occurring in up to 10 % of hepatic resections. Intraoperative detection of bile leakage is challenging, and concomitant blood oozing can mask the presence of bile. Intraductal dye injection [methylene blue or indocyanine green (ICG)] is a validated technique to detect bile leakage. However, this method is time-consuming, particularly in the laparoscopic setting. A novel narrow band imaging (NBI) modality (SPECTRA-A; Karl Storz, Tuttlingen, Germany) allows easy discrimination of the presence of bile, which appears in clear orange, by image processing. The aim of this experimental study was to evaluate SPECTRA-A ability to detect bile leakage. Twelve laparoscopic partial hepatectomies were performed in seven pigs. The common bile duct was clipped distally and dissected, and a catheter was inserted and secured with a suture or a clip. Liver dissection was achieved with an ultrasonic cutting device. Dissection surfaces were checked by frequently switching on the SPECTRA filter to identify the presence of bile leakage. Intraductal ICG injection through the catheter was performed to confirm SPECTRA findings. Three active bile leakages were obtained out of 12 hepatectomies and successfully detected intraoperatively by the SPECTRA. There was complete concordance between NBI and ICG fluorescence detection. No active leaks were found in the remaining cases with both techniques. The leaking area identified was sutured, and SPECTRA was used to assess the success of the repair. The SPECTRA laparoscopic image processing system allows for rapid detection of bile leaks following hepatectomy without any contrast injection.
Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez
2013-01-01
This paper presents the results of using a commercial pulsimeter as an electrocardiogram (ECG) for wireless detection of cardiac alterations and stress levels for home control. For these purposes, signal processing techniques (Continuous Wavelet Transform (CWT) and J48) have been used, respectively. The designed algorithm analyses the ECG signal and is able to detect the heart rate (99.42%), arrhythmia (93.48%) and extrasystoles (99.29%). The detection of stress level is complemented with Skin Conductance Response (SCR), whose success is 94.02%. The heart rate variability does not show added value to the stress detection in this case. With this pulsimeter, it is possible to prevent and detect anomalies for a non-intrusive way associated to a telemedicine system. It is also possible to use it during physical activity due to the fact the CWT minimizes the motion artifacts. PMID:23666135
Villarejo, María Viqueira; Zapirain, Begoña García; Zorrilla, Amaia Méndez
2013-05-10
This paper presents the results of using a commercial pulsimeter as an electrocardiogram (ECG) for wireless detection of cardiac alterations and stress levels for home control. For these purposes, signal processing techniques (Continuous Wavelet Transform (CWT) and J48) have been used, respectively. The designed algorithm analyses the ECG signal and is able to detect the heart rate (99.42%), arrhythmia (93.48%) and extrasystoles (99.29%). The detection of stress level is complemented with Skin Conductance Response (SCR), whose success is 94.02%. The heart rate variability does not show added value to the stress detection in this case. With this pulsimeter, it is possible to prevent and detect anomalies for a non-intrusive way associated to a telemedicine system. It is also possible to use it during physical activity due to the fact the CWT minimizes the motion artifacts.
Design and Simulation of Horn Antenna Using CST Software for GPR System
NASA Astrophysics Data System (ADS)
Joret, Ariffuddin; Sulong, M. S.; Abdullah, M. F. L.; Madun, Aziman; Haimi Dahlan, Samsul
2018-04-01
Detection of underground object can be made using a GPR system. This system is classified as a non-destructive technique (NDT) where the ground areas need not to be excavated. The technique used by the GPR system is by measuring the reflection of electromagnetic wave signal produced and detected by antenna which is known as the transmitter and the receiver antenna. In this study, a GPR system was studied by means of simulation using a Horn antenna as a transceiver antenna. The electromagnetic wave signal in this simulation is produced by current signal of an antenna which having a shape of modulation of Gaussian pulse which is having spectrum from 8 GHz until 12 GHz. CST and MATLAB Software are used in this GPR system simulation. A model of a Horn antenna has been designed using the CST software before the GPR’s system simulation modeled by adding a model of background in front of the Horn antenna. The simulation results show that the output signal of the Horn antenna can be used in detecting embedded object which are made from material of wood and iron. In addition, the simulation result has successfully developed a 3D model image of the GPR system using output signal of the Horn antenna. The embedded iron object in the GPR system simulation can be seen clearly by using this 3D image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heiser,J.H.; Adams, J.; Dietz, R..
