Transient multivariable sensor evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilim, Richard B.; Heifetz, Alexander
A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.
Performance evaluation capabilities for the design of physical systems
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Wang, B. P.
1972-01-01
The results are presented of a study aimed at developing and formulating a capability for the limiting performance of large steady state systems. The accomplishments reported include: (1) development of a theory of limiting performance of large systems subject to steady state inputs; (2) application and modification of PERFORM, the computational capability for the limiting performance of systems with transient inputs; and (3) demonstration that use of an inherently smooth control force for a limiting performance calculation improves the system identification phase of the design process for physical systems subjected to transient loading.
NASA Technical Reports Server (NTRS)
Carreno, Victor A.; Choi, G.; Iyer, R. K.
1990-01-01
A simulation study is described which predicts the susceptibility of an advanced control system to electrical transients resulting in logic errors, latched errors, error propagation, and digital upset. The system is based on a custom-designed microprocessor and it incorporates fault-tolerant techniques. The system under test and the method to perform the transient injection experiment are described. Results for 2100 transient injections are analyzed and classified according to charge level, type of error, and location of injection.
Waterhammer Transient Simulation and Model Anchoring for the Robotic Lunar Lander Propulsion System
NASA Technical Reports Server (NTRS)
Stein, William B.; Trinh, Huu P.; Reynolds, Michael E.; Sharp, David J.
2011-01-01
Waterhammer transients have the potential to adversely impact propulsion system design if not properly addressed. Waterhammer can potentially lead to system plumbing, and component damage. Multi-thruster propulsion systems also develop constructive/destructive wave interference which becomes difficult to predict without detailed models. Therefore, it is important to sufficiently characterize propulsion system waterhammer in order to develop a robust design with minimal impact to other systems. A risk reduction activity was performed at Marshall Space Flight Center to develop a tool for estimating waterhammer through the use of anchored simulation for the Robotic Lunar Lander (RLL) propulsion system design. Testing was performed to simulate waterhammer surges due to rapid valve closure and consisted of twenty-two series of waterhammer tests, resulting in more than 300 valve actuations. These tests were performed using different valve actuation schemes and three system pressures. Data from the valve characterization tests were used to anchor the models that employed MSCSoftware.EASY5 v.2010 to model transient fluid phenomena by using transient forms of mass and energy conservation. The anchoring process was performed by comparing initial model results to experimental data and then iterating the model input to match the simulation results with the experimental data. The models provide good correlation with experimental results, supporting the use of EASY5 as a tool to model fluid transients and provide a baseline for future RLL system modeling. This paper addresses tasks performed during the waterhammer risk reduction activity for the RLL propulsion system. The problem of waterhammer simulation anchoring as applied to the RLL system is discussed with results from the corresponding experimental valve tests. Important factors for waterhammer mitigation are discussed along with potential design impacts to the RLL propulsion system.
Indirect synthesis of multidegree-of-freedom transient systems
NASA Technical Reports Server (NTRS)
Chen, Y. H.; Pilkey, W. D.; Kalinowski, A. J.
1976-01-01
The indirect synthesis method is developed and shown to be capable of leading a near-optimal design of multidegree-of-freedom and multidesign-element transient nonlinear dynamical systems. The basis of the approach is to select the open design parameters such that the response of the portion of the system being designed approximates the limiting performances solution. The limiting performance problem can be formulated as one of linear programming by replacing all portions of the system subject to transient disturbances by control forces and supposing that the remaining portions are linear as are the overall kinematic constraints. One then selects the design parameters that respond most closely to the limiting performance solution, which can be achieved by unconstrained curve-fitting techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David R.; Wagstaff, Kiri L.; Majid, Walid A.
2011-07-10
Recent investigations reveal an important new class of transient radio phenomena that occur on submillisecond timescales. Often, transient surveys' data volumes are too large to archive exhaustively. Instead, an online automatic system must excise impulsive interference and detect candidate events in real time. This work presents a case study using data from multiple geographically distributed stations to perform simultaneous interference excision and transient detection. We present several algorithms that incorporate dedispersed data from multiple sites, and report experiments with a commensal real-time transient detection system on the Very Long Baseline Array. We test the system using observations of pulsar B0329+54.more » The multiple-station algorithms enhanced sensitivity for detection of individual pulses. These strategies could improve detection performance for a future generation of geographically distributed arrays such as the Australian Square Kilometre Array Pathfinder and the Square Kilometre Array.« less
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Chen, Y. H.
1974-01-01
An indirect synthesis method is used in the efficient optimal design of multi-degree of freedom, multi-design element, nonlinear, transient systems. A limiting performance analysis which requires linear programming for a kinematically linear system is presented. The system is selected using system identification methods such that the designed system responds as closely as possible to the limiting performance. The efficiency is a result of the method avoiding the repetitive systems analyses accompanying other numerical optimization methods.
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1991-01-01
A simulation system, ROCETS, was designed and developed to allow cost-effective computer predictions of liquid rocket engine transient performance. The system allows a user to generate a simulation of any rocket engine configuration using component modules stored in a library through high-level input commands. The system library currently contains 24 component modules, 57 sub-modules and maps, and 33 system routines and utilities. FORTRAN models from other sources can be operated in the system upon inclusion of interface information on comment cards. Operation of the simulation is simplified for the user by run, execution, and output processors. The simulation system makes available steady-state trim balance, transient operation, and linear partial generation. The system utilizes a modern equation solver for efficient operation of the simulations. Transient integration methods include integral and differential forms for the trapezoidal, first order Gear, and second order Gear corrector equations. A detailed technology test bed engine (TTBE) model was generated to be used as the acceptance test of the simulation system. The general level of model detail was that reflected in the Space Shuttle Main Engine DTM. The model successfully obtained steady-state balance in main stage operation and simulated throttle transients, including engine starts and shutdown. A NASA FORTRAN control model was obtained, ROCETS interface installed in comment cards, and operated with the TTBE model in closed-loop transient mode.
NASA Technical Reports Server (NTRS)
Kemp, Victoria R.
1992-01-01
A fluid-dynamic, digital-transient computer model of an integrated, parallel propulsion system was developed for the CDC mainframe and the SUN workstation computers. Since all STME component designs were used for the integrated system, computer subroutines were written characterizing the performance and geometry of all the components used in the system, including the manifolds. Three transient analysis reports were completed. The first report evaluated the feasibility of integrated engine systems in regards to the start and cutoff transient behavior. The second report evaluated turbopump out and combined thrust chamber/turbopump out conditions. The third report presented sensitivity study results in staggered gas generator spin start and in pump performance characteristics.
Power System Transient Stability Based on Data Mining Theory
NASA Astrophysics Data System (ADS)
Cui, Zhen; Shi, Jia; Wu, Runsheng; Lu, Dan; Cui, Mingde
2018-01-01
In order to study the stability of power system, a power system transient stability based on data mining theory is designed. By introducing association rules analysis in data mining theory, an association classification method for transient stability assessment is presented. A mathematical model of transient stability assessment based on data mining technology is established. Meanwhile, combining rule reasoning with classification prediction, the method of association classification is proposed to perform transient stability assessment. The transient stability index is used to identify the samples that cannot be correctly classified in association classification. Then, according to the critical stability of each sample, the time domain simulation method is used to determine the state, so as to ensure the accuracy of the final results. The results show that this stability assessment system can improve the speed of operation under the premise that the analysis result is completely correct, and the improved algorithm can find out the inherent relation between the change of power system operation mode and the change of transient stability degree.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.
NASA Technical Reports Server (NTRS)
Cady, E. C.
1977-01-01
A design analysis, is developed based on experimental data, to predict the effects of transient flow and pressure surges (caused either by valve or pump operation, or by boiling of liquids in warm lines) on the retention performance of screen acquisition systems. A survey of screen liquid acquisition system applications was performed to determine appropriate system environment and classification. A screen model was developed which assumed that the screen device was a uniformly distributed composite orthotropic structure, and which accounted for liquid inflow/outflow, gas ingestion quality, screen stress, and liquid spill. A series of 177 tests using 13 specimens (5 screen meshes, 4 screen device construction/backup methods, and 2 orientations) with three test fluids (isopropyl alcohol, Freon 114, and LH2) provided data which verified important features of the screen model and resulted in a design tool which could accurately predict the transient startup performance acquisition devices.
Techniques for improving transients in learning control systems
NASA Technical Reports Server (NTRS)
Chang, C.-K.; Longman, Richard W.; Phan, Minh
1992-01-01
A discrete modern control formulation is used to study the nature of the transient behavior of the learning process during repetitions. Several alternative learning control schemes are developed to improve the transient performance. These include a new method using an alternating sign on the learning gain, which is very effective in limiting peak transients and also very useful in multiple-input, multiple-output systems. Other methods include learning at an increasing number of points progressing with time, or an increasing number of points of increasing density.
TRAMP; The next generation data acquisition for RTP
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Haren, P.C.; Wijnoltz, F.
1992-04-01
The Rijnhuizen Tokamak Project RTP is a medium-sized tokamak experiment, which requires a very reliable data-acquisition system, due to its pulsed nature. Analyzing the limitations of an existing CAMAC-based data-acquisition system showed, that substantial increase of performance and flexibility could best be obtained by the construction of an entirely new system. This paper discusses this system, CALLED TRAMP (Transient Recorder and Amoeba Multi Processor), based on tailor-made transient recorders with a multiprocessor computer system in VME running Amoeba. The performance of TRAMP exceeds the performance of the CAMAC system by a factor of four. The plans to increase the flexibilitymore » and for a further increase of performance are presented.« less
A novel adaptive finite time controller for bilateral teleoperation system
NASA Astrophysics Data System (ADS)
Wang, Ziwei; Chen, Zhang; Liang, Bin; Zhang, Bo
2018-03-01
Most bilateral teleoperation researches focus on the system stability within time-delays. However, practical teleoperation tasks require high performances besides system stability, such as convergence rate and accuracy. This paper investigates bilateral teleoperation controller design with transient performances. To ensure the transient performances and system stability simultaneously, an adaptive non-singular fast terminal mode controller is proposed to achieve practical finite-time stability considering system uncertainties and time delays. In addition, a novel switching scheme is introduced, in which way the singularity problem of conventional terminal sliding manifold is avoided. Finally, numerical simulations demonstrate the effectiveness and validity of the proposed method.
Transient Behavior of Lumped-Constant Systems for Sensing Gas Pressures
NASA Technical Reports Server (NTRS)
Delio, Gene J; Schwent, Glennon V; Cesaro, Richard S
1949-01-01
The development of theoretical equations describing the behavior of a lumped-constant pressure-sensing system under transient operation Is presented with experimental data that show agreement with the equations. A pressure-sensing system 'consisting of a tube terminating in a reservoir is investigated for the transient relation between a presSure disturbance at the open end of the tube and the pressure response in the reservoir. Design parameters are presented that can be adjusted to achieve a desired performance fran such a system when the system is considered as a transfer member of a control loop.
Multiple Systems of Spatial Memory: Evidence from Described Scenes
ERIC Educational Resources Information Center
Avraamides, Marios N.; Kelly, Jonathan W.
2010-01-01
Recent models in spatial cognition posit that distinct memory systems are responsible for maintaining transient and enduring spatial relations. The authors used perspective-taking performance to assess the presence of these enduring and transient spatial memories for locations encoded through verbal descriptions. Across 3 experiments, spatial…
New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, T.; Chaney, L.; Meyer, J.
Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic systemmore » simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.« less
Transient thermal analysis of fluid systems
NASA Technical Reports Server (NTRS)
Chandler, G. D.; Trust, R. D.
1977-01-01
Computer program performs transient thermal analysis of any 2-node to 200-node-thermal network, which transports heat by fluid flow convection. Program can be modified to add conduction along tubes and radiation.
Experimental Validation of a Closed Brayton Cycle System Transient Simulation
NASA Technical Reports Server (NTRS)
Johnson, Paul K.; Hervol, David S.
2006-01-01
The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, Ohio was used to validate the results of a computational code known as Closed Cycle System Simulation (CCSS). Conversion system thermal transient behavior was the focus of this validation. The BPCU was operated at various steady state points and then subjected to transient changes involving shaft rotational speed and thermal energy input. These conditions were then duplicated in CCSS. Validation of the CCSS BPCU model provides confidence in developing future Brayton power system performance predictions, and helps to guide high power Brayton technology development.
Performance evaluation of a burst-mode EDFA in an optical packet and circuit integrated network.
Shiraiwa, Masaki; Awaji, Yoshinari; Furukawa, Hideaki; Shinada, Satoshi; Puttnam, Benjamin J; Wada, Naoya
2013-12-30
We experimentally investigate the performance of burst-mode EDFA in an optical packet and circuit integrated system. In such networks, packets and light paths can be dynamically assigned to the same fibers, resulting in gain transients in EDFAs throughout the network that can limit network performance. Here, we compare the performance of a 'burst-mode' EDFA (BM-EDFA), employing transient suppression techniques and optical feedback, with conventional EDFAs, and those using automatic gain control and previous BM-EDFA implementations. We first measure gain transients and other impairments in a simplified set-up before making frame error-rate measurements in a network demonstration.
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Csank, Jeffrey T.
2016-01-01
The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.
Robust Adaptive Control Using a Filtering Action
2009-09-01
research performed on this class of control systems , sensitivity to external disturbances and modeling errors together with poor transient response...dissertation, we address the problems of designing a class of Adaptive Control systems which yield fast adaptation, thus good transient response, and...unable to stabilize the system . Although this approach requires more knowledge about the system in order to control it, it is still attractive in cases
NASA Technical Reports Server (NTRS)
Belcastro, C. M.
1983-01-01
Flight critical computer based control systems designed for advanced aircraft must exhibit ultrareliable performance in lightning charged environments. Digital system upset can occur as a result of lightning induced electrical transients, and a methodology was developed to test specific digital systems for upset susceptibility. Initial upset data indicates that there are several distinct upset modes and that the occurrence of upset is related to the relative synchronization of the transient input with the processing sate of the digital system. A large upset test data base will aid in the formulation and verification of analytical upset reliability modeling techniques which are being developed.
NASA Technical Reports Server (NTRS)
Cao, Y.; Faghri, A.
1991-01-01
The performance of a thermal energy storage module is simulated numerically. The change of phase of the phase-change material (PCM) and the transient forced convective heat transfer for the transfer fluid with low Prandtl numbers are solved simultaneously as a conjugate problem. A parametric study and a system optimization are conducted. The numerical results show that module geometry is crucial to the design of a space-based thermal energy storage system.
On the transient dynamics of piezoelectric-based, state-switched systems
NASA Astrophysics Data System (ADS)
Lopp, Garrett K.; Kelley, Christopher R.; Kauffman, Jeffrey L.
2018-01-01
This letter reports on the induced mechanical transients for piezoelectric-based, state-switching approaches utilizing both experimental tests and a numerical model that more accurately captures the dynamics associated with a switch between stiffness states. Currently, switching models instantaneously dissipate the stored piezoelectric voltage, resulting in a discrete change in effective stiffness states and a discontinuity in the system dynamics during the switching event. The proposed model allows for a rapid but continuous voltage dissipation and the corresponding variation between stiffness states, as one sees in physical implementations. This rapid variation in system stiffness when switching at a point of non-zero strain leads to high-frequency, large-amplitude transients in the system acceleration response. Utilizing a fundamental piezoelectric bimorph, a comparison between the numerical and experimental results reveals that these mechanical transients are much stronger than originally anticipated and masked by measurement hardware limitations, thus highlighting the significance of an appropriate system model governing the switch dynamics. Such a model enables designers to analyze systems that incorporate piezoelectric-based state switching with greater accuracy to ensure that these transients do not degrade the intended performance. Finally, if the switching does create unacceptable transients, controlling the duration of voltage dissipation enables control over the frequency content and peak amplitudes associated with the switch-induced acceleration transients.
Nonlinear transient analysis of multi-mass flexible rotors - theory and applications
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Gunter, E. J.
1973-01-01
The equations of motion necessary to compute the transient response of multi-mass flexible rotors are formulated to include unbalance, rotor acceleration, and flexible damped nonlinear bearing stations. A method of calculating the unbalance response of flexible rotors from a modified Myklestad-Prohl technique is discussed in connection with the method of solution for the transient response. Several special cases of simplified rotor-bearing systems are presented and analyzed for steady-state response, stability, and transient behavior. These simplified rotor models produce extensive design information necessary to insure stable performance to elastic mounted rotor-bearing systems under varying levels and forms of excitation. The nonlinear journal bearing force expressions derived from the short bearing approximation are utilized in the study of the stability and transient response of the floating bush squeeze damper support system. Both rigid and flexible rotor models are studied, and results indicate that the stability of flexible rotors supported by journal bearings can be greatly improved by the use of squeeze damper supports. Results from linearized stability studies of flexible rotors indicate that a tuned support system can greatly improve the performance of the units from the standpoint of unbalanced response and impact loading. Extensive stability and design charts may be readily produced for given rotor specifications by the computer codes presented in this analysis.
Hardware Demonstration: Frequency Spectra of Transients
NASA Technical Reports Server (NTRS)
McCloskey, John; Dimov, Jen
2017-01-01
Radiated emissions measurements as specified by MIL-STD-461 are performed in the frequency domain, which is best suited to continuous wave (CW) types of signals. However, many platforms implement signals that are single event pulses or transients. Such signals can potentially generate momentary radiated emissions that can cause interference in the system, but they may be missed with traditional measurement techniques. This demonstration provides measurement and analysis techniques that effectively evaluate the potential emissions from such signals in order to evaluate their potential impacts to system performance.
Azar, Reza Zahiri; Dickie, Kris; Pelissier, Laurent
2012-10-01
Transient elastography has been well established in the literature as a means of assessing the elasticity of soft tissue. In this technique, tissue elasticity is estimated from the study of the propagation of the transient shear waves induced by an external or internal source of vibration. Previous studies have focused mainly on custom single-element transducers and ultrafast scanners which are not available in a typical clinical setup. In this work, we report the design and implementation of a transient elastography system on a standard ultrasound scanner that enables quantitative assessment of tissue elasticity in real-time. Two new custom imaging modes are introduced that enable the system to image the axial component of the transient shear wave, in response to an externally induced vibration, in both 1-D and 2-D. Elasticity reconstruction algorithms that estimate the tissue elasticity from these transient waves are also presented. Simulation results are provided to show the advantages and limitations of the proposed system. The performance of the system is also validated experimentally using a commercial elasticity phantom.
Performance Enhancement of the NPS Transient Electromagnetic Scattering Laboratory
1991-09-01
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING MASTER OF SCIENCE IN SYSTEMS ENGINEERING (ELECTRONIC WARFARE) from NAVAL POSTGRADUATE S OOL Author: JvAlo...Bresani Approved by: Michael A. Morgan, Thesis Advisor Jeffrey B. Knorr, Second Reader Michael A. Morgan, Chairman, Department of Electrical & Computer...SYSTEM REPRESENTATION ... .......... 13 B. MATHEMATICAL MODEL ......... ..... 15 C. TRANSIENT RESPONSE EVALUATION .. ......... . 17 IV. MEASUREMENT
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.
1973-01-01
A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.
ENEL overall PWR plant models and neutronic integrated computing systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedroni, G.; Pollachini, L.; Vimercati, G.
1987-01-01
To support the design activity of the Italian nuclear energy program for the construction of pressurized water reactors, the Italian Electricity Board (ENEL) needs to verify the design as a whole (that is, the nuclear steam supply system and balance of plant) both in steady-state operation and in transient. The ENEL has therefore developed two computer models to analyze both operational and incidental transients. The models, named STRIP and SFINCS, perform the analysis of the nuclear as well as the conventional part of the plant (the control system being properly taken into account). The STRIP model has been developed bymore » means of the French (Electricite de France) modular code SICLE, while SFINCS is based on the Italian (ENEL) modular code LEGO. STRIP validation was performed with respect to Fessenheim French power plant experimental data. Two significant transients were chosen: load step and total load rejection. SFINCS validation was performed with respect to Saint-Laurent French power plant experimental data and also by comparing the SFINCS-STRIP responses.« less
The performance of cable braids and terminations to lightning induced transients
NASA Technical Reports Server (NTRS)
Crofts, David
1991-01-01
The latest specification detailing the test waveforms for indirect lightning transients as applied to aircraft wiring systems specify very high voltages and currents. Although considerable data exists for measuring cable screen leakage using such methods as surface transfer impedance and bulk cable injection, there is little data on the likely core transient level that is likely to be induced from these threats. In particular, the new Waveform 5 at very high current levels (10 kA) is reputed to cause severe cable damage. A range of representative cables were made with various screen termination techniques and screening levels. These were tested first to determine their relative screening performance and then they were subjected to lightning transient testing to all the specified waveforms. Core voltages were measured for each test. Tests were also performed on bundles with fewer wires to determine the failure criteria with Waveform 5 and these tests also include flat conductor cables. The test showed that correctly terminated cable bundles performed well in all the tests and would provide a high level of protection to the electronic systems. The use of overbraides, provided the individual screens are well terminated, appears to be unnecessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreier, J.; Huggenberger, M.; Aubert, C.
1996-08-01
The PANDA test facility at PSI in Switzerland is used to study the long-term Simplified Boiling Water Reactor (SBWR) Passive Containment Cooling System (PCCS) performance. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensables in the system. The PANDA facility has a 1:1 vertical scale, and 1:25 ``system`` scale (volume, power, etc.). Steady-state PCCS condenser performance tests and extensive facility characterization tests have been completed. Transient system behavior tests were conducted late in 1995; results from the first three transient tests (M3 series) aremore » reviewed. The first PANDA tests showed that the overall global behavior of the SBWR containment was globally repeatable and very favorable; the system exhibited great ``robustness.``« less
NASA Technical Reports Server (NTRS)
Sanders, B. W.
1980-01-01
The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with a poppet-valve-controlled stability bypass system that was designed to provide a large, stable airflow range. Propulsion system response and stability bypass performance were determined for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area as well as compressor stall. For reference, data are also included for a conventional, fixed-exit bleed system. The poppet valves greatly increased inlet stability and had no adverse effects on propulsion system performance. Limited unstarted-inlet bleed performance data are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-10-20
Look-ahead dynamic simulation software system incorporates the high performance parallel computing technologies, significantly reduces the solution time for each transient simulation case, and brings the dynamic simulation analysis into on-line applications to enable more transparency for better reliability and asset utilization. It takes the snapshot of the current power grid status, functions in parallel computing the system dynamic simulation, and outputs the transient response of the power system in real time.
Tailoring the response of Autonomous Reactivity Control (ARC) systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qvist, Staffan A.; Hellesen, Carl; Gradecka, Malwina
The Autonomous Reactivity Control (ARC) system was developed to ensure inherent safety of Generation IV reactors while having a minimal impact on reactor performance and economic viability. In this study we present the transient response of fast reactor cores to postulated accident scenarios with and without ARC systems installed. Using a combination of analytical methods and numerical simulation, the principles of ARC system design that assure stability and avoids oscillatory behavior have been identified. A comprehensive transient analysis study for ARC-equipped cores, including a series of Unprotected Loss of Flow (ULOF) and Unprotected Loss of Heat Sink (ULOHS) simulations, weremore » performed for Argonne National Laboratory (ANL) Advanced Burner Reactor (ABR) designs. With carefully designed ARC-systems installed in the fuel assemblies, the cores exhibit a smooth non-oscillatory transition to stabilization at acceptable temperatures following all postulated transients. To avoid oscillations in power and temperature, the reactivity introduced per degree of temperature change in the ARC system needs to be kept below a certain threshold the value of which is system dependent, the temperature span of actuation needs to be as large as possible.« less
Closed-form solutions of performability. [modeling of a degradable buffer/multiprocessor system
NASA Technical Reports Server (NTRS)
Meyer, J. F.
1981-01-01
Methods which yield closed form performability solutions for continuous valued variables are developed. The models are similar to those employed in performance modeling (i.e., Markovian queueing models) but are extended so as to account for variations in structure due to faults. In particular, the modeling of a degradable buffer/multiprocessor system is considered whose performance Y is the (normalized) average throughput rate realized during a bounded interval of time. To avoid known difficulties associated with exact transient solutions, an approximate decomposition of the model is employed permitting certain submodels to be solved in equilibrium. These solutions are then incorporated in a model with fewer transient states and by solving the latter, a closed form solution of the system's performability is obtained. In conclusion, some applications of this solution are discussed and illustrated, including an example of design optimization.
An ultrasound transient elastography system with coded excitation.
Diao, Xianfen; Zhu, Jing; He, Xiaonian; Chen, Xin; Zhang, Xinyu; Chen, Siping; Liu, Weixiang
2017-06-28
Ultrasound transient elastography technology has found its place in elastography because it is safe and easy to operate. However, it's application in deep tissue is limited. The aim of this study is to design an ultrasound transient elastography system with coded excitation to obtain greater detection depth. The ultrasound transient elastography system requires tissue vibration to be strictly synchronous with ultrasound detection. Therefore, an ultrasound transient elastography system with coded excitation was designed. A central component of this transient elastography system was an arbitrary waveform generator with multi-channel signals output function. This arbitrary waveform generator was used to produce the tissue vibration signal, the ultrasound detection signal and the synchronous triggering signal of the radio frequency data acquisition system. The arbitrary waveform generator can produce different forms of vibration waveform to induce different shear wave propagation in the tissue. Moreover, it can achieve either traditional pulse-echo detection or a phase-modulated or a frequency-modulated coded excitation. A 7-chip Barker code and traditional pulse-echo detection were programmed on the designed ultrasound transient elastography system to detect the shear wave in the phantom excited by the mechanical vibrator. Then an elasticity QA phantom and sixteen in vitro rat livers were used for performance evaluation of the two detection pulses. The elasticity QA phantom's results show that our system is effective, and the rat liver results show the detection depth can be increased more than 1 cm. In addition, the SNR (signal-to-noise ratio) is increased by 15 dB using the 7-chip Barker coded excitation. Applying 7-chip Barker coded excitation technique to the ultrasound transient elastography can increase the detection depth and SNR. Using coded excitation technology to assess the human liver, especially in obese patients, may be a good choice.
A transient thermal model of a neutral buoyancy cryogenic fluid delivery system
NASA Astrophysics Data System (ADS)
Bue, Grant C.; Conger, Bruce S.
A thermal-performance model is presently used to evaluate a preliminary Neutral Buoyancy Cryogenic fluid-delivery system for underwater EVA training. Attention is given to the modeling of positional transients generated from the moving of internal components, including the control of cycling artifacts, as well as to the convection and boiling characteristics of the cryofluid, 250-psi N2/O2 gas, and water contained in the tank. Two piston designs are considered according to performance criteria; temperature and heat-transfer rate profiles are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevik, James; Wallner, Thomas; Pamminger, Michael
The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coilmore » ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.« less
Transient performance and temperature field of a natural convection air dehumidifier loop
NASA Astrophysics Data System (ADS)
Fazilati, Mohammad Ali; Sedaghat, Ahmad; Alemrajabi, Ali-Akbar
2017-07-01
In this paper, transient performance of the previously introduced natural convection heat and mass transfer loop is investigated for an air dehumidifier system. The performance of the loop is studied in different conditions of heat source/heat sink temperature and different startup desiccant concentrations. Unlike conventional loops, it is observed that natural convection of the fluid originates from the heat sink towards the heat source. The proper operation of the cycle is highly dependent on the heat sink/heat source temperatures. To reduce the time constant of the system, a proper desiccant concentration should be adopted for charge of the loop.
Numerical Modeling of Thermofluid Transients During Chilldown of Cryogenic Transfer Lines
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Steadman, Todd
2003-01-01
The chilldown of fluid transfer lines is an important part of using cryogenic systems such as those found in both ground and space based applications. The chilldown process is a complex combination of both thermal and fluid transient phenomena. A cryogenic liquid flows through a transfer line that is initially at a much higher temperature than the cryogen. Transient heat transfer processes between the liquid and transfer line cause vaporization of the liquid, and this phase change can cause transient pressure and flow surges in the liquid. As the transfer line is cooled, these effects diminish until the liquid reaches a steady flow condition in the chilled transfer line. If these transient phenomena are not properly accounted for in the design process of a cryogenic system, it can lead to damage or failure of system components during operation. For such cases, analytical modeling is desirable for ensuring that a cryogenic system transfer line design is adequate for handling the effects of a chilldown process. The purpose of this paper is to present the results of a numerical model developed using Generalized Fluid System Simulation Program (GFSSP)'s new fluid transient capability in combination with its previously developed thermal transient capability to predict pressure and flow surge in cryogenic transfer lines during a chilldown process. An experiment performed by the National Bureau of Standards (NBS) in 1966 has been chosen as the baseline comparison case for this work. NBS s experimental set-up consisted of a 10.59 cubic foot supply dewar, an inlet valve, and a 200 foot long, in Outside Diameter (OD) vacuum jacketed copper transfer line that exhausted to atmosphere. Three different inlet valves, an in-port ball valve, a 1-in-port globe valve and a 1-in-port gate valve, were used in NBS's experiments. Experiments were performed using both liquid hydrogen and liquid nitrogen as the fluids. The proposed paper will include detailed comparisons of GFSSP's predictions with NBS's experimental results.
New technique for simulation of optical fiber amplifiers control schemes in dynamic WDM systems
NASA Astrophysics Data System (ADS)
Freitas, Marcio; Klein, Jackson; Givigi, Sidney, Jr.; Calmon, Luiz C.
2005-04-01
One topic that has attracted attention is related to the behavior of the optical amplifiers under dynamic conditions, specifically because amplifiers working in a saturated condition produce power transients in all-optical reconfigurable WDM networks, e.g. adding/dropping channels. The goal of this work is to introduce the multiwavelength time-driven simulations technique, capable of simulation and analysis of transient effects in all-optical WDM networks with optical amplifiers, and allow the use of control schemes to avoid or minimize the impacts of transient effects in the system performance.
Natesan, Chitra; Ajithan, Senthil Kumar; Mani, Shobana; Palani, Priyadharshini; Kandhasamy, Prabaakaran
2014-01-01
Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs) tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform.
Natesan, Chitra; Ajithan, Senthil Kumar; Mani, Shobana; Palani, Priyadharshini; Kandhasamy, Prabaakaran
2014-01-01
Hi-tech scenario and the ecological compression are the key point to drive the intervention of the renewable in the distribution system. In the perspective of complex power system planners, the transient performance of the microgrid is the main concern. For that purpose, various fault cases are explored in order to examine the microgrid transient performance when subjected to accidental events. In this work, the microgrid is modelled with two distributed generations (DGs) tied with a converter separately. With this intention, droop control strategy is adopted for the microsources to examine the microgrid performance during the symmetrical and unsymmetrical fault events. The ability of the control strategy adopted in this work and its effectiveness are evaluated through Matlab/Simulink platform. PMID:25162062
AGILE/GRID Science Alert Monitoring System: The Workflow and the Crab Flare Case
NASA Astrophysics Data System (ADS)
Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Tavani, M.; Conforti, V.; Parmiggiani, N.
2013-10-01
During the first five years of the AGILE mission we have observed many gamma-ray transients of Galactic and extragalactic origin. A fast reaction to unexpected transient events is a crucial part of the AGILE monitoring program, because the follow-up of astrophysical transients is a key point for this space mission. We present the workflow and the software developed by the AGILE Team to perform the automatic analysis for the detection of gamma-ray transients. In addition, an App for iPhone will be released enabling the Team to access the monitoring system through mobile phones. In 2010 September the science alert monitoring system presented in this paper recorded a transient phenomena from the Crab Nebula, generating an automated alert sent via email and SMS two hours after the end of an AGILE satellite orbit, i.e. two hours after the Crab flare itself: for this discovery AGILE won the 2012 Bruno Rossi prize. The design of this alert system is maximized to reach the maximum speed, and in this, as in many other cases, AGILE has demonstrated that the reaction speed of the monitoring system is crucial for the scientific return of the mission.
Vacuum system transient simulator and its application to TFTR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sredniawski, J.
The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTSmore » has been used in many applications. Two applications selected for presentation are: torus vacuum pumping system performance between 400 Ci tritium pulses and tritium backstreaming to neutral beams during pulses.« less
Novel Active Transient Cooling Systems
2010-05-04
NOVEL ACTIVE TRANSIENT COOLING SYSTEMS PI: R.V. Ramanujan Co-PI: P. Keblinski*, G. Ramanath*, E.V. Sampathkumaran^ School of Materials...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Raju Ramanujan 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...Report (SAR) 18. NUMBER OF PAGES 13 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE unclassified
Feedback control of acoustic disturbance transient growth in triggering thermoacoustic instability
NASA Astrophysics Data System (ADS)
Zhao, Dan; Reyhanoglu, Mahmut
2014-08-01
Transient growth of acoustic disturbances could trigger thermoacoustic instability in a combustion system with non-orthogonal eigenmodes, even with stable eigenvalues. In this work, feedback control of transient growth of flow perturbations in a Rijke-type combustion system is considered. For this, a generalized thermoacoustic model with distributed monopole-like actuators is developed. The model is formulated in state-space to gain insights on the interaction between various eigenmodes and the dynamic response of the system to the actuators. Three critical parameters are identified: (1) the mode number, (2) the number of actuators, and (3) the locations of the actuators. It is shown that in general the number of the actuators K is related to the mode number N as K=N2. For simplicity in illustrating the main results of the paper, two different thermoacoustic systems are considered: system (a) with one mode and system (b) that involves two modes. The actuator location effect is studied in system (a) and it is found that the actuator location plays an important role in determining the control effort. In addition, sensitivity analysis of pressure- and velocity-related control parameters is conducted. In system (b), when the actuators are turned off (i.e., open-loop configuration), it is observed that acoustic energy transfers from the high frequency mode to the lower frequency mode. After some time, the energy is transferred back. Moreover, the high frequency oscillation grows into nonlinear limit cycle with the low frequency oscillation amplified. As a linear-quadratic regulator (LQR) is implemented to tune the actuators, both systems become asymptotically stable. However, the LQR controller fails in eliminating the transient growth, which may potentially trigger thermoacoustic instability. In order to achieve strict dissipativity (i.e., unity maximum transient growth), a transient growth controller is systematically designed and tested in both systems. Comparison is then made between the performance of the LQR controller and that of the transient growth controller. It is found in both systems that the transient growth controller achieves both exponential decay of the flow disturbance energy and unity maximum transient growth.
NASA Technical Reports Server (NTRS)
Iacomini, Christie; Powers, Aaron; Speight, Garland; Padilla, Sebastian; Paul, Heather L.
2009-01-01
A Metabolic heat-regenerated Temperature Swing Adsorption (MTSA) system is being developed for carbon dioxide, water and thermal control in a lunar and martian portable life support system (PLSS). A previous system analysis was performed to evaluate the impact of MTSA on PLSS design. That effort was Mars specific and assumed liquid carbon dioxide (LCO2) coolant made from martian resources. Transient effects were not considered but rather average conditions were used throughout the analysis. This effort takes into further consideration the transient effects inherent in the cycling MTSA system as well as assesses the use of water as coolant. Standard heat transfer, thermodynamic, and heat exchanger methods are presented to conduct the analysis. Assumptions and model verification are discussed. The tool was used to perform various system studies. Coolant selection was explored and takes into account different operational scenarios as the minimum bed temperature is driven by the sublimation temperature of the coolant (water being significantly higher than LCO2). From this, coolant mass is sized coupled with sorbent bed mass because MTSA adsorption performance decreases with increasing sublimation temperature. Reduction in heat exchanger performance and even removal of certain heat exchangers, like a recuperative one between the two sorbent beds, is also investigated. Finally, the coolant flow rate is varied over the cycle to determine if there is a more optimal means of cooling the bed from a mass perspective. Results of these studies and subsequent recommendations for system design are presented.
NASA Technical Reports Server (NTRS)
Knoll, Richard H.; Stochl, Robert J.; Sanabria, Rafael
1991-01-01
The storage of cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) for the future Space Exploration Initiative (SEI) will require lightweight, high performance thermal protection systems (TPSs). For the near-term lunar missions, the major weight element for most of the TPSs will be multilayer insulation (MLI) and/or the special structures/systems required to accommodate the MLI. Methods of applying MLI to LH2 tankage to avoid condensation or freezing of condensible gases such as nitrogen or oxygen while in the atmosphere are discussed. Because relatively thick layers of MLI will be required for storage times of a month or more, the transient performance from ground-hold to space-hold of the systems will become important in optimizing the TPSs for many of the missions. The ground-hold performance of several candidate systems are given as well as a qualitative assessment of the transient performance effects.
NASA Technical Reports Server (NTRS)
Knoll, Richard H.; Stochl, Robert J.; Sanabria, Rafael
1991-01-01
The storage of cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) for the future Space Exploration Initiative (SEI) will require lightweight, high performance thermal protection systems (TPS's). For the near-term lunar missions, the major weight element for most of the TPS's will be multilayer insulation (MLI) and/or the special structures/systems required to accommodate the MLI. Methods of applying MLI to LH2 tankage to avoid condensation or freezing of condensible gases such as nitrogen or oxygen while in the atmosphere are discussed. Because relatively thick layers of MLI will be required for storage times of a month or more, the transient performance from ground-hold to space-hold of the systems will become important in optimizing the TPS's for many of the missions. The ground-hold performance of several candidate systems are given as well as a qualitative assessment of the transient performance effects.
Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.
2016-01-01
The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.
Steady-state and transient analysis of a squeeze film damper bearing for rotor stability
NASA Technical Reports Server (NTRS)
Barrett, L. E.; Gunter, E. J.
1975-01-01
A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.
Microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1984-01-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety systemmore » is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.« less
NASA Astrophysics Data System (ADS)
Sima, Wenxia; Zou, Mi; Yang, Ming; Yang, Qing; Peng, Daixiao
2018-05-01
Amorphous alloy is increasingly widely used in the iron core of power transformer due to its excellent low loss performance. However, its potential harm to the power system is not fully studied during the electromagnetic transients of the transformer. This study develops a simulation model to analyze the effect of transformer iron core materials on ferroresonance. The model is based on the transformer π equivalent circuit. The flux linkage-current (ψ-i) Jiles-Atherton reactor is developed in an Electromagnetic Transients Program-Alternative Transients Program and is used to represent the magnetizing branches of the transformer model. Two ferroresonance cases are studied to compare the performance of grain-oriented Si-steel and amorphous alloy cores. The ferroresonance overvoltage and overcurrent are discussed under different system parameters. Results show that amorphous alloy transformer generates higher voltage and current than those of grain-oriented Si-steel transformer and significantly harms the power system safety.
Ensemble Classifier Strategy Based on Transient Feature Fusion in Electronic Nose
NASA Astrophysics Data System (ADS)
Bagheri, Mohammad Ali; Montazer, Gholam Ali
2011-09-01
In this paper, we test the performance of several ensembles of classifiers and each base learner has been trained on different types of extracted features. Experimental results show the potential benefits introduced by the usage of simple ensemble classification systems for the integration of different types of transient features.
Development of Safety Analysis Code System of Beam Transport and Core for Accelerator Driven System
NASA Astrophysics Data System (ADS)
Aizawa, Naoto; Iwasaki, Tomohiko
2014-06-01
Safety analysis code system of beam transport and core for accelerator driven system (ADS) is developed for the analyses of beam transients such as the change of the shape and position of incident beam. The code system consists of the beam transport analysis part and the core analysis part. TRACE 3-D is employed in the beam transport analysis part, and the shape and incident position of beam at the target are calculated. In the core analysis part, the neutronics, thermo-hydraulics and cladding failure analyses are performed by the use of ADS dynamic calculation code ADSE on the basis of the external source database calculated by PHITS and the cross section database calculated by SRAC, and the programs of the cladding failure analysis for thermoelastic and creep. By the use of the code system, beam transient analyses are performed for the ADS proposed by Japan Atomic Energy Agency. As a result, the rapid increase of the cladding temperature happens and the plastic deformation is caused in several seconds. In addition, the cladding is evaluated to be failed by creep within a hundred seconds. These results have shown that the beam transients have caused a cladding failure.
NASA Technical Reports Server (NTRS)
Ridha, Rabi M. J.
1992-01-01
An experimental investigation for the effects of transient operation of a phosphoric acid fuel-cell stack on heat transfer and temperature distribution in the electrodes has been conducted. The proposed work utilized the experimental setup with modifications, which was designed and constructed under NASA Contract No. NCC-3-17(5). The experimental results obtained from this investigation and the mathematical model obtained under NASA Contract No. NCC3-17(4) after modifications, were utilized to develop mathematical models for transient heat transfer coefficient and temperature distribution in the electrode and to evaluate the performance of the cooling - system under unsteady state conditions. The empirical formulas developed were then implemented to modifying the developed computer code. Two incompressible coolants were used to study experimentally the effect of the thermophysical properties of the cool-ants on the transient heat transfer coefficient and the thermal contact resistance during start-up and shut-down processes. Coolant mass flow rates were verified from 16 to 88.2 Kg/hr during the transient process when the electrical power supply was gradually increased or decreased in the range (O to 3000 W/sq m). The effect of the thermal contact resistance with a range of stack pressure from O to 3500 KPa was studied.
Machine-learning-based Brokers for Real-time Classification of the LSST Alert Stream
NASA Astrophysics Data System (ADS)
Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika D.; Wang, Zhe; Lochner, Michelle; Matheson, Thomas; Saha, Abhijit; Yang, Shuo; Zhao, Zhenge; Kececioglu, John; Scheidegger, Carlos; Snodgrass, Richard T.; Axelrod, Tim; Jenness, Tim; Maier, Robert S.; Ridgway, Stephen T.; Seaman, Robert L.; Evans, Eric Michael; Singh, Navdeep; Taylor, Clark; Toeniskoetter, Jackson; Welch, Eric; Zhu, Songzhe; The ANTARES Collaboration
2018-05-01
The unprecedented volume and rate of transient events that will be discovered by the Large Synoptic Survey Telescope (LSST) demand that the astronomical community update its follow-up paradigm. Alert-brokers—automated software system to sift through, characterize, annotate, and prioritize events for follow-up—will be critical tools for managing alert streams in the LSST era. The Arizona-NOAO Temporal Analysis and Response to Events System (ANTARES) is one such broker. In this work, we develop a machine learning pipeline to characterize and classify variable and transient sources only using the available multiband optical photometry. We describe three illustrative stages of the pipeline, serving the three goals of early, intermediate, and retrospective classification of alerts. The first takes the form of variable versus transient categorization, the second a multiclass typing of the combined variable and transient data set, and the third a purity-driven subtyping of a transient class. Although several similar algorithms have proven themselves in simulations, we validate their performance on real observations for the first time. We quantitatively evaluate our pipeline on sparse, unevenly sampled, heteroskedastic data from various existing observational campaigns, and demonstrate very competitive classification performance. We describe our progress toward adapting the pipeline developed in this work into a real-time broker working on live alert streams from time-domain surveys.
Analysis of a hardware and software fault tolerant processor for critical applications
NASA Technical Reports Server (NTRS)
Dugan, Joanne B.
1993-01-01
Computer systems for critical applications must be designed to tolerate software faults as well as hardware faults. A unified approach to tolerating hardware and software faults is characterized by classifying faults in terms of duration (transient or permanent) rather than source (hardware or software). Errors arising from transient faults can be handled through masking or voting, but errors arising from permanent faults require system reconfiguration to bypass the failed component. Most errors which are caused by software faults can be considered transient, in that they are input-dependent. Software faults are triggered by a particular set of inputs. Quantitative dependability analysis of systems which exhibit a unified approach to fault tolerance can be performed by a hierarchical combination of fault tree and Markov models. A methodology for analyzing hardware and software fault tolerant systems is applied to the analysis of a hypothetical system, loosely based on the Fault Tolerant Parallel Processor. The models consider both transient and permanent faults, hardware and software faults, independent and related software faults, automatic recovery, and reconfiguration.
Cortical cholinergic signaling controls the detection of cues
Gritton, Howard J.; Howe, William M.; Mallory, Caitlin S.; Hetrick, Vaughn L.; Berke, Joshua D.; Sarter, Martin
2016-01-01
The cortical cholinergic input system has been described as a neuromodulator system that influences broadly defined behavioral and brain states. The discovery of phasic, trial-based increases in extracellular choline (transients), resulting from the hydrolysis of newly released acetylcholine (ACh), in the cortex of animals reporting the presence of cues suggests that ACh may have a more specialized role in cognitive processes. Here we expressed channelrhodopsin or halorhodopsin in basal forebrain cholinergic neurons of mice with optic fibers directed into this region and prefrontal cortex. Cholinergic transients, evoked in accordance with photostimulation parameters determined in vivo, were generated in mice performing a task necessitating the reporting of cue and noncue events. Generating cholinergic transients in conjunction with cues enhanced cue detection rates. Moreover, generating transients in noncued trials, where cholinergic transients normally are not observed, increased the number of invalid claims for cues. Enhancing hits and generating false alarms both scaled with stimulation intensity. Suppression of endogenous cholinergic activity during cued trials reduced hit rates. Cholinergic transients may be essential for synchronizing cortical neuronal output driven by salient cues and executing cue-guided responses. PMID:26787867
NASA Technical Reports Server (NTRS)
Wright, R. M.; Hwang, K. C.
1973-01-01
The sorbent behavior of solid amine resin IR-45 with regard to potential use in regenerative CO2-removal systems for manned spacecraft is considered. Measurements of equilibrium sorption capacity of IR-45 for water and for CO2 are reported, and the dynamic mass transfer behavior of IR-45 beds is studied under conditions representative of those expected in a manned spacecraft. A digital computer program was written for the transient performance prediction of CO2 removal systems comprised of solid amine beds. Also evaluated are systems employing inorganic molecular-sieve sorbents. Tests show that there is definitely an effect of water loading on the absorption rate.
Numerical Investigation of Transient Flow in a Prototype Centrifugal Pump during Startup Period
NASA Astrophysics Data System (ADS)
Zhang, Yu-Liang; Zhu, Zu-Chao; Dou, Hua-Shu; Cui, Bao-Ling; Li, Yi; Zhou, Zhao-Zhong
2017-05-01
Transient performance of pumps during transient operating periods, such as startup and stopping, has drawn more and more attentions recently due to the growing engineering needs. During the startup period of a pump, the performance parameters such as the flow rate and head would vary significantly in a broad range. Therefore, it is very difficult to accurately specify the unsteady boundary conditions for a pump alone to solve the transient flow in the absence of experimental results. The closed-loop pipe system including a centrifugal pump is built to accomplish the self-coupling calculation. The three-dimensional unsteady incompressible viscous flow inside the passage of the pump during startup period is numerically simulated using the dynamic mesh method. Simulation results show that there are tiny fluctuations in the flow rate even under stable operating conditions and this can be attributed to influence of the rotor-stator interaction. At the very beginning of the startup, the rising speed of the flow rate is lower than that of the rotational speed. It is also found that it is not suitable to predict the transient performance of pumps using the calculation method of quasi-steady flow, especially at the earlier period of the startup.
Optimal subinterval selection approach for power system transient stability simulation
Kim, Soobae; Overbye, Thomas J.
2015-10-21
Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less
Coherent Transient Systems Evaluation
1993-06-17
europium doped yttrium silicate in collaboration with IBM Almaden Research Center. Research into divalent ion doped crystals as photon gated materials...noise limited model and ignore the non-ideal properties of the medium, nonlinear effects, spatial crosstalk, gating efficiencies, local heating, the...demonstration of the coherent transient continuous optical processor was performed in europium doped yttrium silicate. Though hyperfine split ground
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Dustin, M. O.
1981-01-01
Steady state tests were run to characterize the system and component efficiencies over the complete speed-torque capabilities of the propulsion system in both motoring and regenerative modes of operation. The steady state data were obtained using a battery simulator to separate the effects on efficiency caused by changing battery state-of-charge and component temperature. Transient tests were performed to determine the energy profiles of the propulsion system operating over the SAE J227a driving schedules.
NASA Technical Reports Server (NTRS)
Stoughton, John W.; Obando, Rodrigo A.
1993-01-01
The modeling and design of a fault-tolerant multiprocessor system is addressed. In particular, the behavior of the system during recovery and restoration after a fault has occurred is investigated. Given that a multicomputer system is designed using the Algorithm to Architecture to Mapping Model (ATAMM), and that a fault (death of a computing resource) occurs during its normal steady-state operation, a model is presented as a viable research tool for predicting the performance bounds of the system during its recovery and restoration phases. Furthermore, the bounds of the performance behavior of the system during this transient mode can be assessed. These bounds include: time to recover from the fault (t(sub rec)), time to restore the system (t(sub rec)) and whether there is a permanent delay in the system's Time Between Input and Output (TBIO) after the system has reached a steady state. An implementation of an ATAMM based computer was developed with the Generic VHSIC Spaceborne Computer (GVSC) as the target system. A simulation of the GVSC was also written based on the code used in ATAMM Multicomputer Operating System (AMOS). The simulation is in turn used to validate the new model in the usefulness and accuracy in tracking the propagation of the delay through the system and predicting the behavior in the transient state of recovery and restoration. The model is validated as an accurate method to predict the transient behavior of an ATAMM based multicomputer during recovery and restoration.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-06-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Measured performance of the GTA rf systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denney, P.M.; Jachim, S.P.
1993-01-01
This paper describes the performance of the RF systems on the Ground Test Accelerator (GTA). The RF system architecture is briefly described. Among the RF performance results presented are RF field flatness and stability, amplitude and phase control resolution, and control system bandwidth and stability. The rejection by the RF systems of beam-induced disturbances, such as transients and noise, are analyzed. The observed responses are also compared to computer-based simulations of the RF systems for validation.
Parameter Transient Behavior Analysis on Fault Tolerant Control System
NASA Technical Reports Server (NTRS)
Belcastro, Christine (Technical Monitor); Shin, Jong-Yeob
2003-01-01
In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. This paper illustrates analysis of a FTC system based on estimated fault parameter transient behavior which may include false fault detections during a short time interval. Using Lyapunov function analysis, the upper bound of an induced-L2 norm of the FTC system performance is calculated as a function of a fault detection time and the exponential decay rate of the Lyapunov function.
NASA Technical Reports Server (NTRS)
McArdle, Jack G.; Barth, Richard L.; Wenzel, Leon M.; Biesiadny, Thomas J.
