Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems
Meisner, Gregory P
2013-10-08
Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Astrophysics Data System (ADS)
Wojnar, F.; Lunberg, W. L.
1980-03-01
A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Technical Reports Server (NTRS)
Wojnar, F.; Lunberg, W. L.
1980-01-01
A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.
Waste heat driven absorption refrigeration process and system
Wilkinson, William H.
1982-01-01
Absorption cycle refrigeration processes and systems are provided which are driven by the sensible waste heat available from industrial processes and other sources. Systems are disclosed which provide a chilled water output which can be used for comfort conditioning or the like which utilize heat from sensible waste heat sources at temperatures of less than 170.degree. F. Countercurrent flow equipment is also provided to increase the efficiency of the systems and increase the utilization of available heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss.more » The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.« less
NASA Astrophysics Data System (ADS)
Yusha, V. L.; Chernov, G. I.; Kalashnikov, A. M.
2017-08-01
The paper examines the mobile compressor unit (MCU) heat losses recovery system waste heat exchanger prototype external thermal insulation types influence on the operational efficiency. The study is conducted by means of the numerical method through the modellingof the heat exchange processes carried out in the waste heat exchanger in ANSUS. Thermaflex, mineral wool, penofol, water and air were applied as the heat exchanger external insulation. The study results showed the waste heat exchanger external thermal insulationexistence or absence to have a significant impact on the heat exchanger operational efficiency.
Performance evaluation of thermophotovoltaic GaSb cell technology in high temperature waste heat
NASA Astrophysics Data System (ADS)
Utlu, Z.; Önal, B. S.
2018-02-01
In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at high temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The high temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.
Heat pipe radiator. [for spacecraft waste heat rejection
NASA Technical Reports Server (NTRS)
Swerdling, B.; Alario, J.
1973-01-01
A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system.
Thermal energy storage for industrial waste heat recovery
NASA Technical Reports Server (NTRS)
Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.
1978-01-01
Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.
Examination of thermophotovoltaic GaSb cell technology in low and medium temperatures waste heat
NASA Astrophysics Data System (ADS)
Utlu, Z.; Önal, B. S.
2018-02-01
In this study, waste heat was evaluated and examined by means of thermophotovoltaic systems with the application of energy production potential GaSb cells. The aim of our study is to examine GaSb cell technology at low and medium temperature waste heat. The evaluation of the waste heat to be used in the system is designed to be used in the electricity, industry and iron and steel industry. Our work is research. Graphic analysis is done with Matlab program. The low and medium temperature waste heat graphs applied on the GaSb cell are in the results section. Our study aims to provide a source for future studies.
Energy recovery system using an organic rankine cycle
Ernst, Timothy C
2013-10-01
A thermodynamic system for waste heat recovery, using an organic rankine cycle is provided which employs a single organic heat transferring fluid to recover heat energy from two waste heat streams having differing waste heat temperatures. Separate high and low temperature boilers provide high and low pressure vapor streams that are routed into an integrated turbine assembly having dual turbines mounted on a common shaft. Each turbine is appropriately sized for the pressure ratio of each stream.
A Study of Waste-Heat-Boiler Size and Performance of a Conceptual Marine COGAS System.
1980-02-01
The addition of a waste-heat boiler which extracts heat from the gas turbine exhaust gas to operate a bottoming Rankine cycle is one way to improve the...do not change significantly. Higher saturation pressure actually results in a somewhat lower boiler heat transfer, but the Rankine - cycle performance...of heat transferred in the waste-heat boiler and (2) the conversion efficiency of the Rankine cycle . In sizing the waste-heat boiler, attention was
36. VIEW EAST OF WASTE HEAT RECOVERY SYSTEM IN BUILDING ...
36. VIEW EAST OF WASTE HEAT RECOVERY SYSTEM IN BUILDING 43A; THIS WAS PART OF A SYSTEM WHICH PROVIDED HOT WATER FOR OFFICE AND FACTORY BUILDING HEATING IN THE WEST PLANT; NOTE FACTORY WHISTLE TIMER ON TOP OF HEAT EXCHANGER - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT
Potential ability of zeolite to generate high-temperature vapor using waste heat
NASA Astrophysics Data System (ADS)
Fukai, Jun; Wijayanta, Agung Tri
2018-02-01
In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.
Rankine cycle system and method
Ernst, Timothy C.; Nelson, Christopher R.
2014-09-09
A Rankine cycle waste heat recovery system uses a receiver with a maximum liquid working fluid level lower than the minimum liquid working fluid level of a sub-cooler of the waste heat recovery system. The receiver may have a position that is physically lower than the sub-cooler's position. A valve controls transfer of fluid between several of the components in the waste heat recovery system, especially from the receiver to the sub-cooler. The system may also have an associated control module.
Evaluation of Waste Heat Recovery and Utilization from Residential Appliances and Fixtures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomlinson, John J; Christian, Jeff; Gehl, Anthony C
Executive Summary In every home irrespective of its size, location, age, or efficiency, heat in the form of drainwater or dryer exhaust is wasted. Although from a waste stream, this energy has the potential for being captured, possibly stored, and then reused for preheating hot water or air thereby saving operating costs to the homeowner. In applications such as a shower and possibly a dryer, waste heat is produced at the same time as energy is used, so that a heat exchanger to capture the waste energy and return it to the supply is all that is needed. In othermore » applications such as capturing the energy in drainwater from a tub, dishwasher, or washing machine, the availability of waste heat might not coincide with an immediate use for energy, and consequently a heat exchanger system with heat storage capacity (i.e. a regenerator) would be necessary. This study describes a two-house experimental evaluation of a system designed to capture waste heat from the shower, dishwasher clothes washer and dryer, and to use this waste heat to offset some of the hot water energy needs of the house. Although each house was unoccupied, they were fitted with equipment that would completely simulate the heat loads and behavior of human occupants including operating the appliances and fixtures on a demand schedule identical to Building American protocol (Hendron, 2009). The heat recovery system combined (1) a gravity-film heat exchanger (GFX) installed in a vertical section of drainline, (2) a heat exchanger for capturing dryer exhaust heat, (3) a preheat tank for storing the captured heat, and (4) a small recirculation pump and controls, so that the system could be operated anytime that waste heat from the shower, dishwasher, clothes washer and dryer, and in any combination was produced. The study found capturing energy from the dishwasher and clothes washer to be a challenge since those two appliances dump waste water over a short time interval. Controls based on the status of the dump valve on these two appliances would have eliminated uncertainty in knowing when waste water was flowing and the recovery system operated. The study also suggested that capture of dryer exhaust heat to heat incoming air to the dryer should be examined as an alternative to using drying exhaust energy for water heating. The study found that over a 6-week test period, the system in each house was able to recover on average approximately 3000 W-h of waste heat daily from these appliance and showers with slightly less on simulated weekdays and slightly more on simulated weekends which were heavy wash/dry days. Most of these energy savings were due to the shower/GFX operation, and the least savings were for the dishwasher/GFX operation. Overall, the value of the 3000 W-h of displaced energy would have been $0.27/day based on an electricity price of $.09/kWh. Although small for today s convention house, these savings are significant for a home designed to approach maximum affordable efficiency where daily operating costs for the whole house are less than a dollar per day. In 2010 the actual measured cost of energy in one of the simulated occupancy houses which waste heat recovery testing was undertaken was $0.77/day.« less
NASA Astrophysics Data System (ADS)
Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi
2015-01-01
Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to choose the heat source first and then design the most appropriate structure for the source by applying analytical methods. This report describes how to design a prototype of a thermoelectric power generator using the analytical approach and the results of performance evaluation tests carried out in the field.
NASA Astrophysics Data System (ADS)
Tong, Kangkang; Fang, Andrew; Yu, Huajun; Li, Yang; Shi, Lei; Wang, Yangjun; Wang, Shuxiao; Ramaswami, Anu
2017-12-01
Utilizing low-grade waste heat from industries to heat and cool homes and businesses through fourth generation district energy systems (DES) is a novel strategy to reduce energy use. This paper develops a generalizable methodology to estimate the energy saving potential for heating/cooling in 20 cities in two Chinese provinces, representing cold winter and hot summer regions respectively. We also conduct a life-cycle analysis of the new infrastructure required for energy exchange in DES. Results show that heating and cooling energy use reduction from this waste heat exchange strategy varies widely based on the mix of industrial, residential and commercial activities, and climate conditions in cities. Low-grade heat is found to be the dominant component of waste heat released by industries, which can be reused for both district heating and cooling in fourth generation DES, yielding energy use reductions from 12%-91% (average of 58%) for heating and 24%-100% (average of 73%) for cooling energy use in the different cities based on annual exchange potential. Incorporating seasonality and multiple energy exchange pathways resulted in energy savings reductions from 0%-87%. The life-cycle impact of added infrastructure was small (<3% for heating) and 1.9% ~ 6.5% (cooling) of the carbon emissions from fuel use in current heating or cooling systems, indicating net carbon savings. This generalizable approach to delineate waste heat potential can help determine suitable cities for the widespread application of industrial waste heat re-utilization.
Study on heat pipe assisted thermoelectric power generation system from exhaust gas
NASA Astrophysics Data System (ADS)
Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock
2017-11-01
Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.
Possibilities of heat energy recovery from greywater systems
NASA Astrophysics Data System (ADS)
Niewitecka, Kaja
2018-02-01
Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.
Affordable Rankine Cycle Waste Heat Recovery for Heavy Duty Trucks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Swami Nathan
Nearly 30% of fuel energy is not utilized and wasted in the engine exhaust. Organic Rankine Cycle (ORC) based waste heat recovery (WHR) systems offer a promising approach on waste energy recovery and improving the efficiency of Heavy-Duty diesel engines. Major barriers in the ORC WHR system are the system cost and controversial waste heat recovery working fluids. More than 40% of the system cost is from the additional heat exchangers (recuperator, condenser and tail pipe boiler). The secondary working fluid loop designed in ORC system is either flammable or environmentally sensitive. The Eaton team investigated a novel approach tomore » reduce the cost of implementing ORC based WHR systems to Heavy-Duty (HD) Diesel engines while utilizing safest working fluids. Affordable Rankine Cycle (ARC) concept aimed to define the next generation of waste energy recuperation with a cost optimized WHR system. ARC project used engine coolant as the working fluid. This approach reduced the need for a secondary working fluid circuit and subsequent complexity. A portion of the liquid phase engine coolant has been pressurized through a set of working fluid pumps and used to recover waste heat from the exhaust gas recirculation (EGR) and exhaust tail pipe exhaust energy. While absorbing heat, the mixture is partially vaporized but remains a wet binary mixture. The pressurized mixed-phase engine coolant mixture is then expanded through a fixed-volume ratio expander that is compatible with two-phase conditions. Heat rejection is accomplished through the engine radiator, avoiding the need for a separate condenser. The ARC system has been investigated for PACCAR’s MX-13 HD diesel engine.« less
Waste Heat-to-Power Using Scroll Expander for Organic Rankine Bottoming Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, John; Smutzer, Chad; Sinha, Jayanti
The objective of this program was to develop a novel, scalable scroll expander for conversion of waste heat to power; this was accomplished and demonstrated in both a bench-scale system as well as a full-scale system. The expander is a key component in Organic Rankine Cycle (ORC) waste heat recovery systems which are used to convert medium-grade waste heat to electric power in a wide range of industries. These types of waste heat recovery systems allow for the capture of energy that would otherwise just be exhausted to the atmosphere. A scroll expander has the benefit over other technologies ofmore » having high efficiency over a broad range of operating conditions. The speed range of the TIAX expander (1,200 to 3,600 RPM) enables the shaft power output to directly drive an electric generator and produce 60 Hz electric power without incurring the equipment costs or losses of electronic power conversion. This greatly simplifies integration with the plant electric infrastructure. The TIAX scroll expander will reduce the size, cost, and complexity of a small-scale waste heat recovery system, while increasing the system efficiency compared to the prevailing ORC technologies at similar scale. During this project, TIAX demonstrated the scroll expander in a bench-scale test setup to have isentropic efficiency of 70-75% and operated it successfully for ~200 hours with minimal wear. This same expander was then installed in a complete ORC system driven by a medium grade waste heat source to generate 5-7 kW of electrical power. Due to funding constraints, TIAX was unable to complete this phase of testing, although the initial results were promising and demonstrated the potential of the technology.« less
40 CFR 63.1311 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of other requirements for heat exchange systems or waste management units. Paragraphs (n)(1) and (n... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to...
40 CFR 63.1311 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of other requirements for heat exchange systems or waste management units. Paragraphs (n)(1) and (n... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to...
40 CFR 63.1311 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of other requirements for heat exchange systems or waste management units. Paragraphs (n)(1) and (n... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to...
40 CFR 63.1311 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of other requirements for heat exchange systems or waste management units. Paragraphs (n)(1) and (n... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to...
40 CFR 63.1311 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of other requirements for heat exchange systems or waste management units. Paragraphs (n)(1) and (n... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to...
Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas
NASA Astrophysics Data System (ADS)
Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan
2011-05-01
The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.
NASA Technical Reports Server (NTRS)
Rochelle, W. C.; Liu, D. K.; Nunnery, W. J., Jr.; Brandli, A. E.
1975-01-01
This paper describes the application of the SINDA (systems improved numerical differencing analyzer) computer program to simulate the operation of the NASA/JSC MIUS integration and subsystems test (MIST) laboratory. The MIST laboratory is designed to test the integration capability of the following subsystems of a modular integrated utility system (MIUS): (1) electric power generation, (2) space heating and cooling, (3) solid waste disposal, (4) potable water supply, and (5) waste water treatment. The SINDA/MIST computer model is designed to simulate the response of these subsystems to externally impressed loads. The computer model determines the amount of recovered waste heat from the prime mover exhaust, water jacket and oil/aftercooler and from the incinerator. This recovered waste heat is used in the model to heat potable water, for space heating, absorption air conditioning, waste water sterilization, and to provide for thermal storage. The details of the thermal and fluid simulation of MIST including the system configuration, modes of operation modeled, SINDA model characteristics and the results of several analyses are described.
Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management
NASA Technical Reports Server (NTRS)
Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.
2005-01-01
An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of waste heat utilization in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander). The advantages associated with the SRG110 as they relate to ease of assembly, less complex interfaces, and overall mass savings for a spacecraft will be highlighted.
40 CFR 63.481 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Compliance with the heat exchange system provisions of § 63.104 shall occur no later than June 19, 2001. (e... other requirements for heat exchange systems or waste management units. Paragraphs (l)(1) and (l)(2) of... same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After...
Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive
NASA Astrophysics Data System (ADS)
Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya
2016-03-01
Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases, the system design that minimizes cost (e.g., the /W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery TEG with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric (TE) treatment of the exhaust waste heat recovery TEG yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of 1/W it is necessary to achieve heat exchanger costs of 1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but preferred TE design regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously identified low cost design regimes. This work shows that the optimum fill factor F opt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various TE waste heat recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
Waste heat recovery on multiple low-speed reciprocating engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, R.E.
1982-09-01
With rising fuel costs, energy conservation has taken on added significance. Installation of Waste Heat Recovery Units (WHRU) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines has also been identified as having energy conservation potential. This paper reviews the development and implementation of a Waste Heat Recovery Unit (WHRU) for multiple low speed engines at the Katy Gas Plant. WHRU's for these engines should be differentiated from high speed engines and gas turbines in that low speed engines produce low frequency, highmore » amplitude pulsating exhaust. The design of a waste heat system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high amplitude frequencies and then used to design structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less
Bouted, Chalearn; Ratanatamskul, Chavalit
2018-01-15
Effects of temperature and hydraulic retention time (HRT) on the performance of the novel insulated anaerobic filter system (IAF) incorporated with the waste heat input in treating building wastewater were investigated. In this study, an electric heater was used to simulate the waste heat input from air conditioner to the IAF system. The wastewater was collected from an office building in Phitsanulok province, Thailand. The HRTs of IAF system were varied to 9, 18 and 27 h, whereas the water temperatures were raised from 30 °C to 35 °C, 40 °C and 45 °C by electric heating to the IAF tank with the covered insulator. From the results, it was found that the IAF system with HRT 27 h and water temperature 35 °C had the highest removal efficiencies for SS, COD, TKN and TP at 67.71, 61.35, 51.20 and 20.08%, respectively per applied heat energy of 4.70 Wh. The predominant bacteria and Archaea species in the system were Uncultured Flavobacterium sp. and Uncultured Methanosaeta sp. The performance index of the IAF system was developed in this study as the highest treatment performance per lowest energy consumption. Therefore, the IAF system incorporated with waste heat input can be a challenging on-site wastewater treatment system for further usage of renewable energy from waste heat as well as environmental conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2016-05-10
This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2014-08-12
This disclosure relates to a waste heat recovery (WHR) system and to a system and method for regulation of a fluid inventory in a condenser and a receiver of a Rankine cycle WHR system. Such regulation includes the ability to regulate the pressure in a WHR system to control cavitation and energy conversion.
Applications of thermal energy storage to waste heat recovery in the food processing industry
NASA Astrophysics Data System (ADS)
Trebilcox, G. J.; Lundberg, W. L.
1981-03-01
The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
BEETIT Project: UFL is improving a refrigeration system that uses low quality heat to provide the energy needed to drive cooling. This system, known as absorption refrigeration system (ARS), typically consists of large coils that transfer heat. Unfortunately, these large heat exchanger coils are responsible for bulkiness and high cost of ARS. UFL is using new materials as well as system design innovations to develop nanoengineered membranes to allow for enhanced heat exchange that reduces bulkiness. UFL’s design allows for compact, cheaper and more reliable use of ARS that use solar or waste heat.
A Thermoelectric Waste-Heat-Recovery System for Portland Cement Rotary Kilns
NASA Astrophysics Data System (ADS)
Luo, Qi; Li, Peng; Cai, Lanlan; Zhou, Pingwang; Tang, Di; Zhai, Pengcheng; Zhang, Qingjie
2015-06-01
Portland cement is produced by one of the most energy-intensive industrial processes. Energy consumption in the manufacture of Portland cement is approximately 110-120 kWh ton-1. The cement rotary kiln is the crucial equipment used for cement production. Approximately 10-15% of the energy consumed in production of the cement clinker is directly dissipated into the atmosphere through the external surface of the rotary kiln. Innovative technology for energy conservation is urgently needed by the cement industry. In this paper we propose a novel thermoelectric waste-heat-recovery system to reduce heat losses from cement rotary kilns. This system is configured as an array of thermoelectric generation units arranged longitudinally on a secondary shell coaxial with the rotary kiln. A mathematical model was developed for estimation of the performance of waste heat recovery. Discussions mainly focus on electricity generation and energy saving, taking a Φ4.8 × 72 m cement rotary kiln as an example. Results show that the Bi2Te3-PbTe hybrid thermoelectric waste-heat-recovery system can generate approximately 211 kW electrical power while saving 3283 kW energy. Compared with the kiln without the thermoelectric recovery system, the kiln with the system can recover more than 32.85% of the energy that used to be lost as waste heat through the kiln surface.
Waste heat recovery options in a large gas-turbine combined power plant
NASA Astrophysics Data System (ADS)
Upathumchard, Ularee
This study focuses on power plant heat loss and how to utilize the waste heat in energy recovery systems in order to increase the overall power plant efficiency. The case study of this research is a 700-MW natural gas combined cycle power plant, located in a suburban area of Thailand. An analysis of the heat loss of the combustion process, power generation process, lubrication system, and cooling system has been conducted to evaluate waste heat recovery options. The design of the waste heat recovery options depends to the amount of heat loss from each system and its temperature. Feasible waste heat sources are combustion turbine (CT) room ventilation air and lubrication oil return from the power plant. The following options are being considered in this research: absorption chillers for cooling with working fluids Ammonia-Water and Water-Lithium Bromide (in comparison) and Organic Rankine Cycle (ORC) with working fluids R134a and R245fa. The absorption cycles are modeled in three different stages; single-effect, double-effect and half-effect. ORC models used are simple ORC as a baseline, ORC with internal regenerator, ORC two-phase flash expansion ORC and ORC with multiple heat sources. Thermodynamic models are generated and each system is simulated using Engineering Equation Solver (EES) to define the most suitable waste heat recovery options for the power plant. The result will be synthesized and evaluated with respect to exergy utilization efficiency referred as the Second Law effectiveness and net output capacity. Results of the models give recommendation to install a baseline ORC of R134a and a double-effect water-lithium bromide absorption chiller, driven by ventilation air from combustion turbine compartment. The two technologies yield reasonable economic payback periods of 4.6 years and 0.7 years, respectively. The fact that this selected power plant is in its early stage of operation allows both models to economically and effectively perform waste heat recovery during the power plant's life span. Furthermore, the recommendation from this research will be submitted to the Electricity Generating Authority of Thailand (EGAT) for implementation. This study will also be used as an example for other power plants in Thailand to consider waste energy utilization to improve plant efficiency and sustain fuel resources in the future.
NASA Astrophysics Data System (ADS)
Khuriati, Ainie; Setiabudi, Wahyu; Nur, Muhammad; Istadi, Istadi
2015-12-01
Backpropgation neural network was trained to predict of combustible fraction heating value of MSW from the physical composition. Waste-to-Energy (WtE) is a viable option for municipal solid waste (MSW) management. The influence of the heating value of municipal solid waste (MSW) is very important on the implementation of WtE systems. As MSW is heterogeneous material, direct heating value measurements are often not feasible. In this study an empirical model was developed to describe the heating value of the combustible fraction of municipal solid waste as a function of its physical composition of MSW using backpropagation neural network. Sampling process was carried out at Jatibarang landfill. The weight of each sorting sample taken from each discharged MSW vehicle load is 100 kg. The MSW physical components were grouped into paper wastes, absorbent hygiene product waste, styrofoam waste, HD plastic waste, plastic waste, rubber waste, textile waste, wood waste, yard wastes, kitchen waste, coco waste, and miscellaneous combustible waste. Network was trained by 24 datasets with 1200, 769, and 210 epochs. The results of this analysis showed that the correlation from the physical composition is better than multiple regression method .
Cost Scaling of a Real-World Exhaust Waste Heat Recovery Thermoelectric Generator: A Deeper Dive
NASA Technical Reports Server (NTRS)
Hendricks, Terry J.; Yee, Shannon; LeBlanc, Saniya
2015-01-01
Cost is equally important to power density or efficiency for the adoption of waste heat recovery thermoelectric generators (TEG) in many transportation and industrial energy recovery applications. In many cases the system design that minimizes cost (e.g., the $/W value) can be very different than the design that maximizes the system's efficiency or power density, and it is important to understand the relationship between those designs to optimize TEG performance-cost compromises. Expanding on recent cost analysis work and using more detailed system modeling, an enhanced cost scaling analysis of a waste heat recovery thermoelectric generator with more detailed, coupled treatment of the heat exchangers has been performed. In this analysis, the effect of the heat lost to the environment and updated relationships between the hot-side and cold-side conductances that maximize power output are considered. This coupled thermal and thermoelectric treatment of the exhaust waste heat recovery thermoelectric generator yields modified cost scaling and design optimization equations, which are now strongly dependent on the heat leakage fraction, exhaust mass flow rate, and heat exchanger effectiveness. This work shows that heat exchanger costs most often dominate the overall TE system costs, that it is extremely difficult to escape this regime, and in order to achieve TE system costs of $1/W it is necessary to achieve heat exchanger costs of $1/(W/K). Minimum TE system costs per watt generally coincide with maximum power points, but Preferred TE Design Regimes are identified where there is little cost penalty for moving into regions of higher efficiency and slightly lower power outputs. These regimes are closely tied to previously-identified low cost design regimes. This work shows that the optimum fill factor Fopt minimizing system costs decreases as heat losses increase, and increases as exhaust mass flow rate and heat exchanger effectiveness increase. These findings have profound implications on the design and operation of various thermoelectric (TE) waste heat 3 recovery systems. This work highlights the importance of heat exchanger costs on the overall TEG system costs, quantifies the possible TEG performance-cost domain space based on heat exchanger effects, and provides a focus for future system research and development efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thekdi, Arvind; Nimbalkar, Sachin U.
2015-01-01
The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.
Energy recovery from waste incineration: assessing the importance of district heating networks.
Fruergaard, T; Christensen, T H; Astrup, T
2010-07-01
Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1GJ of waste heat delivered substitutes for 1GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO(2) accounts showed significantly different results: waste incineration in one network caused a CO(2) saving of 48 kg CO(2)/GJ energy input while in the other network a load of 43 kg CO(2)/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
An Improved Model for a Once-through Counter-Cross-Flow Waste Heat Recovery Unit
1983-09-01
RAnkine Cycle Energy Recovery (RACER) system. As conceived, the RACER system will be an unfired waste heat recovery system designed to convert waste... heater to arrive at the feedwater inlet. For the given geometry and flow conditions, the model will calcu- late the water inlet temperature consistent...when given feedwater inlet temperature, steam outlet tempera- ture, operating pressure, inlet and outlet gas conditions and gas flow rate. In this
Overview of waste heat utilization systems
NASA Technical Reports Server (NTRS)
Bailey, M. M.
1984-01-01
The heavy truck diesel engine rejects a significant fraction of its fuel energy in the form of waste heat. Historically, the Department of Energy has supported technology efforts for utilization of the diesel exhaust heat. Specifically, the Turbocompound and the Organic Rankine Cycle System (ORCS) have demonstrated that meaningful improvements in highway fuel economy can be realized through waste heat utilization. For heat recovery from the high temperature exhaust of future adiabatic diesel engines, the DOE/NASA are investigating a variety of alternatives based on the Rankine, Brayton, and Stirling power cycles. Initial screening results indicate that systems of this type offer a fuel savings advantage over the turbocompound system. Capital and maintenance cost projections, however, indicate that the alternative power cycles are not competitive on an economic payback basis. Plans call for continued analysis in an attempt to identify a cost effective configuration with adequate fuel savings potential.
Integrated Cabin and Fuel Cell System Thermal Management with a Metal Hydride Heat Pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovland, V.
2004-12-01
Integrated approaches for the heating and cooling requirements of both the fuel cell (FC) stack and cabin environment are critical to fuel cell vehicle performance in terms of stack efficiency, fuel economy, and cost. An integrated FC system and cabin thermal management system would address the cabin cooling and heating requirements, control the temperature of the stack by mitigating the waste heat, and ideally capture the waste heat and use it for useful purposes. Current work at the National Renewable Energy Laboratory (NREL) details a conceptual design of a metal hydride heat pump (MHHP) for the fuel cell system andmore » cabin thermal management.« less
Independent Power Generation in a Modern Electrical Substation Based on Thermoelectric Technology
NASA Astrophysics Data System (ADS)
Li, Z. M.; Zhao, Y. Q.; Liu, W.; Wei, B.; Qiu, M.; Lai, X. K.
2017-05-01
Because of many types of electrical equipment with high power in substations, the potentiality of energy conservation is quite large. From this viewpoint, thermoelectric materials may be chosen to produce electrical energy using the waste heat produced in substations. Hence, a thermoelectric generation system which can recycle the waste heat from electric transformers was proposed to improve the energy efficiency and reduce the burden of the oil cooling system. An experimental prototype was fabricated to perform the experiment and to verify the feasibility. The experimental results showed that the output power could achieve 16 W from waste heat of 900 W, and that the power conversion efficiency was approximately 1.8%. Therefore, power generation is feasible by using the waste heat from the transformers based on thermoelectric technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tricaud, Christophe; Ernst, Timothy C.; Zigan, James A.
The disclosure provides a waste heat recovery system with a system and method for calculation of the net output torque from the waste heat recovery system. The calculation uses inputs from existing pressure and speed sensors to create a virtual pump torque sensor and a virtual expander torque sensor, and uses these sensors to provide an accurate net torque output from the WHR system.
Waste heat recovery systems in the sugar industry: An Indian perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madnaik, S.D.; Jadhav, M.G.
1996-04-01
This article identifies the key role of the sugar industry in the rural development of developing countries. The Indian sugar industry, already second largest among the country`s processing industries, shows even greater potential, according to the Plan Documents (shown in a table). The potential of waste heat in sugar processing plants, which produce white crystal sugar using the double sulphitation clarification process, is estimated at 5757.9 KJ/kg of sugar. Efficient waste heat recovery (WHR) systems could help arrest the trend of increasing production costs. This would help the sugar industry not only in India, but in many other countries asmore » well. The innovative methods suggested and discussed briefly in this article include dehydration of prepared cane, bagasse drying, and juice heating using waste heat. These methods can reduce the cost of energy in sugar production by at least 10% and improve efficiency and productivity.« less
Waste heat recovery system for recapturing energy after engine aftertreatment systems
Ernst, Timothy C.; Nelson, Christopher R.
2014-06-17
The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.
Recov'Heat: An estimation tool of urban waste heat recovery potential in sustainable cities
NASA Astrophysics Data System (ADS)
Goumba, Alain; Chiche, Samuel; Guo, Xiaofeng; Colombert, Morgane; Bonneau, Patricia
2017-02-01
Waste heat recovery is considered as an efficient way to increase carbon-free green energy utilization and to reduce greenhouse gas emission. Especially in urban area, several sources such as sewage water, industrial process, waste incinerator plants, etc., are still rarely explored. Their integration into a district heating system providing heating and/or domestic hot water could be beneficial for both energy companies and local governments. EFFICACITY, a French research institute focused on urban energy transition, has developed an estimation tool for different waste heat sources potentially explored in a sustainable city. This article presents the development method of such a decision making tool which, by giving both energetic and economic analysis, helps local communities and energy service companies to make preliminary studies in heat recovery projects.
Limited energy study, West Point, NY. Executive summary and final report. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, C.T.
1994-05-13
In the Holleder Sports Complex at West Point Military Academy, there is an indoor ice skating rink. Due to perceived operational inefficiencies, it was anticipated that energy was being wasted. Furthermore, it was noted that during the normal operation of the ice making plant, heat was being rejected from the building. Questions were asked as to the possibility of recapturing this rejected heat and utilizing it to increase the operational efficiency and reduce the energy wasted. The existing ice making refrigerant plant was originally installed with a heat reclaiming subsystem to utilize waste heat to provide for the required underslabmore » heating system and to melt waste ice scrapings (snow) from the ice resurfacing process. The underslab heating system is working properly, but there is not enough recovered waste heat left to totally melt the snow from resurfacing. This snow builds up over time and is melted by spraying domestic hot water at 140 deg F over the snow pile. This process is labor intensive, energy use intensive, and reduces the capacity of the domestic hot water system to satisfy hot water needs in other parts of the building. Actual compressor run times were obtained from the operator of the ice refrigerant plant and calculations showed that 2,122,100 MBH per year of energy was available for recovery.« less
This presentation provides information about the EPA CHP Partnership, including an overview of the Partnership's tools and resources, and policy support. The presentation also describes the potential of Waste Heat to Power (WHP) systems.
Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.
Chung, Mo; Park, Hwa-Choon
2015-08-01
A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. © The Author(s) 2015.
40 CFR 63.1084 - What heat exchange systems are exempt from the requirements of this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 11 2014-07-01 2014-07-01 false What heat exchange systems are exempt... Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1084 What heat exchange systems are exempt from the requirements of this subpart? Your heat exchange system is...
40 CFR 63.1084 - What heat exchange systems are exempt from the requirements of this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 11 2013-07-01 2013-07-01 false What heat exchange systems are exempt... Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1084 What heat exchange systems are exempt from the requirements of this subpart? Your heat exchange system is...
40 CFR 63.1084 - What heat exchange systems are exempt from the requirements of this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 11 2012-07-01 2012-07-01 false What heat exchange systems are exempt... Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1084 What heat exchange systems are exempt from the requirements of this subpart? Your heat exchange system is...
40 CFR 63.1084 - What heat exchange systems are exempt from the requirements of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 10 2011-07-01 2011-07-01 false What heat exchange systems are exempt... Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1084 What heat exchange systems are exempt from the requirements of this subpart? Your heat exchange system is...
Energy waste in a university building
NASA Astrophysics Data System (ADS)
Numark, Neil J.; Bartlett, Albert A.
1982-04-01
Interesting physics problems that can be used as examples in introductory physics courses relating to the waste of thermal energy can be found in the mechanical systems of campus buildings. The design of these wasteful systems may represent the ``state of the art'' as it existed just a few years ago, so such examples are probably abundant. Our Student Recreation Center was opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple calculations using elementary thermodynamics applied to this system show that the heat rejected by the system is roughly a quarter of a megawatt, which is approximately the average thermal power needed to heat water for the showers in the building. An outcome of this student project is the recommendation that the rejected heat be used to heat (or preheat) the shower water at an estimated annual saving of 40 000 in current energy costs.
Energy waste in a university building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Numark, N.J.; Bartlett, A.A.
1982-04-01
Interesting physics problems that can be used as examples in introductory physics courses relating to the waste of thermal energy can be found in the mechanical systems of campus buildings. The design of these wasteful systems may represent the ''state of the art'' as it existed just a few years ago, so such examples are probably abundant. Our Student Recreation Center was opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple calculations using elementary thermodynamics applied to this system show that the heat rejected by the system is roughly a quarter of amore » megawatt, which is approximately the average thermal power needed to heat water for the showers in the building. An outcome of this student project is the recommendation that the rejected heat be used to heat (or preheat) the shower water at an estimated annual saving of $40 000 in current energy costs.« less
Unitized regenerative fuel cell system
NASA Technical Reports Server (NTRS)
Burke, Kenneth A. (Inventor)
2008-01-01
A Unitized Regenerative Fuel Cell system uses heat pipes to convey waste heat from the fuel cell stack to the reactant storage tanks. The storage tanks act as heat sinks/sources and as passive radiators of the waste heat from the fuel cell stack. During charge up, i.e., the electrolytic process, gases are conveyed to the reactant storage tanks by way of tubes that include dryers. Reactant gases moving through the dryers give up energy to the cold tanks, causing water vapor in with the gases to condense and freeze on the internal surfaces of the dryer. During operation in its fuel cell mode, the heat pipes convey waste heat from the fuel cell stack to the respective reactant storage tanks, thereby heating them such that the reactant gases, as they pass though the respective dryers on their way to the fuel cell stacks retrieve the water previously removed.
Energy Corner: Heat Reclamation Rescues Wasted Heat.
ERIC Educational Resources Information Center
Daugherty, Thomas
1982-01-01
Heat reclamation systems added to pre-existing central heating systems provide maximum savings at minimum cost. The benefits of a particular appliance marketed under the brand name "Energizer" are discussed. (Author/MLF)
Comparison of two total energy systems for a diesel power generation plant. [deep space network
NASA Technical Reports Server (NTRS)
Chai, V. W.
1979-01-01
The capabilities and limitations, as well as the associated costs for two total energy systems for a diesel power generation plant are compared. Both systems utilize waste heat from engine cooling water and waste heat from exhaust gases. Pressurized water heat recovery system is simple in nature and requires no engine modifications, but operates at lower temperature ranges. On the other hand, a two-phase ebullient system operates the engine at constant temperature, provides higher temperature water or steam to the load, but is more expensive.
40 CFR 63.1083 - Does this subpart apply to my heat exchange system?
Code of Federal Regulations, 2011 CFR
2011-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you own...
40 CFR 63.1083 - Does this subpart apply to my heat exchange system?
Code of Federal Regulations, 2012 CFR
2012-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you own...
40 CFR 63.1083 - Does this subpart apply to my heat exchange system?
Code of Federal Regulations, 2014 CFR
2014-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you own...
40 CFR 63.1083 - Does this subpart apply to my heat exchange system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Applicability for Heat Exchange Systems § 63.1083 Does this subpart apply to my heat exchange system? The provisions of this subpart apply to your heat exchange system if you own...
Recovery of Waste Heat from Propellant Forced-Air Dry House
1978-12-01
function of bulk air side film heat transfer coefficient and diffusivity 66 15. Dry house waste heat recovery system instrumentation 67 16. Sample data...inlet condition by, maintaining the exhaust temperature above the NG dew point. The set point is adjustable to accommodate various propel- lant and...system. In dry cycle operation, an overall energy recovery effectiveness of about 40% was measured for winter operation when the exhaust temperature
1982-07-01
waste-heat steam generators. The applicable steam generator design concepts and general design consideration were reviewed and critical problems...a once-through forced-circulation steam generator design should be selected because of stability, reliability, compact- ness and lightweight...consists of three sections and one appendix. In Section I, the applicable steam generator design conccpts and general design * considerations are reviewed
Advanced Multi-Effect Distillation System for Desalination Using Waste Heat fromGas Brayton Cycles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haihua Zhao; Per F. Peterson
2012-10-01
Generation IV high temperature reactor systems use closed gas Brayton Cycles to realize high thermal efficiency in the range of 40% to 60%. The waste heat is removed through coolers by water at substantially greater average temperature than in conventional Rankine steam cycles. This paper introduces an innovative Advanced Multi-Effect Distillation (AMED) design that can enable the production of substantial quantities of low-cost desalinated water using waste heat from closed gas Brayton cycles. A reference AMED design configuration, optimization models, and simplified economics analysis are presented. By using an AMED distillation system the waste heat from closed gas Brayton cyclesmore » can be fully utilized to desalinate brackish water and seawater without affecting the cycle thermal efficiency. Analysis shows that cogeneration of electricity and desalinated water can increase net revenues for several Brayton cycles while generating large quantities of potable water. The AMED combining with closed gas Brayton cycles could significantly improve the sustainability and economics of Generation IV high temperature reactors.« less
On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas
NASA Astrophysics Data System (ADS)
Meisner, G. P.
2013-03-01
The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.
NASA Astrophysics Data System (ADS)
Kaizawa, Akihide; Maruoka, Nobuhiro; Kawai, Atsushi; Kamano, Hiroomi; Jozuka, Tetsuji; Senda, Takeshi; Akiyama, Tomohiro
2008-05-01
A waste heat transportation system trans-heat (TH) system is quite attractive that uses the latent heat of a phase change material (PCM). The purpose of this paper is to study the thermophysical properties of various sugars and sodium acetate trihydrate (SAT) as PCMs for a practical TH system and the heat transfer property between PCM selected and heat transfer oil, by using differential scanning calorimetry (DSC), thermogravimetry-differential thermal analysis (TG-DTA) and a heat storage tube. As a result, erythritol, with a large latent heat of 344 kJ/kg at melting point of 117°C, high decomposition point of 160°C and excellent chemical stability under repeated phase change cycles was found to be the best PCM among them for the practical TH system. In the heat release experiments between liquid erythritol and flowing cold oil, we observed foaming phenomena of encapsulated oil, in which oil droplet was coated by solidification of PCM.
NASA Astrophysics Data System (ADS)
Ghilvacs, M.; Prisecaru, T.; Pop, H.; Apostol, V.; Prisecaru, M.; Pop, E.; Popescu, Gh; Ciobanu, C.; Mohanad, A.; Alexandru, A.
2016-08-01
Compression ignition engines transform approximately 40% of the fuel energy into power available at the crankshaft, while the rest part of the fuel energy is lost as coolant, exhaust gases and other waste heat. An organic Rankine cycle (ORC) can be used to recover this waste heat. In this paper, the characteristics of a system combining a compression ignition engine with an ORC which recover the waste heat from the exhaust gases are analyzed. The performance map of the diesel engine is measured on an engine test bench and the heat quantities wasted by the exhaust gases are calculated over the engine's entire operating region. Based on this data, the working parameters of ORC are defined, and the performance of a combined engine-ORC system is evaluated across this entire region. The results show that the net power of ORC is 6.304kW at rated power point and a maximum of 10% reduction in brake specific fuel consumption can be achieved.
NASA Astrophysics Data System (ADS)
Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.
2013-12-01
Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.
Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management
NASA Technical Reports Server (NTRS)
Pantano, David R.; Dottore, Frank; Geng, Steven M.; Schrieber, Jeffrey G.; Tobery, E. Wayne; Palko, Joseph L.
