Errors in causal inference: an organizational schema for systematic error and random error.
Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji
2016-11-01
To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.
Complete Systematic Error Model of SSR for Sensor Registration in ATC Surveillance Networks
Besada, Juan A.
2017-01-01
In this paper, a complete and rigorous mathematical model for secondary surveillance radar systematic errors (biases) is developed. The model takes into account the physical effects systematically affecting the measurement processes. The azimuth biases are calculated from the physical error of the antenna calibration and the errors of the angle determination dispositive. Distance bias is calculated from the delay of the signal produced by the refractivity index of the atmosphere, and from clock errors, while the altitude bias is calculated taking into account the atmosphere conditions (pressure and temperature). It will be shown, using simulated and real data, that adapting a classical bias estimation process to use the complete parametrized model results in improved accuracy in the bias estimation. PMID:28934157
A Systematic Error Correction Method for TOVS Radiances
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)
2000-01-01
Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.
Systematic Error Modeling and Bias Estimation
Zhang, Feihu; Knoll, Alois
2016-01-01
This paper analyzes the statistic properties of the systematic error in terms of range and bearing during the transformation process. Furthermore, we rely on a weighted nonlinear least square method to calculate the biases based on the proposed models. The results show the high performance of the proposed approach for error modeling and bias estimation. PMID:27213386
Systematic Biases in Parameter Estimation of Binary Black-Hole Mergers
NASA Technical Reports Server (NTRS)
Littenberg, Tyson B.; Baker, John G.; Buonanno, Alessandra; Kelly, Bernard J.
2012-01-01
Parameter estimation of binary-black-hole merger events in gravitational-wave data relies on matched filtering techniques, which, in turn, depend on accurate model waveforms. Here we characterize the systematic biases introduced in measuring astrophysical parameters of binary black holes by applying the currently most accurate effective-one-body templates to simulated data containing non-spinning numerical-relativity waveforms. For advanced ground-based detectors, we find that the systematic biases are well within the statistical error for realistic signal-to-noise ratios (SNR). These biases grow to be comparable to the statistical errors at high signal-to-noise ratios for ground-based instruments (SNR approximately 50) but never dominate the error budget. At the much larger signal-to-noise ratios expected for space-based detectors, these biases will become large compared to the statistical errors but are small enough (at most a few percent in the black-hole masses) that we expect they should not affect broad astrophysical conclusions that may be drawn from the data.
More on Systematic Error in a Boyle's Law Experiment
ERIC Educational Resources Information Center
McCall, Richard P.
2012-01-01
A recent article in "The Physics Teacher" describes a method for analyzing a systematic error in a Boyle's law laboratory activity. Systematic errors are important to consider in physics labs because they tend to bias the results of measurements. There are numerous laboratory examples and resources that discuss this common source of error.
Thirty Years of Improving the NCEP Global Forecast System
NASA Astrophysics Data System (ADS)
White, G. H.; Manikin, G.; Yang, F.
2014-12-01
Current eight day forecasts by the NCEP Global Forecast System are as accurate as five day forecasts 30 years ago. This revolution in weather forecasting reflects increases in computer power, improvements in the assimilation of observations, especially satellite data, improvements in model physics, improvements in observations and international cooperation and competition. One important component has been and is the diagnosis, evaluation and reduction of systematic errors. The effect of proposed improvements in the GFS on systematic errors is one component of the thorough testing of such improvements by the Global Climate and Weather Modeling Branch. Examples of reductions in systematic errors in zonal mean temperatures and winds and other fields will be presented. One challenge in evaluating systematic errors is uncertainty in what reality is. Model initial states can be regarded as the best overall depiction of the atmosphere, but can be misleading in areas of few observations or for fields not well observed such as humidity or precipitation over the oceans. Verification of model physics is particularly difficult. The Environmental Modeling Center emphasizes the evaluation of systematic biases against observations. Recently EMC has placed greater emphasis on synoptic evaluation and on precipitation, 2-meter temperatures and dew points and 10 meter winds. A weekly EMC map discussion reviews the performance of many models over the United States and has helped diagnose and alleviate significant systematic errors in the GFS, including a near surface summertime evening cold wet bias over the eastern US and a multi-week period when the GFS persistently developed bogus tropical storms off Central America. The GFS exhibits a wet bias for light rain and a dry bias for moderate to heavy rain over the continental United States. Significant changes to the GFS are scheduled to be implemented in the fall of 2014. These include higher resolution, improved physics and improvements to the assimilation. These changes significantly improve the tropospheric flow and reduce a tropical upper tropospheric warm bias. One important error remaining is the failure of the GFS to maintain deep convection over Indonesia and in the tropical west Pacific. This and other current systematic errors will be presented.
NASA Astrophysics Data System (ADS)
Bhargava, K.; Kalnay, E.; Carton, J.; Yang, F.
2017-12-01
Systematic forecast errors, arising from model deficiencies, form a significant portion of the total forecast error in weather prediction models like the Global Forecast System (GFS). While much effort has been expended to improve models, substantial model error remains. The aim here is to (i) estimate the model deficiencies in the GFS that lead to systematic forecast errors, (ii) implement an online correction (i.e., within the model) scheme to correct GFS following the methodology of Danforth et al. [2007] and Danforth and Kalnay [2008, GRL]. Analysis Increments represent the corrections that new observations make on, in this case, the 6-hr forecast in the analysis cycle. Model bias corrections are estimated from the time average of the analysis increments divided by 6-hr, assuming that initial model errors grow linearly and first ignoring the impact of observation bias. During 2012-2016, seasonal means of the 6-hr model bias are generally robust despite changes in model resolution and data assimilation systems, and their broad continental scales explain their insensitivity to model resolution. The daily bias dominates the sub-monthly analysis increments and consists primarily of diurnal and semidiurnal components, also requiring a low dimensional correction. Analysis increments in 2015 and 2016 are reduced over oceans, which is attributed to improvements in the specification of the SSTs. These results encourage application of online correction, as suggested by Danforth and Kalnay, for mean, seasonal and diurnal and semidiurnal model biases in GFS to reduce both systematic and random errors. As the error growth in the short-term is still linear, estimated model bias corrections can be added as a forcing term in the model tendency equation to correct online. Preliminary experiments with GFS, correcting temperature and specific humidity online show reduction in model bias in 6-hr forecast. This approach can then be used to guide and optimize the design of sub-grid scale physical parameterizations, more accurate discretization of the model dynamics, boundary conditions, radiative transfer codes, and other potential model improvements which can then replace the empirical correction scheme. The analysis increments also provide guidance in testing new physical parameterizations.