1996-01-01
A convertible engine called the CEST TF34, using the variable inlet guide vane method of power change, was tested on an outdoor stand at the NASA Lewis Research Center with a waterbrake dynamometer for the shaft load. A new digital electronic system, in conjunction with a modified standard TF34 hydromechanical fuel control, kept engine operation stable and safely within limits. All planned testing was completed successfully. Steady-state performance and acoustic characteristics were reported previously and are referenced. This report presents results of transient and dynamic tests. The transient tests measured engine response to several rapid changes in thrust and torque commands at constant fan (shaft) speed. Limited results from dynamic tests using the pseudorandom binary noise technique are also presented. Performance of the waterbrake dynamometer is discussed in an appendix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hausladen, Paul; Blessinger, Christopher S; Guzzardo, Tyler
A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to detect the illicit movement of nuclear material. In the present work, transient increases in gamma ray counting rates in RPMs due to rain are investigated. The increase in background activity associatedmore » with rain, which has been well documented in the field of environmental radioactivity, originates from the atmospheric deposition of two radioactive daughters of radon-222, namely lead-214 and bismuth-214 (henceforth {sup 222}Rn, {sup 214}Pb and {sup 214}Bi). In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and High Purity Germanium spectra. The data verifies these radionuclides are responsible for the dominant transient natural background fluctuations in RPMs. Effects on system performance and potential mitigation strategies are discussed.« less
Transient and Steady-state Tests of the Space Power Research Engine with Resistive and Motor Loads
NASA Technical Reports Server (NTRS)
Rauch, Jeffrey S.; Kankam, M. David
1995-01-01
The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.
Transient and steady-state tests of the space power research engine with resistive and motor loads
NASA Astrophysics Data System (ADS)
Rauch, Jeffrey S.; Kankam, M. David
1995-01-01
The NASA Lewis Research Center (LeRC) has been testing free-piston Stirling engine/linear alternators (FPSE/LA) to develop advanced power convertors for space-based electrical power generation. Tests reported herein were performed to evaluate the interaction and transient behavior of FPSE/LA-based power systems with typical user loads. Both resistive and small induction motor loads were tested with the space power research engine (SPRE) power system. Tests showed that the control system could maintain constant long term voltage and stable periodic operation over a large range of engine operating parameters and loads. Modest resistive load changes were shown to cause relatively large voltage and, therefore, piston and displacer amplitude excursions. Starting a typical small induction motor was shown to cause large and, in some cases, deleterious voltage transients. The tests identified the need for more effective controls, if FPSE/LAs are to be used for stand-alone power systems. The tests also generated a large body of transient dynamic data useful for analysis code validation.
NASA Astrophysics Data System (ADS)
Saberimoghaddam, Ali; Bahri Rasht Abadi, Mohammad Mahdi
2018-01-01
Joule-Thomson cooling systems are commonly used in gas liquefaction. In small gas liquefiers, transient cool-down time is high. Selecting suitable conditions for cooling down process leads to decrease in time and cost. In the present work, transient thermal behavior of Joule-Thomson cooling system including counter current helically coiled tube in tube heat exchanger, expansion valve, and collector was studied using experimental tests and simulations. The experiments were performed using small gas liquefier and nitrogen gas as working fluid. The heat exchanger was thermally studied by experimental data obtained from a small gas liquefier. In addition, the simulations were performed using experimental data as variable boundary conditions. A comparison was done between presented and conventional methods. The effect of collector heat capacity and convection heat transfer coefficient inside the tubes on system performance was studied using temperature profiles along the heat exchanger.
NASA Technical Reports Server (NTRS)
Sellers, J. F.
1973-01-01
The transient performance of two concepts for control of vertical takeoff aircraft remote lift fans is analyzed and discussed. Both concepts employ flow transfer between pairs of lift fans located in separate parts of the aircraft in order to obtain attitude control moments for hover and low-speed flight. The results presented are from a digital computer, dynamic analysis of the YJ97/LF460 remote drive turbofan. The transient responses of the two systems are presented for step demands in lift and moment.
Using steady-state equations for transient flow calculation in natural gas pipelines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, R.N.; Zhou, P.
1984-04-02
Maddox and Zhou have extended their technique for calculating the unsteady-state behavior of straight gas pipelines to complex pipeline systems and networks. After developing the steady-state flow rate and pressure profile for each pipe in the network, analysts can perform the transient-state analysis in the real-time step-wise manner described for this technique.
Advanced Instrumentation for Transient Reactor Testing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corradini, Michael L.; Anderson, Mark; Imel, George
Transient testing involves placing fuel or material into the core of specialized materials test reactors that are capable of simulating a range of design basis accidents, including reactivity insertion accidents, that require the reactor produce short bursts of intense highpower neutron flux and gamma radiation. Testing fuel behavior in a prototypic neutron environment under high-power, accident-simulation conditions is a key step in licensing nuclear fuels for use in existing and future nuclear power plants. Transient testing of nuclear fuels is needed to develop and prove the safety basis for advanced reactors and fuels. In addition, modern fuel development and designmore » increasingly relies on modeling and simulation efforts that must be informed and validated using specially designed material performance separate effects studies. These studies will require experimental facilities that are able to support variable scale, highly instrumented tests providing data that have appropriate spatial and temporal resolution. Finally, there are efforts now underway to develop advanced light water reactor (LWR) fuels with enhanced performance and accident tolerance. These advanced reactor designs will also require new fuel types. These new fuels need to be tested in a controlled environment in order to learn how they respond to accident conditions. For these applications, transient reactor testing is needed to help design fuels with improved performance. In order to maximize the value of transient testing, there is a need for in-situ transient realtime imaging technology (e.g., the neutron detection and imaging system like the hodoscope) to see fuel motion during rapid transient excursions with a higher degree of spatial and temporal resolution and accuracy. There also exists a need for new small, compact local sensors and instrumentation that are capable of collecting data during transients (e.g., local displacements, temperatures, thermal conductivity, neutron flux, etc.).« less
Single event induced transients in I/O devices - A characterization
NASA Technical Reports Server (NTRS)
Newberry, D. M.; Kaye, D. H.; Soli, G. A.
1990-01-01
The results of single-event upset (SEU) testing performed to evaluate the parametric transients, i.e., amplitude and duration, in several I/O devices, and the impact of these transients are discussed. The failure rate of these devices is dependent on the susceptibility of interconnected devices to the resulting transient change in the output of the I/O device. This failure rate, which is a function of the susceptibility of the interconnected device as well as the SEU response of the I/O device itself, may be significantly different from an upset rate calculated without taking these factors into account. The impact at the system level is discussed by way of an example.
NASA Astrophysics Data System (ADS)
Shi, Shanbin
The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal-hydraulic and nuclear coupled startup transients are performed to investigate the flow instabilities at low pressure and low power conditions. Two different power ramps are chosen to study the effect of power density on the flow instability. The experimental startup transient tests show the existence of three different flow instability mechanisms during the low pressure startup transients, i.e., flashing instability, condensation induced instability, and density wave oscillations. Flashing instability in the chimney section of the test loop and density wave oscillation are the main flow instabilities observed when the system pressure is below 0.5 MPa. They show completely different type of oscillations, i.e., intermittent oscillation and sinusoidal oscillation, in void fraction profile during the startup transients. In order to perform nuclear-coupled startup transients with void reactivity feedback, the Point Kinetics model is utilized to calculate the transient power during the startup transients. In addition, the differences between the electric resistance heaters and typical fuel element are taken into account. The reactor power calculated shows some oscillations due to flashing instability during the transients. However, the void reactivity feedback does not have significant influence on the flow instability during the startup procedure for the NMR-50. Further investigation of very small power ramp on the startup transients is carried out for the thermal-hydraulic startup transients. It is found that very small power density can eliminate the flashing oscillation in the single phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. Furthermore, initially pressurized startup procedure is investigated to eliminate the main flow instabilities. The results show that the pressurized startup procedure can suppress the flashing instability at low pressure and low power conditions. In order to have a deep understanding of natural circulation flow instability, the quasi-steady tests are performed using the test facility installed with preheater and subcooler. The effects of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback are investigated in the quasi-steady state tests. The stability boundaries are determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. In order to predict the stability boundary theoretically, linear stability analysis in the frequency domain is performed at four sections of the loop. The flashing in the chimney is considered as an axially uniform heat source. The dimensionless characteristic equation of the pressure drop perturbation is obtained by considering the void fraction effect and outlet flow resistance in the chimney section. The flashing boundary shows some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium is recommended to improve the accuracy of flashing instability boundary.
Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet
NASA Astrophysics Data System (ADS)
Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.
2016-12-01
Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.
Castellini, Paolo; Di Giuseppe, Andrea
2008-06-01
This paper describes the development of a system for measuring surface coordinates (commonly known as "shape measurements") which is able to give the temporal evolution of the position of the tire sidewall in transient conditions (such as during braking, when there are potholes or when the road surface is uneven) which may or may not be reproducible. The system is based on the well-known technique of projecting and observing structured light using a digital camera with an optical axis which is slanted with respect to the axis of the projector. The transient nature of the phenomenon has led to the development of specific innovative solutions as regards image processing algorithms. This paper briefly describes the components which make up the measuring system and presents the results of the measurements carried out on the drum bench. It then analyses the performance of the measuring system and the sources of uncertainty which led to the development of the system for a specific dynamic application: impact with an obstacle (cleat test). The measuring system guaranteed a measurement uncertainty of 0.28 mm along the Z axis (the axial direction of the tire) with a measurement range of 250(X) x 80(Y) x 25(Z) mm(3), with the tire rolling at a speed of up to 30 km/h.
Baygi, Mahdi Oloumi; Ghazi, Reza; Monfared, Mohammad
2014-07-01
Applying the min-projection strategy (MPS) to a three-phase grid-connected inverter to improve its transient performance is the main objective of this paper. For this purpose, the inverter is first modeled as a switched linear system. Then, the feasibility of the MPS technique is investigated and the stability criterion is derived. Hereafter, the fundamental equations of the MPS for the control of the inverter are obtained. The proposed scheme is simulated in PSCAD/EMTDC environment. The validity of the MPS approach is confirmed by comparing the obtained results with those of VOC method. The results demonstrate that the proposed method despite its simplicity provides an excellent transient performance, fully decoupled control of active and reactive powers, acceptable THD level and a reasonable switching frequency. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
A new method for analysis of limit cycle behavior of the NASA/JPL 70-meter antenna axis servos
NASA Technical Reports Server (NTRS)
Hill, R. E.
1989-01-01
A piecewise linear method of analyzing the effects of discontinuous nonlinearities on control system performance is described. The limit cycle oscillatory behavior of the system resulting from the nonlinearities is described in terms of a sequence of linear system transient responses. The equations are derived which relate the initial and the terminal conditions of successive transients and the boundary conditions imposed by the non-linearities. The method leads to a convenient computation algorithm for prediction of limit cycle characteristics resulting from discontinuous nonlinearities such as friction, deadzones, and hysteresis.
Electrical insulation design requirements and reliability goals
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1983-11-01
The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.
Steady-state and transient operation of a heat-pipe radiator system
NASA Technical Reports Server (NTRS)
Sellers, J. P.
1974-01-01
Data obtained on a VCHP heat-pipe radiator system tested in a vacuum environment were studied. Analyses and interpretation of the steady-state results are presented along with an initial analysis of some of the transient data. Particular emphasis was placed on quantitative comparisons of the experimental data with computer model simulations. The results of the study provide a better understanding of the system but do not provide a complete explanation for the observed low VCHP performance and the relatively flat radiator panel temperature distribution. The results of the study also suggest hardware, software, and testing improvements.
Time-dependent inertia analysis of vehicle mechanisms
NASA Astrophysics Data System (ADS)
Salmon, James Lee
Two methods for performing transient inertia analysis of vehicle hardware systems are developed in this dissertation. The analysis techniques can be used to predict the response of vehicle mechanism systems to the accelerations associated with vehicle impacts. General analytical methods for evaluating translational or rotational system dynamics are generated and evaluated for various system characteristics. The utility of the derived techniques are demonstrated by applying the generalized methods to two vehicle systems. Time dependent acceleration measured during a vehicle to vehicle impact are used as input to perform a dynamic analysis of an automobile liftgate latch and outside door handle. Generalized Lagrange equations for a non-conservative system are used to formulate a second order nonlinear differential equation defining the response of the components to the transient input. The differential equation is solved by employing the fourth order Runge-Kutta method. The events are then analyzed using commercially available two dimensional rigid body dynamic analysis software. The results of the two analytical techniques are compared to experimental data generated by high speed film analysis of tests of the two components performed on a high G acceleration sled at Ford Motor Company.
The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Masci, Frank J.; Laher, Russ R.; Rebbapragada, Umaa D.; Doran, Gary B.; Miller, Adam A.; Bellm, Eric; Kasliwal, Mansi; Ofek, Eran O.; Surace, Jason; Shupe, David L.; Grillmair, Carl J.; Jackson, Ed; Barlow, Tom; Yan, Lin; Cao, Yi; Cenko, S. Bradley; Storrie-Lombardi, Lisa J.; Helou, George; Prince, Thomas A.; Kulkarni, Shrinivas R.
2017-01-01
We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, bogus candidates from processing artifacts and imperfect image subtractions outnumber real transients by ≃10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an efficiency (or completeness) of ≃97% for a maximum tolerable false-positive rate of 1% when classifying raw candidates. All subtraction-image metrics, source features, ML probability-based real-bogus scores, contextual metadata from other surveys, and possible associations with known Solar System objects are stored in a relational database for retrieval by the various science working groups. We review our efforts in mitigating false-positives and our experience in optimizing the overall system in response to the multitude of science projects underway with iPTF.
The IPAC Image Subtraction and Discovery Pipeline for the Intermediate Palomar Transient Factory
NASA Technical Reports Server (NTRS)
Masci, Frank J.; Laher, Russ R.; Rebbapragada, Umaa D.; Doran, Gary B.; Miller, Adam A.; Bellm, Eric; Kasliwal, Mansi; Ofek, Eran O.; Surace, Jason; Shupe, David L.;
2016-01-01
We describe the near real-time transient-source discovery engine for the intermediate Palomar Transient Factory (iPTF), currently in operations at the Infrared Processing and Analysis Center (IPAC), Caltech. We coin this system the IPAC/iPTF Discovery Engine (or IDE). We review the algorithms used for PSF-matching, image subtraction, detection, photometry, and machine-learned (ML) vetting of extracted transient candidates. We also review the performance of our ML classifier. For a limiting signal-to-noise ratio of 4 in relatively unconfused regions, bogus candidates from processing artifacts and imperfect image subtractions outnumber real transients by approximately equal to 10:1. This can be considerably higher for image data with inaccurate astrometric and/or PSF-matching solutions. Despite this occasionally high contamination rate, the ML classifier is able to identify real transients with an efficiency (or completeness) of approximately equal to 97% for a maximum tolerable false-positive rate of 1% when classifying raw candidates. All subtraction-image metrics, source features, ML probability-based real-bogus scores, contextual metadata from other surveys, and possible associations with known Solar System objects are stored in a relational database for retrieval by the various science working groups. We review our efforts in mitigating false-positives and our experience in optimizing the overall system in response to the multitude of science projects underway with iPTF.
On-Die Sensors for Transient Events
NASA Astrophysics Data System (ADS)
Suchak, Mihir Vimal
Failures caused by transient electromagnetic events like Electrostatic Discharge (ESD) are a major concern for embedded systems. The component often failing is an integrated circuit (IC). Determining which IC is affected in a multi-device system is a challenging task. Debugging errors often requires sophisticated lab setups which require intentionally disturbing and probing various parts of the system which might not be easily accessible. Opening the system and adding probes may change its response to the transient event, which further compounds the problem. On-die transient event sensors were developed that require relatively little area on die, making them inexpensive, they consume negligible static current, and do not interfere with normal operation of the IC. These circuits can be used to determine the pin involved and the level of the event in the event of a transient event affecting the IC, thus allowing the user to debug system-level transient events without modifying the system. The circuit and detection scheme design has been completed and verified in simulations with Cadence Virtuoso environment. Simulations accounted for the impact of the ESD protection circuits, parasitics from the I/O pin, package and I/O ring, and included a model of an ESD gun to test the circuit's response to an ESD pulse as specified in IEC 61000-4-2. Multiple detection schemes are proposed. The final detection scheme consists of an event detector and a level sensor. The event detector latches on the presence of an event at a pad, to determine on which pin an event occurred. The level sensor generates current proportional to the level of the event. This current is converted to a voltage and digitized at the A/D converter to be read by the microprocessor. Detection scheme shows good performance in simulations when checked against process variations and different kind of events.
A transient performance method for CO2 removal with regenerable adsorbents
NASA Technical Reports Server (NTRS)
Hwang, K. C.
1972-01-01
A computer program is described which can be used to predict the transient performance of vacuum-desorbed sorbent beds for CO2 or water removal, and composite beds of two sorbents for simultaneous humidity control and CO2 removal. The program was written primarily for silica gel and molecular sieve inorganic sorbents, but can be used for a variety of adsorbent materials. Part 2 of this report describes a computer program which can be used to predict performance for multiple-bed CO2-removal sorbent systems. This program is an expanded version of the composite sorbent bed program described in Part 1.
Vacuum system design and tritium inventory for the TFTR charge exchange diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medley, S.S.
The charge exchange diagnostic for the TFTR is comprised of two analyzer systems which contain a total of twenty independent mass/energy analyzers and one diagnostic neutral beam tentatively rated at 80 keV, 15 A. The associated vacuum systems were analyzed using the Vacuum System Transient Simulator (VSTS) computer program which models the transient transport of multi-gas species through complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. In addition to providing improved design performance at reduced cost, the analysis yields estimates for the exchange of tritium from the torus to the diagnostic components and ofmore » the diagnostic working gases to the torus.« less
A Performance Prediction Model for a Fault-Tolerant Computer During Recovery and Restoration
NASA Technical Reports Server (NTRS)
Obando, Rodrigo A.; Stoughton, John W.
1995-01-01
The modeling and design of a fault-tolerant multiprocessor system is addressed. Of interest is the behavior of the system during recovery and restoration after a fault has occurred. The multiprocessor systems are based on the Algorithm to Architecture Mapping Model (ATAMM) and the fault considered is the death of a processor. The developed model is useful in the determination of performance bounds of the system during recovery and restoration. The performance bounds include time to recover from the fault, time to restore the system, and determination of any permanent delay in the input to output latency after the system has regained steady state. Implementation of an ATAMM based computer was developed for a four-processor generic VHSIC spaceborne computer (GVSC) as the target system. A simulation of the GVSC was also written on the code used in the ATAMM Multicomputer Operating System (AMOS). The simulation is used to verify the new model for tracking the propagation of the delay through the system and predicting the behavior of the transient state of recovery and restoration. The model is shown to accurately predict the transient behavior of an ATAMM based multicomputer during recovery and restoration.
Wang, Jianhui; Liu, Zhi; Chen, C L Philip; Zhang, Yun
2017-10-12
Hysteresis exists ubiquitously in physical actuators. Besides, actuator failures/faults may also occur in practice. Both effects would deteriorate the transient tracking performance, and even trigger instability. In this paper, we consider the problem of compensating for actuator failures and input hysteresis by proposing a fuzzy control scheme for stochastic nonlinear systems. Compared with the existing research on stochastic nonlinear uncertain systems, it is found that how to guarantee a prescribed transient tracking performance when taking into account actuator failures and hysteresis simultaneously also remains to be answered. Our proposed control scheme is designed on the basis of the fuzzy logic system and backstepping techniques for this purpose. It is proven that all the signals remain bounded and the tracking error is ensured to be within a preestablished bound with the failures of hysteretic actuator. Finally, simulations are provided to illustrate the effectiveness of the obtained theoretical results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreno, Gilberto; Bennion, Kevin; King, Charles
Thermal management strategies for automotive power electronic systems have evolved over time to reduce system cost and to improve reliability and thermal performance. In this study, we characterized the power electronic thermal management systems of two electric-drive vehicles--the 2012 Nissan LEAF and 2014 Honda Accord Hybrid. Tests were conducted to measure the insulated-gate bipolar transistor-to-coolant thermal resistances for both steady-state and transient conditions at various coolant flow rates. Water-ethylene glycol at a temperature of 65 degrees C was used as the coolant for these experiments. Computational fluid dynamics and finite element analysis models of the vehicle's power electronics thermal managementmore » system were then created and validated using experimentally obtained results. Results indicate that the Accord module provides lower steady-state thermal resistance as compared with the LEAF module. However, the LEAF design may provide improved performance in transient conditions and may have cost benefits.« less
Automated Loads Analysis System (ATLAS)
NASA Technical Reports Server (NTRS)
Gardner, Stephen; Frere, Scot; O’Reilly, Patrick
2013-01-01
ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.
NASA Astrophysics Data System (ADS)
Lan, G.; Jiang, J.; Li, D. D.; Yi, W. S.; Zhao, Z.; Nie, L. N.
2013-12-01
The calculation of water-hammer pressure phenomenon of single-phase liquid is already more mature for a pipeline of uniform characteristics, but less research has addressed the calculation of slurry water hammer pressure in complex pipelines with slurry flows carrying solid particles. In this paper, based on the developments of slurry pipelines at home and abroad, the fundamental principle and method of numerical simulation of transient processes are presented, and several boundary conditions are given. Through the numerical simulation and analysis of transient processes of a practical engineering of long-distance slurry transportation pipeline system, effective protection measures and operating suggestions are presented. A model for calculating the water impact of solid and fluid phases is established based on a practical engineering of long-distance slurry pipeline transportation system. After performing a numerical simulation of the transient process, analyzing and comparing the results, effective protection measures and operating advice are recommended, which has guiding significance to the design and operating management of practical engineering of longdistance slurry pipeline transportation system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuker, M.S.; Braun, J.E.
This paper presents a detailed evaluation of the performance of a statistical, rule-based fault detection and diagnostic (FDD) technique presented by Rossi and Braun (1997). Steady-state and transient tests were performed on a simple rooftop air conditioner over a range of conditions and fault levels. The steady-state data without faults were used to train models that predict outputs for normal operation. The transient data with faults were used to evaluate FDD performance. The effect of a number of design variables on FDD sensitivity for different faults was evaluated and two prototype systems were specified for more complete evaluation. Good performancemore » was achieved in detecting and diagnosing five faults using only six temperatures (2 input and 4 output) and linear models. The performance improved by about a factor of two when ten measurements (three input and seven output) and higher order models were used. This approach for evaluating and optimizing the performance of the statistical, rule-based FDD technique could be used as a design and evaluation tool when applying this FDD method to other packaged air-conditioning systems. Furthermore, the approach could also be modified to evaluate the performance of other FDD methods.« less
A digital computer simulation and study of a direct-energy-transfer power-conditioning system
NASA Technical Reports Server (NTRS)
Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.
1974-01-01
A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.
Transient dynamics of a flexible rotor with squeeze film dampers
NASA Technical Reports Server (NTRS)
Buono, D. F.; Schlitzer, L. D.; Hall, R. G., III; Hibner, D. H.
1978-01-01
A series of simulated blade loss tests are reported on a test rotor designed to operate above its second bending critical speed. A series of analyses were performed which predicted the transient behavior of the test rig for each of the blade loss tests. The scope of the program included the investigation of transient rotor dynamics of a flexible rotor system, similar to modern flexible jet engine rotors, both with and without squeeze film dampers. The results substantiate the effectiveness of squeeze film dampers and document the ability of available analytical methods to predict their effectiveness and behavior.
Study on transient beam loading compensation for China ADS proton linac injector II
NASA Astrophysics Data System (ADS)
Gao, Zheng; He, Yuan; Wang, Xian-Wu; Chang, Wei; Zhang, Rui-Feng; Zhu, Zheng-Long; Zhang, Sheng-Hu; Chen, Qi; Powers, Tom
2016-05-01
Significant transient beam loading effects were observed during beam commissioning tests of prototype II of the injector for the accelerator driven sub-critical (ADS) system, which took place at the Institute of Modern Physics, Chinese Academy of Sciences, between October and December 2014. During these tests experiments were performed with continuous wave (CW) operation of the cavities with pulsed beam current, and the system was configured to make use of a prototype digital low level radio frequency (LLRF) controller. The system was originally operated in pulsed mode with a simple proportional plus integral and deviation (PID) feedback control algorithm, which was not able to maintain the desired gradient regulation during pulsed 10 mA beam operations. A unique simple transient beam loading compensation method which made use of a combination of proportional and integral (PI) feedback and feedforward control algorithm was implemented in order to significantly reduce the beam induced transient effect in the cavity gradients. The superconducting cavity field variation was reduced to less than 1.7% after turning on this control algorithm. The design and experimental results of this system are presented in this paper. Supported by National Natural Science Foundation of China (91426303, 11525523)
Efficient multidimensional regularization for Volterra series estimation
NASA Astrophysics Data System (ADS)
Birpoutsoukis, Georgios; Csurcsia, Péter Zoltán; Schoukens, Johan
2018-05-01
This paper presents an efficient nonparametric time domain nonlinear system identification method. It is shown how truncated Volterra series models can be efficiently estimated without the need of long, transient-free measurements. The method is a novel extension of the regularization methods that have been developed for impulse response estimates of linear time invariant systems. To avoid the excessive memory needs in case of long measurements or large number of estimated parameters, a practical gradient-based estimation method is also provided, leading to the same numerical results as the proposed Volterra estimation method. Moreover, the transient effects in the simulated output are removed by a special regularization method based on the novel ideas of transient removal for Linear Time-Varying (LTV) systems. Combining the proposed methodologies, the nonparametric Volterra models of the cascaded water tanks benchmark are presented in this paper. The results for different scenarios varying from a simple Finite Impulse Response (FIR) model to a 3rd degree Volterra series with and without transient removal are compared and studied. It is clear that the obtained models capture the system dynamics when tested on a validation dataset, and their performance is comparable with the white-box (physical) models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Lan; Harburg, Daniel V.; Rogers, John A., E-mail: jrogers@illinois.edu
Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formedmore » with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.« less
NASA Technical Reports Server (NTRS)
Nurre, Gerald S.; Edberg, Donald L.
1998-01-01
Microgravity science payloads can be extremely sensitive to vibrations from machinery, acoustics, ventilation, and crew activity. Suppression of Transient Acceleration by Levitation (STABLE) is an active vibration isolation system designed to protect payloads from these disturbances. This paper gives an account of results from the flight demonstration of the STABLE microgravity isolation system, which was developed and successfully flight tested in orbit during USML-2, with the participation of Astronaut Fred Leslie. Following a very brief description of the operational principles, the hardware and software design, and performance criteria, results of the analysis of measured flight data are presented to provide an evaluation of system performance parameters, including acceleration attenuation, assessment of sway space, system power consumption, and other factors critical to the performance of an isolation system. Lessons learned and potential design improvements and evolutions are discussed. Data reduction by Robert Boucher of McDonnell Douglas Aerospace (MDA) was substantially assisted by Kenneth Hrovat of Tal-Cut, Inc., under support from National Aeronautics and Space Administration/Lewis Research Center (LeRC), Cleveland, OH.
Enabling NVM for Data-Intensive Scientific Services
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carns, Philip; Jenkins, John; Seo, Sangmin
Specialized, transient data services are playing an increasingly prominent role in data-intensive scientific computing. These services offer flexible, on-demand pairing of applications with storage hardware using semantics that are optimized for the problem domain. Concurrent with this trend, upcoming scientific computing and big data systems will be deployed with emerging NVM technology to achieve the highest possible price/productivity ratio. Clearly, therefore, we must develop techniques to facilitate the confluence of specialized data services and NVM technology. In this work we explore how to enable the composition of NVM resources within transient distributed services while still retaining their essential performance characteristics.more » Our approach involves eschewing the conventional distributed file system model and instead projecting NVM devices as remote microservices that leverage user-level threads, RPC services, RMA-enabled network transports, and persistent memory libraries in order to maximize performance. We describe a prototype system that incorporates these concepts, evaluate its performance for key workloads on an exemplar system, and discuss how the system can be leveraged as a component of future data-intensive architectures.« less
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Zinnecker, Alicia
2014-01-01
Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.
NASA Technical Reports Server (NTRS)
Csank, Jeffrey Thomas; Zinnecker, Alicia Mae
2014-01-01
Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.
Characterization of electrical appliances in transient state
NASA Astrophysics Data System (ADS)
Wójcik, Augustyn; Winiecki, Wiesław
2017-08-01
The article contains the study about electrical appliance characterization on the basis of power grid signals. To represent devices, parameters of current and voltage signals recorded during transient states are used. In this paper only transients occurring as a result of switching on devices are considered. The way of data acquisition performed in specialized measurement setup developed for electricity load monitoring is described. The paper presents the method of transients detection and the method of appliance parameters calculation. Using the set of acquired measurement data and appropriate software the set of parameters for several household appliances operating in different operating conditions was processed. Usefulness of appliances characterization in Non-Intrusive Appliance Load Monitoring System (NIALMS) with the use of proposed method is discussed focusing on obtained results.
The Zwicky Transient Facility Camera
NASA Astrophysics Data System (ADS)
Dekany, Richard; Smith, Roger M.; Belicki, Justin; Delacroix, Alexandre; Duggan, Gina; Feeney, Michael; Hale, David; Kaye, Stephen; Milburn, Jennifer; Murphy, Patrick; Porter, Michael; Reiley, Daniel J.; Riddle, Reed L.; Rodriguez, Hector; Bellm, Eric C.
2016-08-01
The Zwicky Transient Facility Camera (ZTFC) is a key element of the ZTF Observing System, the integrated system of optoelectromechanical instrumentation tasked to acquire the wide-field, high-cadence time-domain astronomical data at the heart of the Zwicky Transient Facility. The ZTFC consists of a compact cryostat with large vacuum window protecting a mosaic of 16 large, wafer-scale science CCDs and 4 smaller guide/focus CCDs, a sophisticated vacuum interface board which carries data as electrical signals out of the cryostat, an electromechanical window frame for securing externally inserted optical filter selections, and associated cryo-thermal/vacuum system support elements. The ZTFC provides an instantaneous 47 deg2 field of view, limited by primary mirror vignetting in its Schmidt telescope prime focus configuration. We report here on the design and performance of the ZTF CCD camera cryostat and report results from extensive Joule-Thompson cryocooler tests that may be of broad interest to the instrumentation community.
SENARIET, A Programme To Solve Transient Flows Of Liquids In Complex Circuits
NASA Astrophysics Data System (ADS)
Vargas-Munoz, M.; Rodriguez-Fernandez, M.; Perena-Tapiador, A.
2011-05-01
SENARIET is a programme to study fluid transients in pipeline systems in order to obtain pressure and velocity distributions along a circuit. When a transient process occurs in periods of the same order of the pressure waves’ travelling time along a circuit (the order of the circuit length divided by the effective propagation speed), the compressibility effects in liquids have to be considered. Taking this effect into account, the appropriate equations of continuity and momentum are solved by the method of characteristics, to obtain pressure and velocity along pipes as a function of time. The simulated results have been compared to theoretical and experimental ones to validate and evaluate the precision of the software. The results help to perform efficient and accurate predictions in order to define the propulsion sub-system. This type of analysis is very important in order to evaluate the water hammer effects in propulsion systems used on spacecrafts and launchers.
MRAC Revisited: Guaranteed Performance with Reference Model Modification
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmaje
2010-01-01
This paper presents modification of the conventional model reference adaptive control (MRAC) architecture in order to achieve guaranteed transient performance both in the output and input signals of an uncertain system. The proposed modification is based on the tracking error feedback to the reference model. It is shown that approach guarantees tracking of a given command and the ideal control signal (one that would be designed if the system were known) not only asymptotically but also in transient by a proper selection of the error feedback gain. The method prevents generation of high frequency oscillations that are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference command of any magnitude form any initial position without re-tuning. The benefits of the method are demonstrated in simulations.
NASA Astrophysics Data System (ADS)
Yousefian, Reza
This dissertation presents a real-time Wide-Area Control (WAC) designed based on artificial intelligence for large scale modern power systems transient stability enhancement. The WAC using the measurements available from Phasor Measurement Units (PMUs) at generator buses, monitors the global oscillations in the system and optimally augments the local excitation system of the synchronous generators. The complexity of the power system stability problem along with uncertainties and nonlinearities makes the conventional modeling non-practical or inaccurate. In this work Reinforcement Learning (RL) algorithm on the benchmark of Neural Networks (NNs) is used to map the nonlinearities of the system in real-time. This method different from both the centralized and the decentralized control schemes, employs a number of semi-autonomous agents to collaborate with each other to perform optimal control theory well-suited for WAC applications. Also, to handle the delays in Wide-Area Monitoring (WAM) and adapt the RL toward the robust control design, Temporal Difference (TD) is proposed as a solver for RL problem or optimal cost function. However, the main drawback of such WAC design is that it is challenging to determine if an offline trained network is valid to assess the stability of the power system once the system is evolved to a different operating state or network topology. In order to address the generality issue of NNs, a value priority scheme is proposed in this work to design a hybrid linear and nonlinear controllers. The algorithm so-called supervised RL is based on mixture of experts, where it is initialized by linear controller and as the performance and identification of the RL controller improves in real-time switches to the other controller. This work also focuses on transient stability and develops Lyapunov energy functions for synchronous generators to monitor the stability stress of the system. Using such energies as a cost function guarantees the convergence toward optimal post-fault solutions. These energy functions are developed on inter-area oscillations of the system identified online with Prony analysis. Finally, this work investigates the impacts of renewable energy resources, in specific Doubly Fed Induction Generator (DFIG)-based wind turbines, on power system transient stability and control. As the penetration of such resources is increased in transmission power system, neglecting the impacts of them will make the WAC design non-realistic. An energy function is proposed for DFIGs based on their dynamic performance in transient disturbances. Further, this energy is augmented to synchronous generators' energy as a global cost function, which is minimized by the WAC signals. We discuss the relative advantages and bottlenecks of each architecture and methodology using dynamic simulations of several test systems including a 2-area 8 bus system, IEEE 39 bus system, and IEEE 68 bus system in EMTP and real-time simulators. Being nonlinear-based, fast, accurate, and non-model based design, the proposed WAC system shows better transient and damping response when compared to conventional control schemes and local PSSs.
Effects of Pump-turbine S-shaped Characteristics on Transient Behaviours: Model Setup
NASA Astrophysics Data System (ADS)
Zeng, Wei; Yang, Jiandong; Hu, Jinhong
2017-04-01
Pumped storage stations undergo numerous transition processes, which make the pump turbines go through the unstable S-shaped region. The hydraulic transient in S-shaped region has normally been investigated through numerical simulations, while field experiments generally involve high risks and are difficult to perform. In this research, a pumped storage model composed of a piping system, two model units, two electrical control systems, a measurement system and a collection system was set up to study the transition processes. The model platform can be applied to simulate almost any hydraulic transition process that occurs in real power stations, such as load rejection, startup, frequency control and grid connection.
Transient flow analysis linked to fast pressure disturbance monitored in pipe systems
NASA Astrophysics Data System (ADS)
Kueny, J. L.; Lourenco, M.; Ballester, J. L.
2012-11-01
EDF Hydro Division has launched the RENOUVEAU program in order to increase performance and improve plant availability through anticipation. Due to this program, a large penstocks fleet is equipped with pressure transducers linked to a special monitoring system. Any significant disturbance of the pressure is captured in a snapshot and the waveform of the signal is stored and analyzed. During these transient states, variations in flow are unknown. In order to determine the structural impact of such overpressure occurring during complex transients conditions over the entire circuit, EDF DTG has asked ENSE3 GRENOBLE to develop a code called ACHYL CF*. The input data of ACHYL CF are circuit topology and pressure boundaries conditions. This article provide a description of the computer code developed for modeling the transient flow in a pipe network using the signals from pressure transducers as boundary conditions. Different test cases will be presented, simulating real hydro power plants for which measured pressure signals are available.
Open-source framework for power system transmission and distribution dynamics co-simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Renke; Fan, Rui; Daily, Jeff
The promise of the smart grid entails more interactions between the transmission and distribution networks, and there is an immediate need for tools to provide the comprehensive modelling and simulation required to integrate operations at both transmission and distribution levels. Existing electromagnetic transient simulators can perform simulations with integration of transmission and distribution systems, but the computational burden is high for large-scale system analysis. For transient stability analysis, currently there are only separate tools for simulating transient dynamics of the transmission and distribution systems. In this paper, we introduce an open source co-simulation framework “Framework for Network Co-Simulation” (FNCS), togethermore » with the decoupled simulation approach that links existing transmission and distribution dynamic simulators through FNCS. FNCS is a middleware interface and framework that manages the interaction and synchronization of the transmission and distribution simulators. Preliminary testing results show the validity and capability of the proposed open-source co-simulation framework and the decoupled co-simulation methodology.« less
On the Use of Material-Dependent Damping in ANSYS for Mode Superposition Transient Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie, J.; Wei, X.
The mode superposition method is often used for dynamic analysis of complex structures, such as the seismic Category I structures in nuclear power plants, in place of the less efficient full method, which uses the full system matrices for calculation of the transient responses. In such applications, specification of material-dependent damping is usually desirable because complex structures can consist of multiple types of materials that may have different energy dissipation capabilities. A recent review of the ANSYS manual for several releases found that the use of material-dependent damping is not clearly explained for performing a mode superposition transient dynamic analysis.more » This paper includes several mode superposition transient dynamic analyses using different ways to specify damping in ANSYS, in order to determine how material-dependent damping can be specified conveniently in a mode superposition transient dynamic analysis.« less
Interface requirements for coupling a containment code to a reactor system thermal hydraulic codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baratta, A.J.
1997-07-01
To perform a complete analysis of a reactor transient, not only the primary system response but the containment response must also be accounted for. Such transients and accidents as a loss of coolant accident in both pressurized water and boiling water reactors and inadvertent operation of safety relief valves all challenge the containment and may influence flows because of containment feedback. More recently, the advanced reactor designs put forth by General Electric and Westinghouse in the US and by Framatome and Seimens in Europe rely on the containment to act as the ultimate heat sink. Techniques used by analysts andmore » engineers to analyze the interaction of the containment and the primary system were usually iterative in nature. Codes such as RELAP or RETRAN were used to analyze the primary system response and CONTAIN or CONTEMPT the containment response. The analysis was performed by first running the system code and representing the containment as a fixed pressure boundary condition. The flows were usually from the primary system to the containment initially and generally under choked conditions. Once the mass flows and timing are determined from the system codes, these conditions were input into the containment code. The resulting pressures and temperatures were then calculated and the containment performance analyzed. The disadvantage of this approach becomes evident when one performs an analysis of a rapid depressurization or a long term accident sequence in which feedback from the containment can occur. For example, in a BWR main steam line break transient, the containment heats up and becomes a source of energy for the primary system. Recent advances in programming and computer technology are available to provide an alternative approach. The author and other researchers have developed linkage codes capable of transferring data between codes at each time step allowing discrete codes to be coupled together.« less
NASA Astrophysics Data System (ADS)
Azizi, Mohammad Ali; Brouwer, Jacob
2017-10-01
A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2016-03-01
A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.
Materials and fabrication sequences for water soluble silicon integrated circuits at the 90 nm node
NASA Astrophysics Data System (ADS)
Yin, Lan; Bozler, Carl; Harburg, Daniel V.; Omenetto, Fiorenzo; Rogers, John A.
2015-01-01
Tungsten interconnects in silicon integrated circuits built at the 90 nm node with releasable configurations on silicon on insulator wafers serve as the basis for advanced forms of water-soluble electronics. These physically transient systems have potential uses in applications that range from temporary biomedical implants to zero-waste environmental sensors. Systematic experimental studies and modeling efforts reveal essential aspects of electrical performance in field effect transistors and complementary ring oscillators with as many as 499 stages. Accelerated tests reveal timescales for dissolution of the various constituent materials, including tungsten, silicon, and silicon dioxide. The results demonstrate that silicon complementary metal-oxide-semiconductor circuits formed with tungsten interconnects in foundry-compatible fabrication processes can serve as a path to high performance, mass-produced transient electronic systems.
Simulating Operation of a Large Turbofan Engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Frederick, Dean K.; DeCastro, Jonathan
2008-01-01
The Commercial Modular Aero- Propulsion System Simulation (C-MAPSS) is a computer program for simulating transient operation of a commercial turbofan engine that can generate as much as 90,000 lb (.0.4 MN) of thrust. It includes a power-management system that enables simulation of open- or closed-loop engine operation over a wide range of thrust levels throughout the full range of flight conditions. C-MAPSS provides the user with a set of tools for performing open- and closed-loop transient simulations and comparison of linear and non-linear models throughout its operating envelope, in an easy-to-use graphical environment.
Multistage Planetary Power Transmissions
NASA Technical Reports Server (NTRS)
Hadden, G. B.; Dyba, G. J.; Ragen, M. A.; Kleckner, R. J.; Sheynin, L.
1986-01-01
PLANETSYS simulates thermomechanical performance of multistage planetary performance of multistage planetary power transmission. Two versions of code developed, SKF version and NASA version. Major function of program: compute performance characteristics of planet bearing for any of six kinematic inversions. PLANETSYS solves heat-balance equations for either steadystate or transient thermal conditions, and produces temperature maps for mechanical system.
Performance testing of lidar receivers
NASA Technical Reports Server (NTRS)
Shams, M. Y.
1986-01-01
In addition to the considerations about the different types of noise sources, dynamic range, and linearity of a lidar receiver, one requires information about the pulse shape retaining capabilities of the receiver. For this purpose, relatively precise information about the height resolution as well as the recovery time of the receiver, due both to large transients and to fast changes in the received signal, is required. As more and more analog receivers using fast analog to digital converters and transient recorders will be used in the future lidar systems, methods to test these devices are essential. The method proposed for this purpose is shown. Tests were carried out using LCW-10, LT-20, and FTVR-2 as optical parts of the optical pulse generator circuits. A commercial optical receiver, LNOR, and a transient recorder, VK 220-4, were parts of the receiver system.
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
Dynamic characteristics of motor-gear system under load saltations and voltage transients
NASA Astrophysics Data System (ADS)
Bai, Wenyu; Qin, Datong; Wang, Yawen; Lim, Teik C.
2018-02-01
In this paper, a dynamic model of a motor-gear system is proposed. The model combines a nonlinear permeance network model (PNM) of a squirrel-cage induction motor and a coupled lateral-torsional dynamic model of a planetary geared rotor system. The external excitations including voltage transients and load saltations, as well as the internal excitations such as spatial effects, magnetic circuits topology and material nonlinearity in the motor, and time-varying mesh stiffness and damping in the planetary gear system are considered in the proposed model. Then, the simulation results are compared with those predicted by the electromechanical model containing a dynamic motor model with constant inductances. The comparison showed that the electromechanical system model with the PNM motor model yields more reasonable results than the electromechanical system model with the lumped-parameter electric machine. It is observed that electromechanical coupling effect can induce additional and severe gear vibrations. In addition, the external conditions, especially the voltage transients, will dramatically affect the dynamic characteristics of the electromechanical system. Finally, some suggestions are offered based on this analysis for improving the performance and reliability of the electromechanical system.
NASA Technical Reports Server (NTRS)
Kalinowski, Kevin F.; Tucker, George E.; Moralez, Ernesto, III
2006-01-01
Engineering development and qualification of a Research Flight Control System (RFCS) for the Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) JUH-60A has motivated the development of a pilot rating scale for evaluating failure transients in fly-by-wire flight control systems. The RASCAL RFCS includes a highly-reliable, dual-channel Servo Control Unit (SCU) to command and monitor the performance of the fly-by-wire actuators and protect against the effects of erroneous commands from the flexible, but single-thread Flight Control Computer. During the design phase of the RFCS, two piloted simulations were conducted on the Ames Research Center Vertical Motion Simulator (VMS) to help define the required performance characteristics of the safety monitoring algorithms in the SCU. Simulated failures, including hard-over and slow-over commands, were injected into the command path, and the aircraft response and safety monitor performance were evaluated. A subjective Failure/Recovery Rating (F/RR) scale was developed as a means of quantifying the effects of the injected failures on the aircraft state and the degree of pilot effort required to safely recover the aircraft. A brief evaluation of the rating scale was also conducted on the Army/NASA CH-47B variable stability helicopter to confirm that the rating scale was likely to be equally applicable to in-flight evaluations. Following the initial research flight qualification of the RFCS in 2002, a flight test effort was begun to validate the performance of the safety monitors and to validate their design for the safe conduct of research flight testing. Simulated failures were injected into the SCU, and the F/RR scale was applied to assess the results. The results validate the performance of the monitors, and indicate that the Failure/Recovery Rating scale is a very useful tool for evaluating failure transients in fly-by-wire flight control systems.
Acute hyperglycemia produces transient improvement in glucose transporter type 1 deficiency.
Akman, Cigdem I; Engelstad, Kristin; Hinton, Veronica J; Ullner, Paivi; Koenigsberger, Dorcas; Leary, Linda; Wang, Dong; De Vivo, Darryl C
2010-01-01
Glucose transporter type 1 deficiency syndrome (Glut1-DS) is characterized clinically by acquired microcephaly, infantile-onset seizures, psychomotor retardation, choreoathetosis, dystonia, and ataxia. The laboratory signature is hypoglycorrhachia. The 5-hour oral glucose tolerance test (OGTT) was performed to assess cerebral function and systemic carbohydrate homeostasis during acute hyperglycemia, in the knowledge that GLUT1 is constitutively expressed ubiquitously and upregulated in the brain. Thirteen Glut1-DS patients completed a 5-hour OGTT. Six patients had prolonged electroencephalographic (EEG)/video monitoring, 10 patients had plasma glucose and serum insulin measurements, and 5 patients had repeated measures of attention, memory, fine motor coordination, and well-being. All patients had a full neuropsychological battery prior to OGTT. The glycemic profile and insulin response during the OGTT were normal. Following the glucose load, transient improvement of clinical seizures and EEG findings were observed, with the most significant improvement beginning within the first 30 minutes and continuing for 180 minutes. Thereafter, clinical seizures returned, and EEG findings worsened. Additionally, transient improvement in attention, fine motor coordination, and reported well-being were observed without any change in memory performance. This study documents transient neurological improvement in Glut1-DS patients following acute hyperglycemia, associated with improved fine motor coordination and attention. Also, systemic carbohydrate homeostasis was normal, despite GLUT1 haploinsufficiency, confirming the specific role of GLUT1 as the transporter of metabolic fuel across the blood-brain barrier. The transient improvement in brain function underscores the rate-limiting role of glucose transport and the critical minute-to-minute dependence of cerebral function on fuel availability for energy metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1963-04-01
Data obtained during the performance testing of the PM-1 plant were compiled and evaluated. The plant powers an Air Defense Command radar station located at Sundance, Wyoming, and is required to supply extremely high-quality electrical power (minimum of frequency and voltage fluctuations) even during severe load transients. The data obtained were compiled into the following format: (1) operating requirements; (2) startup requirements; (3) plant as an energy source; (4) plant radiation levels and health physics; (5) plant instrumentation and control; (6) reactor characteristics; (7) primary system characteristics; (8) secondary system characteristics; and (9) malfunction reports. It was concluded from themore » data that the plant performance in general meets or exceeds specification. Transient and steady-state electrical fluctuations are well within specified limitations. Heat balance data for both the primary and secondary system agree reasonably well with design predictions. Radiation levels are below those anticipated. Coolant activity in the primary system is approximately at anticipated levels; secondary system coolant activity is negligible. The core life was re-estimated based on asbuilt core characteristics. A lifetime of 16.6 Mw-yr is predicted. (auth)« less
Performance assessment of KORAT-3D on the ANL IBM-SP computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexeyev, A.V.; Zvenigorodskaya, O.A.; Shagaliev, R.M.
1999-09-01
The TENAR code is currently being developed at the Russian Federal Nuclear Center (VNIIEF) as a coupled dynamics code for the simulation of transients in VVER and RBMK systems and other nuclear systems. The neutronic module in this code system is KORAT-3D. This module is also one of the most computationally intensive components of the code system. A parallel version of KORAT-3D has been implemented to achieve the goal of obtaining transient solutions in reasonable computational time, particularly for RBMK calculations that involve the application of >100,000 nodes. An evaluation of the KORAT-3D code performance was recently undertaken on themore » Argonne National Laboratory (ANL) IBM ScalablePower (SP) parallel computer located in the Mathematics and Computer Science Division of ANL. At the time of the study, the ANL IBM-SP computer had 80 processors. This study was conducted under the auspices of a technical staff exchange program sponsored by the International Nuclear Safety Center (INSC).« less
NASA Technical Reports Server (NTRS)
Evans, D. G.; Miller, T. J.
1978-01-01
Technology areas related to gas turbine propulsion systems with potential for application to the automotive gas turbine engine are discussed. Areas included are: system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.
ATLAS: A High-cadence All-sky Survey System
NASA Astrophysics Data System (ADS)
Tonry, J. L.; Denneau, L.; Heinze, A. N.; Stalder, B.; Smith, K. W.; Smartt, S. J.; Stubbs, C. W.; Weiland, H. J.; Rest, A.
2018-06-01
Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the “Asteroid Terrestrial-impact Last Alert System” (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m < 19) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalog of 5 × 106 sources. This is the first of a series of articles describing ATLAS, devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient light curves.
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Csank, Jeffrey T.; Haller, William J.; Seidel, Jonathan A.
2016-01-01
This document outlines methodologies designed to improve the interface between the Numerical Propulsion System Simulation framework and various control and dynamic analyses developed in the Matlab and Simulink environment. Although NPSS is most commonly used for steady-state modeling, this paper is intended to supplement the relatively sparse documentation on it's transient analysis functionality. Matlab has become an extremely popular engineering environment, and better methodologies are necessary to develop tools that leverage the benefits of these disparate frameworks. Transient analysis is not a new feature of the Numerical Propulsion System Simulation (NPSS), but transient considerations are becoming more pertinent as multidisciplinary trade-offs begin to play a larger role in advanced engine designs. This paper serves to supplement the relatively sparse documentation on transient modeling and cover the budding convergence between NPSS and Matlab based modeling toolsets. The following sections explore various design patterns to rapidly develop transient models. Each approach starts with a base model built with NPSS, and assumes the reader already has a basic understanding of how to construct a steady-state model. The second half of the paper focuses on further enhancements required to subsequently interface NPSS with Matlab codes. The first method being the simplest and most straightforward but performance constrained, and the last being the most abstract. These methods aren't mutually exclusive and the specific implementation details could vary greatly based on the designer's discretion. Basic recommendations are provided to organize model logic in a format most easily amenable to integration with existing Matlab control toolsets.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
NASA Astrophysics Data System (ADS)
Belapurkar, Rohit K.
Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the Full Authority Digital Engine Control (FADEC) through an engine area network. Distributed engine control architecture will allow the implementation of advanced, active control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of a distributed engine control system is predominantly dependent on the performance of the communication network. Due to the serial data transmission policy, network-induced time delays and sampling jitter are introduced between the sensor/actuator nodes and the distributed FADEC. Communication network faults and transient node failures may result in data dropouts, which may not only degrade the control system performance but may even destabilize the engine control system. Three different architectures for a turbine engine control system based on a distributed framework are presented. A partially distributed control system for a turbo-shaft engine is designed based on ARINC 825 communication protocol. Stability conditions and control design methodology are developed for the proposed partially distributed turbo-shaft engine control system to guarantee the desired performance under the presence of network-induced time delay and random data loss due to transient sensor/actuator failures. A fault tolerant control design methodology is proposed to benefit from the availability of an additional system bandwidth and from the broadcast feature of the data network. It is shown that a reconfigurable fault tolerant control design can help to reduce the performance degradation in presence of node failures. A T-700 turbo-shaft engine model is used to validate the proposed control methodology based on both single input and multiple-input multiple-output control design techniques.
A global model for steady state and transient S.I. engine heat transfer studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohac, S.V.; Assanis, D.N.; Baker, D.M.
1996-09-01
A global, systems-level model which characterizes the thermal behavior of internal combustion engines is described in this paper. Based on resistor-capacitor thermal networks, either steady-state or transient thermal simulations can be performed. A two-zone, quasi-dimensional spark-ignition engine simulation is used to determine in-cylinder gas temperature and convection coefficients. Engine heat fluxes and component temperatures can subsequently be predicted from specification of general engine dimensions, materials, and operating conditions. Emphasis has been placed on minimizing the number of model inputs and keeping them as simple as possible to make the model practical and useful as an early design tool. The successmore » of the global model depends on properly scaling the general engine inputs to accurately model engine heat flow paths across families of engine designs. The development and validation of suitable, scalable submodels is described in detail in this paper. Simulation sub-models and overall system predictions are validated with data from two spark ignition engines. Several sensitivity studies are performed to determine the most significant heat transfer paths within the engine and exhaust system. Overall, it has been shown that the model is a powerful tool in predicting steady-state heat rejection and component temperatures, as well as transient component temperatures.« less
Assessment of the stability of a multimachine power system by the transient energy margin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanton, S.E.
1982-01-01
This reasearch develops a tool for the direct assessment of the transient stability of a multimachine electric power system that is subject to a large disturbance. The tool is the Transient Energy Margin. The transient of interest is the first swing (or inertial) transient. The Transient Energy Margin is computed by evaluating an energy function using the relevant unstable equilibrium point and the system states at the instant the disturbance is removed. In evaluating the function, a significant portion of the fault kinetic energy is identified as not contributing to system instability. The resulting energy value is a measure ofmore » the margin-of-safety for the disturbed system. A distinction is proposed between assessing system stability and assessing system security. The Transient Energy Margin is used first to assess the stability of the system. This profile ranks various distrubances to display the strengths and weaknesses of the system. A modified Transient Energy Margin is then proposed as an assessment of security; the transient energy margin profile is repeated to evaluate the system response in terms of the local minimum energy conditions approached by the critical trajectories. Both techniques are applied to a practical, 17 generator test system.« less
Analysis of the TREAT LEU Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2016-03-01
Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less
Yu, Ki Jun; Kuzum, Duygu; Hwang, Suk-Won; Kim, Bong Hoon; Juul, Halvor; Kim, Nam Heon; Won, Sang Min; Chiang, Ken; Trumpis, Michael; Richardson, Andrew G; Cheng, Huanyu; Fang, Hui; Thomson, Marissa; Bink, Hank; Talos, Delia; Seo, Kyung Jin; Lee, Hee Nam; Kang, Seung-Kyun; Kim, Jae-Hwan; Lee, Jung Yup; Huang, Younggang; Jensen, Frances E; Dichter, Marc A; Lucas, Timothy H; Viventi, Jonathan; Litt, Brian; Rogers, John A
2016-07-01
Bioresorbable silicon electronics technology offers unprecedented opportunities to deploy advanced implantable monitoring systems that eliminate risks, cost and discomfort associated with surgical extraction. Applications include postoperative monitoring and transient physiologic recording after percutaneous or minimally invasive placement of vascular, cardiac, orthopaedic, neural or other devices. We present an embodiment of these materials in both passive and actively addressed arrays of bioresorbable silicon electrodes with multiplexing capabilities, which record in vivo electrophysiological signals from the cortical surface and the subgaleal space. The devices detect normal physiologic and epileptiform activity, both in acute and chronic recordings. Comparative studies show sensor performance comparable to standard clinical systems and reduced tissue reactivity relative to conventional clinical electrocorticography (ECoG) electrodes. This technology offers general applicability in neural interfaces, with additional potential utility in treatment of disorders where transient monitoring and modulation of physiologic function, implant integrity and tissue recovery or regeneration are required.
Electrical and Optical Studies of Deep Levels in Nominally Undoped Thallium Bromide
NASA Astrophysics Data System (ADS)
Smith, Holland M.; Haegel, Nancy M.; Phillips, David J.; Cirignano, Leonard; Ciampi, Guido; Kim, Hadong; Chrzan, Daryl C.; Haller, Eugene E.
2014-02-01
Photo-induced conductivity transient spectroscopy (PICTS) and cathodoluminescence (CL) measurements were performed on nominally undoped detector grade samples of TlBr. In PICTS measurements, nine traps were detected in the temperature range 80-250 K using four-gate analysis. Five of the traps are tentatively identified as electron traps, and four as hole traps. CL measurements yielded two broad peaks common to all samples and most likely associated with defects. Correlations between the optically and electrically detected deep levels are considered. Above 250 K, the photoconductivity transients measured in the PICTS experiments exhibited anomalous transient behavior, indicated by non-monotonic slope variations as a function of time. The origin of the transients is under further investigation, but their presence precludes the accurate determination of trap parameters in TlBr above 250 K with traditional PICTS analysis. Their discovery was made possible by the use of a PICTS system that records whole photoconductivity transients, as opposed to reduced and processed signals.
NASA Technical Reports Server (NTRS)
1973-01-01
Calculations, curves, and substantiating data which support the engine design characteristics of the RL-10 engines are presented. A description of the RL-10 ignition system is provided. The performance calculations of the RL-10 derivative engines and the performance results obtained are reported. The computer simulations used to establish the control system requirements and to define the engine transient characteristics are included.
Analysis of Complex Valve and Feed Systems
NASA Technical Reports Server (NTRS)
Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Cavallo, Peter; Dash, Sanford
2007-01-01
A numerical framework for analysis of complex valve systems supports testing of propulsive systems by simulating key valve and control system components in the test loop. In particular, it is designed to enhance the analysis capability in terms of identifying system transients and quantifying the valve response to these transients. This system has analysis capability for simulating valve motion in complex systems operating in diverse flow regimes ranging from compressible gases to cryogenic liquids. A key feature is the hybrid, unstructured framework with sub-models for grid movement and phase change including cryogenic cavitations. The multi-element unstructured framework offers improved predictions of valve performance characteristics under steady conditions for structurally complex valves such as pressure regulator valve. Unsteady simulations of valve motion using this computational approach have been carried out for various valves in operation at Stennis Space Center such as the split-body valve and the 10-in. (approx.25.4-cm) LOX (liquid oxygen) valve and the 4-in. (approx.10 cm) Y-pattern valve (liquid nitrogen). Such simulations make use of variable grid topologies, thereby permitting solution accuracy and resolving important flow physics in the seat region of the moving valve. An advantage to this software includes possible reduction in testing costs incurred due to disruptions relating to unexpected flow transients or functioning of valve/flow control systems. Prediction of the flow anomalies leading to system vibrations, flow resonance, and valve stall can help in valve scheduling and significantly reduce the need for activation tests. This framework has been evaluated for its ability to predict performance metrics like flow coefficient for cavitating venturis and valve coefficient curves, and could be a valuable tool in predicting and understanding anomalous behavior of system components at rocket propulsion testing and design sites.
Analyses of ACPL thermal/fluid conditioning system
NASA Technical Reports Server (NTRS)
Stephen, L. A.; Usher, L. H.
1976-01-01
Results of engineering analyses are reported. Initial computations were made using a modified control transfer function where the systems performance was characterized parametrically using an analytical model. The analytical model was revised to represent the latest expansion chamber fluid manifold design, and systems performance predictions were made. Parameters which were independently varied in these computations are listed. Systems predictions which were used to characterize performance are primarily transient computer plots comparing the deviation between average chamber temperature and the chamber temperature requirement. Additional computer plots were prepared. Results of parametric computations with the latest fluid manifold design are included.
Impact of wind generator infed on dynamic performance of a power system
NASA Astrophysics Data System (ADS)
Alam, Md. Ahsanul
Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by supporting STATCOM with bulk energy storage devices. Two types of energy storage system (ESS) have been considered---battery energy storage system, and supercapacitor based energy storage system. A decoupled P -- Q control strategy has been implemented on STATCOM/ESS. It is observed that wind generators when supported by STATCOM/ESS can achieve significant withstand capability in the presence of grid fault of reasonable duration. It experiences almost negligible rotor speed variation, maintains constant terminal voltage, and resumes delivery of smoothed (almost transient free) power to the grid immediately after the fault is cleared. Keywords: Wind energy, induction generator, dynamic performance of wind generators, energy storage system, decoupled P -- Q control, multimachine system.
NASA Technical Reports Server (NTRS)
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
SAMO (Sistema de Apoyo Mechanizado a la Operacion): An operational aids computer system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stormer, T.D.; Laflor, E.V.
1989-01-01
SAMO (Sistema de Apoyo Mechanizado a la Operacion) is a sensor-driven, computer-based, graphic display system designed by Westinghouse to aid the A. N. Asco operations staff during all modes of plant operations, including emergencies. The SAMO system is being implemented in the A. N. Asco plant in two phases that coincide with consecutive refueling outages for each of two nuclear units at the Asco site. Phase 1 of the SAMO system implements the following functions: (1) emergency operational aids, (2) postaccident monitoring, (3) plant graphics display, (4) high-speed transient analysis recording, (5) historical data collection, storage, and retrieval, (6) sequencemore » of events, and (7) posttrip review. During phase 2 of the SAMO project, the current plant computer will be removed and the functions now performed by the plant computer will be performed by the SAMO system. In addition, the following functions will be implemented: (1) normal and simple transients operational aid, (2) plant information graphics; and (3) real-time radiological off-site dose calculation.« less
Thermal characterizations analysis of high-power ThinGaN cool-white light-emitting diodes
NASA Astrophysics Data System (ADS)
Raypah, Muna E.; Devarajan, Mutharasu; Ahmed, Anas A.; Sulaiman, Fauziah
2018-03-01
Analysis of thermal properties plays an important role in the thermal management of high-power (HP) lighting-emitting diodes (LEDs). Thermal resistance, thermal capacitance, and thermal time constant are essential parameters for the optimal design of the LED device and system, particularly for dynamic performance study. In this paper, thermal characterization and thermal time constant of ThinGaN HP LEDs are investigated. Three HP cool-white ThinGaN LEDs from different manufacturers are used in this study. A forward-voltage method using thermal transient tester (T3Ster) system is employed to determine the LEDs' thermal parameters at various operating conditions. The junction temperature transient response is described by a multi-exponential function model to extract thermal time constants. The transient response curve is divided into three layers and expressed by three exponential functions. Each layer is associated with a particular thermal time constant, thermal resistance, and thermal capacitance. It is found that the thermal time constant of LED package is on the order of 22 to 100 ms. Comparison between the experimental results is carried out to show the design effects on thermal performance of the LED package.
Performance of photomultiplier tubes and sodium iodide scintillation detector systems
NASA Technical Reports Server (NTRS)
Meegan, C. A.
1981-01-01
The performance of photomultiplier tubes (PMT's) and scintillation detector systems incorporating 50.8 by 1.27 cm NaI (T l) crystals was investigated to determine the characteristics of the photomultiplier tubes and optimize the detector geometry for the Burst and Transient Source Experiment on the Gamma Ray Observatory. Background information on performance characteristics of PMT's and NaI (T l) detectors is provided, procedures for measurement of relevant parameters are specified, and results of these measurements are presented.
JPS heater and sensor lightning qualification
NASA Technical Reports Server (NTRS)
Cook, M.
1989-01-01
Simulated lightning strike testing of the Redesigned Solid Rocket Motor (RSRM) field joint protection system heater assembly was performed at Thiokol Corp., Wendover Lightning Facility. Testing consisted of subjecting the lightning evaluation test article to simulated lightning strikes and evaluating the effects of heater cable transients on cables within the systems tunnel. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by transients from all cables external to the systems tunnel, was 92 amperes. The maximum open-circuit voltage coupled was 316 volts. The maximum short circuit current coupled onto a United Space Boosters, Inc. operational flight cable within the systems tunnel, induced by heater power cable transients only, was 2.7 amperes; the maximum open-circuit voltage coupled was 39 volts. All heater power cable induced coupling was due to simulated lightning discharges only, no heater operating power was applied during the test. The results showed that, for a worst-case lightning discharge, the heater power cable is responsible for a 3.9 decibel increase in voltage coupling to operational flight cables within the systems tunnel. Testing also showed that current and voltage levels coupled onto cables within the systems tunnel are partially dependant on the relative locations of the cables within the systems tunnel.
Transient Stability of the US Western Interconnection with High Wind and Solar Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kara; Miller, Nicholas W.; Shao, Miaolei
The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability of the WI with high penetrations of wind and solar generation. The mainmore » goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
Automotive Stirling Engine Development Program
NASA Technical Reports Server (NTRS)
Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Antonelli, M. (Editor)
1982-01-01
Activities performed on Mod I engine testing and test results; the manufacture, assembly, and test of a Mod I engine in the United States; design initiation of the Mod I-A engine system; transient performance testing; Stirling reference engine manufacturing and reduced size studies; components and subsystems; and the study and test of low cost alloys are summarized.
Practical difficulties in the diagnosis of transient non-ketotic hyperglycinaemia.
Lang, T F; Parr, J R; Matthews, E E; Gray, R G F; Bonham, J R; Kay, J D S
2008-02-01
Making a diagnosis of transient non-ketotic hyperglycinaemia (tNKH) can be difficult. We report an infant who presented in the neonatal period with symptoms of NKH. Metabolic studies performed on day 2 of life showed raised cerebrospinal fluid (CSF) and plasma glycine, and a CSF:plasma glycine ratio consistent with NKH; however, a liver biopsy performed on day 5 revealed normal liver glycine cleavage system activity. Subsequently, the child's clinical condition improved in the absence of any therapeutic medication. Clinical assessment and developmental follow-up at 5 months, 1 year, and 2 years were age-appropriate. Guidance for the investigation and management of future suspected cases of tNKH is discussed.
NASA Astrophysics Data System (ADS)
Phan, Leon L.
The motivation behind this thesis mainly stems from previous work performed at Hispano-Suiza (Safran Group) in the context of the European research project "Power Optimised Aircraft". Extensive testing on the COPPER Bird RTM, a test rig designed to characterize aircraft electrical networks, demonstrated the relevance of transient regimes in the design and development of dynamic systems. Transient regimes experienced by dynamic systems may have severe impacts on the operation of the aircraft. For example, the switching on of a high electrical load might cause a network voltage drop inducing a loss of power available to critical aircraft systems. These transient behaviors are thus often regulated by dynamic constraints, requiring the dynamic signals to remain within bounds whose values vary with time. The verification of these peculiar types of constraints, which generally requires high-fidelity time-domain simulation, intervenes late in the system development process, thus potentially causing costly design iterations. The research objective of this thesis is to develop a methodology that integrates the verification of dynamic constraints in the early specification of dynamic systems. In order to circumvent the inefficiencies of time-domain simulation, multivariate dynamic surrogate models of the original time-domain simulation models are generated, building on a nonlinear system identification technique using wavelet neural networks (or wavenets), which allow the multiscale nature of transient signals to be captured. However, training multivariate wavenets can become computationally prohibitive as the number of design variables increases. Therefore, an alternate approach is formulated, in which dynamic surrogate models using sigmoid-based neural networks are used to emulate the transient behavior of the envelopes of the time-domain response. Thus, in order to train the neural network, the envelopes are extracted by first separating the scales of the dynamic response, using a multiresolution analysis (MRA) based on the discrete wavelet transform. The MRA separates the dynamic response into a trend and a noise signal (ripple). The envelope of the noise is then computed with a windowing method, and recombined with the trend in order to reconstruct the global envelope of the dynamic response. The run-time efficiency of the resulting dynamic surrogate models enable the implementation of a data farming approach, in which a Monte-Carlo simulation generates time-domain behaviors of transient responses for a vast set of design and operation scenarios spanning the design and operation space. An interactive visualization environment, enabling what-if analyses, will be developed; the user can thereby instantaneously comprehend the transient response of the system (or its envelope) and its sensitivities to design and operation variables, as well as filter the design space to have it exhibit only the design scenarios verifying the dynamic constraints. The proposed methodology, along with its foundational hypotheses, are tested on the design and optimization of a 350VDC network, where a generator and its control system are concurrently designed in order to minimize the electrical losses, while ensuring that the transient undervoltage induced by peak demands in the consumption of a motor does not violate transient power quality constraints.
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters. PMID:26451391
Chen, Ming-Hung
2015-01-01
This paper proposes a new adaptive filter for wind generators that combines instantaneous reactive power compensation technology and current prediction controller, and therefore this system is characterized by low harmonic distortion, high power factor, and small DC-link voltage variations during load disturbances. The performance of the system was first simulated using MATLAB/Simulink, and the possibility of an adaptive digital low-pass filter eliminating current harmonics was confirmed in steady and transient states. Subsequently, a digital signal processor was used to implement an active power filter. The experimental results indicate, that for the rated operation of 2 kVA, the system has a total harmonic distortion of current less than 5.0% and a power factor of 1.0 on the utility side. Thus, the transient performance of the adaptive filter is superior to the traditional digital low-pass filter and is more economical because of its short computation time compared with other types of adaptive filters.
NASA Astrophysics Data System (ADS)
Ohmori, Shuichi; Narabayashi, Tadashi; Mori, Michitsugu
A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to serve also as a direct-contact feed-water heater that heats up feed-water by using extracted steam from turbine. Our technology development aims to significantly simplify equipment and reduce physical quantities by applying "high-efficiency SI", which are applicable to a wide range of operation regimes beyond the performance and applicable range of existing SIs and enables unprecedented multistage and parallel operation, to the low-pressure feed-water heaters and emergency core cooling system of nuclear power plants, as well as achieve high inherent safety to prevent severe accidents by keeping the core covered with water (a severe accident-free concept). This paper describes the results of the scale model test, and the transient analysis of SI-driven passive core injection system (PCIS).
NASA Astrophysics Data System (ADS)
Shen, Yang-Wu; Ke, De-Ping; Sun, Yuan-Zhang; Daniel, Kirschen; Wang, Yi-Shen; Hu, Yuan-Chao
2015-07-01
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator (DFIG) equipped with a superconducting magnetic energy storage (SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter (GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter (RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive (priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method. Project supported by the National Natural Science Foundation of China (Grant No. 51307124) and the Major Program of the National Natural Science Foundation of China (Grant No. 51190105).
Visualizing Parallel Computer System Performance
NASA Technical Reports Server (NTRS)
Malony, Allen D.; Reed, Daniel A.
1988-01-01
Parallel computer systems are among the most complex of man's creations, making satisfactory performance characterization difficult. Despite this complexity, there are strong, indeed, almost irresistible, incentives to quantify parallel system performance using a single metric. The fallacy lies in succumbing to such temptations. A complete performance characterization requires not only an analysis of the system's constituent levels, it also requires both static and dynamic characterizations. Static or average behavior analysis may mask transients that dramatically alter system performance. Although the human visual system is remarkedly adept at interpreting and identifying anomalies in false color data, the importance of dynamic, visual scientific data presentation has only recently been recognized Large, complex parallel system pose equally vexing performance interpretation problems. Data from hardware and software performance monitors must be presented in ways that emphasize important events while eluding irrelevant details. Design approaches and tools for performance visualization are the subject of this paper.
Pressurization, Pneumatic, and Vent Subsystems of the X-34 Main Propulsion System
NASA Technical Reports Server (NTRS)
Hedayat, A.; Steadman, T. E.; Brown, T. M.; Knight, K. C.; White, C. E., Jr.; Champion, R. H., Jr.
1998-01-01
In pressurization systems, regulators and orifices are use to control the flow of the pressurant. For the X-34 Main Propulsion System, three pressurization subsystem design configuration options were considered. In the first option, regulators were used while in the other options, orifices were considered. In each design option, the vent/relief system must be capable of relieving the pressurant flow without allowing the tank pressure to rise above proof, therefore, impacts on the propellant tank vent system were investigated and a trade study of the pressurization system was conducted. The analysis indicated that design option using regulators poses least risk. Then, a detailed transient thermal/fluid analysis of the recommended pressurization system was performed. Helium usage, thermodynamic conditions, and overpressurization of each propellant tank were evaluated. The pneumatic and purge subsystem is used for pneumatic valve actuation, Inter-Propellant Seal purges, Engine Spin Start, and engine purges at the required interface pressures, A transient analysis of the pneumatic and purge subsystem provided helium usage and flow rates to Inter-Propellant Seal and engine interfaces. Fill analysis of the helium bottles of pressurization and pneumatic subsystems during ground operation was performed. The required fill time and the stored
Experimental Investigation of Transient Sublimator Performance
NASA Technical Reports Server (NTRS)
Sheth, Rubik B.; Stephan, Ryan A.; Leimkuehler, Thomas O.
2012-01-01
Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered for operations in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a supplemental heat rejection device during mission phases where the environmental temperature or heat rejection requirement changes rapidly. This scenario may occur during low lunar orbit, low earth orbit, or other planetary orbits. In these mission phases, the need for supplemental heat rejection will vary between zero and some fraction of the overall heat load. In particular, supplemental heat rejection is required for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will describe the effects of these transient starts and stops on the feedwater utilization during various feedwater timing scenarios. Experimental data from various scenarios is analyzed to investigate feedwater consumption efficiency under the cyclical conditions. Start up utilization tests were conducted to better understand the transient performance. This paper also provides recommendations for future sublimator design and transient operation.
Advanced simulation study on bunch gap transient effect
NASA Astrophysics Data System (ADS)
Kobayashi, Tetsuya; Akai, Kazunori
2016-06-01
Bunch phase shift along the train due to a bunch gap transient is a concern in high-current colliders. In KEKB operation, the measured phase shift along the train agreed well with a simulation and a simple analytical form in most part of the train. However, a rapid phase change was observed at the leading part of the train, which was not predicted by the simulation or by the analytical form. In order to understand the cause of this observation, we have developed an advanced simulation, which treats the transient loading in each of the cavities of the three-cavity system of the accelerator resonantly coupled with energy storage (ARES) instead of the equivalent single cavities used in the previous simulation, operating in the accelerating mode. In this paper, we show that the new simulation reproduces the observation, and clarify that the rapid phase change at the leading part of the train is caused by a transient loading in the three-cavity system of ARES. KEKB is being upgraded to SuperKEKB, which is aiming at 40 times higher luminosity than KEKB. The gap transient in SuperKEKB is investigated using the new simulation, and the result shows that the rapid phase change at the leading part of the train is much larger due to higher beam currents. We will also present measures to mitigate possible luminosity reduction or beam performance deterioration due to the rapid phase change caused by the gap transient.
Elsharkawy, Aisha; Alboraie, Mohamed; Fouad, Rabab; Asem, Noha; Abdo, Mahmoud; Elmakhzangy, Hesham; Mehrez, Mai; Khattab, Hany; Esmat, Gamal
2017-12-01
Transient elastography is widely used to assess fibrosis stage in chronic hepatitis C (CHC). We aimed to establish and validate different transient elastography cut-off values for significant fibrosis and cirrhosis in CHC genotype 4 patients. The data of 100 treatment-naive CHC patients (training set) and 652 patients (validation set) were analysed. The patients were subjected to routine pretreatment laboratory investigations, liver biopsy and histopathological staging of hepatic fibrosis according to the METAVIR scoring system. Transient elastography was performed before and in the same week as liver biopsy using FibroScan (Echosens, Paris, France). Transient elastography results were correlated to different stages of hepatic fibrosis in both the training and validation sets. ROC curves were constructed. In the training set, the best transient elastography cut-off values for significant hepatic fibrosis (≥F2 METAVIR), advanced hepatic fibrosis (≥F3 METAVIR) and cirrhosis (F4 METAVIR) were 7.1, 9 and 12.2 kPa, with sensitivities of 87%, 87.5% and 90.9% and specificities of 100%, 99.9% and 99.9%, respectively. The application of these cut-offs in the validation set showed sensitivities of 85.5%, 82.8% and 92% and specificities of 86%, 89.4% and 99.01% for significant hepatic fibrosis, advanced hepatic fibrosis and cirrhosis, respectively. Transient elastography performs well for significant hepatic fibrosis, advanced hepatic fibrosis and cirrhosis, with validated cut-offs of 7.1, 9 and 12.2 kPa, respectively, in genotype 4 CHC patients. Copyright © 2017 Pan-Arab Association of Gastroenterology. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kempa, Wojciech M.
2017-12-01
A finite-capacity queueing system with server breakdowns is investigated, in which successive exponentially distributed failure-free times are followed by repair periods. After the processing a customer may either rejoin the queue (feedback) with probability q, or definitely leave the system with probability 1 - q. The system of integral equations for transient queue-size distribution, conditioned by the initial level of buffer saturation, is build. The solution of the corresponding system written for Laplace transforms is found using the linear algebraic approach. The considered queueing system can be successfully used in modelling production lines with machine failures, in which the parameter q may be considered as a typical fraction of items demanding corrections. Morever, this queueing model can be applied in the analysis of real TCP/IP performance, where q stands for the fraction of packets requiring retransmission.
Engineering Inertial and Primary-Frequency Response for Distributed Energy Resources: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhao, Changhong; Guggilam, Swaroop
We propose a framework to engineer synthetic-inertia and droop-control parameters for distributed energy resources (DERs) so that the system frequency in a network composed of DERs and synchronous generators conforms to prescribed transient and steady-state performance specifications. Our approach is grounded in a second-order lumped-parameter model that captures the dynamics of synchronous generators and frequency-responsive DERs endowed with inertial and droop control. A key feature of this reduced-order model is that its parameters can be related to those of the originating higher-order dynamical model. This allows one to systematically design the DER inertial and droop-control coefficients leveraging classical frequency-domain responsemore » characteristics of second-order systems. Time-domain simulations validate the accuracy of the model-reduction method and demonstrate how DER controllers can be designed to meet steady-state-regulation and transient-performance specifications.« less
Engineering Inertial and Primary-Frequency Response for Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall-Anese, Emiliano; Zhao, Changhong; Guggilam, Swaroop
We propose a framework to engineer synthetic-inertia and droop-control parameters for distributed energy resources (DERs) so that the system frequency in a network composed of DERs and synchronous generators conforms to prescribed transient and steady-state performance specifications. Our approach is grounded in a second-order lumped-parameter model that captures the dynamics of synchronous generators and frequency-responsive DERs endowed with inertial and droop control. A key feature of this reduced-order model is that its parameters can be related to those of the originating higherorder dynamical model. This allows one to systematically design the DER inertial and droop-control coefficients leveraging classical frequency-domain responsemore » characteristics of second-order systems. Time-domain simulations validate the accuracy of the model-reduction method and demonstrate how DER controllers can be designed to meet steady-state-regulation and transient-performance specifications.« less
40 CFR Appendix I to Part 92 - Emission Related Locomotive and Engine Parameters and Specifications
Code of Federal Regulations, 2010 CFR
2010-07-01
.... b. Idle mixture. c. Transient enrichment system calibration. d. Starting enrichment system... shutoff system calibration. d. Starting enrichment system calibration. e. Transient enrichment system... parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d...
Evaluating transient performance of servo mechanisms by analysing stator current of PMSM
NASA Astrophysics Data System (ADS)
Zhang, Qing; Tan, Luyao; Xu, Guanghua
2018-02-01
Smooth running and rapid response are the desired performance goals for the transient motions of servo mechanisms. Because of the uncertain and unobservable transient behaviour of servo mechanisms, it is difficult to evaluate their transient performance. Under the effects of electromechanical coupling, the stator current signals of a permanent-magnet synchronous motor (PMSM) potentially contain the performance information regarding servo mechanisms in use. In this paper, a novel method based on analysing the stator current of the PMSM is proposed for quantifying the transient performance. First, a vector control model is constructed to simulate the stator current behaviour in the transient processes of consecutive speed changes, consecutive load changes, and intermittent start-stops. It is discovered that the amplitude and frequency of the stator current are modulated by the transient load torque and motor speed, respectively. The stator currents under different performance conditions are also simulated and compared. Then, the stator current is processed using a local means decomposition (LMD) algorithm to extract the instantaneous amplitude and instantaneous frequency. The sample entropy of the instantaneous amplitude, which reflects the complexity of the load torque variation, is calculated as a performance indicator of smooth running. The peak-to-peak value of the instantaneous frequency, which defines the range of the motor speed variation, is set as a performance indicator of rapid response. The proposed method is applied to both simulated data in an intermittent start-stops process and experimental data measured for a batch of servo turrets for turning lathes. The results show that the performance evaluations agree with the actual performance.
Analysis of steam generator tube rupture transients with single failure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trambauer, K.
The Gesellschaft fuer Reaktorsicherheit is engaged in the collection and evaluation of light water reactor operating experience as well as analyses for the risk study of the pressurized water reactor (PWR). Within these activities, thermohydraulic calculations have been performed to show the influence of different boundary conditions and disturbances on the steam generator tube rupture (SGTR) transients. The analyses of these calculations have focused on the measures and systems needed to cope with an SGTR. The reference plant for this analysis is a 1300-MW(e) PWR of Kraftwerk Union design with four loops, each containing a U-tube steam generator (SG) andmore » a reactor cooling pump (RCP). The thermal-hydraulic code DRUFAN-02 was used for the transient calculations.« less
Transient Three-Dimensional Side Load Analysis of a Film Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Guidos, Mike
2008-01-01
Transient three-dimensional numerical investigations on the side load physics for an engine encompassing a film cooled nozzle extension and a regeneratively cooled thrust chamber, were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Ultimately, the computational results will be provided to the nozzle designers for estimating of effect of the peak side load on the nozzle structure. Computations simulating engine startup at ambient pressures corresponding to sea level and three high altitudes were performed. In addition, computations for both engine startup and shutdown transients were also performed for a stub nozzle, operating at sea level. For engine with the full nozzle extension, computational result shows starting up at sea level, the peak side load occurs when the lambda shock steps into the turbine exhaust flow, while the side load caused by the transition from free-shock separation to restricted-shock separation comes at second; and the side loads decreasing rapidly and progressively as the ambient pressure decreases. For the stub nozzle operating at sea level, the computed side loads during both startup and shutdown becomes very small due to the much reduced flow area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borges, Ronaldo C.; D'Auria, Francesco; Alvim, Antonio Carlos M.
2002-07-01
The Code with - the capability of - Internal Assessment of Uncertainty (CIAU) is a tool proposed by the 'Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione (DIMNP)' of the University of Pisa. Other Institutions including the nuclear regulatory body from Brazil, 'Comissao Nacional de Energia Nuclear', contributed to the development of the tool. The CIAU aims at providing the currently available Relap5/Mod3.2 system code with the integrated capability of performing not only relevant transient calculations but also the related estimates of uncertainty bands. The Uncertainty Methodology based on Accuracy Extrapolation (UMAE) is used to characterize the uncertainty in themore » prediction of system code calculations for light water reactors and is internally coupled with the above system code. Following an overview of the CIAU development, the present paper deals with the independent qualification of the tool. The qualification test is performed by estimating the uncertainty bands that should envelope the prediction of the Angra 1 NPP transient RES-11. 99 originated by an inadvertent complete load rejection that caused the reactor scram when the unit was operating at 99% of nominal power. The current limitation of the 'error' database, implemented into the CIAU prevented a final demonstration of the qualification. However, all the steps for the qualification process are demonstrated. (authors)« less
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein; Schroeder, Jeffery A.
1988-01-01
A moving-base simulation was conducted to investigate a pilot's ability to recover from transients following single-axis hard-over failures of the flight-control system. The investigation was performed in conjunction with a host simulation that examined the influence of control modes on a single pilot's ability to perform various mission elements under high-workload conditions. The NASA Ames large-amplitude-motion Vertical Motion Simulator (VMS) was utilized, and the experimental variables were the failure axis, the severity of the failure, and the airspeed at which the failure occurred. Other factors, such as pilot workload and terrain and obstacle proximity at the time of failure, were kept as constant as possible within the framework of the host simulation task scenarios. No explicit failure warnings were presented to the pilot. Data from the experiment are shown, and pilot ratings are compared with the proposed handling-qualities requirements for military rotorcraft. Results indicate that the current proposed failure transient requirements may need revision.
A new transiently chaotic flow with ellipsoid equilibria
NASA Astrophysics Data System (ADS)
Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan
2018-03-01
In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.
For operation of the Computer Software Management and Information Center (COSMIC)
NASA Technical Reports Server (NTRS)
Carmon, J. L.
1983-01-01
Computer programs for large systems of normal equations, an interactive digital signal process, structural analysis of cylindrical thrust chambers, swirling turbulent axisymmetric recirculating flows in practical isothermal combustor geometrics, computation of three dimensional combustor performance, a thermal radiation analysis system, transient response analysis, and a software design analysis are summarized.
NASA Astrophysics Data System (ADS)
Piggott, Alfred J., III
With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..
Inherent Safety Characteristics of Advanced Fast Reactors
NASA Astrophysics Data System (ADS)
Bochkarev, A. S.; Korsun, A. S.; Kharitonov, V. S.; Alekseev, P. N.
2017-01-01
The study presents SFR transient performance for ULOF events initiated by pump trip and pump seizure with simultaneous failure of all shutdown systems in both cases. The most severe cases leading to the pin cladding rupture and possible sodium boiling are demonstrated. The impact of various features on SFR inherent safety performance for ULOF events was analysed. The decrease in hydraulic resistance of primary loop and increase in primary pump coast down time were investigated. Performing analysis resulted in a set of recommendations to varying parameters for the purpose of enhancing the inherent safety performance of SFR. In order to prevent the safety barrier rupture for ULOF events the set of thermal hydraulic criteria defining the ULOF transient processes dynamics and requirements to these criteria were recommended based on achieved results: primary sodium flow dip under the natural circulation asymptotic level and natural circulation rise time.
Characterization of the space shuttle reaction control system engine
NASA Technical Reports Server (NTRS)
Wilson, M. S.; Stechman, R. C.; Edelman, R. B.; Fortune, O. F.; Economos, C.
1972-01-01
A computer program was developed and written in FORTRAN 5 which predicts the transient and steady state performance and heat transfer characteristics of a pulsing GO2/GH2 rocket engine. This program predicts the dynamic flow and ignition characteristics which, when combined in a quasi-steady state manner with the combustion and mixing analysis program, will provide the thrust and specific impulse of the engine as a function of time. The program also predicts the transient and steady state heat transfer characteristics of the engine using various cooling concepts. The computer program, test case, and documentation are presented. The program is applicable to any system capable of utilizing the FORTRAN 4 or FORTRAN 5 language.
Reactor transient control in support of PFR/TREAT TUCOP experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, D.R.; Larsen, G.R.; Harrison, L.J.
1984-01-01
Unique energy deposition and experiment control requirements posed bythe PFR/TREAT series of transient undercooling/overpower (TUCOP) experiments resulted in equally unique TREAT reactor operations. New reactor control computer algorithms were written and used with the TREAT reactor control computer system to perform such functions as early power burst generation (based on test train flow conditions), burst generation produced by a step insertion of reactivity following a controlled power ramp, and shutdown (SCRAM) initiators based on both test train conditions and energy deposition. Specialized hardware was constructed to simulate test train inputs to the control computer system so that computer algorithms couldmore » be tested in real time without irradiating the experiment.« less
NASA Astrophysics Data System (ADS)
Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.
2017-07-01
Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (900 square degrees) or narrow (100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds.The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT also include faint meteors and artificial satellites.
NASA Astrophysics Data System (ADS)
Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Orekhova, N.; Perkov, A.; Sasyuk, V.
2017-06-01
Here we present the summary of first years of operation and the first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (˜900 square degrees) or narrow (˜100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds.The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites.
Environmentally-induced discharge transient coupling to spacecraft
NASA Technical Reports Server (NTRS)
Viswanathan, R.; Barbay, G.; Stevens, N. J.
1985-01-01
The Hughes SCREENS (Space Craft Response to Environments of Space) technique was applied to generic spin and 3-axis stabilized spacecraft models. It involved the NASCAP modeling for surface charging and lumped element modeling for transients coupling into a spacecraft. A differential voltage between antenna and spun shelf of approx. 400 V and current of 12 A resulted from discharge at antenna for the spinner and approx. 3 kv and 0.3 A from a discharge at solar panels for the 3-axis stabilized Spacecraft. A typical interface circuit response was analyzed to show that the transients would couple into the Spacecraft System through ground points, which are most vulnerable. A compilation and review was performed on 15 years of available data from electron and ion current collection phenomena. Empirical models were developed to match data and compared with flight data of Pix-1 and Pix-2 mission. It was found that large space power systems would float negative and discharge if operated at or above 300 V. Several recommendations are given to improve the models and to apply them to large space systems.
Interfacial Area Development in Two-Phase Fluid Flow: Transient vs. Quasi-Static Flow Conditions
NASA Astrophysics Data System (ADS)
Meisenheimer, D. E.; Wildenschild, D.
2017-12-01
Fluid-fluid interfaces are important in multiphase flow systems in the environment (e.g. groundwater remediation, geologic CO2 sequestration) and industry (e.g. air stripping, fuel cells). Interfacial area controls mass transfer, and therefore reaction efficiency, between the different phases in these systems but they also influence fluid flow processes. There is a need to better understand this relationship between interfacial area and fluid flow processes so that more robust theories and models can be built for engineers and policy makers to improve the efficacy of many multiphase flow systems important to society. Two-phase flow experiments were performed in glass bead packs under transient and quasi-static flow conditions. Specific interfacial area was calculated from 3D images of the porous media obtained using the fast x-ray microtomography capability at the Advanced Photon Source. We present data suggesting a direct relationship between the transient nature of the fluid-flow experiment (fewer equilibrium points) and increased specific interfacial area. The effect of flow condition on Euler characteristic (a representative measure of fluid topology) will also be presented.
NASA Astrophysics Data System (ADS)
Crowther, Ashley R.; Singh, Rajendra; Zhang, Nong; Chapman, Chris
2007-10-01
Impulsive responses in geared systems with multiple clearances are studied when the mean torque excitation and system load change abruptly, with application to a vehicle driveline with an automatic transmission. First, torsional lumped-mass models of the planetary and differential gear sets are formulated using matrix elements. The model is then reduced to address tractable nonlinear problems while successfully retaining the main modes of interest. Second, numerical simulations for the nonlinear model are performed for transient conditions and a typical driving situation that induces an impulsive behaviour simulated. However, initial conditions and excitation and load profiles have to be carefully defined before the model can be numerically solved. It is shown that the impacts within the planetary or differential gears may occur under combinations of engine, braking and vehicle load transients. Our analysis shows that the shaping of the engine transient by the torque converter before reaching the clearance locations is more critical. Third, a free vibration experiment is developed for an analogous driveline with multiple clearances and three experiments that excite different response regimes have been carried out. Good correlations validate the proposed methodology.
Richards, John R; Lapoint, Jeff M; Burillo-Putze, Guillermo
2018-01-01
Cannabinoid hyperemesis syndrome is a clinical disorder that has become more prevalent with increasing use of cannabis and synthetic cannabinoids, and which is difficult to treat. Standard antiemetics commonly fail to alleviate the severe nausea and vomiting characteristic of the syndrome. Curiously, cannabinoid hyperemesis syndrome patients often report dramatic relief of symptoms with hot showers and baths, and topical capsaicin. In this review, we detail the pharmacokinetics and pharmacodynamics of capsaicin and explore possible mechanisms for its beneficial effect, including activation of transient receptor potential vanilloid 1 and neurohumoral regulation. Putative mechanisms responsible for the benefit of hot water hydrotherapy are also investigated. An extensive search of PubMed, OpenGrey, and Google Scholar from inception to April 2017 was performed to identify known and theoretical thermoregulatory mechanisms associated with the endocannabinoid system. The searches resulted in 2417 articles. These articles were screened for relevant mechanisms behind capsaicin and heat activation having potential antiemetic effects. References from the selected articles were also hand-searched. A total of 137 articles were considered relevant and included. Capsaicin: Topical capsaicin is primarily used for treatment of neuropathic pain, but it has also been used successfully in some 20 cases of cannabinoid hyperemesis syndrome. The pharmacokinetics and pharmacodynamics of capsaicin as a transient receptor potential vanilloid 1 agonist may explain this effect. Topical capsaicin has a longer half-life than oral administration, thus its potential duration of benefit is longer. Capsaicin and transient receptor potential vanilloid 1: Topical capsaicin binds and activates the transient receptor potential vanilloid 1 receptor, triggering influx of calcium and sodium, as well as release of inflammatory neuropeptides leading to transient burning, stinging, and itching. This elicits a novel type of desensitization analgesia. Transient receptor potential vanilloid 1 receptors also respond to noxious stimuli, such as heat (>43 °C), acids (pH <6), pain, change in osmolarity, and endovanilloids. The action of topical capsaicin may mimic the effect of heat-activation of transient receptor potential vanilloid 1. Endocannabinoid system and transient receptor potential vanilloid 1: Cannabinoid hyperemesis syndrome may result from a derangement in the endocannabinoid system secondary to chronic exogenous stimulation. The relief of cannabinoid hyperemesis syndrome symptoms from heat and use of transient receptor potential vanilloid 1 agonists suggests a complex interrelation between the endocannabinoid system and transient receptor potential vanilloid 1. Temperature regulation: Hot water hydrotherapy is a mainstay of self-treatment for cannabinoid hyperemesis syndrome patients. This may be explained by heat-induced transient receptor potential vanilloid 1 activation. "Sensocrine" antiemetic effects: Transient receptor potential vanilloid 1 activation by heat or capsaicin results in modulation of tachykinins, somatostatin, pituitary adenylate-cyclase activating polypeptide, and calcitonin gene-related peptide as well as histaminergic, cholinergic, and serotonergic transmission. These downstream effects represent further possible explanations for transient receptor potential vanilloid 1-associated antiemesis. These complex interactions between the endocannabinoid systems and transient receptor potential vanilloid 1, in the setting of cannabinoid receptor desensitization, may yield important clues into the pathophysiology and treatment of cannabinoid hyperemesis syndrome. This knowledge can provide clinicians caring for these patients with additional treatment options that may reduce length of stay, avoid unnecessary imaging and laboratory testing, and decrease the use of potentially harmful medications such as opioids.
Materials and processing approaches for foundry-compatible transient electronics.
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A; Song, Enming; Yu, Xinge; Rogers, John A
2017-07-11
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are ( i ) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, ( ii ) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and ( iii ) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
Materials and processing approaches for foundry-compatible transient electronics
NASA Astrophysics Data System (ADS)
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.
2017-07-01
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
NASA Astrophysics Data System (ADS)
Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim
2018-02-01
Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.
Dynamic remedial action scheme using online transient stability analysis
NASA Astrophysics Data System (ADS)
Shrestha, Arun
Economic pressure and environmental factors have forced the modern power systems to operate closer to their stability limits. However, maintaining transient stability is a fundamental requirement for the operation of interconnected power systems. In North America, power systems are planned and operated to withstand the loss of any single or multiple elements without violating North American Electric Reliability Corporation (NERC) system performance criteria. For a contingency resulting in the loss of multiple elements (Category C), emergency transient stability controls may be necessary to stabilize the power system. Emergency control is designed to sense abnormal conditions and subsequently take pre-determined remedial actions to prevent instability. Commonly known as either Remedial Action Schemes (RAS) or as Special/System Protection Schemes (SPS), these emergency control approaches have been extensively adopted by utilities. RAS are designed to address specific problems, e.g. to increase power transfer, to provide reactive support, to address generator instability, to limit thermal overloads, etc. Possible remedial actions include generator tripping, load shedding, capacitor and reactor switching, static VAR control, etc. Among various RAS types, generation shedding is the most effective and widely used emergency control means for maintaining system stability. In this dissertation, an optimal power flow (OPF)-based generation-shedding RAS is proposed. This scheme uses online transient stability calculation and generator cost function to determine appropriate remedial actions. For transient stability calculation, SIngle Machine Equivalent (SIME) technique is used, which reduces the multimachine power system model to a One-Machine Infinite Bus (OMIB) equivalent and identifies critical machines. Unlike conventional RAS, which are designed using offline simulations, online stability calculations make the proposed RAS dynamic and adapting to any power system configuration and operating state. The generation-shedding cost is calculated using pre-RAS and post-RAS OPF costs. The criteria for selecting generators to trip is based on the minimum cost rather than minimum amount of generation to shed. For an unstable Category C contingency, the RAS control action that results in stable system with minimum generation shedding cost is selected among possible candidate solutions. The RAS control actions update whenever there is a change in operating condition, system configuration, or cost functions. The effectiveness of the proposed technique is demonstrated by simulations on the IEEE 9-bus system, the IEEE 39-bus system, and IEEE 145-bus system. This dissertation also proposes an improved, yet relatively simple, technique for solving Transient Stability-Constrained Optimal Power Flow (TSC-OPF) problem. Using the SIME method, the sets of dynamic and transient stability constraints are reduced to a single stability constraint, decreasing the overall size of the optimization problem. The transient stability constraint is formulated using the critical machines' power at the initial time step, rather than using the machine rotor angles. This avoids the addition of machine steady state stator algebraic equations in the conventional OPF algorithm. A systematic approach to reach an optimal solution is developed by exploring the quasi-linear behavior of critical machine power and stability margin. The proposed method shifts critical machines active power based on generator costs using an OPF algorithm. Moreover, the transient stability limit is based on stability margin, and not on a heuristically set limit on OMIB rotor angle. As a result, the proposed TSC-OPF solution is more economical and transparent. The proposed technique enables the use of fast and robust commercial OPF tool and time-domain simulation software for solving large scale TSC-OPF problem, which makes the proposed method also suitable for real-time application.
NASA Astrophysics Data System (ADS)
Cui, Guozeng; Xu, Shengyuan; Ma, Qian; Li, Yongmin; Zhang, Zhengqiang
2018-05-01
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.
Parameter learning for performance adaptation
NASA Technical Reports Server (NTRS)
Peek, Mark D.; Antsaklis, Panos J.
1990-01-01
A parameter learning method is introduced and used to broaden the region of operability of the adaptive control system of a flexible space antenna. The learning system guides the selection of control parameters in a process leading to optimal system performance. A grid search procedure is used to estimate an initial set of parameter values. The optimization search procedure uses a variation of the Hooke and Jeeves multidimensional search algorithm. The method is applicable to any system where performance depends on a number of adjustable parameters. A mathematical model is not necessary, as the learning system can be used whenever the performance can be measured via simulation or experiment. The results of two experiments, the transient regulation and the command following experiment, are presented.
A model for prediction of STOVL ejector dynamics
NASA Technical Reports Server (NTRS)
Drummond, Colin K.
1989-01-01
A semi-empirical control-volume approach to ejector modeling for transient performance prediction is presented. This new approach is motivated by the need for a predictive real-time ejector sub-system simulation for Short Take-Off Verticle Landing (STOVL) integrated flight and propulsion controls design applications. Emphasis is placed on discussion of the approximate characterization of the mixing process central to thrust augmenting ejector operation. The proposed ejector model suggests transient flow predictions are possible with a model based on steady-flow data. A practical test case is presented to illustrate model calibration.
Adaptive Control with Reference Model Modification
NASA Technical Reports Server (NTRS)
Stepanyan, Vahram; Krishnakumar, Kalmanje
2012-01-01
This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example
NASA Astrophysics Data System (ADS)
Zhang, Zh.
2016-11-01
Because of the limited value of the wave propagation speed in water the propagation of a pressure surge in transient flows can be tracked in the time series. This enables both the pressure head and the flow velocity in pipe flows to be determined as a function of both the coordinate along the pipe and the time. The propagation of the pressure surge includes both wave transmission and reflection. The latter occurs where the flow section is changed. The wave tracking method has been demonstrated as highly accurate and subsequently was applied to much more complex hydraulic systems, in which the pump is shut off and the spherical valve is simultaneously progressively closed. A combined four-quadrant characteristic of the pump and a spherical valve has been worked out, with which the computational procedure for the transient flow in the complex system could be significantly simplified. It has been demonstrated that not only the pressure surge in the hydraulic system but also the rotational speed of the pump could be satisfactorily computed. The computational algorithm has been demonstrated as quite simple, so that all calculations could be performed simply by means of the Microsoft Excel module.