2005-01-01
One of the advantages of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used to maintain electronic components within a controlled temperature range, to warm propulsion tanks and mobility actuators, and to gasify liquid propellants. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated a very large quantity of waste heat due to the relatively low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-watt Stirling Radioisotope Generator (SRG110) will have much higher conversion efficiencies than their predecessors and therefore may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of approx. 6 to 7% and 200 C housing surface temperatures, would need to use large and heavy radiator heat exchangers to transfer the waste heat to the internal spacecraft components. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation by using the heat exchangers or additional shields. The SRG110, with an efficiency around 22% and 50 C nominal housing surface temperature, can use the available waste heat more efficiently by more direct heat transfer methods such as heat pipes, thermal straps, or fluid loops. The lower temperatures allow the SRG110 much more flexibility to the spacecraft designers in configuring the generator without concern of overheating nearby scientific instruments, thereby eliminating the need for thermal shields. This paper will investigate using a high efficiency SRG110 for spacecraft thermal management and outline potential methods in several conceptual missions (Lunar Rover, Mars Rover, and Titan Lander) to illustrate the advantages with regard to ease of assembly, less complex interfaces, and overall mass savings.
Rankine cycle waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2015-09-22
A waste heat recovery (WHR) system connects a working fluid to fluid passages formed in an engine block and/or a cylinder head of an internal combustion engine, forming an engine heat exchanger. The fluid passages are formed near high temperature areas of the engine, subjecting the working fluid to sufficient heat energy to vaporize the working fluid while the working fluid advantageously cools the engine block and/or cylinder head, improving fuel efficiency. The location of the engine heat exchanger downstream from an EGR boiler and upstream from an exhaust heat exchanger provides an optimal position of the engine heat exchanger with respect to the thermodynamic cycle of the WHR system, giving priority to cooling of EGR gas. The configuration of valves in the WHR system provides the ability to select a plurality of parallel flow paths for optimal operation.
Advanced Natural Gas Reciprocating Engine(s)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pike, Edward
The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cyclemore » efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.« less
Lausselet, Carine; Cherubini, Francesco; Del Alamo Serrano, Gonzalo; Becidan, Michael; Strømman, Anders Hammer
2016-12-01
Waste-to-Energy (WtE) plants constitute one of the most common waste management options to deal with municipal solid waste. WtE plants have the dual objective to reduce the amount of waste sent to landfills and simultaneously to produce useful energy (heat and/or power). Energy from WtE is gaining steadily increasing importance in the energy mix of several countries. Norway is no exception, as energy recovered from waste currently represents the main energy source of the Norwegian district heating system. Life-cycle assessments (LCA) of WtE systems in a Norwegian context are quasi-nonexistent, and this study assesses the environmental performance of a WtE plant located in central Norway by combining detailed LCA methodology with primary data from plant operations. Mass transfer coefficients and leaching coefficients are used to trace emissions over the various life-cycle stages from waste logistics to final disposal of the ashes. We consider different fractions of input waste (current waste mix, insertion of 10% car fluff, 5% clinical waste and 10% and 50% wood waste), and find a total contribution to Climate Change Impact Potential ranging from 265 to 637gCO 2 eq/kg of waste and 25 to 61gCO 2 eq/MJ of heat. The key drivers of the environmental performances of the WtE system being assessed are the carbon biogenic fraction and the lower heating value of the incoming waste, the direct emissions at the WtE plant, the leaching of the heavy metals at the landfill sites and to a lesser extent the use of consumables. We benchmark the environmental performances of our WtE systems against those of fossil energy systems, and we find better performance for the majority of environmental impact categories, including Climate Change Impact Potential, although some trade-offs exist (e.g. higher impacts on Human Toxicity Potential than natural gas, but lower than coal). Also, the insertion of challenging new waste fractions is demonstrated to be an option both to cope with the excess capacity of the Norwegian WtE sector and to reach Norway's ambitious political goals for environmentally friendly energy systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
R and D plans for Broad Area Energy Utilization Network System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takemura, Yozo; Ishida, Hiromi; Yanagishita, Hiroshi
1995-12-31
In Japan, approximately 60 percent of the primary energy supply is lost as waste heat due to low thermal energy conversion efficiency. A lot of effort has been made towards energy conservation in industry since 1973 when the oil crisis happened. However, waste heat is not recovered sufficiently at low temperature. Since most of energy in residential and commercial areas is used for air-conditioning and hot water, the temperature of heat for residential and commercial use is almost equal to that of waste heat discharged from industrial sources. Therefore, the Broad Area Energy Utilization Network System (Eco-Energy City) project, whichmore » started in 1993 and will continue over a period of 8 years, is a large-scale national energy conservation project of the Agency of Industrial Science and technology (AIST) of the Ministry of International Trade and Industry (MITI). The aim of this project is to accelerate the full scale utilization of industrial waste heat for residential and commercial use by technological breakthroughs. The concept of the project is as follows: (1) Waste and unutilized heat discharged from industrial sources at relatively high temperature is recovered very efficiently, in multiple stages and in various ways. (2) Recovered heat is transported with a small heat loss over a long distance to residential and commercial areas that have various patterns of consuming relatively low-temperature heat. (3) Transported heat is supplied at consumer sites in different ways depending on the individual consumption pattern. (4) Thermal energy is utilized in the following forms: Cascaded use, combined use and recycling. The key to success is to develop innovative technologies of heat recovery, heat transport, heat supply and systematization of energy supply and demand.« less
40 CFR 63.1085 - What are the general requirements for heat exchange systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the general requirements for heat exchange systems? Unless you meet one of the requirements for exemptions in § 63.1084...
40 CFR 63.1085 - What are the general requirements for heat exchange systems?
Code of Federal Regulations, 2013 CFR
2013-07-01
... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the general requirements for heat exchange systems? Unless you meet one of the requirements for exemptions in § 63.1084...
40 CFR 63.1085 - What are the general requirements for heat exchange systems?
Code of Federal Regulations, 2014 CFR
2014-07-01
... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the general requirements for heat exchange systems? Unless you meet one of the requirements for exemptions in § 63.1084...
40 CFR 63.1085 - What are the general requirements for heat exchange systems?
Code of Federal Regulations, 2012 CFR
2012-07-01
... heat exchange systems? 63.1085 Section 63.1085 Protection of Environment ENVIRONMENTAL PROTECTION... Exchange Systems and Waste Operations Heat Exchange System Requirements § 63.1085 What are the general requirements for heat exchange systems? Unless you meet one of the requirements for exemptions in § 63.1084...
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
Comparing the greenhouse gas emissions from three alternative waste combustion concepts.
Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko
2012-03-01
Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kolasiński, Piotr; Kolasińska, Ewa
2016-02-01
The effective waste heat recovery is one of the present-day challenges in the industry and power engineering. The energy systems dedicated for waste heat conversion into electricity are usually characterized by low efficiency and are complicated in the design. The possibility of waste heat recovery via thermoelectric materials may be an interesting alternative to the currently used technologies. In particular, due to their material characteristics, conducting polymers may be competitive when compared with the power machinery and equipment. These materials can be used in a wide range of the geometries e.g. the bulk products, thin films, pristine form or composites and the others. In this article, the authors present selected issues related to the mathematical and thermodynamic description of the heat transfer processes in the thermoelectric materials dedicated for the waste heat recovery. The link of these models with electrical properties of the material and a material solution based on a conducting polymer have also been presented in this paper.
Advancement of Double Effect Absorption Cycle by Input of Low Temperature Waste Heat
NASA Astrophysics Data System (ADS)
Kojima, Hiroshi; Edera, Masaru; Nakamura, Makoto; Oka, Masahiro; Akisawa, Atsushi; Kashiwagi, Takao
Energy conservation is becoming important for global environmental protection. New simple techniques of more efficient1y using the waste heat of gas co-generation systems for refrigerationare required. In first report, a new method of using the low temperature waste heat for refrigeration was proposed, and the basic characteristics of the promising methods of recovering waste heat were c1arified. In this report, the more detailed simulation model of the series flow type double effect absorption refrigerator with auxiliary heat exchanger was constructed and the static characteristics were investigated. Then experiments on this advanced absorption refrigerator were carried out, and the results of the calculation and experiments were compared and discussed. Moreover, the betterment of the simulation model of this advanced absorption refrigerator was carried out.
Alternative fuels for multiple-hearth furnaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bracken, B.D.; Lawson, T.U.
1980-04-01
A study of alternative procedures for reducing the consumption of No. 2 fuel oil at the Lower Molonglo Water Quality Control Centre near Canberra, Aust., indicated that in comparison with the present system of incineration with heat supplied by burning fuel oil, the installation of a sludge drying operation, consisting of a rotary dryer heated by furnace exhaust gases with the dried sludge used to fuel the furnace, would become economically desirable by 1985 if afterburning is not required, and would be justified immediately if afterburning is required to meet air pollution control regulations. The substitution of any of fourmore » waste fuels (refuse-derived fuel, waste paper, wood waste, or waste oil) or of coal for the No. 2 fuel oil would not be cost-effective through 1989. The furnace system, including afterburning and fuel oil requirements, the envisioned alternative fuel use systems, sludge processing alternatives, heat balance results, and economics are discussed.« less
Comparing the greenhouse gas emissions from three alternative waste combustion concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai
2012-03-15
Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved.« less
Gohlke, Oliver
2009-11-01
Global warming is a focus of political interest and life-cycle assessment of waste management systems reveals that energy recovery from municipal solid waste is a key issue. This paper demonstrates how the greenhouse gas effects of waste treatment processes can be described in a simplified manner by considering energy efficiency indicators. For evaluation to be consistent, it is necessary to use reasonable system boundaries and to take the generation of electricity and the use of heat into account. The new European R1 efficiency criterion will lead to the development and implementation of optimized processes/systems with increased energy efficiency which, in turn, will exert an influence on the greenhouse gas effects of waste management in Europe. Promising technologies are: the increase of steam parameters, reduction of in-plant energy consumption, and the combined use of heat and power. Plants in Brescia and Amsterdam are current examples of good performance with highly efficient electricity generation. Other examples of particularly high heat recovery rates are the energy-from-waste (EfW) plants in Malmö and Gothenburg. To achieve the full potential of greenhouse gas reduction in waste management, it is necessary to avoid landfilling combustible wastes, for example, by means of landfill taxes and by putting incentives in place for increasing the efficiency of EfW systems.
46 CFR 63.01-3 - Scope and applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY... automatic auxiliary boilers, automatic heating boilers, automatic waste heat boilers, donkey boilers... control systems) used for the generation of steam and/or oxidation of ordinary waste materials and garbage...
46 CFR 63.01-3 - Scope and applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY... automatic auxiliary boilers, automatic heating boilers, automatic waste heat boilers, donkey boilers... control systems) used for the generation of steam and/or oxidation of ordinary waste materials and garbage...
Bioengineering thermodynamics of biological cells.
Lucia, Umberto
2015-12-01
Cells are open complex thermodynamic systems. They can be also regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transports phenomena can occur across the cells membranes. Moreover, cells can also actively modify their behaviours in relation to changes in their environment. Different thermo-electro-biochemical behaviours occur between health and disease states. But, all the living systems waste heat, which is no more than the result of their internal irreversibility. This heat is dissipated into the environment. But, this wasted heat represent also a sort of information, which outflows from the cell toward its environment, completely accessible to any observer. The analysis of irreversibility related to this wasted heat can represent a new approach to study the behaviour of the cells themselves and to control their behaviours. So, this approach allows us to consider the living systems as black boxes and analyze only the inflows and outflows and their changes in relation to the modification of the environment. Therefore, information on the systems can be obtained by analyzing the changes in the cell heat wasted in relation to external perturbations. The bioengineering thermodynamics bases are summarized and used to analyse possible controls of the calls behaviours based on the control of the ions fluxes across the cells membranes.
Energy Efficient Waste Heat Recovery from an Engine Exhaust System
2016-12-01
targets. Since solar panels and wind turbines will not work for ships; the energy savings must come from making the existing power generation...achieve an approximate solution to the problem . The research for this thesis involved design by analysis of heat exchange in a gas turbine exhaust...effectiveness of a new style of heat exchanger for waste heat recovery. The new design sought to optimize heat recovery from a gas turbine engine exhaust as
Accumulation and subsequent utilization of waste heat
NASA Astrophysics Data System (ADS)
Koloničný, Jan; Richter, Aleš; Pavloková, Petra
2016-06-01
This article aims to introduce a special way of heat accumulation and primary operating characteristics. It is the unique way in which the waste heat from flue gas of biogas cogeneration station is stored in the system of storage tanks, into the heat transfer oil. Heat is subsequently transformed into water, from which is generated the low-pressure steam. Steam, at the time of peak electricity needs, spins the special designed turbine generator and produces electrical energy.
Plasma Heating: An Advanced Technology
NASA Technical Reports Server (NTRS)
1994-01-01
The Mercury and Apollo spacecraft shields were designed to protect astronauts from high friction temperatures (well over 2,000 degrees Fahrenheit) when re-entering the Earth's atmosphere. It was necessary to test and verify the heat shield materials on Earth before space flight. After exhaustive research and testing, NASA decided to use plasma heating as a heat source. This technique involves passing a strong electric current through a rarefied gas to create a plasma (ionized gas) that produces an intensely hot flame. Although NASA did not invent the concept, its work expanded the market for commercial plasma heating systems. One company, Plasma Technology Corporation (PTC), was founded by a member of the team that developed the Re-entry Heating Simulator at Ames Research Center (ARC). Dr. Camacho, President of PTC, believes the technology has significant environmental applications. These include toxic waste disposal, hydrocarbon, decomposition, medical waste disposal, asbestos waste destruction, and chemical and radioactive waste disposal.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-06-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
Thermoelectric System Absorbing Waste Heat from a Steel Ladle
NASA Astrophysics Data System (ADS)
Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.
2018-01-01
China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.
A Study of Ballast Water Treatment Using Engine Waste Heat
NASA Astrophysics Data System (ADS)
Balaji, Rajoo; Yaakob, Omar; Koh, Kho King; Adnan, Faizul Amri bin; Ismail, Nasrudin bin; Ahmad, Badruzzaman bin; Ismail, Mohd Arif bin
2018-05-01
Heat treatment of ballast water using engine waste heat can be an advantageous option complementing any proven technology. A treatment system was envisaged based on the ballast system of an existing, operational crude carrier. It was found that the available waste heat could raise the temperatures by 25 °C and voyage time requirements were found to be considerable between 7 and 12 days to heat the high volumes of ballast water. Further, a heat recovery of 14-33% of input energies from exhaust gases was recorded while using a test rig arrangement representing a shipboard arrangement. With laboratory level tests at temperature ranges of around 55-75 °C, almost complete species mortalities for representative phytoplankton, zooplankton and bacteria were observed while the time for exposure varied from 15 to 60 s. Based on the heat availability analyses for harvesting heat from the engine exhaust gases(vessel and test rig), heat exchanger designs were developed and optimized using Lagrangian method applying Bell-Delaware approaches. Heat exchanger designs were developed to suit test rig engines also. Based on these designs, heat exchanger and other equipment were procured and erected. The species' mortalities were tested in this mini-scale arrangement resembling the shipboard arrangement. The mortalities realized were > 95% with heat from jacket fresh water and exhaust gases alone. The viability of the system was thus validated.
Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun
2015-06-01
Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.
Microbial Heat Recovery Cell (MHRC) System Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This factsheet describes a project that aimed to develop a microbial heat recovery cell (MHRC) system that combines a microbial reverse electrodialysis technology with waste heat recovery to convert industrial effluents into electricity and hydrogen.
Waste heat recovery with ultra high-speed turbomachinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vakkilainen, E.; Larjola, J.; Lindgren, O.
1984-08-01
A new ORC heat recovery system which converts waste heat to electricity has been developed in Lappeenranta University of Technology with support from Department of Energy in Finnish Ministry of Trade and Industry. Use of ultra high-speed turbomachinery (10 000 rpm - 200 000 rpm) promises lower unit costs, higher efficiencies and fast amortization rate, 2,4 - 3,0 years.
Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joan F. Brennecke; Mihir Sen; Edward J. Maginn
2009-01-11
The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILsmore » appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.« less
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
Sewage sludge drying by energy recovery from OFMSW composting: Preliminary feasibility evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano
2014-05-01
Highlights: • The aim is to support the drying of sewage sludge, using a solar greenhouse. • The system allows the exploitation of heat available from OFMSW aerobic process. • Another aim is to face the problem of OFMSW treatment, in particular food waste. • Energy and mass balances are presented for a case study. - Abstract: In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tacklemore » the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications.« less
Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System
Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank
2017-01-01
Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer. PMID:28145516
Thermo-Magneto-Electric Generator Arrays for Active Heat Recovery System.
Chun, Jinsung; Song, Hyun-Cheol; Kang, Min-Gyu; Kang, Han Byul; Kishore, Ravi Anant; Priya, Shashank
2017-02-01
Continued emphasis on development of thermal cooling systems is being placed that can cycle low grade heat. Examples include solar powered unmanned aerial vehicles (UAVs) and data storage servers. The power efficiency of solar module degrades at elevated temperature, thereby, necessitating the need for heat extraction system. Similarly, data centres in wireless computing system are facing increasing efficiency challenges due to high power consumption associated with managing the waste heat. We provide breakthrough in addressing these problems by developing thermo-magneto-electric generator (TMEG) arrays, composed of soft magnet and piezoelectric polyvinylidene difluoride (PVDF) cantilever. TMEG can serve dual role of extracting the waste heat and converting it into useable electricity. Near room temperature second-order magnetic phase transition in soft magnetic material, gadolinium, was employed to obtain mechanical vibrations on the PVDF cantilever under small thermal gradient. TMEGs were shown to achieve high vibration frequency at small temperature gradients, thereby, demonstrating effective heat transfer.
40 CFR 63.1091 - What do the waste requirements do?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste... Operations. There are some differences between the ethylene production waste requirements and those of...
Application of fuel cells with heat recovery for integrated utility systems
NASA Technical Reports Server (NTRS)
Shields, V.; King, J. M., Jr.
1975-01-01
This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.
NASA Astrophysics Data System (ADS)
de Souza, Gabriel Fernandes; Tan, Lippong; Singh, Baljit; Ding, Lai Chet; Date, Abhijit
2017-04-01
The paper presents a sustainable hybrid system, which is capable of generating electricity and producing freshwater from seawater using low grade heat source. This proposed system uses low grade heat that can be supplied from solar radiation, industrial waste heat or any other waste heat sources where the temperature is less than 150°C. The concept behind this system uses the Seebeck effect for thermoelectricity generation via incorporating the low boiling point of seawater under sub-atmospheric ambient pressure. A lab-test prototype of the proposed system was built and experimentally tested in RMIT University. The prototype utilised four commercial available thermoelectric generators (Bi2Te3) and a vacuum vessel to achieve the simultaneous production of electricity and freshwater. The temperature profiles, thermoelectric powers and freshwater productions were determined at several levels of salinity to study the influence of different salt concentrations. The theoretical description of system design and experimental results were analysed and discussed in detailed. The experiment results showed that 0.75W of thermoelectricity and 404g of freshwater were produced using inputs of 150W of simulated waste heat and 500g of 3% saline water. The proposed hybrid concept has demonstrated the potential to become the future sustainable system for electricity and freshwater productions.
Xu, Hui; Gong, Weiliang; Syltebo, Larry; Lutze, Werner; Pegg, Ian L
2014-08-15
The binary furnace slag-metakaolin DuraLith geopolymer waste form, which has been considered as one of the candidate waste forms for immobilization of certain Hanford secondary wastes (HSW) from the vitrification of nuclear wastes at the Hanford Site, Washington, was extended to a ternary fly ash-furnace slag-metakaolin system to improve workability, reduce hydration heat, and evaluate high HSW waste loading. A concentrated HSW simulant, consisting of more than 20 chemicals with a sodium concentration of 5 mol/L, was employed to prepare the alkaline activating solution. Fly ash was incorporated at up to 60 wt% into the binder materials, whereas metakaolin was kept constant at 26 wt%. The fresh waste form pastes were subjected to isothermal calorimetry and setting time measurement, and the cured samples were further characterized by compressive strength and TCLP leach tests. This study has firstly established quantitative linear relationships between both initial and final setting times and hydration heat, which were never discovered in scientific literature for any cementitious waste form or geopolymeric material. The successful establishment of the correlations between setting times and hydration heat may make it possible to efficiently design and optimize cementitious waste forms and industrial wastes based geopolymers using limited testing results. Copyright © 2014 Elsevier B.V. All rights reserved.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2017-01-17
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
Halas, Nancy J.; Nordlander, Peter; Neumann, Oara
2015-12-29
A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.
RTG Waste Heat System for the Cassini Propulsion Module
NASA Technical Reports Server (NTRS)
Mireles, V.; Stultz, J.
1994-01-01
This paper describes the thermal design for the propulsion module subsystem (PMS), and presents the results from the radioisotope thermoelectric generator (RTG) waste heat thermal test, and it summarizes the adjustment techniques and their relative effectiveness; it also shows the resulting predicted PMS flight temperatures relative to the requirements.
NASA Technical Reports Server (NTRS)
Beckham, W. S., Jr.; Keune, F. A.
1974-01-01
The MIUS (Modular Integrated Utility System) concept is to be an energy-conserving, economically feasible, integrated community utility system to provide five necessary services: electricity generation, space heating and air conditioning, solid waste processing, liquid waste processing, and residential water purification. The MIST (MIUS Integration and Subsystem Test) integrated system testbed constructed at the Johnson Space Center in Houston includes subsystems for power generation, heating, ventilation, and air conditioning (HVAC), wastewater management, solid waste management, and control and monitoring. The key design issues under study include thermal integration and distribution techniques, thermal storage, integration of subsystems controls and displays, incinerator performance, effluent characteristics, and odor control.
Onset of thermally induced gas convection in mine wastes
Lu, N.; Zhang, Y.
1997-01-01
A mine waste dump in which active oxidation of pyritic materials occurs can generate a large amount of heat to form convection cells. We analyze the onset of thermal convection in a two-dimensional, infinite horizontal layer of waste rock filled with moist gas, with the top surface of the waste dump open to the atmosphere and the bedrock beneath the waste dump forming a horizontal and impermeable boundary. Our analysis shows that the thermal regime of a waste rock system depends heavily on the atmospheric temperature, the strength of the heat source and the vapor pressure. ?? 1997 Elsevier Science Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Dougall, James
2016-02-05
Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less
Comparing Waste-to-Energy technologies by applying energy system analysis.
Münster, Marie; Lund, Henrik
2010-07-01
Even when policies of waste prevention, re-use and recycling are prioritised, a fraction of waste will still be left which can be used for energy recovery. This article asks the question: How to utilise waste for energy in the best way seen from an energy system perspective? Eight different Waste-to-Energy technologies are compared with a focus on fuel efficiency, CO(2) reductions and costs. The comparison is carried out by conducting detailed energy system analyses of the present as well as a potential future Danish energy system with a large share of combined heat and power as well as wind power. The study shows potential of using waste for the production of transport fuels. Biogas and thermal gasification technologies are hence interesting alternatives to waste incineration and it is recommended to support the use of biogas based on manure and organic waste. It is also recommended to support research into gasification of waste without the addition of coal and biomass. Together the two solutions may contribute to alternate use of one third of the waste which is currently incinerated. The remaining fractions should still be incinerated with priority to combined heat and power plants with high electric efficiency. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Ragossnig, A M; Wartha, C; Pomberger, R
2009-11-01
A major challenge for modern waste management lies in a smart integration of waste-to-energy installations in local energy systems in such a way that the energy efficiency of the waste-to-energy plant is optimized and that the energy contained in the waste is, therefore, optimally utilized. The extent of integration of thermal waste treatment processes into regular energy supply systems plays a major role with regard to climate control. In this research, the specific waste management situation looked at scenarios aiming at maximizing the energy recovery from waste (i.e. actual scenario and waste-to-energy process with 75% energy efficiency [22.5% electricity, 52.5% heat]) yield greenhouse gas emission savings due to the fact that more greenhouse gas emissions are avoided in the energy sector than caused by the various waste treatment processes. Comparing dedicated waste-to-energy-systems based on the combined heat and power (CHP) process with concepts based on sole electricity production, the energy efficiency proves to be crucial with regard to climate control. This underlines the importance of choosing appropriate sites for waste-to-energy-plants. This research was looking at the effect with regard to the climate impact of various waste management scenarios that could be applied alternatively by a private waste management company in Austria. The research is, therefore, based on a specific set of data for the waste streams looked at (waste characteristics, logistics needed, etc.). Furthermore, the investigated scenarios have been defined based on the actual available alternatives with regard to the usage of treatment plants for this specific company. The standard scenarios for identifying climate impact implications due to energy recovery from waste are based on the respective marginal energy data for the power and heat generation facilities/industrial processes in Austria.
Integrated water and waste management system for future spacecraft
NASA Technical Reports Server (NTRS)
Ingelfinger, A. L.; Murray, R. W.
1974-01-01
Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).
Study toward high-performance thermally driven air-conditioning systems
NASA Astrophysics Data System (ADS)
Miyazaki, Takahiko; Miyawaki, Jin; Ohba, Tomonori; Yoon, Seong-Ho; Saha, Bidyut Baran; Koyama, Shigeru
2017-01-01
The Adsorption heat pump is a technology for cooling and heating by using hot water as a driving heat source. It will largely contribute to energy savings when it is driven by solar thermal energy or waste heat. The system is available in the market worldwide, and there are many examples of application to heat recovery in factories and to solar cooling systems. In the present system, silica gel and zeolite are popular adsorbents in combination with water refrigerant. Our study focused on activated carbon-ethanol pair for adsorption cooling system because of the potential to compete with conventional systems in terms of coefficient of performance. In addition, activated-ethanol pair can generally produce larger cooling effect by an adsorption-desorption cycle compared with that of the conventional pairs in terms of cooling effect per unit adsorbent mass. After the potential of a commercially available activated carbon with highest level specific surface area was evaluated, we developed a new activated carbon that has the optimum pore characteristics for the purpose of solar or waste heat driven cooling systems. In this paper, comparison of refrigerants for adsorption heat pump application is presented, and a newly developed activated carbon for ethanol adsorption heat pump is introduced.
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
40 CFR 63.1090 - What reports must I submit?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1090 What reports must I submit? If you delay repair for your heat exchange system, you must report the delay of repair in the...
A heat receiver design for solar dynamic space power systems
NASA Technical Reports Server (NTRS)
Baker, Karl W.; Dustin, Miles O.; Crane, Roger
1990-01-01
An advanced heat pipe receiver designed for a solar dynamic space power system is described. The power system consists of a solar concentrator, solar heat receiver, Stirling heat engine, linear alternator and waste heat radiator. The solar concentrator focuses the sun's energy into a heat receiver. The engine and alternator convert a portion of this energy to electric power and the remaining heat is rejected by a waste heat radiator. Primary liquid metal heat pipes transport heat energy to the Stirling engine. Thermal energy storage allows this power system to operate during the shade portion of an orbit. Lithium fluoride/calcium fluoride eutectic is the thermal energy storage material. Thermal energy storage canisters are attached to the midsection of each heat pipe. The primary heat pipes pass through a secondary vapor cavity heat pipe near the engine and receiver interface. The secondary vapor cavity heat pipe serves three important functions. First, it smooths out hot spots in the solar cavity and provides even distribution of heat to the engine. Second, the event of a heat pipe failure, the secondary heat pipe cavity can efficiently transfer heat from other operating primary heat pipes to the engine heat exchanger of the defunct heat pipe. Third, the secondary heat pipe vapor cavity reduces temperature drops caused by heat flow into the engine. This unique design provides a high level of reliability and performance.
NASA Technical Reports Server (NTRS)
Coggi, J. V.; Loscutoff, A. V.; Barker, R. S.
1973-01-01
An analytical simulation of the RITE-Integrated Waste Management and Water Recovery System using radioisotopes for thermal energy was prepared for the NASA-Manned Space Flight Center (MSFC). The RITE system is the most advanced concept water-waste management system currently under development and has undergone extended duration testing. It has the capability of disposing of nearly all spacecraft wastes including feces and trash and of recovering water from usual waste water sources: urine, condensate, wash water, etc. All of the process heat normally used in the system is produced from low penalty radioisotope heat sources. The analytical simulation was developed with the G189A computer program. The objective of the simulation was to obtain an analytical simulation which can be used to (1) evaluate the current RITE system steady state and transient performance during normal operating conditions, and also during off normal operating conditions including failure modes; and (2) evaluate the effects of variations in component design parameters and vehicle interface parameters on system performance.
Using waste oil to heat a greenhouse
Marla Schwartz
2009-01-01
During the winter of 1990, Northwoods Nursery (Elk River, ID) purchased a wood-burning system to heat the current greenhouses. This system burned slabs of wood to heat water that was then pumped into the greenhouses. The winter of 1990 was extremely harsh, requiring non-stop operation of the heating system. In order to keep seedlings in the greenhouse from freezing,...
Environmental impact of emissions from incineration plants in comparison to typical heating systems
NASA Astrophysics Data System (ADS)
Wielgosiński, Grzegorz; Namiecińska, Olga; Czerwińska, Justyna
2018-01-01
In recent years, five modern municipal waste incineration plants have been built in Poland. Next ones are being constructed and at the same time building of several others is being considered. Despite positive experience with the operation of the existing installations, each project of building a new incinerator raises a lot of emotions and social protests. The main argument against construction of an incineration plant is the emission of pollutants. The work compares emissions from municipal waste incineration plants with those from typical heating plants: in the first part, for comparison large heating plants equipped with pulverized coal-fired boilers (OP-140), stoker-fired boilers (three OR-32 boilers) or gas blocks with heat output of about 100 MW have been selected, while the second part compares WR-10 and WR-25 stoker-fired boilers most popular in our heating industry with thermal treatment systems for municipal waste or refuse-derived-fuel (RDF) with similar heat output. Both absolute emission and impact - immission of pollutants in vicinity of the plant were analyzed.
40 CFR 63.1089 - What records must I keep?
Code of Federal Regulations, 2011 CFR
2011-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...
40 CFR 63.1089 - What records must I keep?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...
40 CFR 63.1089 - What records must I keep?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...
40 CFR 63.1089 - What records must I keep?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...
40 CFR 63.1089 - What records must I keep?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Recordkeeping and Reporting Requirements for Heat Exchange Systems § 63.1089 What records must I...
Validation of a Waste Heat Recovery Model for a 1kW PEM Fuel Cell using Thermoelectric Generator
NASA Astrophysics Data System (ADS)
Saufi Sulaiman, M.; Mohamed, W. A. N. W.; Singh, B.; Fitrie Ghazali, M.
2017-08-01
Fuel cell is a device that generates electricity through electrochemical reaction between hydrogen and oxygen. A major by-product of the exothermic reaction is waste heat. The recovery of this waste heat has been subject to research on order to improve the overall energy utilization. However, nearly all of the studies concentrate on high temperature fuel cells using advanced thermodynamic cycles due to the high quality of waste heat. The method, characteristics and challenges in harvesting waste heat from a low temperature fuel cell using a direct energy conversion device is explored in this publication. A heat recovery system for an open cathode 1kW Proton Exchange Membrane fuel cell (PEM FC) was developed using a single unit of thermoelectric generator (TEG) attached to a heat pipe. Power output of the fuel cell was varied to obtain the performance of TEG at different stack temperatures. Natural and forced convections modes of cooling were applied to the TEG cold side. This is to simulate the conditions of a mini fuel cell vehicle at rest and in motion. The experimental results were analysed and a mathematical model based on the thermal circuit analogy was developed and compared. Forced convection mode resulted in higher temperature difference, output voltage and maximum power which are 3.3°C, 33.5 mV, and 113.96mW respectively. The heat recovery system for 1 kW Proton Exchange Membrane fuel cell (PEM FC) using single TEG was successfully established and improved the electrical production of fuel cell. Moreover, the experimental results obtained was in a good agreement with theoretical results.
NASA Astrophysics Data System (ADS)
Konovšek, Damjan; Fužir, Miran; Slatinek, Matic; Šepul, Tanja; Plesnik, Kristijan; Lečnik, Samo
2017-07-01
In a consortium with SIJ (Slovenian Steel Group), Metal Ravne, the local community of Ravne na Koro\\vskem and the public research Institut Jožef Stefan, with its registered office in Slovenia, Petrol Energetika, d.o.o. set up a technical and technological platform of an innovative energy case for a transition of steel industry into circular economy with a complete energy solution called »Utilization of Waste Heat from Metallurgical Processes for District Heating of Ravne na Koro\\vskem. This is the first such project designed for a useful utilization of waste heat in steel industry which uses modern technology and innovative system solutions for an integration of a smart, efficient and sustainable heating and cooling system and which shows a growth potential. This will allow the industry and cities to make energy savings, to improve the quality of air and to increase the benefits for the society we live in. On the basis of circular economy, we designed a target-oriented co-operation of economy, local community and public research institute to produce new business models where end consumers are put into the centre. This innovation opens the door for steel industry and local community to a joint aim that is a transition into efficient low-carbon energy systems which are based on involvement of natural local conditions, renewable energy sources, the use of waste heat and with respect for the principles of sustainable development.
NASA Astrophysics Data System (ADS)
Saadon, S.; Abu Talib, A. R.
2016-10-01
Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.
40 CFR 63.1080 - What is the purpose of this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements for controlling emissions of hazardous air pollutants (HAP) from heat exchange systems and waste...
40 CFR 63.1080 - What is the purpose of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements for controlling emissions of hazardous air pollutants (HAP) from heat exchange systems and waste...
40 CFR 63.1080 - What is the purpose of this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements for controlling emissions of hazardous air pollutants (HAP) from heat exchange systems and waste...
40 CFR 63.1080 - What is the purpose of this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements for controlling emissions of hazardous air pollutants (HAP) from heat exchange systems and waste...
40 CFR 63.1080 - What is the purpose of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements for controlling emissions of hazardous air pollutants (HAP) from heat exchange systems and waste...
NASA Technical Reports Server (NTRS)
1982-01-01
The essential elements of the cogeneration system configuration to be captured were the displacement of thermal energy by collection and use of the Brayton exhaust stream, and the sale back to the utility of any electricity production in excess of on-site requirements. In contrast to simply dumping these energy flows, their use or sale obviously serves, by itself, to increase gross value of the solar thermal energy system. Net allowable cost of the parabolic dish modules may or may not be increased, however. A consideration is that the waste heat capture and delivery subsystems are not free. This study does not address the incremental cost of adding waste heat capture, transport, and conversion (to steam, if necessary). It does compute a value for the thermal energy thereby displaced. This value can serve as a first-round input to any detailed economic evaluation of waste heat recovery.
Jensen, Morten Bang; Møller, Jacob; Scheutz, Charlotte
2016-03-01
This study assessed the management of the organic household waste in the Danish-German border region and points out major differences between the systems and their potential effects on the environment using life cycle assessment (LCA). The treatment of organic waste from households in the Danish-German border region is very different on each side of the border; the Danish region only uses incineration for the treatment of organic household waste while the German region includes combined biogas production and composting, mechanical and biological treatment (MBT) and incineration. Data on all parts of the organic waste treatment was collected including waste composition data and data from treatment facilities and their respective energy systems. Based on that the organic waste management systems in the border region were modelled using the EASETECH waste management LCA-model. The main output is a life cycle assessment showing large differences in the environmental performance of the two different regions with the Danish region performing better in 10 out of 14 impact categories. Furthermore, the importance of the substituted district heating systems was investigated showing an impact up to 34% of the entire system for one impact category and showing large difference between each heating system substituted, e.g. in "Global Warming" the impact was from -16 to -1.1 milli person equivalent/tonne treated waste from substitution of centralised hard coal and decentralised natural gas, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.
Investigation of Counter-Flow in a Heat Pipe-Thermoelectric Generator (HPTEG)
NASA Astrophysics Data System (ADS)
Remeli, Muhammad Fairuz; Singh, Baljit; Affandi, Nor Dalila Nor; Ding, Lai Chet; Date, Abhijit; Akbarzadeh, Aliakbar
2017-05-01
This study explores a method of generating electricity while recovering waste heat through the integration of heat pipes and thermoelectric generators (i.e. HPTEG system). The simultaneous waste heat recovery and power generation processes are achieved without the use of any moving parts. The HPTEG system consists of bismuth telluride thermoelectric generators (TEG), which are sandwiched between two finned pipes to achieve a temperature gradient across the TEG for electricity generation. A counter-flow heat exchanger was built using two separate air ducts. The air ducts were thermally coupled using the HPTEG modules. The evaporator section of the heat pipe absorbed the waste heat in a hot air duct. The heat was then transferred across the TEG surfaces. The condenser section of the HPTEG collected the excess heat from the TEG cold side before releasing it to the cold air duct. A 2-kW electrical heater was installed in the hot air duct to simulate the exhaust gas. An air blower was installed at the inlet of each duct to direct the flow of air into the ducts. A theoretical model was developed for predicting the performance of the HPTEG system using the effectiveness-number of transfer units method. The developed model was able to predict the thermal and electrical output of the HPTEG, along with the rate of heat transfer. The results showed that by increasing the cold air velocity, the effectiveness of the heat exchanger was able to be increased from approximately 52% to 58%. As a consequence of the improved heat transfer, maximum power output of 4.3 W was obtained.
Thermally driven electrokinetic energy conversion with liquid water microjets
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; ...
2015-11-01
One goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Thermally driven electrokinetic energy conversion with liquid water microjets
NASA Astrophysics Data System (ADS)
Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.
2015-11-01
A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.
Closing the Loop on Space Waste
NASA Astrophysics Data System (ADS)
Meier, A. J.; Hintze, P. E.
2018-02-01
A heat transfer study of mission mixed waste streams in a reactor hot zone, along with solid, tar, and water recovery. This research enables reliability and benefit on waste conversion systems to manage our environmental impact, on- and off-Earth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gingerich, Daniel B; Bartholomew, Timothy V; Mauter, Meagan S
With the Environmental Protection Agency’s recent Effluent Limitation Guidelines for Steam Electric Generators, power plants are having to install and operate new wastewater technologies. Many plants are evaluating desalination technologies as possible compliance options. However, the desalination technologies under review that can reduce wastewater volume or treat to a zero-liquid discharges standard have a significant energy penalty to the plant. Waste heat, available from the exhaust gas or cooling water from coal-fired power plants, offers an opportunity to drive wastewater treatment using thermal desalination technologies. One such technology is forward osmosis (FO). Forward osmosis utilizes an osmotic pressure gradient tomore » passively pull water from a saline or wastewater stream across a semi-permeable membrane and into a more concentrated draw solution. This diluted draw solution is then fed into a distillation column, where the addition of low temperature waste heat can drive the separation to produce a reconcentrated draw solution and treated water for internal plant reuse. The use of low-temperature waste heat decouples water treatment from electricity production and eliminates the link between reducing water pollution and increasing air emissions from auxiliary electricity generation. In order to evaluate the feasibility of waste heat driven FO, we first build a model of an FO system for flue gas desulfurization (FGD) wastewater treatment at coal-fired power plants. This model includes the FO membrane module, the distillation column for draw solution recovery, and waste heat recovery from the exhaust gas. We then add a costing model to account for capital and operating costs of the forward osmosis system. We use this techno-economic model to optimize waste heat driven FO for the treatment of FGD wastewater. We apply this model to three case studies: the National Energy Technology Laboratory (NETL) 550 MW model coal fired power plant without carbon capture and sequestration, the NETL 550 MW model coal fired power plant with carbon capture and sequestration, and Plant Bowen in Eularhee, Georgia. For each case, we identify the design that minimizes the cost of wastewater treatment given the safely recoverable waste heat. We benchmark the cost minimum waste-heat forward osmosis solutions to two conventional options that rely on electricity, reverse osmosis and mechanical vapor recompression. Furthermore, we quantify the environmental damages from the emissions of carbon dioxide and criteria air pollutants for each treatment option. With this information we can assess the trade-offs between treatment costs, energy consumption, and air emissions between the treatment options.« less
Reducing the Cost of RLS: Waste Heat from Crop Production Can Be Used for Waste Processing
NASA Technical Reports Server (NTRS)
Lamparter, Richard; Flynn, Michael; Kliss, Mark (Technical Monitor)
1997-01-01
The applicability of plant-based life support systems has traditionally suffered from the limitations imposed by the high energy demand of controlled environment growth chambers. Theme types of systems are typically less than 2% efficient at converting electrical energy into biomass. The remaining 98% of supplied energy is converted to thermal energy. Traditionally this thermal energy is discharged to the ambient environment as waste heat. This paper describes an energy efficient plant-based life support system which has been designed for use at the Amundsen-Scott South Pole Station. At the South Pole energy is not lost to the environment. What is lost is the ability to extract useful work from it. The CELSS Antarctic Analog Program (CAAP) has developed a system which is designed to extract useful work from the waste thermal energy generated from plant growth lighting systems. In the CAAP system this energy is used to purify Station Sewage.