Sobel, Michael E; Lindquist, Martin A
2014-07-01
Functional magnetic resonance imaging (fMRI) has facilitated major advances in understanding human brain function. Neuroscientists are interested in using fMRI to study the effects of external stimuli on brain activity and causal relationships among brain regions, but have not stated what is meant by causation or defined the effects they purport to estimate. Building on Rubin's causal model, we construct a framework for causal inference using blood oxygenation level dependent (BOLD) fMRI time series data. In the usual statistical literature on causal inference, potential outcomes, assumed to be measured without systematic error, are used to define unit and average causal effects. However, in general the potential BOLD responses are measured with stimulus dependent systematic error. Thus we define unit and average causal effects that are free of systematic error. In contrast to the usual case of a randomized experiment where adjustment for intermediate outcomes leads to biased estimates of treatment effects (Rosenbaum, 1984), here the failure to adjust for task dependent systematic error leads to biased estimates. We therefore adjust for systematic error using measured "noise covariates" , using a linear mixed model to estimate the effects and the systematic error. Our results are important for neuroscientists, who typically do not adjust for systematic error. They should also prove useful to researchers in other areas where responses are measured with error and in fields where large amounts of data are collected on relatively few subjects. To illustrate our approach, we re-analyze data from a social evaluative threat task, comparing the findings with results that ignore systematic error.
Vrijheid, Martine; Deltour, Isabelle; Krewski, Daniel; Sanchez, Marie; Cardis, Elisabeth
2006-07-01
This paper examines the effects of systematic and random errors in recall and of selection bias in case-control studies of mobile phone use and cancer. These sensitivity analyses are based on Monte-Carlo computer simulations and were carried out within the INTERPHONE Study, an international collaborative case-control study in 13 countries. Recall error scenarios simulated plausible values of random and systematic, non-differential and differential recall errors in amount of mobile phone use reported by study subjects. Plausible values for the recall error were obtained from validation studies. Selection bias scenarios assumed varying selection probabilities for cases and controls, mobile phone users, and non-users. Where possible these selection probabilities were based on existing information from non-respondents in INTERPHONE. Simulations used exposure distributions based on existing INTERPHONE data and assumed varying levels of the true risk of brain cancer related to mobile phone use. Results suggest that random recall errors of plausible levels can lead to a large underestimation in the risk of brain cancer associated with mobile phone use. Random errors were found to have larger impact than plausible systematic errors. Differential errors in recall had very little additional impact in the presence of large random errors. Selection bias resulting from underselection of unexposed controls led to J-shaped exposure-response patterns, with risk apparently decreasing at low to moderate exposure levels. The present results, in conjunction with those of the validation studies conducted within the INTERPHONE study, will play an important role in the interpretation of existing and future case-control studies of mobile phone use and cancer risk, including the INTERPHONE study.
Systematic error of diode thermometer.
Iskrenovic, Predrag S
2009-08-01
Semiconductor diodes are often used for measuring temperatures. The forward voltage across a diode decreases, approximately linearly, with the increase in temperature. The applied method is mainly the simplest one. A constant direct current flows through the diode, and voltage is measured at diode terminals. The direct current that flows through the diode, putting it into operating mode, heats up the diode. The increase in temperature of the diode-sensor, i.e., the systematic error due to self-heating, depends on the intensity of current predominantly and also on other factors. The results of systematic error measurements due to heating up by the forward-bias current have been presented in this paper. The measurements were made at several diodes over a wide range of bias current intensity.
Bias estimation for the Landsat 8 operational land imager
Morfitt, Ron; Vanderwerff, Kelly
2011-01-01
The Operational Land Imager (OLI) is a pushbroom sensor that will be a part of the Landsat Data Continuity Mission (LDCM). This instrument is the latest in the line of Landsat imagers, and will continue to expand the archive of calibrated earth imagery. An important step in producing a calibrated image from instrument data is accurately accounting for the bias of the imaging detectors. Bias variability is one factor that contributes to error in bias estimation for OLI. Typically, the bias is simply estimated by averaging dark data on a per-detector basis. However, data acquired during OLI pre-launch testing exhibited bias variation that correlated well with the variation in concurrently collected data from a special set of detectors on the focal plane. These detectors are sensitive to certain electronic effects but not directly to incoming electromagnetic radiation. A method of using data from these special detectors to estimate the bias of the imaging detectors was developed, but found not to be beneficial at typical radiance levels as the detectors respond slightly when the focal plane is illuminated. In addition to bias variability, a systematic bias error is introduced by the truncation performed by the spacecraft of the 14-bit instrument data to 12-bit integers. This systematic error can be estimated and removed on average, but the per pixel quantization error remains. This paper describes the variability of the bias, the effectiveness of a new approach to estimate and compensate for it, as well as the errors due to truncation and how they are reduced.
Malyarenko, Dariya; Newitt, David; Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G.; Arlinghaus, Lori R.; Jacobs, Michael A.; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E.; Huang, Wei; Chenevert, Thomas L.