Noninvasive scoring system for significant inflammation related to chronic hepatitis B
NASA Astrophysics Data System (ADS)
Hong, Mei-Zhu; Ye, Linglong; Jin, Li-Xin; Ren, Yan-Dan; Yu, Xiao-Fang; Liu, Xiao-Bin; Zhang, Ru-Mian; Fang, Kuangnan; Pan, Jin-Shui
2017-03-01
Although a liver stiffness measurement-based model can precisely predict significant intrahepatic inflammation, transient elastography is not commonly available in a primary care center. Additionally, high body mass index and bilirubinemia have notable effects on the accuracy of transient elastography. The present study aimed to create a noninvasive scoring system for the prediction of intrahepatic inflammatory activity related to chronic hepatitis B, without the aid of transient elastography. A total of 396 patients with chronic hepatitis B were enrolled in the present study. Liver biopsies were performed, liver histology was scored using the Scheuer scoring system, and serum markers and liver function were investigated. Inflammatory activity scoring models were constructed for both hepatitis B envelope antigen (+) and hepatitis B envelope antigen (-) patients. The sensitivity, specificity, positive predictive value, negative predictive value, and area under the curve were 86.00%, 84.80%, 62.32%, 95.39%, and 0.9219, respectively, in the hepatitis B envelope antigen (+) group and 91.89%, 89.86%, 70.83%, 97.64%, and 0.9691, respectively, in the hepatitis B envelope antigen (-) group. Significant inflammation related to chronic hepatitis B can be predicted with satisfactory accuracy by using our logistic regression-based scoring system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feltus, M.A.
1987-01-01
Analysis results for multiple steam generator blow down caused by an auxiliary feedwater steam-line break performed with the RETRAN-02 MOD 003 computer code are presented to demonstrate the capabilities of the RETRAN code to predict system transient response for verifying changes in operational procedures and supporting plant equipment modifications. A typical four-loop Westinghouse pressurized water reactor was modeled using best-estimate versus worst case licensing assumptions. This paper presents analyses performed to evaluate the necessity of implementing an auxiliary feedwater steam-line isolation modification. RETRAN transient analysis can be used to determine core cooling capability response, departure from nucleate boiling ratio (DNBR)more » status, and reactor trip signal actuation times.« less
Modeling, analysis and control of fuel cell hybrid power systems
NASA Astrophysics Data System (ADS)
Suh, Kyung Won
Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise due to the conflicting objectives. The compromise can be mitigated by augmenting the fuel cell power system with an energy buffer such as a battery. We consider two different and popular ways of connecting the battery and the fuel cell to the load and we refer to them as electric architectures. Various controller gains are used to span the fuel cell operation from load-following to load-leveling, and hence, to determine adequate fuel cell-battery sizing (hybridization level) and the associated trends in the system efficiency.
An RL10A-3-3A rocket engine model using the rocket engine transient simulator (ROCETS) software
NASA Technical Reports Server (NTRS)
Binder, Michael
1993-01-01
Steady-state and transient computer models of the RL10A-3-3A rocket engine have been created using the Rocket Engine Transient Simulation (ROCETS) code. These models were created for several purposes. The RL10 engine is a critical component of past, present, and future space missions; the model will give NASA an in-house capability to simulate the performance of the engine under various operating conditions and mission profiles. The RL10 simulation activity is also an opportunity to further validate the ROCETS program. The ROCETS code is an important tool for modeling rocket engine systems at NASA Lewis. ROCETS provides a modular and general framework for simulating the steady-state and transient behavior of any desired propulsion system. Although the ROCETS code is being used in a number of different analysis and design projects within NASA, it has not been extensively validated for any system using actual test data. The RL10A-3-3A has a ten year history of test and flight applications; it should provide sufficient data to validate the ROCETS program capability. The ROCETS models of the RL10 system were created using design information provided by Pratt & Whitney, the engine manufacturer. These models are in the process of being validated using test-stand and flight data. This paper includes a brief description of the models and comparison of preliminary simulation output against flight and test-stand data.
NASA Astrophysics Data System (ADS)
Jazebi, Saeed
This thesis is a step forward toward achieving the final objective of creating a fully dual model for transformers including eddy currents and nonlinearities of the iron core using the fundamental electrical components already available in the EMTP-type programs. The model is effective for the study of the performance of transformers during power system transients. This is very important for transformer designers, because the insulation of transformers is determined with the overvoltages caused by lightning or switching operations. There are also internally induced transients that occur when a switch is actuated. For example switching actions for reconfiguration of distribution systems that offers economic advantages, or protective actions to clear faults and large short-circuit currents. Many of the smart grid concepts currently under development by many utilities rely heavily on switching to optimize resources that produce transients in the system. On the other hand, inrush currents produce mechanical forces which deform transformer windings and cause malfunction of the differential protection. Also, transformer performance under ferroresonance and geomagnetic induced currents are necessary to study. In this thesis, a physically consistent dual model applicable to single-phase two-winding transformers is proposed. First, the topology of a dual electrical equivalent circuit is obtained from the direct application of the principle of duality. Then, the model parameters are computed considering the variations of the transformer electromagnetic behavior under various operating conditions. Current modeling techniques use different topological models to represent diverse transient situations. The reversible model proposed in this thesis unifies the terminal and topological equivalent circuits. The model remains invariable for all low-frequency transients including deep saturation conditions driven from any of the two windings. The very high saturation region of the iron core magnetizing characteristic is modified with the accurate measurement of the air-core inductance. The air-core inductance is measured using a non-ideal low-power rectifier. Its dc output serves to drive the transformer into deep saturation, and its ripple provides low-amplitude variable excitation. The principal advantage of this method is its simplicity. To model the eddy current effects in the windings, a novel equivalent circuit is proposed. The circuit is derived from the principle of duality and therefore, matches the electromagnetic physical behavior of the transformer windings. It properly models the flux paths and current distribution from dc to MHz. The model is synthesized from a non-uniform concentric discretization of the windings. Concise guidelines are given to optimally calculate the width of the sub-divisions for various transient simulations. To compute the circuit parameters only information about the geometry of the windings and about their material properties is needed. The calculation of the circuit parameters does not require an iterative process. Therefore, the parameters are always real, positive, and free from convergence problems. The proposed model is tested with single-phase transformers for the calculation of magnetizing inrush currents, series ferroresonance, and Geomagnetic Induced Currents (GIC). The electromagnetic transient response of the model is compared to laboratory measurements for validation. Also, 3D finite element simulations are used to validate the electromagnetic behavior of the transformer model. Large manufacturer of transformers, power system designers, and electrical utility companies can benefit from the new model. It simplifies the design and optimization of the transformers' insulation, thereby reducing cost, and enhancing reliability of the system. The model could also be used for inrush current and differential protection studies, geomagnetic induced current studies, harmonic penetration studies, and switching transient studies.
Primary propulsion/large space system interactions
NASA Technical Reports Server (NTRS)
Dergance, R. H.
1980-01-01
Three generic types of structural concepts and nonstructural surface densities were selected and combined to represent potential LSS applications. The design characteristics of various classes of large space systems that are impacted by primary propulsion thrust required to effect orbit transfer were identified. The effects of propulsion system thrust-to-mass ratio, thrust transients, and performance on the mass, area, and orbit transfer characteristics of large space systems were determined.
SNPSAM - Space Nuclear Power System Analysis Model
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Seo, Jong T.
The current version of SNPSAM is described, and the results of the integrated thermoeletric SP-100 system performance studies using SNPSAM are reported. The electric power output, conversion efficiency, coolant temperatures, and specific pumping power of the system are calculated as functions of the reactor thermal power and the liquid metal coolant type (Li or NaK-78) during steady state operation. The transient behavior of the system is also discussed.
Transient analysis of an HTS DC power cable with an HVDC system
NASA Astrophysics Data System (ADS)
Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo
2013-11-01
The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, D.G.: Watkins, J.C.
This report documents an evaluation of the TRAC-PF1/MOD1 reactor safety analysis computer code during computer simulations of feedwater line break transients. The experimental data base for the evaluation included the results of three bottom feedwater line break tests performed in the Semiscale Mod-2C test facility. The tests modeled 14.3% (S-FS-7), 50% (S-FS-11), and 100% (S-FS-6B) breaks. The test facility and the TRAC-PF1/MOD1 model used in the calculations are described. Evaluations of the accuracy of the calculations are presented in the form of comparisons of measured and calculated histories of selected parameters associated with the primary and secondary systems. In additionmore » to evaluating the accuracy of the code calculations, the computational performance of the code during the simulations was assessed. A conclusion was reached that the code is capable of making feedwater line break transient calculations efficiently, but there is room for significant improvements in the simulations that were performed. Recommendations are made for follow-on investigations to determine how to improve future feedwater line break calculations and for code improvements to make the code easier to use.« less
Zhang, Qinjin; Liu, Yancheng; Zhao, Youtao; Wang, Ning
2016-03-01
Multi-mode operation and transient stability are two problems that significantly affect flexible microgrid (MG). This paper proposes a multi-mode operation control strategy for flexible MG based on a three-layer hierarchical structure. The proposed structure is composed of autonomous, cooperative, and scheduling controllers. Autonomous controller is utilized to control the performance of the single micro-source inverter. An adaptive sliding-mode direct voltage loop and an improved droop power loop based on virtual negative impedance are presented respectively to enhance the system disturbance-rejection performance and the power sharing accuracy. Cooperative controller, which is composed of secondary voltage/frequency control and phase synchronization control, is designed to eliminate the voltage/frequency deviations produced by the autonomous controller and prepare for grid connection. Scheduling controller manages the power flow between the MG and the grid. The MG with the improved hierarchical control scheme can achieve seamless transitions from islanded to grid-connected mode and have a good transient performance. In addition the presented work can also optimize the power quality issues and improve the load power sharing accuracy between parallel VSIs. Finally, the transient performance and effectiveness of the proposed control scheme are evaluated by theoretical analysis and simulation results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Some aspects of algorithm performance and modeling in transient analysis of structures
NASA Technical Reports Server (NTRS)
Adelman, H. M.; Haftka, R. T.; Robinson, J. C.
1981-01-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit algorithms with variable time steps, known as the GEAR package, is described. Four test problems, used for evaluating and comparing various algorithms, were selected and finite-element models of the configurations are described. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system, and a model of the wing of the space shuttle orbiter. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff (typical of many practical problems such as insulated metal structures).
RF transient analysis and stabilization of the phase and energy of the proposed PIP-II LINAC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelen, J. P.; Chase, B. E.
This paper describes a recent effort to develop and benchmark a simulation tool for the analysis of RF transients and their compensation in an H- linear accelerator. Existing tools in this area either focus on electron LINACs or lack fundamental details about the LLRF system that are necessary to provide realistic performance estimates. In our paper we begin with a discussion of our computational models followed by benchmarking with existing beam-dynamics codes and measured data. We then analyze the effect of RF transients and their compensation in the PIP-II LINAC, followed by an analysis of calibration errors and how amore » Newton’s Method based feedback scheme can be used to regulate the beam energy to within the specified limits.« less
Provable Transient Recovery for Frame-Based, Fault-Tolerant Computing Systems
NASA Technical Reports Server (NTRS)
DiVito, Ben L.; Butler, Ricky W.
1992-01-01
We present a formal verification of the transient fault recovery aspects of the Reliable Computing Platform (RCP), a fault-tolerant computing system architecture for digital flight control applications. The RCP uses NMR-style redundancy to mask faults and internal majority voting to purge the effects of transient faults. The system design has been formally specified and verified using the EHDM verification system. Our formalization accommodates a wide variety of voting schemes for purging the effects of transients.
A point implicit time integration technique for slow transient flow problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.
2015-05-01
We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less
NASA Astrophysics Data System (ADS)
Karpov, S.; Beskin, G.; Biryukov, A.; Bondar, S.; Ivanov, E.; Katkova, E.; Perkov, A.; Sasyuk, V.
2016-06-01
Here we present a summary of first years of operation and first results of a novel 9-channel wide-field optical monitoring system with sub-second temporal resolution, Mini-MegaTORTORA (MMT-9), which is in operation now at Special Astrophysical Observatory on Russian Caucasus. The system is able to observe the sky simultaneously in either wide (~900 square degrees) or narrow (~100 square degrees) fields of view, either in clear light or with any combination of color (Johnson-Cousins B, V or R) and polarimetric filters installed, with exposure times ranging from 0.1 s to hundreds of seconds. The real-time system data analysis pipeline performs automatic detection of rapid transient events, both near-Earth and extragalactic. The objects routinely detected by MMT include faint meteors and artificial satellites. The pipeline for a longer time scales variability analysis is still in development.
Network performance analysis and management for cyber-physical systems and their applications
NASA Astrophysics Data System (ADS)
Emfinger, William A.
With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..
Terminal Transient Phase of Chaotic Transients
NASA Astrophysics Data System (ADS)
Lilienkamp, Thomas; Parlitz, Ulrich
2018-03-01
Transient chaos in spatially extended systems can be characterized by the length of the transient phase, which typically grows quickly with the system size (supertransients). For a large class of these systems, the chaotic phase terminates abruptly, without any obvious precursors in commonly used observables. Here we investigate transient spatiotemporal chaos in two different models of this class. By probing the state space using perturbed trajectories we show the existence of a "terminal transient phase," which occurs prior to the abrupt collapse of chaotic dynamics. During this phase the impact of perturbations is significantly different from the earlier transient and particular patterns of (non)susceptible regions in state space occur close to the chaotic trajectories. We therefore hypothesize that even without perturbations proper precursors for the collapse of chaotic transients exist, which might be highly relevant for coping with spatiotemporal chaos in cardiac arrhythmias or brain functionality, for example.
The influence of eddy currents on magnetic actuator performance
NASA Technical Reports Server (NTRS)
Zmood, R. B.; Anand, D. K.; Kirk, J. A.
1987-01-01
The present investigation of the effects of eddy currents on EM actuators' transient performance notes that a transfer function representation encompassing a first-order model of the eddy current influence can be useful in control system analysis. The method can be extended to represent the higher-order effects of eddy currents for actuators that cannot be represented by semiinfinite planes.
NASA Technical Reports Server (NTRS)
Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.
2014-01-01
This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle.
Transient Three-Dimensional Side Load Analysis of Out-of-Round Film Cooled Nozzles
NASA Technical Reports Server (NTRS)
Wang, Ten-See; Lin, Jeff; Ruf, Joe; Guidos, Mike
2010-01-01
The objective of this study is to investigate the effect of nozzle out-of-roundness on the transient startup side loads. The out-of-roundness could be the result of asymmetric loads induced by hardware attached to the nozzle, asymmetric internal stresses induced by previous tests and/or deformation, such as creep, from previous tests. The rocket engine studied encompasses a regeneratively cooled thrust chamber and a film cooled nozzle extension with film coolant distributed from a turbine exhaust manifold. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet history based on an engine system simulation. Transient startup computations were performed with the out-of-roundness achieved by four degrees of ovalization of the nozzle: one perfectly round, one slightly out-of-round, one more out-of-round, and one significantly out-of-round. The computed side load physics caused by the nozzle out-of-roundness and its effect on nozzle side load are reported and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Nicholas W.; Shao, Miaolei; Pajic, Slobodan
The addition of large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. This paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrationsmore » of wind and solar generation. The main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clark, Kara; Miller, Nicholas W.; Shao, Miaolei
Adding large amounts of wind and solar generation to bulk power systems that are traditionally subject to operating constraints set by transient stability and frequency response limitations is the subject of considerable concern in the industry. The US Western Interconnection (WI) is expected to experience substantial additional growth in both wind and solar generation. These plants will, to some extent, displace large central station thermal generation, both coal and gas-fired, which have traditionally helped maintain stability. Our paper reports the results of a study that investigated the transient stability and frequency response of the WI with high penetrations of windmore » and solar generation. Moreover, the main goals of this work were to (1) create a realistic, baseline model of the WI, (2) test selected transient stability and frequency events, (3) investigate the impact of large amounts of wind and solar generation, and (4) examine means to improve performance.« less
Anfis Approach for Sssc Controller Design for the Improvement of Transient Stability Performance
NASA Astrophysics Data System (ADS)
Khuntia, Swasti R.; Panda, Sidhartha
2011-06-01
In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) method based on the Artificial Neural Network (ANN) is applied to design a Static Synchronous Series Compensator (SSSC)-based controller for improvement of transient stability. The proposed ANFIS controller combines the advantages of fuzzy controller and quick response and adaptability nature of ANN. The ANFIS structures were trained using the generated database by fuzzy controller of SSSC. It is observed that the proposed SSSC controller improves greatly the voltage profile of the system under severe disturbances. The results prove that the proposed SSSC-based ANFIS controller is found to be robust to fault location and change in operating conditions. Further, the results obtained are compared with the conventional lead-lag controllers for SSSC.
NASA Technical Reports Server (NTRS)
Atwell, Matthew J.; Melcher, John C.; Hurlbert, Eric A.; Morehead, Robert L.
2017-01-01
A liquid oxygen, liquid methane (LOX/LCH4) reaction control system (RCS) was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under simulated altitude and thermal vacuum conditions. The RCS is a subsystem of the Integrated Cryogenic Propulsion Test Article (ICPTA) and was initially developed under Project Morpheus. Composed of two 28 lbf-thrust and two 7 lbf-thrust engines, the RCS is fed in parallel with the ICPTA main engine from four propellant tanks. 40 tests consisting of 1,010 individual thruster pulses were performed across 6 different test days. Major test objectives were focused on system dynamics, and included characterization of fluid transients, manifold priming, manifold thermal conditioning, thermodynamic vent system (TVS) performance, and main engine/RCS interaction. Peak surge pressures from valve opening and closing events were examined. It was determined that these events were impacted significantly by vapor cavity formation and collapse. In most cases the valve opening transient was more severe than the valve closing. Under thermal vacuum conditions it was shown that TVS operation is unnecessary to maintain liquid conditions at the thruster inlets. However, under higher heat leak environments the RCS can still be operated in a self-conditioning mode without overboard TVS venting, contingent upon the engines managing a range of potentially severe thermal transients. Lastly, during testing under cold thermal conditions the engines experienced significant ignition problems. Only after warming the thruster bodies with a gaseous nitrogen purge to an intermediate temperature was successful ignition demonstrated.
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2005-01-01
The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.
Baseline Testing of Ultracapacitors for the Next Generation Launch Technology (NGLT) Project
NASA Technical Reports Server (NTRS)
Eichenberg, Dennis J.
2004-01-01
The NASA John H. Glenn Research Center initiated baseline testing of ultracapacitors for the Next Generation Launch Transportation (NGLT) project to obtain empirical data for determining the feasibility of using ultracapacitors for the project. There are large transient loads associated with NGLT that require either a very large primary energy source or an energy storage system. The primary power source used for these tests is a proton exchange membrane (PEM) fuel cell. The energy storage system can consist of devices such as batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. Ultracapacitors are ideal for applications such as NGLT where long life, maintenance-free operation, and excellent low-temperature performance is essential. State-of-the-art symmetric ultracapacitors were used for these tests. The ultracapacitors were interconnected in an innovative configuration to minimize interconnection impedance. PEM fuel cells provide excellent energy density, but not good power density. Ultracapacitors provide excellent power density, but not good energy density. The combination of PEM fuel cells and ultracapacitors provides a power source with excellent energy density and power density. The life of PEM fuel cells is shortened significantly by large transient loads. Ultracapacitors used in conjunction with PEM fuel cells reduce the transient loads applied to the fuel cell, and thus appreciably improves its life. PEM fuel cells were tested with and without ultracapacitors, to determine the benefits of ultracapacitors. The report concludes that the implementation of symmetric ultracapacitors in the NGLT power system can provide significant improvements in power system performance and reliability.
Analysis of unmitigated large break loss of coolant accidents using MELCOR code
NASA Astrophysics Data System (ADS)
Pescarini, M.; Mascari, F.; Mostacci, D.; De Rosa, F.; Lombardo, C.; Giannetti, F.
2017-11-01
In the framework of severe accident research activity developed by ENEA, a MELCOR nodalization of a generic Pressurized Water Reactor of 900 MWe has been developed. The aim of this paper is to present the analysis of MELCOR code calculations concerning two independent unmitigated large break loss of coolant accident transients, occurring in the cited type of reactor. In particular, the analysis and comparison between the transients initiated by an unmitigated double-ended cold leg rupture and an unmitigated double-ended hot leg rupture in the loop 1 of the primary cooling system is presented herein. This activity has been performed focusing specifically on the in-vessel phenomenology that characterizes this kind of accidents. The analysis of the thermal-hydraulic transient phenomena and the core degradation phenomena is therefore here presented. The analysis of the calculated data shows the capability of the code to reproduce the phenomena typical of these transients and permits their phenomenological study. A first sequence of main events is here presented and shows that the cold leg break transient results faster than the hot leg break transient because of the position of the break. Further analyses are in progress to quantitatively assess the results of the code nodalization for accident management strategy definition and fission product source term evaluation.
Geographically distributed real-time digital simulations using linear prediction
Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank; ...
2016-07-04
Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less
Geographically distributed real-time digital simulations using linear prediction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ren; Mohanpurkar, Manish; Panwar, Mayank
Real time simulation is a powerful tool for analyzing, planning, and operating modern power systems. For analyzing the ever evolving power systems and understanding complex dynamic and transient interactions larger real time computation capabilities are essential. These facilities are interspersed all over the globe and to leverage unique facilities geographically-distributed real-time co-simulation in analyzing the power systems is pursued and presented. However, the communication latency between different simulator locations may lead to inaccuracy in geographically distributed real-time co-simulations. In this paper, the effect of communication latency on geographically distributed real-time co-simulation is introduced and discussed. In order to reduce themore » effect of the communication latency, a real-time data predictor, based on linear curve fitting is developed and integrated into the distributed real-time co-simulation. Two digital real time simulators are used to perform dynamic and transient co-simulations with communication latency and predictor. Results demonstrate the effect of the communication latency and the performance of the real-time data predictor to compensate it.« less
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics.
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-10-17
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-01-01
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law. PMID:27748418
NASA Technical Reports Server (NTRS)
Burns, W. W., III
1977-01-01
An analytically derived approach to the control of energy-storage dc-to-dc converters, which enables improved system performance and an extensive understanding of the manner in which this improved performance is accomplished, is presented. The control approach is derived from a state-plane analysis of dc-to-dc converter power stages which enables a graphical visualization of the movement of the system state during both steady state and transient operation. This graphical representation of the behavior of dc-to-dc converter systems yields considerable qualitative insight into the cause and effect relationships which exist between various commonly used converter control functions and the system performance which results from them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanan, Nelson A.; Garner, Patrick L.
Calculations have been performed for steady state and postulated transients in the VVR-K reactor at the Institute of Nuclear Physics (INP), Kazakhstan. (The reactor designation in Cyrillic is BBP-K; transliterating characters to English gives VVR-K but translating words gives WWR-K.) These calculations have been performed at the request of staff of the INP who are performing similar calculations. The selection of the transients considered started during working meetings and email correspondence between Argonne National Laboratory (ANL) and INP staff. In the end the transient were defined by the INP staff. Calculations were performed for the fresh low-enriched uranium (LEU) coremore » and for four subsequent cores as beryllium is added to maintain critically during the first 15 cycles. These calculations have been performed independently from those being performed by INP and serve as one step in the verification process.« less
Thermal Analysis and Design of an Advanced Space Suit
NASA Technical Reports Server (NTRS)
Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.
2000-01-01
The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.
Near-infrared counterparts of three transient very faint neutron star X-ray binaries
NASA Astrophysics Data System (ADS)
Shaw, A. W.; Heinke, C. O.; Degenaar, N.; Wijnands, R.; Kaur, R.; Forestell, L. M.
2017-10-01
We present near-infrared (NIR) imaging observations of three transient neutron star X-ray binaries, SAX J1753.5-2349, SAX J1806.5-2215 and AX J1754.2-2754. All three sources are members of the class of 'very faint' X-ray transients which exhibit X-ray luminosities LX ≲ 1036 erg s-1. The nature of this class of sources is still poorly understood. We detect NIR counterparts for all three systems and perform multiband photometry for both SAX J1753.5-2349 and SAX J1806.5-2215, including narrow-band Br γ photometry for SAX J1806.5-2215. We find that SAX J1753.5-2349 is significantly redder than the field population, indicating that there may be absorption intrinsic to the system, or perhaps a jet is contributing to the infrared emission. SAX J1806.5-2215 appears to exhibit absorption in Br γ, providing evidence for hydrogen in the system. Our observations of AX J1754.2-2754 represent the first detection of an NIR counterpart for this system. We find that none of the measured magnitudes are consistent with the expected quiescent magnitudes of these systems. Assuming that the infrared radiation is dominated by either the disc or the companion star, the observed magnitudes argue against an ultracompact nature for all three systems.
YF-12 propulsion research program and results
NASA Technical Reports Server (NTRS)
Albers, J. A.; Olinger, F. V.
1976-01-01
The objectives and status of the propulsion program, along with the results acquired in the various technology areas, are discussed. The instrumentation requirements for and experience with flight testing the propulsion systems at high supersonic cruise are reported. Propulsion system performance differences between wind tunnel and flight are given. The effects of high frequency flow fluctuations (transients) on the stability of the propulsion system are described, and shock position control is evaluated.
A urine volume measurement system
NASA Technical Reports Server (NTRS)
Poppendiek, H. F.; Mouritzen, G.; Sabin, C. M.
1972-01-01
An improved urine volume measurement system for use in the unusual environment of manned space flight is reported. The system utilizes a low time-constant thermal flowmeter. The time integral of the transient response of the flowmeter gives the urine volume during a void as it occurs. In addition, the two phase flows through the flowmeter present no problem. Developments of the thermal flowmeter and a verification of the predicted performance characteristics are summarized.
Corona evaluation for 270 volt dc systems
NASA Astrophysics Data System (ADS)
Dunbar, William G.
When designing 270 V dc power system electronics and wiring systems, it is essential to evaluate such corona-initiation-prone parts with bare electrodes as terminations and leads, and to take into account spacings, gas pressures (as a function of maximum altitude), temperature, voltage transients, and insulation coating thickness. Both persistent and intermittent transients are important. Filters and transient suppressors are excellent methods for limiting overvoltage transients in order to prevent corona initiation within a module.
Transient analysis of a pulsed detonation combustor using the numerical propulsion system simulation
NASA Astrophysics Data System (ADS)
Hasler, Anthony Scott
The performance of a hybrid mixed flow turbofan (with detonation tubes installed in the bypass duct) is investigated in this study and compared with a baseline model of a mixed flow turbofan with a standard combustion chamber as a duct burner. Previous studies have shown that pulsed detonation combustors have the potential to be more efficient than standard combustors, but they also present new challenges that must be overcome before they can be utilized. The Numerical Propulsion System Simulation (NPSS) will be used to perform the analysis with a pulsed detonation combustor model based on a numerical simulation done by Endo, Fujiwara, et. al. Three different cases will be run using both models representing a take-off situation, a subsonic cruise and a supersonic cruise situation. Since this study investigates a transient analysis, the pulse detonation combustor is run in a rig setup first and then its pressure and temperature are averaged for the cycle to obtain quasi-steady results.
Thermal-hydraulic analysis of N Reactor graphite and shield cooling system performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Low, J.O.; Schmitt, B.E.
1988-02-01
A series of bounding (worst-case) calculations were performed using a detailed hydrodynamic RELAP5 model of the N Reactor graphite and shield cooling system (GSCS). These calculations were specifically aimed to answer issues raised by the Westinghouse Independent Safety Review (WISR) committee. These questions address the operability of the GSCS during a worst-case degraded-core accident that requires the GDCS to mitigate the consequences of the accident. An accident scenario previously developed was designed as the hydrogen-mitigation design-basis accident (HMDBA). Previous HMDBA heat transfer analysis,, using the TRUMP-BD code, was used to define the thermal boundary conditions that the GSDS may bemore » exposed to. These TRUMP/HMDBA analysis results were used to define the bounding operating conditions of the GSCS during the course of an HMDBA transient. Nominal and degraded GSCS scenarios were investigated using RELAP5 within or at the bounds of the HMDBA transient. 10 refs., 42 figs., 10 tabs.« less
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Umetani, Keiji; Doi, Toshiki; Itai, Yuji; Yu, Quanwen; Akatsuka, Takao
1999-10-01
At aortic regurgitation state, 2D synchrotron radiation (SR) coronary arteriography (CAG) with aortographic contrast injection was examined theoretically and animal experiments were performed to confirm its diagnostic ability. This system consisted of a silicon monocrystal, fluorescent plate, avalanche-type pickup tube camera, and image acquisition system. The experiment was performed at synchrotron sources in the Photon Factory of Tsukuba. The x- ray energy was adjusted to just above the iodine K-edge. Theoretical calculation described that the coronary arteries overlapping on left ventricle could not be demonstrated well with a high signal-to-noise ratio by using the aortographic CAG with SR. The canine coronary arteries without overlap over the left ventricle were demonstrated clearly, however, the image quality appear to be reduced. The coronary artery overlapping over left ventricle could not be demonstrated well, however the transient reduction of left ventricular wall motion was revealed by transient stenotic procedure of left anterior descending coronary artery.
Materials and processing approaches for foundry-compatible transient electronics
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.
2017-01-01
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries. PMID:28652373
Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Ping; Li, Hongyu; Gan, Chun
Here, with the growing integration of renewable power generation, plug-in electric vehicles, and other sources of uncertainty, increasing stochastic continuous disturbances are brought to power systems. The impact of stochastic continuous disturbances on power system transient stability attracts significant attention. To address this problem, this paper proposes an analytical assessment method for transient stability of multi-machine power systems under stochastic continuous disturbances. In the proposed method, a probability measure of transient stability is presented and analytically solved by stochastic averaging. Compared with the conventional method (Monte Carlo simulation), the proposed method is many orders of magnitude faster, which makes itmore » very attractive in practice when many plans for transient stability must be compared or when transient stability must be analyzed quickly. Also, it is found that the evolution of system energy over time is almost a simple diffusion process by the proposed method, which explains the impact mechanism of stochastic continuous disturbances on transient stability in theory.« less
The agile alert system for gamma-ray transients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bulgarelli, A.; Trifoglio, M.; Gianotti, F.
2014-01-20
In recent years, a new generation of space missions has offered great opportunities for discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) on board the AGILE space mission. AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many γ-ray transients of both galactic and extragalactic origin. This work presents the AGILE innovative approach to fast γ-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe (1) the AGILE Gamma-Ray Alert System, (2) a newmore » algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for γ-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, via e-mail, and via push notifications from an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in γ-ray astrophysics.« less
The AGILE Alert System for Gamma-Ray Transients
NASA Astrophysics Data System (ADS)
Bulgarelli, A.; Trifoglio, M.; Gianotti, F.; Tavani, M.; Parmiggiani, N.; Fioretti, V.; Chen, A. W.; Vercellone, S.; Pittori, C.; Verrecchia, F.; Lucarelli, F.; Santolamazza, P.; Fanari, G.; Giommi, P.; Beneventano, D.; Argan, A.; Trois, A.; Scalise, E.; Longo, F.; Pellizzoni, A.; Pucella, G.; Colafrancesco, S.; Conforti, V.; Tempesta, P.; Cerone, M.; Sabatini, P.; Annoni, G.; Valentini, G.; Salotti, L.
2014-01-01
In recent years, a new generation of space missions has offered great opportunities for discovery in high-energy astrophysics. In this article we focus on the scientific operations of the Gamma-Ray Imaging Detector (GRID) on board the AGILE space mission. AGILE-GRID, sensitive in the energy range of 30 MeV-30 GeV, has detected many γ-ray transients of both galactic and extragalactic origin. This work presents the AGILE innovative approach to fast γ-ray transient detection, which is a challenging task and a crucial part of the AGILE scientific program. The goals are to describe (1) the AGILE Gamma-Ray Alert System, (2) a new algorithm for blind search identification of transients within a short processing time, (3) the AGILE procedure for γ-ray transient alert management, and (4) the likelihood of ratio tests that are necessary to evaluate the post-trial statistical significance of the results. Special algorithms and an optimized sequence of tasks are necessary to reach our goal. Data are automatically analyzed at every orbital downlink by an alert pipeline operating on different timescales. As proper flux thresholds are exceeded, alerts are automatically generated and sent as SMS messages to cellular telephones, via e-mail, and via push notifications from an application for smartphones and tablets. These alerts are crosschecked with the results of two pipelines, and a manual analysis is performed. Being a small scientific-class mission, AGILE is characterized by optimization of both scientific analysis and ground-segment resources. The system is capable of generating alerts within two to three hours of a data downlink, an unprecedented reaction time in γ-ray astrophysics.
Longitudinal gradient coil optimization in the presence of transient eddy currents.
Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S
2007-06-01
The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.
Transient Structures and Possible Limits of Data Recording in Phase-Change Materials.
Hu, Jianbo; Vanacore, Giovanni M; Yang, Zhe; Miao, Xiangshui; Zewail, Ahmed H
2015-07-28
Phase-change materials (PCMs) represent the leading candidates for universal data storage devices, which exploit the large difference in the physical properties of their transitional lattice structures. On a nanoscale, it is fundamental to determine their performance, which is ultimately controlled by the speed limit of transformation among the different structures involved. Here, we report observation with atomic-scale resolution of transient structures of nanofilms of crystalline germanium telluride, a prototypical PCM, using ultrafast electron crystallography. A nonthermal transformation from the initial rhombohedral phase to the cubic structure was found to occur in 12 ps. On a much longer time scale, hundreds of picoseconds, equilibrium heating of the nanofilm is reached, driving the system toward amorphization, provided that high excitation energy is invoked. These results elucidate the elementary steps defining the structural pathway in the transformation of crystalline-to-amorphous phase transitions and describe the essential atomic motions involved when driven by an ultrafast excitation. The establishment of the time scales of the different transient structures, as reported here, permits determination of the possible limit of performance, which is crucial for high-speed recording applications of PCMs.
Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.
Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas
2011-06-24
This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.
Gruen, Dieter M.; Young, Charles E.; Pellin, Michael J.
1989-01-01
A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.
Multiple disturbances classifier for electric signals using adaptive structuring neural networks
NASA Astrophysics Data System (ADS)
Lu, Yen-Ling; Chuang, Cheng-Long; Fahn, Chin-Shyurng; Jiang, Joe-Air
2008-07-01
This work proposes a novel classifier to recognize multiple disturbances for electric signals of power systems. The proposed classifier consists of a series of pipeline-based processing components, including amplitude estimator, transient disturbance detector, transient impulsive detector, wavelet transform and a brand-new neural network for recognizing multiple disturbances in a power quality (PQ) event. Most of the previously proposed methods usually treated a PQ event as a single disturbance at a time. In practice, however, a PQ event often consists of various types of disturbances at the same time. Therefore, the performances of those methods might be limited in real power systems. This work considers the PQ event as a combination of several disturbances, including steady-state and transient disturbances, which is more analogous to the real status of a power system. Six types of commonly encountered power quality disturbances are considered for training and testing the proposed classifier. The proposed classifier has been tested on electric signals that contain single disturbance or several disturbances at a time. Experimental results indicate that the proposed PQ disturbance classification algorithm can achieve a high accuracy of more than 97% in various complex testing cases.
Modeling static and dynamic human cardiovascular responses to exercise.
Stremel, R W; Bernauer, E M; Harter, L W; Schultz, R A; Walters, R F
1975-08-01
A human performance model has been developed and described [9] which portrays the human circulatory, thermo regulatory and energy-exchange systems as an intercoupled set. In this model, steady state or static relationships are used to describe oxygen consumption and blood flow. For example, heart rate (HTRT) is calculated as a function of the oxygen and the thermo-regulatory requirements of each body compartment, using the steady state work values of cardiac output (CO, sum of all compartment blood flows) and stroke volume (SV, assumed maximal after 40% maximal oxygen consumption): HTRT=CO/SV. The steady state model has proven to be an acceptable first approximation, but the inclusion of transient characteristics are essential in describing the overall systems' adjustment to exercise stress. In the present study, the dynamic transient characteristics of heart rate, stroke volume and cardiac output were obtained from experiments utilizing step and sinusoidal forcing of work. The gain and phase relationships reveal a probable first order system with a six minute time constant, and are utilized to model the transient characteristics of these parameters. This approach leads to a more complex model but a more accurate representation of the physiology involved. The instrumentation and programming essential to these experiments are described.
A robust nonlinear stabilizer as a controller for improving transient stability in micro-grids.
Azimi, Seyed Mohammad; Afsharnia, Saeed
2017-01-01
This paper proposes a parametric-Lyapunov approach to the design of a stabilizer aimed at improving the transient stability of micro-grids (MGs). This strategy is applied to electronically-interfaced distributed resources (EI-DRs) operating with a unified control configuration applicable to all operational modes (i.e. grid-connected mode, islanded mode, and mode transitions). The proposed approach employs a simple structure compared with other nonlinear controllers, allowing ready implementation of the stabilizer. A new parametric-Lyapunov function is proposed rendering the proposed stabilizer more effective in damping system transition transients. The robustness of the proposed stabilizer is also verified based on both time-domain simulations and mathematical proofs, and an ultimate bound has been derived for the frequency transition transients. The proposed stabilizer operates by deploying solely local information and there are no needs for communication links. The deteriorating effects of the primary resource delays on the transient stability are also treated analytically. Finally, the effectiveness of the proposed stabilizer is evaluated through time-domain simulations and compared with the recently-developed stabilizers performed on a multi-resource MG. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Scarlat, Raluca Olga
This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling approach to the PB-FHR annular pebble bed core cooled by fluoride salt mixtures generated a model that is called Pod. Pod. was used to show the resilience of the PB-FHR core to generation of hot spots or cold spots, due to the effect of buoyancy on the flow and temperature distribution in the packed bed. Pod. was used to investigate the PB-FHR response to ATWS transients. Based on the functional requirements for the core, Pod. was used to generate an optimized design of the flow distribution in the core. An analysis of natural circulation loops cooled by single-phase Boussinesq fluids is presented here, in the context of reactor design that relies on natural circulation decay heat removal, and design of scaled experiments. The scaling arguments are established for a transient natural circulation loop, for loops that have long fluid residence time, and negligible contribution of fluid inertia to the momentum equation. The design of integral effects tests for the loss of forced circulation (LOFC) for PB-FHR is discussed. The special case of natural circulation decay heat removal from a pebble bed reactor was analyzed. A way to define the Reynolds number in a multi-dimensional pebble bed was identified. The scaling methodology for replicating pebble bed friction losses using an electrically resistance heated annular pipe and a needle valve was developed. The thermophysical properties of liquid fluoride salts lead to design of systems with low flow velocities, and hence long fluid residence times. A comparison among liquid coolants for the performance of steady state natural circulation heat removal from a pebble bed was performed. Transient natural circulation experimental data with simulant fluids for fluoride salts is given here. The low flow velocity and the relatively high viscosity of the fluoride salts lead to low Reynolds number flows, and a low Reynolds number in conjunction with a sufficiently high coefficient of thermal expansion makes the system susceptible to local buoyancy effects Experiments indicate that slow exchange of stagnant fluid in static legs can play a significant role in the transient response of natural circulation loops. The effect of non-linear temperature profiles on the hot or cold legs or other segments of the flow loop, which may develop during transient scenarios, should be considered when modeling the performance of natural circulation loops. The data provided here can be used for validation of the application of thermal-hydraulic systems codes to the modeling of heat removal by natural circulation with liquid fluoride salts and its simulant fluids.
NASA Technical Reports Server (NTRS)
Klein, R. H.; Mcruer, D. T.; Weir, D.
1975-01-01
A maneuver complex and related performance measures used to evaluate driver/vehicle system responses as effected by variations in the directional response characteristics of passenger cars are described. The complex consists of normal and emergency maneuvers (including random and discrete disturbances) which, taken as a whole, represent all classes of steering functions and all modes of driver response behavior. Measures of driver/vehicle system response and performance in regulation tasks included direct describing function measurements and rms yaw velocity. In transient maneuvers, measures such as steering activity and cone strikes were used.
Huo, Ailing; Chen, Zhenyu; Wang, Pengkai; Yang, Liming; Wang, Guangping; Wang, Dandan; Liao, Suchan; Cheng, Tielong; Chen, Jinhui; Shi, Jisen
2017-01-01
Liriodendron is a genus of the magnolia family comprised of two flowering tree species that produce hardwoods of great ecological and economic value. However, only a limited amount of genetic research has been performed on the Liriodendron genus partly because transient or stable transgenic trees have been difficult to produce. In general, transient expression systems are indispensable for rapid, high-throughput screening and systematic characterization of gene functions at a low cost; therefore, development of such a system for Liriodendron would provide a necessary step forward for research on Magnoliaceae and other woody trees. Herein, we describe an efficient and rapid protocol for preparing protoplasts from the leaf mesophyll tissue of a Liriodendron hybrid and an optimized system for polyethylene glycol–mediated transient transfection of the protoplasts. Because the leaves of the Liriodendron hybrid are waxy, we formulated an enzyme mix containing 1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10, and 0.1% (w/v) Pectolyase Y-23 to efficiently isolate protoplasts from the Liriodendron hybrid leaf mesophyll tissue in 3 h. We optimized Liriodendron protoplast transfection efficiency by including 20 μg plasmid DNA per 104 protoplasts, a transformation time of 20 min, and inclusion of 20% (w/v) polyethylene glycol 4000. After integrating the Liriodendron WOX1 gene into pJIT166-GFP to produce a WOX1-GFP fusion product and transfecting it into isolated protoplasts, LhWOX1-GFP was found to localize to the nucleus according to its green fluorescence. PMID:28323890
Huo, Ailing; Chen, Zhenyu; Wang, Pengkai; Yang, Liming; Wang, Guangping; Wang, Dandan; Liao, Suchan; Cheng, Tielong; Chen, Jinhui; Shi, Jisen
2017-01-01
Liriodendron is a genus of the magnolia family comprised of two flowering tree species that produce hardwoods of great ecological and economic value. However, only a limited amount of genetic research has been performed on the Liriodendron genus partly because transient or stable transgenic trees have been difficult to produce. In general, transient expression systems are indispensable for rapid, high-throughput screening and systematic characterization of gene functions at a low cost; therefore, development of such a system for Liriodendron would provide a necessary step forward for research on Magnoliaceae and other woody trees. Herein, we describe an efficient and rapid protocol for preparing protoplasts from the leaf mesophyll tissue of a Liriodendron hybrid and an optimized system for polyethylene glycol-mediated transient transfection of the protoplasts. Because the leaves of the Liriodendron hybrid are waxy, we formulated an enzyme mix containing 1.5% (w/v) Cellulase R-10, 0.5% (w/v) Macerozyme R-10, and 0.1% (w/v) Pectolyase Y-23 to efficiently isolate protoplasts from the Liriodendron hybrid leaf mesophyll tissue in 3 h. We optimized Liriodendron protoplast transfection efficiency by including 20 μg plasmid DNA per 104 protoplasts, a transformation time of 20 min, and inclusion of 20% (w/v) polyethylene glycol 4000. After integrating the Liriodendron WOX1 gene into pJIT166-GFP to produce a WOX1-GFP fusion product and transfecting it into isolated protoplasts, LhWOX1-GFP was found to localize to the nucleus according to its green fluorescence.
Performance evaluation of an automotive thermoelectric generator
NASA Astrophysics Data System (ADS)
Dubitsky, Andrei O.
Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.
Multi-loop control of UPS inverter with a plug-in odd-harmonic repetitive controller.
Razi, Reza; Karbasforooshan, Mohammad-Sadegh; Monfared, Mohammad
2017-03-01
This paper proposes an improved multi-loop control scheme for the single-phase uninterruptible power supply (UPS) inverter by using a plug-in odd-harmonic repetitive controller to regulate the output voltage. In the suggested control method, the output voltage and the filter capacitor current are used as the outer and inner loop feedback signals, respectively and the instantaneous value of the reference voltage feedforwarded to the output of the controller. Instead of conventional linear (proportional-integral/-resonant) and conventional repetitive controllers, a plug-in odd-harmonic repetitive controller is employed in the outer loop to regulate the output voltage, which occupies less memory space and offers faster tracking performance compared to the conventional one. Also, a simple proportional controller is used in the inner loop for active damping of possible resonances and improving the transient performance. The feedforward of the converter reference voltage enhances the robust performance of the system and simplifies the system modelling and the controller design. A step-by-step design procedure is presented for the proposed controller, which guarantees stability of the system under worst-case scenarios. Simulation and experimental results validate the excellent steady-state and transient performance of the proposed control scheme and provide the exact comparison of the proposed method with the conventional multi-loop control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Predicted performance of an integrated modular engine system
NASA Technical Reports Server (NTRS)
Binder, Michael; Felder, James L.
1993-01-01
Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.
Bae, Sungwoo; Kim, Myungchin
2016-01-01
In order to realize a true WoT environment, a reliable power circuit is required to ensure interconnections among a range of WoT devices. This paper presents research on sensors and their effects on the reliability and response characteristics of power circuits in WoT devices. The presented research can be used in various power circuit applications, such as energy harvesting interfaces, photovoltaic systems, and battery management systems for the WoT devices. As power circuits rely on the feedback from voltage/current sensors, the system performance is likely to be affected by the sensor failure rates, sensor dynamic characteristics, and their interface circuits. This study investigated how the operational availability of the power circuits is affected by the sensor failure rates by performing a quantitative reliability analysis. In the analysis process, this paper also includes the effects of various reconstruction and estimation techniques used in power processing circuits (e.g., energy harvesting circuits and photovoltaic systems). This paper also reports how the transient control performance of power circuits is affected by sensor interface circuits. With the frequency domain stability analysis and circuit simulation, it was verified that the interface circuit dynamics may affect the transient response characteristics of power circuits. The verification results in this paper showed that the reliability and control performance of the power circuits can be affected by the sensor types, fault tolerant approaches against sensor failures, and the response characteristics of the sensor interfaces. The analysis results were also verified by experiments using a power circuit prototype. PMID:27608020
High vacuum measurements and calibrations, molecular flow fluid transient effects
Leishear, Robert A.; Gavalas, Nickolas A.
2015-04-29
High vacuum pressure measurements and calibrations below 1 × 10 -8 Torr are problematic. Specifically, measurement accuracies change drastically for vacuum gauges when pressures are suddenly lowered in vacuum systems. How can gauges perform like this? A brief system description is first required to answer this question. Calibrations were performed using a vacuum calibration chamber with attached vacuum gauges. To control chamber pressures, vacuum pumps decreased the chamber pressure while nitrogen tanks increased the chamber pressure. By balancing these opposing pressures, equilibrium in the chamber was maintained at selected set point pressures to perform calibrations. When pressures were suddenly decreasedmore » during set point adjustments, a sudden rush of gas from the chamber also caused a surge of gas from the gauges to decrease the pressures in those gauges. Gauge pressures did not return to equilibrium as fast as chamber pressures due to the sparse distribution of gas molecules in the system. This disparity in the rate of pressure changes caused the pressures in different gauges to be different than expected. This discovery was experimentally proven to show that different gauge designs return to equilibrium at different rates, and that gauge accuracies vary for different gauge designs due to fluid transients in molecular flow.« less
NASA Astrophysics Data System (ADS)
Abdiwe, Ramadan; Haider, Markus
2017-06-01
In this study the thermochemical system using ammonia as energy storage carrier is investigated and a transient mathematical model using MATLAB software was developed to predict the behavior of the ammonia closed-loop storage system including but not limited to the ammonia solar reactor and the ammonia synthesis reactor. The MATLAB model contains transient mass and energy balances as well as chemical equilibrium model for each relevant system component. For the importance of the dissociation and formation processes in the system, a Computational Fluid Dynamics (CFD) simulation on the ammonia solar and synthesis reactors has been performed. The CFD commercial package FLUENT is used for the simulation study and all the important mechanisms for packed bed reactors are taken into account, such as momentum, heat and mass transfer, and chemical reactions. The FLUENT simulation reveals the profiles inside both reactors and compared them with the profiles from the MATLAB code.
Automatic reactor control system for transient operation
NASA Astrophysics Data System (ADS)
Lipinski, Walter C.; Bhattacharyya, Samit K.; Hanan, Nelson A.
Various programmatic considerations have delayed the upgrading of the TREAT reactor and the performance of the control system is not yet experimentally verified. The current schedule calls for the upgrading activities to occur last in the calendar year 1987. Detailed simulation results, coupled with earlier validation of individual components of the control strategy in TREAT, verify the performance of the algorithms. The control system operates within the safety envelope provided by a protection system designed to ensure reactor safety under conditions of spurious reactivity additions. The approach should be directly applicable to MMW systems, with appropriate accounting of temperature rate limitations of key components and of the inertia of the secondary system components.
NASA Astrophysics Data System (ADS)
Dhamala, Mukeshwar; Lai, Ying-Cheng
1999-02-01
Transient chaos is a common phenomenon in nonlinear dynamics of many physical, biological, and engineering systems. In applications it is often desirable to maintain sustained chaos even in parameter regimes of transient chaos. We address how to sustain transient chaos in deterministic flows. We utilize a simple and practical method, based on extracting the fundamental dynamics from time series, to maintain chaos. The method can result in control of trajectories from almost all initial conditions in the original basin of the chaotic attractor from which transient chaos is created. We apply our method to three problems: (1) voltage collapse in electrical power systems, (2) species preservation in ecology, and (3) elimination of undesirable bursting behavior in a chemical reaction system.
Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) Users' Guide
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Zinnecker, Alicia M.
2014-01-01
The tool for turbine engine closed-loop transient analysis (TTECTrA) is a semi-automated control design tool for subsonic aircraft engine simulations. At a specific flight condition, TTECTrA produces a basic controller designed to meet user-defined goals and containing only the fundamental limiters that affect the transient performance of the engine. The purpose of this tool is to provide the user a preliminary estimate of the transient performance of an engine model without the need to design a full nonlinear controller.
Power System Transient Stability Improvement by the Interline Power Flow Controller (IPFC)
NASA Astrophysics Data System (ADS)
Zhang, Jun; Yokoyama, Akihiko
This paper presents a study on the power system transient stability improvement by means of interline power flow controller (IPFC). The power injection model of IPFC in transient analysis is proposed and can be easily incorporated into existing power systems. Based on the energy function analysis, the operation of IPFC should guarantee that the time derivative of the global energy of the system is not greater than zero in order to damp the electromechanical oscillations. Accordingly, control laws of IPFC are proposed for its application to the single-machine infinite-bus (SMIB) system and the multimachine systems, respectively. Numerical simulations on the corresponding model power systems are presented to demonstrate their effectiveness in improving power system transient stability.