2008-10-07
The Tag, Track and Location System (TTL) Program is investigating methods of tracking an asset using perfluorocarbon tracers (PFT). The success of any TTL method requires sound detection/location instrumentation. Tracer Detection Technologies Corp (TDT), through a contract with the Office of Naval Research (ONR), is investigating different detection systems. The detections systems generally fall into two categories; proximity detectors and standoff detectors. Proximity detectors, as the name implies, need to be in close proximity (e.g., meter to 10's of meters) to the PFT source. Standoff detection searches for the PFT from a greater distance away from the source (e.g., 100'smore » of meters to kilometers). Gas Chromatographs (GC) are generally considered a proximity detection systems, but in the case of PFTs should be considered for both proximity and standoff detection with the caveat that in standoff use the GC needs to be somewhere in the PFT plume, i.e., generally downwind of the source. With a properly sized PFT source, the right GC can afford fairly large standoff (distance from the source) distances; 100's of meters to kilometers downwind. Brookhaven National Laboratory (BNL) has such a GC system and offered to demonstrate the CDTA for TTL as a no cost addition to the TDTTTL project, of which BNL was a participant. BNL is a leading authority on the sampling, collection, release and detection of PFTs. In addition, the BNL team has extensive background in atmospheric dispersion, the application of PFTs to such studies and the development of applications utilizing PFTs such as building infiltration measurements, control room integrity determination, leak location and environmental investigations. This experience and expertise is essential in developing any PFT application were dispersion, dilution and overcoming environmental conditions and interferences are integral to success. BNL has developed sophisticated gas chromatography methods and instruments that allow detection of up to seven PFTs at part per quadrillion levels (1015) with sample times as short as 60 seconds. The Continuous Dual-Trap Analyzer (CDTA) was developed for leak hunting applications and can continuously sample the air for PFTs without interruption. Sample time can be as short as 60 seconds. The CDTA has been extensively used in the commercial sector to detect PFTs that have been introduced to leaking buried dielectric fluid-filled cables or leaking subsurface gas lines. The PFTs travel through the cable or pipe until they reach the leak site. PFTs then escape into the surrounding soil and permeate/diffuse to the surface where they can be detected with the CDTA. Typically a cable is tagged with ppm levels of PFTs resulting in ppt to ppq concentrations in the air at the leak site. The CDTA is proven to be rugged, reliable and has a proven track record of successful leak location. The application of the CDTA to PFT detection for TTL is identical to application for leak detection. The CDTA operator has a general idea, with a few miles of roadway, where the leak is located, but no specific knowledge of the location (it can be any where along the road). The CDTA is mounted in a Chevy Astro Van and is dispatched to the field. In the field the van is driven at nominally 15 mph along the road. The CDTA continuously samples the air outside the van (via a 1/4-inch plastic sample tube stuck out a side window) until a positive detection occurs. The van then covers the road section where the detection occurred at a slightly slower pace to pin-point the area where the leak is and to direct soil probe samples. The soil probe samples take soil gas samples every 10 yards or so and the samples are analyzed on the CDTA. The leak can be located to within a few feet in 95% of the cases. To date the CDTA has been successful in every leak hunt performed by BNL. One interesting case was a leak hunt that resulted in repeated negative detections. The confidence in the CDTA forced the utility to recheck its 'plumbing' which lead to the discovery that a valve was turned that shouldn't have been so that gas was being diverted rather than leaking (the pressure drop was due to this diversion of the gas to another line). For TTL application, a tagged item or person is known to be in a general area and can be located by detecting the PFT emanating from the tagging source. The CDTA can be deployed in the area and by sampling in a grid fashion (starting on the downwind side of the area of interest) can easily find even very small sources. The CDTA is a perfect match for this application and the leak hunt use basically a simulation of Track and Locate. No other PFT detection technology has the detection sensitivity, proven track record and ruggedness of the CDTA. For these reasons, BNL offered to demonstrate the CDTA for TTL as a no cost addition to the TTL lidar demonstration project. This report details the demonstration scenario and results.« less
Mauck, Robert A; Dearborn, Donald C; Huntington, Charles E
2018-04-01
The salient feature of anthropogenic climate change over the last century has been the rise in global mean temperature. However, global mean temperature is not used as an explanatory variable in studies of population-level response to climate change, perhaps because the signal-to-noise ratio of this gross measure makes its effect difficult to detect in any but the longest of datasets. Using a population of Leach's storm-petrels breeding in the Bay of Fundy, we tested whether local, regional, or global temperature measures are the best index of reproductive success in the face of climate change in species that travel widely between and within seasons. With a 56-year dataset, we found that annual global mean temperature (AGMT) was the single most important predictor of hatching success, more so than regional sea surface temperatures (breeding season or winter) and local air temperatures at the nesting colony. Storm-petrel