2015-01-01
Purpose Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Methods Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ±150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients and eddy currents were assessed independently. The observed bias errors were compared to numerical models. Results The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between −55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (±5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image co-registration of individual gradient directions. Conclusion The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. PMID:25940607
Malyarenko, Dariya I; Newitt, David; J Wilmes, Lisa; Tudorica, Alina; Helmer, Karl G; Arlinghaus, Lori R; Jacobs, Michael A; Jajamovich, Guido; Taouli, Bachir; Yankeelov, Thomas E; Huang, Wei; Chenevert, Thomas L
2016-03-01
Characterize system-specific bias across common magnetic resonance imaging (MRI) platforms for quantitative diffusion measurements in multicenter trials. Diffusion weighted imaging (DWI) was performed on an ice-water phantom along the superior-inferior (SI) and right-left (RL) orientations spanning ± 150 mm. The same scanning protocol was implemented on 14 MRI systems at seven imaging centers. The bias was estimated as a deviation of measured from known apparent diffusion coefficient (ADC) along individual DWI directions. The relative contributions of gradient nonlinearity, shim errors, imaging gradients, and eddy currents were assessed independently. The observed bias errors were compared with numerical models. The measured systematic ADC errors scaled quadratically with offset from isocenter, and ranged between -55% (SI) and 25% (RL). Nonlinearity bias was dependent on system design and diffusion gradient direction. Consistent with numerical models, minor ADC errors (± 5%) due to shim, imaging and eddy currents were mitigated by double echo DWI and image coregistration of individual gradient directions. The analysis confirms gradient nonlinearity as a major source of spatial DW bias and variability in off-center ADC measurements across MRI platforms, with minor contributions from shim, imaging gradients and eddy currents. The developed protocol enables empiric description of systematic bias in multicenter quantitative DWI studies. © 2015 Wiley Periodicals, Inc.
Moisture Forecast Bias Correction in GEOS DAS
NASA Technical Reports Server (NTRS)
Dee, D.
1999-01-01
Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.
Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A
2011-06-30
Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.
Overcoming bias and systematic errors in next generation sequencing data.
Taub, Margaret A; Corrada Bravo, Hector; Irizarry, Rafael A
2010-12-10
Considerable time and effort has been spent in developing analysis and quality assessment methods to allow the use of microarrays in a clinical setting. As is the case for microarrays and other high-throughput technologies, data from new high-throughput sequencing technologies are subject to technological and biological biases and systematic errors that can impact downstream analyses. Only when these issues can be readily identified and reliably adjusted for will clinical applications of these new technologies be feasible. Although much work remains to be done in this area, we describe consistently observed biases that should be taken into account when analyzing high-throughput sequencing data. In this article, we review current knowledge about these biases, discuss their impact on analysis results, and propose solutions.
NASA Astrophysics Data System (ADS)
Pathiraja, S.; Anghileri, D.; Burlando, P.; Sharma, A.; Marshall, L.; Moradkhani, H.
2018-03-01
The global prevalence of rapid and extensive land use change necessitates hydrologic modelling methodologies capable of handling non-stationarity. This is particularly true in the context of Hydrologic Forecasting using Data Assimilation. Data Assimilation has been shown to dramatically improve forecast skill in hydrologic and meteorological applications, although such improvements are conditional on using bias-free observations and model simulations. A hydrologic model calibrated to a particular set of land cover conditions has the potential to produce biased simulations when the catchment is disturbed. This paper sheds new light on the impacts of bias or systematic errors in hydrologic data assimilation, in the context of forecasting in catchments with changing land surface conditions and a model calibrated to pre-change conditions. We posit that in such cases, the impact of systematic model errors on assimilation or forecast quality is dependent on the inherent prediction uncertainty that persists even in pre-change conditions. Through experiments on a range of catchments, we develop a conceptual relationship between total prediction uncertainty and the impacts of land cover changes on the hydrologic regime to demonstrate how forecast quality is affected when using state estimation Data Assimilation with no modifications to account for land cover changes. This work shows that systematic model errors as a result of changing or changed catchment conditions do not always necessitate adjustments to the modelling or assimilation methodology, for instance through re-calibration of the hydrologic model, time varying model parameters or revised offline/online bias estimation.
Component Analysis of Errors on PERSIANN Precipitation Estimates over Urmia Lake Basin, IRAN
NASA Astrophysics Data System (ADS)
Ghajarnia, N.; Daneshkar Arasteh, P.; Liaghat, A. M.; Araghinejad, S.
2016-12-01
In this study, PERSIANN daily dataset is evaluated from 2000 to 2011 in 69 pixels over Urmia Lake basin in northwest of Iran. Different analytical approaches and indexes are used to examine PERSIANN precision in detection and estimation of rainfall rate. The residuals are decomposed into Hit, Miss and FA estimation biases while continues decomposition of systematic and random error components are also analyzed seasonally and categorically. New interpretation of estimation accuracy named "reliability on PERSIANN estimations" is introduced while the changing manners of existing categorical/statistical measures and error components are also seasonally analyzed over different rainfall rate categories. This study yields new insights into the nature of PERSIANN errors over Urmia lake basin as a semi-arid region in the middle-east, including the followings: - The analyzed contingency table indexes indicate better detection precision during spring and fall. - A relatively constant level of error is generally observed among different categories. The range of precipitation estimates at different rainfall rate categories is nearly invariant as a sign for the existence of systematic error. - Low level of reliability is observed on PERSIANN estimations at different categories which are mostly associated with high level of FA error. However, it is observed that as the rate of precipitation increase, the ability and precision of PERSIANN in rainfall detection also increases. - The systematic and random error decomposition in this area shows that PERSIANN has more difficulty in modeling the system and pattern of rainfall rather than to have bias due to rainfall uncertainties. The level of systematic error also considerably increases in heavier rainfalls. It is also important to note that PERSIANN error characteristics at each season varies due to the condition and rainfall patterns of that season which shows the necessity of seasonally different approach for the calibration of this product. Overall, we believe that different error component's analysis performed in this study, can substantially help any further local studies for post-calibration and bias reduction of PERSIANN estimations.
Perceptions of Randomness: Why Three Heads Are Better than Four
ERIC Educational Resources Information Center
Hahn, Ulrike; Warren, Paul A.