Composite load spectra for select space propulsion structural components
NASA Technical Reports Server (NTRS)
Newell, J. F.; Ho, H. W.; Kurth, R. E.
1991-01-01
The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.
A novel control strategy for enhancing the LVRT and voltage support capabilities of DFIG
NASA Astrophysics Data System (ADS)
Shen, Yangwu; Zhang, Bin; Liang, Liqing; Cui, Ting
2018-02-01
A novel integrated control strategy is proposed in this paper to enhance the low voltage ride through capacity for the double-fed induction generator by equipping an energy storage system. The energy storage system is installed into the DC-link capacitor of the DFIG and used to control the DC-link voltage during normal or transient operations. The energy storage device will absorb or compensate the power difference between the captured wind power and the power injected to the grid during the normal and transient period, and the grid side converter can be free from maintaining the voltage stability of the DC-link capacitor. Thus, the grid-side converter is changed to reactive power support while the rotor-side converter is used to control the maximum power production during normal operation. The grid-side converter and rotor-side converter will act as reactive power sources to further enhance the voltage support capability of double-fed induction generator during the transient period. Numerical Simulation are performed to validate the effectiveness of the proposed control designs.
NASA Astrophysics Data System (ADS)
Zhang, X. X.; Cheng, Y. G.; Xia, L. S.; Yang, J. D.
2014-03-01
The runaway process in a model pumped-storage system was simulated for analyzing the dynamic characteristics of a pump-turbine. The simulation was adopted by coupling 1D (One Dimensional) pipeline MOC (Method of Characteristics) equations with a 3D (Three Dimensional) pump-turbine CFD (Computational Fluid Dynamics) model, in which the water hammer wave in the 3D zone was defined by giving a pressure dependent density. We found from the results that the dynamic performances of the pump-turbine do not coincide with the static operating points, especially in the S-shaped characteristics region, where the dynamic trajectories follow ring-shaped curves. Specifically, the transient operating points with the same Q11 and M11 in different moving directions of the dynamic trajectories give different n11. The main reason of this phenomenon is that the transient flow patterns inside the pump-turbine are influenced by the ones in the previous time step, which leads to different flow patterns between the points with the same Q11 and M11 in different moving directions of the dynamic trajectories.
Kubanek, J; Wang, C; Snyder, L H
2013-11-01
We often look at and sometimes reach for visible targets. Looking at a target is fast and relatively easy. By comparison, reaching for an object is slower and is associated with a larger cost. We hypothesized that, as a result of these differences, abrupt visual onsets may drive the circuits involved in saccade planning more directly and with less intermediate regulation than the circuits involved in reach planning. To test this hypothesis, we recorded discharge activity of neurons in the parietal oculomotor system (area LIP) and in the parietal somatomotor system (area PRR) while monkeys performed a visually guided movement task and a choice task. We found that in the visually guided movement task LIP neurons show a prominent transient response to target onset. PRR neurons also show a transient response, although this response is reduced in amplitude, is delayed, and has a slower rise time compared with LIP. A more striking difference is observed in the choice task. The transient response of PRR neurons is almost completely abolished and replaced with a slow buildup of activity, while the LIP response is merely delayed and reduced in amplitude. Our findings suggest that the oculomotor system is more closely and obligatorily coupled to the visual system, whereas the somatomotor system operates in a more discriminating manner.
A microprocessor tester for the treat upgrade reactor trip system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lenkszus, F.R.; Bucher, R.G.
1985-02-01
The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. To improve the analytical extrapolation of test results to full-size assembly bundles, the facility upgrade will increase the maximum size of the test bundle from 7 to 37 fuel pins. By creating a core convertor zone around the test location, the neutron spectrum incident on the test assembly will be hardened and the maximum energy deposited in the sample will be increased. In addition, a programmable Automated Reactor Control System (ARCS) willmore » permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations. A quantitative reliability analysis of the RTS shows that the unreliability, that is, the probability of failure, is acceptable for a 10 hour mission time or risk interval.« less
Large transient fault current test of an electrical roll ring
NASA Technical Reports Server (NTRS)
Yenni, Edward J.; Birchenough, Arthur G.
1992-01-01
The space station uses precision rotary gimbals to provide for sun tracking of its photoelectric arrays. Electrical power, command signals and data are transferred across the gimbals by roll rings. Roll rings have been shown to be capable of highly efficient electrical transmission and long life, through tests conducted at the NASA Lewis Research Center and Honeywell's Satellite and Space Systems Division in Phoenix, AZ. Large potential fault currents inherent to the power system's DC distribution architecture, have brought about the need to evaluate the effects of large transient fault currents on roll rings. A test recently conducted at Lewis subjected a roll ring to a simulated worst case space station electrical fault. The system model used to obtain the fault profile is described, along with details of the reduced order circuit that was used to simulate the fault. Test results comparing roll ring performance before and after the fault are also presented.
Decision making in noisy bistable systems with time-dependent asymmetry
NASA Astrophysics Data System (ADS)
Nené, Nuno R.; Zaikin, Alexey
2013-01-01
Our work draws special attention to the importance of the effects of time-dependent parameters on decision making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow passage through the critical region in both systems increases substantially the probability of specific decision outcomes. We also study the relevance for attractor selection of reaching maximum values for the external asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant where the position of the critical point allows for compensation of the detrimental effects of noise in retaining memory of the transient asymmetries.
Designing a Multi-Petabyte Database for LSST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becla, Jacek; Hanushevsky, Andrew; Nikolaev, Sergei
2007-01-10
The 3.2 giga-pixel LSST camera will produce approximately half a petabyte of archive images every month. These data need to be reduced in under a minute to produce real-time transient alerts, and then added to the cumulative catalog for further analysis. The catalog is expected to grow about three hundred terabytes per year. The data volume, the real-time transient alerting requirements of the LSST, and its spatio-temporal aspects require innovative techniques to build an efficient data access system at reasonable cost. As currently envisioned, the system will rely on a database for catalogs and metadata. Several database systems are beingmore » evaluated to understand how they perform at these data rates, data volumes, and access patterns. This paper describes the LSST requirements, the challenges they impose, the data access philosophy, results to date from evaluating available database technologies against LSST requirements, and the proposed database architecture to meet the data challenges.« less
Renewable source controls for grid stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byrne, Raymond Harry; Elliott, Ryan Thomas; Neely, Jason C.
2012-12-01
The goal of this study was to evaluate the small signal and transient stability of the Western Electric- ity Coordinating Council (WECC) under high penetrations of renewable energy, and to identify control technologies that would improve the system performance. The WECC is the regional entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection. Transient stability is the ability of the power system to maintain synchronism after a large disturbance while small signal stability is the ability of the power system to maintain synchronism after a small disturbance. Tran- sient stability analysis usually focuses on themore » relative rotor angle between synchronous machines compared to some stability margin. For this study we employed generator speed relative to system speed as a metric for assessing transient stability. In addition, we evaluated the system transient response using the system frequency nadir, which provides an assessment of the adequacy of the primary frequency control reserves. Small signal stability analysis typically identi es the eigenvalues or modes of the system in response to a disturbance. For this study we developed mode shape maps for the di erent scenarios. Prony analysis was applied to generator speed after a 1.4 GW, 0.5 second, brake insertion at various locations. Six di erent WECC base cases were analyzed, including the 2022 light spring case which meets the renewable portfolio standards. Because of the di culty in identifying the cause and e ect relationship in large power system models with di erent scenarios, several simulations were run on a 7-bus, 5-generator system to isolate the e ects of di erent con gurations. Based on the results of the study, for a large power system like the WECC, incorporating frequency droop into wind/solar systems provides a larger bene t to system transient response than replacing the lost inertia with synthetic inertia. From a small signal stability perspective, the increase in renewable penetration results in subtle changes to the system modes. In gen- eral, mode frequencies increase slightly, and mode shapes remain similar. The system frequency nadir for the 2022 light spring case was slightly lower than the other cases, largely because of the reduced system inertia. However, the nadir is still well above the minimum load shedding frequency of 59.5 Hz. Finally, several discrepancies were identi ed between actual and reported wind penetration, and additional work on wind/solar modeling is required to increase the delity of the WECC models.« less
Zhai, Di-Hua; Xia, Yuanqing
2018-02-01
This paper addresses the adaptive control for task-space teleoperation systems with constrained predefined synchronization error, where a novel switched control framework is investigated. Based on multiple Lyapunov-Krasovskii functionals method, the stability of the resulting closed-loop system is established in the sense of state-independent input-to-output stability. Compared with previous work, the developed method can simultaneously handle the unknown kinematics/dynamics, asymmetric varying time delays, and prescribed performance control in a unified framework. It is shown that the developed controller can guarantee the prescribed transient-state and steady-state synchronization performances between the master and slave robots, which is demonstrated by the simulation study.
Thermal-hydraulic modeling needs for passive reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, J.M.
1997-07-01
The U.S. Nuclear Regulatory Commission has received an application for design certification from the Westinghouse Electric Corporation for an Advanced Light Water Reactor design known as the AP600. As part of the design certification process, the USNRC uses its thermal-hydraulic system analysis codes to independently audit the vendor calculations. The focus of this effort has been the small break LOCA transients that rely upon the passive safety features of the design to depressurize the primary system sufficiently so that gravity driven injection can provide a stable source for long term cooling. Of course, large break LOCAs have also been considered,more » but as the involved phenomena do not appear to be appreciably different from those of current plants, they were not discussed in this paper. Although the SBLOCA scenario does not appear to threaten core coolability - indeed, heatup is not even expected to occur - there have been concerns as to the performance of the passive safety systems. For example, the passive systems drive flows with small heads, consequently requiring more precision in the analysis compared to active systems methods for passive plants as compared to current plants with active systems. For the analysis of SBLOCAs and operating transients, the USNRC uses the RELAP5 thermal-hydraulic system analysis code. To assure the applicability of RELAP5 to the analysis of these transients for the AP600 design, a four year long program of code development and assessment has been undertaken.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmony, S.C.; Steiner, J.L.; Stumpf, H.J.
The PIUS advanced reactor is a 640-MWe pressurized water reactor developed by Asea Brown Boveri (ABB). A unique feature of the PIUS concept is the absence of mechanical control and shutdown rods. Reactivity is controlled by coolant boron concentration and the temperature of the moderator coolant. As part of the preapplication and eventual design certification process, advanced reactor applicants are required to submit neutronic and thermal-hydraulic safety analyses over a sufficient range of normal operation, transient conditions, and specified accident sequences. Los Alamos is supporting the US Nuclear Regulatory Commission`s preapplication review of the PIUS reactor. A fully one-dimensional modelmore » of the PIUS reactor has been developed for the Transient Reactor Analysis Code, TRACPF1/MOD2. Early in 1992, ABB submitted a Supplemental Information Package describing recent design modifications. An important feature of the PIUS Supplement design was the addition of an active scram system that will function for most transient and accident conditions. A one-dimensional Transient Reactor Analysis Code baseline calculation of the PIUS Supplement design were performed for a break in the main steam line at the outlet nozzle of the loop 3 steam generator. Sensitivity studies were performed to explore the robustness of the PIUS concept to severe off-normal conditions following a main steam line break. The sensitivity study results provide insights into the robustness of the design.« less
Ferraioli, Giovanna; Tinelli, Carmine; Malfitano, Antonello; Dal Bello, Barbara; Filice, Gaetano; Filice, Carlo; Above, Elisabetta; Barbarini, Giorgio; Brunetti, Enrico; Calderon, Willy; Di Gregorio, Marta; Lissandrin, Raffaella; Ludovisi, Serena; Maiocchi, Laura; Michelone, Giuseppe; Mondelli, Mario; Patruno, Savino F A; Perretti, Alessandro; Poma, Gianluigi; Sacchi, Paolo; Zaramella, Marco; Zicchetti, Mabel
2012-07-01
The purpose of this article is to evaluate the diagnostic performance of transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index in assessing fibrosis in patients with chronic hepatitis C by using histologic Metavir scores as reference standard. Consecutive patients with chronic hepatitis C scheduled for liver biopsy were enrolled. Liver biopsy was performed on the same day as transient elastography and real-time strain elastography. Transient elastography and real-time strain elastography were performed in the same patient encounter by a single investigator using a medical device based on elastometry and an ultrasound machine, respectively. Diagnostic performance was assessed by using receiver operating characteristic curves and area under the receiver operating characteristic curve (AUC) analysis. One hundred thirty patients (91 men and 39 women) were analyzed. The cutoff values for transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index were 6.9 kPa, 1.82, and 0.37, respectively, for fibrosis score of 2 or higher; 7.3 kPa, 1.86, and 0.70, respectively, for fibrosis score of 3 or higher; and 9.3 kPa, 2.33, and 0.70, respectively, for fibrosis score of 4. AUC values of transient elastography, real-time strain elastography, aspartate-to-platelet ratio index were 0.88, 0.74, and 0.86, respectively, for fibrosis score of 2 or higher; 0.95, 0.80, and 0.89, respectively, for fibrosis score of 3 or higher; and 0.97, 0.80, and 0.84, respectively, for fibrosis score of 4. A combination of the three methods, when two of three were in agreement, showed AUC curves of 0.93, 0.95, and 0.95 for fibrosis scores of 2 or higher, 3 or higher, and 4, respectively. Transient elastography, real-time strain elastography, and aspartate-to-platelet ratio index values were correlated with histologic stages of fibrosis. Transient elastography offered excellent diagnostic performance in assessing severe fibrosis and cirrhosis. Real-time elastography does not yet have the potential to substitute for transient elastography in the assessment of liver fibrosis.
Compartment Venting Analyses of Ares I First Stage Systems Tunnel
NASA Technical Reports Server (NTRS)
Wang, Qunzhen; Arner, Stephen
2009-01-01
Compartment venting analyses have been performed for the Ares I first stage systems tunnel using both the lumped parameter method and the three-dimensional (31)) transient computational fluid dynamics (CFD) approach. The main objective of venting analyses is to predict the magnitudes of differential pressures across the skin so the integrity of solid walls can be evaluated and properly designed. The lumped parameter method assumes the gas pressure and temperature inside the systems tunnel are spatially uniform, which is questionable since the tunnel is about 1,700 in. long and 4 in. wide. Therefore, 31) transient CFD simulations using the commercial CFD code FLUENT are performed in order to examine the gas pressure and temperature variations inside the tunnel. It was found that the uniform pressure and temperature assumptions inside the systems tunnel are valid during ascent. During reentry, the uniform pressure assumption is also reasonable but the uniform temperature assumption is not valid. Predicted pressure and temperature inside the systems tunnel using CFD are also compared with those from the lumped parameter method using the NASA code CHCHVENT. In general, the average pressure and temperature inside the systems tunnel from CFD are between the burst and crush results from CHCHVENT during both ascent and reentry. The skin differential pressure and pressure inside the systems tunnel relative to freestream pressure from CHCHVENT as well as velocity vectors and streamlines are also discussed in detail.
Performance of a Brayton power system with a space type radiator
NASA Technical Reports Server (NTRS)
Nussle, R. C.; Prok, G. M.; Fenn, D. B.
1974-01-01
Test results of an experimental investigation to measure Brayton engine performance while operating at the sink temperatures of a typical low earth orbit are presented. The results indicate that the radiator area was slightly oversized. The steady state and transient responses of the power system to the sink temperatures in orbit were measured. During the orbital operation, the engine did not reach the steady state operation of either sun or shade conditions. The alternator power variation during orbit was + or - 4 percent from its mean value of 9.3 kilowatts.
A novel dual-wavelength laser stimulator to elicit transient and tonic nociceptive stimulation.
Dong, Xiaoxi; Liu, Tianjun; Wang, Han; Yang, Jichun; Chen, Zhuying; Hu, Yong; Li, Yingxin
2017-07-01
This study aimed to develop a new laser stimulator to elicit both transient and sustained heat stimulation with a dual-wavelength laser system as a tool for the investigation of both transient and tonic experimental models of pain. The laser stimulator used a 980-nm pulsed laser to generate transient heat stimulation and a 1940-nm continuous-wave (CW) laser to provide sustained heat stimulation. The laser with 980-nm wavelength can elicit transient pain with less thermal injury, while the 1940-nm CW laser can effectively stimulate both superficial and deep nociceptors to elicit tonic pain. A proportional integral-derivative (PID) temperature feedback control system was implemented to ensure constancy of temperature during heat stimulation. The performance of this stimulator was evaluated by in vitro and in vivo animal experiments. In vitro experiments on totally 120 specimens fresh pig skin included transient heat stimulation by 980-nm laser (1.5 J, 10 ms), sustained heat stimulation by 1940-nm laser (50-55 °C temperature control mode or 1.5 W, 5 min continuous power supply), and the combination of transient/sustained heat stimulation by dual lasers (1.5 J, 10 ms, 980-nm pulse laser, and 1940-nm laser with 50-55 °C temperature control mode). Hemoglobin brushing and wind-cooling methods were tested to find better stimulation model. A classic tail-flick latency (TFL) experiment with 20 Wistar rats was used to evaluate the in vivo efficacy of transient and tonic pain stimulation with 15 J, 100 ms 980-nm single laser pulse, and 1.5 W constant 1940-nm laser power. Ideal stimulation parameters to generate transient pain were found to be a 26.6 °C peak temperature rise and 0.67 s pain duration. In our model of tonic pain, 5 min of tonic stimulation produced a temperature change of 53.7 ± 1.3 °C with 1.6 ± 0.2% variation. When the transient and tonic stimulation protocols were combined, no significant difference was observed depending on the order of stimuli. Obvious tail-flick movements were observed. The TFL value of transient pain was 3.0 ± 0.8 s, and it was 4.4 ± 1.8 s for tonic pain stimulation. This study shows that our novel design can provide effective stimulation of transient pain and stable tonic pain. Furthermore, it can also provide a reliable combination of transient and consistent stimulations for basic studies of pain perception.
Analytical and computational studies on the vacuum performance of a chevron ejector
NASA Astrophysics Data System (ADS)
Kong, F. S.; Jin, Y. Z.; Kim, H. D.
2016-11-01
The effects of chevrons on the performance of a supersonic vacuum ejector-diffuser system are investigated numerically and evaluated theoretically in this work. A three-dimensional geometrical domain is numerically solved using a fully implicit finite volume scheme based on the unsteady Reynolds stress model. A one-dimensional mathematical model provides a useful tool to reveal the steady flow physics inside the vacuum ejector-diffuser system. The effects of the chevron nozzle on the generation of recirculation regions and Reynolds stress behaviors are studied and compared with those of a conventional convergent nozzle. The present performance parameters obtained from the simulated results and the mathematical results are validated with existing experimental data and show good agreement. Primary results show that the duration of the transient period and the secondary chamber pressure at a dynamic equilibrium state depend strongly on the primary jet conditions, such as inlet pressure and primary nozzle shape. Complicated oscillatory flow, generated by the unsteady movement of recirculation, finally settles into a dynamic equilibrium state. As a vortex generator, the chevron demonstrated its strong entrainment capacity to accelerate the starting transient flows to a certain extent and reduce the dynamic equilibrium pressure of the secondary chamber significantly.
A CFD Model for High Pressure Liquid Poison Injection for CANDU-6 Shutdown System No. 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo Wook Rhee; Chang Jun Jeong; Hye Jeong Yun
2002-07-01
In CANDU reactor one of the two reactor shutdown systems is the liquid poison injection system which injects the highly pressurized liquid neutron poison into the moderator tank via small holes on the nozzle pipes. To ensure the safe shutdown of a reactor it is necessary for the poison curtains generated by jets provide quick, and enough negative reactivity to the reactor during the early stage of the accident. In order to produce the neutron cross section necessary to perform this work, the poison concentration distribution during the transient is necessary. In this study, a set of models for analyzingmore » the transient poison concentration induced by this high pressure poison injection jet activated upon the reactor trip in a CANDU-6 reactor moderator tank has been developed and used to generate the poison concentration distribution of the poison curtains induced by the high pressure jets injected into the vacant region between the pressure tube banks. The poison injection rate through the jet holes drilled on the nozzle pipes is obtained by a 1-D transient hydrodynamic code called, ALITRIG, and this injection rate is used to provide the inlet boundary condition to a 3-D CFD model of the moderator tank based on CFX4.3, a CFD code, to simulate the formation of the poison jet curtain inside the moderator tank. For validation, an attempt was made to validate this model against a poison injection experiment performed at BARC. As conclusion this set of models is judged to be appropriate. (authors)« less
Gruen, D.M.; Young, C.E.; Pellin, M.J.
1989-12-26
A charged particle spectrometer is described for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode. 12 figs.
Variable reluctance proximity sensors for cryogenic valve position indication
NASA Technical Reports Server (NTRS)
Cloyd, R. A.
1982-01-01
A test was conducted to determine the performance of a variable reluctance proximity sensor system when installed in a space shuttle external tank vent/relief valve. The sensors were used as position indicators. The valve and sensors were cycled through a series of thermal transients; while the valve was being opened and closed pneumatically, the sensor's performance was being monitored. During these thermal transients, the vent valve was cooled ten times by liquid nitrogen and two times by liquid hydrogen. It was concluded that the sensors were acceptable replacements for the existing mechanical switches. However, the sensors need a mechanical override for the target similar to what is presently used with the mechanical switches. This override could insure contact between sensor and target and eliminate any problems of actuation gap growth caused by thermal gradients.
NASA Astrophysics Data System (ADS)
Fu, Chao; Ren, Xingmin; Yang, Yongfeng; Xia, Yebao; Deng, Wangqun
2018-07-01
A non-intrusive interval precise integration method (IPIM) is proposed in this paper to analyze the transient unbalance response of uncertain rotor systems. The transfer matrix method (TMM) is used to derive the deterministic equations of motion of a hollow-shaft overhung rotor. The uncertain transient dynamic problem is solved by combing the Chebyshev approximation theory with the modified precise integration method (PIM). Transient response bounds are calculated by interval arithmetic of the expansion coefficients. Theoretical error analysis of the proposed method is provided briefly, and its accuracy is further validated by comparing with the scanning method in simulations. Numerical results show that the IPIM can keep good accuracy in vibration prediction of the start-up transient process. Furthermore, the proposed method can also provide theoretical guidance to other transient dynamic mechanical systems with uncertainties.
Transient analysis for alternating over-current characteristics of HTSC power transmission cable
NASA Astrophysics Data System (ADS)
Lim, S. H.; Hwang, S. D.
2006-10-01
In this paper, the transient analysis for the alternating over-current distribution in case that the over-current was applied for a high-TC superconducting (HTSC) power transmission cable was performed. The transient analysis for the alternating over-current characteristics of HTSC power transmission cable with multi-layer is required to estimate the redistribution of the over-current between its conducting layers and to protect the cable system from the over-current in case that the quench in one or two layers of the HTSC power cable happens. For its transient analysis, the resistance generation of the conducting layers for the alternating over-current was reflected on its equivalent circuit, based on the resistance equation obtained by applying discrete Fourier transform (DFT) for the voltage and the current waveforms of the HTSC tape, which comprises each layer of the HTSC power transmission cable. It was confirmed through the numerical analysis on its equivalent circuit that after the current redistribution from the outermost layer into the inner layers first happened, the fast current redistribution between the inner layers developed as the amplitude of the alternating over-current increased.
Transient/structural analysis of a combustor under explosive loads
NASA Technical Reports Server (NTRS)
Gregory, Peyton B.; Holland, Anne D.
1992-01-01
The 8-Foot High Temperature Tunnel (HTT) at NASA Langley Research Center is a combustion-driven blow-down wind tunnel. A major potential failure mode that was considered during the combustor redesign was the possibility of a deflagration and/or detonation in the combustor. If a main burner flame-out were to occur, then unburned fuel gases could accumulate and, if reignited, an explosion could occur. An analysis has been performed to determine the safe operating limits of the combustor under transient explosive loads. The failure criteria was defined and the failure mechanisms were determined for both peak pressures and differential pressure loadings. An overview of the gas dynamics analysis was given. A finite element model was constructed to evaluate 13 transient load cases. The sensitivity of the structure to the frequency content of the transient loading was assessed. In addition, two closed form dynamic analyses were conducted to verify the finite element analysis. It was determined that the differential pressure load or thrust load was the critical load mechanism and that the nozzle is the weak link in the combustor system.
Transient gene expression in epidermal cells of plant leaves by biolistic DNA delivery.
Ueki, Shoko; Magori, Shimpei; Lacroix, Benoît; Citovsky, Vitaly
2013-01-01
Transient gene expression is a useful approach for studying the functions of gene products. In the case of plants, Agrobacterium infiltration is a method of choice for transient introduction of genes for many species. However, this technique does not work efficiently in some species, such as Arabidopsis thaliana. Moreover, the infection of Agrobacterium is known to induce dynamic changes in gene expression patterns in the host plants, possibly affecting the function and localization of the proteins to be tested. These problems can be circumvented by biolistic delivery of the genes of interest. Here, we present an optimized protocol for biolistic delivery of plasmid DNA into epidermal cells of plant leaves, which can be easily performed using the Bio-Rad Helios gene gun system. This protocol allows efficient and reproducible transient expression of diverse genes in Arabidopsis, Nicotiana benthamiana and N. tabacum, and is suitable for studies of the biological function and subcellular localization of the gene products directly in planta. The protocol also can be easily adapted to other species by optimizing the delivery gas pressure.
Analysis of internal flows relative to the space shuttle main engine
NASA Technical Reports Server (NTRS)
1987-01-01
Cooperative efforts between the Lockheed-Huntsville Computational Mechanics Group and the NASA-MSFC Computational Fluid Dynamics staff has resulted in improved capabilities for numerically simulating incompressible flows generic to the Space Shuttle Main Engine (SSME). A well established and documented CFD code was obtained, modified, and applied to laminar and turbulent flows of the type occurring in the SSME Hot Gas Manifold. The INS3D code was installed on the NASA-MSFC CRAY-XMP computer system and is currently being used by NASA engineers. Studies to perform a transient analysis of the FPB were conducted. The COBRA/TRAC code is recommended for simulating the transient flow of oxygen into the LOX manifold. Property data for modifying the code to represent LOX/GOX flow was collected. The ALFA code was developed and recommended for representing the transient combustion in the preburner. These two codes will couple through the transient boundary conditions to simulate the startup and/or shutdown of the fuel preburner. A study, NAS8-37461, is currently being conducted to implement this modeling effort.
The SPAR thermal analyzer: Present and future
NASA Astrophysics Data System (ADS)
Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.
The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.
The SPAR thermal analyzer: Present and future
NASA Technical Reports Server (NTRS)
Marlowe, M. B.; Whetstone, W. D.; Robinson, J. C.
1982-01-01
The SPAR thermal analyzer, a system of finite-element processors for performing steady-state and transient thermal analyses, is described. The processors communicate with each other through the SPAR random access data base. As each processor is executed, all pertinent source data is extracted from the data base and results are stored in the data base. Steady state temperature distributions are determined by a direct solution method for linear problems and a modified Newton-Raphson method for nonlinear problems. An explicit and several implicit methods are available for the solution of transient heat transfer problems. Finite element plotting capability is available for model checkout and verification.
Method and device for measuring single-shot transient signals
Yin, Yan
2004-05-18
Methods, apparatus, and systems, including computer program products, implementing and using techniques for measuring multi-channel single-shot transient signals. A signal acquisition unit receives one or more single-shot pulses from a multi-channel source. An optical-fiber recirculating loop reproduces the one or more received single-shot optical pulses to form a first multi-channel pulse train for circulation in the recirculating loop, and a second multi-channel pulse train for display on a display device. The optical-fiber recirculating loop also optically amplifies the first circulating pulse train to compensate for signal losses and performs optical multi-channel noise filtration.
NASA Astrophysics Data System (ADS)
Ejiri, Arata; Sasaki, Jun; Kinoshita, Yusuke; Fujimoto, Junya; Maruyama, Tsugito; Shimotani, Keiji
For the purpose of contributing to global environment protection, several research studies have been conducted involving clean-burning diesel engines. In recent diesel engines with Exhaust Gas Recirculation (EGR) systems and a Variable Nozzle Turbocharger (VNT), mutual interference between EGR and VNT has been noted. Hence, designing and adjusting control of the conventional PID controller is particularly difficult at the transient state in which the engine speed and fuel injection rate change. In this paper, we formulate 1st principal model of air intake system of diesel engines and transform it to control oriented model including an engine steady state model and a transient model. And we propose a model-based control system with the LQR Controller, Saturation Compensator, the Dynamic Feed-forward and Disturbance Observer using a transient model. Using this method, we achieved precise reference tracking and emission reduction in transient mode test with the real engine evaluations.
Thermal finite-element analysis of space shuttle main engine turbine blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert
1987-01-01
Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.
Real-time detection of transients in OGLE-IV with application of machine learning
NASA Astrophysics Data System (ADS)
Klencki, Jakub; Wyrzykowski, Łukasz
2016-06-01
The current bottleneck of transient detection in most surveys is the problem of rejecting numerous artifacts from detected candidates. We present a triple-stage hierarchical machine learning system for automated artifact filtering in difference imaging, based on self-organizing maps. The classifier, when tested on the OGLE-IV Transient Detection System, accepts 97% of real transients while removing up to 97.5% of artifacts.
Computational Methods for Structural Mechanics and Dynamics
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.
Buoyancy Suppression in Gases at High Temperatures
NASA Technical Reports Server (NTRS)
Kuczmarski, Maria A.; Gokoglu, Suleyman A.
2005-01-01
The computational fluid dynamics code FLUENT was used to study Rayleigh instability at large temperature differences in a sealed gas-filled enclosure with a cold top surface and a heated bottom wall (Benard problem). Both steady state and transient calculations were performed. The results define the boundaries of instability in a system depending on the geometry, temperature and pressure. It is shown that regardless of how fast the bottom-wall temperature can be ramped up to minimize the time spent in the unstable region of fluid motion, the eventual stability of the system depends on the prevailing final pressure after steady state has been reached. Calculations also show that the final state of the system can be different depending on whether the result is obtained via a steady-state solution or is reached by transient calculations. Changes in the slope of the pressure-versus-time curve are found to be a very good indicator of changes in the flow patterns in the system.
System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki
2002-07-01
Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heatmore » removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)« less
System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi
2004-03-15
Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 smore » after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.« less
NASA Astrophysics Data System (ADS)
Krajewski, Grzegorz; Wegrzyński, Wojciech
2018-01-01
In this paper, the Authors present results of a complex case study, in which a natural smoke ventilation system was introduced into a historical mall Koszyki Market Hall located in the centre of Warsaw. As historical authorities protected the building, the only solution possible was to use a natural system - known for deficient performance in façade applications. To maximise the performance of the smoke control system, a Computational Wind Engineering exercise was performed. The goal was to find the most difficult wind attack angles, and optimise the performance at these conditions. Once the wind influence was known, a transient analysis was performed that included the growth of the fire within the building, as well as a numerical evacuation study. The resulting system was immune to the wind effects, and provided safe evacuation to users of the building, even in difficult wind conditions.
Electrically-Assisted Turbocharger Development for Performance and Emissions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, Milton
2000-08-20
Turbocharger transient lag inherently imposes a tradeoff between a robust engine response to transient load shifts and exhaust emissions. By itself, a well matched turbocharger for an engine has limited flexibility in improving this transient response. Electrically-assisted turbocharging has been seen as an attractive option to improve response and lower transient emissions. This paper presents the results of a multi-year joint CRADA between DDC and ORNL. Virtual lab diesel simulation models characterized the performance improvement potential of an electrically assisted turbocharger technology. Operating requirements to reduce transient duration between load shift time by up to 50% were determined. A turbomachinemore » has been conceptualized with an integrated motor-generator, providing transient burst boost plus energy recovery capability. Numerous electric motor designs were considered, and a prototype motor was developed, fabricated, and is undergoing tests. Power controls have been designed and fabricated.« less
Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications
NASA Technical Reports Server (NTRS)
Edwards, David E.; Haimes, Robert
1999-01-01
An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.
Conceptual design studies of lift/cruise fans for military transports
NASA Technical Reports Server (NTRS)
1974-01-01
A study program for conceptual design studies of remote lift and lift/cruise fan systems to meet the requirements of military V/STOL aircraft was conducted. Parametric performance and design data are presented for fans covering a range of pressure ratios, including both single and two stage fan concepts. The gas generator selected for these fan systems was the J101-GE-100 engine. Noise generation and transient response were determined for selected fan systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Mamoru
The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results andmore » models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup power density on the flow instability. The experimental startup transient results showed the existence of three different flow instability mechanisms, i.e., flashing instability, condensation induced flow instability, and density wave oscillations. In addition, the void-reactivity feedback did not have significant effects on the flow instability during the startup transients for NMR-50. ii Several initial startup procedures with different power ramp rates were experimentally investigated to eliminate the flow instabilities observed from the startup transients. Particularly, the very slow startup transient and pressurized startup transient tests were performed and compared. It was found that the very slow startup transients by applying very small power density can eliminate the flashing oscillations in the single-phase natural circulation and stabilize the flow oscillations in the phase of net vapor generation. The initially pressurized startup procedure was tested to eliminate the flashing instability during the startup transients as well. The pressurized startup procedure included the initial pressurization, heat-up, and venting process. The startup transient tests showed that the pressurized startup procedure could eliminate the flow instability during the transition from single-phase flow to two-phase flow at low pressure conditions. The experimental results indicated that both startup procedures were applicable to the initial startup of NMR. However, the pressurized startup procedures might be preferred due to short operating hours required. In order to have a deeper understanding of natural circulation flow instability, the quasi-steady tests were performed using the test facility installed with preheater and subcooler. The effect of system pressure, core inlet subcooling, core power density, inlet flow resistance coefficient, and void reactivity feedback were investigated in the quasi-steady state tests. The experimental stability boundaries were determined between unstable and stable flow conditions in the dimensionless stability plane of inlet subcooling number and Zuber number. To predict the stability boundary theoretically, linear stability analysis in the frequency domain was performed at four sections of the natural circulation test loop. The flashing phenomena in the chimney section was considered as an axially uniform heat source. And the dimensionless characteristic equation of the pressure drop perturbation was obtained by considering the void fraction effect and outlet flow resistance in the core section. The theoretical flashing boundary showed some discrepancies with previous experimental data from the quasi-steady state tests. In the future, thermal non-equilibrium was recommended to improve the accuracy of flashing instability boundary. As another part of the funded research, flow instabilities of a PWR-type SMR under low pressure and low power conditions were investigated experimentally as well. The NuScale reactor design was selected as the prototype for the PWR-type SMR. In order to experimentally study the natural circulation behavior of NuScale iii reactor during accidental scenarios, detailed scaling analyses are necessary to ensure that the scaled phenomena could be obtained in a laboratory test facility. The three-level scaling method is used as well to obtain the scaling ratios derived from various non-dimensional numbers. The design of the ideally scaled facility (ISF) was initially accomplished based on these scaling ratios. Then the engineering scaled facility (ESF) was designed and constructed based on the ISF by considering engineering limitations including laboratory space, pipe size, and pipe connections etc. PWR-type SMR experiments were performed in this well-scaled test facility to investigate the potential thermal hydraulic flow instability during the blowdown events, which might occur during the loss of coolant accident (LOCA) and loss of heat sink accident (LOHS) of the prototype PWR-type SMR. Two kinds of experiments, normal blowdown event and cold blowdown event, were experimentally investigated and compared with code predictions. The normal blowdown event was experimentally simulated since an initial condition where the pressure was lower than the designed pressure of the experiment facility, while the code prediction of blowdown started from the normal operation condition. Important thermal hydraulic parameters including reactor pressure vessel (RPV) pressure, containment pressure, local void fraction and temperature, pressure drop and natural circulation flow rate were measured and analyzed during the blowdown event. The pressure and water level transients are similar to the experimental results published by NuScale [51], which proves the capability of current loop in simulating the thermal hydraulic transient of real PWR-type SMR. During the 20000s blowdown experiment, water level in the core was always above the active fuel assemble during the experiment and proved the safety of natural circulation cooling and water recycling design of PWR-type SMR. Besides, pressure, temperature, and water level transient can be accurately predicted by RELAP5 code. However, the oscillations of natural circulation flow rate, water level and pressure drops were observed during the blowdown transients. This kind of flow oscillations are related to the water level and the location upper plenum, which is a path for coolant flow from chimney to steam generator and down comer. In order to investigate the transients start from the opening of ADS valve in both experimental and numerical way, the cold blow-down experiment is conducted. For the cold blowdown event, different from setting both reactor iv pressure vessel (RPV) and containment at high temperature and pressure, only RPV was heated close to the highest designed pressure and then open the ADS valve, same process was predicted using RELAP5 code. By doing cold blowdown experiment, the entire transients from the opening of ADS can be investigated by code and benchmarked with experimental data. Similar flow instability observed in the cold blowdown experiment. The comparison between code prediction and experiment data showed that the RELAP5 code can successfully predict the pressure void fraction and temperature transient during the cold blowdown event with limited error, but numerical instability exists in predicting natural circulation flow rate. Besides, the code is lack of capability in predicting the water level related flow instability observed in experiments.« less
Transient Thermal Analyses of Passive Systems on SCEPTOR X-57
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Schnulo, Sydney L.; Smith, Andrew D.
2017-01-01
As efficiency, emissions, and noise become increasingly prominent considerations in aircraft design, turning to an electric propulsion system is a desirable solution. Achieving the intended benefits of distributed electric propulsion (DEP) requires thermally demanding high power systems, presenting a different set of challenges compared to traditional aircraft propulsion. The embedded nature of these heat sources often preclude the use of traditional thermal management systems in order to maximize performance, with less opportunity to exhaust waste heat to the surrounding environment. This paper summarizes the thermal analyses of X-57 vehicle subsystems that don't employ externally air-cooled heat sinks. The high-power battery, wires, high-lift motors, and aircraft outer surface are subjected to heat loads with stringent thermal constraints. The temperature of these components are tracked transiently, since they never reach a steady-state equilibrium. Through analysis and testing, this report demonstrates that properly characterizing the material properties is key to accurately modeling peak temperature of these systems, with less concern for spatial thermal gradients. Experimentally validated results show the thermal profile of these systems can be sufficiently estimated using reduced order approximations.
Dynamic Modeling of Solar Dynamic Components and Systems
NASA Technical Reports Server (NTRS)
Hochstein, John I.; Korakianitis, T.
1992-01-01
The purpose of this grant was to support NASA in modeling efforts to predict the transient dynamic and thermodynamic response of the space station solar dynamic power generation system. In order to meet the initial schedule requirement of providing results in time to support installation of the system as part of the initial phase of space station, early efforts were executed with alacrity and often in parallel. Initially, methods to predict the transient response of a Rankine as well as a Brayton cycle were developed. Review of preliminary design concepts led NASA to select a regenerative gas-turbine cycle using a helium-xenon mixture as the working fluid and, from that point forward, the modeling effort focused exclusively on that system. Although initial project planning called for a three year period of performance, revised NASA schedules moved system installation to later and later phases of station deployment. Eventually, NASA selected to halt development of the solar dynamic power generation system for space station and to reduce support for this project to two-thirds of the original level.
Cardinal, Marie-Josée; Kaur, Rajvinder; Singh, Jaswinder
2016-10-01
Domestication and intensive selective breeding of plants has triggered erosion of genetic diversity of important stress-related alleles. Researchers highlight the potential of using wild accessions as a gene source for improvement of cereals such as barley, which has major economic and social importance worldwide. Previously, we have successfully introduced the maize Ac/Ds transposon system for gene identification in cultivated barley. The objective of current research was to investigate the response of Hordeum vulgare ssp. spontaneum wild barley accessions in tissue culture to standardize parameters for introduction of Ac/Ds transposons through genetic transformation. We investigated the response of ten wild barley genotypes for callus induction, regenerative green callus induction and regeneration of fertile plants. The activity of exogenous Ac/Ds elements was observed through a transient assay on immature wild barley embryos/callus whereby transformed embryos/calli were identified by the expression of GUS. Transient Ds expression bombardment experiments were performed on 352 pieces of callus (3-5 mm each) or immature embryos in 4 genotypes of wild barley. The transformation frequency of putative transgenic callus lines based on transient GUS expression ranged between 72 and100 % in wild barley genotypes. This is the first report of a transformation system in H. vulgare ssp. spontaneum.
TREAT Transient Analysis Benchmarking for the HEU Core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontogeorgakos, D. C.; Connaway, H. M.; Wright, A. E.
2014-05-01
This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used tomore » determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.« less
Novel Material Systems and Methodologies for Transient Thermal Management
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
Development of multifunctional and thermally switchable systems to address reduced mass and components, and tailored for both structural and transient thermal applications. Active, passive, and novel combinations of the two functional approaches are being developed along two lines of research investigation: switchable systems and transient heat spreading. The approach is to build in thermal functionality to structural elements to lay the foundation for a revolution in the way high energy space systems are designed.
Tél, Tamás
2015-09-01
We intend to show that transient chaos is a very appealing, but still not widely appreciated, subfield of nonlinear dynamics. Besides flashing its basic properties and giving a brief overview of the many applications, a few recent transient-chaos-related subjects are introduced in some detail. These include the dynamics of decision making, dispersion, and sedimentation of volcanic ash, doubly transient chaos of undriven autonomous mechanical systems, and a dynamical systems approach to energy absorption or explosion.
Searching for optical transients in real-time : the RAPTOR experiment /.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vestrand, W. T.; Borozdin, K. N.; Brumby, Steven P.
2002-01-01
A rich, but relatively unexplored, region in optical astronomy is the study of transients with durations of less than a day. We describe a wide-field optical monitoring system, RAPTOR, which is designed to identify and make follow-up observations of optical transients in real-time. The system is composed of an array of telescopes that continuously monitor about 1500 square degrees of the sky for transients down to about 12' magnitude in 60 seconds and a central fovea telescope that can reach 16{approx}m' agnitude in 60 seconds. Coupled to the telescope array is a real-time data analysis pipeline that is designed tomore » identify transients on timescales of seconds. In a manner analogous to human vision, the entire array is mounted on a rapidly slewing robotic mount so that the fovea of the array can be rapidly directed at transients identified by the wide-field system. The goal of the project is to develop a ground-based optical system that can reliably identify transients in real-time and ultimately generate alerts with source locations to enable follow-up observations wilh other, larger, telescopes.« less
Characterizing Nanoscale Transient Communication.
Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad
2016-04-01
We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.
Transients control in Raman fiber amplifiers
NASA Astrophysics Data System (ADS)
Freitas, Marcio; Givigi, Sidney N., Jr.; Klein, Jackson; Calmon, Luiz C.; de Almeida, Ailson R.
2004-11-01
Raman fiber amplifiers (RFA) are being used in optical transmission communication systems in the recent years due to their advantages in comparison to erbium-doped fiber amplifiers (EDFA). Recently the analysis of RFAs dynamic response and transients control has become important in order to predict the system response to add/drop of channels or cable cuts in optical systems, and avoid impairments caused by the power transients. Fast signal power transients in the surviving channels are caused by the cross-gain saturation effect in RFA and the slope of the gain saturation characteristics determines the steady-state surviving channel power excursion. We are presenting the modeling and analysis of power transients and its control using a pump control method for a single and multi-pump scheme.
Damage-mitigating control of space propulsion systems for high performance and extended life
NASA Technical Reports Server (NTRS)
Ray, Asok; Wu, Min-Kuang; Dai, Xiaowen; Carpino, Marc; Lorenzo, Carl F.
1993-01-01
Calculations are presented showing that a substantial improvement in service life of a reusable rocket engine can be achieved by an insignificant reduction in the system dynamic performance. The paper introduces the concept of damage mitigation and formulates a continuous-time model of fatigue damage dynamics. For control of complex mechanical systems, damage prediction and damage mitigation are carried out based on the available sensory and operational information such that the plant can be inexpensively maintained and safely and efficiently steered under diverse operating conditions. The results of simulation experiments are presented for transient operations of a reusable rocket engine.
The PANDA tests for SBWR certification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varadi, G.; Dreier, J.; Bandurski, Th.
1996-03-01
The ALPHA project is centered around the experimental and analytical investigation of the long-term decay heat removal from the containments of the next generation of {open_quotes}passive{close_quotes} ALWRs. The project includes integral system tests in the large-scale (1:25 in volume) PANDA facility as well as several other series of tests and supporting analytical work. The first series of experiments to be conducted in PANDA have become a required experimental element in the certification process for the General Electric Simplified Boiling Water Reactor (SBWR). The PANDA general experimental philosophy, facility design, scaling, and instrumentation are described. Steady-state PCCS condenser performance tests andmore » extensive facility characterization tests were already conducted. The transient system behavior tests are underway; preliminary results from the first transient test M3 are reviewed.« less
Thermodynamic and Information Entropy in Electroconvection
NASA Astrophysics Data System (ADS)
Cressman, John; Daum, Marcus; Patrick, David; Cerbus, Rory; Goldburg, Walter
Transitions in driven systems often produce wild fluctuations that can be both detrimental and beneficial. Our fundamental understanding of these transients is inadequate to permit optimal interactions with systems ranging from biology, to energy generation, to finance. Here we report on experiments performed in electroconvecting liquid crystals where we abruptly change the electrical forcing across the sample from a state below defect turbulence into a state of defect turbulence. We simultaneously measure the electrical power flow through the liquid crystal as well as image the structure in the sample. These measurements enable us to simultaneously track the evolution of the thermodynamic and information entropies. Our experiments demonstrate that there are strong correlations between the fluctuations in these two entropic measures however they are not exact. We will discuss these discrepancies as well as the relevance of large transient fluctuations in non-equilibrium transitions in general.
NASA Astrophysics Data System (ADS)
Bandriyana, B.; Utaja
2010-06-01
Thermal stratification introduces thermal shock effect which results in local stress and fatique problems that must be considered in the design of nuclear power plant components. Local stress and fatique calculation were performed on the Pressurize Surge Line piping system of the Pressurize Water Reactor of the Nuclear Power Plant. Analysis was done on the operating temperature between 177 to 343° C and the operating pressure of 16 MPa (160 Bar). The stagnant and transient condition with two kinds of stratification model has been evaluated by the two dimensional finite elements method using the ANSYS program. Evaluation of fatigue resistance is developed based on the maximum local stress using the ASME standard Code formula. Maximum stress of 427 MPa occurred at the upper side of the top half of hot fluid pipe stratification model in the transient case condition. The evaluation of the fatigue resistance is performed on 500 operating cycles in the life time of 40 years and giving the usage value of 0,64 which met to the design requirement for class 1 of nuclear component. The out surge transient were the most significant case in the localized effects due to thermal stratification.
Prediction of rarefied micro-nozzle flows using the SPARTA library
NASA Astrophysics Data System (ADS)
Deschenes, Timothy R.; Grot, Jonathan
2016-11-01
The accurate numerical prediction of gas flows within micro-nozzles can help evaluate the performance and enable the design of optimal configurations for micro-propulsion systems. Viscous effects within the large boundary layers can have a strong impact on the nozzle performance. Furthermore, the variation in collision length scales from continuum to rarefied preclude the use of continuum-based computational fluid dynamics. In this paper, we describe the application of a massively parallel direct simulation Monte Carlo (DSMC) library to predict the steady-state and transient flow through a micro-nozzle. The nozzle's geometric configuration is described in a highly flexible manner to allow for the modification of the geometry in a systematic fashion. The transient simulation highlights a strong shock structure that forms within the converging portion of the nozzle when the expanded gas interacts with the nozzle walls. This structure has a strong impact on the buildup of the gas in the nozzle and affects the boundary layer thickness beyond the throat in the diverging section of the nozzle. Future work will look to examine the transient thrust and integrate this simulation capability into a web-based rarefied gas dynamics prediction software, which is currently under development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heard, F.J.; Harris, R.A.; Padilla, A.
The SASSYS/SAS4A systems analysis code was used to simulate a series of unprotected loss of flow (ULOF) tests planned at the Fast Flux Test Facility (FFTF). The subject tests were designed to investigate the transient performance of the FFTF during various ULOF scenarios for two different loading patterns designed to produce extremes in the assembly load pad clearance and the direction of the initial assembly bows. The tests are part of an international program designed to extend the existing data base on the performance of liquid metal reactors (LMR). The analyses demonstrate that a wide range of power-to-flow ratios canmore » be reached during the transients and, therefore, will yield valuable data on the dynamic character of the structural feedbacks in LMRS. These analyses will be repeated once the actual FFTF core loadings for the tests are available. These predictions, similar ones obtained by other international participants in the FFTF program, and post-test analyses will be used to upgrade and further verify the computer codes used to predict the behavior of LMRS.« less
Nonlinear Control of a Reusable Rocket Engine for Life Extension
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Holmes, Michael S.; Ray, Asok
1998-01-01
This paper presents the conceptual development of a life-extending control system where the objective is to achieve high performance and structural durability of the plant. A life-extending controller is designed for a reusable rocket engine via damage mitigation in both the fuel (H2) and oxidizer (O2) turbines while achieving high performance for transient responses of the combustion chamber pressure and the O2/H2 mixture ratio. The design procedure makes use of a combination of linear and nonlinear controller synthesis techniques and also allows adaptation of the life-extending controller module to augment a conventional performance controller of the rocket engine. The nonlinear aspect of the design is achieved using non-linear parameter optimization of a prescribed control structure. Fatigue damage in fuel and oxidizer turbine blades is primarily caused by stress cycling during start-up, shutdown, and transient operations of a rocket engine. Fatigue damage in the turbine blades is one of the most serious causes for engine failure.
PSH Transient Simulation Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muljadi, Eduard
PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.
Space radiator simulation manual for computer code
NASA Technical Reports Server (NTRS)
Black, W. Z.; Wulff, W.
1972-01-01
A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.
Transient Phenomena in Multiphase and Multicomponent Systems: Research Report
NASA Astrophysics Data System (ADS)
Zur Beurteilung von Stoffen in der Landwirtschaft, Senatskommission
2000-09-01
Due to the reinforced risk and safety-analysis of industrial plants in chemical and energy-engineering there has been increased demand in industry for more information on thermo- and fluiddynamic effects of non-equilibria during strong transients. Therefore, the 'Deutsche Forschungsgemeinschaft' initiated a special research program focusing on the study of transient phenomena in multiphase systems with one or several components. This book describes macroscopic as well as microscopic transient situations. A large part of the book deals with numerical methods for describing transients in two-phase mixtures. New developments in measuring techniques are also presented.