Recycled Thermal Energy from High Power Light Emitting Diode Light Source.
Ji, Jae-Hoon; Jo, GaeHun; Ha, Jae-Geun; Koo, Sang-Mo; Kamiko, Masao; Hong, JunHee; Koh, Jung-Hyuk
2018-09-01
In this research, the recycled electrical energy from wasted thermal energy in high power Light Emitting Diode (LED) system will be investigated. The luminous efficiency of lights has been improved in recent years by employing the high power LED system, therefore energy efficiency was improved compared with that of typical lighting sources. To increase energy efficiency of high power LED system further, wasted thermal energy should be re-considered. Therefore, wasted thermal energy was collected and re-used them as electrical energy. The increased electrical efficiency of high power LED devices was accomplished by considering the recycled heat energy, which is wasted thermal energy from the LED. In this work, increased electrical efficiency will be considered and investigated by employing the high power LED system, which has high thermal loss during the operating time. For this research, well designed thermoelement with heat radiation system was employed to enhance the collecting thermal energy from the LED system, and then convert it as recycled electrical energy.
Alternative Fuels Data Center: Medium-Duty Vehicle Idle Reduction
vehicle's regular heat-transfer system and are mounted in the engine compartment. The heater draws gasoline or diesel from the fuel tank to heat the vehicle's coolant and pumps the heated coolant through the starts. Waste-Heat Recovery Systems Another option for keeping a vehicle warm is an energy recovery
Thermoelectric energy harvesting for a solid waste processing toilet
NASA Astrophysics Data System (ADS)
Stokes, C. David; Baldasaro, Nicholas G.; Bulman, Gary E.; Stoner, Brian R.
2014-06-01
Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls.
Chemical heat pump and chemical energy storage system
Clark, Edward C.; Huxtable, Douglas D.
1985-08-06
A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.
Practical Considerations of Waste Heat Reuse for a Mars Mission Advanced Life Support System
NASA Technical Reports Server (NTRS)
Levri, Julie; Finn, Cory; Luna, Bernadette (Technical Monitor)
2000-01-01
Energy conservation is a key issue in design optimization of Advanced Life Support Systems (ALSS) for long-term space missions. By considering designs for conservation at the system level, energy saving opportunities arise that would otherwise go unnoticed. This paper builds on a steady-state investigation of system-level waste heat reuse in an ALSS with a low degree of crop growth for a Mars mission. In past studies, such a system has been defined in terms of technology types, hot and cold stream identification and stream energy content. The maximum steady-state potential for power and cooling savings within the system was computed via the Pinch Method. In this paper, several practical issues are considered for achieving a pragmatic estimate of total system savings in terms of equivalent system mass (ESM), rather than savings solely in terms of power and cooling. In this paper, more realistic ESM savings are computed by considering heat transfer inefficiencies during material transfer. An estimate of the steady-state mass, volume and crewtime requirements associated with heat exchange equipment is made by considering heat exchange equipment material type and configuration, stream flow characteristics and associated energy losses during the heat exchange process. Also, previously estimated power and cooling savings are adjusted to reflect the impact of such energy losses. This paper goes one step further than the traditional Pinch Method of considering waste heat reuse in heat exchangers to include ESM savings that occur with direct reuse of a stream. For example, rather than exchanging heat between crop growth lamp cooling air and air going to a clothes dryer, air used to cool crop lamps might be reused directly for clothes drying purposes. When thermodynamically feasible, such an approach may increase ESM savings by minimizing the mass, volume and crewtime requirements associated with stream routing equipment.
40 CFR 63.1422 - Compliance dates and relationship of this rule to existing applicable rules.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to... constitute compliance with the applicable provisions of this subpart with respect to that heat exchange...
40 CFR 63.1422 - Compliance dates and relationship of this rule to existing applicable rules.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to... constitute compliance with the applicable provisions of this subpart with respect to that heat exchange...
40 CFR 63.1422 - Compliance dates and relationship of this rule to existing applicable rules.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to... constitute compliance with the applicable provisions of this subpart with respect to that heat exchange...
40 CFR 63.1422 - Compliance dates and relationship of this rule to existing applicable rules.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for the same heat exchange system(s) or waste management unit(s) that are subject to this subpart. (1) After the applicable compliance date specified in this subpart, if a heat exchange system subject to... constitute compliance with the applicable provisions of this subpart with respect to that heat exchange...
Waste burning and heat recovery characteristics of a mass burn incineration system.
Chen, Wei-Hsin
2003-02-01
An experimental investigation on waste combustion characteristics of a mass burn incinerator is conducted in this study. Three different charging modes, including operator manipulation, periodic feeding, and temperature control, are taken into consideration. The results indicate that the burning characteristics in the combustion chambers are closely related to the operating modes. For the operator manipulation where the wastes are sent into the incinerator in two short periods, the entire temperature distribution of the primary combustion chamber can be partitioned into two parts, thereby yielding waste group combustion. Temperature oscillations in both the primary and secondary combustion chambers are characterized for the periodic feeding. However, because of the shorter charging period and smaller amount of waste, the burning interaction between the two chambers is initially weak and becomes notable in the final stage. When temperature control is performed, the burning oscillation of the primary combustion chamber is further amplified so the combustion interaction is drastic. These exhibitions are mainly caused by the competition between endothermic and exothermic reactions. The instantaneous heat exchange efficiency of the cyclone heat recovery system (CHRS) installed in the incineration system is also evaluated to obtain details of energy recovery behaviors. As a result, the efficiency tends to decrease linearly with increasing temperature of hot flue gas. This arises from the fact that heat loss from the gas to the environment is increased when the temperature of the former is higher, even though the temperature gradient across the cyclone is enlarged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrum, Lee; Manic, Milos
The debate continues on the magnitude and validity of climate change caused by human activities. However, there is no debate about the need to make buildings, modes of transportation, factories, and homes as energy efficient as possible. Given that climate change could occur with the wasteful use of fossil fuel and the fact that fossil energy costs could and will swing wildly, it is imperative that every effort be made to utilize energy sources to their fullest. Hybrid energy systems (HES) are two or more separate energy producers used together to produce energy commodities. The HES this report focuses onmore » is the use of nuclear reactor waste heat as a source of further energy utilization. Nuclear reactors use a fluid to cool the core and produce the steam needed for the production of electricity. Traditionally this steam, or coolant, is used to convert the energy then cooled elsewhere. The heat is released into the environment without being used further. By adding technologies to nuclear reactors to use the wasted heat, a system can be developed to make more than just electricity and allow for loading following capabilities.« less
Utilization of the wastes of vital activity
NASA Technical Reports Server (NTRS)
Gusarov, B. G.; Drigo, Y. A.; Novikov, V. M.; Samsonov, N. M.; Farafonov, N. S.; Chizhov, S. V.; Yazdovskiy, V. I.
1979-01-01
The recycling of wastes from the biological complex for use in life-support systems is discussed. Topics include laboratory equipment, heat treatment of waste materials, mineralization of waste products, methods for production of ammonium hydroxide and nitric acid, the extraction of sodium chloride from mineralized products, and the recovery of nutrient substances for plants from urine.
40 CFR 63.1094 - What waste streams are exempt from the requirements of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... CATEGORIES (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange... section are exempt from this subpart. (a) Waste in the form of gases or vapors that is emitted from process fluids. (b) Waste that is contained in a segregated storm water sewer system. Waste Requirements ...
Utilization of waste heat from aluminium electrolytic cell
NASA Astrophysics Data System (ADS)
Nosek, Radovan; Gavlas, Stanislav; Lenhard, Richard; Malcho, Milan; Sedlak, Veroslav; Teie, Sebastian
2017-12-01
During the aluminium production, 50% of the supplied energy is consumed by the chemical process, and 50% of the supplied energy is lost in form of heat. Heat losses are necessary to maintain a frozen side ledge to protect the side walls, so extra heat has to be wasted. In order to increase the energy efficiency of the process, it is necessary to significantly lower the heat losses dissipated by the furnace's external surface. Goodtech Recovery Technology (GRT) has developed a technology based on the use of heat pipes for utilization energy from the waste heat produced in the electrolytic process. Construction of condenser plays important role for efficient operation of energy systems. The condensation part of the heat pipe is situated on top of the heating zone. The thermal oil is used as cooling medium in the condenser. This paper analyses the effect of different operation condition of thermal oil to thermal performance. From the collected results it is obvious that the larger mass flow and higher temperature cause better thermal performance and lower pressure drop.
NASA Astrophysics Data System (ADS)
Du, Zenghui
2018-04-01
At present, the flue gas waste heat utilization projects of coal-fired boilers are often limited by low temperature corrosion problems and conventional PID control. The flue gas temperature cannot be reduced to the best efficiency temperature of wet desulphurization, resulting in the failure of heat recovery to be the maximum. Therefore, this paper analyzes, researches and solves the remaining problems of the cold end system of thermal power station, so as to provide solutions and theoretical support for energy saving and emission reduction and upgrading and the improvement of the comprehensive efficiency of the units.
NASA Astrophysics Data System (ADS)
Hao, Lifen; Qiu, Lixia; Li, Jinping; Li, Dongxiong
2018-01-01
A new heat supplying system is proposed that utilizes the exhausted gas of the boiler to substitute the extraction steam from the turbine as the driving force for the adsorption heat pump regarding the recovery of the condensation heat of power plant. However, our system is not subject to the low efficiency of wasted heat utilization due to the low temperature of flue gas, which hence possesses higher performance in COP factors in the utilization of heat than that of the conventional techniques of using flues gas, so the amount of extracted gas from turbine can be reduced and the power generate rate be enhanced. Subsequently, detailed evaluation of the performance of this system in the point of views of thermodynamics and economics are presented in this work. For the instance of a 330 MW heat supply unit, 5 sample cities are chosen to demonstrate and confirm our economic analysis. It is revealed that when the heating coefficient of the heat pump is 1.8, the investment payback periods for these 5 cities are within the range of 2.4 to 4.8 years, which are far below the service year of the heat pump, demonstrating remarkable economic benefits for our system.
40 CFR 63.1087 - What actions must I take if a leak is detected?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Repair Requirements for Heat Exchange Systems § 63.1087 What actions must I take if a... within 7 calendar days of the repair or startup, whichever is later, to confirm that the heat exchange...
40 CFR 63.1087 - What actions must I take if a leak is detected?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Repair Requirements for Heat Exchange Systems § 63.1087 What actions must I take if a... within 7 calendar days of the repair or startup, whichever is later, to confirm that the heat exchange...
40 CFR 63.1087 - What actions must I take if a leak is detected?
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Repair Requirements for Heat Exchange Systems § 63.1087 What actions must I take if a... within 7 calender days of the repair or startup, whichever is later, to confirm that the heat exchange...
40 CFR 63.1087 - What actions must I take if a leak is detected?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Repair Requirements for Heat Exchange Systems § 63.1087 What actions must I take if a... within 7 calendar days of the repair or startup, whichever is later, to confirm that the heat exchange...
40 CFR 63.1087 - What actions must I take if a leak is detected?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste Operations Repair Requirements for Heat Exchange Systems § 63.1087 What actions must I take if a... within 7 calender days of the repair or startup, whichever is later, to confirm that the heat exchange...
NASA Technical Reports Server (NTRS)
Winters, Brian A.
1990-01-01
The results are reported of a study of various methods for propulsively disposing of waste gases. The options considered include hydrazine waste gas injection, resistojets, and eutectic salt phase change heat beds. An overview is given of the waste gas disposal system and how hydrozine waste gas injector thruster is implemented within it. Thruster performance for various gases are given and comparisons with currently available thruster models are made. The impact of disposal on station propellant requirements and electrical power usage are addressed. Contamination effects, reliability and maintainability assessments, safety issues, and operational scenarios of the waste gas thruster and disposal system are considered.
Microturbine and Thermoelectric Generator Combined System: A Case Study.
Miozzo, Alvise; Boldrini, Stefano; Ferrario, Alberto; Fabrizio, Monica
2017-03-01
Waste heat recovery is one of the suitable industrial applications of thermoelectrics. Thermoelectric generators (TEG) are used, commonly, only for low-mid size power generation systems. The low efficiency of thermoelectric modules generally does not encourage their combination with high power and temperature sources, such as gas turbines. Nevertheless, the particular features of thermoelectric technology (no moving parts, scalability, reliability, low maintenance costs) are attractive for many applications. In this work, the feasibility of the integration of a TE generator into a cogeneration system is evaluated. The cogeneration system consists of a microturbine and heat exchangers for the production of electrical and thermal energy. The aim is to improve electric power generation by using TE modules and the “free” thermal energy supplied by the cogeneration system, through the exhaust pipe of the microturbine. Three different solutions for waste heat recovery from the exhausts gas are evaluated, from the fluid dynamics and heat transfer point of view, to find out a suitable design strategy for a combined power generation system.
40 CFR 63.481 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2013 CFR
2013-07-01
... provisions of § 63.170 shall occur no later than June 19, 2001. (6) Compliance with the heat exchange system... requirements for heat exchange systems or waste management units. Paragraphs (l)(1) and (l)(2) of this section... compliance date specified in this subpart, if a heat exchange system subject to this subpart is also subject...
40 CFR 63.481 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2014 CFR
2014-07-01
... provisions of § 63.170 shall occur no later than June 19, 2001. (6) Compliance with the heat exchange system... requirements for heat exchange systems or waste management units. Paragraphs (l)(1) and (l)(2) of this section... compliance date specified in this subpart, if a heat exchange system subject to this subpart is also subject...
40 CFR 63.481 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2012 CFR
2012-07-01
... provisions of § 63.170 shall occur no later than June 19, 2001. (6) Compliance with the heat exchange system... requirements for heat exchange systems or waste management units. Paragraphs (l)(1) and (l)(2) of this section... compliance date specified in this subpart, if a heat exchange system subject to this subpart is also subject...
40 CFR 63.481 - Compliance dates and relationship of this subpart to existing applicable rules.
Code of Federal Regulations, 2011 CFR
2011-07-01
... provisions of § 63.170 shall occur no later than June 19, 2001. (6) Compliance with the heat exchange system... requirements for heat exchange systems or waste management units. Paragraphs (l)(1) and (l)(2) of this section... compliance date specified in this subpart, if a heat exchange system subject to this subpart is also subject...
Fission Surface Power Technology Demonstration Unit Test Results
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven M.; Sanzi, James L.
2016-01-01
The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7 percent resulting in a net system power of 8.1 kW and a system level efficiency of 17.2 percent. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to the NASA Glenn Research Center (GRC). The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3 percent. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 percent.
Fission Surface Power Technology Demonstration Unit Test Results
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Geng, Steven; Sanzi, James
2016-01-01
The Fission Surface Power (FSP) Technology Demonstration Unit (TDU) is a system-level demonstration of fission power technology intended for use on manned missions to Mars. The Baseline FSP systems consists of a 190 kWt UO2 fast-spectrum reactor cooled by a primary pumped liquid metal loop. This liquid metal loop transfers heat to two intermediate liquid metal loops designed to isolate fission products in the primary loop from the balance of plant. The intermediate liquid metal loops transfer heat to four Stirling Power Conversion Units (PCU), each of which produce 12 kWe (48 kW total) and reject waste heat to two pumped water loops, which transfer the waste heat to titanium-water heat pipe radiators. The FSP TDU simulates a single leg of the baseline FSP system using an electrically heater core simulator, a single liquid metal loop, a single PCU, and a pumped water loop which rejects the waste heat to a Facility Cooling System (FCS). When operated at the nominal operating conditions (modified for low liquid metal flow) during TDU testing the PCU produced 8.9 kW of power at an efficiency of 21.7% resulting in a net system power of 8.1 kW and a system level efficiency of 17.2%. The reduction in PCU power from levels seen during electrically heated testing is the result of insufficient heat transfer from the NaK heater head to the Stirling acceptor, which could not be tested at Sunpower prior to delivery to GRC. The maximum PCU power of 10.4 kW was achieved at the maximum liquid metal temperature of 875 K, minimum water temperature of 350 K, 1.1 kg/s liquid metal flow, 0.39 kg/s water flow, and 15.0 mm amplitude at an efficiency of 23.3%. This resulted in a system net power of 9.7 kW and a system efficiency of 18.7 %.
Apparatus for incinerating hazardous waste
Chang, Robert C. W.
1994-01-01
An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.
Apparatus for incinerating hazardous waste
Chang, R.C.W.
1994-12-20
An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.
Sewage sludge drying by energy recovery from OFMSW composting: preliminary feasibility evaluation.
Rada, Elena Cristina; Ragazzi, Marco; Villotti, Stefano; Torretta, Vincenzo
2014-05-01
In this paper an original energy recovery method from composting is analyzed. The integrated system exploits the heat available from the aerobic biochemical process in order to support the drying of sewage sludge, using a specific solar greenhouse. The aim is to tackle the problem of organic waste treatment, with specific regard to food waste. This is done by optimizing the energy consumption of the aerobic process of composting, using the heat produced to solve a second important waste management problem such as the sewage waste treatment. Energy and mass balances are presented in a preliminary feasibility study. Referring to a composting plant with a capacity of 15,000 t/y of food waste, the estimation of the power from recovered heat for the entire plant resulted about 42 kW. The results demonstrated that the energy recoverable can cover part of the heat necessary for the treatment of sludge generated by the population served by the composting plant (in terms of food waste and green waste collection). The addition of a renewable source such as solar energy could cover the residual energy demand. The approach is presented in detail in order for it to be replicated in other case studies or at full scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Recovery of exhaust waste heat for a hybrid car using steam turbine
NASA Astrophysics Data System (ADS)
Ababatin, Yasser
A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.
Thermoelectric power generator with intermediate loop
Bell, Lon E; Crane, Douglas Todd
2013-05-21
A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.
Thermoelectric power generator with intermediate loop
Bel,; Lon, E [Altadena, CA; Crane, Douglas Todd [Pasadena, CA
2009-10-27
A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.
Gas Engine-Driven Heat Pump with Desiccant Dehumidification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Bo; Abu-Heiba, Ahmad
About 40% of total U.S. energy consumption was consumed in residential and commercial buildings. Improved air-conditioning technology has by far the greatest potential impact on the electric industry compared to any other technology that uses electricity. This paper describes the development of an innovative natural gas, propane, LNG or bio-gas IC engine-driven heat pump (GHP) with desiccant dehumidification (GHP/DD). This integrated system has higher overall efficiencies than conventional equipment for space cooling, addresses both new and existing commercial buildings, and more effectively controls humidity in humid areas. Waste heat is recovered from the GHP to provide energy for regenerating themore » desiccant wheel and to augment heating capacity and efficiency. By combining the two technologies, an overall source COP of greater that 1.5 (hot, humid case) can be achieved by utilizing waste heat from the engine to reduce the overall energy required to regenerate the desiccant. Moreover, system modeling results show that the sensible heat ratio (SHR- sensible heat ratio) can be lowered to less 60% in a dedicated outdoor air system application with hot, humid cases.« less
WASTE-TO-RESOURCE: NOVEL MEMBRANE SYSTEMS FOR SAFE AND SUSTAINABLE BRINE MANAGEMENT
Decentralized waste-to-reuse systems will be optimized to maximize resource and energy recovery and minimize chemicals and energy use. This research will enhance fundamental knowledge on simultaneous heat and mass transport through membranes, lower process costs, and furthe...
Status of the Development of Low Cost Radiator for Surface Fission Power - II
NASA Technical Reports Server (NTRS)
Tarau, Calin; Maxwell, Taylor; Anderson, William G.; Wagner, Corey; Wrosch, Matthew; Briggs, Maxwell H.
2016-01-01
NASA Glenn Research Center (GRC) is developing fission power system technology for future Lunar and Martian surface power applications. The systems are envisioned in the 10 to 100kWe range and have an anticipated design life of 8 to 15 years with no maintenance. NASA GRC is currently setting up a 55 kWe non-nuclear system ground test in thermal-vacuum to validate technologies required to transfer reactor heat, convert the heat into electricity, reject waste heat, process the electrical output, and demonstrate overall system performance. The paper reports on the development of the heat pipe radiator to reject the waste heat from the Stirling convertors. Reducing the radiator mass, size, and cost is essential to the success of the program. To meet these goals, Advanced Cooling Technologies, Inc. (ACT) and Vanguard Space Technologies, Inc. (VST) are developing a single facesheet radiator with heat pipes directly bonded to the facesheet. The facesheet material is a graphite fiber reinforced composite (GFRC) and the heat pipes are titanium/water Variable Conductance Heat Pipes (VCHPs). By directly bonding a single facesheet to the heat pipes, several heavy and expensive components can be eliminated from the traditional radiator design such as, POCO"TM" foam saddles, aluminum honeycomb, and a second facesheet. As mentioned in previous papers by the authors, the final design of the waste heat radiator is described as being modular with independent GFRC panels for each heat pipe. The present paper reports on test results for a single radiator module as well as a radiator cluster consisting of eight integral modules. These tests were carried out in both ambient and vacuum conditions. While the vacuum testing of the single radiator module was performed in the ACT's vacuum chamber, the vacuum testing of the eight heat pipe radiator cluster took place in NASA GRC's vacuum chamber to accommodate the larger size of the cluster. The results for both articles show good agreement with the predictions and are presented in the paper.
Automotive Thermoelectric Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Meisner, Gregory P.
2015-03-01
Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M.G. Reynolds, K. Rober, F.R. Stabler; Marlow, JPL, Dana, Delphi E&S, Eberspaecher, Molycorp, University of Washington, Purdue University, Michigan State University, ORNL, BNL. Supported by US DOE.
Waste heat recovery on multiple low-speed reciprocating engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, R.E.
1984-09-01
With rising fuel costs, energy conservation has taken on added significance. Installation of waste heat recovery units (WHRU's) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines also has been identified as having energy conservation potential. This paper reviews the development and implementation of a WHRU for multiple low-speed engines at the Katy (TX) gas plant. WHRU's for these engines should be differentiated from high-speed engines and gas turbines in that low-speed engines produce low-frequency, high-amplitude pulsating exhaust. The design of a WHRUmore » system must take this potentially destructive pulsation into account. At Katy, the pulsation forces were measured at high-amplitude frequencies and then used to design a pulsation filter and structural stiffness into the various components of the WHRU to minimize vibration and improve system reliability.« less
NASA Technical Reports Server (NTRS)
Fleming, M. L.
1980-01-01
Four possible arrangements of the materials experiment carrier (MEC) and power system (PS) thermal control loops were defined which would provide one kW of heat rejection for each kW of power to the MEC payload. These arrangements were compared to the baseline reference concept which provides only 16 kW heat rejection to show the cost of obtaining symmetry in terms of dollars, weight, complexity, growth potential, ease of integration, technology and total launch weight. The results of these comparisons was that the concept which splits the PS thermal control loop into two systems, one to reject PS waste heat and one payload waste heat, appeared favorable. The fluid selection study resulted in recommendation of FC72 as the MEC heat transport fluid based on the thermal and physical characteristics. The coatings reviewed indicated anodized and alodine treated aluminum surfaces or silver teflon are the best choices for the MEC vehicle where durability is an important factor. For high temperature radiators silver teflon or zinc orthotitanate are recommended choices.
Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine
NASA Astrophysics Data System (ADS)
Ma, Zheshu; Chen, Hua; Zhang, Yong
2017-09-01
The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebersorger, S.; Beigl, P., E-mail: peter.beigl@boku.ac.at
Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions aremore » met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).« less
Lebersorger, S; Beigl, P
2011-01-01
Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation). Copyright © 2011 Elsevier Ltd. All rights reserved.
Method for producing synthetic fuels from solid waste
Antal, Jr., Michael J.
1976-11-23
Organic solid wastes represented by the general chemical formula C.sub.X H.sub.Y O.sub.Z are reacted with steam at elevated temperatures to produce H.sub.2 and CO.sub.2. The overall process is represented by the reaction C.sub.X H.sub.Y O.sub.Z + 2(X-Z/2)H.sub.2 O.fwdarw..sup..delta.XCO.sub.2 + [(Y/2) + 2(X-Z/2)] H.sub.2 . (1) reaction (1) is endothermic and requires heat. This heat is supplied by a tower top solar furnace; alternatively, some of the solid wastes can be burned to supply heat for the reaction. The hydrogen produced by reaction (1) can be used as a fuel or a chemical feedstock. Alternatively, methanol can be produced by the commercial process CO.sub.2 + 3H.sub.2 .fwdarw. CH.sub.3 OH + H.sub.2 O . (2) since reaction (1) is endothermic, the system represents a method for storing heat energy from an external source in a chemical fuel produced from solid wastes.
NASA Astrophysics Data System (ADS)
Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.
2013-04-01
A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.
Waste heat generation: A comprehensive review.
Yeşiller, Nazli; Hanson, James L; Yee, Emma H
2015-08-01
A comprehensive review of heat generation in various types of wastes and of the thermal regime of waste containment facilities is provided in this paper. Municipal solid waste (MSW), MSW incineration ash, and mining wastes were included in the analysis. Spatial and temporal variations of waste temperatures, thermal gradients, thermal properties of wastes, average temperature differentials, and heat generation values are provided. Heat generation was influenced by climatic conditions, mean annual earth temperatures, waste temperatures at the time of placement, cover conditions, and inherent heat generation potential of the specific wastes. Time to onset of heat generation varied between months and years, whereas timelines for overall duration of heat generation varied between years and decades. For MSW, measured waste temperatures were as high as 60-90°C and as low as -6°C. MSW incinerator ash temperatures varied between 5 and 87°C. Mining waste temperatures were in the range of -25 to 65°C. In the wastes analyzed, upward heat flow toward the surface was more prominent than downward heat flow toward the subsurface. Thermal gradients generally were higher for MSW and incinerator ash and lower for mining waste. Based on thermal properties, MSW had insulative qualities (low thermal conductivity), while mining wastes typically were relatively conductive (high thermal conductivity) with ash having intermediate qualities. Heat generation values ranged from -8.6 to 83.1MJ/m(3) and from 0.6 to 72.6MJ/m(3) for MSW and mining waste, respectively and was 72.6MJ/m(3) for ash waste. Conductive thermal losses were determined to range from 13 to 1111MJ/m(3)yr. The data and analysis provided in this review paper can be used in the investigation of heat generation and thermal regime of a wide range of wastes and waste containment facilities located in different climatic regions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Philip, South Dakota geothermal district heating systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lund, J.W.
1997-12-01
The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.
A review of numerical simulation of hydrothermal systems.
Mercer, J.W.; Faust, C.R.
1979-01-01
Many advances in simulating single and two-phase fluid flow and heat transport in porous media have recently been made in conjunction with geothermal energy research. These numerical models reproduce system thermal and pressure behaviour and can be used for other heat-transport problems, such as high-level radioactive waste disposal and heat-storage projects. -Authors
Organic rankine cycle system for use with a reciprocating engine
Radcliff, Thomas D.; McCormick, Duane; Brasz, Joost J.
2006-01-17
In a waste heat recovery system wherein an organic rankine cycle system uses waste heat from the fluids of a reciprocating engine, provision is made to continue operation of the engine even during periods when the organic rankine cycle system is inoperative, by providing an auxiliary pump and a bypass for the refrigerant flow around the turbine. Provision is also made to divert the engine exhaust gases from the evaporator during such periods of operation. In one embodiment, the auxiliary pump is made to operate simultaneously with the primary pump during normal operations, thereby allowing the primary pump to operate at lower speeds with less likelihood of cavitation.
Development of numerical model for predicting heat generation and temperatures in MSW landfills.
Hanson, James L; Yeşiller, Nazli; Onnen, Michael T; Liu, Wei-Lien; Oettle, Nicolas K; Marinos, Janelle A
2013-10-01
A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A
2013-02-01
The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production. Copyright © 2012 Elsevier B.V. All rights reserved.
Heat-Pipe-Associated Localized Thermoelectric Power Generation System
NASA Astrophysics Data System (ADS)
Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo
2014-06-01
The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.
Development of an engineering model traveling wave tube amplifier for space communication systems
NASA Technical Reports Server (NTRS)
Eallonardo, C. M.; Songli, J.; Basiulis, A.
1972-01-01
A design has been made of a 100 watt traveling-wave tube amplifier for use in space communication applications. The features of very high overall efficiency and heat rejection of waste heat at low thermal densities were predominant in the design concept. The design concept was proven by building a series of tubes, operating at efficiencies up to 50%. These tubes utilized heat pipe cooling and heat distribution such that 150 watts of waste heat was rejected at a density of less than 1.5 watts per square inch. A power supply to convert a 28 volt primary line of the needs of the TWT was built and operated at 85% efficiency.
Waste Heat Recovery from a High Temperature Diesel Engine
NASA Astrophysics Data System (ADS)
Adler, Jonas E.
Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the engine to reduce uncertainty. Changes to exhaust emissions were recorded using a 5-gas analyzer. The engine condition was also monitored throughout the tests by engine compression testing, oil analysis, and a complete teardown and inspection after testing was completed. The integrity of the head gasket seal proved to be a significant problem and leakage of engine coolant into the combustion chamber was detected when testing ended. The post-test teardown revealed problems with oil breakdown at locations where temperatures were highest, with accompanying component wear. The results from the experiment were then used as inputs for a WHR system model using ethanol as the working fluid, which provided estimates of system output and improvement in efficiency. Thermodynamic models were created for eight different WHR systems with coolant temperatures of 90 °C, 150 °C, 175 °C, and 200 °C and condenser temperatures of 60 °C and 90 °C at a single operating point of 3100 rpm and 24 N-m of torque. The models estimated that WHR output for both condenser temperatures would increase by over 100% when the coolant temperature was increased from 90 °C to 200 °C. This increased WHR output translated to relative efficiency gains as high as 31.0% for the 60 °C condenser temperature and 24.2% for the 90 °C condenser temperature over the baseline engine efficiency at 90 °C. Individual heat exchanger models were created to estimate the footprint for a WHR system for each of the eight systems. When the coolant temperature increased from 90 °C to 200 °C, the total heat exchanger volume increased from 16.6 x 103 cm3 to 17.1 x 10 3 cm3 with a 60 °C condenser temperature, but decreased from 15.1 x 103 cm3 to 14.2 x 10 3 cm3 with a 90 °C condenser temperature. For all cases, increasing the coolant temperature resulted in an improvement in the efficiency gain for each cubic meter of heat exchanger volume required. Additionally, the engine oil coolers represented a significant portion of the required heat exchanger volume due to abnormally low engine oil temperatures during the experiment ( 80 °C). Future studies should focus on allowing the engine oil to reach higher operating temperatures which would decrease the heat rejected to the engine oil and reduce the heat duty for the oil coolers resulting in reduced oil cooler volume.
Drill-back studies examine fractured, heated rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenberg, H.A.; Flexser, S.; Myer, L.R.
1990-01-01
To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences inmore » compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.« less
Large Efficient Intelligent Heating Relay Station System
NASA Astrophysics Data System (ADS)
Wu, C. Z.; Wei, X. G.; Wu, M. Q.
2017-12-01
The design of large efficient intelligent heating relay station system aims at the improvement of the existing heating system in our country, such as low heating efficiency, waste of energy and serious pollution, and the control still depends on the artificial problem. In this design, we first improve the existing plate heat exchanger. Secondly, the ATM89C51 is used to control the whole system and realize the intelligent control. The detection part is using the PT100 temperature sensor, pressure sensor, turbine flowmeter, heating temperature, detection of user end liquid flow, hydraulic, and real-time feedback, feedback signal to the microcontroller through the heating for users to adjust, realize the whole system more efficient, intelligent and energy-saving.
A Save-Energy, Save-Money Program That Pays Off
ERIC Educational Resources Information Center
Embersits, John F.
1976-01-01
Suggested guidelines for energy saving on campus include a 3-phase plan: (1) Quick Fix--effective management of what you already have; (2) Refitting--modification of existing systems and installation of simple controls; (3) Systems Convert--installation of computerized controls, waste-heat recovery, solid-waste recovery utilization and other…
NASA Astrophysics Data System (ADS)
Lorenz, Ralph
Unlike most solar system surface environments, Titan has an atmosphere that is both cold and dense. This means heat transfer to and from a vehicle is determined by convection, rather than by radiation which dominates on Earth and Mars. With surface temperatures near 94K, batteries and systems require heating to operate. Solar power is impractical, so a spacecraft intended to operate for longer than a few hours on Titan must have a radioisotope power source (RPS). Such sources convert heat from Plutonium decay into electricity, with an efficiency that varies from about 5% for thermoelectric systems to 20% for engine cycles such as Stirling. For vehicles with 100-200W electrical power, the 500-4000 W ‘waste’ heat in the Titan environment can be valuable in that it can be exploited to maintain thermal conditions inside the vehicle. The generally benign Titan environment, and the outstanding scientific and popular interest in its exploration, has attracted a number of mission concepts including a lander for Titan’s equatorial dunefields, light gas and hot air (‘Montgolfière’) balloons, airplanes, and capsules that float on its polar seas (e.g. the proposed Titan Mare Explorer.) However, the choice of conversion technology is key to the success of these different platforms. Waste heat can perturb meteorological measurements in several ways. First by creating a warm air plume (an effect observed on Viking and Curiosity.) Second, rain or seaspray falling onto hot radiator surfaces can evaporate causing a local enhancement of methane humidity. Third, sufficiently strong heating could perturb local winds. Similar effects, and the potential generation of effervescence or even fog, may result for capsules floating in liquid hydrocarbons. For landers and drifting buoys, these perturbations may significantly degrade environmental measurements, or at least demand tall meteorology masts, for the higher waste heat output of thermoelectric systems, and a Stirling system therefore has considerable appeal. For airplanes, the superior power:weight ratio of Stirling systems is virtually essential, and for light gas balloons, the lower thermal perturbation of a Stirling system is certainly preferable. On the other hand, the lifting capacity of a Montgolfière balloon is directly proportional to the heat flux, and a thermoelectric system is more practical. Similarly, if magnetic fields or seismic measurements on a lander are of higher priority than meteorology, the lack of moving parts in a thermoelectric system is preferable. I review the Titan surface environment and the thermal interactions of the Huygens probe with it, and discuss the implications of RPS waste heat for different science mission concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cimpan, Ciprian, E-mail: cic@kbm.sdu.dk; Wenzel, Henrik
2013-07-15
Highlights: • Compared systems achieve primary energy savings between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste.} • Savings magnitude is foremost determined by chosen primary energy and materials production. • Energy consumption and process losses can be upset by increased technology efficiency. • Material recovery accounts for significant shares of primary energy savings. • Direct waste-to-energy is highly efficient if cogeneration (CHP) is possible. - Abstract: Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical–biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogasmore » and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJ{sub primary}/100 MJ{sub input} {sub waste}, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3–9.5%, 1–18% and 1–8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery.« less
Utilization of air conditioner condenser as water heater in an effort to energy conservation
NASA Astrophysics Data System (ADS)
Sonawan, Hery; Saputro, Panji; Kurniawan, Iden Muhtar
2018-04-01
This paper presents an experimental study of utilization of air conditioner condenser as water heater. Modification of existing air conditioner system is an effort to harvest waste heat energy from condenser. Modification is conducted in order to test the system into two mode tests, first mode with one condenser and second mode with two condensers. Harvesting the waste heat from condenser needs a theoretical and practice study to see how much the AC performance changes if modifications are made. It should also be considered how the technique of harvesting waste heat for water heating purposes. From the problem, this paper presents a comparison between AC performance before and after modification. From the experiment, an increase in compressor power consumption is 4.3% after adding a new condenser. The hot water temperature is attained to 69 °C and ready for warm bath. The increase in power consumption is not too significant compared to the attainable hot water temperature. Also seen that the value of condenser Performance Factor increase from 5.8 to 6.25 or by 7.8%.
NASA Astrophysics Data System (ADS)
Coşar, Gökhan; Pooyanfar, Mirparham; Amirabedin, Ehsan; Topal, Hüseyin
2013-12-01
Recovering energy from municipal solid waste (MSW) is one of the most important issues of energy management in developed countries. This raises even more interest as world fossil fuel reserves diminish and fuel prices rise. Being one of main processes of waste disposal, anaerobic digestion can be used as a means to reduce fossil fuel and electricity consumption as well as reducing emissions. With growing demand for cooling in Turkey, especially during warm seasons and considering the energy costs, utilizing heat-driven absorption cooling systems coupled with an anaerobic digester for local cooling purposes is a potentially interesting alternative for electricity driven compression cooling. The aim of this article is to study the viability of utilizing biogas obtained from MSW anaerobic digestion as the main fuel for heating facilities of Gazi University, Turkey and also the energy source for an absorption cooling system designed for the central library of the aforementioned campus. The results prove that the suggested system is sustainably and financially appealing and has the potential to replace the conventional electricity driven cooling systems with a reasonable net present worth; moreover, it can notably reduce carbon dioxide emissions.
Recent development of anaerobic digestion processes for energy recovery from wastes.
Nishio, Naomichi; Nakashimada, Yutaka
2007-02-01
Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.
Cimpan, Ciprian; Wenzel, Henrik
2013-07-01
Primary energy savings potential is used to compare five residual municipal solid waste treatment systems, including configurations with mechanical (MT) and mechanical-biological (MBT) pre-treatment, which produce waste-derived fuels (RDF and SRF), biogas and/or recover additional materials for recycling, alongside a system based on conventional mass burn waste-to-energy and ash treatment. To examine the magnitude of potential savings we consider two energy efficiency levels (state-of-the-art and best available technology), the inclusion/exclusion of heat recovery (CHP vs. PP) and three different background end-use energy production systems (coal condensing electricity and natural gas heat, Nordic electricity mix and natural gas heat, and coal CHP energy quality allocation). The systems achieved net primary energy savings in a range between 34 and 140 MJprimary/100 MJinput waste, in the different scenario settings. The energy footprint of transportation needs, pre-treatment and reprocessing of recyclable materials was 3-9.5%, 1-18% and 1-8% respectively, relative to total energy savings. Mass combustion WtE achieved the highest savings in scenarios with CHP production, nonetheless, MBT-based systems had similarly high performance if SRF streams were co-combusted with coal. When RDF and SRF was only used in dedicated WtE plants, MBT-based systems totalled lower savings due to inherent system losses and additional energy costs. In scenarios without heat recovery, the biodrying MBS-based system achieved the highest savings, on the condition of SRF co-combustion. As a sensitivity scenario, alternative utilisation of SRF in cement kilns was modelled. It supported similar or higher net savings for all pre-treatment systems compared to mass combustion WtE, except when WtE CHP was possible in the first two background energy scenarios. Recovery of plastics for recycling before energy recovery increased net energy savings in most scenario variations, over those of full stream combustion. Sensitivity to assumptions regarding virgin plastic substitution was tested and was found to mostly favour plastic recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Tongjun; Wang, Tongcai; Luan, Weiling; Cao, Qimin
2017-05-01
Waste heat recovery through thermoelectric generators is a promising way to improve energy conversion efficiency. This paper proposes a type of heat pipe assisted thermoelectric generator (HP-TEG) system. The expandable evaporator and condenser surface of the heat pipe facilitates the intensive assembly of thermoelectric (TE) modules to compose a compact device. Compared with a conventional layer structure thermoelectric generator, this system is feasible for the installment of more TE couples, thus increasing power output. To investigate the performance of the HP-TEG and the optimal number of TE couples, a theoretical model was presented and verified by experiment results. Further theoretical analysis results showed the performance of the HP-TEG could be further improved by optimizing the parameters, including the inlet air temperature, the thermal resistance of the heating section, and thermal resistance of the cooling structure. Moreover, applying a proper number of TE couples is important to acquire the best power output performance.