2009-01-01
A long tradition of psychological research has lamented the systematic errors and biases in people's perception of the characteristics of sequences generated by a random mechanism such as a coin toss. It is proposed that once the likely nature of people's actual experience of such processes is taken into account, these "errors" and "biases"…
Heuristics and Cognitive Error in Medical Imaging.
Itri, Jason N; Patel, Sohil H
2018-05-01
The field of cognitive science has provided important insights into mental processes underlying the interpretation of imaging examinations. Despite these insights, diagnostic error remains a major obstacle in the goal to improve quality in radiology. In this article, we describe several types of cognitive bias that lead to diagnostic errors in imaging and discuss approaches to mitigate cognitive biases and diagnostic error. Radiologists rely on heuristic principles to reduce complex tasks of assessing probabilities and predicting values into simpler judgmental operations. These mental shortcuts allow rapid problem solving based on assumptions and past experiences. Heuristics used in the interpretation of imaging studies are generally helpful but can sometimes result in cognitive biases that lead to significant errors. An understanding of the causes of cognitive biases can lead to the development of educational content and systematic improvements that mitigate errors and improve the quality of care provided by radiologists.
Caraus, Iurie; Alsuwailem, Abdulaziz A; Nadon, Robert; Makarenkov, Vladimir
2015-11-01
Significant efforts have been made recently to improve data throughput and data quality in screening technologies related to drug design. The modern pharmaceutical industry relies heavily on high-throughput screening (HTS) and high-content screening (HCS) technologies, which include small molecule, complementary DNA (cDNA) and RNA interference (RNAi) types of screening. Data generated by these screening technologies are subject to several environmental and procedural systematic biases, which introduce errors into the hit identification process. We first review systematic biases typical of HTS and HCS screens. We highlight that study design issues and the way in which data are generated are crucial for providing unbiased screening results. Considering various data sets, including the publicly available ChemBank data, we assess the rates of systematic bias in experimental HTS by using plate-specific and assay-specific error detection tests. We describe main data normalization and correction techniques and introduce a general data preprocessing protocol. This protocol can be recommended for academic and industrial researchers involved in the analysis of current or next-generation HTS data. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
The accuracy of self-reported pregnancy-related weight: a systematic review.
Headen, I; Cohen, A K; Mujahid, M; Abrams, B
2017-03-01
Self-reported maternal weight is error-prone, and the context of pregnancy may impact error distributions. This systematic review summarizes error in self-reported weight across pregnancy and assesses implications for bias in associations between pregnancy-related weight and birth outcomes. We searched PubMed and Google Scholar through November 2015 for peer-reviewed articles reporting accuracy of self-reported, pregnancy-related weight at four time points: prepregnancy, delivery, over gestation and postpartum. Included studies compared maternal self-report to anthropometric measurement or medical report of weights. Sixty-two studies met inclusion criteria. We extracted data on magnitude of error and misclassification. We assessed impact of reporting error on bias in associations between pregnancy-related weight and birth outcomes. Women underreported prepregnancy (PPW: -2.94 to -0.29 kg) and delivery weight (DW: -1.28 to 0.07 kg), and over-reported gestational weight gain (GWG: 0.33 to 3 kg). Magnitude of error was small, ranged widely, and varied by prepregnancy weight class and race/ethnicity. Misclassification was moderate (PPW: 0-48.3%; DW: 39.0-49.0%; GWG: 16.7-59.1%), and overestimated some estimates of population prevalence. However, reporting error did not largely bias associations between pregnancy-related weight and birth outcomes. Although measured weight is preferable, self-report is a cost-effective and practical measurement approach. Future researchers should develop bias correction techniques for self-reported pregnancy-related weight. © 2017 World Obesity Federation.
Accurate Magnetometer/Gyroscope Attitudes Using a Filter with Correlated Sensor Noise
NASA Technical Reports Server (NTRS)
Sedlak, J.; Hashmall, J.
1997-01-01
Magnetometers and gyroscopes have been shown to provide very accurate attitudes for a variety of spacecraft. These results have been obtained, however, using a batch-least-squares algorithm and long periods of data. For use in onboard applications, attitudes are best determined using sequential estimators such as the Kalman filter. When a filter is used to determine attitudes using magnetometer and gyroscope data for input, the resulting accuracy is limited by both the sensor accuracies and errors inherent in the Earth magnetic field model. The Kalman filter accounts for the random component by modeling the magnetometer and gyroscope errors as white noise processes. However, even when these tuning parameters are physically realistic, the rate biases (included in the state vector) have been found to show systematic oscillations. These are attributed to the field model errors. If the gyroscope noise is sufficiently small, the tuned filter 'memory' will be long compared to the orbital period. In this case, the variations in the rate bias induced by field model errors are substantially reduced. Mistuning the filter to have a short memory time leads to strongly oscillating rate biases and increased attitude errors. To reduce the effect of the magnetic field model errors, these errors are estimated within the filter and used to correct the reference model. An exponentially-correlated noise model is used to represent the filter estimate of the systematic error. Results from several test cases using in-flight data from the Compton Gamma Ray Observatory are presented. These tests emphasize magnetometer errors, but the method is generally applicable to any sensor subject to a combination of random and systematic noise.
Demand artifact: objectively detecting biased participants in advertising research.
Miller, Felicia; Schertzer, Susan
2014-12-01
Detecting and reducing the effect of biased participants continues to be an important task for researchers. However, the lack of objective measures to assess demand artifact has made it difficult to effectively address this issue. This paper reports two experiments that apply a theory-based post-experimental inquiry that can systematically identify biased participants in consumer research. The results demonstrate how easily and effectively researchers can incorporate this tool into experimental studies of all types and reduce the likelihood of systematic error.