Comparing methods for modelling spreading cell fronts.
Markham, Deborah C; Simpson, Matthew J; Maini, Philip K; Gaffney, Eamonn A; Baker, Ruth E
2014-07-21
Spreading cell fronts play an essential role in many physiological processes. Classically, models of this process are based on the Fisher-Kolmogorov equation; however, such continuum representations are not always suitable as they do not explicitly represent behaviour at the level of individual cells. Additionally, many models examine only the large time asymptotic behaviour, where a travelling wave front with a constant speed has been established. Many experiments, such as a scratch assay, never display this asymptotic behaviour, and in these cases the transient behaviour must be taken into account. We examine the transient and the asymptotic behaviour of moving cell fronts using techniques that go beyond the continuum approximation via a volume-excluding birth-migration process on a regular one-dimensional lattice. We approximate the averaged discrete results using three methods: (i) mean-field, (ii) pair-wise, and (iii) one-hole approximations. We discuss the performance of these methods, in comparison to the averaged discrete results, for a range of parameter space, examining both the transient and asymptotic behaviours. The one-hole approximation, based on techniques from statistical physics, is not capable of predicting transient behaviour but provides excellent agreement with the asymptotic behaviour of the averaged discrete results, provided that cells are proliferating fast enough relative to their rate of migration. The mean-field and pair-wise approximations give indistinguishable asymptotic results, which agree with the averaged discrete results when cells are migrating much more rapidly than they are proliferating. The pair-wise approximation performs better in the transient region than does the mean-field, despite having the same asymptotic behaviour. Our results show that each approximation only works in specific situations, thus we must be careful to use a suitable approximation for a given system, otherwise inaccurate predictions could be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
Protection of Advanced Electrical Power Systems from Atmospheric Electromagnetic Hazards.
1981-12-01
WORDS (Continue on reverse aide if neceeary and Identify by block number) Aircraft Induced Voltages Filters Composite Structures Lightning Transients...transients on the electrical systems of aircraft with metal or composite structures. These transients will be higher than the equipment inherent hardness... composite material in skin and structure. In addition, the advanced electrical power systems used in these aircraft will contain solid state components
Transient probabilities for queues with applications to hospital waiting list management.
Joy, Mark; Jones, Simon
2005-08-01
In this paper we study queuing systems within the NHS. Recently imposed government performance targets lead NHS executives to investigate and instigate alternative management strategies, thereby imposing structural changes on the queues. Under such circumstances, it is most unlikely that such systems are in equilibrium. It is crucial, in our opinion, to recognise this state of affairs in order to make a balanced assessment of the role of queue management in the modern NHS. From a mathematical perspective it should be emphasised that measures of the state of a queue based upon the assumption of statistical equilibrium (a pervasive methodology in the study of queues) are simply wrong in the above scenario. To base strategic decisions around such ideas is therefore highly questionable and it is one of the purposes of this paper to offer alternatives: we present some (recent) research whose results generate performance measures and measures of risk, for example, of waiting-times growing unacceptably large; we emphasise that these results concern the transient behaviour of the queueing model-there is no asssumption of statistical equilibrium. We also demonstrate that our results are computationally tractable.
NASA Astrophysics Data System (ADS)
D'Amico, S.; Lombardo, C.; Moscato, I.; Polidori, M.; Vella, G.
2015-11-01
In the past few decades a lot of theoretical and experimental researches have been done to understand the physical phenomena characterizing nuclear accidents. In particular, after the Three Miles Island accident, several reactors have been designed to handle successfully LOCA events. This paper presents a comparison between experimental and numerical results obtained for the “2 inch Direct Vessel Injection line break” in SPES-2. This facility is an integral test facility built in Piacenza at the SIET laboratories and simulating the primary circuit, the relevant parts of the secondary circuits and the passive safety systems typical of the AP600 nuclear power plant. The numerical analysis here presented was performed by using TRACE and CATHARE thermal-hydraulic codes with the purpose of evaluating their prediction capability. The main results show that the TRACE model well predicts the overall behaviour of the plant during the transient, in particular it is able to simulate the principal thermal-hydraulic phenomena related to all passive safety systems. The performance of the presented CATHARE noding has suggested some possible improvements of the model.
Control and protection system for paralleled modular static inverter-converter systems
NASA Technical Reports Server (NTRS)
Birchenough, A. G.; Gourash, F.
1973-01-01
A control and protection system was developed for use with a paralleled 2.5-kWe-per-module static inverter-converter system. The control and protection system senses internal and external fault parameters such as voltage, frequency, current, and paralleling current unbalance. A logic system controls contactors to isolate defective power conditioners or loads. The system sequences contactor operation to automatically control parallel operation, startup, and fault isolation. Transient overload protection and fault checking sequences are included. The operation and performance of a control and protection system, with detailed circuit descriptions, are presented.
Nonlinear neural control with power systems applications
NASA Astrophysics Data System (ADS)
Chen, Dingguo
1998-12-01
Extensive studies have been undertaken on the transient stability of large interconnected power systems with flexible ac transmission systems (FACTS) devices installed. Varieties of control methodologies have been proposed to stabilize the postfault system which would otherwise eventually lose stability without a proper control. Generally speaking, regular transient stability is well understood, but the mechanism of load-driven voltage instability or voltage collapse has not been well understood. The interaction of generator dynamics and load dynamics makes synthesis of stabilizing controllers even more challenging. There is currently increasing interest in the research of neural networks as identifiers and controllers for dealing with dynamic time-varying nonlinear systems. This study focuses on the development of novel artificial neural network architectures for identification and control with application to dynamic electric power systems so that the stability of the interconnected power systems, following large disturbances, and/or with the inclusion of uncertain loads, can be largely enhanced, and stable operations are guaranteed. The latitudinal neural network architecture is proposed for the purpose of system identification. It may be used for identification of nonlinear static/dynamic loads, which can be further used for static/dynamic voltage stability analysis. The properties associated with this architecture are investigated. A neural network methodology is proposed for dealing with load modeling and voltage stability analysis. Based on the neural network models of loads, voltage stability analysis evolves, and modal analysis is performed. Simulation results are also provided. The transient stability problem is studied with consideration of load effects. The hierarchical neural control scheme is developed. Trajectory-following policy is used so that the hierarchical neural controller performs as almost well for non-nominal cases as they do for the nominal cases. The adaptive hierarchical neural control scheme is also proposed to deal with the time-varying nature of loads. Further, adaptive neural control, which is based on the on-line updating of the weights and biases of the neural networks, is studied. Simulations provided on the faulted power systems with unknown loads suggest that the proposed adaptive hierarchical neural control schemes should be useful for practical power applications.
Investigation of thermal-fluid mechanical characteristics of the Capillary Pump Loop
NASA Technical Reports Server (NTRS)
Kiper, Ali M.
1991-01-01
The main purpose is the experimental and analytical study of behavior of the Capillary Pump Loop (CPL) heat pipe system during the transient mode of operating by applying a step heat pulse to one or more evaporators. Prediction of the CPL behavior when subjected to pulse heat loading requires further study before the transient response of CPL system can be fully understood. The following tasks are discussed: (1) exploratory testing of a CPL heat pipe for transient operational conditions which could generate the type of oscillatory inlet temperature behavior observed in an earlier testing of NASA/GSFC CPL-2 heat pipe system; (2) analytical investigation of the CPL inlet section temperature oscillations; (3) design, construction and testing of a bench-top CPL test system for study of the CPL transient operation; and (4) transient analysis of a CPL heat pipe by applying a step power input to the evaporators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garner, P. L.; Hanan, N. A.
2005-12-02
Calculations have been performed for postulated transients in the Critical Facility at the Tajoura Nuclear Research Center (TNRC) in Libya. These calculations have been performed at the request of staff of the Renewable Energy and Water Desalinization Research Center (REWDRC) who are performing similar calculations. The transients considered were established during a working meeting between ANL and REWDRC staff on October 1-2, 2005 and subsequent email correspondence. Calculations were performed for the current high-enriched uranium (HEU) core and the proposed low-enriched uranium (LEU) core. These calculations have been performed independently from those being performed by REWDRC and serve as onemore » step in the verification process.« less
Transient times in linear metabolic pathways under constant affinity constraints.
Lloréns, M; Nuño, J C; Montero, F
1997-10-15
In the early seventies, Easterby began the analytical study of transition times for linear reaction schemes [Easterby (1973) Biochim. Biophys. Acta 293, 552-558]. In this pioneer work and in subsequent papers, a state function (the transient time) was used to measure the period before the stationary state, for systems constrained to work under both constant and variable input flux, was reached. Despite the undoubted usefulness of this quantity to describe the time-dependent features of these kinds of systems, its application to the study of chemical reactions under other constraints is questionable. In the present work, a generalization of these magnitudes to linear metabolic pathways functioning under a constant-affinity constraint is carried out. It is proved that classical definitions of transient times do not reflect the actual properties of the transition to the steady state in systems evolving under this restriction. Alternatively, a more adequate framework for interpretation of the transient times for systems with both constant and variable input flux is suggested. Within this context, new definitions that reflect more accurately the transient characteristics of constant affinity systems are stated. Finally, the meaning of these transient times is discussed.
Long-term effects of the transient COD concentration on the performance of microbial fuel cells.
Mateo, S; Gonzalez Del Campo, A; Lobato, J; Rodrigo, M; Cañizares, P; Fernandez-Morales, F J
2016-07-08
In this work, the long-term effects of transient chemical oxygen demands (COD) concentrations over the performance of a microbial fuel cell were studied. From the obtained results, it was observed that the repetitive change in the COD loading rate during 12 h conditioned the behavior of the system during periods of up to 7 days. The main modifications were the enhancement of the COD consumption rate and the exerted current. These enhancements yielded increasing Coulombic efficiencies (CEs) when working with COD concentrations of 300 mg/L, but constant CEs when working with COD concentrations from 900 to 1800 mg/L. This effect could be explained by the higher affinity for the substrate of Geobacter than that of the nonelectrogenic organisms such as Clostridia. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:883-890, 2016. © 2016 American Institute of Chemical Engineers.
Miranda, B; Pizzi, M N; Aguadé-Bruix, S; Domingo, E; Candell-Riera, J
2015-01-01
A 63-year-old male patient with a history of stent implantation in the left anterior descending three months before. Due to the presentation of vegetative symptoms, he was referred for gated-SPECT myocardial perfusion. During acquisition of the resting images he presented chest pain and ST segment elevation, so that urgent cardiac catheterization was performed, showing stent thrombosis. Rest perfusion imaging showed a defect in anterior and apical perfusion, more severe and extensive than in the stress images, with striking left ventricular dilatation and a fall in the ejection fraction related to the acute ischemia phenomenon. Intense exercise is associated with a transient activation of the coagulation system and hemodynamic changes that might induce thrombosis, especially in recently implanted coronary stents that probably still have not become completely endothelialized. Copyright © 2014 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Sustained and transient attention in the continuous performance task.
Smid, H G O M; de Witte, M R; Homminga, I; van den Bosch, R J
2006-08-01
One of the most frequently applied methods to study abnormal cognition is the Continuous Performance Task (CPT). It is unclear, however, which cognitive functions are engaged in normal CPT performance. The aims of the present study were to identify the neurocognitive functions engaged in the main variants of the CPT and to determine to what extent these variants differentially engage these functions. We hypothesized that the main CPT versions (CPT-X, CPT-AX, CPT-Identical Pairs) can be distinguished by whether they demand sustained or transient attention and sustained or transient response preparation. Transient attention to objects like letters or digits, that is, the need to switch attention to different objects from trial to trial, impairs target detection accuracy relative to sustained attention to a single object. Transient response preparation, that is, the possibility to switch response preparation on and off from trial to trial, improves response speed relative to having to sustain response preparation across all trials. Comparison of task performance and Event-Related brain Potentials (ERPs) of healthy participants obtained in the main CPT variants confirmed these hypotheses. Behavioral and ERP measures indicated worse target detection in the CPT-AX than in the CPT-X, consistent with a higher demand on transient attention in that task. In contrast, behavioral and ERP measures indicated higher response speed in the CPT-AX than in the CPT-X, associated with more response preparation in advance of the targets. This supports the idea of increased transient response preparation in the CPT-AX. We conclude that CPTs differ along at least two task variables that each influences a different cognitive function.
Transient Analysis Generator /TAG/ simulates behavior of large class of electrical networks
NASA Technical Reports Server (NTRS)
Thomas, W. J.
1967-01-01
Transient Analysis Generator program simulates both transient and dc steady-state behavior of a large class of electrical networks. It generates a special analysis program for each circuit described in an easily understood and manipulated programming language. A generator or preprocessor and a simulation system make up the TAG system.
NASA Technical Reports Server (NTRS)
Korte, John J.
1990-01-01
A numerical simulation of the actuation system for the propulsion control valve (PCV) of the NASA Langley Aircraft Landing Dynamics Facility was developed during the preliminary design of the PCV and used throughout the entire project. The simulation is based on a predictive model of the PCV which is used to evaluate and design the actuation system. The PCV controls a 1.7 million-pound thrust water jet used in propelling a 108,000-pound test carriage. The PCV can open and close in 0.300 second and deliver over 9,000 gallons of water per sec at pressures up to 3150 psi. The numerical simulation results are used to predict transient performance and valve opening characteristics, specify the hydraulic control system, define transient loadings on components, and evaluate failure modes. The mathematical model used for numerically simulating the mechanical fluid power system is described, and numerical results are demonstrated for a typical opening and closing cycle of the PCV. A summary is then given on how the model is used in the design process.
Mars Propellant Liquefaction Modeling in Thermal Desktop
NASA Technical Reports Server (NTRS)
Desai, Pooja; Hauser, Dan; Sutherlin, Steven
2017-01-01
NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.
AESOP- INTERACTIVE DESIGN OF LINEAR QUADRATIC REGULATORS AND KALMAN FILTERS
NASA Technical Reports Server (NTRS)
Lehtinen, B.
1994-01-01
AESOP was developed to solve a number of problems associated with the design of controls and state estimators for linear time-invariant systems. The systems considered are modeled in state-variable form by a set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are the linear quadratic regulator (LQR) design problem and the steady-state Kalman filter design problem. AESOP is designed to be used in an interactive manner. The user can solve design problems and analyze the solutions in a single interactive session. Both numerical and graphical information are available to the user during the session. The AESOP program is structured around a list of predefined functions. Each function performs a single computation associated with control, estimation, or system response determination. AESOP contains over sixty functions and permits the easy inclusion of user defined functions. The user accesses these functions either by inputting a list of desired functions in the order they are to be performed, or by specifying a single function to be performed. The latter case is used when the choice of function and function order depends on the results of previous functions. The available AESOP functions are divided into several general areas including: 1) program control, 2) matrix input and revision, 3) matrix formation, 4) open-loop system analysis, 5) frequency response, 6) transient response, 7) transient function zeros, 8) LQR and Kalman filter design, 9) eigenvalues and eigenvectors, 10) covariances, and 11) user-defined functions. The most important functions are those that design linear quadratic regulators and Kalman filters. The user interacts with AESOP when using these functions by inputting design weighting parameters and by viewing displays of designed system response. Support functions obtain system transient and frequency responses, transfer functions, and covariance matrices. AESOP can also provide the user with open-loop system information including stability, controllability, and observability. The AESOP program is written in FORTRAN IV for interactive execution and has been implemented on an IBM 3033 computer using TSS 370. As currently configured, AESOP has a central memory requirement of approximately 2 Megs of 8 bit bytes. Memory requirements can be reduced by redimensioning arrays in the AESOP program. Graphical output requires adaptation of the AESOP plot routines to whatever device is available. The AESOP program was developed in 1984.
Thermodynamic performance testing of the orbiter flash evaporator system
NASA Technical Reports Server (NTRS)
Jaax, J. R.; Melgares, M. A.; Frahm, J. P.
1980-01-01
System level testing of the space shuttle orbiter's development flash evaporator system (FES) was performed in a thermal vacuum chamber capable of simulating ambient ascent, orbital, and entry temperature and pressure profiles. The test article included the evaporator assembly, high load and topping exhaust duct and nozzle assemblies, and feedwater supply assembly. Steady state and transient heat load, water pressure/temperature and ambient pressure/temperature profiles were imposed by especially designed supporting test hardware. Testing in 1978 verified evaporator and duct heater thermal design, determined FES performance boundaries, and assessed topping evaporator plume characteristics. Testing in 1979 combined the FES with the other systems in the orbiter active thermal control subsystem (ATCS). The FES met or exceeded all nominal and contingency performance requirements during operation with the integrated ATCS. During both tests stability problems were encountered during steady state operations which resulted in subsequent design changes to the water spray nozzle and valve plate assemblies.
NASA Technical Reports Server (NTRS)
Siegert, C. E.; Gourash, F.; Vasicek, R. W.
1977-01-01
The electrical and environmental requirements for a power processor system (PPS) designed to supply the appropriate voltages and currents to a 200-watt traveling wave tube (TWT) for a communication technology satellite is described. A block diagram of the PPS, the interface requirements between the PPS and spacecraft, the interface requirements between the PPS and 200-watt TWT, and the environmental requirements of the PPS are presented. Also included are discussions of protection circuits, interlocking sequences, and transient requirements. Predictions of the flight performance, based on ground test data, are provided.
Concurrent design of an RTP chamber and advanced control system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, P.; Schaper, C.; Kermani, A.
1995-12-31
A concurrent-engineering approach is applied to the development of an axisymmetric rapid-thermal-processing (RTP) reactor and its associated temperature controller. Using a detailed finite-element thermal model as a surrogate for actual hardware, the authors have developed and tested a multi-input multi-output (MIMO) controller. Closed-loop simulations are performed by linking the control algorithm with the finite-element code. Simulations show that good temperature uniformity is maintained on the wafer during both steady and transient conditions. A numerical study shows the effect of ramp rate, feedback gain, sensor placement, and wafer-emissivity patterns on system performance.
Large liquid rocket engine transient performance simulation system
NASA Technical Reports Server (NTRS)
Mason, J. R.; Southwick, R. D.
1989-01-01
Phase 1 of the Rocket Engine Transient Simulation (ROCETS) program consists of seven technical tasks: architecture; system requirements; component and submodel requirements; submodel implementation; component implementation; submodel testing and verification; and subsystem testing and verification. These tasks were completed. Phase 2 of ROCETS consists of two technical tasks: Technology Test Bed Engine (TTBE) model data generation; and system testing verification. During this period specific coding of the system processors was begun and the engineering representations of Phase 1 were expanded to produce a simple model of the TTBE. As the code was completed, some minor modifications to the system architecture centering on the global variable common, GLOBVAR, were necessary to increase processor efficiency. The engineering modules completed during Phase 2 are listed: INJTOO - main injector; MCHBOO - main chamber; NOZLOO - nozzle thrust calculations; PBRNOO - preburner; PIPE02 - compressible flow without inertia; PUMPOO - polytropic pump; ROTROO - rotor torque balance/speed derivative; and TURBOO - turbine. Detailed documentation of these modules is in the Appendix. In addition to the engineering modules, several submodules were also completed. These submodules include combustion properties, component performance characteristics (maps), and specific utilities. Specific coding was begun on the system configuration processor. All functions necessary for multiple module operation were completed but the SOLVER implementation is still under development. This system, the Verification Checkout Facility (VCF) allows interactive comparison of module results to store data as well as provides an intermediate checkout of the processor code. After validation using the VCF, the engineering modules and submodules were used to build a simple TTBE.
Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, K. K.; Scarlat, R. O.; Hu, R.
Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties ofmore » Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.« less
Performance of Radiant Heating Systems of Low-Energy Buildings
NASA Astrophysics Data System (ADS)
Sarbu, Ioan; Mirza, Matei; Crasmareanu, Emanuel
2017-10-01
After the introduction of plastic piping, the application of water-based radiant heating with pipes embedded in room surfaces (i.e., floors, walls, and ceilings), has significantly increased worldwide. Additionally, interest and growth in radiant heating and cooling systems have increased in recent years because they have been demonstrated to be energy efficient in comparison to all-air distribution systems. This paper briefly describes the heat distribution systems in buildings, focusing on the radiant panels (floor, wall, ceiling, and floor-ceiling). Main objective of this study is the performance investigation of different types of low-temperature heating systems with different methods. Additionally, a comparative analysis of the energy, environmental, and economic performances of floor, wall, ceiling, and floor-ceiling heating using numerical simulation with Transient Systems Simulation (TRNSYS) software is performed. This study showed that the floor-ceiling heating system has the best performance in terms of the lowest energy consumption, operation cost, CO2 emission, and the nominal boiler power. The comparison of the room operative air temperatures and the set-point operative air temperature indicates also that all radiant panel systems provide satisfactory results without significant deviations.
NASA Technical Reports Server (NTRS)
Hamilton, M. L.; Burriss, W. L.
1972-01-01
Selected system supporting analyses in conjunction with the preliminary design of an auxiliary power unit (APU) for the space shuttle are presented. Both steady state and transient auxiliary power unit performance, based on digital computer programs, were examined. The selected APU provides up to 400 horsepower out of the gearbox, weighs 227 pounds, and requires 2 pounds per shaft horsepower hour of propellants.
Transient response to three-phase faults on a wind turbine generator. Ph.D. Thesis - Toledo Univ.
NASA Technical Reports Server (NTRS)
Gilbert, L. J.
1978-01-01
In order to obtain a measure of its responses to short circuits a large horizontal axis wind turbine generator was modeled and its performance was simulated on a digital computer. Simulation of short circuit faults on the synchronous alternator of a wind turbine generator, without resort to the classical assumptions generally made for that analysis, indicates that maximum clearing times for the system tied to an infinite bus are longer than the typical clearing times for equivalent capacity conventional machines. Also, maximum clearing times are independent of tower shadow and wind shear. Variation of circuit conditions produce the modifications in the transient response predicted by analysis.
Whispering gallery resonators for optical sensing
NASA Astrophysics Data System (ADS)
Madugani, Ramgopal; Kasumie, Sho; Yang, Yong; Ward, Jonathan; Lei, Fuchuan; Nic Chormaic, Síle
2017-04-01
In recent years, whispering gallery mode devices have extended their functionality across a number of research fields from photonics to sensing applications. Here, we will discuss environmental sensing applications, such as pressure, flow, and temperature using ultrahigh Q-factor microspheres fabricated from ultrathin optical fiber and microbubbles fabricated from pretapered glass capillary. We will discuss device fabrication and the different types of sensing that can be pursued using such systems. Finally, we will introduce the concept of using cavity ring-up spectroscopy to perform dispersive transient sensing, whereby a perturbation to the environment leads to a frequency mode shift, and dissipative transient sensing, which can lead to broadening of the mode, in a whispering gallery mode resonator.
Driscoll, C; Kei, J; McPherson, B
2001-01-01
(1) To establish test performance measures for Transient Evoked Otoacoustic Emission testing of 6-year-old children in a school setting; (2) To investigate whether Transient Evoked Otoacoustic Emission testing provides a more accurate and effective alternative to a pure tone screening plus tympanometry protocol. Pure tone screening, tympanometry and transient evoked otoacoustic emission data were collected from 940 subjects (1880 ears), with a mean age of 6.2 years. Subjects were tested in non-sound-treated rooms within 22 schools. Receiver operating characteristics curves along with specificity, sensitivity, accuracy and efficiency values were determined for a variety of transient evoked otoacoustic emission/pure tone screening/tympanometry comparisons. The Transient Evoked Otoacoustic Emission failure rate for the group was 20.3%. The failure rate for pure tone screening was found to be 8.9%, whilst 18.6% of subjects failed a protocol consisting of combined pure tone screening and tympanometry results. In essence, findings from the comparison of overall Transient Evoked Otoacoustic Emission pass/fail with overall pure tone screening pass/fail suggested that use of a modified Rhode Island Hearing Assessment Project criterion would result in a very high probability that a child with a pass result has normal hearing (true negative). However, the hit rate was only moderate. Selection of a signal-to-noise ratio (SNR) criterion set at > or =1 dB appeared to provide the best test performance measures for the range of SNR values investigated. Test performance measures generally declined when tympanometry results were included, with the exception of lower false alarm rates and higher positive predictive values. The exclusion of low frequency data from the Transient Evoked Otoacoustic Emission SNR versus pure tone screening analysis resulted in improved performance measures. The present study poses several implications for the clinical implementation of Transient Evoked Otoacoustic Emission screening for entry level school children. Transient Evoked Otoacoustic Emission pass/fail criteria will require revision. The findings of the current investigation offer support to the possible replacement of pure tone screening with Transient Evoked Otoacoustic Emission testing for 6-year-old children. However, they do not suggest the replacement of the pure tone screening plus tympanometry battery.
Evans, John R.; Followill, F.; Hutt, Charles R.; Kromer, R.P.; Nigbor, R.L.; Ringler, A.T.; Steim, J.M.; Wielandt, E.
2010-01-01
Understanding the performance of sensors and recorders is prerequisite to making appropriate use of them in seismology and earthquake engineering. This paper explores a critical aspect of instrument performance, the “self” noise level of the device and the amplitude range it can usefully record. Self noise limits the smallest signals, while instrument clipping level creates the upper limit (above which it either cannot produce signals or becomes unacceptably nonlinear). Where these levels fall, and the “operating range” between them, determines much of the instrument's viability and the applications for which it is appropriate. The representation of seismic-instrument self-noise levels and their effective operating ranges (cf., dynamic range) for seismological inertial sensors, recorders (data acquisition units, or DAUs), and integrated systems of sensors and recorders (data acquisition systems, or DASs) forces one to address an unnatural comparison between transient finite-bandwidth signals, such as earthquake records, and the instrument's self noise, an effectively stationary signal of infinite duration. In addition to being transient, earthquakes and other records of interest are characterized by a peak amplitude and generally a narrow, peaked spectral shape. Unfortunately, any power spectrum computed for such transient signals is ill defined, since the maximum of that spectrum depends strongly upon signal and record durations. In contrast, the noise floor of an instrument is approximately stationary and properly described by a power spectral density (PSD) or its root (rPSD). Put another way, earthquake records have units of amplitude (e.g., m/s2) while PSDs have units of amplitude-squared per hertz (e.g., (m/s2)2/Hz) and the rPSD has units of amplitude per root of hertz (e.g., (m/s2)/Hz1/2). Thus, this incompatability is a conflict between earthquake (amplitude) and PSD (spectral density) units that requires one to make various assumptions before they can be compared. For purposes of instrument operational performance, we provide a means of evaluating signal and noise and the range between them in a manner representative of time-domain instrument performance. We call these “operating range diagrams” (ORDs), plots of instrument self noise and clipping level; the “operating range” is the range between these values. For frequency-domain performance we elect to show self noise as an rPSD that may be compared to another instrument's noise or to ambient Earth noise (e.g., Peterson 1993); however, to limit the number of arbitrary choices required to merge transient and stationary signals we do not compare the rPSD to transient signals in the frequency domain. Our solution for a time-domain comparison is not new but rather builds upon the consensus of the first and second Guidelines for Seismometer Testing workshops (Hutt et al. 2009) and long established practice in acoustics. We propose this method as a standard for characterizing seismic instruments, and it has been endorsed by the second workshop (Hutt et al. 2009, 2010) and the Advanced National Seismic System (ANSS) Working Group (2008) and recent ANSS procurement specifications.
Sensitivity analysis of reactive ecological dynamics.
Verdy, Ariane; Caswell, Hal
2008-08-01
Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.
Event Classification and Identification Based on the Characteristic Ellipsoid of Phasor Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Jian; Diao, Ruisheng; Makarov, Yuri V.
2011-09-23
In this paper, a method to classify and identify power system events based on the characteristic ellipsoid of phasor measurement is presented. The decision tree technique is used to perform the event classification and identification. Event types, event locations and clearance times are identified by decision trees based on the indices of the characteristic ellipsoid. A sufficiently large number of transient events were simulated on the New England 10-machine 39-bus system based on different system configurations. Transient simulations taking into account different event types, clearance times and various locations are conducted to simulate phasor measurement. Bus voltage magnitudes and recordedmore » reactive and active power flows are used to build the characteristic ellipsoid. The volume, eccentricity, center and projection of the longest axis in the parameter space coordinates of the characteristic ellipsoids are used to classify and identify events. Results demonstrate that the characteristic ellipsoid and the decision tree are capable to detect the event type, location, and clearance time with very high accuracy.« less
Object-oriented approach for gas turbine engine simulation
NASA Technical Reports Server (NTRS)
Curlett, Brian P.; Felder, James L.
1995-01-01
An object-oriented gas turbine engine simulation program was developed. This program is a prototype for a more complete, commercial grade engine performance program now being proposed as part of the Numerical Propulsion System Simulator (NPSS). This report discusses architectural issues of this complex software system and the lessons learned from developing the prototype code. The prototype code is a fully functional, general purpose engine simulation program, however, only the component models necessary to model a transient compressor test rig have been written. The production system will be capable of steady state and transient modeling of almost any turbine engine configuration. Chief among the architectural considerations for this code was the framework in which the various software modules will interact. These modules include the equation solver, simulation code, data model, event handler, and user interface. Also documented in this report is the component based design of the simulation module and the inter-component communication paradigm. Object class hierarchies for some of the code modules are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, H.S.; Ables, E.; Barthelmy, S.D.
LOTIS is a rapidly slewing wide-field-of-view telescope which was designed and constructed to search for simultaneous gamma-ray burst (GRB) optical counterparts. This experiment requires a rapidly slewing ({lt} 10 sec), wide-field-of-view ({gt} 15{degrees}), automatic and dedicated telescope. LOTIS utilizes commercial tele-photo lenses and custom 2048 x 2048 CCD cameras to view a 17.6 x 17.6{degrees} field of view. It can point to any part of the sky within 5 sec and is fully automated. It is connected via Internet socket to the GRB coordinate distribution network which analyzes telemetry from the satellite and delivers GRB coordinate information in real-time. LOTISmore » started routine operation in Oct. 1996. In the idle time between GRB triggers, LOTIS systematically surveys the entire available sky every night for new optical transients. This paper will describe the system design and performance.« less
The Corralitos Observatory program for the detection of lunar transient phenomena
NASA Technical Reports Server (NTRS)
Hynek, J. A.; Dunlap, J. R.; Hendry, E. M.
1976-01-01
This is a final report on the establishment, observing procedures, and observational results of a survey program for the detection of lunar transient phenomena (LTP's) by electro-optical image conversion means. For survey, a unique detection system with an image orthicon was used as the primary element in conjunction with a 24-in. f/20 Cassegrainian telescope. Observations in three spectral ranges, with 6,466 man-hours of observing, were actually performed during the period from October 27, 1965, to April 26, 1972. Within this entire period, no color or feature change within the detection capabilities of the instrumentation was observed, either independently or in follow up of amateur LTP reports, with the exception of one general bluing and several localized bluings (probably ascribable to the effects of the terrestrial atmosphere) that were observed solely by the Corralitos system. A table is presented indicating amateur and professional reports of LTP's and the results of efforts to confirm these reports through the Corralitos system.
Designing a multi-petabyte database for LSST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becla, J; Hanushevsky, A
2005-12-21
The 3.2 giga-pixel LSST camera will produce over half a petabyte of raw images every month. This data needs to be reduced in under a minute to produce real-time transient alerts, and then cataloged and indexed to allow efficient access and simplify further analysis. The indexed catalogs alone are expected to grow at a speed of about 600 terabytes per year. The sheer volume of data, the real-time transient alerting requirements of the LSST, and its spatio-temporal aspects require cutting-edge techniques to build an efficient data access system at reasonable cost. As currently envisioned, the system will rely on amore » database for catalogs and metadata. Several database systems are being evaluated to understand how they will scale and perform at these data volumes in anticipated LSST access patterns. This paper describes the LSST requirements, the challenges they impose, the data access philosophy, and the database architecture that is expected to be adopted in order to meet the data challenges.« less
Validation of a new modal performance measure for flexible controllers design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simo, J.B.; Tahan, S.A.; Kamwa, I.
1996-05-01
A new modal performance measure for power system stabilizer (PSS) optimization is proposed in this paper. The new method is based on modifying the square envelopes of oscillating modes, in order to take into account their damping ratios while minimizing the performance index. This criteria is applied to flexible controllers optimal design, on a multi-input-multi-output (MIMO) reduced-order model of a prototype power system. The multivariable model includes four generators, each having one input and one output. Linear time-response simulation and transient stability analysis with a nonlinear package confirm the superiority of the proposed criteria and illustrate its effectiveness in decentralizedmore » control.« less
Robust approximation-free prescribed performance control for nonlinear systems and its application
NASA Astrophysics Data System (ADS)
Sun, Ruisheng; Na, Jing; Zhu, Bin
2018-02-01
This paper presents a robust prescribed performance control approach and its application to nonlinear tail-controlled missile systems with unknown dynamics and uncertainties. The idea of prescribed performance function (PPF) is incorporated into the control design, such that both the steady-state and transient control performance can be strictly guaranteed. Unlike conventional PPF-based control methods, we further tailor a recently proposed systematic control design procedure (i.e. approximation-free control) using the transformed tracking error dynamics, which provides a proportional-like control action. Hence, the function approximators (e.g. neural networks, fuzzy systems) that are widely used to address the unknown nonlinearities in the nonlinear control designs are not needed. The proposed control design leads to a robust yet simplified function approximation-free control for nonlinear systems. The closed-loop system stability and the control error convergence are all rigorously proved. Finally, comparative simulations are conducted based on nonlinear missile systems to validate the improved response and the robustness of the proposed control method.
Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana
2005-01-01
This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.
Intermittent/transient fault phenomena in digital systems
NASA Technical Reports Server (NTRS)
Masson, G. M.
1977-01-01
An overview of the intermittent/transient (IT) fault study is presented. An interval survivability evaluation of digital systems for IT faults is discussed along with a method for detecting and diagnosing IT faults in digital systems.
Silicon Carbide Diodes Performance Characterization at High Temperatures
NASA Technical Reports Server (NTRS)
Lebron-Velilla, Ramon C.; Schwarze, Gene E.; Gardner, Brent G.; Adams, Jerry
2004-01-01
NASA Glenn Research center's Electrical Systems Development branch is working to demonstrate and test the advantages of Silicon Carbide (SiC) devices in actual power electronics applications. The first step in this pursuit is to obtain commercially available SiC Schottky diodes and to individually test them under both static and dynamic conditions, and then compare them with current state of the art silicon Schottky and ultra fast p-n diodes of similar voltage and current ratings. This presentation covers the results of electrical tests performed at NASA Glenn. Steady state forward and reverse current-volt (I-V) curves were generated for each device to compare performance and to measure their forward voltage drop at rated current, as well as the reverse leakage current at rated voltage. In addition, the devices were individually connected as freewheeling diodes in a Buck (step down) DC to DC converter to test their reverse recovery characteristics and compare their transient performance in a typical converter application. Both static and transient characterization tests were performed at temperatures ranging from 25 C to 300 C, in order to test and demonstrate the advantages of SiC over Silicon at high temperatures.
Common faults and their impacts for rooftop air conditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breuker, M.S.; Braun, J.E.
This paper identifies important faults and their performance impacts for rooftop air conditioners. The frequencies of occurrence and the relative costs of service for different faults were estimated through analysis of service records. Several of the important and difficult to diagnose refrigeration cycle faults were simulated in the laboratory. Also, the impacts on several performance indices were quantified through transient testing for a range of conditions and fault levels. The transient test results indicated that fault detection and diagnostics could be performed using methods that incorporate steady-state assumptions and models. Furthermore, the fault testing led to a set of genericmore » rules for the impacts of faults on measurements that could be used for fault diagnoses. The average impacts of the faults on cooling capacity and coefficient of performance (COP) were also evaluated. Based upon the results, all of the faults are significant at the levels introduced, and should be detected and diagnosed by an FDD system. The data set obtained during this work was very comprehensive, and was used to design and evaluate the performance of an FDD method that will be reported in a future paper.« less
NASA Astrophysics Data System (ADS)
Satyanarayana, S.; Indrakanti, S.; Kim, J.; Kim, C.; Pamidi, S.
2017-12-01
Benefits of an integrated high temperature superconducting (HTS) power system and the associated cryogenic systems on board an electric ship or aircraft are discussed. A versatile modelling methodology developed to assess the cryogenic thermal behavior of the integrated system with multiple HTS devices and the various potential configurations are introduced. The utility and effectiveness of the developed modelling methodology is demonstrated using a case study involving a hypothetical system including an HTS propulsion motor, an HTS generator and an HTS power cable cooled by an integrated cryogenic helium circulation system. Using the methodology, multiple configurations are studied. The required total cooling power and the ability to maintain each HTS device at the required operating temperatures are considered for each configuration and the trade-offs are discussed for each configuration. Transient analysis of temperature evolution in the cryogenic helium circulation loop in case of a system failure is carried out to arrive at the required critical response time. The analysis was also performed for a similar liquid nitrogen circulation for an isobaric condition and the cooling capacity ratio is used to compare the relative merits of the two cryogens.
Rain-induced increase in background radiation detected by Radiation Portal Monitors.
Livesay, R J; Blessinger, C S; Guzzardo, T F; Hausladen, P A
2014-11-01
A complete understanding of both the steady state and transient background measured by Radiation Portal Monitors (RPMs) is essential to predictable system performance, as well as maximization of detection sensitivity. To facilitate this understanding, a test bed for the study of natural background in RPMs has been established at the Oak Ridge National Laboratory. This work was performed in support of the Second Line of Defense Program's mission to enhance partner country capability to deter, detect, and interdict the illicit movement of special nuclear material. In the present work, transient increases in gamma-ray counting rates in RPMs due to rain are investigated. The increase in background activity associated with rain, which has been well documented in the field of environmental radioactivity, originates primarily from the wet-deposition of two radioactive daughters of (222)Rn, namely, (214)Pb and (214)Bi. In this study, rainfall rates recorded by a co-located weather station are compared with RPM count rates and high-purity germanium spectra. The data verify that these radionuclides are responsible for the largest environmental background fluctuations in RPMs. Analytical expressions for the detector response function in Poly-Vinyl Toluene have been derived. Effects on system performance and potential mitigation strategies are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... events. See paragraph (e) of this section for how to adjust ramped-modal testing. See paragraph (f) of... intended event during which emission levels change while the system restores aftertreatment performance... events that are expected to occur on average less than once over the applicable transient duty cycle or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... events. See paragraph (e) of this section for how to adjust ramped-modal testing. See paragraph (f) of... intended event during which emission levels change while the system restores aftertreatment performance... events that are expected to occur on average less than once over the applicable transient duty cycle or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... events. See paragraph (e) of this section for how to adjust ramped-modal testing. See paragraph (f) of... intended event during which emission levels change while the system restores aftertreatment performance... events that are expected to occur on average less than once over the applicable transient duty cycle or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... events. See paragraph (e) of this section for how to adjust ramped-modal testing. See paragraph (f) of... intended event during which emission levels change while the system restores aftertreatment performance... events that are expected to occur on average less than once over the applicable transient duty cycle or...
NASA Astrophysics Data System (ADS)
Ducci, L.; Sidoli, L.; Paizis, A.
2010-11-01
We performed a systematic analysis of all INTEGRAL observations from 2003 to 2009 of 14 supergiant fast X-ray transients (SFXTs), implying a net exposure time of about 30 Ms. For each source we obtained light curves and spectra (3-100 keV), discovering several new outbursts. We discuss the X-ray behaviour of SFXTs emerging from our analysis in the framework of the clumpy wind accretion mechanism we proposed. We discuss the effect of X-ray photoionization on accretion in close binary systems such as IGR J16479-4514 and IGR J17544-2619. We show that, because of X-ray photoionization, there is a high probability of an accretion disc forming from the capture of angular momentum in IGR J16479-4514, and we suggest that the formation of transient accretion discs could be partly responsible for the flaring activity in SFXTs with narrow orbits. We also propose an alternative way to explain the origin of flares with peculiar shapes observed in our analysis applying the model of Lamb et al., which is based on accretion via the Rayleigh-Taylor instability and was originally proposed to explain Type II bursts.
Design of linear quadratic regulator (LQR) control system for flight stability of LSU-05
NASA Astrophysics Data System (ADS)
Purnawan, Heri; Mardlijah; Budi Purwanto, Eko
2017-09-01
Lapan Surveillance UAV-05 (LSU-05) is an unmanned aerial vehicle designed to cruise time in 6 hours and cruise velocity about 30 m/s. Mission of LSU-05 is surveillance for researchs and observations such as traffics and disaster investigations. This paper aims to design a control system on the LSU-05 to fly steadily. The methods used to stabilize LSU-05 is Linear Quadratic Regulator (LQR). Based on LQR controller, there is obtained transient response for longitudinal motion, td = 0.221s, tr = 0.419s, ts = 0.719s, tp = 1.359s, and Mp = 0%. In other hand, transient response for lateral-directional motion showed that td = 0.186s, tr = 0.515s, ts = 0.87s, tp = 2.02s, and Mp = 0%. The result of simulation showed a good performance for this method.
A transient model of the RL10A-3-3A rocket engine
NASA Technical Reports Server (NTRS)
Binder, Michael P.
1995-01-01
RL10A-3-3A rocket engines have served as the main propulsion system for Centaur upper stage vehicles since the early 1980's. This hydrogen/oxygen expander cycle engine continues to play a major role in the American launch industry. The Space Propulsion Technology Division at the NASA Lewis Research Center has created a computer model of the RL10 engine, based on detailed component analyses and available test data. This RL10 engine model can predict the performance of the engine over a wide range of operating conditions. The model may also be used to predict the effects of any proposed design changes and anticipated failure scenarios. In this paper, the results of the component analyses are discussed. Simulation results from the new system model are compared with engine test and flight data, including the start and shut-down transient characteristics.
Spent nuclear fuel system dynamic stability under normal conditions of transportation
Jiang, Hao; Wang, Jy-An John
2016-10-14
In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside themore » cask during NCT. In conclusion, dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly.« less
Spent nuclear fuel system dynamic stability under normal conditions of transportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Hao; Wang, Jy-An John
In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside themore » cask during NCT. In conclusion, dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly.« less
NASA Astrophysics Data System (ADS)
Moshkbar-Bakhshayesh, Khalil; Ghofrani, Mohammad B.
2014-02-01
This study aims to improve the performance of nuclear power plants (NPPs) transients training and identification using the latest advances of error back-propagation (EBP) learning algorithm. To this end, elements of EBP, including input data, initial weights, learning rate, cost function, activation function, and weights updating procedure are investigated and an efficient neural network is developed. Usefulness of modular networks is also examined and appropriate identifiers, one for each transient, are employed. Furthermore, the effect of transient type on transient identifier performance is illustrated. Subsequently, the developed transient identifier is applied to Bushehr nuclear power plant (BNPP). Seven types of the plant events are probed to analyze the ability of the proposed identifier. The results reveal that identification occurs very early with only five plant variables, whilst in the previous studies a larger number of variables (typically 15 to 20) were required. Modular networks facilitated identification due to its sole dependency on the sign of each network output signal. Fast training of input patterns, extendibility for identification of more transients and reduction of false identification are other advantageous of the proposed identifier. Finally, the balance between the correct answer to the trained transients (memorization) and reasonable response to the test transients (generalization) is improved, meeting one of the primary design criteria of identifiers.
Solar Total Energy Project (STEP) Performance Analysis of High Temperature Energy Storage Subsystem
NASA Technical Reports Server (NTRS)
Moore, D. M.
1984-01-01
The 1982 milestones and lessons learned; performance in 1983; a typical day's operation; collector field performance and thermal losses; and formal testing are highlighted. An initial test that involves characterizing the high temperature storage (hts) subsystem is emphasized. The primary element is on 11,000 gallon storage tank that provides energy to the steam generator during transient solar conditions or extends operating time. Overnight, thermal losses were analyzed. The length of time the system is operated at various levels of cogeneration using stored energy is reviewed.
A User's Guide for the Spacecraft Fire Safety Facility
NASA Technical Reports Server (NTRS)
Goldmeer, Jeffrey S.
2000-01-01
The Spacecraft Fire Safety Facility (SFSF) is a test facility that can be flown on NASA's reduced gravity aircraft to perform various types of combustion experiments under a variety of experimental conditions. To date, this facility has flown numerous times on the aircraft and has been used to perform experiments ranging from an examination of the effects transient depressurization on combustion, to ignition and flame spread. A list of pubfications/presentations based on experiments performed in the SFSF is included in the reference section. This facility consists of five main subsystems: combustion chamber, sample holders, gas flow system, imaging system, and the data acquisition/control system. Each of these subsystems will be reviewed in more detail. These subsystems provide the experiment operator with the ability to monitor and/or control numerous experimental parameters.
NASA Technical Reports Server (NTRS)
Evans, D. G.; Miller, T. J.
1978-01-01
The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.
Reservoir computing with a single time-delay autonomous Boolean node
NASA Astrophysics Data System (ADS)
Haynes, Nicholas D.; Soriano, Miguel C.; Rosin, David P.; Fischer, Ingo; Gauthier, Daniel J.
2015-02-01
We demonstrate reservoir computing with a physical system using a single autonomous Boolean logic element with time-delay feedback. The system generates a chaotic transient with a window of consistency lasting between 30 and 300 ns, which we show is sufficient for reservoir computing. We then characterize the dependence of computational performance on system parameters to find the best operating point of the reservoir. When the best parameters are chosen, the reservoir is able to classify short input patterns with performance that decreases over time. In particular, we show that four distinct input patterns can be classified for 70 ns, even though the inputs are only provided to the reservoir for 7.5 ns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHart, Mark D.; Mausolff, Zander; Weems, Zach
2016-08-01
One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outsidemore » of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.« less
Catalytic ignition model in a monolithic reactor with in-depth reaction
NASA Technical Reports Server (NTRS)
Tien, Ta-Ching; Tien, James S.
1990-01-01
Two transient models have been developed to study the catalytic ignition in a monolithic catalytic reactor. The special feature in these models is the inclusion of thermal and species structures in the porous catalytic layer. There are many time scales involved in the catalytic ignition problem, and these two models are developed with different time scales. In the full transient model, the equations are non-dimensionalized by the shortest time scale (mass diffusion across the catalytic layer). It is therefore accurate but is computationally costly. In the energy-integral model, only the slowest process (solid heat-up) is taken as nonsteady. It is approximate but computationally efficient. In the computations performed, the catalyst is platinum and the reactants are rich mixtures of hydrogen and oxygen. One-step global chemical reaction rates are used for both gas-phase homogeneous reaction and catalytic heterogeneous reaction. The computed results reveal the transient ignition processes in detail, including the structure variation with time in the reactive catalytic layer. An ignition map using reactor length and catalyst loading is constructed. The comparison of computed results between the two transient models verifies the applicability of the energy-integral model when the time is greater than the second largest time scale of the system. It also suggests that a proper combined use of the two models can catch all the transient phenomena while minimizing the computational cost.
Wan, Hao; Yin, Heyu; Mason, Andrew J.
2016-01-01
Intense study on gas sensors has been conducted to implement fast gas sensing with high sensitivity, reliability and long lifetime. This paper presents a rapid amperometric method for gas sensing based on a room temperature ionic liquid electrochemical gas sensor. To implement a miniaturized sensor with a fast response time, a three electrode system with gold interdigitated electrodes was fabricated by photolithography on a porous polytetrafluoroethylene substrate that greatly enhances gas diffusion. Furthermore, based on the reversible reaction of oxygen, a new transient double potential amperometry (DPA) was explored for electrochemical analysis to decrease the measurement time and reverse reaction by-products that could cause current drift. Parameters in transient DPA including oxidation potential, oxidation period, reduction period and sample point were investigated to study their influence on the performance of the sensor. Oxygen measurement could be accomplished in 4 s, and the sensor presented a sensitivity of 0.2863 μA/[%O2] and a linearity of 0.9943 when tested in air samples with different oxygen concentrations. Repeatability and long-term stability were also investigated, and the sensor was shown to exhibit good reliability. In comparison to conventional constant potential amperometry, transient DPA was shown to reduce relative standard deviation by 63.2%. With transient DPA, the sensitivity, linearity, repeatability, measurement time and current drift characteristics demonstrated by the presented gas sensor are promising for acute exposure applications. PMID:28603384
Wan, Hao; Yin, Heyu; Mason, Andrew J
2017-04-01
Intense study on gas sensors has been conducted to implement fast gas sensing with high sensitivity, reliability and long lifetime. This paper presents a rapid amperometric method for gas sensing based on a room temperature ionic liquid electrochemical gas sensor. To implement a miniaturized sensor with a fast response time, a three electrode system with gold interdigitated electrodes was fabricated by photolithography on a porous polytetrafluoroethylene substrate that greatly enhances gas diffusion. Furthermore, based on the reversible reaction of oxygen, a new transient double potential amperometry (DPA) was explored for electrochemical analysis to decrease the measurement time and reverse reaction by-products that could cause current drift. Parameters in transient DPA including oxidation potential, oxidation period, reduction period and sample point were investigated to study their influence on the performance of the sensor. Oxygen measurement could be accomplished in 4 s, and the sensor presented a sensitivity of 0.2863 μA/[%O 2 ] and a linearity of 0.9943 when tested in air samples with different oxygen concentrations. Repeatability and long-term stability were also investigated, and the sensor was shown to exhibit good reliability. In comparison to conventional constant potential amperometry, transient DPA was shown to reduce relative standard deviation by 63.2%. With transient DPA, the sensitivity, linearity, repeatability, measurement time and current drift characteristics demonstrated by the presented gas sensor are promising for acute exposure applications.
NASA Technical Reports Server (NTRS)
Mata, Carlos T.; Rakov, Vladimir A.; Mata, Angel G.; Bonilla Tatiana; Navedo, Emmanuel; Snyder, Gary P.