Animal biocalorimeter and waste management system
NASA Technical Reports Server (NTRS)
Poppendiek, Heinz F. (Inventor); Trimailo, William R. (Inventor)
1995-01-01
A biocalorimeter and waste management system is provided for making metabolic heat release measurements of animals or humans in a calorimeter (enclosure) using ambient air as a low velocity source of ventilating air through the enclosure. A shroud forces ventilating air to pass over the enclosure from an end open to ambient air at the end of the enclosure opposite its ventilating air inlet end and closed around the inlet end of the enclosure in order to obviate the need for regulating ambient air temperature. Psychrometers for measuring dry- and wet-bulb temperature of ventilating air make it possible to account for the sensible and latent heat additions to the ventilating air. A waste removal system momentarily recirculates high velocity air in a closed circuit through the calorimeter wherein a sudden rise in moisture is detected in the ventilating air from the outlet.
In-Flight Performance of the TES Loop Heat Pipe Rejection System: Seven Years in Space
NASA Technical Reports Server (NTRS)
Rodriguez, Jose I.; Na-Nakornpanom, Arthur
2012-01-01
The Tropospheric Emission Spectrometer (TES) instrument heat rejection system has been operating in space for nearly 8 years since launched on NASA's EOS Aura Spacecraft. The instrument is an infrared imaging fourier transform spectrometer with spectral coverage of 3.2 to 15.4 microns. The loop heat pipe (LHP) based heat rejection system manages all of the instrument components waste heat including the two mechanical cryocoolers and their drive electronics. Five propylene LHPs collect and transport the instrument waste heat to the near room temperature nadir viewing radiators. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. Focal plane decontamination cycles require power cycling both cryocoolers which also requires the two cryocooler LHPs to turn off and on during each cycle. To date, the cryocooler LHPs have undergone 24 start-ups in orbit successfully. This paper reports on the TES cryocooler loop heat pipe based heat rejection system performance. After a brief overview of the instrument thermal design, the paper presents detailed data on the highly successful space operation of the loop heat pipes since instrument turn-on in 2004. The data shows that the steady-state and transient operation of the LHPs has not changed since 2004 and shows consistent and predictable performance. The LHP based heat rejection system has provided a nearly constant heat rejection heat sink for all of its equipment which has led to exceptional overall instrument performance with world class science.
Heat-pump-centered integrated community energy systems: System development summary
NASA Astrophysics Data System (ADS)
Calm, J. M.
1980-02-01
An introduction to district heating systems employing heat pumps to enable use of low temperature energy sources is presented. These systems operate as thermal utilities to provide space heating and may also supply space cooling, service water heating, and other thermal services. Otherwise wasted heat from industrial and commercial processes, natural sources including solar and geothermal heat, and heat stored on an annual cycle from summer cooling may be effectively utilized by the systems described. More than one quarter of the energy consumed in the United States is used to heat and cool buildings and to heat service water. Natural gas and oil provide approximately 83% of this energy. The systems described show potential to reduce net energy consumption for these services by 20 to 50% and to allow fuel substitution with less scarce resources not practical in smaller, individual building systems. Seven studies performed for the system development phase are summarized.
Space-based Solar Power: Possible Defense Applications and Opportunities for NRL Contributions
2009-10-23
missions. At the spacecraft system level, a two-phase system can be used to transfer heat from a heat source (such as solar collectors and power...The solar arrays’ position allows them to radiate waste heat from both faces, as in conventional spacecraft practice. Both the antenna structure...Brayton cycle engine heated by a point-focus solar concentrator. NRL worked with NASA Glenn Research Center in developing means to integrate their
Koo, Ja-Kong; Jeong, Seung-Ik
2015-05-01
Since medical insurance was introduced in the Republic of Korea, there have been several increases concerning medical waste. In order to solve these problems, we have applied life cycle assessment and life cycle cost. But these methods cannot be a perfect decision-making tool because they can only evaluate environmental and economic burdens. Thus, as one of many practical methods the shared smart and mutual - green growth considers economic growth, environmental protection, social justice, science technology and art, and mutual voluntarism when applied to medical waste management in the Republic of Korea. Four systems were considered: incineration, incineration with heat recovery, steam sterilisation, and microwave disinfection. This research study aimed to assess pollutant emissions from treatment, transport, and disposal. Global warming potential, photochemical oxidant creation potential, acidifications potential, and human toxicity are considered to be environmental impacts. Total investment cost, transport cost, operation, and maintenance cost for the medical waste are considered in the economy evaluations though life cycle cost. The social development, science technology and art, and mutual voluntarism are analysed through the Delphi-method conducted by expert groups related to medical waste. The result is that incineration with heat recovery is the best solution. However, when heat recovery is impossible, incineration without heat recovery becomes the next best choice. That is why 95% of medical waste is currently treated by both incineration and incineration with heat recovery within the Republic of Korea. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Maag, W. L.; Bollenbacher, G.
1974-01-01
Energy and economic analyses were performed for an on-site power-plant with waste heat recovery. The results show that for any specific application there is a characteristic power conversion efficiency that minimizes fuel consumption, and that efficiencies greater than this do not significantly improve fuel consumption. This type of powerplant appears to be a reasonably attractive investment if higher fuel costs continue.
Tolerance of wheat and lettuce plants grown on human mineralized waste to high temperature stress
NASA Astrophysics Data System (ADS)
Ushakova, Sofya A.; Tikhomirov, Alexander A.; Shikhov, Valentin N.; Gros, Jean-Bernard; Golovko, Tamara K.; Dal'ke, Igor V.; Zakhozhii, Ilya G.
2013-06-01
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m-2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.
NASA Astrophysics Data System (ADS)
Sharif, Hafiz Zafar; Leman, A. M.; Muthuraman, S.; Salleh, Mohd Najib Mohd; Zakaria, Supaat
2017-09-01
Combined heating, cooling, and power is also known as Tri-generation. Tri-generation system can provide power, hot water, space heating and air -conditioning from single source of energy. The objective of this study is to propose a method to evaluate the characteristic and performance of a single stage lithium bromide-water (LiBr-H2O) absorption machine operated with waste thermal energy of internal combustion engine which is integral part of trigeneration system. Correlations for computer sensitivity analysis are developed in data fit software for (P-T-X), (H-T-X), saturated liquid (water), saturated vapor, saturation pressure and crystallization temperature curve of LiBr-H2O Solution. Number of equations were developed with data fit software and exported into excel work sheet for the evaluation of number of parameter concerned with the performance of vapor absorption machine such as co-efficient of performance, concentration of solution, mass flow rate, size of heat exchangers of the unit in relation to the generator, condenser, absorber and evaporator temperatures. Size of vapor absorption machine within its crystallization limits for cooling and heating by waste energy recovered from exhaust gas, and jacket water of internal combustion engine also presented in this study to save the time and cost for the facilities managers who are interested to utilize the waste thermal energy of their buildings or premises for heating and air conditioning applications.
Membrane-free battery for harvesting low-grade thermal energy.
Yang, Yuan; Loomis, James; Ghasemi, Hadi; Lee, Seok Woo; Wang, Yi Jenny; Cui, Yi; Chen, Gang
2014-11-12
Efficient and low-cost systems are desired to harvest the tremendous amount of energy stored in low-grade heat sources (<100 °C). An attractive approach is the thermally regenerative electrochemical cycle (TREC), which uses the dependence of electrode potential on temperature to construct a thermodynamic cycle for direct heat-to-electricity conversion. By varying the temperature, an electrochemical cell is charged at a lower voltage than discharged; thus, thermal energy is converted to electricity. Recently, a Prussian blue analog-based system with high efficiency has been demonstrated. However, the use of an ion-selective membrane in this system raises concerns about the overall cost, which is crucial for waste heat harvesting. Here, we report on a new membrane-free battery with a nickel hexacyanoferrate (NiHCF) cathode and a silver/silver chloride anode. The system has a temperature coefficient of -0.74 mV K(-1). When the battery is discharged at 15 °C and recharged at 55 °C, thermal-to-electricity conversion efficiencies of 2.6% and 3.5% are achieved with assumed heat recuperation of 50% and 70%, respctively. This work opens new opportunities for using membrane-free electrochemical systems to harvest waste heat.
Integrating Waste Heat from CO 2 Removal and Coal-Fired Flue Gas to Increase Plant Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irvin, Nick; Kowalczyk, Joseph
In project DE-FE0007525, Southern Company Services demonstrated heat integration methods for the capture and sequestration of carbon dioxide produced from pulverized coal combustion. A waste heat recovery technology (termed High Efficiency System) from Mitsubishi Heavy Industries America was integrated into an existing 25-MW amine-based CO 2 capture process (Kansai Mitsubishi Carbon Dioxide Recovery Process®1) at Southern Company’s Plant Barry to evaluate improvements in the energy performance of the pulverized coal plant and CO 2 capture process. The heat integration system consists of two primary pieces of equipment: (1) the CO 2 Cooler which uses product CO 2 gas from themore » capture process to heat boiler condensate, and (2) the Flue Gas Cooler which uses air heater outlet flue gas to further heat boiler condensate. Both pieces of equipment were included in the pilot system. The pilot CO 2 Cooler used waste heat from the 25-MW CO 2 capture plant (but not always from product CO 2 gas, as intended). The pilot Flue Gas Cooler used heat from a slipstream of flue gas taken from downstream of Plant Barry’s air heater. The pilot also included a 0.25-MW electrostatic precipitator. The 25-MW High Efficiency System operated for approximately six weeks over a four month time period in conjunction with the 25-MW CO 2 capture facility at Plant Barry. Results from the program were used to evaluate the technical and economic feasibility of full-scale implementation of this technology. The test program quantified energy efficiency improvements to a host power plant that could be realized due to the High Efficiency System. Through the execution of this project, the team verified the integrated operation of the High Efficiency System and Kansai Mitsubishi Carbon Dioxide Recovery Process®. The ancillary benefits of the High Efficiency System were also quantified, including reduced water consumption, a decrease in toxic air emissions, and better overall air quality control systems performance.« less
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system was evaluated based on the Capstone 30kW Microturbine developed by Cain Ind...
NASA Technical Reports Server (NTRS)
Sagerman, G. D.; Barna, G. J.; Burns, R. K.
1979-01-01
The Cogeneration Technology Alternatives Study (CTAS), a program undertaken to identify the most attractive advanced energy conversion systems for industrial cogeneration applications in the 1985-2000 time period, is described, and preliminary results are presented. Two cogeneration options are included in the analysis: a topping application, in which fuel is input to the energy conversion system which generates electricity and waste heat from the conversion system is used to provide heat to the process, and a bottoming application, in which fuel is burned to provide high temperature process heat and waste heat from the process is used as thermal input to the energy conversion system which generates energy. Steam turbines, open and closed cycle gas turbines, combined cycles, diesel engines, Stirling engines, phosphoric acid and molten carbonate fuel cells and thermionics are examined. Expected plant level energy savings, annual energy cost savings, and other results of the economic analysis are given, and the sensitivity of these results to the assumptions concerning fuel prices, price of purchased electricity and the potential effects of regional energy use characteristics is discussed.
Comaskey, Brian J [Walnut Creek, CA; Scheibner, Karl F [Tracy, CA; Ault, Earl R [Livermore, CA
2007-05-01
The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
Development of a Thermoacoustic Stirling Engine Technology Demonstrator
NASA Astrophysics Data System (ADS)
Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland
2014-08-01
Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.
Waste-Heat-Driven Cooling Using Complex Compound Sorbents
NASA Technical Reports Server (NTRS)
Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh
2004-01-01
Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.
Assessment of solar-assisted gas-fired heat pump systems
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1981-01-01
As a possible application for the Goldstone Energy Project, the performance of a 10 ton heat pump unit using a hybrid solar gas energy source was evaluated in an effort to optimize the solar collector size. The heat pump system is designed to provide all the cooling and/or heating requirements of a selected office building. The system performance is to be augmented in the heating mode by utilizing the waste heat from the power cycle. A simplified system analysis is described to assess and compute interrrelationships of the engine, heat pump, and solar and building performance parameters, and to optimize the solar concentrator/building area ratio for a minimum total system cost. In addition, four alternative heating cooling systems, commonly used for building comfort, are described; their costs are compared, and are found to be less competitive with the gas solar heat pump system at the projected solar equipment costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckmann, R.A.; Winget, R.N.; Infanger, R.C.
1984-01-31
Two series of experiments were completed to determine (a) toxicity of waste water from power plants on warm water fish and (b) multiple use of waste heat and water for aquatic animal and plant production. All three types of waste water from a typical coal-fired power plant are acceptable for growing catfish and tilapia following aeration. This growth was compared with fish raised in spring water. Closed, recirculating polyculture systems using evaporation pond water operated efficiently for plant (duckweed) and animal (fish and freshwater prawns) production. Duckweed is an excellent supplement for fish feed. Tilapia and freshwater prawns grew rapidlymore » in the tanks containing duckweed only. 10 references, 13 tables.« less
Lyophilization for Water Recovery From Solid Waste
NASA Technical Reports Server (NTRS)
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
System Design for a Nuclear Electric Spacecraft Utilizing Out-of-core Thermionic Conversion
NASA Technical Reports Server (NTRS)
Estabrook, W. C.; Phillips, W. M.; Hsieh, T.
1976-01-01
Basic guidelines are presented for a nuclear space power system which utilizes heat pipes to transport thermal power from a fast nuclear reactor to an out of core thermionic converter array. Design parameters are discussed for the nuclear reactor, heat pipes, thermionic converters, shields (neutron and gamma), waste heat rejection systems, and the electrical bus bar-cable system required to transport the high current/low voltage power to the processing equipment. Dimensions are compatible with shuttle payload bay constraints.
40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 13 2014-07-01 2014-07-01 false Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...
40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 13 2012-07-01 2012-07-01 false Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...
40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 13 2013-07-01 2012-07-01 true Are duct burners and waste heat... Stationary Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam...
NREL Reveals Potential for Capturing Waste Heat via Nanotubes | News | NREL
Reveals Potential for Capturing Waste Heat via Nanotubes News Release: NREL Reveals Potential for Capturing Waste Heat via Nanotubes April 4, 2016 A finely tuned carbon nanotube thin film has the potential to act as a thermoelectric power generator that captures and uses waste heat, according to
DOE Office of Scientific and Technical Information (OSTI.GOV)
N.D. Francis
The objective of this calculation is to develop a time dependent in-drift effective thermal conductivity parameter that will approximate heat conduction, thermal radiation, and natural convection heat transfer using a single mode of heat transfer (heat conduction). In order to reduce the physical and numerical complexity of the heat transfer processes that occur (and must be modeled) as a result of the emplacement of heat generating wastes, a single parameter will be developed that approximates all forms of heat transfer from the waste package surface to the drift wall (or from one surface exchanging heat with another). Subsequently, with thismore » single parameter, one heat transfer mechanism (e.g., conduction heat transfer) can be used in the models. The resulting parameter is to be used as input in the drift-scale process-level models applied in total system performance assessments for the site recommendation (TSPA-SR). The format of this parameter will be a time-dependent table for direct input into the thermal-hydrologic (TH) and the thermal-hydrologic-chemical (THC) models.« less
Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex
2010-05-01
of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy, solar heating (and cooling), and...peaks of individual buildings; thus the needed gen- eration and back-up capacity is smaller. To develop the community energy concept, energy models...overall thermal energy system, a hydraulic flow model (Figure 5) should be used to analyze critical capacities and flows in the system. This material is
Range Extension Opportunities While Heating a Battery Electric Vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lustbader, Jason A; Rugh, John P; Titov, Eugene V
The Kia Soul battery electric vehicle (BEV) is available with either a positive temperature coefficient (PTC) heater or an R134a heat pump (HP) with PTC heater combination (1). The HP uses both ambient air and waste heat from the motor, inverter, and on-board-charger (OBC) for its heat source. Hanon Systems, Hyundai America Technical Center, Inc. (HATCI) and the National Renewable Energy Laboratory jointly, with financial support from the U.S. Department of Energy, developed and proved-out technologies that extend the driving range of a Kia Soul BEV while maintaining thermal comfort in cold climates. Improved system configuration concepts that use thermalmore » storage and waste heat more effectively were developed and evaluated. Range extensions of 5%-22% at ambient temperatures ranging from 5 degrees C to -18 degrees C were demonstrated. This paper reviews the three-year effort, including test data of the baseline and modified vehicles, resulting range extension, and recommendations for future actions.« less
Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks
DOE Office of Scientific and Technical Information (OSTI.GOV)
WILLIS, W.L.
This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.
Sources and potential application of waste heat utilization at a gas processing facility
NASA Astrophysics Data System (ADS)
Alshehhi, Alyas Ali
Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.
NASA Astrophysics Data System (ADS)
Nowicki, Cassandre; Gosselin, Louis
2012-08-01
Efficient smelters currently consume roughly 13 MWh of electricity per ton of aluminum, while roughly half of that energy is lost as thermal waste. Although waste heat is abundant, current thermal integration in primary aluminum facilities remains limited. This is due to both the low quality of waste heat available and the shortage of potential uses within reasonable distance of identified waste heat sources. In this article, we present a mapping of both heat dissipation processes and heat demands around a sample facility (Alcoa Deschambault Quebec smelter). Our primary aim is to report opportunities for heat recovery and integration in the primary aluminum industry. We consider potential heat-to-sink pairings individually and assess their thermodynamic potential for producing energy savings.
Nuclear Power and the Environment.
ERIC Educational Resources Information Center
Dukert, Joseph M.
Described are the major environmental effects resulting from the production of electricity by nuclear power plants. Discussed are effects of waste heat, radioactivity, radioactive waste elimination, costs, and future prospects. Included are diagrams illustrating cooling tower operation, effects of thermal discharge into water systems, radioactive…
Smith, Gregory C.; Tokarz, Richard D.; Parry, Jr., Harvey L.; Braun, Daniel J.
1980-01-01
A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.
40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 12 2011-07-01 2009-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units...
40 CFR 63.6092 - Are duct burners and waste heat recovery units covered by subpart YYYY?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Are duct burners and waste heat... Combustion Turbines What This Subpart Covers § 63.6092 Are duct burners and waste heat recovery units covered by subpart YYYY? No, duct burners and waste heat recovery units are considered steam generating units...
Optimization of a heat-pipe-cooled space radiator for use with a reactor-powered Stirling engine
NASA Technical Reports Server (NTRS)
Moriarty, Michael P.; French, Edward P.
1987-01-01
The design optimization of a reactor-Stirling heat-pipe-cooled radiator is presented. The radiator is a self-deploying concept that uses individual finned heat pipe 'petals' to reject waste heat from a Stirling engine. Radiator optimization methodology is presented, and the results of a parametric analysis of the radiator design variables for a 100-kW(e) system are given. The additional steps of optiminzing the radiator resulted in a net system mass savings of 3 percent.
NASA Astrophysics Data System (ADS)
Guo, Yuan
2017-05-01
This paper proposed a new concept named airborne power generation system based on Rankine cycle by heat energy, namely, the presented system combined the Rankine cycle with environmental control system in aircraft to recycle the waste heat of engine bleed air with high temperature and generate power. This paper mainly discussed the choosing of optimum working fluid which could apply in the combined power generation system mentioned above when the temperature of the coming bleed air was about 400 degree centigrade.
Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE).
Riber, Christian; Bhander, Gurbakhash S; Christensen, Thomas H
2008-02-01
A model for life-cycle assessment of waste incinerators is described and applied to a case study for illustrative purposes. As life-cycle thinking becomes more integrated into waste management, quantitative tools for assessing waste management technologies are needed. The presented model is a module in the life-cycle assessment model EASEWASTE. The module accounts for all uses of materials and energy and credits the incinerator for electricity and heat recovered. The energy recovered is defined by the user as a percentage of the energy produced, calculated on the lower heating value of the wet waste incinerated. Emissions are either process-specific (related to the amount of waste incinerated) or input-specific (related to the composition of the waste incinerated), while mass transfer to solid outputs are governed by transfer coefficients specified by the user. The waste input is defined by 48 material fractions and their chemical composition. The model was used to quantify the environmental performance of the incineration plant in Aarhus, Denmark before and after its upgrading in terms of improved flue gas cleaning and energy recovery. It demonstrated its usefulness in identifying the various processes and substances that contributed to environmental loadings as well as to environmental savings. The model was instrumental in demonstrating the importance of the energy recovery system not only for electricity but also heat from the incinerator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reis, Chuck; Nelson, Eric; Armer, James
The purpose of this playbook and accompanying spreadsheets is to generalize the detailed CBP analysis and to put tools in the hands of experienced refrigeration designers to evaluate multiple applications of refrigeration waste heat reclaim across the United States. Supermarkets with large portfolios of similar buildings can use these tools to assess the impact of large-scale implementation of heat reclaim systems. In addition, the playbook provides best practices for implementing heat reclaim systems to achieve the best long-term performance possible. It includes guidance on operations and maintenance as well as measurement and verification.
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
Water treatment capacity of forward osmosis systems utilizing power plant waste heat
Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.
2015-06-11
Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less
(Heat utilization at a commercial laundramat)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
An EPDM rubber tube mat (trade name - Sola Roll) was used as a heat exchanger to trap heat being vented through the dryer exhaust pipes at the Friendship St. Laundramat. Results of studies are presented. A savings of 54.4% on fuel oil usage was obtained during a full year's trial of the system. The waste heat was used to heat water for the washing machines. 5 figs., 1 tab. (DMC)
Solution to problems of bacterial impurity of heating systems
NASA Astrophysics Data System (ADS)
Sharapov, V. I.; Zamaleev, M. M.
2015-09-01
The article describes the problems of the operation of open and closed district heating systems related to the bacteriological contamination of heating-system water. It is noted that district heating systems are basically safe in sanitary epidemiological terms. Data on the dangers of sulfide contamination of heating systems are given. It is shown that the main causes of the development of sulfate-reducing and iron bacteria in heating systems are a significant biological contamination of source water to fuel heating systems, which is determined by water oxidizability, and a low velocity of the motion of heating-system water in the heating system elements. A case of sulfide contamination of a part of the outdoor heat-supply system of the city of Ulyanovsk is considered in detail. Measures for cleaning pipelines and heating system equipment from the waste products of sulfate-reducing bacteria and iron bacteria and for improving the quality of heating-system water by organizing the hydraulic and water-chemistry condition that makes it possible to avoid the bacteriological contamination of heating systems are proposed. The positive effect of sodium silicate on the prevention of sulfide contamination of heating systems is shown.
Chen, Ting; Jin, Yiying; Qiu, Xiaopeng; Chen, Xin
2015-03-01
Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.
Study on the marine ejector refrigeration-rotary desiccant air-conditioning system
NASA Astrophysics Data System (ADS)
Zheng, C. Y.; Zheng, G. J.; Yu, W. S.; Chen, W.
2017-08-01
A newly developed ejector refrigeration-rotary desiccant air-conditioning (ERRD A/C) system is proposed to recover ship waste heat as far as possible. Its configuration is built firstly, then its advantages are analyzed, after that, with the help of psychrometric chart, some important parameters such as power consumption, steam consumption and COP of ERRD A/C system are calculated theoretically under design conditions of a real marine A/C, and comparative analysis with conventional A/C is deployed. The results show that the power consumption of ERRD A/C system is only 32.87% of conventional A/C, which meant that ERRD A/C system has potential to make full use of ship waste heat to realize energy saving and environmental protection when using green refrigerant such as water.
Conservation and Renewable Energy Program: Bibliography, 1988 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.
Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less
Life-Cycle Evaluation of Domestic Energy Systems
NASA Astrophysics Data System (ADS)
Bando, Shigeru; Hihara, Eiji
Among the growing number of environmental issues, the global warming due to the increasing emission of greenhouse gases, such as carbon dioxide CO2, is the most serious one. In order to reduce CO2 emissions in energy use, it is necessary to reduce primary energy consumption, and to replace energy sources with alternatives that emit less CO2.One option of such ideas is to replace fossil gas for water heating with electricity generated by nuclear power, hydraulic power, and other methods with low CO2 emission. It is also important to use energy efficiently and to reduce waste heat. Co-generation system is one of the applications to be able to use waste heat from a generator as much as possible. The CO2 heat pump water heaters, the polymer electrolyte fuel cells, and the micro gas turbines have high potential for domestic energy systems. In the present study, the life-cycle cost, the life-cycle consumption of primary energy and the life-cycle emission of CO2 of these domestic energy systems are compare. The result shows that the CO2 heat pump water heaters have an ability to reduce CO2 emission by 10%, and the co-generation systems also have another ability to reduce primary energy consumption by 20%.
Energy and Exergy Analysis of Vapour Absorption Refrigeration Cycle—A Review
NASA Astrophysics Data System (ADS)
Kanabar, Bhaveshkumar Kantilal; Ramani, Bharatkumar Maganbhai
2016-07-01
In recent years, an energy crisis and the energy consumption have become global problems which restrict the sustainable growth. In these scenarios the scientific energy recovery and the utilization of various kinds of waste heat become very important. The waste heat can be utilized in many ways and one of the best practices is to use it for vapour absorption refrigeration system. To ensure efficient working of absorption cycle and utilization of optimum heat, exergy is the best tool for analysis. This paper provides the comprehensive picture of research and development of absorption refrigeration technology, practical and theoretical analysis with different arrangements of the cycle.
Incineration for resource recovery in a closed ecological life support system
NASA Technical Reports Server (NTRS)
Upadhye, R. S.; Wignarajah, K.; Wydeven, T.
1993-01-01
A functional schematic, including mass and energy balance, of a solid waste processing system for a controlled ecological life support system (CELSS) was developed using Aspen Plus, a commercial computer simulation program. The primary processor in this system is an incinerator for oxidizing organic wastes. The major products derived from the incinerator are carbon dioxide and water, which can be recycled to a crop growth chamber (CGC) for food production. The majority of soluble inorganics are extracted or leached from the inedible biomass before they reach the incinerator, so that they can be returned directly to the CGC and reused as nutrients. The heat derived from combustion of organic compounds in the incinerator was used for phase-change water purification. The waste streams treated by the incinerator system conceptualized in this work are inedible biomass from a CGC, human urine (including urinal flush water) and feces, humidity condensate, shower water, and trash. It is estimated that the theoretical minimum surface area required for the radiator to reject the unusable heat output from this system would be 0.72 sq m/person at 298 K.
G189A analytical simulation of the RITE Integrated Waste Management-Water System
NASA Technical Reports Server (NTRS)
Coggi, J. V.; Clonts, S. E.
1974-01-01
This paper discusses the computer simulation of the Integrated Waste Management-Water System Using Radioisotopes for Thermal Energy (RITE) and applications of the simulation. Variations in the system temperature and flows due to particular operating conditions and variations in equipment heating loads imposed on the system were investigated with the computer program. The results were assessed from the standpoint of the computed dynamic characteristics of the system and the potential applications of the simulation to system development and vehicle integration.
Heat Recovery at Army Materiel Command (AMC) Facilities
1988-06-01
industrial complexes and somewhat smaller commercial/ HVAC ** systems, a portion of this waste heat can be recovered, improving energy efficiency. Heat...devices are used in sequence. Other shell-and-tube applications include heat transfer from process liquids, condensates, and cooling water. Two...pipe consists of a sealed element involving an annular capillary wick con- tained inside the full length of the tube, with an appropriate entrained
NASA Astrophysics Data System (ADS)
Schuller, G.; Vázquez, F. Vidal; Waiblinger, W.; Auvinen, S.; Ribeirinha, P.
2017-04-01
In this work a methanol steam reforming (MSR) reactor has been operated thermally coupled to a high temperature polymer electrolyte fuel cell stack (HT-PEMFC) utilizing its waste heat. The operating temperature of the coupled system was 180 °C which is significantly lower than the conventional operating temperature of the MSR process which is around 250 °C. A newly designed heat exchanger reformer has been developed by VTT (Technical Research Center of Finland LTD) and was equipped with commercially available CuO/ZnO/Al2O3 (BASF RP-60) catalyst. The liquid cooled, 165 cm2, 12-cell stack used for the measurements was supplied by Serenergy A/S. The off-heat from the electrochemical fuel cell reaction was transferred to the reforming reactor using triethylene glycol (TEG) as heat transfer fluid. The system was operated up to 0.4 A cm-2 generating an electrical power output of 427 Wel. A total stack waste heat utilization of 86.4% was achieved. It has been shown that it is possible to transfer sufficient heat from the fuel cell stack to the liquid circuit in order to provide the needed amount for vaporizing and reforming of the methanol-water-mixture. Furthermore a set of recommendations is given for future system design considerations.
Megalla, Dina; Van Geel, Paul J; Doyle, James T
2016-09-01
A landfill gas to energy (LFGTE) facility in Ste. Sophie, Quebec was instrumented with sensors which measure temperature, oxygen, moisture content, settlement, total earth pressure, electrical conductivity and mounding of leachate. These parameters were monitored during the operating phase of the landfill in order to better understand the biodegradation and waste stabilization processes occurring within a LFGTE facility. Conceptual and numerical models were created to describe the heat transfer processes which occur within five waste lifts placed over a two-year period. A finite element model was created to simulate the temperatures within the waste and estimate the heat budget over a four and a half year period. The calibrated model was able to simulate the temperatures measured to date within the instrumented waste profile at the site. The model was used to evaluate the overall heat budget for the waste profile. The model simulations and heat budget provide a better understanding of the heat transfer processes occurring within the landfill and the relative impact of the various heat source/sink and storage terms. Aerobic biodegradation appears to play an important role in the overall heat budget at this site generating 36% of the total heat generated within the waste profile during the waste placement stages of landfill operations. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrochemical incineration of wastes
NASA Technical Reports Server (NTRS)
Bockris, J. O. M.; Bhardwaj, R. C.; Tennakoon, C. L. K.
1993-01-01
There is an increasing concern regarding the disposal of human wastes in space vehicles. It is of utmost importance to convert such wastes into harmless products which can be recycled into an Environmental Life Support System (CELSS), which incorporates the growth of plants (e.g. wheat) and algae to supplement the diet of the astronauts. Chemical treatments have proven relatively unsatisfactory and tend to be increasingly so with increase of the mission duration. Similarly, the use of heat to destroy wastes and convert them to CO2 by the use of air or oxygen has the disadvantage and difficulty of dissipating heat in a space environment and to the inevitable presence of oxides of nitrogen and carbon monoxide in the effluent gases. In particular, electrochemical techniques offer several advantages including low temperatures which may be used and the absence of any NO and CO in the evolved gases. Successful research has been carried out in the electrochemical oxidation of wastes over the last several years. The major task for 1992 was to conduct parametric studies in preparation for the building of a breadboard system, i.e., an actual practical device to consume the daily waste output of one astronaut in 24 hours, electrochemical incineration of human wastes in space vehicles. One of the main objectives was to decide on the type of three dimensional or other electrode system that would suit this purpose. The various types of electrode systems which were considered for this purpose included: rotating disc electrode, micro-electrode (an array), vibrating electrode, jet electrode, and packed bed electrode.
40 CFR 63.1082 - What definitions do I need to know?
Code of Federal Regulations, 2010 CFR
2010-07-01
...) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and Waste... resulting from the quench and compression of cracked gas (the cracking furnace effluent) at an ethylene... within an ethylene production unit. Process wastewater is not organic wastes, process fluids, product...
PL-3, PHASE I, TASK 3, RESEARCH AND DEVELOPMENT REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humphries, G. E.
1962-03-12
Results of researeh and development tasks are presented along with recommendations for future development work Work (s reported ofn the areas of plant assembly and relocation, housings and footings, waste heat dissipation, instrumentation, refueling systems, waste disposal, shiceding, core nuclear thermal and hydraulic studies, gaseous waste processing, and critical experiments on a 5 x 5 array of Type 3 fuel elements. (auth)
Optimal utilization of waste-to-energy in an LCA perspective.
Fruergaard, T; Astrup, T
2011-03-01
Energy production from two types of municipal solid waste was evaluated using life cycle assessment (LCA): (1) mixed high calorific waste suitable for production of solid recovered fuels (SRF) and (2) source separated organic waste. For SRF, co-combustion was compared with mass burn incineration. For organic waste, anaerobic digestion (AD) was compared with mass burn incineration. In the case of mass burn incineration, incineration with and without energy recovery was modelled. Biogas produced from anaerobic digestion was evaluated for use both as transportation fuel and for heat and power production. All relevant consequences for energy and resource consumptions, emissions to air, water and soil, upstream processes and downstream processes were included in the LCA. Energy substitutions were considered with respect to two different energy systems: a present-day Danish system based on fossil fuels and a potential future system based on 100% renewable energy. It was found that mass burn incineration of SRF with energy recovery provided savings in all impact categories, but co-combustion was better with respect to Global Warming (GW). If all heat from incineration could be utilized, however, the two alternatives were comparable for SRF. For organic waste, mass burn incineration with energy recovery was preferable over anaerobic digestion in most impact categories. Waste composition and flue gas cleaning at co-combustion plants were critical for the environmental performance of SRF treatment, while the impacts related to utilization of the digestate were significant for the outcome of organic waste treatment. The conclusions were robust in a present-day as well as in a future energy system. This indicated that mass burn incineration with efficient energy recovery is a very environmentally competitive solution overall. Copyright © 2010 Elsevier Ltd. All rights reserved.
Waste Heat Approximation for Understanding Dynamic Compression in Nature and Experiments
NASA Astrophysics Data System (ADS)
Jeanloz, R.
2015-12-01
Energy dissipated during dynamic compression quantifies the residual heat left in a planet due to impact and accretion, as well as the deviation of a loading path from an ideal isentrope. Waste heat ignores the difference between the pressure-volume isentrope and Hugoniot in approximating the dissipated energy as the area between the Rayleigh line and Hugoniot (assumed given by a linear dependence of shock velocity on particle velocity). Strength and phase transformations are ignored: justifiably, when considering sufficiently high dynamic pressures and reversible transformations. Waste heat mis-estimates the dissipated energy by less than 10-20 percent for volume compressions under 30-60 percent. Specific waste heat (energy per mass) reaches 0.2-0.3 c02 at impact velocities 2-4 times the zero-pressure bulk sound velocity (c0), its maximum possible value being 0.5 c02. As larger impact velocities are implied for typical orbital velocities of Earth-like planets, and c02 ≈ 2-30 MJ/kg for rock, the specific waste heat due to accretion corresponds to temperature rises of about 3-15 x 103 K for rock: melting accompanies accretion even with only 20-30 percent waste heat retained. Impact sterilization is similarly quantified in terms of waste heat relative to the energy required to vaporize H2O (impact velocity of 7-8 km/s, or 4.5-5 c0, is sufficient). Waste heat also clarifies the relationship between shock, multi-shock and ramp loading experiments, as well as the effect of (static) pre-compression. Breaking a shock into 2 steps significantly reduces the dissipated energy, with minimum waste heat achieved for two equal volume compressions in succession. Breaking a shock into as few as 4 steps reduces the waste heat to within a few percent of zero, documenting how multi-shock loading approaches an isentrope. Pre-compression, being less dissipative than an initial shock to the same strain, further reduces waste heat. Multi-shock (i.e., high strain-rate) loading of pre-compressed samples may thus offer the closest approach to an isentrope, and therefore the most extreme compression at which matter can be studied at the "warm" temperatures of planetary interiors.
Radiation and Thermal Ageing of Nuclear Waste Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, William J
2014-01-01
The radioactive decay of fission products and actinides incorporated into nuclear waste glass leads to self-heating and self-radiation effects that may affect the stability, structure and performance of the glass in a closed system. Short-lived fission products cause significant self-heating for the first 600 years. Alpha decay of the actinides leads to self-radiation damage that can be significant after a few hundred years, and over the long time periods of geologic disposal, the accumulation of helium and radiation damage from alpha decay may lead to swelling, microstructural evolution and changes in mechanical properties. Four decades of research on the behaviormore » of nuclear waste glass are reviewed.« less
Total cost of 46-Mw Borax cogen system put at $30M
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Biasi, V.
1983-03-01
The cogeneration system, designed around a W-251B gas turbine power plant exhausting into a Deltak waste heat boiler to produce ''free'' process steam from the gas turbine exhaust, is discussed. The design includes water injection for NO/sub x/ control, self-cleaning inlet air filters, evaporative coolers, supercharger, and supplementary firing of the waste heat boiler. Once the system is operational Borax will be able to generate all of the electricity needed for on-site operations and a large share of process steam needs--plus still have 22-23 Mw surplus electric power to sell, so that the installation should pay for itself in lessmore » than 5 years of service.« less
New Turbo Compound Systems in Automotive Industry for Internal Combustion Engine to Recover Energy
NASA Astrophysics Data System (ADS)
Chiriac, R.; Chiru, A.; Condrea, O.
2017-10-01
The large amount of heat is scattered in the internal combustion engine through exhaust gas, coolant, convective and radiant heat transfer. Of all these residual heat sources, exhaust gases have the potential to recover using various modern heat recovery techniques. Waste heat recovery from an engine could directly reduce fuel consumption, increase available electrical power and improve overall system efficiency and if it would be used a turbochargers that can also produce energy. This solution is called turbo aggregation and has other ways to develop it in other areas of research like the electrical field. [1-3
Lyophilization -Solid Waste Treatment
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Flynn, Michael; Fisher, John; Reinhard, Martin
2004-01-01
This paper discusses the development of a solid waste treatment system that has been designed for a Mars transit exploration mission. The technology described is an energy-efficient lyophilization technique that is designed to recover water from spacecraft solid wastes. Candidate wastes include feces, concentrated brines from water processors, and other solid wastes that contain free water. The system is designed to operate as a stand-alone process or to be integrated into the International Space Station Waste Collection System. In the lyophilization process, water in an aqueous waste is frozen and then sublimed, separating the waste into a dried solid material and liquid water. The sublimed water is then condensed in a solid ice phase and then melted to generate a liquid product. In the subject system the waste solids are contained within a 0.2 micron bio-guard bag and after drying are removed from the system and stored in a secondary container. This technology is ideally suited to applications such as the Mars Reference Mission, where water recovery rates approaching 100% are desirable but production of CO2 is not. The system is designed to minimize power consumption through the use of thermoelectric heat pumps. The results of preliminary testing of a prototype system and testing of the final configuration are provided. A mathematical model of the system is also described.
System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems
NASA Technical Reports Server (NTRS)
Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)
2000-01-01
The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.