NASA Astrophysics Data System (ADS)
Zhao, Lei; Lee, Xuhui; Liu, Shoudong
2013-09-01
Solar radiation at the Earth's surface is an important driver of meteorological and ecological processes. The objective of this study is to evaluate the accuracy of the reanalysis solar radiation produced by NARR (North American Regional Reanalysis) and MERRA (Modern-Era Retrospective Analysis for Research and Applications) against the FLUXNET measurements in North America. We found that both assimilation systems systematically overestimated the surface solar radiation flux on the monthly and annual scale, with an average bias error of +37.2 Wm-2 for NARR and of +20.2 Wm-2 for MERRA. The bias errors were larger under cloudy skies than under clear skies. A postreanalysis algorithm consisting of empirical relationships between model bias, a clearness index, and site elevation was proposed to correct the model errors. Results show that the algorithm can remove the systematic bias errors for both FLUXNET calibration sites (sites used to establish the algorithm) and independent validation sites. After correction, the average annual mean bias errors were reduced to +1.3 Wm-2 for NARR and +2.7 Wm-2 for MERRA. Applying the correction algorithm to the global domain of MERRA brought the global mean surface incoming shortwave radiation down by 17.3 W m-2 to 175.5 W m-2. Under the constraint of the energy balance, other radiation and energy balance terms at the Earth's surface, estimated from independent global data products, also support the need for a downward adjustment of the MERRA surface solar radiation.
Omens of coupled model biases in the CMIP5 AMIP simulations
NASA Astrophysics Data System (ADS)
Găinuşă-Bogdan, Alina; Hourdin, Frédéric; Traore, Abdoul Khadre; Braconnot, Pascale
2018-02-01
Despite decades of efforts and improvements in the representation of processes as well as in model resolution, current global climate models still suffer from a set of important, systematic biases in sea surface temperature (SST), not much different from the previous generation of climate models. Many studies have looked at errors in the wind field, cloud representation or oceanic upwelling in coupled models to explain the SST errors. In this paper we highlight the relationship between latent heat flux (LH) biases in forced atmospheric simulations and the SST biases models develop in coupled mode, at the scale of the entire intertropical domain. By analyzing 22 pairs of forced atmospheric and coupled ocean-atmosphere simulations from the CMIP5 database, we show a systematic, negative correlation between the spatial patterns of these two biases. This link between forced and coupled bias patterns is also confirmed by two sets of dedicated sensitivity experiments with the IPSL-CM5A-LR model. The analysis of the sources of the atmospheric LH bias pattern reveals that the near-surface wind speed bias dominates the zonal structure of the LH bias and that the near-surface relative humidity dominates the east-west contrasts.
Big Data and Large Sample Size: A Cautionary Note on the Potential for Bias
Chambers, David A.; Glasgow, Russell E.
2014-01-01
Abstract A number of commentaries have suggested that large studies are more reliable than smaller studies and there is a growing interest in the analysis of “big data” that integrates information from many thousands of persons and/or different data sources. We consider a variety of biases that are likely in the era of big data, including sampling error, measurement error, multiple comparisons errors, aggregation error, and errors associated with the systematic exclusion of information. Using examples from epidemiology, health services research, studies on determinants of health, and clinical trials, we conclude that it is necessary to exercise greater caution to be sure that big sample size does not lead to big inferential errors. Despite the advantages of big studies, large sample size can magnify the bias associated with error resulting from sampling or study design. Clin Trans Sci 2014; Volume #: 1–5 PMID:25043853
O'Connor, Annette M; Totton, Sarah C; Cullen, Jonah N; Ramezani, Mahmood; Kalivarapu, Vijay; Yuan, Chaohui; Gilbert, Stephen B
2018-01-01
Systematic reviews are increasingly using data from preclinical animal experiments in evidence networks. Further, there are ever-increasing efforts to automate aspects of the systematic review process. When assessing systematic bias and unit-of-analysis errors in preclinical experiments, it is critical to understand the study design elements employed by investigators. Such information can also inform prioritization of automation efforts that allow the identification of the most common issues. The aim of this study was to identify the design elements used by investigators in preclinical research in order to inform unique aspects of assessment of bias and error in preclinical research. Using 100 preclinical experiments each related to brain trauma and toxicology, we assessed design elements described by the investigators. We evaluated Methods and Materials sections of reports for descriptions of the following design elements: 1) use of comparison group, 2) unit of allocation of the interventions to study units, 3) arrangement of factors, 4) method of factor allocation to study units, 5) concealment of the factors during allocation and outcome assessment, 6) independence of study units, and 7) nature of factors. Many investigators reported using design elements that suggested the potential for unit-of-analysis errors, i.e., descriptions of repeated measurements of the outcome (94/200) and descriptions of potential for pseudo-replication (99/200). Use of complex factor arrangements was common, with 112 experiments using some form of factorial design (complete, incomplete or split-plot-like). In the toxicology dataset, 20 of the 100 experiments appeared to use a split-plot-like design, although no investigators used this term. The common use of repeated measures and factorial designs means understanding bias and error in preclinical experimental design might require greater expertise than simple parallel designs. Similarly, use of complex factor arrangements creates novel challenges for accurate automation of data extraction and bias and error assessment in preclinical experiments.
Systematic effects on dark energy from 3D weak shear
NASA Astrophysics Data System (ADS)
Kitching, T. D.; Taylor, A. N.; Heavens, A. F.