reproductive success showed a quadratic response to rising temperatures, in that hatching success increased up to some critical temperature, and then declined when AGMT exceeded that temperature. The year at which AGMT began to consistently exceed that critical temperature was 1988. Importantly, in this population of known-age individuals, the impact of changing climate was greatest on inexperienced breeders: reproductive success of inexperienced birds increased more rapidly as temperatures rose and declined more rapidly after the tipping point than did reproductive success of experienced individuals. The generality of our finding that AGMT is the best predictor of reproductive success in this system may hinge on two things. First, an integrative global measure may be best for species in which individuals move across an enormous spatial range, especially within seasons. Second, the length of our dataset and our capacity to account for individual- and age-based variation in reproductive success increase our ability to detect a noisy signal. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hettiarachchi, Ranga; Yokoyama, Mitsuo; Uehara, Hideyuki
This paper presents a novel interference cancellation (IC) scheme for both synchronous and asynchronous direct-sequence code-division multiple-access (DS-CDMA) wireless channels. In the DS-CDMA system, the multiple access interference (MAI) and the near-far problem (NFP) are the two factors which reduce the capacity of the system. In this paper, we propose a new algorithm that is able to detect all interference signals as an individual MAI signal by maximum correlation detection. It is based on the discovery of all the unknowing spreading codes of the interference signals. Then, all possible MAI patterns so called replicas are generated as a summation of interference signals. And the true MAI pattern is found by taking correlation between the received signal and the replicas. Moreover, the receiver executes MAI cancellation in a successive manner, removing all interference signals by single-stage. Numerical results will show that the proposed IC strategy, which alleviates the detrimental effect of the MAI and the near-far problem, can significantly improve the system performance. Especially, we can obtain almost the same receiving characteristics as in the absense of interference for asynchrnous system when received powers are equal. Also, the same performances can be seen under any received power state for synchronous system.
Kim, Eun Hye; Lee, Hwan Young; Yang, In Seok; Jung, Sang-Eun; Yang, Woo Ick; Shin, Kyoung-Jin
2016-05-01
The next-generation sequencing (NGS) method has been utilized to analyze short tandem repeat (STR) markers, which are routinely used for human identification purposes in the forensic field. Some researchers have demonstrated the successful application of the NGS system to STR typing, suggesting that NGS technology may be an alternative or additional method to overcome limitations of capillary electrophoresis (CE)-based STR profiling. However, there has been no available multiplex PCR system that is optimized for NGS analysis of forensic STR markers. Thus, we constructed a multiplex PCR system for the NGS analysis of 18 markers (13CODIS STRs, D2S1338, D19S433, Penta D, Penta E and amelogenin) by designing amplicons in the size range of 77-210 base pairs. Then, PCR products were generated from two single-sources, mixed samples and artificially degraded DNA samples using a multiplex PCR system, and were prepared for sequencing on the MiSeq system through construction of a subsequent barcoded library. By performing NGS and analyzing the data, we confirmed that the resultant STR genotypes were consistent with those of CE-based typing. Moreover, sequence variations were detected in targeted STR regions. Through the use of small-sized amplicons, the developed multiplex PCR system enables researchers to obtain successful STR profiles even from artificially degraded DNA as well as STR loci which are analyzed with large-sized amplicons in the CE-based commercial kits. In addition, successful profiles can be obtained from mixtures up to a 1:19 ratio. Consequently, the developed multiplex PCR system, which produces small size amplicons, can be successfully applied to STR NGS analysis of forensic casework samples such as mixtures and degraded DNA samples. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Near-infrared face recognition utilizing open CV software
NASA Astrophysics Data System (ADS)
Sellami, Louiza; Ngo, Hau; Fowler, Chris J.; Kearney, Liam M.
2014-06-01
Commercially available hardware, freely available algorithms, and authors' developed software are synergized successfully to detect and recognize subjects in an environment without visible light. This project integrates three major components: an illumination device operating in near infrared (NIR) spectrum, a NIR capable camera and a software algorithm capable of performing image manipulation, facial detection and recognition. Focusing our efforts in the near infrared spectrum allows the low budget system to operate covertly while still allowing for accurate face recognition. In doing so a valuable function has been developed which presents potential benefits in future civilian and military security and surveillance operations.
NASA Astrophysics Data System (ADS)
Sheridan, C.; O'Farrell, M.; Lyons, W. B.; Lewis, E.; Flanagan, C.; Jackman, N.
2005-01-01
An optical fibre based sensor has been developed to aid the quality assurance of food cooked in industrial ovens by monitoring the product in situ as it cooks. The sensor measures the product colour as it cooks by examining the reflected visible light from the surface as well as the core of the product. This paper examines the use of the sensor for the detection of blood in the spinal area of cooked whole chickens. The results presented here show that the sensor can be successfully used for this purpose.