Garcés, Diego; Díaz, Eva; Sastre, Herminio; Ordóñez, Salvador; González-LaFuente, José Manuel
2016-01-01
Solid recovered fuels constitute a valuable alternative for the management of those non-hazardous waste fractions that cannot be recycled. The main purpose of this research is to assess the suitability of three different wastes from the landfill of the local waste management company (COGERSA), to be used as solid recovered fuels in a cement kiln near their facilities. The wastes analyzed were: End of life vehicles waste, packaging and bulky wastes. The study was carried out in two different periods of the year: November 2013 and April 2014. In order to characterize and classify these wastes as solid recovered fuels, they were separated into homogeneous fractions in order to determine different element components, such as plastics, cellulosic materials, packagings or textile compounds, and the elemental analysis (including chlorine content), heavy metal content and the heating value of each fraction were determined. The lower heating value of the waste fractions on wet basis varies between 10 MJ kg(-1) and 42 MJ kg(-1). One of the packaging wastes presents a very high chlorine content (6.3 wt.%) due to the presence of polyvinylchloride from pipe fragments, being the other wastes below the established limits. Most of the wastes analyzed meet the heavy metals restrictions, except the fine fraction of the end of life vehicles waste. In addition, none of the wastes exceed the mercury limit content, which is one of the parameters considered for the solid recovered fuels classification. A comparison among the experimental higher heating values and empirical models that predict the heating value from the elemental analysis data was carried out. Finally, from the three wastes measured, the fine fraction of the end of life vehicles waste was discarded for its use as solid recovered fuels due to the lower heating value and its high heavy metals content. From the point of view of the heating value, the end of life vehicles waste was the most suitable residue with a lower heating value of 35.89 MJ kg(-1), followed by the packaging waste and the bulky waste, respectively. When mixing the wastes studied a global waste was obtained, whose classification as solid recovered fuels was NCV 1 Cl 3 Hg 3. From the empirical models used for calculating higher heating value from elemental content, Scheurer-Kestner was the model that best fit the experimental data corresponding to the wastes collected in November 2013, whereas Chang equation was the most approximate to the experimental heating values for April 2014 fractions. This difference is due to higher chlorine content of the second batch of wastes, since Chang equation is the only one that incorporates the chlorine content. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep
2015-01-01
Future missions to deep space, such as those to the outer planets (Jupiter, Saturn, etc.), which would rely on solar photovoltaic power, would need extremely large solar arrays to produce sufficient power for their operations because solar intensity is so low at those locations. Hence any additional power that would be needed for thermal control is extremely limited. Previous deep space missions like Juno (to Jupiter) required almost 200 W of electrical power for thermal control. This is prohibitively large for many future mission concepts, and leads to them needing very large solar arrays. For Saturn, where the solar flux is 1/4th the flux at Jupiter, this would entail an extremely large increase in the solar array size to accommodate the need for thermal survival power, which would be prohibitively large in size and mass, and very expensive. Hence there is a need to come up with a thermal architecture and design options that would not need such prohibitively large thermal power levels. One solution relies on harvesting the pre-existing waste heat from all the heat dissipation that would be present from operation of electronics, instruments, etc. for their own functionality. For example, for a generic Saturn mission, the various electronics would already dissipate about 200 Watts of heat that is simply "thrown away" to space from the spacecraft surfaces. The amount of thermal power that would be required for the safe thermal control of components within the spacecraft in deep space would be roughly of this magnitude for this class of spacecraft. So it makes good sense to try to harvest the waste heat and employ it to maintain the temperatures of all the components within their allowable limits. In particular, propulsion systems typically need to be kept above their freezing limits, around room temperature (15 C). Electronics needs to be kept typically above -40 C and batteries above -20 C. The next question becomes how to harvest this waste heat and direct it to the components that would need it for their survival. The proposed system utilizes a mechanically pumped, single phase fluid loop to pick up the waste heat from components attached to this loop's tubing and then directed to a thermal flask that has tubing attached to it. The thermal flask is cylindrically shaped and contains essentially all systems and components in the spacecraft within it, with the exception of the solar array, antennae, thrusters and various apertures of instruments, etc. to allow them an unobstructed view of space. Waste heat from the heat-dissipating components warms up the fluid and is carried to the flask surface and deposited on it via the fluid loop's flow. The entire flask is covered with Multi-Layered Insulation (MLI) to minimize the heat loss from the flask and allow it to remain warm. Hence the flask essentially creates a thermal environment within which the spacecraft components reside. The temperature of the components within the flask is then essentially the same as the temperature of the flask. This approach could be a very enabling feature for deep space missions. This paper describes the approach utilized for this thermal architecture, along with its mechanical and implementation aspects. Additionally it will compare and contrast this approach with the more conventional solutions utilized earlier.
Hybrid Membrane System for Industrial Water Reuse
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-08-01
This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.
Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment.
Thermodynamic and economic analysis of heat pumps for energy recovery in industrial processes
NASA Astrophysics Data System (ADS)
Urdaneta-B, A. H.; Schmidt, P. S.
1980-09-01
A computer code has been developed for analyzing the thermodynamic performance, cost and economic return for heat pump applications in industrial heat recovery. Starting with basic defining characteristics of the waste heat stream and the desired heat sink, the algorithm first evaluates the potential for conventional heat recovery with heat exchangers, and if applicable, sizes the exchanger. A heat pump system is then designed to process the residual heating and cooling requirements of the streams. In configuring the heat pump, the program searches a number of parameters, including condenser temperature, evaporator temperature, and condenser and evaporator approaches. All system components are sized for each set of parameters, and economic return is estimated and compared with system economics for conventional processing of the heated and cooled streams (i.e., with process heaters and coolers). Two case studies are evaluated, one in a food processing application and the other in an oil refinery unit.
Parametric Optimization of Thermoelectric Generators for Waste Heat Recovery
NASA Astrophysics Data System (ADS)
Huang, Shouyuan; Xu, Xianfan
2016-10-01
This paper presents a methodology for design optimization of thermoelectric-based waste heat recovery systems called thermoelectric generators (TEGs). The aim is to maximize the power output from thermoelectrics which are used as add-on modules to an existing gas-phase heat exchanger, without negative impacts, e.g., maintaining a minimum heat dissipation rate from the hot side. A numerical model is proposed for TEG coupled heat transfer and electrical power output. This finite-volume-based model simulates different types of heat exchangers, i.e., counter-flow and cross-flow, for TEGs. Multiple-filled skutterudites and bismuth-telluride-based thermoelectric modules (TEMs) are applied, respectively, in higher and lower temperature regions. The response surface methodology is implemented to determine the optimized TEG size along and across the flow direction and the height of thermoelectric couple legs, and to analyze their covariance and relative sensitivity. A genetic algorithm is employed to verify the globality of the optimum. The presented method will be generally useful for optimizing heat-exchanger-based TEG performance.
Development of a Direct Evaporator for the Organic Rankine Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donna Post Guillen; Helge Klockow; Matthew Lehar
2011-02-01
This paper describes research and development currently underway to place the evaporator of an Organic Rankine Cycle (ORC) system directly in the path of a hot exhaust stream produced by a gas turbine engine. The main goal of this research effort is to improve cycle efficiency and cost by eliminating the usual secondary heat transfer loop. The project’s technical objective is to eliminate the pumps, heat exchangers and all other added cost and complexity of the secondary loop by developing an evaporator that resides in the waste heat stream, yet virtually eliminates the risk of a working fluid leakage intomore » the gaseous exhaust stream. The research team comprised of Idaho National Laboratory and General Electric Company engineers leverages previous research in advanced ORC technology to develop a new direct evaporator design that will reduce the ORC system cost by up to 15%, enabling the rapid adoption of ORCs for waste heat recovery.« less
An evaluation of some special techniques for nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Mackay, J. S.
1973-01-01
A preliminary examination is reported of several special ways for space disposal of nuclear waste material which utilize the radioactive heat in the waste to assist in the propulsion for deep space trajectories. These include use of the wastes in a thermoelectric generator (RTG) which operates an electric propulsion device and a radioisotope - thermal thruster which uses hydrogen or ammonia as the propellant. These propulsive devices are compared to the space tug and the space tug/solar electric propulsion combination for disposal of waste on a solar system escape trajectory. Such comparisons indicate that the waste-RTG approach has considerable potential provided the combined specific mass of the waste container - RTG system does not exceed approximately 150 kg/kw sub e. Several exploratory numerical calculations have been made for high earth orbit and Earth escape destinations.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael
2006-01-01
This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.
Process aspects in combustion and gasification Waste-to-Energy (WtE) units.
Leckner, Bo
2015-03-01
The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Katter, L. B.; Peterson, D. J.
1978-01-01
The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.
Hydrothermal Gasification for Waste to Energy
NASA Astrophysics Data System (ADS)
Epps, Brenden; Laser, Mark; Choo, Yeunun
2014-11-01
Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.
A Study on the Heat Flow Characteristics of IRSS
NASA Astrophysics Data System (ADS)
Cho, Yong-Jin; Ko, Dae-Eun
2017-11-01
The infrared signatures emitted from the hot waste gas generated by the combustion engine and generator of a naval ship and from the metal surface around the funnel are the targets of the enemy threatening weapon system, thereby reducing the survivability of the ship. Such infrared signatures are reduced by installing an infrared signature suppression system (IRSS) in the naval ship. An IRSS consists of three parts: an eductor that creates a turbulent flow in the waste gas, a mixing tube that mixes the waste gas with the ambient air, and a diffuser that forms an air film using the pressure difference between the waste gas and the outside air. This study analyzed the test model of the IRSS developed by an advanced company and, based on this, conducted heat flow analyses as a basic study to improve the performance of the IRSS. The results were compared and analyzed considering various turbulence models. As a result, the temperatures and velocities of the waste gas at the eductor inlet and the diffuser outlet as well as the temperature of the diffuser metal surface were obtained. It was confirmed that these results were in good agreement with the measurement results of the model test.
Technologies and Materials for Recovering Waste Heat in Harsh Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.
2014-12-15
A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hotmore » exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.« less
NASA Astrophysics Data System (ADS)
Mininni, Giuseppe; Sbrilli, Andrea; Maria Braguglia, Camilla; Guerriero, Ettore; Marani, Dario; Rotatori, Mauro
An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200-350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm -3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t -1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41-3700 μg ITEQ t -1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91-414 μg kg -1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018-0.5 μg Nm -3) were below the Italian limit of 10 μg Nm -3.
NASA Astrophysics Data System (ADS)
Napitupulu, F. H.; Daulay, F. A.; Dedy, P. M.; Denis; Jecson
2017-03-01
In order to recover the waste heat from the exhaust gas of a combustion engine, an adsorption refrigeration cycle is proposed. This is a preliminary study on design and testing of a prototype of absorption refrigeration cycle powered by an internal combustion engine. The heat source of the cycle is a compression ignition engine which generates 122.36 W of heat in generator of the cycle. The pairs of absorbent and refrigerant are water and ammonia. Here the generator is made of a shell and tube heat exchanger with number of tube and its length are 20 and 0.69 m, respectively. In the experiments the exhaust gas, with a mass flow rate of 0.00016 kg/s, enters the generator at 110°C and leaves it at 72°C. Here, the solution is heated from 30°C to 90°C. In the evaporator, the lowest temperature can be reached is 17.9°C and COP of the system is 0.45. The main conclusion can be drawn here is that the proposed system can be used to recycle the waste heat and produced cooling. However, the COP is still low.
Thermoelectric harvesting of low temperature natural/waste heat
NASA Astrophysics Data System (ADS)
Rowe, David Michael
2012-06-01
Apart from specialized space requirements current development in applications of thermoelectric generation mainly relate to reducing harmful carbon emissions and decreasing costly fuel consumption through the recovery of exhaust heat from fossil fuel powered engines and emissions from industrial utilities. Focus on these applications is to the detriment of the wider exploitations of thermoelectrics with other sources of heat energy, and in particular natural occurring and waste low temperature heat, receiving little, if any, attention. In this presentation thermoelectric generation applications, both potential and real in harvesting low temperature waste/natural heat are reviewed. The use of thermoelectrics to harvest solar energy, ocean thermal energy, geothermal heat and waste heat are discussed and their credibility as future large-scale sources of electrical power assessed.
Development of a nonazeotropic heat pump for crew hygiene water heating
NASA Technical Reports Server (NTRS)
Walker, David H.; Deming, Glenn I.
1991-01-01
A heat pump system is currently under development to produce hot water for crew hygiene on future manned space missions. The heat pump uses waste heat sources and a nonazeotropic working fluid in a highly efficient cycle. The potential benefits include a reduction in peak power draw from 2 to 5 kW for electric cartridge heaters to just more than 100 W for the heat pump. As part of the heat pump development project, a unique high efficiency compressor was developed to maintain lubrication in a zero-gravity environment.
Kirkeby, Janus T; Birgisdottir, Harpa; Hansen, Trine Lund; Christensen, Thomas H; Bhander, Gurbakhash Singh; Hauschild, Michael
2006-02-01
A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios. However, the use of digested biomass may cause a potential toxicity impact on human health due to the heavy metal content of the organic waste. A sensitivity analysis showed that the results are sensitive to the energy recovery efficiencies, to the extra plastic consumption for waste bags and to the content of heavy metals in the waste. A model such as EASEWASTE is very suitable for evaluating the overall environmental consequences of different waste management strategies and technologies, and can be used for most waste material fractions existing in household waste.
Industrial waste materials and by-products as thermal energy storage (TES) materials: A review
NASA Astrophysics Data System (ADS)
Gutierrez, Andrea; Miró, Laia; Gil, Antoni; Rodríguez-Aseguinolaza, Javier; Barreneche, Camila; Calvet, Nicolas; Py, Xavier; Fernández, A. Inés; Grágeda, Mario; Ushak, Svetlana; Cabeza, Luisa F.
2016-05-01
A wide variety of potential materials for thermal energy storage (TES) have been identify depending on the implemented TES method, Sensible, latent or thermochemical. In order to improve the efficiency of TES systems more alternatives are continuously being sought. In this regard, this paper presents the review of low cost heat storage materials focused mainly in two objectives: on the one hand, the implementation of improved heat storage devices based on new appropriate materials and, on the other hand, the valorisation of waste industrial materials will have strong environmental, economic and societal benefits such as reducing the landfilled waste amounts, reducing the greenhouse emissions and others. Different industrial and municipal waste materials and by products have been considered as potential TES materials and have been characterized as such. Asbestos containing wastes, fly ashes, by-products from the salt industry and from the metal industry, wastes from recycling steel process and from copper refining process and dross from the aluminium industry, and municipal wastes (glass and nylon) have been considered. This work shows a great revalorization of wastes and by-product opportunity as TES materials, although more studies are needed to achieve industrial deployment of the idea.
Hammer, Nicole L; Boateng, Akwasi A; Mullen, Charles A; Wheeler, M Clayton
2013-10-15
Aspen Plus(®) based simulation models have been developed to design a pyrolysis process for on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all the available waste from the site's 41 horses requires a 6 oven dry metric ton per day (ODMTPD) pyrolysis system but it will require a 15 ODMTPD system for waste generated by an additional 150 horses at the expanded area including the College and its vicinity. For this a dual fluidized bed combustion reduction integrated pyrolysis system (CRIPS) developed at USDA's Agricultural Research Service (ARS) was identified as the technology of choice for pyrolysis oil production. The Aspen Plus(®) model was further used to consider the combustion of the produced pyrolysis oil (bio-oil) in the existing boilers that generate hot water for space heating at the Equine Center. The model results show the potential for both the equine facility and the College to displace diesel fuel (fossil) with renewable pyrolysis oil and alleviate a costly waste disposal problem. We predict that all the heat required to operate the pyrolyzer could be supplied by non-condensable gas and about 40% of the biochar co-produced with bio-oil. Techno-economic Analysis shows neither design is economical at current market conditions; however the 15 ODMTPD CRIPS design would break even when diesel prices reach $11.40/gal. This can be further improved to $7.50/gal if the design capacity is maintained at 6 ODMTPD but operated at 4950 h per annum. Published by Elsevier Ltd.
Advanced Life Support Technologies and Scenarios
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2011-01-01
As NASA looks beyond the International Space Station toward long-duration, deep space missions away from Earth, the current practice of supplying consumables and spares will not be practical nor affordable. New approaches are sought for life support and habitation systems that will reduce dependency on Earth and increase mission sustainability. To reduce launch mass, further closure of Environmental Control and Life Support Systems (ECLSS) beyond the current capability of the ISS will be required. Areas of particular interest include achieving higher degrees of recycling within Atmosphere Revitalization, Water Recovery and Waste Management Systems. NASA is currently investigating advanced carbon dioxide reduction processes that surpass the level of oxygen recovery available from the Sabatier Carbon Dioxide Reduction Assembly (CRA) on the ISS. Improving the efficiency of the recovery of water from spacecraft solid and liquid wastes is possible through use of emerging technologies such as the heat melt compactor and brine dewatering systems. Another significant consumable is that of food. Food production systems based on higher plants may not only contribute significantly to the diet, but also contribute to atmosphere revitalization, water purification and waste utilization. Bioreactors may be potentially utilized for wastewater and solid waste management. The level at which bioregenerative technologies are utilized will depend on their comparative requirements for spacecraft resources including mass, power, volume, heat rejection, crew time and reliability. Planetary protection requirements will need to be considered for missions to other solar system bodies.
Pulsed atmospheric fluidized bed combustor apparatus
Mansour, Momtaz N.
1993-10-26
A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.
Sandwich Core Heat-Pipe Radiator for Power and Propulsion Systems
NASA Technical Reports Server (NTRS)
Gibson, Marc; Sanzi, James; Locci, Ivan
2013-01-01
Next-generation heat-pipe radiator technologies are being developed at the NASA Glenn Research Center to provide advancements in heat-rejection systems for space power and propulsion systems. All spacecraft power and propulsion systems require their waste heat to be rejected to space in order to function at their desired design conditions. The thermal efficiency of these heat-rejection systems, balanced with structural requirements, directly affect the total mass of the system. Terrestrially, this technology could be used for thermal control of structural systems. One potential use is radiant heating systems for residential and commercial applications. The thin cross section and efficient heat transportability could easily be applied to flooring and wall structures that could evenly heat large surface areas. Using this heat-pipe technology, the evaporator of the radiators could be heated using any household heat source (electric, gas, etc.), which would vaporize the internal working fluid and carry the heat to the condenser sections (walls and/or floors). The temperature could be easily controlled, providing a comfortable and affordable living environment. Investigating the appropriate materials and working fluids is needed to determine this application's potential success and usage.
Thermoelectric as recovery and harvesting of waste heat from portable generator
NASA Astrophysics Data System (ADS)
Mustafa, S. N.; Kamarrudin, N. S.; Hashim, M. S. M.; Bakar, S. A.; Razlan, Z. M.; Harun, A.; Ibrahim, I.; Faizi, M. K.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.
2017-10-01
Generation of waste heat was ineluctable especially during energy producing process. Waste heat falls into low temperature grade make it complicated to utilize. Thermoelectric generator (TEG) offers opportunity to harvest any temperature grade heat into useful electricity. This project is covered about recovery and utilizing waste heat from portable electric generator by using a TEG which placed at exhaust surface. Temperature difference at both surfaces of TEG was enhanced with supplying cold air from a wind blower. It is found that, even at low air speed, the TEG was successfully produced electricity with aid from DC-DC booster. Results shows possibility to harvest low temperature grade heat and still exist areas for continual improvement.
NASA Technical Reports Server (NTRS)
Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.
2011-01-01
The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.
Moore, Albert S.; Verhoff, Francis H.
1980-01-01
The present invention is directed to an improved wet air oxidation system and method for reducing the chemical oxygen demand (COD) of waste water used from scrubbers of coal gasification plants, with this COD reduction being sufficient to effectively eliminate waste water as an environmental pollutant. The improvement of the present invention is provided by heating the air used in the oxidation process to a temperature substantially equal to the temperature in the oxidation reactor before compressing or pressurizing the air. The compression of the already hot air further heats the air which is then passed in heat exchange with gaseous products of the oxidation reaction for "superheating" the gaseous products prior to the use thereof in turbines as the driving fluid. The superheating of the gaseous products significantly minimizes condensation of gaseous products in the turbine so as to provide a substantially greater recovery of mechanical energy from the process than heretofore achieved.
Utilization of Aluminum Waste with Hydrogen and Heat Generation
NASA Astrophysics Data System (ADS)
Buryakovskaya, O. A.; Meshkov, E. A.; Vlaskin, M. S.; Shkolnokov, E. I.; Zhuk, A. Z.
2017-10-01
A concept of energy generation via hydrogen and heat production from aluminum containing wastes is proposed. The hydrogen obtained by oxidation reaction between aluminum waste and aqueous solutions can be supplied to fuel cells and/or infrared heaters for electricity or heat generation in the region of waste recycling. The heat released during the reaction also can be effectively used. The proposed method of aluminum waste recycling may represent a promising and cost-effective solution in cases when waste transportation to recycling plants involves significant financial losses (e.g. remote areas). Experiments with mechanically dispersed aluminum cans demonstrated that the reaction rate in alkaline solution is high enough for practical use of the oxidation process. In theexperiments aluminum oxidation proceeds without any additional aluminum activation.
NASA Astrophysics Data System (ADS)
Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.
2014-09-01
The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m-2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m-2 s-1 to 1150 μmol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.
City of Raleigh, Wilders Grove Service Center, Solid Waste Services Facility. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Cox; Bill Black; Battle, Fred
Final Report for DOE Grant EE0002808. Grant award was for technology demonstration of geothermal energy systems. One of the major objectives identified for the demonstration portion of the grant was to prove the viability of Ground Source Heat Pump (GSHP) systems in significantly reducing energy usage of HVAC and domestic water heating systems compared to traditional systems. Data were monitored and conclusions drawn, including estimating payback timeframes and documenting lessons learned.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.
NUCLEAR POWER PLANT WASTE HEAT HORTICULTURE
The report gives results of a study of the feasibility of using low grade (70 degrees F) waste heat from the condenser cooling water of the Vermont Yaknee nuclear plant for commercial food enhancement. The study addressed the possible impact of laws on the use of waste heat from ...
Panepinto, Deborah; Genon, Giuseppe
2014-07-01
Given the desirability of reducing fossil fuel consumption, together with the increasing production of combustible solid wastes, there is clearly a need for waste treatment systems that achieve both volume reduction and energy recovery. Direct incineration method is one such system. The aim of this work was to analyze the municipal solid waste incineration plant currently under construction in the province of Turin (Piedmont, North Italy), especially the potential for energy recovery, and the consequent environmental effects. We analyzed two kinds of energy recovery: electric energy (electrical configuration) only, and both electric and thermal energy (cogenerative configuration), in this case with a different connection hypothesis to the district heating network. After we had evaluated the potential of the incinerator and considered local demographic, energy and urban planning effects, we assumed different possible connections to the district heating network. We computed the local and global environmental balances based on the characteristics of the flue gas emitted from the stack, taking into consideration the emissions avoided by the substituted sources. The global-scale results provided relevant information on the carbon dioxide emissions parameter. The results on the local scale were used as reference values for the implementation of a Gaussian model (Aermod) that allows evaluation of the actual concentration of the pollutants released into the atmosphere. The main results obtained highlight the high energy efficiency of the combined production of heat and electricity, and the opportunity to minimize the environmental impact by including cogeneration in a district heating scheme. © The Author(s) 2014.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The possible need to develop a solid waste management/resource recovery facility in Christian County, Kentucky is assessed. The present solid waste management operations are described and an outline of options available in the area of resource recovery and cost estimates for waste management alternatives are given. The construction of a transfer station to handle wastes hauled from a distance is discussed. Specific incineration waste heat recovery systems discussed briefly are: modular controlled air incinerators, modular refractory incinerators, rotary waterwall combustor-boiler, and waterwall incineration - unprocessed waste units. Environmental impacts are considered. An investigation was conducted on separating the raw refusemore » into its major components and recycling materials of value. (MCW)« less
Design and Testing of a Lyophilizer for Water Recovery from Solid Waste
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Fisher, John; Flynn, Michael
2005-01-01
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.
Under EPA’s Environmental Technology Verification program, which provides objective and scientific third party analysis of new technology that can benefit the environment, a combined heat and power system designed by Martin Machinery was evaluated. This paper provides test result...
40 CFR 282.96 - Virginia State-Administered Program.
Code of Federal Regulations, 2010 CFR
2010-07-01
...” includes heating oil tanks of greater than 5,000 gallon capacity and “Regulated substance” 9 VAC 25-580-130General requirements for all petroleum and hazardous substance UST systems, heating oil tanks of greater... WASTES (CONTINUED) APPROVED UNDERGROUND STORAGE TANK PROGRAMS Approved State Programs § 282.96 Virginia...
NASA Technical Reports Server (NTRS)
Murray, K. A.
1988-01-01
A system of heat pipe radiators has been designed to provide waste heat rejection for an inertial fusion powered spacecraft capable of manned missions to other planets. The radiators are arrays of unfinned, arterial heat pipes operating at 1500 and 900 K. Liquid metal coolant carries up to 8000 MW of waste heat through feed pipes from on-board components (laser drivers and coil shield). The radiators do not rely on armor for protection from micrometeoroid penetration. An armored radiator design for this application with a 99 percent survivability would have a specific mass of 0.06 to 0.11 kg/kW at 1500 K. Instead, a segmentation of heat pipes is used, and bumpers are utilized to protect the feed pipes. This design reduces the specific mass to 0.015 to 0.04 kg/kW for the coil shield radiator (1500 K) and 0.06 to 0.12 kg/kW for the laser driver radiator (900 K).
Application of Waste Heat Recovery Energy Saving Technology in Reform of UHP-EAF
NASA Astrophysics Data System (ADS)
Zhao, J. H.; Zhang, S. X.; Yang, W.; Yu, T.
2017-08-01
The furnace waste heat of a company’s existing 4 × 100t ultra-high-power electric arc furnaces is not used and discharged directly of the situation has been unable to meet the national energy-saving emission reduction requirements, and also affected their own competitiveness and sustainable development. In order to make full use of the waste heat of the electric arc furnace, this paper presents an the energy-saving transformation program of using the new heat pipe boiler on the existing ultra-high-power electric arc furnaces for recovering the waste heat of flue gas. The results show that after the implementation of the project can save energy equivalent to 42,349 tons of standard coal. The flue gas waste heat is fully utilized and dust emission concentration is accorded with the standard of Chinese invironmental protection, which have achieved good results.
Thermal energy storage systems using fluidized bed heat exchangers
NASA Technical Reports Server (NTRS)
Ramanathan, V.; Weast, T. E.; Ananth, K. P.
1980-01-01
The viability of using fluidized bed heat exchangers (FBHX) for thermal energy storage (TES) in applications with potential for waste heat recovery was investigated. Of the candidate applications screened, cement plant rotary kilns and steel plant electric arc furnaces were identified, via the chosen selection criteria, as having the best potential for successful use of FBHX/TES system. A computer model of the FBHX/TES systems was developed and the technical feasibility of the two selected applications was verified. Economic and tradeoff evaluations in progress for final optimization of the systems and selection of the most promising system for further concept validation are described.
Di Maria, Francesco; Benavoli, Manuel; Zoppitelli, Mirco
2008-01-01
Waste management is of the utmost importance for many countries and especially for highly developed ones due to its implications on society. In particular, proper treatment before disposal of the solid urban waste organic fraction is one of the main issues that is addressed in waste management. In fact, the organic fraction is particularly reactive and if disposed in sanitary landfills without previous adequate treatment, a large amount of dangerous and polluting gaseous, liquid and solid substances can be produced. Some waste treatment processes can also present an opportunity to produce other by-products like energy, recycled materials and other products with both economic and environmental benefits. In this paper, the aerobic treatment of the organic fraction of solid urban waste, performed in a biocell plant with the possibility of recovering heat for civil or industrial needs, was examined from the thermodynamic point of view. A theoretical model was proposed both for the biological process of the organic fraction, as well as for the heat recovery system. The most significant results are represented and discussed.
NASA Astrophysics Data System (ADS)
Pak, Pyong Sik
This paper evaluates two proposed repowering systems together with a conventional repowering system. A power generation system utilizing waste heat produced by a garbage incineration plant (GIP), which treats 45 t/d of garbage, was taken as an objective power generation system to be repowered. As the conventional repowering system (Sys-C), a gas turbine system with waste heat boiler was adopted. In the proposed system 1 (Sys-P1), temperature of the low temperature steam generated at the GIP is raised in the gas combustor by burning fuel, and used to drive a gas turbine generator. Hence, required power for compressing the air becomes remarkably small and expected to be high efficient compared with Sys-C. In the proposed system 2 (Sys-P2), the low temperature steam generated at the GIP is superheated by using regenerative burner and used to drive a steam turbine generator, and hence making steam condition optimal becomes easy. Various basic characteristics of the three repowering systems were estimated through computer simulation, such as repowering efficiency, energy saving characteristics, and amount of CO2 reduction. It was shown that Sys-P1 and Sys-P2 were both superior to the conventional repowering system Sys-C in the all characteristics, and Sys-P1 to Sys-P2 in repowering efficiency, and that Sys-P2 to Sys-P1 in energy saving characteristics and CO2 reduction effect. It has also been estimated that all the repowering systems are economically feasible, and that the proposed systems Sys-P1 and Sys-P2 are both superior to the Sys-C in the three economical indices of unit cost of power, annual gross profit and depreciation year.
Method for utilizing decay heat from radioactive nuclear wastes
Busey, H.M.
1974-10-14
Management of radioactive heat-producing waste material while safely utilizing the heat thereof is accomplished by encapsulating the wastes after a cooling period, transporting the capsules to a facility including a plurality of vertically disposed storage tubes, lowering the capsules as they arrive at the facility into the storage tubes, cooling the storage tubes by circulating a gas thereover, employing the so heated gas to obtain an economically beneficial result, and continually adding waste capsules to the facility as they arrive thereat over a substantial period of time.
Sequential pyrolysis of plastic to recover polystyrene HCL and terephthalic acid
Evans, Robert J.; Chum, Helena L.
1995-01-01
A process of pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons.
Applications guide for waste heat recovery
NASA Technical Reports Server (NTRS)
Moynihan, P. I.
1983-01-01
The state-of-the-art of commercially available organic Rankine cycle (ORC) hardware from a literature search and industry survey is assessed. Engineering criteria for applying ORC technology are established, and a set of nomograms to enable the rapid sizing of the equipment is presented. A comparison of an ORC system with conventional heat recovery techniques can be made with a nomogram developed for a recuperative heat exchanger. A graphical technique for evaluating the economic aspects of an ORC system and conventional heat recovery method is discussed: also included is a description of anticipated future trends in organic Rankine cycle R&D.
Heat of Hydration of Low Activity Cementitious Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasol, D.
2015-07-23
During the curing of secondary waste grout, the hydraulic materials in the dry mix react exothermally with the water in the secondary low-activity waste (LAW). The heat released, called the heat of hydration, can be measured using a TAM Air Isothermal Calorimeter. By holding temperature constant in the instrument, the heat of hydration during the curing process can be determined. This will provide information that can be used in the design of a waste solidification facility. At the Savannah River National Laboratory (SRNL), the heat of hydration and other physical properties are being collected on grout prepared using three simulantsmore » of liquid secondary waste generated at the Hanford Site. From this study it was found that both the simulant and dry mix each had an effect on the heat of hydration. It was also concluded that the higher the cement content in the dry materials mix, the greater the heat of hydration during the curing of grout.« less
Thermal storage for electric utilities
NASA Technical Reports Server (NTRS)
Swet, C. J.; Masica, W. J.
1977-01-01
Applications of the thermal energy storage (TES) principle (storage of sensible heat or latent heat, or heat storage in reversible chemical reactions) in power systems are evaluated. Load leveling behind the meter, load following at conventional thermal power plants, solar thermal power generation, and waste heat utilization are the principal TES applications considered. Specific TES examples discussed include: storage heaters for electric-resistance space heating, air conditioning TES in the form of chilled water or eutectic salt baths, hot water TES, and trans-seasonal storage in heated water in confined aquifers.
Devise of an exhaust gas heat exchanger for a thermal oil heater in a palm oil refinery plant
NASA Astrophysics Data System (ADS)
Chucherd, Panom; Kittisupakorn, Paisan
2017-08-01
This paper presents the devise of an exhaust gas heat exchanger for waste heat recovery of the exhausted flue gas of palm oil refinery plant. This waste heat can be recovered by installing an economizer to heat the feed water which can save the fuel consumption of the coal fired steam boiler and the outlet temperature of flue gas will be controlled in order to avoid the acid dew point temperature and protect the filter bag. The decrease of energy used leads to the reduction of CO2 emission. Two designed economizer studied in this paper are gas in tube and water in tube. The gas in tube exchanger refers to the shell and tube heat exchanger which the flue gas flows in tube; this designed exchanger is used in the existing unit. The new designed water in tube refers to the shell and tube heat exchanger which the water flows in the tube; this designed exchanger is proposed for new implementation. New economizer has the overall coefficient of heat transfer of 19.03 W/m2.K and the surface heat transfer area of 122 m2 in the optimized case. Experimental results show that it is feasible to install economizer in the exhaust flue gas system between the air preheater and the bag filter, which has slightly disadvantage effect in the system. The system can raise the feed water temperature from 40 to 104°C and flow rate 3.31 m3/h, the outlet temperature of flue gas is maintained about 130 °C.
Waste heat recovery from adiabatic diesel engines by exhaust-driven Brayton cycles
NASA Technical Reports Server (NTRS)
Khalifa, H. E.
1983-01-01
An evaluation of Bryton Bottoming Systems (BBS) as waste heat recovery devices for future adiabatic diesel engines in heavy duty trucks is presented. Parametric studies were performed to evaluate the influence of external and internal design parameters on BBS performance. Conceptual design and trade-off studies were undertaken to estimate the optimum configuration, size, and cost of major hardware components. The potential annual fuel savings of long-haul trucks equipped with BBS were estimated. The addition of a BBS to a turbocharged, nonaftercooled adiabatic engine would improve fuel economy by as much as 12%. In comparison with an aftercooled, turbocompound engine, the BBS-equipped turbocharged engine would offer a 4.4% fuel economy advantage. If installed in tandem with an aftercooled turbocompound engine, the BBS could effect a 7.2% fuel economy improvement. The cost of a mass-produced 38 Bhp BBS is estimated at about $6460 or 170/Bhp. Technical and economic barriers that hinder the commercial introduction of bottoming systems were identified. Related studies in the area of waste heat recovery from adiabatic diesel engines and NASA-CR-168255 (Steam Rankine) and CR-168256 (Organic Rankine).
Performance evaluation of an automotive thermoelectric generator
NASA Astrophysics Data System (ADS)
Dubitsky, Andrei O.
Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.
Long life reliability thermal control systems study
NASA Technical Reports Server (NTRS)
Scollon, T. R., Jr.; Killen, R. E.
1972-01-01
The results of a program undertaken to conceptually design and evaluate a passive, high reliability, long life thermal control system for space station application are presented. The program consisted of four steps: (1) investigate and select potential thermal system elements; (2) conceive, evaluate and select a thermal control system using these elements; (3) conduct a verification test of a prototype segment of the selected system; and (4) evaluate the utilization of waste heat from the power supply. The result of this project is a conceptual thermal control system design which employs heat pipes as primary components, both for heat transport and temperature control. The system, its evaluation, and the test results are described.
Waste heat utilization in industrial processes
NASA Technical Reports Server (NTRS)
Weichsel, M.; Heitmann, W.
1978-01-01
A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.
Heat Rejection Concepts for Brayton Power Conversion Systems
NASA Technical Reports Server (NTRS)
Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James
2005-01-01
This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.
Rotating bubble membrane radiator
Webb, Brent J.; Coomes, Edmund P.
1988-12-06
A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the requirements of 40 CFR part 61, subpart FF, and the waste requirements for ethylene production... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... requirements of 40 CFR part 61, subpart FF, and the waste requirements for ethylene production sources? The...
Economic and environmental optimization of waste treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Münster, M.; Ravn, H.; Hedegaard, K.
2015-04-15
Highlights: • Optimizing waste treatment by incorporating LCA methodology. • Applying different objectives (minimizing costs or GHG emissions). • Prioritizing multiple objectives given different weights. • Optimum depends on objective and assumed displaced electricity production. - Abstract: This article presents the new systems engineering optimization model, OptiWaste, which incorporates a life cycle assessment (LCA) methodology and captures important characteristics of waste management systems. As part of the optimization, the model identifies the most attractive waste management options. The model renders it possible to apply different optimization objectives such as minimizing costs or greenhouse gas emissions or to prioritize several objectivesmore » given different weights. A simple illustrative case is analysed, covering alternative treatments of one tonne of residual household waste: incineration of the full amount or sorting out organic waste for biogas production for either combined heat and power generation or as fuel in vehicles. The case study illustrates that the optimal solution depends on the objective and assumptions regarding the background system – illustrated with different assumptions regarding displaced electricity production. The article shows that it is feasible to combine LCA methodology with optimization. Furthermore, it highlights the need for including the integrated waste and energy system into the model.« less
Lyophilization for Water Recovery III, System Design
NASA Technical Reports Server (NTRS)
Litwiller, Eric; Reinhard, Martin; Fisher, John; Flynn, Michael
2005-01-01
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids that remain. Our previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground- based human testing. This paper describes the prototype design and presents results of functional and performance tests.
Chen, Zhao; Jiang, Xiuping
2017-03-01
Animal wastes have high nutritional value as biological soil amendments of animal origin for plant cultivation in sustainable agriculture; however, they can be sources of some human pathogens. Although composting is an effective way to reduce pathogen levels in animal wastes, pathogens may still survive under certain conditions and persist in the composted products, which potentially could lead to fresh produce contamination. According to the U.S. Food and Drug Administration Food Safety Modernization Act, alternative treatments are recommended for reducing or eliminating human pathogens in raw animal manure. Physical heat treatments can be considered an effective method to inactivate pathogens in animal wastes. However, microbial inactivation in animal wastes can be affected by many factors, such as composition of animal wastes, type and physiological stage of the tested microorganism, and heat source. Following some current processing guidelines for physical heat treatments may not be adequate for completely eliminating pathogens from animal wastes. Therefore, this article primarily reviews the microbiological safety and economic value of physically heat-treated animal wastes as biological soil amendments.
Microgravity fluid management requirements of advanced solar dynamic power systems
NASA Technical Reports Server (NTRS)
Migra, Robert P.
1987-01-01
The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.
Design and Preliminary Thermal Performance of the Mars Science Laboratory Rover Heat Exchangers
NASA Technical Reports Server (NTRS)
Mastropietro, A. J.; Beatty, John; Kelly, Frank; Birur, Gajanana; Bhandari, Pradeep; Pauken, Michael; Illsley, Peter; Liu, Yuanming; Bame, David; Miller, Jennifer
2010-01-01
The challenging range of proposed landing sites for the Mars Science Laboratory Rover requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 degrees Centigrade and as warm as 38 degrees Centigrade, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 degrees Centigrade to 50 degrees Centigrade range. The MPFL also manages significant waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG). The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Two similar Heat Exchanger (HX) assemblies were designed to both acquire the heat from the MMRTG and radiate waste heat from the onboard electronics to the surrounding Martian environment. Heat acquisition is accomplished on the interior surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the MPFL to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aerogel as an insulator inside composite honeycomb sandwich panels. A complex assembly of hand welded and uniquely bent aluminum tubes are bonded onto the HX panels and were specifically designed to be easily mated and demated to the rest of the Rover Heat Recovery and Rejection System (RHRS) in order to ease the integration effort. During the cruise phase to Mars, the HX assemblies serve the additional function of transferring heat from the Rover MPFL to the separate Cruise Stage MPFL so that heat generated deep inside the Rover can be dissipated via the Cruise Stage radiators. Significant fabrication challenges had to be overcome in order to make the HX design a reality. The cruise phase thermal performance of the Rover HXs was verified in the cruise phase system level thermal vacuum test that was performed at JPL in January of 2009. The Rover HXs were modeled in I-DEAS TMG and predictions are compared to actual data from the test.
Staff exchange with Chemical Waste Management. Final project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrer, B.J.; Barak, D.W.