2010-01-01
A new comprehensive lightning instrumentation system has been designed for Launch Complex 39B at the Kennedy Space Center, Florida. This new instrumentation system includes the synchronized recording of six high-speed video cameras, currents through the nine downconductors of the new lightning protection system, four B-dot, 3-axis measurement stations, and five D-dot stations composed of two antennas each. The instrumentation system is composed of centralized transient recorders and digitizers that located close to the sensors in the field. The sensors and transient recorders communicate via optical fiber. The transient recorders are triggered by the B-dot sensors, the E-dot sensors, or the current through the downlead conductors. The high-speed cameras are triggered by the transient recorders when the latter perceives a qualified trigger.
NASA Astrophysics Data System (ADS)
Lo Russo, S.; Taddia, G.; Gnavi, L.
2012-04-01
KEY WORDS: Open-loop ground water heat pump; Feflow; Low-enthalpy; Thermal Affected Zone; Turin; Italy The increasing diffusion of low-enthalpy geothermal open-loop Groundwater Heat Pumps (GWHP) providing buildings air conditioning requires a careful assessment of the overall effects on groundwater system, especially in the urban areas where several plants can be close together and interfere. One of the fundamental aspects in the realization of an open loop low-enthalpy geothermal system is therefore the capacity to forecast the effects of thermal alteration produced in the ground, induced by the geothermal system itself. The impact on the groundwater temperature in the surrounding area of the re-injection well (Thermal Affected Zone - TAZ) is directly linked to the aquifer properties. The transient dynamic of groundwater discharge and temperature variations should be also considered to assess the subsurface environmental effects of the plant. The experimental groundwater heat pump system used in this study is installed at the "Politecnico di Torino" (NW Italy, Piedmont Region). This plant provides summer cooling needs for the university buildings. This system is composed by a pumping well, a downgradient injection well and a control piezometer. The system is constantly monitored by multiparameter probes measuring the dynamic of groundwater temperature. A finite element subsurface flow and transport simulator (FEFLOW) was used to investigate the thermal aquifer alteration. Simulations were continuously performed during May-October 2010 (cooling period). The numerical simulation of the heat transport in the aquifer was solved with transient conditions. The simulation was performed by considering only the heat transfer within the saturated aquifer, without any heat dispersion above or below the saturated zone due to the lack of detailed information regarding the unsaturated zone. Model results were compared with experimental temperature data derived from groundwater monitoring in the surrounding area of the injection well. Such analysis showed that the measured values differ slightly from the simulated values. That small difference is probably due to the simplification assumptions in the modelling. This hypothesis is still under investigation.
A theory of post-stall transients in multistage axial compression systems
NASA Technical Reports Server (NTRS)
Moore, F. K.; Greitzer, E. M.
1985-01-01
A theory is presented for post stall transients in multistage axial compressors. The theory leads to a set of coupled first-order ordinary differential equations capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. These changing flow features are shown to have a significant effect on the instantaneous compressor pumping characteristic during unsteady operation, and henace on the overall system behavior. It is also found from the theory that the ultimate mode of system response, stable rotating stall or surge, depends not only on the B parameter but also on other parameters, such as the compressor length-to-diameter ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. A limited parametric study is carried out to show the impact of the different system features on transient behavior. Based on analytical and numerical results, several specific topics are suggested for future research on post-stall transients.
Intelligent transient transitions detection of LRE test bed
NASA Astrophysics Data System (ADS)
Zhu, Fengyu; Shen, Zhengguang; Wang, Qi
2013-01-01
Health Monitoring Systems is an implementation of monitoring strategies for complex systems whereby avoiding catastrophic failure, extending life and leading to improved asset management. A Health Monitoring Systems generally encompasses intelligence at many levels and sub-systems including sensors, actuators, devices, etc. In this paper, a smart sensor is studied, which is use to detect transient transitions of liquid-propellant rocket engines test bed. In consideration of dramatic changes of variable condition, wavelet decomposition is used to work real time in areas. Contrast to traditional Fourier transform method, the major advantage of adding wavelet analysis is the ability to detect transient transitions as well as obtaining the frequency content using a much smaller data set. Historically, transient transitions were only detected by offline analysis of the data. The methods proposed in this paper provide an opportunity to detect transient transitions automatically as well as many additional data anomalies, and provide improved data-correction and sensor health diagnostic abilities. The developed algorithms have been tested on actual rocket test data.
Mining the Sky for Explosive Optical Transients with Both Eyes Open
NASA Astrophysics Data System (ADS)
Vestrand, W. T.; Borozdin, K.; Casperson, D. J.; Davidoff, S.; Davis, H.; Fenimore, E.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.
2004-09-01
While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as a minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution ``fovea'' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the ``fovea'' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the ``forest'' of false positives.
Mining the Sky for Explosive Optical Transients with Both Eyes Open
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vestrand, W.T.; Casperson, D.J.; Davis, H.
2004-09-28
While it has been known for centuries that the optical sky is variable, monitoring the sky for optical transients with durations as short as a minute is an area of astronomical research that remains largely unexplored. Prompt follow-up observations of Gamma Ray Bursts have shown that bright, explosive, optical transients exist. However, there are many reasons to suspect the existence of explosive optical transients that cannot be located through sky monitoring by high-energy satellites. The RAPTOR sky monitoring system is an autonomous system of telescope arrays at Los Alamos National Laboratory that identifies fast optical transients as short as amore » minute and makes follow-up observations in real time. The core of the RAPTOR system is composed of two arrays of telescopes, separated by 38 kilometers, that stereoscopically monitor a field of about 1300 square degrees for transients down to about 12.5th magnitude in 30 seconds. Both arrays are coupled to real-time data analysis pipelines that are designed to identify transients on timescales of seconds. Each telescope array also contains a more sensitive higher resolution 'fovea' telescope, capable of both measuring the light curve at a faster cadence and providing color information. In a manner analogous to human vision, each array is mounted on a rapidly slewing mount so that the 'fovea' of the array can be rapidly directed for real-time follow-up observations of any interesting transient identified by the wide-field system. We discuss the first results from RAPTOR and show that stereoscopic imaging and the absence of measurable parallax is a powerful tool for distinguishing real celestial transients in the 'forest' of false positives.« less
NASA Astrophysics Data System (ADS)
McLaughlin, Joyce; Renzi, Daniel
2006-04-01
Transient elastography and supersonic imaging are promising new techniques for characterizing the elasticity of soft tissues. Using this method, an 'ultrafast imaging' system (up to 10 000 frames s-1) follows in real time the propagation of a low-frequency shear wave. The displacement of the propagating shear wave is measured as a function of time and space. Here we develop a fast level set based algorithm for finding the shear wave speed from the interior positions of the propagating front. We compare the performance of level curve methods developed here and our previously developed (McLaughlin J and Renzi D 2006 Shear wave speed recovery in transient elastography and supersonic imaging using propagating fronts Inverse Problems 22 681-706) distance methods. We give reconstruction examples from synthetic data and from data obtained from a phantom experiment accomplished by Mathias Fink's group (the Laboratoire Ondes et Acoustique, ESPCI, Université Paris VII).
NASA Technical Reports Server (NTRS)
Mcgowan, David M.; Bostic, Susan W.; Camarda, Charles J.
1993-01-01
The development of two advanced reduced-basis methods, the force derivative method and the Lanczos method, and two widely used modal methods, the mode displacement method and the mode acceleration method, for transient structural analysis of unconstrained structures is presented. Two example structural problems are studied: an undamped, unconstrained beam subject to a uniformly distributed load which varies as a sinusoidal function of time and an undamped high-speed civil transport aircraft subject to a normal wing tip load which varies as a sinusoidal function of time. These example problems are used to verify the methods and to compare the relative effectiveness of each of the four reduced-basis methods for performing transient structural analyses on unconstrained structures. The methods are verified with a solution obtained by integrating directly the full system of equations of motion, and they are compared using the number of basis vectors required to obtain a desired level of accuracy and the associated computational times as comparison criteria.
Savage, Emilia Elizabeth; Wootten, Denise; Christopoulos, Arthur; Sexton, Patrick Michael; Furness, Sebastian George Barton
2013-04-01
Transient protein-protein interactions form the basis of signal transduction pathways in addition to many other biological processes. One tool for studying these interactions is bioluminescence resonance energy transfer (BRET). This technique has been widely applied to study signaling pathways, in particular those initiated by G protein-coupled receptors (GPCRs). These assays are routinely performed using transient transfection, a technique that has limitations in terms of assay cost and variability, overexpression of interacting proteins, vector uptake limited to cycling cells, and non-homogenous expression across cells within the assay. To address these issues, we developed bicistronic vectors for use with Life Technology's Gateway and flpIN systems. These vectors provide a means to generate isogenic cell lines for comparison of interacting proteins. They have the advantage of stable, single copy, isogenic, homogeneous expression with low inter-assay variation. We demonstrate their utility by assessing ligand-induced interactions between GPCRs and arrestin proteins.
NASA Astrophysics Data System (ADS)
Patcharoen, Theerasak; Yoomak, Suntiti; Ngaopitakkul, Atthapol; Pothisarn, Chaichan
2018-04-01
This paper describes the combination of discrete wavelet transforms (DWT) and artificial intelligence (AI), which are efficient techniques to identify the type of inrush current, analyze the origin and possible cause on the capacitor bank switching. The experiment setup used to verify the proposed techniques can be detected and classified the transient inrush current from normal capacitor rated current. The discrete wavelet transforms are used to detect and classify the inrush current. Then, output from wavelet is acted as input of fuzzy inference system for discriminating the type of switching transient inrush current. The proposed technique shows enhanced performance with a discrimination accuracy of 90.57%. Both simulation study and experimental results are quite satisfactory with providing the high accuracy and reliability which can be developed and implemented into a numerical overcurrent (50/51) and unbalanced current (60C) protection relay for an application of shunt capacitor bank protection in the future.
Comparative analysis of techniques for evaluating the effectiveness of aircraft computing systems
NASA Technical Reports Server (NTRS)
Hitt, E. F.; Bridgman, M. S.; Robinson, A. C.
1981-01-01
Performability analysis is a technique developed for evaluating the effectiveness of fault-tolerant computing systems in multiphase missions. Performability was evaluated for its accuracy, practical usefulness, and relative cost. The evaluation was performed by applying performability and the fault tree method to a set of sample problems ranging from simple to moderately complex. The problems involved as many as five outcomes, two to five mission phases, permanent faults, and some functional dependencies. Transient faults and software errors were not considered. A different analyst was responsible for each technique. Significantly more time and effort were required to learn performability analysis than the fault tree method. Performability is inherently as accurate as fault tree analysis. For the sample problems, fault trees were more practical and less time consuming to apply, while performability required less ingenuity and was more checkable. Performability offers some advantages for evaluating very complex problems.
VO2 Off Transient Kinetics in Extreme Intensity Swimming.
Sousa, Ana; Figueiredo, Pedro; Keskinen, Kari L; Rodríguez, Ferran A; Machado, Leandro; Vilas-Boas, João P; Fernandes, Ricardo J
2011-01-01
Inconsistencies about dynamic asymmetry between the on- and off- transient responses in oxygen uptake are found in the literature. Therefore, the purpose of this study was to characterize the oxygen uptake off-transient kinetics during a maximal 200-m front crawl effort, as examining the degree to which the on/off regularity of the oxygen uptake kinetics response was preserved. Eight high level male swimmers performed a 200-m front crawl at maximal speed during which oxygen uptake was directly measured through breath-by-breath oxymetry (averaged every 5 s). This apparatus was connected to the swimmer by a low hydrodynamic resistance respiratory snorkel and valve system. The on- and off-transient phases were symmetrical in shape (mirror image) once they were adequately fitted by a single-exponential regression models, and no slow component for the oxygen uptake response was developed. Mean (± SD) peak oxygen uptake was 69.0 (± 6.3) mL·kg(-1)·min(-1), significantly correlated with time constant of the off- transient period (r = 0.76, p < 0.05) but not with any of the other oxygen off-transient kinetic parameters studied. A direct relationship between time constant of the off-transient period and mean swimming speed of the 200-m (r = 0.77, p < 0.05), and with the amplitude of the fast component of the effort period (r = 0.72, p < 0.05) were observed. The mean amplitude and time constant of the off-transient period values were significantly greater than the respective on- transient. In conclusion, although an asymmetry between the on- and off kinetic parameters was verified, both the 200-m effort and the respectively recovery period were better characterized by a single exponential regression model. Key pointsThe VO2 slow component was not observed in the recovery period of swimming extreme efforts;The on and off transient periods were better fitted by a single exponential function, and so, these effort and recovery periods of swimming extreme efforts are symmetrical;The rate of VO2 decline during the recovery period may be due to not only the magnitude of oxygen debt but also the VO2peak obtained during the effort period.
Experimental Study of Hydraulic Systems Transient Response Characteristics
1978-12-01
of Filter .. ... ...... ..... ..... 28 Effects of Quincke -Tube. .. ..... ...... ... 28 Error ’Estimation. .. ... ...... ..... ..... 33 I. CONCLUSIONS...System With Quincke -Tube i Configuration ..... ..................... ... 11 6 Schematic of Pump System .... ............... ... 12 7 Example of Computer...Filter Configuration ........ ..................... 32 20 Transient Response, Reservoir System, Quincke -Tube (Short) Configuration, 505 PSIA
The Avoidance of Saturation Limits in Magnetic Bearing Systems During Transient Excitation
NASA Technical Reports Server (NTRS)
Rutland, Neil K.; Keogh, Patrick S.; Burrows, Clifford R.
1996-01-01
When a transient event, such as mass loss, occurs in a rotor/magnetic bearing system, optimal vibration control forces may exceed bearing capabilities. This will be inevitable when the mass loss is sufficiently large and a conditionally unstable dynamic system could result if the bearing characteristic become non-linear. This paper provides a controller design procedure to suppress, where possible, bearing force demands below saturation levels while maintaining vibration control. It utilizes H(sub infinity) optimization with appropriate input and output weightings. Simulation of transient behavior following mass loss from a flexible rotor is used to demonstrate the avoidance of conditional instability. A compromise between transient control force and vibration levels was achieved.
NASA Technical Reports Server (NTRS)
Hebert, Phillip W.
2008-01-01
NASA/SSC's Mission in Rocket Propulsion Testing Is to Acquire Test Performance Data for Verification, Validation and Qualification of Propulsion Systems Hardware: Accurate, Reliable, Comprehensive, and Timely. Data Acquisition in a Rocket Propulsion Test Environment Is Challenging: a) Severe Temporal Transient Dynamic Environments; b) Large Thermal Gradients; c) Vacuum to high pressure regimes. A-3 Test Stand Development is equally challenging with respect to accommodating vacuum environment, operation of a CSG system, and a large quantity of data system and control channels to determine proper engine performance as well as Test Stand operation. SSC is currently in the process of providing modernized DAS, Control Systems, Video, and network systems for the A-3 Test Stand to overcome these challenges.
NASA Technical Reports Server (NTRS)
Jiang, Yuhong; Zmood, R. B.
1996-01-01
Both self-excited and forced disturbances often lead to severe rotor vibrations in a magnetic bearing systems with long slender shafts. This problem has been studied using the H-infinity method, and stability with good robustness can be achieved for the linearized model of a magnetic bearing when small transient disturbances are applied. In this paper, the H-infinity control method for self-excited and forced disturbances is first reviewed. It is then applied to the control of a magnetic bearing rotor system. In modelling the system, the shaft is first discretized into 18 finite elements and then three levels of condensation are applied. This leads to a system with three masses and three compliant elements which can be described by six state variable coordinates. Simulation of the resultant system design has been performed at speeds up to 10,000 rpm. Disturbances in terms of different initial displacements, initial impulses, and external periodic inputs have been imposed. The simulation results show that good stability can be achieved under these different transient disturbances using the proposed controller while at the same time reducing the sensitivity to external periodic disturbances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagen, E.W.
This report reviews and evaluates the performance of the compressed-air and pressurized-nitrogen gas systems in commercial nuclear power units. The information was collected from readily available operating experiences, licensee event reports, system designs in safety analysis reports, and regulatory documents. The results are collated and analyzed for significance and impact on power plant safety performance. Under certain circumstances, the fail-safe philosophy for a piece of equipment or subsystem of the compressed-air systems initiated a series of actions culminating in reactor transient or unit scram. However, based on this study of prevailing operating experiences, reclassifying the compressed-gas systems to a highermore » safety level will neither prevent (nor mitigate) the reoccurrences of such happenings nor alleviate nuclear power plant problems caused by inadequate maintenance, operating procedures, and/or practices. Conversely, because most of the problems were derived from the sources listed previously, upgrading of both maintenance and operating procedures will not only result in substantial improvement in the performance and availability of the compressed-air (and backup nitrogen) systems but in improved overall plant performance.« less
Analysis of high vacuum systems using SINDA'85
NASA Technical Reports Server (NTRS)
Spivey, R. A.; Clanton, S. E.; Moore, J. D.
1993-01-01
The theory, algorithms, and test data correlation analysis of a math model developed to predict performance of the Space Station Freedom Vacuum Exhaust System are presented. The theory used to predict the flow characteristics of viscous, transition, and molecular flow is presented in detail. Development of user subroutines which predict the flow characteristics in conjunction with the SINDA'85/FLUINT analysis software are discussed. The resistance-capacitance network approach with application to vacuum system analysis is demonstrated and results from the model are correlated with test data. The model was developed to predict the performance of the Space Station Freedom Vacuum Exhaust System. However, the unique use of the user subroutines developed in this model and written into the SINDA'85/FLUINT thermal analysis model provides a powerful tool that can be used to predict the transient performance of vacuum systems and gas flow in tubes of virtually any geometry. This can be accomplished using a resistance-capacitance (R-C) method very similar to the methods used to perform thermal analyses.
Okamoto, Nagahisa; Sakamoto, Kota; Yamada, Maki
2012-01-01
The serotonin syndrome, which is characterized by psychiatric, autonomic nervous and neurological symptoms, is considered to be caused by excessive stimulation of the 5-HT1A and 5-HT2 receptors in the gray matter and spinal cord of the central nervous system, after the start of dosing or increase of the dose of a serotoninergic drug. There have been hardly any reports of induction of serotonin syndrome by electroconvulsive therapy (ECT) in combination with antidepressant. We present the case of a female patient with major depressive disorder (MDD) who developed transient serotonin syndrome soon after the first session of ECT in combination with paroxetine. Paroxetine was discontinued, and her psychiatric, autonomic nervous and neurological symptoms were gradually relieved and disappeared within 2 days. We performed the second ECT session 5 days after the initial session and performed 12 sessions of ECT without any changes in the procedure of ECT and anesthesia, but no symptoms of SS were observed. Finally, her MDD remitted. ECT might cause transiently increased blood-brain barrier (BBB) permeability and enhance the transmissivity of the antidepressant in BBB. Therefore, it is necessary to pay attention to rare side effect of serotonin syndrome by ECT in combination with antidepressant.
Watering the Tree of Science: Science Education, Local Knowledge, and Agency in Zambia's PSA Program
NASA Astrophysics Data System (ADS)
Lample, Emily
With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..
NASA Astrophysics Data System (ADS)
Harris, Andrew G.
With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..
Soft error aware physical synthesis
NASA Astrophysics Data System (ADS)
Assis, Thiago Rocha de
With increased public interest in protecting the environment, scientists and engineers aim to improve energy conversion efficiency. Thermoelectrics offer many advantages as thermal management technology. When compared to vapor compression refrigeration, above approximately 200 to 600 watts, cost in dollars per watt as well as COP are not advantageous for thermoelectrics. The goal of this work was to determine if optimized pulse supercooling operation could improve cooling capacity or efficiency of a thermoelectric device. The basis of this research is a thermal-electrical analogy based modeling study using SPICE. Two models were developed. The first model, a standalone thermocouple with no attached mass to be cooled. The second, a system that includes a module attached to a heat generating mass. With the thermocouple study, a new approach of generating response surfaces with characteristic parameters was applied. The current pulse height and pulse on-time was identified for maximizing Net Transient Advantage, a newly defined metric. The corresponding pulse height and pulse on-time was utilized for the system model. Along with the traditional steady state starting current of Imax, Iopt was employed. The pulse shape was an isosceles triangle. For the system model, metrics new to pulse cooling were Qc, power consumption and COP. The effects of optimized current pulses were studied by changing system variables. Further studies explored time spacing between pulses and temperature distribution in the thermoelement. It was found net Q c over an entire pulse event can be improved over Imax steady operation but not over steady I opt operation. Qc can be improved over Iopt operation but only during the early part of the pulse event. COP is reduced in transient pulse operation due to the different time constants of Qc and Pin. In some cases lower performance interface materials allow more Qc and better COP during transient operation than higher performance interface materials. Important future work might look at developing innovative ways of biasing Joule heat to Th..
NASA Technical Reports Server (NTRS)
1980-01-01
Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.
Howe, William M; Ji, Jinzhao; Parikh, Vinay; Williams, Sarah; Mocaër, Elisabeth; Trocmé-Thibierge, Caryn; Sarter, Martin
2010-01-01
Impairments in attention are a major component of the cognitive symptoms of neuropsychiatric and neurodegenerative disorders. Using an operant sustained attention task (SAT), including a distractor condition (dSAT), we assessed the putative pro-attentional effects of the selective α4β2* nicotinic acetylcholine receptor (nAChR) agonist S 38232 in comparison with the non-selective agonist nicotine. Neither drug benefited SAT performance. However, in interaction with the increased task demands implemented by distractor presentation, the selective agonist, but not nicotine, enhanced the detection of signals during the post-distractor recovery period. This effect is consistent with the hypothesis that second-long increases in cholinergic activity (‘transients') mediate the detection of cues and that nAChR agonists augment such transients. Electrochemical recordings of prefrontal cholinergic transients evoked by S 38232 and nicotine indicated that the α4β2* nAChR agonist evoked cholinergic transients that were characterized by a faster rise time and more rapid decay than those evoked by nicotine. Blockade of the α7 nAChR ‘sharpens' nicotine-evoked transients; therefore, we determined the effects of co-administration of nicotine and the α7 nAChR antagonist methyllycaconitine on dSAT performance. Compared with vehicle and nicotine alone, this combined treatment significantly enhanced the detection of signals. These results indicate that compared with nicotine, α4β2* nAChR agonists significantly enhance attentional performance and that the dSAT represents a useful behavioral screening tool. The combined behavioral and electrochemical evidence supports the hypothesis that nAChR agonist-evoked cholinergic transients, which are characterized by rapid rise time and fast decay, predict robust drug-induced enhancement of attentional performance. PMID:20147893
Berti, Stefan
2013-01-01
Distraction of goal-oriented performance by a sudden change in the auditory environment is an everyday life experience. Different types of changes can be distracting, including a sudden onset of a transient sound and a slight deviation of otherwise regular auditory background stimulation. With regard to deviance detection, it is assumed that slight changes in a continuous sequence of auditory stimuli are detected by a predictive coding mechanisms and it has been demonstrated that this mechanism is capable of distracting ongoing task performance. In contrast, it is open whether transient detection—which does not rely on predictive coding mechanisms—can trigger behavioral distraction, too. In the present study, the effect of rare auditory changes on visual task performance is tested in an auditory-visual cross-modal distraction paradigm. The rare changes are either embedded within a continuous standard stimulation (triggering deviance detection) or are presented within an otherwise silent situation (triggering transient detection). In the event-related brain potentials, deviants elicited the mismatch negativity (MMN) while transients elicited an enhanced N1 component, mirroring pre-attentive change detection in both conditions but on the basis of different neuro-cognitive processes. These sensory components are followed by attention related ERP components including the P3a and the reorienting negativity (RON). This demonstrates that both types of changes trigger switches of attention. Finally, distraction of task performance is observable, too, but the impact of deviants is higher compared to transients. These findings suggest different routes of distraction allowing for the automatic processing of a wide range of potentially relevant changes in the environment as a pre-requisite for adaptive behavior. PMID:23874278
Equifinality and its violations in a redundant system: multifinger accurate force production.
Wilhelm, Luke; Zatsiorsky, Vladimir M; Latash, Mark L
2013-10-01
We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The "inverse piano" device was used to lift and lower one of the fingers smoothly. The subjects were instructed "not to intervene voluntarily" with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis.
NASA Technical Reports Server (NTRS)
Porro, A. Robert
2000-01-01
One of the propulsion system concepts to be considered for the High-Speed Civil Transport (HSCT) is an underwing, dual-propulsion, pod-per-wing installation. Adverse transient phenomena such as engine compressor stall and inlet unstart could severely degrade the performance of one of these propulsion pods. The subsequent loss of thrust and increased drag could cause aircraft stability and control problems that could lead to a catastrophic accident if countermeasures are not in place to anticipate and control these detrimental transient events. Aircraft system engineers must understand what happens during an engine compressor stall and inlet unstart so that they can design effective control systems to avoid and/or alleviate the effects of a propulsion pod engine compressor stall and inlet unstart. The objective of the Inlet Unstart Propulsion Airframe Integration test program was to assess the underwing flow field of a High-Speed Civil Transport propulsion system during an engine compressor stall and subsequent inlet unstart. Experimental research testing was conducted in the 10- by 10-Foot Supersonic Wind Tunnel at the NASA Glenn Research Center at Lewis Field. The representative propulsion pod consisted of a two-dimensional, bifurcated inlet mated to a live turbojet engine. The propulsion pod was mounted below a large flat plate that acted as a wing simulator. Because of the plate s long length (nominally 10-ft wide by 18-ft long), realistic boundary layers could form at the inlet cowl plane. Transient instrumentation was used to document the aerodynamic flow-field conditions during an unstart sequence. Acquiring these data was a significant technical challenge because a typical unstart sequence disrupts the local flow field for about only 50 msec. Flow surface information was acquired via static pressure taps installed in the wing simulator, and intrusive pressure probes were used to acquire flow-field information. These data were extensively analyzed to determine the impact of the unstart transient on the surrounding flow field. This wind tunnel test program was a success, and for the first time, researchers acquired flow-field aerodynamic data during a supersonic propulsion system engine compressor stall and inlet unstart sequence. In addition to obtaining flow-field pressure data, Glenn researchers determined other properties such as the transient flow angle and Mach number. Data are still being reduced, and a comprehensive final report will be released during calendar year 2000.
Total Dose Effects on Error Rates in Linear Bipolar Systems
NASA Technical Reports Server (NTRS)
Buchner, Stephen; McMorrow, Dale; Bernard, Muriel; Roche, Nicholas; Dusseau, Laurent
2007-01-01
The shapes of single event transients in linear bipolar circuits are distorted by exposure to total ionizing dose radiation. Some transients become broader and others become narrower. Such distortions may affect SET system error rates in a radiation environment. If the transients are broadened by TID, the error rate could increase during the course of a mission, a possibility that has implications for hardness assurance.
A theory of post-stall transients in axial compression systems. II - Application
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Moore, F. K.
1985-01-01
Using the theory developed in Part I, calculations have been carried out to show the evolution of the mass flow, pressure rise, and rotating-stall cell amplitude during compression system post-stall transients. In particular, it is shown that the unsteady growth or decay of the stall cell can have a significant effect on the instantaneous compressor pumping characteristic and hence on the overall system behavior. A limited parametric study is carried out to illustrate the impact of different system features on transient behavior. It is shown, for example, that the ultimate mode of system response, surge or stable rotating stall, depends not only on the B parameter, but also on the compressor length-to-radius ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. Based on the analytical and numerical results, several specific topics are suggested for future research on post-stall transients.
Dynamic Simulation of a Periodic 10 K Sorption Cryocooler
NASA Technical Reports Server (NTRS)
Bhandari, P.; Rodriguez, J.; Bard, S.; Wade, L.
1994-01-01
A transient thermal simulation model has been developed to simulate the dynamic performance of a multiple-stage 10 K sorption cryocooler for spacecraft sensor cooling applications that require periodic quick-cooldown (under 2 minutes) , negligible vibration, low power consumption, and long life (5 to 10 years). The model was specifically designed to represent the Brilliant Eyes Ten-Kelvin Sorption Cryocooler Experiment (BETSCE), but it can be adapted to represent other sorption cryocooler systems as well. The model simulates the heat transfer, mass transfer, and thermodynamic processes in the cryostat and the sorbent beds for the entire refrigeration cycle, and includes the transient effects of variable hydrogen supply pressures due to expansion and overflow of hydrogen during the cooldown operation. The paper describes model limitations and simplifying assumptions, with estimates of errors induced by them, and presents comparisons of performance predictions with ground experiments. An important benefit of the model is its ability to predict performance sensitivities to variations of key design and operational parameters. The insights thus obtained are expected to lead to higher efficiencies and lower weights for future designs.
On Parallelizing Single Dynamic Simulation Using HPC Techniques and APIs of Commercial Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diao, Ruisheng; Jin, Shuangshuang; Howell, Frederic
Time-domain simulations are heavily used in today’s planning and operation practices to assess power system transient stability and post-transient voltage/frequency profiles following severe contingencies to comply with industry standards. Because of the increased modeling complexity, it is several times slower than real time for state-of-the-art commercial packages to complete a dynamic simulation for a large-scale model. With the growing stochastic behavior introduced by emerging technologies, power industry has seen a growing need for performing security assessment in real time. This paper presents a parallel implementation framework to speed up a single dynamic simulation by leveraging the existing stability model librarymore » in commercial tools through their application programming interfaces (APIs). Several high performance computing (HPC) techniques are explored such as parallelizing the calculation of generator current injection, identifying fast linear solvers for network solution, and parallelizing data outputs when interacting with APIs in the commercial package, TSAT. The proposed method has been tested on a WECC planning base case with detailed synchronous generator models and exhibits outstanding scalable performance with sufficient accuracy.« less
Electrowetting-driven spreading and jumping of drops in oil
NASA Astrophysics Data System (ADS)
Hong, Jiwoo; Lee, Sang Joon
2013-11-01
Electrowetting-based practical applications include digital microfluidics, liquid lenses, and reflective displays. Most of them are performed in water/oil system, because oil medium reduces the contact-angle hysteresis and prevents drop evaporation. In this study, the effects of drop volume, oil viscosity, and applied voltage on the dynamic behaviors of spreading drops, such as transition of spreading pattern and response time, are investigated. Interestingly, jumping phenomena of drops are observed in oil when the applied voltage is turned off after reaching the electrowetted equilibrium radius of drops. A numerical model to predict the transient behavior of jumping drops is formulated based on the phase-field method. The numerical results for the transient deformation of jumping drops show quantitative agreement with the experimental results.
Development and evaluation of the impulse transfer function technique
NASA Technical Reports Server (NTRS)
Mantus, M.
1972-01-01
The development of the test/analysis technique known as the impulse transfer function (ITF) method is discussed. This technique, when implemented with proper data processing systems, should become a valuable supplement to conventional dynamic testing and analysis procedures that will be used in the space shuttle development program. The method can relieve many of the problems associated with extensive and costly testing of the shuttle for transient loading conditions. In addition, the time history information derived from impulse testing has the potential for being used to determine modal data for the structure under investigation. The technique could be very useful in determining the time-varying modal characteristics of structures subjected to thermal transients, where conventional mode surveys are difficult to perform.
NASA Technical Reports Server (NTRS)
Marlowe, M. B.; Moore, R. A.; Whetstone, W. D.
1979-01-01
User instructions are given for performing linear and nonlinear steady state and transient thermal analyses with SPAR thermal analysis processors TGEO, SSTA, and TRTA. It is assumed that the user is familiar with basic SPAR operations and basic heat transfer theory.
Soft-Fault Detection Technologies Developed for Electrical Power Systems
NASA Technical Reports Server (NTRS)
Button, Robert M.
2004-01-01
The NASA Glenn Research Center, partner universities, and defense contractors are working to develop intelligent power management and distribution (PMAD) technologies for future spacecraft and launch vehicles. The goals are to provide higher performance (efficiency, transient response, and stability), higher fault tolerance, and higher reliability through the application of digital control and communication technologies. It is also expected that these technologies will eventually reduce the design, development, manufacturing, and integration costs for large, electrical power systems for space vehicles. The main focus of this research has been to incorporate digital control, communications, and intelligent algorithms into power electronic devices such as direct-current to direct-current (dc-dc) converters and protective switchgear. These technologies, in turn, will enable revolutionary changes in the way electrical power systems are designed, developed, configured, and integrated in aerospace vehicles and satellites. Initial successes in integrating modern, digital controllers have proven that transient response performance can be improved using advanced nonlinear control algorithms. One technology being developed includes the detection of "soft faults," those not typically covered by current systems in use today. Soft faults include arcing faults, corona discharge faults, and undetected leakage currents. Using digital control and advanced signal analysis algorithms, we have shown that it is possible to reliably detect arcing faults in high-voltage dc power distribution systems (see the preceding photograph). Another research effort has shown that low-level leakage faults and cable degradation can be detected by analyzing power system parameters over time. This additional fault detection capability will result in higher reliability for long-lived power systems such as reusable launch vehicles and space exploration missions.
Neural-Learning-Based Telerobot Control With Guaranteed Performance.
Yang, Chenguang; Wang, Xinyu; Cheng, Long; Ma, Hongbin
2017-10-01
In this paper, a neural networks (NNs) enhanced telerobot control system is designed and tested on a Baxter robot. Guaranteed performance of the telerobot control system is achieved at both kinematic and dynamic levels. At kinematic level, automatic collision avoidance is achieved by the control design at the kinematic level exploiting the joint space redundancy, thus the human operator would be able to only concentrate on motion of robot's end-effector without concern on possible collision. A posture restoration scheme is also integrated based on a simulated parallel system to enable the manipulator restore back to the natural posture in the absence of obstacles. At dynamic level, adaptive control using radial basis function NNs is developed to compensate for the effect caused by the internal and external uncertainties, e.g., unknown payload. Both the steady state and the transient performance are guaranteed to satisfy a prescribed performance requirement. Comparative experiments have been performed to test the effectiveness and to demonstrate the guaranteed performance of the proposed methods.
NASA Technical Reports Server (NTRS)
Foster, Winfred A., Jr.; Crowder, Winston; Steadman, Todd E.
2014-01-01
This paper presents the results of statistical analyses performed to predict the thrust imbalance between two solid rocket motor boosters to be used on the Space Launch System (SLS) vehicle. Two legacy internal ballistics codes developed for the Space Shuttle program were coupled with a Monte Carlo analysis code to determine a thrust imbalance envelope for the SLS vehicle based on the performance of 1000 motor pairs. Thirty three variables which could impact the performance of the motors during the ignition transient and thirty eight variables which could impact the performance of the motors during steady state operation of the motor were identified and treated as statistical variables for the analyses. The effects of motor to motor variation as well as variations between motors of a single pair were included in the analyses. The statistical variations of the variables were defined based on data provided by NASA's Marshall Space Flight Center for the upgraded five segment booster and from the Space Shuttle booster when appropriate. The results obtained for the statistical envelope are compared with the design specification thrust imbalance limits for the SLS launch vehicle
NASA Astrophysics Data System (ADS)
Scharrer, J. K.; Tellier, J.; Hibbs, R.
1992-10-01
A test apparatus was developed for studies of the transient performance of hydrostatic journal bearings operating in liquid nitrogen. The data obtained give the number of revolutions of the shaft contact before the liftoff and after touchdown as a function of bearing/shaft material combinations and operating conditions.
640 x 480 MWIR and LWIR camera system developments
NASA Astrophysics Data System (ADS)
Tower, John R.; Villani, Thomas S.; Esposito, Benjamin J.; Gilmartin, Harvey R.; Levine, Peter A.; Coyle, Peter J.; Davis, Timothy J.; Shallcross, Frank V.; Sauer, Donald J.; Meyerhofer, Dietrich
1993-01-01
The performance of a 640 x 480 PtSi, 3,5 microns (MWIR), Stirling cooled camera system with a minimum resolvable temperature of 0.03 is considered. A preliminary specification of a full-TV resolution PtSi radiometer was developed using the measured performance characteristics of the Stirling cooled camera. The radiometer is capable of imaging rapid thermal transients from 25 to 250 C with better than 1 percent temperature resolution. This performance is achieved using the electronic exposure control capability of the MOS focal plane array (FPA). A liquid nitrogen cooled camera with an eight-position filter wheel has been developed using the 640 x 480 PtSi FPA. Low thermal mass packaging for the FPA was developed for Joule-Thomson applications.
640 x 480 MWIR and LWIR camera system developments
NASA Astrophysics Data System (ADS)
Tower, J. R.; Villani, T. S.; Esposito, B. J.; Gilmartin, H. R.; Levine, P. A.; Coyle, P. J.; Davis, T. J.; Shallcross, F. V.; Sauer, D. J.; Meyerhofer, D.
The performance of a 640 x 480 PtSi, 3,5 microns (MWIR), Stirling cooled camera system with a minimum resolvable temperature of 0.03 is considered. A preliminary specification of a full-TV resolution PtSi radiometer was developed using the measured performance characteristics of the Stirling cooled camera. The radiometer is capable of imaging rapid thermal transients from 25 to 250 C with better than 1 percent temperature resolution. This performance is achieved using the electronic exposure control capability of the MOS focal plane array (FPA). A liquid nitrogen cooled camera with an eight-position filter wheel has been developed using the 640 x 480 PtSi FPA. Low thermal mass packaging for the FPA was developed for Joule-Thomson applications.
NASA Astrophysics Data System (ADS)
Hadjiyska, Elena Ivanova
2009-06-01
Optical transients have been studied in isolated cases, but never mapped into a comprehensive data base in the past. These events vary in duration and signature, yet they are united under the umbrella of time varying observables and represent a significant portion of the dynamical processes in the universe. The Transient Optical Sky Survey (TOSS) System is a dedicated, ground-based system of small optical telescopes, observing nightly at fixed Declination while gathering 90 sec exposures and thus creating a repeated partial map of the sky. Presented here is a brief overview of some of the signatures of transient events and a description of the TOSS system along with the data acquired during the 2008-2009 observing campaign, potentially producing over 100,000 light curves.
NASA Astrophysics Data System (ADS)
Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel
2015-02-01
Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.
Transient extracellular glutamate events in the basolateral amygdala track reward seeking actions
Wassum, KM; Tolosa, VM; Tseng, TC; Balleine, BW; Monbouquette, HG; Maidment, NT
2012-01-01
The ability to make rapid, informed decisions about whether or not to engage in a sequence of actions to earn reward is essential for survival. Modeling in rodents has demonstrated a critical role for the basolateral amygdala (BLA) in such reward-seeking actions, but the precise neurochemical underpinnings are not well understood. Taking advantage of recent advancements in biosensor technologies, we made spatially discrete near-real time extracellular recordings of the major excitatory transmitter, glutamate, in the BLA of rats performing a self-paced lever-pressing sequence task for sucrose reward. This allowed us to detect rapid transient fluctuations in extracellular BLA glutamate time-locked to action performance. These glutamate transients tended to precede lever pressing actions and were markedly increased in frequency when rats were engaged in such reward seeking actions. Based on muscimol and tetrodotoxin microinfusions these glutamate transients appeared to originate from the terminals of neurons with cell bodies in the orbital frontal cortex. Importantly, glutamate transient amplitude and frequency fluctuated with the value of the earned reward and positively predicted lever pressing rate. Such novel rapid glutamate recordings during instrumental performance identify a role for glutamatergic signaling within the BLA in instrumental reward-seeking actions. PMID:22357857
A FORTRAN program for the analysis of linear continuous and sample-data systems
NASA Technical Reports Server (NTRS)
Edwards, J. W.
1976-01-01
A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.
Mach-Zehnder interferometer-based recording system for WACO
NASA Astrophysics Data System (ADS)
Woerner, R.
1988-06-01
EG and G Energy Measurements, Inc., Los Alamos Operations (LAO) designed and built a Mach-Zehnder-interferometer-based recording system to record low-bandwidth pulses. This work was undertaken at the request of the Los Alamos National Laboratory, P-14 Fast Transient Plasma Measurement group. The system was fielded on WACO and its performance compared with that of a conventional recording system fielded on the same event. The results of the fielding showed that for low bandwidth applications like the WACO experiment, the M-Z-based system provides the same data quality and dynamic range as the conventional oscilloscope system, but it is far less complex and uses fewer recorders.
Modeling of power electronic systems with EMTP
NASA Technical Reports Server (NTRS)
Tam, Kwa-Sur; Dravid, Narayan V.
1989-01-01
In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.
Transient Three-Dimensional Startup Side Load Analysis of a Regeneratively Cooled Nozzle
NASA Technical Reports Server (NTRS)
Wang, Ten-See
2008-01-01
The objective of this effort is to develop a computational methodology to capture the startup side load physics and to anchor the computed aerodynamic side loads with the available data from a regeneratively cooled, high-aspect-ratio nozzle, hot-fired at sea level. The computational methodology is based on an unstructured-grid, pressure-based, reacting flow computational fluid dynamics and heat transfer formulation, a transient 5 s inlet history based on an engine system simulation, and a wall temperature distribution to reflect the effect of regenerative cooling. To understand the effect of regenerative wall cooling, two transient computations were performed using the boundary conditions of adiabatic and cooled walls, respectively. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with the pulsation of shocks across the lip, although the combustion wave is commonly eliminated with the sparklers during actual test. The test measured two side load events: a secondary and lower side load, followed by a primary and peak side load. Results from both wall boundary conditions captured the free-shock separation to restricted-shock separation transition with computed side loads matching the measured secondary side load. For the primary side load, the cooled wall transient produced restricted-shock pulsation across the nozzle lip with peak side load matching that of the test, while the adiabatic wall transient captured shock transitions and free-shock pulsation across the lip with computed peak side load 50% lower than that of the measurement. The computed dominant pulsation frequency of the cooled wall nozzle agrees with that of a separate test, while that of the adiabatic wall nozzle is more than 50% lower than that of the measurement. The computed teepee-like formation and the tangential motion of the shocks during lip pulsation also qualitatively agree with those of test observations. Moreover, a third transient computation was performed with a proportionately shortened 1 s sequence, and lower side loads were obtained with the higher ramp rate.
NASA Technical Reports Server (NTRS)
Sellers, J. F.; Daniele, C. J.
1975-01-01
The DYNGEN, a digital computer program for analyzing the steady state and transient performance of turbojet and turbofan engines, is described. The DYNGEN is based on earlier computer codes (SMOTE, GENENG, and GENENG 2) which are capable of calculating the steady state performance of turbojet and turbofan engines at design and off-design operating conditions. The DYNGEN has the combined capabilities of GENENG and GENENG 2 for calculating steady state performance; to these the further capability for calculating transient performance was added. The DYNGEN can be used to analyze one- and two-spool turbojet engines or two- and three-spool turbofan engines without modification to the basic program. A modified Euler method is used by DYNGEN to solve the differential equations which model the dynamics of the engine. This new method frees the programmer from having to minimize the number of equations which require iterative solution. As a result, some of the approximations normally used in transient engine simulations can be eliminated. This tends to produce better agreement when answers are compared with those from purely steady state simulations. The modified Euler method also permits the user to specify large time steps (about 0.10 sec) to be used in the solution of the differential equations. This saves computer execution time when long transients are run. Examples of the use of the program are included, and program results are compared with those from an existing hybrid-computer simulation of a two-spool turbofan.
NASA Astrophysics Data System (ADS)
Smoczek, Jaroslaw
2015-10-01
The paper deals with the problem of reducing the residual vibration and limiting the transient oscillations of a flexible and underactuated system with respect to the variation of operating conditions. The comparative study of generalized predictive control (GPC) and fuzzy scheduling scheme developed based on the P1-TS fuzzy theory, local pole placement method and interval analysis of closed-loop system polynomial coefficients is addressed to the problem of flexible crane control. The two alternatives of a GPC-based method are proposed that enable to realize this technique either with or without a sensor of payload deflection. The first control technique is based on the recursive least squares (RLS) method applied to on-line estimate the parameters of a linear parameter varying (LPV) model of a crane dynamic system. The second GPC-based approach is based on a payload deflection feedback estimated using a pendulum model with the parameters interpolated using the P1-TS fuzzy system. Feasibility and applicability of the developed methods were confirmed through experimental verification performed on a laboratory scaled overhead crane.
Time-domain Surveys and Data Shift: Case Study at the intermediate Palomar Transient Factory
NASA Astrophysics Data System (ADS)
Rebbapragada, Umaa; Bue, Brian; Wozniak, Przemyslaw R.
2015-01-01
Next generation time-domain surveys are susceptible to the problem of data shift that is caused by upgrades to data processing pipelines and instruments. Data shift degrades the performance of automated machine learning classifiers that vet detections and classify source types because fundamental assumptions are violated when classifiers are built in one data regime but are deployed on data from another. This issue is not currently discussed within the astronomical community, but will be increasingly pressing over the next decade with the advent of new time domain surveys.We look at the problem of data shift that was caused by a data pipeline upgrade when the intermediate Palomar Transient Factory (iPTF) succeeded the Palomar Transient Factory (PTF) in January 2013. iPTF relies upon machine-learned Real-Bogus classifiers to vet sources extracted from subtracted images on a scale of zero to one where zero indicates a bogus (image artifact) and one indicates a real astronomical transient, with the overwhelming majority of candidates are scored as bogus. An effective Real-Bogus system filters all but the most promising candidates, which are presented to human scanners who make decisions about triggering follow up assets.The Real-Bogus systems currently in operation at iPTF (RB4 and RB5) solve the data shift problem. The statistical models of RB4 and RB5 were built from the ground up using examples from iPTF alone, whereas an older system, RB2, was built using PTF data, but was deployed after iPTF launched. We discuss the machine learning assumptions that are violated when a system is trained on one domain (PTF) but deployed on another (iPTF) that experiences data shift. We provide illustrative examples of data parameters and statistics that experienced shift. Finally, we show results comparing the three systems in operation, demonstrating that systems that solve domain shift (RB4 and RB5) are superior to those that don't (RB2).Research described in this abstract was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration. US Government Support Acknowledged.
Nonlinear Transient Thermal Analysis by the Force-Derivative Method
NASA Technical Reports Server (NTRS)
Balakrishnan, Narayani V.; Hou, Gene
1997-01-01
High-speed vehicles such as the Space Shuttle Orbiter must withstand severe aerodynamic heating during reentry through the atmosphere. The Shuttle skin and substructure are constructed primarily of aluminum, which must be protected during reentry with a thermal protection system (TPS) from being overheated beyond the allowable temperature limit, so that the structural integrity is maintained for subsequent flights. High-temperature reusable surface insulation (HRSI), a popular choice of passive insulation system, typically absorbs the incoming radiative or convective heat at its surface and then re-radiates most of it to the atmosphere while conducting the smallest amount possible to the structure by virtue of its low diffusivity. In order to ensure a successful thermal performance of the Shuttle under a prescribed reentry flight profile, a preflight reentry heating thermal analysis of the Shuttle must be done. The surface temperature profile, the transient response of the HRSI interior, and the structural temperatures are all required to evaluate the functioning of the HRSI. Transient temperature distributions which identify the regions of high temperature gradients, are also required to compute the thermal loads for a structural thermal stress analysis. Furthermore, a nonlinear analysis is necessary to account for the temperature-dependent thermal properties of the HRSI as well as to model radiation losses.
LMFBR system-wide transient analysis: the state of the art and US validation needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khatib-Rahbar, M.; Guppy, J.G.; Cerbone, R.J.
1982-01-01
This paper summarizes the computational capabilities in the area of liquid metal fast breeder reactor (LMFBR) system-wide transient analysis in the United States, identifies various numerical and physical approximations, the degree of empiricism, range of applicability, model verification and experimental needs for a wide class of protected transients, in particular, natural circulation shutdown heat removal for both loop- and pool-type plants.
LeChevallier, Mark W; Gullick, Richard W; Karim, Mohammad R; Friedman, Melinda; Funk, James E
2003-03-01
The potential for public health risks associated with intrusion of contaminants into water supply distribution systems resulting from transient low or negative pressures is assessed. It is shown that transient pressure events occur in distribution systems; that during these negative pressure events pipeline leaks provide a potential portal for entry of groundwater into treated drinking water; and that faecal indicators and culturable human viruses are present in the soil and water exterior to the distribution system. To date, all observed negative pressure events have been related to power outages or other pump shutdowns. Although there are insufficient data to indicate whether pressure transients are a substantial source of risk to water quality in the distribution system, mitigation techniques can be implemented, principally the maintenance of an effective disinfectant residual throughout the distribution system, leak control, redesign of air relief venting, and more rigorous application of existing engineering standards. Use of high-speed pressure data loggers and surge modelling may have some merit, but more research is needed.
NASA Astrophysics Data System (ADS)
Baik, J. H.; Notardonato, W. U.; Karng, S. W.; Oh, I.
2015-12-01
NASA Kennedy Space Center (KSC) researchers have been working on enhanced and modernized cryogenic liquid propellant handling techniques to reduce life cycle costs of propellant management system for the unique KSC application. The KSC Ground Operation Demonstration Unit (GODU) for liquid hydrogen (LH2) plans to demonstrate integrated refrigeration, zero-loss flexible term storage of LH2, and densified hydrogen handling techniques. The Florida Solar Energy Center (FSEC) has partnered with the KSC researchers to develop thermal performance prediction model of the GODU for LH2. The model includes integrated refrigeration cooling performance, thermal losses in the tank and distribution lines, transient system characteristics during chilling and loading, and long term steady-state propellant storage. This paper will discuss recent experimental data of the GODU for LH2 system and modeling results.
realfast: Real-time, Commensal Fast Transient Surveys with the Very Large Array
NASA Astrophysics Data System (ADS)
Law, C. J.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Halle, A.; Khudikyan, S.; Lazio, T. J. W.; Pokorny, M.; Robnett, J.; Rupen, M. P.
2018-05-01
Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a source at cosmological distances. However, recording interferometric data at millisecond cadence produces a terabyte-per-hour data stream that strains networks, computing systems, and archives. This challenge mirrors that of other domains of science, where the science scope is limited by the computational architecture as much as the physical processes at play. Here, we present a solution to this problem in the context of radio transients: realfast, a commensal, fast transient search system at the Jansky Very Large Array. realfast uses a novel architecture to distribute fast-sampled interferometric data to a 32-node, 64-GPU cluster for real-time imaging and transient detection. By detecting transients in situ, we can trigger the recording of data for those rare, brief instants when the event occurs and reduce the recorded data volume by a factor of 1000. This makes it possible to commensally search a data stream that would otherwise be impossible to record. This system will search for millisecond transients in more than 1000 hr of data per year, potentially localizing several Fast Radio Bursts, pulsars, and other sources of impulsive radio emission. We describe the science scope for realfast, the system design, expected outcomes, and ways in which real-time analysis can help in other fields of astrophysics.