NASA Astrophysics Data System (ADS)
Zevon, M.; Kantamneni, H.; Ganapathy, V.; Higgins, L.; Mingozzi, M.; Pierce, M.; Riman, R.; Roth, C. M.; Moghe, P. V.
2016-05-01
Success of personalized medicine in cancer therapy depends on the ability to identify and molecularly phenotype tumors. Current clinical imaging techniques cannot be integrated with precision molecular medicine at the level of single cells or microlesions due to limited resolution. In this work we use molecularly targeted infrared emitting optical probes to identify and characterize metastatic microlesions prior to their detection with clinically relevant imaging modalities. These contrast agents form the basis of an in vivo optical imaging system capable of resolving internal microlesions, filling a critical unmet need in cancer imaging.
Optical Observation, Image-processing, and Detection of Space Debris in Geosynchronous Earth Orbit
NASA Astrophysics Data System (ADS)
Oda, H.; Yanagisawa, T.; Kurosaki, H.; Tagawa, M.
2014-09-01
We report on optical observations and an efficient detection method of space debris in the geosynchronous Earth orbit (GEO). We operate our new Australia Remote Observatory (ARO) where an 18 cm optical telescope with a charged-coupled device (CCD) camera covering a 3.14-degree field of view is used for GEO debris survey, and analyse datasets of successive CCD images using the line detection method (Yanagisawa and Nakajima 2005). In our operation, the exposure time of each CCD image is set to be 3 seconds (or 5 seconds), and the time interval of CCD shutter open is about 4.7 seconds (or 6.7 seconds). In the line detection method, a sufficient number of sample objects are taken from each image based on their shape and intensity, which includes not only faint signals but also background noise (we take 500 sample objects from each image in this paper). Then we search a sequence of sample objects aligning in a straight line in the successive images to exclude the noise sample. We succeed in detecting faint signals (down to about 1.8 sigma of background noise) by applying the line detection method to 18 CCD images. As a result, we detected about 300 GEO objects up to magnitude of 15.5 among 5 nights data. We also calculate orbits of objects detected using the Simplified General Perturbations Satellite Orbit Model 4(SGP4), and identify the objects listed in the two-line-element (TLE) data catalogue publicly provided by the U.S. Strategic Command (USSTRATCOM). We found that a certain amount of our detections are new objects that are not contained in the catalogue. We conclude that our ARO and detection method posse a high efficiency detection of GEO objects despite the use of comparatively-inexpensive observation and analysis system. We also describe the image-processing specialized for the detection of GEO objects (not for usual astronomical objects like stars) in this paper.
Rosenberg, Yvonne J.; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori
2015-01-01
Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1–2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product. PMID:26268538
Rosenberg, Yvonne J; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori
2015-08-13
Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1-2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product.
FPGA Implementation of Heart Rate Monitoring System.
Panigrahy, D; Rakshit, M; Sahu, P K
2016-03-01
This paper describes a field programmable gate array (FPGA) implementation of a system that calculates the heart rate from Electrocardiogram (ECG) signal. After heart rate calculation, tachycardia, bradycardia or normal heart rate can easily be detected. ECG is a diagnosis tool routinely used to access the electrical activities and muscular function of the heart. Heart rate is calculated by detecting the R peaks from the ECG signal. To provide a portable and the continuous heart rate monitoring system for patients using ECG, needs a dedicated hardware. FPGA provides easy testability, allows faster implementation and verification option for implementing a new design. We have proposed a five-stage based methodology by using basic VHDL blocks like addition, multiplication and data conversion (real to the fixed point and vice-versa). Our proposed heart rate calculation (R-peak detection) method has been validated, using 48 first channel ECG records of the MIT-BIH arrhythmia database. It shows an accuracy of 99.84%, the sensitivity of 99.94% and the positive predictive value of 99.89%. Our proposed method outperforms other well-known methods in case of pathological ECG signals and successfully implemented in FPGA.
NASA Astrophysics Data System (ADS)
Yang, Chun-Chieh; Kim, Moon S.; Chuang, Yung-Kun; Lee, Hoyoung
2013-05-01
This paper reports the development of a multispectral algorithm, using the line-scan hyperspectral imaging system, to detect fecal contamination on leafy greens. Fresh bovine feces were applied to the surfaces of washed loose baby spinach leaves. A hyperspectral line-scan imaging system was used to acquire hyperspectral fluorescence images of the contaminated leaves. Hyperspectral image analysis resulted in the selection of the 666 nm and 688 nm wavebands for a multispectral algorithm to rapidly detect feces on leafy greens, by use of the ratio of fluorescence intensities measured at those two wavebands (666 nm over 688 nm). The algorithm successfully distinguished most of the lowly diluted fecal spots (0.05 g feces/ml water and 0.025 g feces/ml water) and some of the highly diluted spots (0.0125 g feces/ml water and 0.00625 g feces/ml water) from the clean spinach leaves. The results showed the potential of the multispectral algorithm with line-scan imaging system for application to automated food processing lines for food safety inspection of leafy green vegetables.