1993-12-01
Original objective was transfer of PNL technology and expertise in computational chemistry and waste flow/treatment modeling to CWM. Identification and characterization of a broader portfolio of PNL`s environmental remediation technologies with high potential for rapid application became the focus of the exchange, which included E-mail exchanges. Of the 14 technologies discussed, the following were identified as being of high interest to CWM: six phase soil heating (in-situ heating), high energy electrical corona, RAAS/ReOpt{trademark} (remedial, expert system), TEES{trademark} (catalytic production of methane from biological wastes), PST (process for treating petroleum sludge). CWM`s reorganization and downsizing reduced the potential benefits to industry,more » but a proposal for transfer and application of PST to Wheelabrator was made.« less
Sequential pyrolysis of plastic to recover polystyrene, HCl and terephthalic acid
Evans, R.J.; Chum, H.L.
1995-11-07
A process is described for pyrolyzing plastic waste feed streams containing polyvinyl chloride, polyethylene terephthalate, polystyrene and polyethylene to recover polystyrene, HCl and terephthalic acid comprising: heating the plastic waste feed stream to a first temperature; adding an acid or base catalyst on an oxide or carbonate support; heating the plastic waste feed stream to pyrolyze polyethylene terephthalate and polyvinyl chloride; separating terephthalic acid or HCl; heating to a second temperature to pyrolyze polystyrene; separating styrene; heating the waste feed stream to a third temperature to pyrolyze polyethylene; and separating hydrocarbons. 83 figs.
González-Briones, Alfonso; Chamoso, Pablo; Yoe, Hyun; Corchado, Juan M
2018-03-14
The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user's energy bill is greatly reduced with the implemented system.
Yoe, Hyun
2018-01-01
The gradual depletion of energy resources makes it necessary to optimize their use and to reuse them. Although great advances have already been made in optimizing energy generation processes, many of these processes generate energy that inevitably gets wasted. A clear example of this are nuclear, thermal and carbon power plants, which lose a large amount of energy that could otherwise be used for different purposes, such as heating greenhouses. The role of GreenVMAS is to maintain the required temperature level in greenhouses by using the waste energy generated by power plants. It incorporates a case-based reasoning system, virtual organizations and algorithms for data analysis and for efficient interaction with sensors and actuators. The system is context aware and scalable as it incorporates an artificial neural network, this means that it can operate correctly even if the number and characteristics of the greenhouses participating in the case study change. The architecture was evaluated empirically and the results show that the user’s energy bill is greatly reduced with the implemented system. PMID:29538351
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, Christi D.; Hansen, Francis D.
This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principlesmore » of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.« less
Heat recovery, ice storage to cut user's energy costs 40%
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponczak, G.
1985-12-02
A new recovery system which uses waste heat generated by an Illinois ice rink's compressors for space heating and domestic hot water will benefit from low off-peak electricity rates at a time when demand rates for the rink will be increasing 30%. The thermal storage system uses the same compressors to build ice. The Wilmette Centennial Park Recreation Complex expects to reduce gas and electricity costs by 40%, or about $100,000 per year. Part of the project involved installing new, high-efficiency compressor motors. A preliminary energy audit revealed that the old compressors were throwing off 2.25 million Btu of heatmore » per hour. An air-to-water heat exchanger now provides space heating as needed. Two double-vented heat exchangers generate hot water for swimming pools and the ice-making machine. The ice storage tank is used for cooling. An energy management system controls these and other building systems.« less
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka
2013-01-01
Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.
Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka
2013-01-01
Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi0.5Sb1.5Te3/Ni provides a promising solution. The Bi0.5Sb1.5Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m2K and a volume power density of 10 kW/m3 using low-grade heat sources below 100°C. The Bi0.5Sb1.5Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out. PMID:23511347
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Bame, David; Mastropietro, A. J.; Miller, Jennifer; Karlmann, Paul; Liu, Yuanming; Anderson, Kevin
2013-01-01
The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, required a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the Rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to +50 C range. The RHRS harnesses some of the waste heat generated from the Rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 Watts of electrical power while generating waste heat equivalent to approximately 2000 Watts. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer and supply it to the rover. This design is the first instance of use of a RHRS for thermal control of a rover or lander on the surface of a planet. After an extremely successful landing on Mars (August 5), the rover and the RHRS have performed flawlessly for close to an earth year (half the nominal mission life). This paper will share the performance of the RHRS on the Martian surface as well as compare it to its predictions.
Koyama, Tadafumi
1994-01-01
A method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
Koyama, Tadafumi.
1994-08-23
A method is described for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
Koyama, T.
1992-01-01
This report describes a method for immobilizing waste chloride salts containing radionuclides such as cesium and strontium and hazardous materials such as barium. A sodalite intermediate is prepared by mixing appropriate amounts of silica, alumina and sodium hydroxide with respect to sodalite and heating the mixture to form the sodalite intermediate and water. Heating is continued to drive off the water to form a water-free intermediate. The water-free intermediate is mixed with either waste salt or waste salt which has been contacted with zeolite to concentrate the radionuclides and hazardous material. The waste salt-intermediate mixture is then compacted and heated under conditions of heat and pressure to form sodalite with the waste salt, radionuclides and hazardous material trapped within the sodalite cage structure. This provides a final product having excellent leach resistant capabilities.
Development of an advanced spacecraft water and waste materials processing system
NASA Technical Reports Server (NTRS)
Murray, R. W.; Schelkopf, J. D.; Middleton, R. L.
1975-01-01
An Integrated Waste Management-Water System (WM-WS) which uses radioisotopes for thermal energy is described and results of its trial in a 4-man, 180 day simulated space mission are presented. It collects urine, feces, trash, and wash water in zero gravity, processes the wastes to a common evaporator, distills and catalytically purifies the water, and separates and incinerates the solid residues using little oxygen and no chemical additives or expendable filters. Technical details on all subsystems are given along with performance specifications. Data on recovered water and heat loss obtained in test trials are presented. The closed loop incinerator and other projects underway to increase system efficiency and capacity are discussed.
Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid
NASA Astrophysics Data System (ADS)
Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha
2017-03-01
Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.
Flexible thermoelectric device to harvest waste heat from the laptop
NASA Astrophysics Data System (ADS)
Salhi, Imane; Belhora, Fouad; Hajjaji, Abdelowahed; Jay, Jacques; Boughaleb, Yahia
2017-05-01
Recovering waste heat from integrated circuits of a laptop using thermoelectricity effects seems to be an appropriate process to enhance its efficiency. Thermoelectricity, as an energy harvesting process, helps to gain on both sides: financially as it reduces the energy consumption and environmentally as it minimizes the carbon footprint. This paper presents a flexible thermoelectric generator module which is developed to harvest waste heat of the laptop to power up some external loads. First, a theoretical analysis of the system is provided where both thermal and electrical models are exposed. Second, an estimation of the power density harvested by only one thermoelectric leg is given. This estimation can reach 0.01 µW/cm2 and it is confirmed by a numerical simulation based on the finite element method. Afterwards, this power density is improved to become 0.4 µW/cm2 by adding a heat sink in the cold side showing that the thermal resistances of the air and of the heat sink play a crucial role in transferring the temperature gradient to the thermoelectric (TE) material. Finally, it is indicated that the power harvested can be enough to power up portion of the circuitry or other important micro-accessories by using numerous thermoelectric modules.
NASA Technical Reports Server (NTRS)
Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.
2012-01-01
The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of each HX. Since these two surfaces need to be at very different temperatures in order for the fluid loops to perform efficiently, they need to be thermally isolated from one another. The HXs were therefore designed for high in-plane thermal conductivity and extremely low through-thickness thermal conductivity by using aluminum facesheets and aerogel as insulation inside a composite honeycomb core. Complex assemblies of hand-welded and uniquely bent aluminum tubes are bonded onto each side of the HX panels, and are specifically designed to be easily mated and demated to the rest of the RHRS in order to ease the integration effort.
Energetic valorization of wood waste: estimation of the reduction in CO2 emissions.
Vanneste, J; Van Gerven, T; Vander Putten, E; Van der Bruggen, B; Helsen, L
2011-09-01
This paper investigates the potential CO(2) emission reductions related to a partial switch from fossil fuel-based heat and electricity generation to renewable wood waste-based systems in Flanders. The results show that valorization in large-scale CHP (combined heat and power) systems and co-firing in coal plants have the largest CO(2) reduction per TJ wood waste. However, at current co-firing rates of 10%, the CO(2) reduction per GWh of electricity that can be achieved by co-firing in coal plants is five times lower than the CO(2) reduction per GWh of large-scale CHP. Moreover, analysis of the effect of government support for co-firing of wood waste in coal-fired power plants on the marginal costs of electricity generation plants reveals that the effect of the European Emission Trading Scheme (EU ETS) is effectively counterbalanced. This is due to the fact that biomass integrated gasification combined cycles (BIGCC) are not yet commercially available. An increase of the fraction of coal-based electricity in the total electricity generation from 8 to 10% at the expense of the fraction of gas-based electricity due to the government support for co-firing wood waste, would compensate entirely for the CO(2) reduction by substitution of coal by wood waste. This clearly illustrates the possibility of a 'rebound' effect on the CO(2) reduction due to government support for co-combustion of wood waste in an electricity generation system with large installed capacity of coal- and gas-based power plants, such as the Belgian one. Copyright © 2011 Elsevier B.V. All rights reserved.
Goldsberry, Fred L.
1989-01-01
All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.
NASA Astrophysics Data System (ADS)
Xu, Xiaoyu; Chen, Fei; Shen, Shuanghe; Miao, Shiguang; Barlage, Michael; Guo, Wenli; Mahalov, Alex
2018-03-01
The air conditioning (AC) electric loads and their impacts on local weather over Beijing during a 5 day heat wave event in 2010 are investigated by using the Weather Research and Forecasting (WRF) model, in which the Noah land surface model with multiparameterization options (Noah-MP) is coupled to the multilayer Building Effect Parameterization and Building Energy Model (BEP+BEM). Compared to the legacy Noah scheme coupled to BEP+BEM, this modeling system shows a better performance, decreasing the root-mean-square error of 2 m air temperature to 1.9°C for urban stations. The simulated AC electric loads in suburban and rural districts are significantly improved by introducing the urban class-dependent building cooled fraction. Analysis reveals that the observed AC electric loads in each district are characterized by a common double peak at 3 p.m. and at 9 p.m. local standard time, and the incorporation of more realistic AC working schedules helps reproduce the evening peak. Waste heat from AC systems has a smaller effect ( 1°C) on the afternoon 2 m air temperature than the evening one (1.5 2.4°C) if AC systems work for 24 h and vent sensible waste heat into air. Influences of AC systems can only reach up to 400 m above the ground for the evening air temperature and humidity due to a shallower urban boundary layer than daytime. Spatially varying maps of AC working schedules and the ratio of sensible to latent waste heat release are critical for correctly simulating the cooling electric loads and capturing the thermal stratification of urban boundary layer.
Microwave-specific heating of crystalline species in nuclear waste glass
Christian, Jonathan H.; Fox, Kevin M.; Washington, Aaron L.
2016-08-03
Here, the microwave heating of a crystal-free and a partially trevorite-crystallized nuclear waste glass simulant was evaluated. Our results show that a 500-mg monolith of partially crystallized waste glass can be heated from room temperature to above 1600°C within 2 min using a single-mode, highly focused, 2.45 GHz microwave, operating at 300 W. Using X-ray diffraction measurements, we show that trevorite is no longer detectable after irradiation and thermal quenching. When a crystal-free analog of the same waste glass simulant composition was exposed to the same microwave radiation, it could not be heated above 450°C regardless of the heating time.more » The reduction in crystalline content achieved by selectively heating spinels in the presence of glass suggests that microwave-specific heating should be further explored as a technique for remediating crystal accumulation in a glass melt.« less
A review on waste heat recovery from exhaust in the ceramics industry
NASA Astrophysics Data System (ADS)
Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam
2017-11-01
Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.
Thermal control systems for low-temperature heat rejection on a lunar base
NASA Technical Reports Server (NTRS)
Sridhar, K. R.; Gottmann, Matthias; Nanjundan, Ashok
1993-01-01
One of the important issues in the design of a lunar base is the thermal control system (TCS) used to reject low-temperature heat from the base. The TCS ensures that the base and the components inside are maintained within an acceptable temperature range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar day. Under these circumstances, direct dissipation of waste heat from the lunar base using passive radiators would be impractical. Thermal control systems based on thermal storage, shaded radiators, and heat pumps have been proposed. Based on proven technology, innovation, realistic complexity, reliability, and near-term applicability, a heat pump-based TCS was selected as a candidate for early missions. In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia water and lithium bromide-water) have been analyzed and optimized for a lunar base cooling load of 100 kW.
Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R
2014-01-01
This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electricmore » arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.« less
Pressure intelligent control strategy of Waste heat recovery system of converter vapors
NASA Astrophysics Data System (ADS)
Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong
2013-01-01
The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abboud, Alexander; Guillen, Donna Post; Pokorny, Richard
At the Hanford site in the state of Washington, more than 56 million gallons of radioactive waste is stored in underground tanks. The cleanup plan for this waste is vitrification at the Waste Treatment Plant (WTP), currently under construction. At the WTP, the waste will be blended with glass-forming materials and heated to 1423K, then poured into stainless steel canisters to cool and solidify. A fundamental understanding of the glass batch melting process is needed to optimize the process to reduce cost and decrease the life cycle of the cleanup effort. The cold cap layer that floats on the surfacemore » of the glass melt is the primary reaction zone for the feed-to-glass conversion. The conversion reactions include water release, melting of salts, evolution of batch gases, dissolution of quartz and the formation of molten glass. Obtaining efficient heat transfer to this region is crucial to achieving high rates of glass conversion. Computational fluid dynamics (CFD) modeling is being used to understand the heat transfer dynamics of the system and provide insight to optimize the process. A CFD model was developed to simulate the DM1200, a pilot-scale melter that has been extensively tested by the Vitreous State Laboratory (VSL). Electrodes are built into the melter to provide Joule heating to the molten glass. To promote heat transfer from the molten glass into the reactive cold cap layer, bubbling of the molten glass is used to stimulate forced convection within the melt pool. A three-phase volume of fluid approach is utilized to model the system, wherein the molten glass and cold cap regions are modeled as separate liquid phases, and the bubbling gas and plenum regions are modeled as one lumped gas phase. The modeling of the entire system with a volume of fluid model allows for the prescription of physical properties on a per-phase basis. The molten glass phase and the gas phase physical properties are obtained from previous experimental work. Finding representative properties for the cold cap region is more difficult, as this region is not a true liquid, but rather a multilayer region consisting of a porous and a foamy layer. Physical properties affecting heat transfer, namely the thermal conductivity and heat capacity, have been fit to closely match data and observations from laboratory experiments. Data from xray tomography and quenching of laboratory-scale cold caps provide insight into the topology of bubble distribution within the cold cap at various temperatures. Heat transfer within the melter was validated by comparison with VSL data for the pilot-scale melter.« less
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: open flames, smoking, cutting and...
Preliminary Results from Electric Arc Furnace Off-Gas Enthalpy Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nimbalkar, Sachin U; Thekdi, Arvind; Keiser, James R
2015-01-01
This article describes electric arc furnace (EAF) off-gas enthalpy models developed at Oak Ridge National Laboratory (ORNL) to calculate overall heat availability (sensible and chemical enthalpy) and recoverable heat values (steam or power generation potential) for existing EAF operations and to test ORNL s new EAF waste heat recovery (WHR) concepts. ORNL s new EAF WHR concepts are: Regenerative Drop-out Box System and Fluidized Bed System. The two EAF off-gas enthalpy models described in this paper are: 1.Overall Waste Heat Recovery Model that calculates total heat availability in off-gases of existing EAF operations 2.Regenerative Drop-out Box System Model in whichmore » hot EAF off-gases alternately pass through one of two refractory heat sinks that store heat and then transfer it to another gaseous medium These models calculate the sensible and chemical enthalpy of EAF off-gases based on the off-gas chemical composition, temperature, and mass flow rate during tap to tap time, and variations in those parameters in terms of actual values over time. The models provide heat transfer analysis for the aforementioned concepts to confirm the overall system and major component sizing (preliminary) to assess the practicality of the systems. Real-time EAF off-gas composition (e.g., CO, CO2, H2, and H2O), volume flow, and temperature data from one EAF operation was used to test the validity and accuracy of the modeling work. The EAF off-gas data was used to calculate the sensible and chemical enthalpy of the EAF off-gases to generate steam and power. The article provides detailed results from the modeling work that are important to the success of ORNL s EAF WHR project. The EAF WHR project aims to develop and test new concepts and materials that allow cost-effective recovery of sensible and chemical heat from high-temperature gases discharged from EAFs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaobing; Malhotra, Mini; Xiong, Zeyu
High initial costs and lack of public awareness of ground-source heat pump (GSHP) technology are the two major barriers preventing rapid deployment of this energy-saving technology in the United States. Under the American Recovery and Reinvestment Act (ARRA), 26 GSHP projects have been competitively selected and carried out to demonstrate the benefits of GSHP systems and innovative technologies for cost reduction and/or performance improvement. This paper highlights the findings of a case study of one of the ARRA-funded GSHP demonstration projects, a distributed GSHP system for providing all the space conditioning, outdoor air ventilation, and 100% domestic hot water tomore » the Wilders Grove Solid Waste Service Center of City of Raleigh, North Carolina. This case study is based on the analysis of measured performance data, construction costs, and simulations of the energy consumption of conventional central heating, ventilation, and air-conditioning (HVAC) systems providing the same level of space conditioning and outdoor air ventilation as the demonstrated GSHP system. The evaluated performance metrics include the energy efficiency of the heat pump equipment and the overall GSHP system, pumping performance, energy savings, carbon emission reductions, and cost-effectiveness of the GSHP system compared with conventional HVAC systems. This case study also identified opportunities for reducing uncertainties in the performance evaluation and improving the operational efficiency of the demonstrated GSHP system.« less
NASA Astrophysics Data System (ADS)
Punov, Plamen; Milkov, Nikolay; Danel, Quentin; Perilhon, Christelle; Podevin, Pierre; Evtimov, Teodossi
2017-02-01
An optimization study of the Rankine cycle as a function of diesel engine operating mode is presented. The Rankine cycle here, is studied as a waste heat recovery system which uses the engine exhaust gases as heat source. The engine exhaust gases parameters (temperature, mass flow and composition) were defined by means of numerical simulation in advanced simulation software AVL Boost. Previously, the engine simulation model was validated and the Vibe function parameters were defined as a function of engine load. The Rankine cycle output power and efficiency was numerically estimated by means of a simulation code in Python(x,y). This code includes discretized heat exchanger model and simplified model of the pump and the expander based on their isentropic efficiency. The Rankine cycle simulation revealed the optimum value of working fluid mass flow and evaporation pressure according to the heat source. Thus, the optimal Rankine cycle performance was obtained over the engine operating map.
Starostina, Vlada; Damgaard, Anders; Eriksen, Marie K; Christensen, Thomas H
2018-04-01
The current waste management system, handling around 500,000 t of household, commercial, and institutional waste annually in the Irkutsk region, Siberia, is based on landfilling in an old landfill with no controls of leachate and gas. Life-cycle assessment modelling of the current system shows that it is a major load on the environment, while the simulation of seven alternative systems results in large savings in many impact categories. With respect to climate change, it is estimated that a saving of about 1200 kg CO 2 equivalents is possible per year, per inhabitant, which is a significant reduction in greenhouse gas emissions. The best alternatives involve efficient energy recovery from waste and recycling by source separation for commercial and institutional waste, the major waste type in the Irkutsk region. Recycling of household waste seems less attractive, and it is therefore recommended only to consider this option after experience has been gained with the commercial and institutional waste. Sensitivity analysis shows that recovery of energy - in particular electricity, heat, and steam - from waste is crucial to the environmental performance of the waste management system. This relates to the efficiencies of energy recovery as well as what the recovered energy substitutes, that is, the 'dirtier' the off-set energy, the higher the environmental savings for the waste management system. Since recovered energy may be utilised by only a few energy grids or industrial users, it is recommended to perform additional local assessments of the integration of the waste energy into existing systems and facilities.
Numerical and Experimental Study of an Ambient Air Vaporizer Coupled with a Compact Heat Exchanger
NASA Astrophysics Data System (ADS)
Kimura, Randon
The University of Washington was tasked with designing a "21st century engine" that will make use of the thermal energy available in cryogenic gasses due to their coldness. There are currently large quantities of cryogenic gases stored throughout the U.S. at industrial facilities whereupon the regasification process, the potential for the fluid to do work is wasted. The engine proposed by the University of Washington will try to capture some of that wasted energy. One technical challenge that must be overcome during the regasification process is providing frost free operation. This thesis presents the numerical analysis and experimental testing of a passive heat exchange system that uses ambient vaporizers coupled with compact heat exchangers to provide frost free operation while minimizing pressure drop.
NASA Astrophysics Data System (ADS)
1980-11-01
The Magma Cooling Tower (MCT) process utilizes a falling film heat exchanger integrated into an induced draft cooling tower to evaporate waste water. A hot water source such as return cooling water provides the energy for evaporation. Water quality control is maintained by removing potential scaling constituents to make concentrations of the waste water possible without scaling heat transfer surfaces. A pilot-scale demonstration test of the MCT process was performed from March 1979 through June 1979 at Nevada Power Company's Sunrise Station in Las Vegas, Nevada. The pilot unit extracted heat from the powerplant cooling system to evaporate cooling tower blowdown. Two water quality control methods were employed: makeup/sidestream softening and fluidized bed crystallization. The 11 week softening mode test was successful.
Heat Melt Compaction as an Effective Treatment for Eliminating Microorganisms from Solid Waste
NASA Technical Reports Server (NTRS)
Hummerick, Mary P.; Strayer, Richard F.; McCoy, Lashelle E.; Richards, Jeffrey T.; Ruby, Anna Maria; Wheeler, Ray; Fisher, John
2013-01-01
One of the technologies being tested at NASA Ames Research Center (ARC) for the Advance Exploration Systems program and as part of the logistics and repurposing project is heat melt compaction (HMC) of solid waste. Reduces volume, removes water and renders a biologically stable and safe product. The HMC compacts and reduces the trash volume as much as 90o/o greater than the current manual compaction used by the crew.The project has three primary goals or tasks. 1. Microbiological analysis of HMC hardware surfaces before and after operation. 2. Microbiological and physical characterizations of heat melt tiles made from trash at different processing times and temperatures. 3. Long term storage and stability of HMC trash tiles or "Do the bugs grow back?"
NASA Technical Reports Server (NTRS)
McCoy, LaShelle E.
2013-01-01
The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing. and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and carbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes.
NASA Technical Reports Server (NTRS)
Taylor, M. F.; Whitmarsh, C. L., Jr.; Sirocky, P. J., Jr.; Iwanczyke, L. C.
1973-01-01
A preliminary design study of a conceptual 6000-megawatt open-cycle gas-core nuclear rocket engine system was made. The engine has a thrust of 196,600 newtons (44,200 lb) and a specific impulse of 4400 seconds. The nuclear fuel is uranium-235 and the propellant is hydrogen. Critical fuel mass was calculated for several reactor configurations. Major components of the reactor (reflector, pressure vessel, and waste heat rejection system) were considered conceptually and were sized.
40 CFR 264.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or reactive waste... scientific or engineering literature, data from trial tests (e.g., bench scale or pilot scale tests), waste...
A Review on Electroactive Polymers for Waste Heat Recovery.
Kolasińska, Ewa; Kolasiński, Piotr
2016-06-17
This paper reviews materials for thermoelectric waste heat recovery, and discusses selected industrial and distributed waste heat sources as well as recovery methods that are currently applied. Thermoelectric properties, especially electrical conductivity, thermopower, thermal conductivity and the thermoelectric figures of merit, are considered when evaluating thermoelectric materials for waste heat recovery. Alloys and oxides are briefly discussed as materials suitable for medium- and high-grade sources. Electroactive polymers are presented as a new group of materials for low-grade sources. Polyaniline is a particularly fitting polymer for these purposes. We also discuss types of modifiers and modification methods, and their influence on the thermoelectric performance of this class of polymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Pin; Wang, Yifeng; Rodriguez, Mark A.
The concept of deep borehole nuclear waste disposal has recently been proposed. Effective sealing of a borehole after waste emplacement is generally required. In a high temperature disposal mode, the sealing function will be fulfilled by melting the ambient granitic rock with waste decay heat or an external heating source, creating a melt that will encapsulate waste containers or plug a portion of the borehole above a stack of the containers. However, there are certain drawbacks associated with natural materials, such as high melting temperatures, slow crystallization kinetics, the resulting sealing materials generally being porous with low mechanical strength, insufficientmore » adhesion to waste container surface, and lack of flexibility for engineering controls. Here we show that natural granitic materials can be purposefully engineered through chemical modifications to enhance the sealing capability of the materials for deep borehole disposal. This work systematically explores the effect of chemical modification and crystallinity (amorphous vs. crystalline) on the melting and crystallization processes of a granitic rock system. A number of engineered granitic materials have been obtained that have decreased melting points, enhanced viscous densification, and accelerated recrystallization rates without compromising the mechanical integrity of the materials.« less
Prospects for energy recovery during hydrothermal and biological processing of waste biomass.
Gerber Van Doren, Léda; Posmanik, Roy; Bicalho, Felipe A; Tester, Jefferson W; Sills, Deborah L
2017-02-01
Thermochemical and biological processes represent promising technologies for converting wet biomasses, such as animal manure, organic waste, or algae, to energy. To convert biomass to energy and bio-chemicals in an economical manner, internal energy recovery should be maximized to reduce the use of external heat and power. In this study, two conversion pathways that couple hydrothermal liquefaction with anaerobic digestion or catalytic hydrothermal gasification were compared. Each of these platforms is followed by two alternative processes for gas utilization: 1) combined heat and power; and 2) combustion in a boiler. Pinch analysis was applied to integrate thermal streams among unit processes and improve the overall system efficiency. A techno-economic analysis was conducted to compare the feasibility of the four modeled scenarios under different market conditions. Our results show that a systems approach designed to recover internal heat and power can reduce external energy demands and increase the overall process sustainability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dexin
This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advancedmore » version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO 2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.« less
The radio frequency (RF) heating process can be used to volumetrically heat and thus decontaminate uncontrolled landfills and hazardous substances from spills. After the landfills are heated, decontamination of the hazardous substances occurs due to thermal decomposition, vaporiz...
Horttanainen, M; Teirasvuo, N; Kapustina, V; Hupponen, M; Luoranen, M
2013-12-01
For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energy share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50-60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.
Poulsen, Tjalfe G; Hansen, Jens Aage
2009-11-01
Historical data on organic waste and wastewater treatment during the period of 1970-2020 were used to assess the impact of treatment on energy and greenhouse gas (GHG) balances. The assessment included the waste fractions: Sewage sludge, food waste, yard waste and other organic waste (paper, plastic, etc.). Data were collected from Aalborg, a municipality located in Northern Denmark. During the period from 1970-2005, Aalborg Municipality has changed its waste treatment strategy from landfilling of all wastes toward composting of yard waste and incineration with combined heat and power production from the remaining organic municipal waste. Wastewater treatment has changed from direct discharge of untreated wastewater to full organic matter and nutrient (N, P) removal combined with anaerobic digestion of the sludge for biogas production with power and heat generation. These changes in treatment technology have resulted in the waste and wastewater treatment systems in Aalborg progressing from being net consumers of energy and net emitters of GHG, to becoming net producers of energy and net savers of GHG emissions (due to substitution of fossil fuels elsewhere). If it is assumed that the organic waste quantity and composition is the same in 1970 and 2005, the technology change over this time period has resulted in a progression from a net annual GHG emission of 200 kg CO( 2)-eq. capita(-1) in 1970 to a net saving of 170 kg CO(2)-eq. capita(-1) in 2005 for management of urban organic wastes.
NASA Astrophysics Data System (ADS)
Colella, Whitney G.
Although the fuel cells research and development community has traditionally focused the majority of its efforts on improving the fuel cell stack's voltage (electrical efficiency), combined heat and power (CHP) fuel cell system (FCSs) may achieve a competitive advantage over conventional generators only if the research and development community refocuses its efforts on cultivating other inherent technical qualities of such systems. Based on an analysis of their use within energy markets, these inherent qualities include (1) an ability to vary their electrical load rapidly, (2) an ability to vary their heat to power ratio during operation, and (3) an ability to deliver their waste heat to a useful thermal sink. This article focuses on the last of three design objectives: effectively capturing heat from a CHP FCS. This article (1) delineates the design specifications for a 6 kWe CHP FCS, (2) analyses four possible cooling loop configurations for this system, and (3) concludes which one of these provides the optimal heat recovery performance.
Space Mission Utility and Requirements for a Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Fisher, John W.; Lee, Jeffrey M.
2016-01-01
Management of waste on long-duration space missions is both a problem and an opportunity. Uncontained or unprocessed waste is a crew health hazard and a habitat storage problem. A Heat Melt Compactor (HMC) such as NASA has been developing is capable of processing space mission trash and converting it to useful products. The HMC is intended to process space mission trash to achieve a number of objectives including: volume reduction, biological safening and stabilization, water recovery, radiation shielding, and planetary protection. This paper explores the utility of the HMC to future space missions and how this translates into HMC system requirements.
WASTE HANDLING BUILDING ELECTRICAL SYSTEM DESCRIPTION DOCUMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Khamamkar
2000-06-23
The Waste Handling Building Electrical System performs the function of receiving, distributing, transforming, monitoring, and controlling AC and DC power to all waste handling building electrical loads. The system distributes normal electrical power to support all loads that are within the Waste Handling Building (WHB). The system also generates and distributes emergency power to support designated emergency loads within the WHB within specified time limits. The system provides the capability to transfer between normal and emergency power. The system provides emergency power via independent and physically separated distribution feeds from the normal supply. The designated emergency electrical equipment will bemore » designed to operate during and after design basis events (DBEs). The system also provides lighting, grounding, and lightning protection for the Waste Handling Building. The system is located in the Waste Handling Building System. The system consists of a diesel generator, power distribution cables, transformers, switch gear, motor controllers, power panel boards, lighting panel boards, lighting equipment, lightning protection equipment, control cabling, and grounding system. Emergency power is generated with a diesel generator located in a QL-2 structure and connected to the QL-2 bus. The Waste Handling Building Electrical System distributes and controls primary power to acceptable industry standards, and with a dependability compatible with waste handling building reliability objectives for non-safety electrical loads. It also generates and distributes emergency power to the designated emergency loads. The Waste Handling Building Electrical System receives power from the Site Electrical Power System. The primary material handling power interfaces include the Carrier/Cask Handling System, Canister Transfer System, Assembly Transfer System, Waste Package Remediation System, and Disposal Container Handling Systems. The system interfaces with the MGR Operations Monitoring and Control System for supervisory monitoring and control signals. The system interfaces with all facility support loads such as heating, ventilation, and air conditioning, office, fire protection, monitoring and control, safeguards and security, and communications subsystems.« less
Efficiency analysis of semi-open sorption heat pump systems
Gluesenkamp, Kyle R.; Chugh, Devesh; Abdelaziz, Omar; ...
2016-08-10
Sorption systems traditionally fall into two categories: closed (heat pumps and chillers) and open (dehumidification). Recent work has explored the possibility of semi-open systems, which can perform heat pumping or chilling while utilizing ambient humidity as the working fluid of the cycle, and are still capable of being driven by solar, waste, or combustion heat sources. The efficiencies of closed and open systems are well characterized, and can typically be determined from four temperature s. In this work, the performance potential of semi-open systems is explored by adapting expressions for the efficiency of closed and open systems to the novelmore » semi-open systems. A key new parameter is introduced, which involves five temperatures, since both the ambient dry bulb and ambient dew point are used. Furthermore, this additional temperature is necessary to capture the open absorber performance in terms of both the absorption of humidity and sensible heat transfer with surrounding air.« less
Efficiency analysis of semi-open sorption heat pump systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gluesenkamp, Kyle R.; Chugh, Devesh; Abdelaziz, Omar
Sorption systems traditionally fall into two categories: closed (heat pumps and chillers) and open (dehumidification). Recent work has explored the possibility of semi-open systems, which can perform heat pumping or chilling while utilizing ambient humidity as the working fluid of the cycle, and are still capable of being driven by solar, waste, or combustion heat sources. The efficiencies of closed and open systems are well characterized, and can typically be determined from four temperature s. In this work, the performance potential of semi-open systems is explored by adapting expressions for the efficiency of closed and open systems to the novelmore » semi-open systems. A key new parameter is introduced, which involves five temperatures, since both the ambient dry bulb and ambient dew point are used. Furthermore, this additional temperature is necessary to capture the open absorber performance in terms of both the absorption of humidity and sensible heat transfer with surrounding air.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolková, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk; Holubčík, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Malcho, Milan, E-mail: milan.malcho@fstroj.uniza.sk
All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz’s Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain themore » waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.« less
NASA Astrophysics Data System (ADS)
Kolková, Zuzana; Holubčík, Michal; Malcho, Milan
2016-06-01
All electronic components which exhibit electrical conductor resistance, generates heat when electricity is passed (Joule - Lenz's Law). The generated heat is necessary to take into surrounding environment. To reduce the operating temperature of electronic components are used various types of cooling in electronic devices. The released heat is removed from the outside of the device in several ways, either alone or in combination. Intensification of cooling electronic components is in the use of heat transfer through phase changes. From the structural point of view it is important to create a cooling system which would be able to drain the waste heat converter for each mode of operation device. Another important criterion is the reliability of the cooling, and it is appropriate to choose cooling system, which would not contain moving elements. In this article, the issue tackled by the phase change in the heat pipe.
Thermal Predictions of the Cooling of Waste Glass Canisters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donna Post Guillen
2014-11-01
Radioactive liquid waste from five decades of weapons production is slated for vitrification at the Hanford site. The waste will be mixed with glass forming additives and heated to a high temperature, then poured into canisters within a pour cave where the glass will cool and solidify into a stable waste form for disposal. Computer simulations were performed to predict the heat rejected from the canisters and the temperatures within the glass during cooling. Four different waste glass compositions with different thermophysical properties were evaluated. Canister centerline temperatures and the total amount of heat transfer from the canisters to themore » surrounding air are reported.« less
40 CFR 60.36e - Inspection guidelines.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; (v) Inspect HMIWI door and door gaskets for proper sealing; (vi) Inspect motors for proper operation... applicable; (xiv) Inspect waste heat boiler systems to ensure proper operation, if applicable; (xv) Inspect...
A Review on Electroactive Polymers for Waste Heat Recovery
Kolasińska, Ewa; Kolasiński, Piotr
2016-01-01
This paper reviews materials for thermoelectric waste heat recovery, and discusses selected industrial and distributed waste heat sources as well as recovery methods that are currently applied. Thermoelectric properties, especially electrical conductivity, thermopower, thermal conductivity and the thermoelectric figures of merit, are considered when evaluating thermoelectric materials for waste heat recovery. Alloys and oxides are briefly discussed as materials suitable for medium- and high-grade sources. Electroactive polymers are presented as a new group of materials for low-grade sources. Polyaniline is a particularly fitting polymer for these purposes. We also discuss types of modifiers and modification methods, and their influence on the thermoelectric performance of this class of polymers. PMID:28773605
2013-08-22
charging system for increased power density. Compact two-stage turbocharger systems. UNCLASSIFIED: Distribution Statement A. Approved for public...advanced waste heat recovery, solid state cooling, turbocharging /turbocompounding UNCLASSIFIED: Distribution Statement A. Approved for public release... Turbocharging For Official Use Only For Official Use Only 77 •System – develop components capable of handling multiple roles within thermal
Equilibrium Temperature Profiles within Fission Product Waste Forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaminski, Michael D.
2016-10-01
We studied waste form strategies for advanced fuel cycle schemes. Several options were considered for three waste streams with the following fission products: cesium and strontium, transition metals, and lanthanides. These three waste streams may be combined or disposed separately. The decay of several isotopes will generate heat that must be accommodated by the waste form, and this heat will affect the waste loadings. To help make an informed decision on the best option, we present computational data on the equilibrium temperature of glass waste forms containing a combination of these three streams.
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Hertzberg, A.
1984-01-01
A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets ( 100 micron diameter) of low vapor pressure liquids the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejectioon are discussed and solutions are suggested.
NASA Technical Reports Server (NTRS)
Mattick, A. T.; Hertzberg, A.
1981-01-01
A heat rejection system for space is described which uses a recirculating free stream of liquid droplets in place of a solid surface to radiate waste heat. By using sufficiently small droplets (less than about 100 micron diameter) of low vapor pressure liquids (tin, tin-lead-bismuth eutectics, vacuum oils) the radiating droplet sheet can be made many times lighter than the lightest solid surface radiators (heat pipes). The liquid droplet radiator (LDR) is less vulnerable to damage by micrometeoroids than solid surface radiators, and may be transported into space far more efficiently. Analyses are presented of LDR applications in thermal and photovoltaic energy conversion which indicate that fluid handling components (droplet generator, droplet collector, heat exchanger, and pump) may comprise most of the radiator system mass. Even the unoptimized models employed yield LDR system masses less than heat pipe radiator system masses, and significant improvement is expected using design approaches that incorporate fluid handling components more efficiently. Technical problems (e.g., spacecraft contamination and electrostatic deflection of droplets) unique to this method of heat rejection are discussed and solutions are suggested.
High-Performance Computing Data Center | Computational Science | NREL
liquid cooling to achieve its very low PUE, then captures and reuses waste heat as the primary heating dry cooler that uses refrigerant in a passive cycle to dissipate heat-is reducing onsite water Measuring efficiency through PUE Warm-water liquid cooling Re-using waste heat from computing components
Interactive analysis of waste recycling and energy recovery program in a small-scale incinerator.
Chen, Jeng-Chung; Chen, Wei-Hsin; Chang, Ni-Bin; Davila, Eric; Tsai, Cheng-Hsien
2005-09-01
Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.
Using Pyrolysis and its Bioproducts to Help Close the Loop in Sustainable Life Support Systems
NASA Technical Reports Server (NTRS)
McCoy, LaShelle E.
2012-01-01
The next step in human exploration of space is beyond low Earth orbit and possibly to sites such as the Moon and Mars. Resupply of critical life support components for missions such as these are difficult or impossible. Life support processes for closing the loop of water, oxygen and carbon have to be identified .. Currently, there are many technologies proposed for terrestrial missions for waste, water, air processing and the creation of consumables. There are a variety of different approaches, but few address all of these issues simultaneously. One candidate is pyrolysis; a method where waste streams can be heated in the absence of oxygen to undergo a thermochemical conversion producing a series of bioproducts. Bioproducts like biochar made from non-edible biomass and human solid waste can possibly provide valuable benefits such as waste reduction, regolith fertilization for increased food production, and become a consumable for water processing and air revitalization systems. Syngas containing hydrogen, carbon monoxide and cbon dioxide, can be converted to methane and dimethyl ether to create propellants. Bio-oils can be utilized as a heating fuel or fed to bioreactors that utilize oil-eating microbes. Issues such as carbon sequestration and subsequent carbon balance of the closed system and identifying ideal process methods to achieve the highest quality products, whilst being energy friendly, will also be addressed.
Spacecraft active thermal control subsystem design and operation considerations
NASA Technical Reports Server (NTRS)
Sadunas, J. A.; Lehtinen, A. M.; Nguyen, H. T.; Parish, R.