2008-09-01
We present an investigation into the potential effect of systematics inherent in multiband wide-field surveys on the dark energy equation-of-state determination for two 3D weak lensing methods. The weak lensing methods are a geometric shear-ratio method and 3D cosmic shear. The analysis here uses an extension of the Fisher matrix framework to include jointly photometric redshift systematics, shear distortion systematics and intrinsic alignments. Using analytic parametrizations of these three primary systematic effects allows an isolation of systematic parameters of particular importance. We show that assuming systematic parameters are fixed, but possibly biased, results in potentially large biases in dark energy parameters. We quantify any potential bias by defining a Bias Figure of Merit. By marginalizing over extra systematic parameters, such biases are negated at the expense of an increase in the cosmological parameter errors. We show the effect on the dark energy Figure of Merit of marginalizing over each systematic parameter individually. We also show the overall reduction in the Figure of Merit due to all three types of systematic effects. Based on some assumption of the likely level of systematic errors, we find that the largest effect on the Figure of Merit comes from uncertainty in the photometric redshift systematic parameters. These can reduce the Figure of Merit by up to a factor of 2 to 4 in both 3D weak lensing methods, if no informative prior on the systematic parameters is applied. Shear distortion systematics have a smaller overall effect. Intrinsic alignment effects can reduce the Figure of Merit by up to a further factor of 2. This, however, is a worst-case scenario, within the assumptions of the parametrizations used. By including prior information on systematic parameters, the Figure of Merit can be recovered to a large extent, and combined constraints from 3D cosmic shear and shear ratio are robust to systematics. We conclude that, as a rule of thumb, given a realistic current understanding of intrinsic alignments and photometric redshifts, then including all three primary systematic effects reduces the Figure of Merit by at most a factor of 2.
Orbit error characteristic and distribution of TLE using CHAMP orbit data
NASA Astrophysics Data System (ADS)
Xu, Xiao-li; Xiong, Yong-qing
2018-02-01
Space object orbital covariance data is required for collision risk assessments, but publicly accessible two line element (TLE) data does not provide orbital error information. This paper compared historical TLE data and GPS precision ephemerides of CHAMP to assess TLE orbit accuracy from 2002 to 2008, inclusive. TLE error spatial variations with longitude and latitude were calculated to analyze error characteristics and distribution. The results indicate that TLE orbit data are systematically biased from the limited SGP4 model. The biases can reach the level of kilometers, and the sign and magnitude are correlate significantly with longitude.
De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets
NASA Astrophysics Data System (ADS)
Hemati, Maziar S.; Rowley, Clarence W.; Deem, Eric A.; Cattafesta, Louis N.
2017-08-01
The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD's first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD's performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.
Lash, Timothy L
2007-11-26
The associations of pesticide exposure with disease outcomes are estimated without the benefit of a randomized design. For this reason and others, these studies are susceptible to systematic errors. I analyzed studies of the associations between alachlor and glyphosate exposure and cancer incidence, both derived from the Agricultural Health Study cohort, to quantify the bias and uncertainty potentially attributable to systematic error. For each study, I identified the prominent result and important sources of systematic error that might affect it. I assigned probability distributions to the bias parameters that allow quantification of the bias, drew a value at random from each assigned distribution, and calculated the estimate of effect adjusted for the biases. By repeating the draw and adjustment process over multiple iterations, I generated a frequency distribution of adjusted results, from which I obtained a point estimate and simulation interval. These methods were applied without access to the primary record-level dataset. The conventional estimates of effect associating alachlor and glyphosate exposure with cancer incidence were likely biased away from the null and understated the uncertainty by quantifying only random error. For example, the conventional p-value for a test of trend in the alachlor study equaled 0.02, whereas fewer than 20% of the bias analysis iterations yielded a p-value of 0.02 or lower. Similarly, the conventional fully-adjusted result associating glyphosate exposure with multiple myleoma equaled 2.6 with 95% confidence interval of 0.7 to 9.4. The frequency distribution generated by the bias analysis yielded a median hazard ratio equal to 1.5 with 95% simulation interval of 0.4 to 8.9, which was 66% wider than the conventional interval. Bias analysis provides a more complete picture of true uncertainty than conventional frequentist statistical analysis accompanied by a qualitative description of study limitations. The latter approach is likely to lead to overconfidence regarding the potential for causal associations, whereas the former safeguards against such overinterpretations. Furthermore, such analyses, once programmed, allow rapid implementation of alternative assignments of probability distributions to the bias parameters, so elevate the plane of discussion regarding study bias from characterizing studies as "valid" or "invalid" to a critical and quantitative discussion of sources of uncertainty.
Cultural and Ethnic Bias in Teacher Ratings of Behavior: A Criterion-Focused Review
ERIC Educational Resources Information Center
Mason, Benjamin A.; Gunersel, Adalet Baris; Ney, Emilie A.
2014-01-01
Behavior rating scales are indirect measures of emotional and social functioning used for assessment purposes. Rater bias is systematic error that may compromise the validity of behavior rating scale scores. Teacher bias in ratings of behavior has been investigated in multiple studies, but not yet assessed in a research synthesis that focuses on…
Within-Tunnel Variations in Pressure Data for Three Transonic Wind Tunnels
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2014-01-01
This paper compares the results of pressure measurements made on the same test article with the same test matrix in three transonic wind tunnels. A comparison is presented of the unexplained variance associated with polar replicates acquired in each tunnel. The impact of a significance component of systematic (not random) unexplained variance is reviewed, and the results of analyses of variance are presented to assess the degree of significant systematic error in these representative wind tunnel tests. Total uncertainty estimates are reported for 140 samples of pressure data, quantifying the effects of within-polar random errors and between-polar systematic bias errors.
Aydin, Denis; Feychting, Maria; Schüz, Joachim; Andersen, Tina Veje; Poulsen, Aslak Harbo; Prochazka, Michaela; Klaeboe, Lars; Kuehni, Claudia E; Tynes, Tore; Röösli, Martin
2011-07-01
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents. Copyright © 2011 Wiley-Liss, Inc.
Reliability and Validity Assessment of a Linear Position Transducer
Garnacho-Castaño, Manuel V.; López-Lastra, Silvia; Maté-Muñoz, José L.