Wang, Peng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun
2015-01-25
In this contribution, a luminescent gold nanoclusters which were synthesized by bovine serum albumin as novel fluorescent probes were successfully utilized for the determination of D-penicillamine for the first time. Cupric ion was employed to quench the strong fluorescence of the gold nanoclusters, whereas the addition of D-penicillamine caused obvious restoration of fluorescence intensity of the Cu(2+)-gold nanoclusters system. Under optimum conditions, the increment in fluorescence intensity of Cu(2+)-gold nanoclusters system caused by D-penicillamine was linearly proportional to the concentration of D-penicillamine in the range of 2.0×10(-5)-2.39×10(-4) M. The detection limit for D-penicillamine was 5.4×10(-6) M. With the off-on fluorescence signal at 650 nm approaching the near-infrared region, the present sensor for D-penicillamine detection had high sensitivity and low spectral interference. Furthermore, the novel gold nanoclusters-based fluorescent sensor has been applied to the determination of D-penicillamine in real biological samples with satisfactory results. Copyright © 2014 Elsevier B.V. All rights reserved.
SNM detection with an optimized water Cherenkov neutron detector
NASA Astrophysics Data System (ADS)
Dazeley, S.; Sweany, M.; Bernstein, A.
2012-11-01
Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype [1]—a technology that could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions [2], demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In this paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. Our simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.
SNM Detection with an Optimized Water Cherenkov Neutron Detector
Dazeley, S.; Sweany, M.; Bernstein, A.
2012-07-23
Special Nuclear Material (SNM) can either spontaneously fission or be induced to do so: either case results in neutron emission. For this reason, neutron detection performs a crucial role in the functionality of Radiation Portal Monitoring (RPM) devices. Since neutrons are highly penetrating and difficult to shield, they could potentially be detected escaping even a well-shielded cargo container. If the shielding were sophisticated, detecting escaping neutrons would require a highly efficient detector with close to full solid angle coverage. In 2008, we reported the successful detection of neutrons with a 250 liter (l) gadolinium doped water Cherenkov prototype—a technology thatmore » could potentially be employed cost effectively with full solid angle coverage. More recently we have built and tested both 1-kl and 3.5-kl versions, demonstrating that very large, cost effective, non-flammable and environmentally benign neutron detectors can be operated efficiently without being overwhelmed by background. In our paper, we present a new design for a modular system of water-based neutron detectors that could be deployed as a real RPM. The modules contain a number of optimizations that have not previously been combined within a single system. We present simulations of the new system, based on the performance of our previous detectors. These simulations indicate that an optimized system such as is presented here could achieve SNM sensitivity competitive with a large 3He-based system. Moreover, the realization of large, cost effective neutron detectors could, for the first time, enable the detection of multiple neutrons per fission from within a large object such as a cargo container. Such a signal would provide a robust indication of the presence of fissioning material, reducing the frequency of false alarms while increasing sensitivity.« less
Lam, C K; Zhang, Y; Busch, M A; Busch, K W
1993-06-01
A new sample introduction system for the analysis of continuously flowing liquid streams by flame infrared-emission (FIRE) spectrometry has been developed. The system uses a specially designed purge cell to strip dissolved CO(2) from solution into a hydrogen gas stream that serves as the fuel for a hydrogen/air flame. Vibrationally excited CO(2) molecules present in the flame are monitored with a simple infrared filter (4.4 mum) photometer. The new system can be used to introduce analytes as a continuous liquid stream (process analysis mode) or on a discrete basis by sample injection (flow injection analysis mode). The key to the success of the method is the new purge-cell design. The small internal volume of the cell minimizes problems associated with purge-cell clean-out and produces sharp, reproducible signals. Spent analytical solution is continuously drained from the cell, making cell disconnection and cleaning between samples unnecessary. Under the conditions employed in this study, samples could be analyzed at a maximum rate of approximately 60/h. The new sample introduction system was successfully tested in both a process analysis- and a flow injection analysis mode for the determination of total inorganic carbon in Waco tap water. For the first time, flame infrared-emission spectrometry was successfully extended to non-volatile organic compounds by using chemical pretreatment with peroxydisulfate in the presence of silver ion to convert the analytes into dissolved carbon dioxide, prior to purging and detection by the FIRE radiometer. A test of the peroxydisulfate/Ag(+) reaction using six organic acids and five sugars indicated that all 11 compounds were oxidized to nearly the same extent. Finally, the new sample introduction system was used in conjunction with a simple filter FIRE radiometer as a detection system in ion-exchange high-performance liquid chromatography. Ion-exchange chromatograms are shown for two aqueous mixtures, one containing six organic acids and the second containing six mono-, di-, and trisaccharides.