1986-01-01
Future spacecraft missions will be characterized by high electrical power requiring active thermal control subsystems for acquisition, transport, and rejection of waste heat. These systems will be designed to operate with minimum maintenance for up to 10 years, with widely varying externally-imposed environments, as well as the spacecraft waste heat rejection loads. This paper presents the design considerations and idealized performance analysis of a typical thermal control subsystem with emphasis on the temperature control aspects during off-design operation. The selected thermal management subsystem is a cooling loop for a 75-kWe fuel cell subsystem, consisting of a fuel cell heat exchanger, thermal storage, pumps, and radiator. Both pumped-liquid transport and two-phase (liquid/vapor) transport options are presented with examination of similarities and differences of the control requirements for these representative thermal control options.
Device and Container for Reheating and Sterilization
NASA Technical Reports Server (NTRS)
Sastry, Sudhir K.; Heskitt, Brian F.; Jun, Soojin; Marcy, Joseph E.; Mahna, Ritesh
2012-01-01
Long-duration space missions require the development of improved foods and novel packages that do not represent a significant disposal issue. In addition, it would also be desirable if rapid heating technologies could be used on Earth as well, to improve food quality during a sterilization process. For this purpose, a package equipped with electrodes was developed that will enable rapid reheating of contents via ohmic heating to serving temperature during space vehicle transit. Further, the package is designed with a resealing feature, which enables the package, once used, to contain and sterilize waste, including human waste for storage prior to jettison during a long-duration mission. Ohmic heating is a technology that has been investigated on and off for over a century. Literature indicates that foods processed by ohmic heating are of superior quality to their conventionally processed counterparts. This is due to the speed and uniformity of ohmic heating, which minimizes exposure of sensitive materials to high temperatures. In principle, the material may be heated rapidly to sterilization conditions, cooled rapidly, and stored. The ohmic heating device herein is incorporated within a package. While this by itself is not novel, a reusable feature also was developed with the intent that waste may be stored and re-sterilized within the packages. These would then serve a useful function after their use in food processing and storage. The enclosure should be designed to minimize mass (and for NASA's purposes, Equivalent System Mass, or ESM), while enabling the sterilization function. It should also be electrically insulating. For this reason, Ultem high-strength, machinable electrical insulator was used.
A Nexus Approach for Sustainable Urban Energy-Water-Waste Systems Planning and Operation.
Wang, Xiaonan; Guo, Miao; Koppelaar, Rembrandt H E M; van Dam, Koen H; Triantafyllidis, Charalampos P; Shah, Nilay
2018-03-06
Energy, water, and waste systems analyzed at a nexus level are important to move toward more sustainable cities. In this paper, the "resilience.io" platform is developed and applied to emphasize on waste-to-energy pathways, along with the water and energy sectors, aiming to develop waste treatment capacity and energy recovery with the lowest economic and environmental cost. Three categories of waste including wastewater (WW), municipal solid waste (MSW), and agriculture waste are tested as the feedstock for thermochemical treatment via incineration, gasification, or pyrolysis for combined heat and power generation, or biological treatment such as anaerobic digestion (AD) and aerobic treatment. A case study is presented for Ghana in sub-Saharan Africa, considering a combination of waste treatment technologies and infrastructure, depending on local characteristics for supply and demand. The results indicate that the biogas generated from waste treatment turns out to be a promising renewable energy source in the analyzed region, while more distributed energy resources can be integrated. A series of scenarios including the business-as-usual, base case, naturally constrained, policy interventions, and environmental and climate change impacts demonstrate how simulation with optimization models can provide new insights in the design of sustainable value chains, with particular emphasis on whole-system analysis and integration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, Gene; Lustbader, Jason Aaron
The National Renewable Energy Laboratory's (NREL's) CoolSim MATLAB/Simulink modeling framework was used to explore control strategies for an electric vehicle combined loop system. Three system variants of increased complexity and efficiency were explored: a glycol-based positive temperature coefficient heater (PTC), PTC with power electronics and electric motor (PEEM) waste heat recovery, and PTC with PEEM waste heat recovery plus heat pump versions. Additionally, the benefit of electric motor preheating was considered. A two-level control strategy was developed where the mode selection and component control were treated separately. Only the parameters typically available by vehicle sensors were used to control themore » system. The control approach included a mode selection algorithm and controllers for the compressor speed, cabin blower flow rate, coolant flow rate, and the front-end heat exchanger coolant bypass rate. The electric motor was bypassed by the cooling circuit until its temperature exceeded the coolant inlet temperature. The impact of these thermal systems on electric vehicle range during warmup was simulated for the Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel Economy Test (HWFET2X) drive cycles weighted 45%/55% respectively. A range of ambient temperatures from -20 degrees C to +20 degrees C was considered. NREL's Future Automotive Systems Technology Simulator (FASTSim) vehicle modeling tool showed up to a 10.9% improvement in range for the full system over the baseline during warmup from cold soak. The full system with preheat showed up to 17% improvement in range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, R.
This article describes a petrol (gasoline) engine development project to combine the duel technologies of an Otto cycle engine with a modified cooling system and a high-tech processor-controlled bottoming cycle to harness not only the waste heat from the exhaust gases but also a significant proportion of the heat lost by a conventional petrol engine to the water coolant, resulting in a very substantial increase in energy conversion efficiency.
NASA Astrophysics Data System (ADS)
Wang, Shuaijun; Liu, Chentao; Zhou, Yao
2018-01-01
Based on using the waste heat recycling from high temperature freshwater in marine diesel engine to heat fuel oil tank, lubrication oil tank and settling tank and so on to achieve energy saving, improve fuel efficiency as the goal, study on waste heat utilization device of high-temperature freshwater in the modern marine diesel engine to make the combustion chamber effectively cooled by high-temperature freshwater and the inner liner freshwater temperature heat is effectively utilized and so on to improve the overall efficiency of the power plant of the ship and the diesel optimum working condition.
Military wastes-to-energy applications
NASA Astrophysics Data System (ADS)
Kawaoka, K. E.
1980-11-01
This analysis focuses on the military waste material and byproduct stream and the potential for energy recovery and utilization. Feedstock material includes municipal-type solid waste, selected installation hazardous waste, and biomass residue. The study objectives are to (1) analyze the characteristics of the military waste stream; (2) identify potential energy recovery options; and (3) examine and assess the technical and economic feasibility and environmental and institutional impacts of various energy recovery approaches. Total energy recoverable from DOD solid waste could provide about 2 percent of DOD's facility energy demand. The energy potential available to DOD from biomass and hazardous waste was not available. Available waste-to-energy systems are thermal conversion processes such as incineration with heat recovery. The significance of this recoverable energy from military wastes is put in proper perspective when the benefits and barriers in using waste-derived energy are considered. Some of the benefits of waste-to-energy conversion are as follows: waste energy is a readily available and inexhaustible resource that greatly reduces dependence on imported energy.
40 CFR 63.1093 - Does this subpart apply to my waste streams?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) National Emission Standards for Ethylene Manufacturing Process Units: Heat Exchange Systems and... ethylene production facility expressly referenced to this subpart XX from subpart YY of this part. The...
Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.
2010-09-01
The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designingmore » a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.« less
NASA Astrophysics Data System (ADS)
Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard
The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.
Abedini, Ali R; Atwater, James W; Fu, George Yuzhu
2012-08-01
Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.
Study and development of a cryogenic heat exchanger for life support systems
NASA Technical Reports Server (NTRS)
Soliman, M. M.
1973-01-01
A prototype cryogenic heat exchanger for removal of waste heat from a spacecraft environmental control life support system was developed. The heat exchanger uses the heat sink capabilities of the cryogenic propellants and, hence, can operate over all mission phases from prelaunch to orbit, to post landing, with quiescent periods during orbit. A survey of candidate warm fluids resulted in the selection of E-2, a fluorocarbon compound, because of its low freezing point and high boiling point. The final design and testing of the heat exchanger was carried out, however, using Freon-21, which is similar to E-2 except for its low boiling point. This change was motivated by the desire for cost effectiveness of the experimental program. The transient performance of the heat exchanger was demonstrated by an analog simulation of the heat sink system. Under the realistic transient heat load conditions (20 sec ramp from minimum to maximum Freon-21 inlet temperature), the control system was able to maintain the warm fluid outlet temperature within + or - 3 F. For a 20-sec ramp from 0 F to -400 F in the hydrogen inlet temperature, at maximum heat load, the warm fluid outlet temperature was maintained within + or - 7 F.
Turbo-Electric Compressor/Generator Using Halbach Arrays
NASA Technical Reports Server (NTRS)
Kloesel, Kurt J. (Inventor)
2016-01-01
The present invention is a turbojet design that integrates power generation into the turbojet itself, rather than use separate generators attached to the turbojet for power generation. By integrating the power generation within the jet engine, the weight of the overall system is significantly reduced, increasing system efficiency. Also, by integrating the power generating elements of the system within the air flow of the jet engine, the present invention can use the heat generated by the power generating elements (which is simply expelled waste heat in current designs) to increase the engine performance.
Testing of an advanced thermochemical conversion reactor system
NASA Astrophysics Data System (ADS)
1990-01-01
This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.
Leveraging gigawatt potentials by smart heat-pump technologies using ionic liquids.
Wasserscheid, Peter; Seiler, Matthias
2011-04-18
One of the greatest challenges to science in the 21 st century is the development of efficient energy production, storage, and transformation systems with minimal ecological footprints. Due to the lack of efficient heat-transformation technologies, industries around the world currently waste energy in the gigawatt range at low temperatures (40-80 °C). These energy potentials can be unlocked or used more efficiently through a new generation of smart heat pumps operating with novel ionic liquid (IL)-based working pairs. The new technology is expected to allow revolutionary technical progress in heat-transformation devices, for example, significantly higher potential efficiencies, lower specific investments, and broader possibilities to incorporate waste energy from renewable sources. Furthermore, due to drastically reduced corrosion rates and excellent thermal stabilities of the new, IL-based working pairs, the high driving temperatures necessary for multi-effect cycles such as double- or triple-effect absorption chillers, can also be realized. The details of this novel and innovative heat-transformation technology are described. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Anderson, Kevin
2013-01-01
The challenging range of landing sites for which the Mars Science Laboratory Rover was designed, requires a rover thermal management system that is capable of keeping temperatures controlled across a wide variety of environmental conditions. On the Martian surface where temperatures can be as cold as -123 C and as warm as 38 C, the rover relies upon a Mechanically Pumped Fluid Loop (MPFL) Rover Heat Rejection System (RHRS) and external radiators to maintain the temperature of sensitive electronics and science instruments within a -40 C to 50 C range. The RHRS harnesses some of the waste heat generated from the rover power source, known as the Multi Mission Radioisotope Thermoelectric Generator (MMRTG), for use as survival heat for the rover during cold conditions. The MMRTG produces 110 W of electrical power while generating waste heat equivalent to approximately 2000 W. Heat exchanger plates (hot plates) positioned close to the MMRTG pick up this survival heat from it by radiative heat transfer. Winds on Mars can be as fast as 15 m/s for extended periods. They can lead to significant heat loss from the MMRTG and the hot plates due to convective heat pick up from these surfaces. Estimation of this convective heat loss cannot be accurately and adequately achieved by simple textbook based calculations because of the very complicated flow fields around these surfaces, which are a function of wind direction and speed. Accurate calculations necessitated the employment of sophisticated Computational Fluid Dynamics (CFD) computer codes. This paper describes the methodology and results of these CFD calculations. Additionally, these results are compared to simple textbook based calculations that served as benchmarks and sanity checks for them. And finally, the overall RHRS system performance predictions will be shared to show how these results affected the overall rover thermal performance.
USE OF COAL DRYING TO REDUCE WATER CONSUMED IN PULVERIZED COAL POWER PLANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward Levy; Harun Bilirgen; Ursla Levy
2006-01-01
This is the twelfth Quarterly Report for this project. The background and technical justification for the project are described, including potential benefits of reducing fuel moisture using power plant waste heat, prior to firing the coal in a pulverized coal boiler. During this last Quarter, the development of analyses to determine the costs and financial benefits of coal drying was continued. The details of the model and key assumptions being used in the economic evaluation are described in this report and results are shown for a drying system utilizing a combination of waste heat from the condenser and thermal energymore » extracted from boiler flue gas.« less
NASA Astrophysics Data System (ADS)
Han, Yue; Guo, Junshan; Zheng, Wei; Ding, Junqi; Zhu, Lingkai; Che, Yongqiang; Zhang, Yanpeng
2017-12-01
Based on a novel waste heat recovery project established in a cement plant, this paper aims to evaluate the performance of the project using multi-criteria analysis (MCA) approach. Economic, environmental, social, and technical perspectives were concerned and analyzed. Different sustainability criteria and indicators related with the project were evaluated through ranking/rating process and pairwise comparison. Results have shown similar outcomes, that ten out of eleven criteria are favorable at a high standard, which reveals the project’s success. Although the project has performed so well in economic, environmental and technical terms, social aspects have some weak points, and measures should be taken to improve social benefit.
Fruergaard, Thilde; Astrup, Tomas; Ekvall, Thomas
2009-11-01
The energy system plays an essential role in accounting of greenhouse gas (GHG) emissions from waste management systems and waste technologies. This paper focuses on energy use and energy recovery in waste management and outlines how these aspects should be addressed consistently in a GHG perspective. Essential GHG emission data for the most common fuels, electricity and heat are provided. Average data on electricity provision show large variations from country to country due to different fuels being used and different efficiencies for electricity production in the individual countries (0.007-1.13 kg CO(2)-eq. kWh(-1)). Marginal data on electricity provision show even larger variations (0.004-3 kg CO(2)-eq. kWh( -1)). Somewhat less variation in GHG emissions is being found for heat production (0.01-0.69 kg CO(2)-eq. kWh( -1)). The paper further addresses allocation principles and the importance of applying either average or marginal energy data, and it discusses the consequences of introducing reduction targets on CO( 2) emissions. All discussed aspects were found to significantly affect the outcome of GHG accounts suggesting transparent reporting to be critical. Recommendations for use of average/marginal energy data are provided.
Seasonal Thermal Energy Storage Program
NASA Technical Reports Server (NTRS)
Minor, J. E.
1980-01-01
The Seasonal Thermal Energy Storage (STES) Program designed to demonstrate the storage and retrieval of energy on a seasonal basis using heat or cold available from waste or other sources during a surplus period is described. Factors considered include reduction of peak period demand and electric utility load problems and establishment of favorable economics for district heating and cooling systems for commercialization of the technology. The initial thrust of the STES Program toward utilization of ground water systems (aquifers) for thermal energy storage is emphasized.
NASA Technical Reports Server (NTRS)
Oleson, M.; Slavin, T.; Liening, F.; Olson, R. L.
1986-01-01
Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS.
Building heating and cooling applications thermal energy storage program overview
NASA Technical Reports Server (NTRS)
Eissenberg, D. M.
1980-01-01
Thermal energy storage technology and development of building heating and cooling applications in the residential and commercial sectors is outlined. Three elements are identified to undergo an applications assessment, technology development, and demonstration. Emphasis is given to utility load management thermal energy system application where the stress is on the 'customer side of the meter'. Thermal storage subsystems for space conditioning and conservation means of increased thermal mass within the building envelope and by means of low-grade waste heat recovery are covered.
Scheffer, Karl D.
1984-07-03
Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low BTU gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollution is reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved.
Scheffer, K.D.
1984-07-03
Air is caused to flow through the resin bonded mold to aid combustion of the resin binder to form a low Btu gas fuel. Casting heat is recovered for use in a waste heat boiler or other heat abstraction equipment. Foundry air pollutis reduced, the burned portion of the molding sand is recovered for immediate reuse and savings in fuel and other energy is achieved. 5 figs.
40 CFR 265.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: Open flames...), spontaneous ignition (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or...
40 CFR 265.17 - General requirements for ignitable, reactive, or incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... to prevent accidental ignition or reaction of ignitable or reactive waste. This waste must be separated and protected from sources of ignition or reaction including but not limited to: Open flames...), spontaneous ignition (e.g., from heat-producing chemical reactions), and radiant heat. While ignitable or...
Heat Rejection Concepts for Lunar Fission Surface Power Applications
NASA Technical Reports Server (NTRS)
Siamidis, John
2006-01-01
This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.
Steam ejector as an industrial heat pump
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, H.G.; Huntley, W.R.; Perez-Blanco, H.
1982-01-01
The steam ejector is analyzed for use in industrial heat recovery applications and compared to mechanical compressor heat pumps. An estimated ejector performance was analyzed using methods based on conservation of mass, momentum, and energy; using steam properties to account for continuity; and using appropriate efficiencies for the nozzle and diffuse performance within the ejector. A potential heat pump application at a paper plant in which waste water was available in a hot well downstream of the paper machine was used to describe use of the stream ejector. Both mechanical compression and jet ejector heat pumps were evaluated for recompressionmore » of flashed steam from the hot well. It is noted that another possible application of vapor recompression heat pumps is the recovery of waste heat from large facilities such as the gaseous diffusion plants. The economics of recovering waste heat in similar applications is analyzed. (MCW)« less
Unitized Regenerative Fuel Cell System Gas Storage/Radiator Development
NASA Technical Reports Server (NTRS)
Jakupca, Ian; Burke, Kenneth A.
2003-01-01
The ancillary components for Unitized Regenerative Fuel Cell (URFC) Energy Storage System are being developed at the NASA Glenn Research Center. This URFC system is unique in that it uses the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes. The heat pipes are coiled around each tank and covered with a thin layer of thermally conductive layer of carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different sized commercial grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. The results were incorporated into a model that simulates the performance of similar radiators using lightweight, space rated carbon composite tanks.
Thermal energy storage for low grade heat in the organic Rankine cycle
NASA Astrophysics Data System (ADS)
Soda, Michael John
Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The addition of graphite to augment heat transfer rates was also tested. Melting and solidification temperatures largely matched predictions. The magnesium salts were found to be less stable under thermal cycling than the waxes. Graphite was only soluble in the waxes. Mixtures of magnesium salts and waxes yielded a layered composite with the less dense waxes creating a sealing layer over the salt layer that significantly increased the stability of the magnesium salts. Research into optimum heat exchangers and storage vessels for these applications indicates that horizontally oriented aluminum pipes with vertically oriented aluminum fins would be the best method of storing and retrieving energy. Fin spacing can be predicted by an equation based on target temperatures and PCM characteristics.
NASA 50 amp hour nickel cadmium battery waste heat determination
NASA Technical Reports Server (NTRS)
Mueller, V. C.
1980-01-01
A process for determining the waste heat generated in a 50-ampere-hour, nickel cadmium battery as a function of the discharge rate is described and results are discussed. The technique involved is essentially calibration of the battery as a heat transfer rate calorimeter. The tests are run at three different levels of battery activity, one at 40-watts of waste heat generated, one at 60, and one at 100. Battery inefficiency ranges from 14 to 18 percent at discharge rates of 284 to 588 watts, respectively and top-of-cell temperatures of 20 C.
Safar, Korai M; Bux, Mahar R; Aslam, Uqaili M; Ahmed, Memon S; Ahmed, Lashari I
2016-04-01
Non-renewable energy sources have remained the choice of the world for centuries. Rapid growth in population and industrialisation have caused their shortage and environmental degradation by using them. Thus, at the present rate of consumption, they will not last very long. In this prospective, this study has been conducted. The estimation of energy in terms of biogas and heat from various organic fractions of municipal solid waste is presented and discussed. The results show that organic fractions of municipal solid waste possess methane potential in the range of 3%-22% and their heat capacity ranges from 3007 to 20,099 kJ kg(-1) Also, theoretical biogas potential of different individual fruit as well as vegetable components and mixed food waste are analysed and estimated in the range of 608-1244 m(3) t(-1) Further, the share of bioenergy from municipal solid waste in the total primary energy supply in Pakistan has been estimated to be 1.82%. About 8.43% of present energy demand of the country could be met from municipal solid waste. The study leads us to the conclusion that the share of imported energy (i.e. 0.1% of total energy supply) and reduction in the amount of energy from fossil fuels can be achieved by adopting a waste-to-energy system in the country. © The Author(s) 2016.
Performance Assessment of a Generic Repository in Bedded Salt for DOE-Managed Nuclear Waste
NASA Astrophysics Data System (ADS)
Stein, E. R.; Sevougian, S. D.; Hammond, G. E.; Frederick, J. M.; Mariner, P. E.
2016-12-01
A mined repository in salt is one of the concepts under consideration for disposal of DOE-managed defense-related spent nuclear fuel (SNF) and high level waste (HLW). Bedded salt is a favorable medium for disposal of nuclear waste due to its low permeability, high thermal conductivity, and ability to self-heal. Sandia's Generic Disposal System Analysis framework is used to assess the ability of a generic repository in bedded salt to isolate radionuclides from the biosphere. The performance assessment considers multiple waste types of varying thermal load and radionuclide inventory, the engineered barrier system comprising the waste packages, backfill, and emplacement drifts, and the natural barrier system formed by a bedded salt deposit and the overlying sedimentary sequence (including an aquifer). The model simulates disposal of nearly the entire inventory of DOE-managed, defense-related SNF (excluding Naval SNF) and HLW in a half-symmetry domain containing approximately 6 million grid cells. Grid refinement captures the detail of 25,200 individual waste packages in 180 disposal panels, associated access halls, and 4 shafts connecting the land surface to the repository. Equations describing coupled heat and fluid flow and reactive transport are solved numerically with PFLOTRAN, a massively parallel flow and transport code. Simulated processes include heat conduction and convection, waste package failure, waste form dissolution, radioactive decay and ingrowth, sorption, solubility limits, advection, dispersion, and diffusion. Simulations are run to 1 million years, and radionuclide concentrations are observed within an aquifer at a point approximately 4 kilometers downgradient of the repository. The software package DAKOTA is used to sample likely ranges of input parameters including waste form dissolution rates and properties of engineered and natural materials in order to quantify uncertainty in predicted concentrations and sensitivity to input parameters. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
DC graphite arc furnace, a simple system to reduce mixed waste volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wittle, J.K.; Hamilton, R.A.; Trescot, J.
1995-12-31
The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less
NASA Astrophysics Data System (ADS)
Zhang, Li; Zhang, Yu; Zhou, Liansheng; E, Zhijun; Wang, Kun; Wang, Ziyue; Li, Guohao; Qu, Bin
2018-02-01
The waste heat energy efficiency for absorption heat pump recycling thermal power plant circulating water has been analyzed. After the operation of heat pump, the influences on power generation and heat generation of unit were taken into account. In the light of the characteristics of heat pump in different operation stages, the energy efficiency of heat pump was evaluated comprehensively on both sides of benefits belonging to electricity and benefits belonging to heat, which adopted the method of contrast test. Thus, the reference of energy efficiency for same type projects was provided.
Vitrified metal finishing wastes I. Composition, density and chemical durability.
Bingham, P A; Hand, R J
2005-03-17
Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.
Ip, Kenneth; She, Kaiming; Adeyeye, Kemi
2017-10-18
Recovering heat from waste water discharged from showers to preheat the incoming cold water has been promoted as a cost-effective, energy-efficient, and low-carbon design option which has been included in the UK's Standard Assessment Procedure (SAP) for demonstrating compliance with the Building Regulation for dwellings. Incentivized by its carbon cost-effectiveness, waste water heat exchangers (WWHX) have been selected and incorporated in a newly constructed Sports Pavilion at the University of Brighton in the UK. This £2-m sports development serving several football fields was completed in August 2015 providing eight water- and energy-efficient shower rooms for students, staff, and external organizations. Six of the shower rooms are located on the ground floor and two on the first floor, each fitted with five or six thermostatically controlled shower units. Inline type of WWHX were installed, each consisted of a copper pipe section wound by an external coil of smaller copper pipe through which the cold water would be warmed before entering the shower mixers. Using the installation at Sport Pavilion as the case study, this research aims to evaluate the environmental and financial sustainability of a vertical waste heat recovery device, over a life cycle of 50 years, with comparison to the normal use of a PVC-u pipe. A heat transfer mathematical model representing the system has been developed to inform the development of the methodology for measuring the in-situ thermal performance of individual and multiple use of showers in each changing room. Adopting a system thinking modeling technique, a quasi-dynamic simulation computer model was established enabling the prediction of annual energy consumptions under different shower usage profiles. Data based on the process map and inventory of a functional unit of WWHX were applied to a proprietary assessment software to establish the relevant outputs for the life-cycle environmental impact assessment. Life-cycle cost models were developed and industry price book data were applied. The results indicated that the seasonal thermal effectiveness was over 50% enabling significant energy savings through heat recovery that led to short carbon payback time of less than 2 years to compensate for the additional greenhouse gas emissions associated with the WWHX. However, the life-cycle cost of the WWHX is much higher than using the PVC pipe, even with significant heat recovered under heavy usage, highlighting the need to adopt more economic configurations, such as combining waste water through fewer units, in order to maximize the return on investment and improve the financial viability.
Grosso, Mario; Motta, Astrid; Rigamonti, Lucia
2010-07-01
This paper deals with a key issue related to municipal waste incineration, which is the efficiency of energy recovery. A strong driver for improving the energy performances of waste-to-energy plants is the recent Waste Framework Directive (Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives), which allows high efficiency installations to benefit from a status of "recovery" rather than "disposal". The change in designation means a step up in the waste hierarchy, where the lowest level of priority is now restricted to landfilling and low efficiency wastes incineration. The so-called "R1 formula" reported in the Directive, which counts for both production of power and heat, is critically analyzed and correlated to the more scientific-based approach of exergy efficiency. The results obtained for waste-to-energy plants currently operating in Europe reveal some significant differences in their performance, mainly related to the average size and to the availability of a heat market (district heating). Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vanheyden, L.; Evertz, E.
1980-12-01
Compression type air/water heat pumps were developed for domestic heating systems rated at 20 to 150 kW. The heat pump is driven either by a reciprocating piston or rotary piston engine modified to operate on natural gas. Particular features of natural gas engines as prime movers, such as waste heat recovery and variable speed, are stressed. Two systems suitable for heat pump operation were selected from among five different mass produced car engines and were modified to incorporate reciprocating piston compressor pairs. The refrigerants used are R 12 and R 22. Test rig data transferred to field conditions show that the fuel consumption of conventional boilers can be reduced by 50% and more by the installation of engine driven heat pumps. Pilot heat pumps based on a 1,600 cc reciprocating piston engine were built for heating four two-family houses. Pilot pump operation confirms test rig findings. The service life of rotary piston and reciprocating piston engines was investigated. The tests reveal characteristic curves for reciprocating piston engines and include exhaust composition measurements.
USDA-ARS?s Scientific Manuscript database
Understanding factors that affect ammonia emissions from swine waste lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes)...
40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?
Code of Federal Regulations, 2010 CFR
2010-07-01
... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...
40 CFR 267.17 - What are the requirements for managing ignitable, reactive, or incompatible wastes?
Code of Federal Regulations, 2011 CFR
2011-07-01
... accidental ignition or reaction of ignitable or reactive waste by following these requirements: (1) You must separate these wastes and protect them from sources of ignition or reaction such as: open flames, smoking...), spontaneous ignition (for example, from heat-producing chemical reactions), and radiant heat. (2) While...
Zou, Shiqiang; Kanimba, Eurydice; Diller, Thomas E; Tian, Zhiting; He, Zhen
2018-04-22
The thermal energy represents a significant portion of energy potential in municipal wastewater and may be recovered as electricity by a thermoelectric generator (TEG). Converting heat to all-purpose electricity by TEG has been demonstrated with large heat gradients, but its application in waste heat recovery from wastewater has not been well evaluated. Herein, a bench-scale Bi 2 Te 3 -based waste heat recovery system was employed to generate electricity from a low temperature gradient through a combination of experiments and mathematical modeling. With an external resistance of 7.8 Ω and a water (hot side) flow rate of 75 mL min -1 , a maximum normalized energy recovery of 4.5 × 10 -4 kWh m -3 was achieved under a 2.8 °C temperature gradient (ΔT). Model simulation indicated a boost in both power output and energy conversion efficiency from 0.76 mW and 0.13% at ΔT = 2.8 °C to 61.83 mW and 1.15% at ΔT = 25 °C. Based on the data of two-year water/air temperature obtained from the Christiansburg Wastewater Treatment Plant, an estimated energy generation of 1094 to 70,986 kWh could be expected annually with a saving of $163 to $6076. Those results have revealed a potential for TEG-centered direct electricity generation from low-grade heat towards enhanced resource recovery from wastewater and encouraged further exploration of this approach. Copyright © 2018. Published by Elsevier B.V.
Thermal control on the lunar surface
NASA Technical Reports Server (NTRS)
Walker, Sherry T.; Alexander, Reginald A.; Tucker, Stephen P.
1995-01-01
For a mission to the Moon which lasts more than a few days, thermal control is a challenging problem because of the Moon's wide temperature swings and long day and night periods. During the lunar day it is difficult to reject heat temperatures low enough to be comfortable for either humans or electronic components, while excessive heat loss can damage unprotected equipment at night. Fluid systems can readily be designed to operate at either the hot or cold temperature extreme but it is more difficult to accomodate both extermes within the same system. Special consideration should be given to sensitive systems, such as optics and humans, and systems that generate large amounts of waste heat, such as lunar bases or manufacturing facilities. Passive thermal control systems such as covers, shades and optical coatings can be used to mitigate the temperature swings experienced by components. For more precise thermal control active systems such as heaters or heat pumps are required although they require more power than passive systems.
The application of exergy to human-designed systems
NASA Astrophysics Data System (ADS)
Hamilton, P.
2012-12-01
Exergy is the portion of the total energy of a system that is available for conversion to useful work. Exergy takes into account both the quantity and quality of energy. Heat is the inevitable product of using any form of high-quality energy such as electricity. Modern commercial buildings and industrial facilities use large amounts of electricity and so produce huge amounts of heat. This heat energy typically is treated as a waste product and discharged to the environment and then high-quality energy sources are consumed to satisfy low-quality energy heating and cooling needs. Tens of thousands of buildings and even whole communities could meet much of their heating and cooling needs through the capture and reuse of heat energy. Yet the application of exergy principles often faces resistance because it challenges conventions about how we design, construct and operate human-engineered systems. This session will review several exergy case studies and conclude with an audience discussion of how exergy principles may be both applied and highlighted in formal and informal education settings.
A thermodynamic analysis of a novel bidirectional district heating and cooling network
Zarin Pass, R.; Wetter, M.; Piette, M. A.
2017-11-29
In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less
A thermodynamic analysis of a novel bidirectional district heating and cooling network
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarin Pass, R.; Wetter, M.; Piette, M. A.
In this study, we evaluate an ambient, bidirectional thermal network, which uses a single circuit for both district heating and cooling. When in net more cooling is needed than heating, the system circulates from a central plant in one direction. When more heating is needed, the system circulates in the opposite direction. A large benefit of this design is that buildings can recover waste heat from each other directly. We analyze the thermodynamic performance of the bidirectional system. Because the bidirectional system represents the state-of-the-art in design for district systems, its peak energy efficiency represents an upper bound on themore » thermal performance of any district heating and cooling system. However, because any network has mechanical and thermal distribution losses, we develop a diversity criterion to understand when the bidirectional system may be a more energy-efficient alternative to modern individual-building systems. We show that a simple model of a low-density, high-distribution loss network is more efficient than aggregated individual buildings if there is at least 1 unit of cooling energy per 5.7 units of simultaneous heating energy (or vice versa). We apply this criterion to reference building profiles in three cities to look for promising clusters.« less
Cascaded organic rankine cycles for waste heat utilization
Radcliff, Thomas D [Vernon, CT; Biederman, Bruce P [West Hartford, CT; Brasz, Joost J [Fayetteville, NY
2011-05-17
A pair of organic Rankine cycle systems (20, 25) are combined and their respective organic working fluids are chosen such that the organic working fluid of the first organic Rankine cycle is condensed at a condensation temperature that is well above the boiling point of the organic working fluid of the second organic Rankine style system, and a single common heat exchanger (23) is used for both the condenser of the first organic Rankine cycle system and the evaporator of the second organic Rankine cycle system. A preferred organic working fluid of the first system is toluene and that of the second organic working fluid is R245fa.
NASA Astrophysics Data System (ADS)
Sugiartha, N.; Sastra Negara, P.
2018-01-01
A thermoelectric module composes of integrated p-n semiconductors as hot and cold side junctions and uses Seebeck effect between them to function as a thermoelectric generator (TEG) to directly convert heat into electrical power. Exhaust heat from engines as otherwise wasted to the atmosphere is one of the heat sources freely available to drive the TEG. This paper evaluates technical feasibility on the use of a Peltier thermoelectric module for energy recovery application of such kind of waste heat. An experimental apparatus has been setup to simulate real conditions of automobile engine exhaust piping system. It includes a square section aluminium ducting, an aluminium fin heat sink and a TEC1 12706 thermoelectric module. A heater and a cooling fan are employed to simulate hot exhaust gas and ambient air flows, respectively. Electrical loading is controlled by resistors. Dependent variables measured during the test are cold and hot side temperatures, open and loaded circuit output voltages and electrical current. The test results revealed a promising application of the Peltier thermoelectric module for the engine exhaust heat recovery, though the loaded output power produced and loaded output voltage are still far lower than the commercially thermoelectric module originally purposed for the TEG application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ernst, Timothy C.; Zigan, James A.
A waste heat recovery system includes a Rankine cycle (RC) circuit having a pump, a boiler, an energy converter, and a condenser fluidly coupled via conduits in that order, to provide additional work. The additional work is fed to an input of a gearbox assembly including a capacity for oil by mechanically coupling to the energy converter to a gear assembly. An interface is positioned between the RC circuit and the gearbox assembly to partially restrict movement of oil present in the gear assembly into the RC circuit and partially restrict movement of working fluid present in the RC circuitmore » into the gear assembly. An oil return line is fluidly connected to at least one of the conduits fluidly coupling the RC components to one another and is operable to return to the gear assembly oil that has moved across the interface from the gear assembly to the RC circuit.« less
Adsorption Refrigeration System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Kai; Vineyard, Edward Allan
Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horttanainen, M., E-mail: mika.horttanainen@lut.fi; Teirasvuo, N.; Kapustina, V.
Highlights: • New experimental data of mixed MSW properties in a Finnish case region. • The share of renewable energy of mixed MSW. • The results were compared with earlier international studies. • The average share of renewable energy was 30% and the average LHVar 19 MJ/kg. • Well operating source separation decreases the renewable energy content of MSW. - Abstract: For the estimation of greenhouse gas emissions from waste incineration it is essential to know the share of the renewable energy content of the combusted waste. The composition and heating value information is generally available, but the renewable energymore » share or heating values of different fractions of waste have rarely been determined. In this study, data from Finnish studies concerning the composition and energy content of mixed MSW were collected, new experimental data on the compositions, heating values and renewable share of energy were presented and the results were compared to the estimations concluded from earlier international studies. In the town of Lappeenranta in south-eastern Finland, the share of renewable energy ranged between 25% and 34% in the energy content tests implemented for two sample trucks. The heating values of the waste and fractions of plastic waste were high in the samples compared to the earlier studies in Finland. These high values were caused by good source separation and led to a low share of renewable energy content in the waste. The results showed that in mixed municipal solid waste the renewable share of the energy content can be significantly lower than the general assumptions (50–60%) when the source separation of organic waste, paper and cardboard is carried out successfully. The number of samples was however small for making extensive conclusions on the results concerning the heating values and renewable share of energy and additional research is needed for this purpose.« less
A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.
2005-01-01
Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.
Brayton-cycle heat exchanger technology program
NASA Technical Reports Server (NTRS)
Killackey, J. J.; Coombs, M. G.; Graves, R. F.; Morse, C. J.
1976-01-01
The following five tasks designed to advance this development of heat exchanger systems for close loop Brayton cycle power systems are presented: (1) heat transfer and pressure drop data for a finned tubular heat transfer matrix. The tubes are arranged in a triangular array with copper stainless steel laminate strips helically wound on the tubes to form a disk fin geometry; (2) the development of a modularized waste heat exchanger. Means to provide verified double containment are described; (3) the design, fabrication, and test of compact plate fin heat exchangers representative of full scale Brayton cycle recuperators; (4) the analysis and design of bellows suitable for operation at 1600 F and 200 psia for 1,000 cycles and 50,000 hours creep life; and (5) screening tests used to select a low cost braze alloy with the desirable attributes of a gold base alloy. A total of 22 different alloys were investigated; the final selection was Nicrobraz 30.
System for enhanced destruction of hazardous wastes by in situ vitrification of soil
Timmerman, Craig L.
1991-01-01
The present invention comprises a system for promoting the destruction of volatile and/or hazardous contaminants present in waste materials during in situ vitrification processes. In accordance with the present invention, a cold cap (46) comprising a cohesive layer of resolidified material is formed over the mass of liquefied soil and waste (40) present between and adjacent to the electrodes (10, 12, 14, 16) during the vitrification process. This layer acts as a barrier to the upward migration of any volatile type materials thereby increasing their residence time in proximity to the heated material. The degree of destruction of volatile and/or hazardous contaminants by pyrolysis is thereby improved during the course of the vitrification procedure.
Solar disinfection of infectious biomedical waste: a new approach for developing countries.
Chitnis, V; Chitnis, S; Patil, S; Chitnis, D
2003-10-18
Poor developing countries cannot afford expensive technologies such as incineration for management of infectious biomedical waste. We assessed solar heating as an alternative technology. We immersed simulated infectious waste with added challenge bacteria in water in a box-type solar cooker, which was left in the sun for 6 h. In 24 sets of observations, the amount of viable bacteria was reduced by about 7 log. We also tested infectious medical waste with a heavy load of bacteria (10(8)-10(9)/g) from our hospital's burn unit for solar heat disinfection in 20 experiments. Our results showed a similar 7 log reduction in the amount of viable bacteria. Solar heating thus seems to be a cheap method to disinfect infectious medical waste in less economically developed countries.
Compact thermoelectric converter systems technology
NASA Technical Reports Server (NTRS)
1973-01-01
A schematic of the developed tubular thermoelectric module is shown. It consists of alternate washers of n- and p-type lead telluride, separated by thin natural mica washers. Electrical continuity within the circuit is accomplished by cylindrical conductor rings located at the I.D. and O.D. of the lead telluride washers. The conductor rings are also separated by the same mica which separate the lead telluride washers. The result is a radially serpentine current path along the length of the module. The circuit is isolated from the structural claddings by thin sleeves of boron nitride. Circuit containment and heat transfer surfaces are provided by the inner and outer cladding, heat being transferred from a heat source at the inner clad, conducted radially outward through the lead telluride to the outer clad where the waste heat is removed by a heat rejection system.
Multiple system modelling of waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eriksson, Ola, E-mail: ola.eriksson@hig.se; Department of Building, Energy and Environmental Engineering, University of Gaevle, SE 801 76 Gaevle; Bisaillon, Mattias, E-mail: mattias.bisaillon@profu.se
2011-12-15
Highlights: > Linking of models will provide a more complete, correct and credible picture of the systems. > The linking procedure is easy to perform and also leads to activation of project partners. > The simulation procedure is a bit more complicated and calls for the ability to run both models. - Abstract: Due to increased environmental awareness, planning and performance of waste management has become more and more complex. Therefore waste management has early been subject to different types of modelling. Another field with long experience of modelling and systems perspective is energy systems. The two modelling traditions havemore » developed side by side, but so far there are very few attempts to combine them. Waste management systems can be linked together with energy systems through incineration plants. The models for waste management can be modelled on a quite detailed level whereas surrounding systems are modelled in a more simplistic way. This is a problem, as previous studies have shown that assumptions on the surrounding system often tend to be important for the conclusions. In this paper it is shown how two models, one for the district heating system (MARTES) and another one for the waste management system (ORWARE), can be linked together. The strengths and weaknesses with model linking are discussed when compared to simplistic assumptions on effects in the energy and waste management systems. It is concluded that the linking of models will provide a more complete, correct and credible picture of the consequences of different simultaneous changes in the systems. The linking procedure is easy to perform and also leads to activation of project partners. However, the simulation procedure is a bit more complicated and calls for the ability to run both models.« less
Laser-aided material identification for the waste sorting process
NASA Astrophysics Data System (ADS)
Haferkamp, Heinz; Burmester, Ingo; Engel, Kai
1994-03-01
The LZH has carried out investigations in the field of rapid laser-supported material- identification systems for automatic material-sorting systems. The aim of this research is the fast identification of different sorts of plastics coming from recycled rubbish or electronic waste. Within a few milliseconds a spot on the sample which has to be identified is heated with a CO2 laser. The different and specific chemical and physical material properties of the examined sample cause a different temperature distribution on the surface which is measured with an IR thermographic system. This `thermal impulse response' has to be analyzed by means of a computer system. The results of previous investigations have shown that material identification of different sorts of plastics can possibly be done at a frequency of 30 Hz. Due to economic efficiency, a high velocity identification process is necessary to sort huge waste currents.