2015-01-01
The objectives of the study were to determine the validity and reliability of peak velocity (PV), average velocity (AV), peak power (PP) and average power (AP) measurements were made using a linear position transducer. Validity was assessed by comparing measurements simultaneously obtained using the Tendo Weightlifting Analyzer Systemi and T-Force Dynamic Measurement Systemr (Ergotech, Murcia, Spain) during two resistance exercises, bench press (BP) and full back squat (BS), performed by 71 trained male subjects. For the reliability study, a further 32 men completed both lifts using the Tendo Weightlifting Analyzer Systemz in two identical testing sessions one week apart (session 1 vs. session 2). Intraclass correlation coefficients (ICCs) indicating the validity of the Tendo Weightlifting Analyzer Systemi were high, with values ranging from 0.853 to 0.989. Systematic biases and random errors were low to moderate for almost all variables, being higher in the case of PP (bias ±157.56 W; error ±131.84 W). Proportional biases were identified for almost all variables. Test-retest reliability was strong with ICCs ranging from 0.922 to 0.988. Reliability results also showed minimal systematic biases and random errors, which were only significant for PP (bias -19.19 W; error ±67.57 W). Only PV recorded in the BS showed no significant proportional bias. The Tendo Weightlifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and estimating power in resistance exercises. The low biases and random errors observed here (mainly AV, AP) make this device a useful tool for monitoring resistance training. Key points This study determined the validity and reliability of peak velocity, average velocity, peak power and average power measurements made using a linear position transducer The Tendo Weight-lifting Analyzer Systemi emerged as a reliable system for measuring movement velocity and power. PMID:25729300
ERRATUM: 'MAPPING THE GAS TURBULENCE IN THE COMA CLUSTER: PREDICTIONS FOR ASTRO-H'
NASA Technical Reports Server (NTRS)
Zuhone, J. A.; Markevitch, M.; Zhuravleva, I.
2016-01-01
The published version of this paper contained an error in Figure 5. This figure is intended to show the effect on the structure function of subtracting the bias induced by the statistical and systematic errors on the line shift. The filled circles show the bias-subtracted structure function. The positions of these points in the left panel of the original figure were calculated incorrectly. The figure is reproduced below (with the original caption) with the correct values for the bias-subtracted structure function. No other computations or figures in the original manuscript are affected.
Peak-locking centroid bias in Shack-Hartmann wavefront sensing
NASA Astrophysics Data System (ADS)
Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.
2018-05-01
Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.
Bias, Confounding, and Interaction: Lions and Tigers, and Bears, Oh My!
Vetter, Thomas R; Mascha, Edward J
2017-09-01
Epidemiologists seek to make a valid inference about the causal effect between an exposure and a disease in a specific population, using representative sample data from a specific population. Clinical researchers likewise seek to make a valid inference about the association between an intervention and outcome(s) in a specific population, based upon their randomly collected, representative sample data. Both do so by using the available data about the sample variable to make a valid estimate about its corresponding or underlying, but unknown population parameter. Random error in an experiment can be due to the natural, periodic fluctuation or variation in the accuracy or precision of virtually any data sampling technique or health measurement tool or scale. In a clinical research study, random error can be due to not only innate human variability but also purely chance. Systematic error in an experiment arises from an innate flaw in the data sampling technique or measurement instrument. In the clinical research setting, systematic error is more commonly referred to as systematic bias. The most commonly encountered types of bias in anesthesia, perioperative, critical care, and pain medicine research include recall bias, observational bias (Hawthorne effect), attrition bias, misclassification or informational bias, and selection bias. A confounding variable is a factor associated with both the exposure of interest and the outcome of interest. A confounding variable (confounding factor or confounder) is a variable that correlates (positively or negatively) with both the exposure and outcome. Confounding is typically not an issue in a randomized trial because the randomized groups are sufficiently balanced on all potential confounding variables, both observed and nonobserved. However, confounding can be a major problem with any observational (nonrandomized) study. Ignoring confounding in an observational study will often result in a "distorted" or incorrect estimate of the association or treatment effect. Interaction among variables, also known as effect modification, exists when the effect of 1 explanatory variable on the outcome depends on the particular level or value of another explanatory variable. Bias and confounding are common potential explanations for statistically significant associations between exposure and outcome when the true relationship is noncausal. Understanding interactions is vital to proper interpretation of treatment effects. These complex concepts should be consistently and appropriately considered whenever one is not only designing but also analyzing and interpreting data from a randomized trial or observational study.
NASA Astrophysics Data System (ADS)
Wang, Lin; Wu, Wenqi; Wei, Guo; Lian, Junxiang; Yu, Ruihang
2018-05-01
The shipboard redundant rotational inertial navigation system (RINS) configuration, including a dual-axis RINS and a single-axis RINS, can satisfy the demand of marine INSs of especially high reliability as well as achieving trade-off between position accuracy and cost. Generally, the dual-axis RINS is the master INS, and the single-axis RINS is the hot backup INS for high reliability purposes. An integrity monitoring system performs a fault detection function to ensure sailing safety. However, improving the accuracy of the backup INS in case of master INS failure has not been given enough attention. Without the aid of any external information, a systematic bias collaborative measurement method based on an augmented Kalman filter is proposed for the redundant RINSs. Estimates of inertial sensor biases can be used by the built-in integrity monitoring system to monitor the RINS running condition. On the other hand, a position error prediction model is designed for the single-axis RINS to estimate the systematic error caused by its azimuth gyro bias. After position error compensation, the position information provided by the single-axis RINS still remains highly accurate, even if the integrity monitoring system detects a dual-axis RINS fault. Moreover, use of a grid frame as a navigation frame makes the proposed method applicable in any area, including the polar regions. Semi-physical simulation and experiments including sea trials verify the validity of the method.
NASA Astrophysics Data System (ADS)
Kirstetter, P.; Hong, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Petersen, W. A.
2011-12-01
Proper characterization of the error structure of TRMM Precipitation Radar (PR) quantitative precipitation estimation (QPE) is needed for their use in TRMM combined products, water budget studies and hydrological modeling applications. Due to the variety of sources of error in spaceborne radar QPE (attenuation of the radar signal, influence of land surface, impact of off-nadir viewing angle, etc.) and the impact of correction algorithms, the problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements (GV) using NOAA/NSSL's National Mosaic QPE (NMQ) system. An investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) on the basis of a 3-month-long data sample. A significant effort has been carried out to derive a bias-corrected, robust reference rainfall source from NMQ. The GV processing details will be presented along with preliminary results of PR's error characteristics using contingency table statistics, probability distribution comparisons, scatter plots, semi-variograms, and systematic biases and random errors.