Guo, Xiaoling; Wang, Qian; Li, Jinlian; Cui, Jiwen; Zhou, Shi; Hao, Sue; Wu, Dongmei
2015-02-15
Developing a reliable and cost-effective miniaturized electroanalysis tool is of vital importance for cell electrochemical analysis. In this work, a novel mini-electrochemical system has been constructed for trace detection of cell samples. The mini-electrochemical system was constructed by integrating a pencil graphite modified by threonine (PT/PGE) as working electrode, an Ag/AgCl (Sat'd) as reference electrode, platinum wire as counter electrode and a micropipet tip as electrochemical cell. The mini-electrochemical system not only saved dramatically usage of samples from 500 μL in traditional electrochemical system to 10 μL, but also possessed an adjustable active surface area by changing the length of PT/PGE immersed into the cell suspension from 3mm to 15 mm, and the linear equation was ipa = 2.25 l-2.64 (R(2) = 0.990). The system was successfully used in detection of MCF-7 cells, and a nonlinear exponent relationship between peak current and the cell number range from 3.0 × l0(3) to 7.0 × l0(6) cells mL(-1) was established firstly with the index equation ipa = 59.557 e (-C/1.709)-71.486 (R(2) = 0.954). Finally, the system was used for evaluating the sensitivity of cyclophosphamide on MCF-7 cell, and the result was corresponded well with that of MTT assay. The proposed system is sufficiently simple, cheap and easy operated, and could be applied in electrochemical detection of other biological samples. Copyright © 2014 Elsevier B.V. All rights reserved.
Logic Gate Operation by DNA Translocation through Biological Nanopores.
Yasuga, Hiroki; Kawano, Ryuji; Takinoue, Masahiro; Tsuji, Yutaro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji
2016-01-01
Logical operations using biological molecules, such as DNA computing or programmable diagnosis using DNA, have recently received attention. Challenges remain with respect to the development of such systems, including label-free output detection and the rapidity of operation. Here, we propose integration of biological nanopores with DNA molecules for development of a logical operating system. We configured outputs "1" and "0" as single-stranded DNA (ssDNA) that is or is not translocated through a nanopore; unlabeled DNA was detected electrically. A negative-AND (NAND) operation was successfully conducted within approximately 10 min, which is rapid compared with previous studies using unlabeled DNA. In addition, this operation was executed in a four-droplet network. DNA molecules and associated information were transferred among droplets via biological nanopores. This system would facilitate linking of molecules and electronic interfaces. Thus, it could be applied to molecular robotics, genetic engineering, and even medical diagnosis and treatment.
Mapping sea ice leads with a coupled numeric/symbolic system
NASA Technical Reports Server (NTRS)
Key, J.; Schweiger, A. J.; Maslanik, J. A.
1990-01-01
A method is presented which facilitates the detection and delineation of leads with single-channel Landsat data by coupling numeric and symbolic procedures. The procedure consists of three steps: (1) using the dynamic threshold method, an image is mapped to a lead/no lead binary image; (2) the likelihood of fragments to be real leads is examined with a set of numeric rules; and (3) pairs of objects are examined geometrically and merged where possible. The processing ends when all fragments are merged and statistical characteristics are determined, and a map of valid lead objects are left which summarizes useful physical in the lead complexes. Direct implementation of domain knowledge and rapid prototyping are two benefits of the rule-based system. The approach is found to be more successfully applied to mid- and high-level processing, and the system can retrieve statistics about sea-ice leads as well as detect the leads.