OGLE-IV Transient Search report 31 December 2016, part 1
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Hamanowicz, A.; Kostrzewa-Rutkowska, Z.; Klencki, J.; Sitek, M.; Udalski, A.; Kozlowski, S.; Ulaczyk, K.; Soszynski, I.; Mroz, P.; Szymanski, M. K.; Poleski, R.; Pietrukowicz, P.; Pawlak, M.; Skowron, J.
2016-12-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces discovery of 52 transients discovered in last three months.
OGLE-IV Transient Search report 31 December 2016, part 2
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Hamanowicz, A.; Kostrzewa-Rutkowska, Z.; Klencki, J.; Sitek, M.; Udalski, A.; Kozlowski, S.; Ulaczyk, K.; Soszynski, I.; Mroz, P.; Szymanski, M. K.; Poleski, R.; Pietrukowicz, P.; Pawlak, M.; Skowron, J.
2016-12-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces discovery of 46 transients discovered in last three months.
Hajare, V D; Patre, B M
2015-11-01
This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels.
Chen, Jack L-Y; Maiti, Subhabrata; Fortunati, Ilaria; Ferrante, Camilla; Prins, Leonard J
2017-08-25
The next generation of adaptive, intelligent chemical systems will rely on a continuous supply of energy to maintain the functional state. Such systems will require chemical methodology that provides precise control over the energy dissipation process, and thus, the lifetime of the transiently activated function. This manuscript reports on the use of structurally diverse chemical fuels to control the lifetime of two different systems under dissipative conditions: transient signal generation and the transient formation of self-assembled aggregates. The energy stored in the fuels is dissipated at different rates by an enzyme, which installs a dependence of the lifetime of the active system on the chemical structure of the fuel. In the case of transient signal generation, it is shown that different chemical fuels can be used to generate a vast range of signal profiles, allowing temporal control over two orders of magnitude. Regarding self-assembly under dissipative conditions, the ability to control the lifetime using different fuels turns out to be particularly important as stable aggregates are formed only at well-defined surfactant/fuel ratios, meaning that temporal control cannot be achieved by simply changing the fuel concentration. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nisar, Asim; Afzulpurkar, Nitin; Tuantranont, Adisorn; Mahaisavariya, Banchong
2008-12-01
In this paper, we present design of a transdermal drug delivery system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The system comprises of integrated control electronics and microelectromechanical system devices such as micropump, micro blood pressure sensor and microneedle array. The objective is to overcome the limitations of oral therapy such as variable absorption profile and the need for frequent dosing, by fabricating a safe, reliable and cost effective transdermal drug delivery system to dispense various pharmacological agents through the skin for treatment of hemodynamic dysfunction such as hypertension. Moreover, design optimization of a piezoelectrically actuated valveless micropump is presented for the drug delivery system. Because of the complexity in analysis of piezoelectric micropump, which involves structural and fluid field couplings in a complicated geometrical arrangement, finite element (FE) numerical simulation rather than an analytical system has been used. The behavior of the piezoelectric actuator with biocompatible polydimethylsiloxane membrane is first studied by conducting piezoelectric analysis. Then the performance of the valveless micropump is analyzed by building a three dimensional electric-solid-fluid model of the micropump. The effect of geometrical dimensions on micropump characteristics and efficiency of nozzle/diffuser elements of a valveless micropump is investigated in the transient analysis using multiple code coupling method. The deformation results of the membrane using multifield code coupling analysis are in good agreement with analytical as well as results of single code coupling analysis of a piezoelectric micropump. The analysis predicts that to enhance the performance of the micropump, diffuser geometrical dimensions such as diffuser length, diffuser neck width and diffuser angle need to be optimized. Micropump flow rate is not strongly affected at low excitation frequencies from 10 to 200 Hz. The excitation voltage is the more dominant factor that affects the flow rate of the micropump as compared with the excitation frequency. However, at extremely high excitation frequencies beyond 8,000 Hz, the flow rate drops as the membrane exhibits multiple bending peaks which is not desirable for fluid flow. Following the extensive numerical analysis, actual fabrication and performance characterization of the micropump is presented. The performance of the micropump is characterized in terms of piezoelectric actuator deflection and micropump flow rate at different operational parameters. The set of multifield simulations and experimental measurement of deflection and flow rate at varying voltage and excitation frequency is a significant advance in the study of the electric-solid-fluid coupled field effects as it allows transient, three dimensional piezoelectric and fluid analysis of the micropump thereby facilitating a more realistic multifield analysis. The results of the present study will also help to conduct relevant strength duration tests of integrated drug delivery device with micropump and microneedle array in future.
LADEE Propulsion System Cold Flow Test
NASA Technical Reports Server (NTRS)
Williams, Jonathan Hunter; Chapman, Jack M.; Trinh, Hau, P.; Bell, James H.
2013-01-01
Lunar Atmosphere and Dust Environment Explorer (LADEE) is a NASA mission that will orbit the Moon. Its main objective is to characterize the atmosphere and lunar dust environment. The spacecraft development is being led by NASA Ames Research Center and scheduled for launch in 2013. The LADEE spacecraft will be operated with a bi-propellant hypergolic propulsion system using MMH and NTO as the fuel and oxidizer, respectively. The propulsion system utilizes flight-proven hardware on major components. The propulsion layout is composed of one 100-lbf main thruster and four 5-lbf RCS thrusters. The propellants are stored in four tanks (two parallel-connected tanks per propellant component). The propellants will be pressurized by regulated helium. A simulated propulsion system has been built for conducting cold flow test series to characterize the transient fluid flow of the propulsion system feed lines and to verify the critical operation modes, such as system priming, waterhammer, and crucial mission duty cycles. Propellant drainage differential between propellant tanks will also be assessed. Since the oxidizer feed line system has a higher flow demand than the fuel system does, the cold flow test focuses on the oxidizer system. The objective of the cold flow test is to simulate the LADEE propulsion fluid flow operation through water cold flow test and to obtain data for anchoring analytical models. The models will be used to predict the transient and steady state flow behaviors in the actual flight operations. The test activities, including the simulated propulsion test article, cold flow test, and analytical modeling, are being performed at NASA Marshall Space Flight Center. At the time of the abstract submission, the test article checkout is being performed. The test series will be completed by November, 2012
NASA Technical Reports Server (NTRS)
Bienert, W. B.
1974-01-01
The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.
Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies
NASA Technical Reports Server (NTRS)
Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.
2008-01-01
Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.
Deconvolution of noisy transient signals: a Kalman filtering application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candy, J.V.; Zicker, J.E.
The deconvolution of transient signals from noisy measurements is a common problem occuring in various tests at Lawrence Livermore National Laboratory. The transient deconvolution problem places atypical constraints on algorithms presently available. The Schmidt-Kalman filter, a time-varying, tunable predictor, is designed using a piecewise constant model of the transient input signal. A simulation is developed to test the algorithm for various input signal bandwidths and different signal-to-noise ratios for the input and output sequences. The algorithm performance is reasonable.
A novel plant protection strategy for transient reactors
NASA Astrophysics Data System (ADS)
Bhattacharyya, Samit K.; Lipinski, Walter C.; Hanan, Nelson A.
A novel plant protection system designed for use in the TREAT Upgrade (TU) reactor is described. The TU reactor is designed for controlled transient operation in the testing of reactor fuel behavior under simulated reactor accident conditions. Safe operation of the reactor is of paramount importance and the Plant Protection System (PPS) had to be designed to exacting requirements. Researchers believe that the strategy developed for the TU has potential application to the multimegawatt space reactors and represents the state of the art in terrestrial transient reactor protection systems.
Photosensitizing Electron Transfer Processes of Fullerenes, Carbon Nanotubes, and Carbon Nanohorns.
Ito, Osamu
2017-03-01
In this account, studies on the photosensitizing electron transfer of nanocarbons, such as fullerenes, single-walled carbon nanotubes (SWCNTs), and carbon nanohorns (CNH), performed in our laboratory for about 15 years in the early 21st century have been briefly reviewed. These novel nanocarbons act as excellent electron acceptors, when they are linked to light-absorbing electron donors, such as porphyrins or phthalocyanines. For such molecule-nanocarbon hybrids, the direct confirmation of fast, transient, electron-transfer phenomena must be performed with time-resolved spectroscopic methods, such as transient absorption spectral measurements, in addition to fluorescence time-profile measurements in the wide-wavelength regions. Careful use of these methods affords useful information to understand photoinduced electron-transfer mechanisms. In addition, kinetic data obtained by these methods can assist in the construction of light-active devices, such as photovoltaic cells and solar H 2 -generation systems. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Slug sizing/slug volume prediction, state of the art review and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, N.E.; Kashou, S.F.
1995-12-01
Slug flow is a flow pattern commonly encountered in offshore multiphase flowlines. It is characterized by an alternate flow of liquid slugs and gas pockets, resulting in an unsteady hydrodynamic behavior. All important design variables, such as slug length and slug frequency, liquid holdup, and pressure drop, vary with time and this makes the prediction of slug flow characteristics both difficult and challenging. This paper reviews the state of the art methods in slug catcher sizing and slug volume predictions. In addition, history matching of measured slug flow data is performed using the OLGA transient simulator. This paper reviews themore » design factors that impact slug catcher sizing during steady state, during transient, during pigging, and during operations under a process control system. The slug tracking option of the OLGA simulator is applied to predict the slug length and the slug volume during a field operation. This paper will also comment on the performance of common empirical slug prediction correlations.« less
Slug-sizing/slug-volume prediction: State of the art review and simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, N.E.; Kashou, S.F.
1996-08-01
Slug flow is a flow pattern commonly encountered in offshore multiphase flowlines. It is characterized by an alternate flow of liquid slugs and gas pockets, resulting in an unsteady hydrodynamic behavior. All important design variables, such as slug length and slug frequency, liquid holdup, and pressure drop, vary with time and this makes the prediction of slug flow characteristics both difficult and challenging. This paper reviews the state of the art methods in slug-catcher sizing and slug-volume predictions. In addition, history matching of measured slug flow data is performed using the OLGA transient simulator. This paper reviews the design factorsmore » that impact slug-catcher sizing during steady state, during transient, during pigging, and during operations under a process-control system. The slug-tracking option of the simulator is applied to predict the slug length and the slug volume during a field operation. This paper will also comment on the performance of common empirical slug-prediction correlations.« less
Location identification of closed crack based on Duffing oscillator transient transition
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Bo, Lin; Liu, Yaolu; Zhao, Youxuan; Zhang, Jun; Deng, Mingxi; Hu, Ning
2018-02-01
The existence of a closed micro-crack in plates can be detected by using the nonlinear harmonic characteristics of the Lamb wave. However, its location identification is difficult. By considering the transient nonlinear Lamb under the noise interference, we proposed a location identification method for the closed crack based on the quantitative measurement of Duffing oscillator transient transfer in the phase space. The sliding short-time window was used to create a window truncation of to-be-detected signal. And then, the periodic extension processing for transient nonlinear Lamb wave was performed to ensure that the Duffing oscillator has adequate response time to reach a steady state. The transient autocorrelation method was used to reduce the occurrence of missed harmonic detection due to the random variable phase of nonlinear Lamb wave. Moreover, to overcome the deficiency in the quantitative analysis of Duffing system state by phase trajectory diagram and eliminate the misjudgment caused by harmonic frequency component contained in broadband noise, logic operation method of oscillator state transition function based on circular zone partition was adopted to establish the mapping relation between the oscillator transition state and the nonlinear harmonic time domain information. Final state transition discriminant function of Duffing oscillator was used as basis for identifying the reflected and transmitted harmonics from the crack. Chirplet time-frequency analysis was conducted to identify the mode of generated harmonics and determine the propagation speed. Through these steps, accurate position identification of the closed crack was achieved.
Intelligent Engine Systems: Adaptive Control
NASA Technical Reports Server (NTRS)
Gibson, Nathan
2008-01-01
We have studied the application of the baseline Model Predictive Control (MPC) algorithm to the control of main fuel flow rate (WF36), variable bleed valve (AE24) and variable stator vane (STP25) control of a simulated high-bypass turbofan engine. Using reference trajectories for thrust and turbine inlet temperature (T41) generated by a simulated new engine, we have examined MPC for tracking these two reference outputs while controlling a deteriorated engine. We have examined the results of MPC control for six different transients: two idle-to-takeoff transients at sea level static (SLS) conditions, one takeoff-to-idle transient at SLS, a Bode power command and reverse Bode power command at 20,000 ft/Mach 0.5, and a reverse Bode transient at 35,000 ft/Mach 0.84. For all cases, our primary focus was on the computational effort required by MPC for varying MPC update rates, control horizons, and prediction horizons. We have also considered the effects of these MPC parameters on the performance of the control, with special emphasis on the thrust tracking error, the peak T41, and the sizes of violations of the constraints on the problem, primarily the booster stall margin limit, which for most cases is the lone constraint that is violated with any frequency.
Machine Learning-based Transient Brokers for Real-time Classification of the LSST Alert Stream
NASA Astrophysics Data System (ADS)
Narayan, Gautham; Zaidi, Tayeb; Soraisam, Monika; ANTARES Collaboration
2018-01-01
The number of transient events discovered by wide-field time-domain surveys already far outstrips the combined followup resources of the astronomical community. This number will only increase as we progress towards the commissioning of the Large Synoptic Survey Telescope (LSST), breaking the community's current followup paradigm. Transient brokers - software to sift through, characterize, annotate and prioritize events for followup - will be a critical tool for managing alert streams in the LSST era. Developing the algorithms that underlie the brokers, and obtaining simulated LSST-like datasets prior to LSST commissioning, to train and test these algorithms are formidable, though not insurmountable challenges. The Arizona-NOAO Temporal Analysis and Response to Events System (ANTARES) is a joint project of the National Optical Astronomy Observatory and the Department of Computer Science at the University of Arizona. We have been developing completely automated methods to characterize and classify variable and transient events from their multiband optical photometry. We describe the hierarchical ensemble machine learning algorithm we are developing, and test its performance on sparse, unevenly sampled, heteroskedastic data from various existing observational campaigns, as well as our progress towards incorporating these into a real-time event broker working on live alert streams from time-domain surveys.
Beierholm, Anders R; Ottosson, Rickard O; Lindvold, Lars R; Behrens, Claus F; Andersen, Claus E
2011-05-21
A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse with millimetre spatial resolution. To demonstrate the applicability of the system in complex radiotherapy fields, output factors and per cent depth dose measurements were performed in solid water for a 6 MV photon beam and compared with Monte Carlo simulated doses for square fields down to 0.6 cm × 0.6 cm size. No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm field at 10 cm depth. The dose per pulse behaviour compared well with linac target current measurements and accumulated dose measurements, and the system was able to resolve transient dose delivery differences between two Varian linac builds. The system therefore shows promise for reference dosimetry and quality assurance of complex radiotherapy treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagci, Cemil, E-mail: cemil.yagci@medicine.ankara.edu.tr; Ustuner, Evren, E-mail: evrenustuner@hotmail.com; Atman, Ebru Dusunceli, E-mail: ebrumd2001@yahoo.com
Percutaneous nephrostomy (PCN) in a nondilated pelvicaliceal system is technically challenging. We describe an effective method to achieve transient dilatation of the pelvicaliceal system via induction of diuresis using infusion of a diuretic agent in normal saline, therefore allowing easier access to the pelvicaliceal system. Under real-time ultrasound guidance, the technique had been tested in 22 nephrostomies with nondilated system (a total of 20 patients with 2 patients having bilateral nephrostomies) during a 5-year period. Patients were given 40 mg of furosemide in 250 ml of normal saline solution intravenously by rapid infusion. As soon as maximum calyceal dilatation ofmore » more than 5 mm was observed, which is usually 15 min later after the end of rapid infusion, patients were positioned obliquely, and PCN procedure under ultrasound guidance was performed. The procedure was successful in 19 of the nephrostomies in 17 patients with a success rate of 86.36 % per procedure and 85 % per patient in nondilated pelvicaliceal systems. No major nephrostomy-, drug-, or technique-related complications were encountered. The technique failed to work in three patients due to the presence of double J catheters and preexisting calyceal perforation which avoided transient dilation of the pelvicaliceal system with diuresis. Diuretic infusion in saline is a feasible and effective method for PCN in nondilated pelvicaliceal systems.« less
A study of the transient performance of annular hydrostatic journal bearings in liquid oxygen
NASA Astrophysics Data System (ADS)
Scharrer, J. K.; Tellier, J. G.; Hibbs, R. I.
1992-07-01
A test apparatus was used to simulate a cryogenic turbopump start transient in order to determine the liftoff and touchdown speed and amount of wear of an annular hydrostatic bearing in liquid oxygen. The bearing was made of sterling silver and the journal made of Inconel 718. The target application of this configuration is the pump end bearing of the Space Shuttle Main Engine High Pressure Liquid Oxygen Turbopump. Sixty-one transient cycles were performed in liquid oxygen with an additional three tests in liquid nitrogen to certify the test facility and configuration. The bearing showed no appreciable wear during the testing, and the results indicate that the performance of the bearing was not significantly degraded during the testing.
Multiple Transient Memories in Experiments on Sheared Non-Brownian Suspensions
NASA Astrophysics Data System (ADS)
Paulsen, Joseph D.; Keim, Nathan C.; Nagel, Sidney R.
2014-08-01
A system with multiple transient memories can remember a set of inputs but subsequently forgets almost all of them, even as they are continually applied. If noise is added, the system can store all memories indefinitely. The phenomenon has recently been predicted for cyclically sheared non-Brownian suspensions. Here we present experiments on such suspensions, finding behavior consistent with multiple transient memories and showing how memories can be stabilized by noise.
Transient stability enhancement of electric power generating systems by 120-degree phase rotation
Cresap, Richard L.; Taylor, Carson W.; Kreipe, Michael J.
1982-01-01
A method and system for enhancing the transient stability of an intertied three-phase electric power generating system. A set of power exporting generators (10) is connected to a set of power importing generators (20). When a transient cannot be controlled by conventional stability controls, and imminent loss of synchronism is detected (such as when the equivalent rotor angle difference between the two generator sets exceeds a predetermined value, such as 150 degrees), the intertie is disconnected by circuit breakers. Then a switch (30) having a 120-degree phase rotation, or a circuit breaker having a 120-degree phase rotation is placed in the intertie. The intertie is then reconnected. This results in a 120-degree reduction in the equivalent rotor angle difference between the two generator sets, making the system more stable and allowing more time for the conventional controls to stabilize the transient.
A Study on Aircraft Engine Control Systems for Integrated Flight and Propulsion Control
NASA Astrophysics Data System (ADS)
Yamane, Hideaki; Matsunaga, Yasushi; Kusakawa, Takeshi
A flyable FADEC system engineering model incorporating Integrated Flight and Propulsion Control (IFPC) concept is developed for a highly maneuverable aircraft and a fighter-class engine. An overview of the FADEC system and functional assignments for its components such as the Engine Control Unit (ECU) and the Integrated Control Unit (ICU) are described. Overall system reliability analysis, convex analysis and multivariable controller design for the engine, fault detection/redundancy management, and response characteristics of a fuel system are addressed. The engine control performance of the FADEC is demonstrated by hardware-in-the-loop simulation for fast acceleration and thrust transient characteristics.
Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F
2014-03-01
We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.
Cold start dynamics and temperature sliding observer design of an automotive SOFC APU
NASA Astrophysics Data System (ADS)
Lin, Po-Hsu; Hong, Che-Wun
This paper presents a dynamic model for studying the cold start dynamics and observer design of an auxiliary power unit (APU) for automotive applications. The APU is embedded with a solid oxide fuel cell (SOFC) stack which is a quiet and pollutant-free electric generator; however, it suffers from slow start problem from ambient conditions. The SOFC APU system equips with an after-burner to accelerate the start-up transient in this research. The combustion chamber burns the residual fuel (and air) left from the SOFC to raise the exhaust temperature to preheat the SOFC stack through an energy recovery unit. Since thermal effect is the dominant factor that influences the SOFC transient and steady performance, a nonlinear real-time sliding observer for stack temperature was implemented into the system dynamics to monitor the temperature variation for future controller design. The simulation results show that a 100 W APU system in this research takes about 2 min (in theory) for start-up without considering the thermal limitation of the cell fracture.
Software For Three-Dimensional Stress And Thermal Analyses
NASA Technical Reports Server (NTRS)
Banerjee, P. K.; Wilson, R. B.; Hopkins, D. A.
1994-01-01
BEST3D is advanced engineering software system for three-dimensional thermal and stress analyses, particularly of components of hot sections of gas-turbine engines. Utilizes boundary element method, offering, in many situations, more accuracy, efficiency, and ease of use than finite element method. Performs engineering analyses of following types: elastic, heat transfer, plastic, forced vibration, free vibration, and transient elastodynamic. Written in FORTRAN 77.
Watanabe, Seiichi; Hoshino, Misaki; Koike, Takuto; Suda, Takanori; Ohnuki, Soumei; Takahashi, Heishichirou; Lam, Nighi Q
2003-01-01
We performed a dynamical-atomistic study of radiation-induced amorphization in the NiTi intermetallic compound using in situ high-resolution high-voltage electron microscopy and molecular dynamics simulations in connection with image simulation. Spatio-temporal fluctuations as non-equilibrium fluctuations in an energy-dissipative system, due to transient atom-cluster formation during amorphization, were revealed by the present spatial autocorrelation analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dowdy, M.W.; Couch, M.D.
A vehicle comparison methodology based on the Otto-Engine Equivalent (OEE) vehicle concept is described. As an illustration of this methodology, the concept is used to make projections of the fuel economy potential of passenger cars using various alternative power systems. Sensitivities of OEE vehicle results to assumptions made in the calculational procedure are discussed. Factors considered include engine torque boundary, rear axle ratio, performance criteria, engine transient response, and transmission shift logic.
NASA Technical Reports Server (NTRS)
Hadden, G. B.; Kleckner, R. J.; Ragen, M. A.; Dyba, G. J.; Sheynin, L.
1981-01-01
The material presented is structured to guide the user in the practical and correct implementation of PLANETSYS which is capable of simulating the thermomechanical performance of a multistage planetary power transmission. In this version of PLANETSYS, the user can select either SKF or NASA models in calculating lubricant film thickness and traction forces.
OGLE-IV Transient Search report 25 September 2017 part 2
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Gromadzki, M.; Hamanowicz, A.; Rybicki, K.; Klencki, J.; Kozlowski, S.; Udalski, A.; Poleski, R.; Szymanski, M. K.; Skowron, J.; Ulaczyk, K.; Pawlak, M.; Mroz, P.; Soszynski, I.; Pietrukowicz, P.; Sitek, M.; Ihanec, N.
2017-09-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces discovery of 49 new on-going and recently finished transients discovered since Jan 2017.
OGLE-IV Transient Search report 25 September 2017 part 1
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Gromadzki, M.; Hamanowicz, A.; Rybicki, K.; Klencki, J.; Kozlowski, S.; Udalski, A.; Poleski, R.; Szymanski, M. K.; Skowron, J.; Ulaczyk, K.; Pawlak, M.; Mroz, P.; Soszynski, I.; Pietrukowicz, P.; Sitek, M.; Ihanec, N.
2017-09-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces discovery of 50 new on-going and recently finished transients discovered since Jan 2017.
Spectroscopic Classifications of Optical Transients with Mayall/KOSMOS
NASA Astrophysics Data System (ADS)
Siebert, M. R.; Pan, Y.-C.; Kilpatrick, C. D.; Foley, R. J.
2017-07-01
We report the following classifications of optical transients from spectroscopic observations with KOSMOS on the KPNO Mayall 4-m telescope. Targets were supplied by the Asteroid Terrestrial-impact Last Alert System (ATLAS; ATel #8680), the Pan-STARRS Survey for Transients (PSST) and Gaia.
EXPERIMENTAL STUDIES OF TRANSIENT EFFECTS IN FAST REACTOR FUELS. SERIES I. UO$sub 2$ IRRADIATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, J.H.
1962-11-15
An experimental program to evaluate the performance of FCR and EFCR fuel during transient operation is outlined, and the initial series of tests are described in some detail. Test results from five experiments in the TREAT reactor, using 1-in. OD SS-clad UO/sub 2/ fuel specimens, are compared with regard to fuel temperatures, mechanical integrity, and post-irradiation appearance. Incipient fuel pin failure limits for transients are identified with maximum fuel temperatures in the range of 7000 deg F. Multiple transient damage to the cladding is likely for transients above the melting point of the fuel. (auth)
EBR-II high-ramp transients under computer control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrester, R.J.; Larson, H.A.; Christensen, L.J.
1983-01-01
During reactor run 122, EBR-II was subjected to 13 computer-controlled overpower transients at ramps of 4 MWt/s to qualify the facility and fuel for transient testing of LMFBR oxide fuels as part of the EBR-II operational-reliability-testing (ORT) program. A computer-controlled automatic control-rod drive system (ACRDS), designed by EBR-II personnel, permitted automatic control on demand power during the transients.
RELAP5 Model of the First Wall/Blanket Primary Heat Transfer System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popov, Emilian L; Yoder Jr, Graydon L; Kim, Seokho H
2010-06-01
ITER inductive power operation is modeled and simulated using a system level computer code to evaluate the behavior of the Primary Heat Transfer System (PHTS) and predict parameter operational ranges. The control algorithm strategy and derivation are summarized in this report as well. A major feature of ITER is pulsed operation. The plasma does not burn continuously, but the power is pulsed with large periods of zero power between pulses. This feature requires active temperature control to maintain a constant blanket inlet temperature and requires accommodation of coolant thermal expansion during the pulse. In view of the transient nature ofmore » the power (plasma) operation state a transient system thermal-hydraulics code was selected: RELAP5. The code has a well-documented history for nuclear reactor transient analyses, it has been benchmarked against numerous experiments, and a large user database of commonly accepted modeling practices exists. The process of heat deposition and transfer in the blanket modules is multi-dimensional and cannot be accurately captured by a one-dimensional code such as RELAP5. To resolve this, a separate CFD calculation of blanket thermal power evolution was performed using the 3-D SC/Tetra thermofluid code. A 1D-3D co-simulation more realistically models FW/blanket internal time-dependent thermal inertia while eliminating uncertainties in the time constant assumed in a 1-D system code. Blanket water outlet temperature and heat release histories for any given ITER pulse operation scenario are calculated. These results provide the basis for developing time dependent power forcing functions which are used as input in the RELAP5 calculations.« less
Busquets-Garcia, Arnau; Gomis-González, Maria; Salgado-Mendialdúa, Victòria; Galera-López, Lorena; Puighermanal, Emma; Martín-García, Elena; Maldonado, Rafael; Ozaita, Andrés
2018-04-01
Cannabis affects cognitive performance through the activation of the endocannabinoid system, and the molecular mechanisms involved in this process are poorly understood. Using the novel object-recognition memory test in mice, we found that the main psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), alters short-term object-recognition memory specifically involving protein kinase C (PKC)-dependent signaling. Indeed, the systemic or intra-hippocampal pre-treatment with the PKC inhibitors prevented the short-term, but not the long-term, memory impairment induced by THC. In contrast, systemic pre-treatment with mammalian target of rapamycin complex 1 inhibitors, known to block the amnesic-like effects of THC on long-term memory, did not modify such a short-term cognitive deficit. Immunoblot analysis revealed a transient increase in PKC signaling activity in the hippocampus after THC treatment. Thus, THC administration induced the phosphorylation of a specific Ser residue in the hydrophobic-motif at the C-terminal tail of several PKC isoforms. This significant immunoreactive band that paralleled cognitive performance did not match in size with the major PKC isoforms expressed in the hippocampus except for PKCθ. Moreover, THC transiently enhanced the phosphorylation of the postsynaptic calmodulin-binding protein neurogranin in a PKC dependent manner. These data demonstrate that THC alters short-term object-recognition memory through hippocampal PKC/neurogranin signaling.
Discharge transient coupling in large space power systems
NASA Technical Reports Server (NTRS)
Stevens, N. John; Stillwell, R. P.
1990-01-01
Experiments have shown that plasma environments can induce discharges in solar arrays. These plasmas simulate the environments found in low earth orbits where current plans call for operation of very large power systems. The discharges could be large enough to couple into the power system and possibly disrupt operations. Here, the general concepts of the discharge mechanism and the techniques of coupling are discussed. Data from both ground and flight experiments are reviewed to obtain an expected basis for the interactions. These concepts were applied to the Space Station solar array and distribution system as an example of the large space power system. The effect of discharges was found to be a function of the discharge site. For most sites in the array discharges would not seriously impact performance. One location at the negative end of the array was identified as a position where discharges could couple to charge stored in system capacitors. This latter case could impact performance.
Chang, Yeong-Chan
2005-12-01
This paper addresses the problem of designing adaptive fuzzy-based (or neural network-based) robust controls for a large class of uncertain nonlinear time-varying systems. This class of systems can be perturbed by plant uncertainties, unmodeled perturbations, and external disturbances. Nonlinear H(infinity) control technique incorporated with adaptive control technique and VSC technique is employed to construct the intelligent robust stabilization controller such that an H(infinity) control is achieved. The problem of the robust tracking control design for uncertain robotic systems is employed to demonstrate the effectiveness of the developed robust stabilization control scheme. Therefore, an intelligent robust tracking controller for uncertain robotic systems in the presence of high-degree uncertainties can easily be implemented. Its solution requires only to solve a linear algebraic matrix inequality and a satisfactorily transient and asymptotical tracking performance is guaranteed. A simulation example is made to confirm the performance of the developed control algorithms.
Testing in Support of Fission Surface Power System Qualification
NASA Technical Reports Server (NTRS)
Houts, Mike; Bragg-Sitton, Shannon; Godfroy, Tom; Martin, Jim; Pearson, Boise; VanDyke, Melissa
2007-01-01
The strategy for qualifying a FSP system could have a significant programmatic impact. The US has not qualified a space fission power system since launch of the SNAP-10A in 1965. This paper explores cost-effective options for obtaining data that would be needed for flight qualification of a fission system. Qualification data could be obtained from both nuclear and non-nuclear testing. The ability to perform highly realistic nonnuclear testing has advanced significantly throughout the past four decades. Instrumented thermal simulators were developed during the 1970s and 1980s to assist in the development, operation, and assessment of terrestrial fission systems. Instrumented thermal simulators optimized for assisting in the development, operation, and assessment of modern FSP systems have been under development (and utilized) since 1998. These thermal simulators enable heat from fission to be closely mimicked (axial power profile, radial power profile, temperature, heat flux, etc.) and extensive data to be taken from the core region. For transient testing, pin power during a transient is calculated based on the reactivity feedback that would occur given measured values of test article temperature and/or dimensional changes. The reactivity feedback coefficients needed for the test are either calculated or measured using cold/warm zero-power criticals. In this way non-nuclear testing can be used to provide very realistic information related to nuclear operation. Non-nuclear testing can be used at all levels, including component, subsystem, and integrated system testing. FSP fuels and materials are typically chosen to ensure very high confidence in operation at design burnups, fluences, and temperatures. However, facilities exist (e.g. ATR, HFIR) for affordably performing in-pile fuel and materials irradiations, if such testing is desired. Ex-core materials and components (such as alternator materials, control drum drives, etc.) could be irradiated in university or DOE reactors to ensure adequate radiation resistance. Facilities also exist for performing warm and cold zero-power criticals.
A Semi-Empirical Noise Modeling Method for Helicopter Maneuvering Flight Operations
NASA Technical Reports Server (NTRS)
Greenwood, Eric; Schmitz, Fredric; Sickenberger, Richard D.
2012-01-01
A new model for Blade-Vortex Interaction noise generation during maneuvering flight is developed in this paper. Acoustic and performance data from both flight and wind tunnels are used to derive a non-dimensional and analytical performance/acoustic model that describes BVI noise in steady flight. The model is extended to transient maneuvering flight (pure pitch and roll transients) by using quasisteady assumptions throughout the prescribed maneuvers. Ground noise measurements, taken during maneuvering flight of a Bell 206B helicopter, show that many of the noise radiation details are captured. The result is a computationally efficient Blade-Vortex Interaction noise model with sufficient accuracy to account for transient maneuvering flight. The code can be run in real time to predict transient maneuver noise and is suitable for use in an acoustic mission-planning tool.
Kumar, Sandeep; Kumar, Sugam; Katharria, Y S; Safvan, C P; Kanjilal, D
2008-05-01
A computerized system for in situ deep level characterization during irradiation in semiconductors has been set up and tested in the beam line for materials science studies of the 15 MV Pelletron accelerator at the Inter-University Accelerator Centre, New Delhi. This is a new facility for in situ irradiation-induced deep level studies, available in the beam line of an accelerator laboratory. It is based on the well-known deep level transient spectroscopy (DLTS) technique. High versatility for data manipulation is achieved through multifunction data acquisition card and LABVIEW. In situ DLTS studies of deep levels produced by impact of 100 MeV Si ions on Aun-Si(100) Schottky barrier diode are presented to illustrate performance of the automated DLTS facility in the beam line.
Optimization methodology for the global 10 Hz orbit feedback in RHIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Chuyu; Hulsart, R.; Mernick, K.
To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less
Automated Heat-Flux-Calibration Facility
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Weikle, Donald H.
1989-01-01
Computer control speeds operation of equipment and processing of measurements. New heat-flux-calibration facility developed at Lewis Research Center. Used for fast-transient heat-transfer testing, durability testing, and calibration of heat-flux gauges. Calibrations performed at constant or transient heat fluxes ranging from 1 to 6 MW/m2 and at temperatures ranging from 80 K to melting temperatures of most materials. Facility developed because there is need to build and calibrate very-small heat-flux gauges for Space Shuttle main engine (SSME).Includes lamp head attached to side of service module, an argon-gas-recirculation module, reflector, heat exchanger, and high-speed positioning system. This type of automated heat-flux calibration facility installed in industrial plants for onsite calibration of heat-flux gauges measuring fluxes of heat in advanced gas-turbine and rocket engines.
Optimization methodology for the global 10 Hz orbit feedback in RHIC
Liu, Chuyu; Hulsart, R.; Mernick, K.; ...
2018-05-08
To combat beam oscillations induced by triplet vibrations at the Relativistic Heavy Ion Collider (RHIC), a global orbit feedback system was developed and applied at injection and top energy in 2011, and during beam acceleration in 2012. Singular Value Decomposition (SVD) was employed to determine the strengths and currents of the applied corrections. The feedback algorithm was optimized for different magnetic configurations (lattices) at fixed beam energies and during beam acceleration. While the orbit feedback performed well since its inception, corrector current transients and feedback-induced beam oscillations were observed during the polarized proton program in 2015. In this paper, wemore » present the feedback algorithm, the optimization of the algorithm for various lattices and the solution adopted to mitigate the observed current transients during beam acceleration.« less
Computer program for a four-cylinder-Stirling-engine controls simulation
NASA Technical Reports Server (NTRS)
Daniels, C. J.; Lorenzo, C. F.
1982-01-01
A four cylinder Stirling engine, transient engine simulation computer program is presented. The program is intended for controls analysis. The associated engine model was simplified to shorten computer calculation time. The model includes engine mechanical drive dynamics and vehicle load effects. The computer program also includes subroutines that allow: (1) acceleration of the engine by addition of hydrogen to the system, and (2) braking of the engine by short circuiting of the working spaces. Subroutines to calculate degraded engine performance (e.g., due to piston ring and piston rod leakage) are provided. Input data required to run the program are described and flow charts are provided. The program is modular to allow easy modification of individual routines. Examples of steady state and transient results are presented.
OGLE-IV Transient Search report 26 August 2016
NASA Astrophysics Data System (ADS)
Wyrzykowski, L.; Sitek, M.; Kostrzewa-Rutkowska, Z.; Udalski, A.; Kozlowski, S.; Klencki, J.
2016-08-01
The OGLE-IV Transient Detection System (Wyrzykowski et al. 2014, AcA,64,197; Kozlowski et al. 2013; Klencki et al. 2016, AcA, 66,15) announces resumption of operation in the beginning of 2016B season and discovery of 45 new on-going transients.
NASA Astrophysics Data System (ADS)
Ni, Kai; Sternberg, Andrew L.; Zhang, En Xia; Kozub, John A.; Jiang, Rong; Schrimpf, Ronald D.; Reed, Robert A.; Fleetwood, Daniel M.; Alles, Michael L.; McMorrow, Dale; Lin, Jianqiang; Vardi, Alon; del Alamo, Jesús
2017-08-01
A tunable wavelength laser system and high-resolution transient capture system are introduced to characterize transients in high-mobility MOSFETs. The experimental configuration enables resolution of fast transient signals and new understanding of charge collection mechanisms. The channel layer is critical in the charge collection process for the InGaAs FinFETs examined here. The transient current mainly comes from the channel current, due to shunt effects and parasitic bipolar effects, instead of the junction collection. The charge amplification factor is found to be as high as 14, which makes this technology relatively sensitive to transient radiation. The peak current is inversely proportional to the device gate length. Simulations show that the parasitic bipolar effect is due to source-to-channel barrier lowering caused by hole accumulation in the source and channel. Charge deposited in the channel causes prompt current, while charge deposited below the channel causes delayed and slow current.
Transient quantum fluctuation theorems and generalized measurements
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter
2014-01-01
The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol. We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.
Transient quantum fluctuation theorems and generalized measurements
NASA Astrophysics Data System (ADS)
Prasanna Venkatesh, B.; Watanabe, Gentaro; Talkner, Peter
2014-05-01
The transient quantum fluctuation theorems of Crooks and Jarzynski restrict and relate the statistics of work performed in forward and backward forcing protocols. So far, these theorems have been obtained under the assumption that the work is determined by two projective energy measurements, one at the end, and the other one at the beginning of each run of the protocol.We found that one can replace these two projective measurements only by special error-free generalized energy measurements with pairs of tailored, protocol-dependent post-measurement states that satisfy detailed balance-like relations. For other generalized measurements, the Crooks relation is typically not satisfied. For the validity of the Jarzynski equality, it is sufficient that the first energy measurements are error-free and the post-measurement states form a complete orthonormal set of elements in the Hilbert space of the considered system. Additionally, the effects of the second energy measurements must have unit trace. We illustrate our results by an example of a two-level system for different generalized measurements.
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Gunter, E. J.
1972-01-01
A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied; plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer, and the performance curves were automatically plotted by a CalComp plotter unit. Curves are presented on the optimization of the support housing characteristics to attenuate the rotor unbalance response over the entire rotor speed range. The complete transient motion including rotor unbalance was examined by integrating the equations of motion numerically using a modified fourth order Runge-Kutta procedure, and the resulting whirl orbits were plotted by the CalComp plotter unit. The results of the transient analysis are discussed with regards to the design optimization procedure derived from the steady-state analysis.
Complex Wall Boundary Conditions for Modeling Combustion in Catalytic Channels
NASA Astrophysics Data System (ADS)
Zhu, Huayang; Jackson, Gregory
2000-11-01
Monolith catalytic reactors for exothermic oxidation are being used in automobile exhaust clean-up and ultra-low emissions combustion systems. The reactors present a unique coupling between mass, heat, and momentum transport in a channel flow configuration. The use of porous catalytic coatings along the channel wall presents a complex boundary condition when modeled with the two-dimensional channel flow. This current work presents a 2-D transient model for predicting the performance of catalytic combustion systems for methane oxidation on Pd catalysts. The model solves the 2-D compressible transport equations for momentum, species, and energy, which are solved with a porous washcoat model for the wall boundary conditions. A time-splitting algorithm is used to separate the stiff chemical reactions from the convective/diffusive equations for the channel flow. A detailed surface chemistry mechanism is incorporated for the catalytic wall model and is used to predict transient ignition and steady-state conversion of CH4-air flows in the catalytic reactor.
HYDES: A generalized hybrid computer program for studying turbojet or turbofan engine dynamics
NASA Technical Reports Server (NTRS)
Szuch, J. R.
1974-01-01
This report describes HYDES, a hybrid computer program capable of simulating one-spool turbojet, two-spool turbojet, or two-spool turbofan engine dynamics. HYDES is also capable of simulating two- or three-stream turbofans with or without mixing of the exhaust streams. The program is intended to reduce the time required for implementing dynamic engine simulations. HYDES was developed for running on the Lewis Research Center's Electronic Associates (EAI) 690 Hybrid Computing System and satisfies the 16384-word core-size and hybrid-interface limits of that machine. The program could be modified for running on other computing systems. The use of HYDES to simulate a single-spool turbojet and a two-spool, two-stream turbofan engine is demonstrated. The form of the required input data is shown and samples of output listings (teletype) and transient plots (x-y plotter) are provided. HYDES is shown to be capable of performing both steady-state design and off-design analyses and transient analyses.
Network Connectivity for Permanent, Transient, Independent, and Correlated Faults
NASA Technical Reports Server (NTRS)
White, Allan L.; Sicher, Courtney; henry, Courtney
2012-01-01
This paper develops a method for the quantitative analysis of network connectivity in the presence of both permanent and transient faults. Even though transient noise is considered a common occurrence in networks, a survey of the literature reveals an emphasis on permanent faults. Transient faults introduce a time element into the analysis of network reliability. With permanent faults it is sufficient to consider the faults that have accumulated by the end of the operating period. With transient faults the arrival and recovery time must be included. The number and location of faults in the system is a dynamic variable. Transient faults also introduce system recovery into the analysis. The goal is the quantitative assessment of network connectivity in the presence of both permanent and transient faults. The approach is to construct a global model that includes all classes of faults: permanent, transient, independent, and correlated. A theorem is derived about this model that give distributions for (1) the number of fault occurrences, (2) the type of fault occurrence, (3) the time of the fault occurrences, and (4) the location of the fault occurrence. These results are applied to compare and contrast the connectivity of different network architectures in the presence of permanent, transient, independent, and correlated faults. The examples below use a Monte Carlo simulation, but the theorem mentioned above could be used to guide fault-injections in a laboratory.
Cache-based error recovery for shared memory multiprocessor systems
NASA Technical Reports Server (NTRS)
Wu, Kun-Lung; Fuchs, W. Kent; Patel, Janak H.
1989-01-01
A multiprocessor cache-based checkpointing and recovery scheme for of recovering from transient processor errors in a shared-memory multiprocessor with private caches is presented. New implementation techniques that use checkpoint identifiers and recovery stacks to reduce performance degradation in processor utilization during normal execution are examined. This cache-based checkpointing technique prevents rollback propagation, provides for rapid recovery, and can be integrated into standard cache coherence protocols. An analytical model is used to estimate the relative performance of the scheme during normal execution. Extensions that take error latency into account are presented.
NASA Technical Reports Server (NTRS)
Nehl, T. W.; Demerdash, N. A.
1983-01-01
Mathematical models capable of simulating the transient, steady state, and faulted performance characteristics of various brushless dc machine-PSA (power switching assembly) configurations were developed. These systems are intended for possible future use as primemovers in EMAs (electromechanical actuators) for flight control applications. These machine-PSA configurations include wye, delta, and open-delta connected systems. The research performed under this contract was initially broken down into the following six tasks: development of mathematical models for various machine-PSA configurations; experimental validation of the model for failure modes; experimental validation of the mathematical model for shorted turn-failure modes; tradeoff study; and documentation of results and methodology.
Dispersion of a Nanoliter Bolus in Microfluidic Co-Flow.
Conway, A J; Saadi, W M; Sinatra, F L; Kowalski, G; Larson, D; Fiering, J
2014-03-01
Microfluidic systems enable reactions and assays on the scale of nanoliters. However, at this scale nonuniformities in sample delivery become significant. To determine the fundamental minimum sample volume required for a particular device, a detailed understanding of mass transport is required. Co-flowing laminar streams are widely used in many devices, but typically only in the steady-state. Because establishing the co-flow steady-state consumes excess sample volume and time, there is a benefit to operating devices in the transient state, which predominates as the volume of the co-flow reactor decreases. Analysis of the co-flow transient has been neglected thus far. In this work we describe the fabrication of a pneumatically controlled microfluidic injector constructed to inject a discrete 50nL bolus into one side of a two-stream co-flow reactor. Using dye for image analysis, injections were performed at a range of flow rates from 0.5-10μL/min, and for comparison we collected the co-flow steady-state data for this range. The results of the image analysis were also compared against theory and simulations for device validation. For evaluation, we established a metric that indicates how well the mass distribution in the bolus injection approximates steady-state co-flow. Using such analysis, transient-state injections can approximate steady-state conditions within predefined errors, allowing straight forward measurements to be performed with reduced reagent consumption.
Study and development of a cryogenic heat exchanger for life support systems
NASA Technical Reports Server (NTRS)
Soliman, M. M.
1973-01-01
A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.
Dietrich, Markus; Hagen, Gunter; Reitmeier, Willibald; Burger, Katharina; Hien, Markus; Grass, Philippe; Kubinski, David; Visser, Jaco; Moos, Ralf
2017-11-28
Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NO x emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH₃) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH₃ loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH₃ storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH₃ storage levels, and NH₃ target curves. It could be clearly demonstrated that the right NH₃ target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NO x conversion efficiency and without NH₃ slip.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Astrophysics Data System (ADS)
Stenger, F. J.
1982-12-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
SPRAT: Spectrograph for the Rapid Acquisition of Transients
NASA Astrophysics Data System (ADS)
Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.
2014-07-01
We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.
Tests of an alternating current propulsion subsystem for electric vehicles on a road load simulator
NASA Technical Reports Server (NTRS)
Stenger, F. J.
1982-01-01
The test results of a breadboard version of an ac electric-vehicle propulsion subsystem are presented. The breadboard was installed in the NASA Lewis Research Center Road Load Simulator facility and tested under steady-state and transient conditions. Steady-state tests were run to characterize the system and component efficiencies over the complete speed-torque range within the capability of the propulsion subsystem in the motoring mode of operation. Transient tests were performed to determine the energy consumption of the breadboard over the acceleration and cruise portions of SAE J227 and driving schedules B, C, and D. Tests in the regenerative mode were limited to the low-gear-speed range of the two speed transaxle used in the subsystem. The maximum steady-state subsystem efficiency observed for the breadboard was 81.5 percent in the high-gear-speed range in the motoring mode, and 76 percent in the regenerative braking mode (low gear). The subsystem energy efficiency during the transient tests ranged from 49.2 percent for schedule B to 68.4 percent for Schedule D.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luther, Erik; Rooyen, Isabella van; Leckie, Rafael
2015-03-01
In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabricationmore » must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.« less
Numerical analysis of steady and transient natural convection in an enclosed cavity
NASA Astrophysics Data System (ADS)
Mehedi, Tanveer Hassan; Tahzeeb, Rahat Bin; Islam, A. K. M. Sadrul
2017-06-01
The paper presents the numerical simulation of natural convection heat transfer of air inside an enclosed cavity which can be helpful to find out the critical width of insulation in air insulated walls seen in residential buildings and industrial furnaces. Natural convection between two walls having different temperatures have been simulated using ANSYS FLUENT 12.0 in both steady and transient conditions. To simulate different heat transfer and fluid flow conditions, Rayleigh number ranging from 103 to 105 has been maintained (i.e. Laminar flow.) In case of steady state analysis, the CFD predictions were in very good agreement with the reviewed literature. Transient simulation process has been performed by using User Defined Functions, where the temperature of the hot wall varies with time linearly. To obtain and compare the heat transfer properties, Nusselt number has been calculated at the hot wall at different conditions. The buoyancy driven flow characteristics have been investigated by observing the flow pattern in a graphical manner. The characteristics of the system at different temperature differences between the wall has been observed and documented.
On the performance of explicit and implicit algorithms for transient thermal analysis
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.
1980-09-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit and implicit algorithms are discussed. A promising set of implicit algorithms, known as the GEAR package is described. Four test problems, used for evaluating and comparing various algorithms, have been selected and finite element models of the configurations are discribed. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system and a model of the space shuttle orbiter wing. Calculations were carried out using the SPAR finite element program, the MITAS lumped parameter program and a special purpose finite element program incorporating the GEAR algorithms. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff. Careful attention to modeling detail such as avoiding thin or short high-conducting elements can sometimes reduce the stiffness to the extent that explicit methods become advantageous.
Equifinality and its violations in a redundant system: multifinger accurate force production
Wilhelm, Luke; Zatsiorsky, Vladimir M.
2013-01-01
We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The “inverse piano” device was used to lift and lower one of the fingers smoothly. The subjects were instructed “not to intervene voluntarily” with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis. PMID:23904497
NASA Astrophysics Data System (ADS)
Ito, Katsuji; Hirose, Yasuo
Overvoltage induced by surge currents due to thunderstorm lightnings causes harmful breakdown troubles of CATV communication equipment installed in and with power distribution systems. In this paper, the origin and natures of surge currents, their invading route into the system, and the system components such as earth impedances affecting over voltages are studied. Transient analyses are then performed using an equivalent circuit to evaluate over voltages. Application of the obtained results to the field fault data of communication equipment and possible protection method of them are discussed.
High flexible Hydropower Generation concepts for future grids
NASA Astrophysics Data System (ADS)
Hell, Johann
2017-04-01
The ongoing changes in electric power generation are resulting in new requirements for the classical generating units. In consequence a paradigm change in operation of power systems is necessary and a new approach in finding solutions is needed. The presented paper is dealing with the new requirements on current and future energy systems with the focus on hydro power generation. A power generation landscape for some European regions is shown and generation and operational flexibility is explained. Based on the requirements from the Transmission System Operator in UK, the transient performance of a Pumped Storage installation is discussed.
Neural network based system for equipment surveillance
Vilim, Richard B.; Gross, Kenneth C.; Wegerich, Stephan W.
1998-01-01
A method and system for performing surveillance of transient signals of an industrial device to ascertain the operating state. The method and system involves the steps of reading into a memory training data, determining neural network weighting values until achieving target outputs close to the neural network output. If the target outputs are inadequate, wavelet parameters are determined to yield neural network outputs close to the desired set of target outputs and then providing signals characteristic of an industrial process and comparing the neural network output to the industrial process signals to evaluate the operating state of the industrial process.