Papaya drying and waste conversion system. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1982-02-12
This project, performed under United States Department of Energy Small-scale Appropriate Energy Technology Grant, involves demonstration of an integrated system using solar energy to process off-grade or reject fruit into marketable food products. The integrated system consists of three phases: (1) solar dehydration of usable fruit; (2) solar vacuum distillation of fermented wastes (peelings, rinds, skins, and seeds) to produce an ethanol fuel to use as a backup source of heat for dehydration; and (3) land reclamation by mixing stillage and compost with volcanic cinder and ash to produce on marginal land a rich soil suitable for growing more cropsmore » to dry. Although the system is not 100% complete the investigators have demonstrated that a small business can efficiently use solar energies in an integrated fashion to process waste into food, improve the quality of the land, and provide meaningful jobs in a region of very high unemployment.« less
Modeling of Heat and Mass Transfer in a TEC-Driven Lyophilizer
NASA Technical Reports Server (NTRS)
Yuan, Zeng-Guang; Hegde, Uday; Litwiller, Eric; Flynn, Michael; Fisher, John
2006-01-01
Dewatering of wet waste during space exploration missions is important for crew safety as it stabilizes the waste. It may also be used to recover water and serve as a preconditioning step for waste compaction. A thermoelectric cooler (TEC)-driven lyophilizer is under development at NASA Ames Research Center for this purpose. It has three major components: (i) an evaporator section where water vapor sublimes from the frozen waste, (ii) a condenser section where this water vapor deposits as ice, and (iii) a TEC section which serves as a heat pump to transfer heat from the condenser to the evaporator. This paper analyses the heat and mass transfer processes in the lyophilizer in an effort to understand the ice formation behavior in the condenser. The analysis is supported by experimental observations of ice formation patterns in two different condenser units.
Thermal stress control using waste steel fibers in massive concretes
NASA Astrophysics Data System (ADS)
Sarabi, Sahar; Bakhshi, Hossein; Sarkardeh, Hamed; Nikoo, Hamed Safaye
2017-11-01
One of the important subjects in massive concrete structures is the control of the generated heat of hydration and consequently the potential of cracking due to the thermal stress expansion. In the present study, using the waste turnery steel fibers in the massive concretes, the amount of used cement was reduced without changing the compressive strength. By substituting a part of the cement with waste steel fibers, the costs and the generated hydration heat were reduced and the tensile strength was increased. The results showed that by using 0.5% turnery waste steel fibers and consequently, reducing to 32% the cement content, the hydration heat reduced to 23.4% without changing the compressive strength. Moreover, the maximum heat gradient reduced from 18.5% in the plain concrete sample to 12% in the fiber-reinforced concrete sample.
Conduction cooling systems for linear accelerator cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Robert
A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.
Electromagnetic mixed waste processing system for asbestos decontamination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasevich, R.S.; Vaux, W.; Ulerich, N.
The overall objective of this three-phase program is to develop an integrated process for treating asbestos-containing material that is contaminated with radioactive and hazardous constituents. The integrated process will attempt to minimize processing and disposal costs. The objectives of Phase 1 were to establish the technical feasibility of asbestos decomposition, inorganic radionuclide nd heavy metal removal, and organic volatilization. Phase 1 resulted in the successful bench-scale demonstration of the elements required to develop a mixed waste treatment process for asbestos-containing material (ACM) contaminated with radioactive metals, heavy metals, and organics. Using the Phase 1 data, a conceptual process was developed.more » The Phase 2 program, currently in progress, is developing an integrated system design for ACM waste processing. The Phase 3 program will target demonstration of the mixed waste processing system at a DOE facility. The electromagnetic mixed waste processing system employs patented technologies to convert DOE asbestos to a non-hazardous, radionuclide-free, stable waste. The dry, contaminated asbestos is initially heated with radiofrequency energy to remove organic volatiles. Second,the radionuclides are removed by solvent extraction coupled with ion exchange solution treatment. Third, the ABCOV method converts the asbestos to an amorphous silica suspension at low temperature (100{degrees}C). Finally the amorphous silica is solidified for disposal.« less
Thermoelectric Waste Heat Recovery Program for Passenger Vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jovovic, Vladimir
2015-12-31
Gentherm began work in October 2011 to develop a Thermoelectric Waste Energy Recovery System for passenger vehicle applications. Partners in this program were BMW and Tenneco. Tenneco, in the role of TIER 1 supplier, developed the system-level packaging of the thermoelectric power generator. As the OEM, BMW Group demonstrated the TEG system in their vehicle in the final program phase. Gentherm demonstrated the performance of the TEG in medium duty and heavy duty vehicles. Technology developed and demonstrated in this program showed potential to reduce fuel consumption in medium and heavy duty vehicles. In light duty vehicles it showed moremore » modest potential.« less
Automotive absorption air conditioner utilizing solar and motor waste heat
NASA Technical Reports Server (NTRS)
Popinski, Z. (Inventor)
1981-01-01
In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.
The magnetic particle plume solar sail concept
NASA Astrophysics Data System (ADS)
Knuth, William H.
2000-01-01
A magnetic particle space radiator was proposed in the late 1950s as a means to dissipate waste heat from space nuclear systems. The concept was a plume of hot magnetic particles confined to and traversing a magnetic field produced by super conducting magnets in the space vehicle. The large surface area of the hot particles was expected to effectively radiate away the heat. The cooling particles followed along the lines of the magnetic field and eventually returned to the vehicle where they again picked up a fresh charge of waste heat for return out to the plume. This paper presents a new concept for consideration. The same basic magnetic particle plume idea is proposed in this paper, except the purpose of the plume would be to receive momentum (and possibly electric power) from the solar wind in the manner of a solar sail. Recent nano-technologies allow the magnetic particles to be 2-3 orders of magnitude smaller than envisioned for the heat radiator, and the magnetic field would be stronger than we envisioned in the '50s. The application of the magnetic solar sail would be for propelling space-faring vehicles on long duration exploration of the solar system and possibly beyond. A first look is provided at the elements of the system, together with an estimate of the thrust potential and the approximate weights of the system. The system appears to have the potential to develop on the order of 50lb and 100lb of thrust and weight on the order of 15,000lb .
Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat
NASA Astrophysics Data System (ADS)
Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.
2011-05-01
Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.
[Determination of trace elements in waste beer yeasts by ICP-MS with microwave digestion].
Cheng, Xian-zhong; Jin, Can; Zhang, Kai-cheng
2008-10-01
The waste beer yeast has rich nutritional compositions and is widely used in food, medical and forage industries. The security of the yeast plays an important role in everyone's daily life. But the yeast contanining microamount of lead, cadmium, chromium, arsenic and other harmful metals is endangering human health. A new method was developed for the direct determination of eight elements, namely copper, lead, zinc, iron, manganese, cadmium, chromium and arsenic in waste beer yeast by inductively coupled plasma-mass spectrometry (ICP-MS) with microwave digestion. The parameters of plasma system, mass system, vacuum system and spectrometer system were optimized. The spectral interferences were eliminated by selecting alternation analytical isotopes of 65Cu, 208Pb, 66Zn, 57Fe, 55Mn, 114Cd, 52Cr and 5As, and the internal standards of Rh was selected to compensate the drift of analytical signals. The samples were digested with concentrated nitric acid-hydrogen peroxide (2:1) mixed solution more rapidly and more effectively. The effects of the type of mixed acid , the volume of digesting solution, heating time, and heating power were investigated in detail. In the closed system, the complete digestion was performed using 4 mL HNO3 and 2mL H2O2 for 2.0 min at 0.5 MPa, 3 min at 1.0 MPa and 5 min at 1.5 MPa. The detection limits of these eight elements were 0.013-0.122 microg x L(-1). The relative standard deviation (RSD) was 0.94%-3.26% (n=9), and the addition standard recovery was 98.4%-102.6% for all elements. The proposed method has been applied to the determination of trace elements of Cu, Pb, Zn, Fe, Mn, Cd, Cr and As in waste beer yeast samples with satisfactory results. The determination results indicated that the content of trace elements of Cu, Pb, Cd and As in waste beer yeast samples are significantly low.
Advanced Energy and Water Recovery Technology from Low Grade Waste Heat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexin Wang
2011-12-19
The project has developed a nanoporous membrane based water vapor separation technology that can be used for recovering energy and water from low-temperature industrial waste gas streams with high moisture contents. This kind of exhaust stream is widely present in many industrial processes including the forest products and paper industry, food industry, chemical industry, cement industry, metal industry, and petroleum industry. The technology can recover not only the sensible heat but also high-purity water along with its considerable latent heat. Waste heats from such streams are considered very difficult to recover by conventional technology because of poor heat transfer performancemore » of heat-exchanger type equipment at low temperature and moisture-related corrosion issues. During the one-year Concept Definition stage of the project, the goal was to prove the concept and technology in the laboratory and identify any issues that need to be addressed in future development of this technology. In this project, computational modeling and simulation have been conducted to investigate the performance of a nanoporous material based technology, transport membrane condenser (TMC), for waste heat and water recovery from low grade industrial flue gases. A series of theoretical and computational analyses have provided insight and support in advanced TMC design and experiments. Experimental study revealed condensation and convection through the porous membrane bundle was greatly improved over an impermeable tube bundle, because of the membrane capillary condensation mechanism and the continuous evacuation of the condensate film or droplets through the membrane pores. Convection Nusselt number in flue gas side for the porous membrane tube bundle is 50% to 80% higher than those for the impermeable stainless steel tube bundle. The condensation rates for the porous membrane tube bundle also increase 60% to 80%. Parametric study for the porous membrane tube bundle heat transfer performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.« less
CO2 Reduction Effect of the Utilization of Waste Heat and Solar Heat in City Gas System
NASA Astrophysics Data System (ADS)
Okamura, Tomohito; Matsuhashi, Ryuji; Yoshida, Yoshikuni; Hasegawa, Hideo; Ishitani, Hisashi
We evaluate total energy consumption and CO2 emissions in the phase of the city gas utilization system from obtaining raw materials to consuming the product. First, we develop a simulation model which calculates CO2 emissions for monthly and hourly demands of electricity, heats for air conditioning and hot-water in a typical hospital. Under the given standard capacity and operating time of CGS, energy consumption in the equipments is calculated in detail considering the partial load efficiency and the control by the temperature of exhaust heat. Then, we explored the optimal size and operation of city gas system that minimizes the life cycle CO2 emissions or total cost. The cost-effectiveness is compared between conventional co-generation, solar heat system, and hybrid co-generation utilizing solar heat. We formulate a problem of mixed integer programming that includes integral parameters that express the state of system devices such as on/off of switches. As a result of optimization, the hybrid co-generation can reduce annual CO2 emissions by forty-three percent compared with the system without co-generation. Sensitivity for the scale of CGS on CO2 reduction and cost is also analyzed.
Processing of combined domestic bath and laundry waste waters for reuse as commode flushing water
NASA Technical Reports Server (NTRS)
Hypes, W. D.; Batten, C. E.; Wilkins, J. R.
1975-01-01
An experimental investigation of processes and system configurations for reclaiming combined bath and laundry waste waters for reuse as commode flush water was conducted. A 90-min recycle flow was effective in removing particulates and in improving other physical characteristics to the extent that the filtered water was subjectively acceptable for reuse. The addition of a charcoal filter resulted in noticeable improvements in color, turbidity, and suds elimination. Heating and chlorination of the waste waters were investigated for reducing total organism counts and eliminating coliform organisms. A temperature of 335.9 K (145 F) for 30 min and chlorine concentrations of 20 mg/l in the collection tank followed by 10 mg/l in the storage tank were determined to be adequate for this purpose. Water volume relationships and energy-use rates for the waste water reuse systems are also discussed.
Air Evaporation closed cycle water recovery technology - Advanced energy saving designs
NASA Technical Reports Server (NTRS)
Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert
1986-01-01
The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.
NASA Astrophysics Data System (ADS)
Buscheck, T.; Glascoe, L.; Sun, Y.; Gansemer, J.; Lee, K.
2003-12-01
For the proposed Yucca Mountain geologic repository for high-level nuclear waste, the planned method of disposal involves the emplacement of cylindrical packages containing the waste inside horizontal tunnels, called emplacement drifts, bored several hundred meters below the ground surface. The emplacement drifts reside in highly fractured, partially saturated volcanic tuff. An important phenomenological consideration for the licensing of the proposed repository at Yucca Mountain is the generation of decay heat by the emplaced waste and the consequences of this decay heat. Changes in temperature will affect the hydrologic and chemical environment at Yucca Mountain. A thermohydrologic-modeling tool is necessary to support the performance assessment of the Engineered Barrier System (EBS) of the proposed repository. This modeling tool must simultaneously account for processes occurring at a scale of a few tens of centimeters around individual waste packages, for processes occurring around the emplacement drifts themselves, and for processes occurring at the multi-kilometer scale of the mountain. Additionally, many other features must be considered including non-isothermal, multiphase-flow in fractured porous rock of variable liquid-phase saturation and thermal radiation and convection in open cavities. The Multiscale Thermohydrologic Model (MSTHM) calculates the following thermohydrologic (TH) variables: temperature, relative humidity, liquid-phase saturation, evaporation rate, air-mass fraction, gas-phase pressure, capillary pressure, and liquid- and gas-phase fluxes. The TH variables are determined as a function of position along each of the emplacement drifts in the repository and as a function of waste-package (WP) type. These variables are determined at various generic locations within the emplacement drifts, including the waste package and drip-shield surfaces and in the invert; they are also determined at various generic locations in the adjoining host rock; these variables are determined every 20 m for each emplacement drift in the repository. The MSTHM accounts for 3-D drift-scale and mountain-scale heat flow and captures the influence of the key engineering-design variables and natural-system factors affecting TH conditions in the emplacement drifts and adjoining host rock. Presented is a synopsis of recent MSTHM calculations conducted to support the Total System Performance Assessment for the License Application (TSPA-LA). This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
An assessment of gas-side fouling in cement plants
NASA Technical Reports Server (NTRS)
Marner, W. J.
1982-01-01
The cement industry is the most energy-intensive industry in the United States in terms of energy cost as a percentage of the total product cost. An assessment of gas-side fouling in cement plants with special emphasis on heat recovery applications is provided. In the present context, fouling is defined as the buildup of scale on a heat-transfer surface which retards the transfer of heat and includes the related problems of erosion and corrosion. Exhaust gases in the cement industry which are suitable for heat recovery range in temperature from about 100 to 1300 K, are generally dusty, may be highly abrasive, and are often heavily laden with alkalies, sulfates, and chlorides. Particulates in the exhaust streams range in size from molecular to about 100 micrometers in diameter and come from both the raw feed as well as the ash in the coal which is the primary fuel used in the cement industry. The major types of heat-transfer equipment used in the cement industry include preheaters, gas-to-air heat exchangers, waste heat boilers, and clinker coolers. At the present time, the trend in this country is toward suspension preheater systems, in which the raw feed is heated by direct contact with the hot kiln exit gases, and away from waste heat boilers as the principal method of heat recovery. The most important gas-side fouling mechanisms in the cement industry are those due to particulate, chemical reaction, and corrosion fouling.
Unitized Regenerative Fuel Cell System Gas Storage-Radiator Development
NASA Technical Reports Server (NTRS)
Burke, Kenneth A.; Jakupta, Ian
2005-01-01
High-energy-density regenerative fuel cell systems that are used for energy storage require novel approaches to integrating components in order to preserve mass and volume. A lightweight unitized regenerative fuel cell (URFC) energy storage system concept is being developed at the NASA Glenn Research Center. This URFC system minimizes mass by using the surface area of the hydrogen and oxygen storage tanks as radiating heat surfaces for overall thermal control of the system. The waste heat generated by the URFC stack during charging and discharging is transferred from the cell stack to the surface of each tank by loop heat pipes, which are coiled around each tank and covered with a thin layer of thermally conductive carbon composite. The thin layer of carbon composite acts as a fin structure that spreads the heat away from the heat pipe and across the entire tank surface. Two different-sized commercial-grade composite tanks were constructed with integral heat pipes and tested in a thermal vacuum chamber to examine the feasibility of using the storage tanks as system radiators. The storage tank-radiators were subjected to different steady-state heat loads and varying heat load profiles. The surface emissivity and specific heat capacity of each tank were calculated. In the future, the results will be incorporated into a model that simulates the performance of similar radiators using lightweight, spacerated carbon composite tanks.
Exploring high-strength glass-ceramic materials for upcycling of industrial wastes
NASA Astrophysics Data System (ADS)
Back, Gu-Seul; Park, Hyun Seo; Seo, Sung Mo; Jung, Woo-Gwang
2015-11-01
To promote the recycling of industrial waste and to develop value-added products using these resources, the possibility of manufacturing glass-ceramic materials of SiO2-CaO-Al2O3 system has been investigated by various heat treatment processes. Glass-ceramic materials with six different chemical compositions were prepared using steel industry slags and power plant waste by melting, casting and heat treatment. The X-ray diffraction results indicated that diopside and anorthite were the primary phases in the samples. The anorthite phase was formed in SiO2-rich material (at least 43 wt%). In CaO-rich material, the gehlenite phase was formed. By the differential scanning calorimetry analyses, it was found that the glass transition point was in the range of 973-1023 K, and the crystallization temperature was in the range of 1123-1223 K. The crystallization temperature increased as the content of Fe2O3 decreased. By the multi-step heat treatment process, the formation of the anorthite phase was enhanced. Using FactSage, the ratio of various phases was calculated as a function of temperature. The viscosities and the latent heats for the samples with various compositions were also calculated by FactSage. The optimal compositions for glass-ceramics materials were discussed in terms of their compressive strength, and micro-hardness.
Microbial Characterization of Solid-Wastes Treated with Heat Melt Compaction Technology
NASA Technical Reports Server (NTRS)
Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy, LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.
2011-01-01
The research purpose of the project was to determine the fate of microorganisms in space-generated solid wastes after processing by a Heat Melt Compactor (HMC), which is a candidate solid waste treatment technology. Five HMC product disks were generated at Ames Research Center (ARC), Waste Management Systems element. The feed for two was simulated space-generated trash and feed for three was Volume F compartment wet waste returned on STS 130. Conventional microbiological methods were used to detect and enumerate microorganisms in HMC disks and in surface swab samples of HMC hardware before and after operation. Also, biological indicator test strips were added to the STS trash prior to compaction to test if HMC processing conditions, 150 C for approx 3 hr and dehydration, were sufficient to eliminate the test bacteria on the strips. During sample acquisition at KSC, the HMC disk surfaces were sanitized with 70% alcohol to prevent contamination of disk interiors. Results from microbiological assays indicated that numbers of microbes were greatly reduced but not eliminated by the 70% alcohol. Ten 1.25 cm diameter cores were aseptically cut from each disk to sample the disk interior. The core material was run through the microbial characterization analyses after dispersal in sterile diluent. Low counts of viable bacteria (5 to 50 per core) were found but total direct counts were 6 to 8 orders of magnitude greater. These results indicate that the HMC operating conditions might not be sufficient for complete waste sterilization, but the vast majority of microbes present in the wastes were dead or non-cultivable after HMC treatment. The results obtained from analyses of the commercial spore test strips that had been added fo the wastes prior to HMC operation further indicated that the HMC was sterilizing the wastes. Nearly all strips were recovered from the HMC disks and all of these were negative for spore growth when run through the manufacturer's protocol. The 10(exp 6) or so spores impregnated into the strips were no longer viable. Control test strips, i.e., not exposed to the HMC conditions, were all strongly positive. All isolates from the cultivable counts were identified, leading to one concern: several were identified as Staphylococcus aureus, a human pathogen. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
Cooling system for removing metabolic heat from an hermetically sealed spacesuit
NASA Technical Reports Server (NTRS)
Webbon, B. W.; Vykukal, H. C.; Williams, B. A. (Inventor)
1978-01-01
An improved cooling and ventilating system is described for removing metabolic heat, waste gases and water vapor generated by a wearer of an hermetically sealed spacesuit. The cooling system was characterized by a body suit, having a first circuit for simultaneously establishing a cooling flow of water through the thorax and head sections of the body suit. Circulation patches were included mounted in the thorax section and head section of the body suit. A second circuit for discharing a flow of gas throughout the spacesuit and a disconnect unit for coupling the circuits with a life support system externally related to the spacesuit were provided.
Tunable molten oxide pool assisted plasma-melter vitrification systems
Titus, Charles H.; Cohn, Daniel R.; Surma, Jeffrey E.
1998-01-01
The present invention provides tunable waste conversion systems and apparatus which have the advantage of highly robust operation and which provide complete or substantially complete conversion of a wide range of waste streams into useful gas and a stable, nonleachable solid product at a single location with greatly reduced air pollution to meet air quality standards. The systems provide the capability for highly efficient conversion of waste into high quality combustible gas and for high efficiency conversion of the gas into electricity by utilizing a high efficiency gas turbine or an internal combustion engine. The solid product can be suitable for various commercial applications. Alternatively, the solid product stream, which is a safe, stable material, may be disposed of without special considerations as hazardous material. In the preferred embodiment, the arc plasma furnace and joule heated melter are formed as a fully integrated unit with a common melt pool having circuit arrangements for the simultaneous independently controllable operation of both the arc plasma and the joule heated portions of the unit without interference with one another. The preferred configuration of this embodiment of the invention utilizes two arc plasma electrodes with an elongated chamber for the molten pool such that the molten pool is capable of providing conducting paths between electrodes. The apparatus may additionally be employed with reduced use or without further use of the gases generated by the conversion process. The apparatus may be employed as a net energy or net electricity producing unit where use of an auxiliary fuel provides the required level of electricity production. Methods and apparatus for converting metals, non-glass forming waste streams and low-ash producing inorganics into a useful gas are also provided. The methods and apparatus for such conversion include the use of a molten oxide pool having predetermined electrical, thermal and physical characteristics capable of maintaining optimal joule heating and glass forming properties during the conversion process.
Microbial Characterization Space Solid Wastes Treated with a Heat Melt Compactor
NASA Technical Reports Server (NTRS)
Strayer, Richard F.; Hummerick, Mary E.; Richards, Jeffrey T.; McCoy LaShelle E.; Roberts, Michael S.; Wheeler, Raymond M.
2012-01-01
The on going purpose of the project efforts was to characterize and determine the fate of microorganisms in space-generated solid wastes before and after processing by candidate solid waste processing. For FY 11, the candidate technology that was assessed was the Heat Melt Compactor (HMC). The scope included five HMC. product disks produced at ARC from either simulated space-generated trash or from actual space trash, Volume F compartment wet waste, returned on STS 130. This project used conventional microbiological methods to detect and enumerate microorganisms in heat melt compaction (HMC) product disks as well as surface swab samples of the HMC hardware before and after operation. In addition, biological indicators were added to the STS trash prior to compaction in order to determine if these spore-forming bacteria could survive the HMC processing conditions, i.e., high temperature (160 C) over a long duration (3 hrs). To ensure that surface dwelling microbes did not contaminate HMC product disk interiors, the disk surfaces were sanitized with 70% alcohol. Microbiological assays were run before and after sanitization and found that sanitization greatly reduced the number of identified isolates but did not totally eliminate them. To characterize the interior of the disks, ten 1.25 cm diameter core samples were aseptically obtained for each disk. These were run through the microbial characterization analyses. Low counts of bacteria, on the order of 5 to 50 per core, were found, indicating that the HMC operating conditions might not be sufficient for waste sterilization. However, the direct counts were 6 to 8 orders of magnitude greater, indicating that the vast majority of microbes present in the wastes were dead or non-cultivable. An additional indication that the HMC was sterilizing the wastes was the results from the added commercial spore test strips to the wastes prior to HMC operation. Nearly all could be recovered from the HMC disks post-operation and all were showed negative growth when run through the manufacturer's protocol, meaning that the 106 or so spores impregnated into the strips were dead. Control test strips, i.e., not exposed to the HMC conditions were all strongly positive. One area of concern is that the identities of isolates from the cultivable counts included several human pathogens, namely Staphylococcus aureus. The project reported here provides microbial characterization support to the Waste Management Systems element of the Life Support and Habitation Systems program.
Loop Heat Pipe with Thermal Control Valve as a Variable Thermal Link
NASA Technical Reports Server (NTRS)
Hartenstine, John; Anderson, William G.; Walker, Kara; Dussinger, Pete
2012-01-01
Future lunar landers and rovers will require variable thermal links that allow for heat rejection during the lunar daytime and passively prevent heat rejection during the lunar night. During the lunar day, the thermal management system must reject the waste heat from the electronics and batteries to maintain them below the maximum acceptable temperature. During the lunar night, the heat rejection system must either be shut down or significant amounts of guard heat must be added to keep the electronics and batteries above the minimum acceptable temperature. Since guard heater power is unfavorable because it adds to system size and complexity, a variable thermal link is preferred to limit heat removal from the electronics and batteries during the long lunar night. Conventional loop heat pipes (LHPs) can provide the required variable thermal conductance, but they still consume electrical power to shut down the heat transfer. This innovation adds a thermal control valve (TCV) and a bypass line to a conventional LHP that proportionally allows vapor to flow back into the compensation chamber of the LHP. The addition of this valve can achieve completely passive thermal control of the LHP, eliminating the need for guard heaters and complex controls.
Thermochemical conversion of waste tyres-a review.
Labaki, Madona; Jeguirim, Mejdi
2017-04-01
A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.
Analysis of Efficiency of the Ship Propulsion System with Thermochemical Recuperation of Waste Heat
NASA Astrophysics Data System (ADS)
Cherednichenko, Oleksandr; Serbin, Serhiy
2018-03-01
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4-5%.
Life Cycle Assessment of Mixed Municipal Solid Waste: Multi-input versus multi-output perspective.
Fiorentino, G; Ripa, M; Protano, G; Hornsby, C; Ulgiati, S
2015-12-01
This paper analyses four strategies for managing the Mixed Municipal Solid Waste (MMSW) in terms of their environmental impacts and potential advantages by means of Life Cycle Assessment (LCA) methodology. To this aim, both a multi-input and a multi-output approach are applied to evaluate the effect of these perspectives on selected impact categories. The analyzed management options include direct landfilling with energy recovery (S-1), Mechanical-Biological Treatment (MBT) followed by Waste-to-Energy (WtE) conversion (S-2), a combination of an innovative MBT/MARSS (Material Advanced Recovery Sustainable Systems) process and landfill disposal (S-3), and finally a combination of the MBT/MARSS process with WtE conversion (S-4). The MARSS technology, developed within an European LIFE PLUS framework and currently implemented at pilot plant scale, is an innovative MBT plant having the main goal to yield a Renewable Refined Biomass Fuel (RRBF) to be used for combined heat and power production (CHP) under the regulations enforced for biomass-based plants instead of Waste-to-Energy systems, for increased environmental performance. The four scenarios are characterized by different resource investment for plant and infrastructure construction and different quantities of matter, heat and electricity recovery and recycling. Results, calculated per unit mass of waste treated and per unit exergy delivered, under both multi-input and multi-output LCA perspectives, point out improved performance for scenarios characterized by increased matter and energy recovery. Although none of the investigated scenarios is capable to provide the best performance in all the analyzed impact categories, the scenario S-4 shows the best LCA results in the human toxicity and freshwater eutrophication categories, i.e. the ones with highest impacts in all waste management processes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Power recovery from waste heat in modern turboexpander plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mafi, S.; Drake, C.
1981-01-01
The object of this study is to determine the feasibility and cost of installing a power recovery system in an existing gas processing plant. The power generated by the system is to be used to drive a residue gas compressor, a refrigeration compressor and the heat medium circulating pump, each having its own expander driver. For this purpose the heat from the exhaust of a number of gas turbines is to be combined to provide a total 75 MM Btu/hr. heat energy. Because of safety reasons, Freon 12 has been chosen for the working fluid. The condensing media is watermore » at a design temperature of 80 degrees F. The process conditions for the cycle and the duties of the major equipments are described.« less
NASA Astrophysics Data System (ADS)
Yang, Shaw-Yang; Yeh, Hund-Der; Li, Kuang-Yi
2010-10-01
Heat storage systems are usually used to store waste heat and solar energy. In this study, a mathematical model is developed to predict both the steady-state and transient temperature distributions of an aquifer thermal energy storage (ATES) system after hot water is injected through a well into a confined aquifer. The ATES has a confined aquifer bounded by aquicludes with different thermomechanical properties and geothermal gradients along the depth. Consider that the heat is transferred by conduction and forced convection within the aquifer and by conduction within the aquicludes. The dimensionless semi-analytical solutions of temperature distributions of the ATES system are developed using Laplace and Fourier transforms and their corresponding time-domain results are evaluated numerically by the modified Crump method. The steady-state solution is obtained from the transient solution through the final-value theorem. The effect of the heat transfer coefficient on aquiclude temperature distribution is appreciable only near the outer boundaries of the aquicludes. The present solutions are useful for estimating the temperature distribution of heat injection and the aquifer thermal capacity of ATES systems.
Update on specified European R and D efforts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
Information was collected for DOE on various European research programs of interest: Shell-Koppers coal gasification demonstration plant, fluidized-bed combustion pilot plant, a boiler super heat system, energy conservation on ships, waste heat utilization from large diesel engines and nuclear power plants and uranium enrichment plants, coal-water slurries with additive (CARBOGEL), electrostatic precipitators, radial inflow turbines, carbonization, heat pumps, heat exchangers, gas turbines, and research on heat resisting alloys and corrosion protection of these alloys. A number of organizations expressed a desire for creation of a formal interchange with DOE on specific subjects of mutual interest (one organization is unhappy aboutmore » furnishing information to DOE). (LTN)« less
Study of thermal energy storage using fluidized bed heat exchangers
NASA Technical Reports Server (NTRS)
Weast, T. E.; Shannon, L. J.; Ananth, K. P.
1980-01-01
The technical and economic feasibility of fluid bed heat exchangers (FBHX) for thermal energy storage (TES) in waste heat recovery applications is assessed by analysis of two selected conceptual systems, the rotary cement kiln and the electric arc furnace. It is shown that the inclusion of TES in the energy recovery system requires that the difference in off-peak and on-peak energy rates be large enough so that the value of the recovered energy exceeds the value of the stored energy by a wide enough margin to offset parasitic power and thermal losses. Escalation of on-peak energy rates due to fuel shortages could make the FBHX/TES applications economically attractive in the future.
Space shuttle heat pipe thermal control systems
NASA Technical Reports Server (NTRS)
Alario, J.
1973-01-01
Heat pipe (HP) thermal control systems designed for possible space shuttle applications were built and tested under this program. They are: (1) a HP augmented cold rail, (2) a HP/phase change material (PCM) modular heat sink and (3) a HP radiating panel for compartment temperature control. The HP augmented cold rail is similar to a standard two-passage fluid cold rail except that it contains an integral, centrally located HP throughout its length. The central HP core helps to increase the local power density capability by spreading concentrated heat inputs over the entire rail. The HP/PCM modular heat sink system consists of a diode HP connected in series to a standard HP that has a PCM canister attached to its mid-section. It is designed to connect a heat source to a structural heat sink during normal operation, and to automatically decouple from it and sink to the PCM whenever structural temperatures are too high. The HP radiating panel is designed to conductively couple the panel feeder HPs directly to a fluid line that serves as a source of waste heat. It is a simple strap-on type of system that requires no internal or external line modifications to distribute the heat to a large radiating area.
Consonni, Stefano; Viganò, Federico
2011-01-01
This article is part of a set of six coordinated papers reporting the main findings of a research project carried out by five Italian universities on "Material and energy recovery in Integrated Waste Management Systems (IWMS)". An overview of the project and a summary of the most relevant results can be found in the introductory article of the series. This paper describes the work related to the evaluation of mass and energy balances, which has consisted of three major efforts (i) development of a model for quantifying the energy content and the elemental compositions of the waste streams appearing in a IWMS; (ii) upgrade of an earlier model to predict the performances of Waste-to-Energy (WtE) plants; (iii) evaluation of mass and energy balances of all the scenarios and the recovery paths considered in the project. Results show that not only the amount of material available for energy recovery is significantly higher than the Unsorted Residual Waste (URW) left after Separate Collection (SC), because selection and recycling generate significant amounts of residues, but its heating value is higher than that of the original, gross waste. Therefore, the energy potential of what is left after recycling is always higher than the complement to 100% of the Source Separation Level (SSL). Also, increasing SSL has marginal effects on the potential for energy recovery: nearly doubling SSL (from 35% to 65%) reduces the energy potential only by one fourth. Consequently, even at high SSL energy recovery is a fundamental step of a sustainable waste management system. Variations of SSL do bring about variations of the composition, heating value and moisture content of the material fed to WtE plants, but these variations (i) are smaller than one can expect; (ii) have marginal effects on the performances of the WtE plant. These considerations suggest that the mere value of SSL is not a good indicator of the quality of the waste management system, nor of its energy and environmental outcome. Given the well-known dependence of the efficiency of steam power plants with their power output, the efficiency of energy recovery crucially depends on the size of the IWMS served by the WtE plant. A fivefold increase of the amount of gross waste handled in the IWMS (from 150,000 to 750,000 tons per year of gross waste) allows increasing the electric efficiencies of the WtE plant by about 6-7 percentage points (from 21-23% to 28.5% circa). Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claiborne, H.C.; Wagner, R.S.; Just, R.A.
1979-12-01
A direct comparison of transient thermal calculations was made with the heat transfer codes HEATING5, THAC-SIP-3D, ADINAT, SINDA, TRUMP, and TRANCO for a hypothetical nuclear waste repository. With the exception of TRUMP and SINDA (actually closer to the earlier CINDA3G version), the other codes agreed to within +-5% for the temperature rises as a function of time. The TRUMP results agreed within +-5% up to about 50 years, where the maximum temperature occurs, and then began an oscillary behavior with up to 25% deviations at longer times. This could have resulted from time steps that were too large or frommore » some unknown system problems. The available version of the SINDA code was not compatible with the IBM compiler without using an alternative method for handling a variable thermal conductivity. The results were about 40% low, but a reasonable agreement was obtained by assuming a uniform thermal conductivity; however, a programming error was later discovered in the alternative method. Some work is required on the IBM version to make it compatible with the system and still use the recommended method of handling variable thermal conductivity. TRANCO can only be run as a 2-D model, and TRUMP and CINDA apparently required longer running times and did not agree in the 2-D case; therefore, only HEATING5, THAC-SIP-3D, and ADINAT were used for the 3-D model calculations. The codes agreed within +-5%; at distances of about 1 ft from the waste canister edge, temperature rises were also close to that predicted by the 3-D model.« less
NASA Astrophysics Data System (ADS)
Butov, R. A.; Drobyshevsky, N. I.; Moiseenko, E. V.; Tokarev, U. N.
2017-11-01
The verification of the FENIA finite element code on some problems and an example of its application are presented in the paper. The code is being developing for 3D modelling of thermal, mechanical and hydrodynamical (THM) problems related to the functioning of deep geological repositories. Verification of the code for two analytical problems has been performed. The first one is point heat source with exponential heat decrease, the second one - linear heat source with similar behavior. Analytical solutions have been obtained by the authors. The problems have been chosen because they reflect the processes influencing the thermal state of deep geological repository of radioactive waste. Verification was performed for several meshes with different resolution. Good convergence between analytical and numerical solutions was achieved. The application of the FENIA code is illustrated by 3D modelling of thermal state of a prototypic deep geological repository of radioactive waste. The repository is designed for disposal of radioactive waste in a rock at depth of several hundred meters with no intention of later retrieval. Vitrified radioactive waste is placed in the containers, which are placed in vertical boreholes. The residual decay heat of radioactive waste leads to containers, engineered safety barriers and host rock heating. Maximum temperatures and corresponding times of their establishment have been determined.
Manu, M K; Kumar, Rakesh; Garg, Anurag
2017-06-01
Wet waste recycling at generation point will alleviate burden on the overflowing waste dumpsites in developing nations. Drum composting is a potential treatment option for such waste at individual or community level. The present study was aimed to produce compost from wet waste (primarily comprising food waste) in composting drums modified for improved natural air circulation. Effect of microbial inoculum and waste turning on composting process was also studied. The final results showed the production of matured and stable compost in the modified drums. Addition of the microbial inoculum resulted in thermophilic phase within a week time. The self-heating test and germination index (>80%) showed the production of non-phytotoxic and mature compost in the modified drums after 60days. The change in microbial population, humic substances and biological parameters (lignin, cellulose and hemicellulose) during the study is discussed. Moreover, the reduction in waste mass and volume is also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.
Doležalová, Markéta; Benešová, Libuše; Závodská, Anita
2013-09-01
The authors of this paper report on the changing character of household waste, in the Czech Republic between 1999 and 2009 in households differentiated by their heating methods. The data presented are the result of two projects, financed by the Czech Ministry of Environment, which were undertaken during this time period with the aim of focusing on the waste characterisation and complete analysis of the physicochemical properties of the household waste. In the Czech Republic, the composition of household waste varies significantly between different types of households based on the methods of home heating employed. For the purposes of these studies, the types of homes were divided into three categories - urban, mixed and rural. Some of the biggest differences were found in the quantities of certain subsample categories, especially fine residue (matter smaller than 20 mm), between urban households with central heating and rural households that primarily employ solid fuel such coal or wood. The use of these solid fuels increases the fraction of the finer categories because of the higher presence of ash. Heating values of the residual household waste from the three categories varied very significantly, ranging from 6.8 MJ/kg to 14.2 MJ/kg in 1999 and from 6.8 MJ/kg to 10.5 MJ/kg in 2009 depending on the type of household and season. The same factors affect moisture of residual household waste which varied from 23.2% to 33.3%. The chemical parameters also varied significantly, especially in the quantities of Tl, As, Cr, Zn, Fe and Mn, which were higher in rural households. Because knowledge about the properties of household waste, as well as its physicochemical characteristics, is very important not only for future waste management, but also for the prediction of the behaviour and influence of the waste on the environment as the country continues to streamline its legislation to the European Union's solid waste mandates, the results of these studies were employed by the Czech Ministry of Environment to optimise the national waste management strategy. Copyright © 2013 Elsevier Ltd. All rights reserved.
Battery thermal management unit
NASA Astrophysics Data System (ADS)
Sanders, Nicholas A.
1989-03-01
A battery warming device has been designed which uses waste heat from an operating internal combustion engine to warm a battery. A portion of the waste heat is stored in the sensible and latent heat of a phase change type material for use in maintaining the battery temperature after the engine is shut off. The basic design of the device consists of a Phase Change Material (PCM) reservoir and a simple heat exchanger connected to the engineer's cooling system. Two types of units were built, tested and field trialed. A strap-on type which was strapped to the side of an automotive battery and was intended for the automotive after-market and a tray type on which a battery or batteries sat. This unit was intended for the heavy duty truck market. It was determined that both types of units increased the average cranking power of the batteries they were applied to. Although there were several design problems with the units such as the need for an automatic thermostatically controlled bypass valve, the overall feeling is that there is a market opportunity for both the strap-on and tray type battery warming units.