Logic Gate Operation by DNA Translocation through Biological Nanopores
Takinoue, Masahiro; Tsuji, Yutaro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji
2016-01-01
Logical operations using biological molecules, such as DNA computing or programmable diagnosis using DNA, have recently received attention. Challenges remain with respect to the development of such systems, including label-free output detection and the rapidity of operation. Here, we propose integration of biological nanopores with DNA molecules for development of a logical operating system. We configured outputs “1” and “0” as single-stranded DNA (ssDNA) that is or is not translocated through a nanopore; unlabeled DNA was detected electrically. A negative-AND (NAND) operation was successfully conducted within approximately 10 min, which is rapid compared with previous studies using unlabeled DNA. In addition, this operation was executed in a four-droplet network. DNA molecules and associated information were transferred among droplets via biological nanopores. This system would facilitate linking of molecules and electronic interfaces. Thus, it could be applied to molecular robotics, genetic engineering, and even medical diagnosis and treatment. PMID:26890568
Development and Validation of an Automated High-Throughput System for Zebrafish In Vivo Screenings
Virto, Juan M.; Holgado, Olaia; Diez, Maria; Izpisua Belmonte, Juan Carlos; Callol-Massot, Carles
2012-01-01
The zebrafish is a vertebrate model compatible with the paradigms of drug discovery. The small size and transparency of zebrafish embryos make them amenable for the automation necessary in high-throughput screenings. We have developed an automated high-throughput platform for in vivo chemical screenings on zebrafish embryos that includes automated methods for embryo dispensation, compound delivery, incubation, imaging and analysis of the results. At present, two different assays to detect cardiotoxic compounds and angiogenesis inhibitors can be automatically run in the platform, showing the versatility of the system. A validation of these two assays with known positive and negative compounds, as well as a screening for the detection of unknown anti-angiogenic compounds, have been successfully carried out in the system developed. We present a totally automated platform that allows for high-throughput screenings in a vertebrate organism. PMID:22615792
A complete low cost radon detection system.
Bayrak, A; Barlas, E; Emirhan, E; Kutlu, Ç; Ozben, C S
2013-08-01
Monitoring the (222)Rn activity through the 1200 km long Northern Anatolian fault line, for the purpose of earthquake precursory, requires large number of cost effective radon detectors. We have designed, produced and successfully tested a low cost radon detection system (a radon monitor). In the detector circuit of this monitor, First Sensor PS100-7-CER-2 windowless PIN photodiode and a custom made transempedence/shaping amplifier were used. In order to collect the naturally ionized radon progeny to the surface of the PIN photodiode, a potential of 3500 V was applied between the conductive hemi-spherical shell and the PIN photodiode. In addition to the count rate of the radon progeny, absolute pressure, humidity and temperature were logged during the measurements. A GSM modem was integrated to the system for transferring the measurements from the remote locations to the data process center. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Ping; Zhao, Liangliang; Wu, Xia; Huang, Fei; Wang, Minqin; Liu, Xiaodan
2014-03-01
It is found that the plasmon effect of silver nanoparticles (AgNPs) helps to enhance the fluorescence intensity of the quercetin (Qu) and nucleic acids system. Qu exhibited strong fluorescence enhancement when it bound to nucleic acids in the presence of AgNPs. Based on this, a sensitive method for the determination of nucleic acids was developed. The detection limits for the nucleic acids (S/N = 3) were reduced to the ng mL-1 level. The interaction mechanism of the AgNPs-fish sperm DNA (fsDNA)-Qu system was also investigated in this paper. This complex system of Qu and AgNPs was also successfully used for the detection of nucleic acids in agarose gel electrophoresis analysis. Preliminary results indicated that AgNPs also helped to improve sensitivity in the fluorescence image analysis of Qu combined with cellular contents in Arabidopsis thaliana protoplasts.
Seyed Moosavi, Seyed Mohsen; Moaveni, Bijan; Moshiri, Behzad; Arvan, Mohammad Reza
2018-02-27
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors.
Seyed Moosavi, Seyed Mohsen; Moshiri, Behzad; Arvan, Mohammad Reza
2018-01-01
The present study designed skewed redundant accelerometers for a Measurement While Drilling (MWD) tool and executed auto-calibration, fault diagnosis and isolation of accelerometers in this tool. The optimal structure includes four accelerometers was selected and designed precisely in accordance with the physical shape of the existing MWD tool. A new four-accelerometer structure was designed, implemented and installed on the current system, replacing the conventional orthogonal structure. Auto-calibration operation of skewed redundant accelerometers and all combinations of three accelerometers have been done. Consequently, biases, scale factors, and misalignment factors of accelerometers have been successfully estimated. By defecting the sensors in the new optimal skewed redundant structure, the fault was detected using the proposed FDI method and the faulty sensor was diagnosed and isolated. The results indicate that the system can continue to operate with at least three correct sensors. PMID:29495434
Autonomous Manoeuvring Systems for Collision Avoidance on Single Carriageway Roads
Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Óscar
2012-01-01
The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles’ positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed. PMID:23443391
Autonomous manoeuvring systems for collision avoidance on single carriageway roads.
Jiménez, Felipe; Naranjo, José Eugenio; Gómez, Oscar
2012-11-29
The accurate perception of the surroundings of a vehicle has been the subject of study of numerous automotive researchers for many years. Although several projects in this area have been successfully completed, very few prototypes have actually been industrialized and installed in mass produced cars. This indicates that these research efforts must continue in order to improve the present systems. Moreover, the trend to include communication systems in vehicles extends the potential of these perception systems transmitting their information via wireless to other vehicles that may be affected by the surveyed environment. In this paper we present a forward collision warning system based on a laser scanner that is able to detect several potential danger situations. Decision algorithms try to determine the most convenient manoeuvre when evaluating the obstacles' positions and speeds, road geometry, etc. Once detected, the presented system can act on the actuators of the ego-vehicle as well as transmit this information to other vehicles circulating in the same area using vehicle-to-vehicle communications. The system has been tested for overtaking manoeuvres under different scenarios and the correct actions have been performed.
Chemical-Sensing Cables Detect Potential Threats
NASA Technical Reports Server (NTRS)
2007-01-01
Intelligent Optical Systems Inc. (IOS) completed Phase I and II Small Business Innovation Research (SBIR) contracts with NASA's Langley Research Center to develop moisture- and pH-sensitive sensors to detect corrosion or pre-corrosive conditions, warning of potentially dangerous conditions before significant structural damage occurs. This new type of sensor uses a specially manufactured optical fiber whose entire length is chemically sensitive, changing color in response to contact with its target, and demonstrated to detect potentially corrosive moisture incursions to within 2 cm. After completing the work with NASA, the company received a Defense Advanced Research Projects Agency (DARPA) Phase III SBIR to develop the sensors further for detecting chemical warfare agents, for which they proved just as successful. The company then worked with the U.S. Department of Defense (DoD) to fine tune the sensors for detecting potential threats, such as toxic industrial compounds and nerve agents. In addition to the work with government agencies, Intelligent Optical Systems has sold the chemically sensitive fiber optic cables to major automotive and aerospace companies, who are finding a variety of uses for the devices. Marketed under the brand name Distributed Intrinsic Chemical Agent Sensing and Transmission (DICAST), these unique continuous-cable fiber optic chemical sensors can serve in a variety of applications: Corrosive-condition monitoring, aiding experimentation with nontraditional power sources, as an economical means of detecting chemical release in large facilities, as an inexpensive "alarm" systems to alert the user to a change in the chemical environment anywhere along the cable, or in distance-resolved optical time domain reflectometry systems to provide detailed profiles of chemical concentration versus length.
POD Model Reconstruction for Gray-Box Fault Detection
NASA Technical Reports Server (NTRS)
Park, Han; Zak, Michail
2007-01-01
Proper orthogonal decomposition (POD) is the mathematical basis of a method of constructing low-order mathematical models for the "gray-box" fault-detection algorithm that is a component of a diagnostic system known as beacon-based exception analysis for multi-missions (BEAM). POD has been successfully applied in reducing computational complexity by generating simple models that can be used for control and simulation for complex systems such as fluid flows. In the present application to BEAM, POD brings the same benefits to automated diagnosis. BEAM is a method of real-time or offline, automated diagnosis of a complex dynamic system.The gray-box approach makes it possible to utilize incomplete or approximate knowledge of the dynamics of the system that one seeks to diagnose. In the gray-box approach, a deterministic model of the system is used to filter a time series of system sensor data to remove the deterministic components of the time series from further examination. What is left after the filtering operation is a time series of residual quantities that represent the unknown (or at least unmodeled) aspects of the behavior of the system. Stochastic modeling techniques are then applied to the residual time series. The procedure for detecting abnormal behavior of the system then becomes one of looking for statistical differences between the residual time series and the predictions of the stochastic model.
Feng, Lei; Zhu, Susu; Lin, Fucheng; Su, Zhenzhu; Yuan, Kangpei; Zhao, Yiying; He, Yong; Zhang, Chu
2018-06-15
Mildew damage is a major reason for chestnut poor quality and yield loss. In this study, a near-infrared hyperspectral imaging system in the 874⁻1734 nm spectral range was applied to detect the mildew damage to chestnuts caused by blue mold. Principal component analysis (PCA) scored images were firstly employed to qualitatively and intuitively distinguish moldy chestnuts from healthy chestnuts. Spectral data were extracted from the hyperspectral images. A successive projections algorithm (SPA) was used to select 12 optimal wavelengths. Artificial neural networks, including back propagation neural network (BPNN), evolutionary neural network (ENN), extreme learning machine (ELM), general regression neural network (GRNN) and radial basis neural network (RBNN) were used to build models using the full spectra and optimal wavelengths to distinguish moldy chestnuts. BPNN and ENN models using full spectra and optimal wavelengths obtained satisfactory performances, with classification accuracies all surpassing 99%. The results indicate the potential for the rapid and non-destructive detection of moldy chestnuts by hyperspectral imaging, which would help to develop online detection system for healthy and blue mold infected chestnuts.