Categorical Biases in Spatial Memory: The Role of Certainty
ERIC Educational Resources Information Center
Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F.
2015-01-01
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. The Category Adjustment (CA) model suggests that this bias is due to a Bayesian combination of categorical and metric information, which offers an optimal solution under conditions of uncertainty (Huttenlocher, Hedges, & Duncan,…
Correcting systematic bias and instrument measurement drift with mzRefinery
Gibbons, Bryson C.; Chambers, Matthew C.; Monroe, Matthew E.; ...
2015-08-04
Systematic bias in mass measurement adversely affects data quality and negates the advantages of high precision instruments. We introduce the mzRefinery tool into the ProteoWizard package for calibration of mass spectrometry data files. Using confident peptide spectrum matches, three different calibration methods are explored and the optimal transform function is chosen. After calibration, systematic bias is removed and the mass measurement errors are centered at zero ppm. Because it is part of the ProteoWizard package, mzRefinery can read and write a wide variety of file formats. In conclusion, we report on availability; the mzRefinery tool is part of msConvert, availablemore » with the ProteoWizard open source package at http://proteowizard.sourceforge.net/« less
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation.
Bartz, Daniel; Hatrick, Kerr; Hesse, Christian W.; Müller, Klaus-Robert; Lemm, Steven
2013-01-01
Robust and reliable covariance estimates play a decisive role in financial and many other applications. An important class of estimators is based on factor models. Here, we show by extensive Monte Carlo simulations that covariance matrices derived from the statistical Factor Analysis model exhibit a systematic error, which is similar to the well-known systematic error of the spectrum of the sample covariance matrix. Moreover, we introduce the Directional Variance Adjustment (DVA) algorithm, which diminishes the systematic error. In a thorough empirical study for the US, European, and Hong Kong stock market we show that our proposed method leads to improved portfolio allocation. PMID:23844016
Tuning a climate model using nudging to reanalysis.
NASA Astrophysics Data System (ADS)
Cheedela, S. K.; Mapes, B. E.
2014-12-01
Tuning a atmospheric general circulation model involves a daunting task of adjusting non-observable parameters to adjust the mean climate. These parameters arise from necessity to describe unresolved flow through parametrizations. Tuning a climate model is often done with certain set of priorities, such as global mean temperature, net top of the atmosphere radiation. These priorities are hard enough to reach let alone reducing systematic biases in the models. The goal of currently study is to explore alternate ways to tune a climate model to reduce some systematic biases that can be used in synergy with existing efforts. Nudging a climate model to a known state is a poor man's inverse of tuning process described above. Our approach involves nudging the atmospheric model to state of art reanalysis fields thereby providing a balanced state with respect to the global mean temperature and winds. The tendencies derived from nudging are negative of errors from physical parametrizations as the errors from dynamical core would be small. Patterns of nudging are compared to the patterns of different physical parametrizations to decipher the cause for certain biases in relation to tuning parameters. This approach might also help in understanding certain compensating errors that arise from tuning process. ECHAM6 is a comprehensive general model, also used in recent Coupled Model Intercomparision Project(CMIP5). The approach used to tune it and effect of certain parameters that effect its mean climate are reported clearly, hence it serves as a benchmark for our approach. Our planned experiments include nudging ECHAM6 atmospheric model to European Center Reanalysis (ERA-Interim) and reanalysis from National Center for Environmental Prediction (NCEP) and decipher choice of certain parameters that lead to systematic biases in its simulations. Of particular interest are reducing long standing biases related to simulation of Asian summer monsoon.
Model Errors in Simulating Precipitation and Radiation fields in the NARCCAP Hindcast Experiment
NASA Astrophysics Data System (ADS)
Kim, J.; Waliser, D. E.; Mearns, L. O.; Mattmann, C. A.; McGinnis, S. A.; Goodale, C. E.; Hart, A. F.; Crichton, D. J.
2012-12-01
The relationship between the model errors in simulating precipitation and radiation fields including the surface insolation and OLR, is examined from the multi-RCM NARCCAP hindcast experiment for the conterminous U.S. region. Findings in this study suggest that the RCM biases in simulating precipitation are related with those in simulating radiation fields. For a majority of RCMs participated in the NARCCAP hindcast experiment as well as their ensemble, the spatial pattern of the insolation bias is negatively correlated with that of the precipitation bias, suggesting that the biases in precipitation and surface insolation are systematically related, most likely via the cloud fields. The relationship varies according to seasons as well with stronger relationship between the simulated precipitation and surface insolation during winter. This suggests that the RCM biases in precipitation and radiation are related via cloud fields. Additional analysis on the RCM errors in OLR is underway to examine more details of this relationship.
Asquith, William H.; Thompson, David B.
2008-01-01
The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.
Addressing Systematic Errors in Correlation Tracking on HMI Magnetograms
NASA Astrophysics Data System (ADS)
Mahajan, Sushant S.; Hathaway, David H.; Munoz-Jaramillo, Andres; Martens, Petrus C.
2017-08-01
Correlation tracking in solar magnetograms is an effective method to measure the differential rotation and meridional flow on the solar surface. However, since the tracking accuracy required to successfully measure meridional flow is very high, small systematic errors have a noticeable impact on measured meridional flow profiles. Additionally, the uncertainties of this kind of measurements have been historically underestimated, leading to controversy regarding flow profiles at high latitudes extracted from measurements which are unreliable near the solar limb.Here we present a set of systematic errors we have identified (and potential solutions), including bias caused by physical pixel sizes, center-to-limb systematics, and discrepancies between measurements performed using different time intervals. We have developed numerical techniques to get rid of these systematic errors and in the process improve the accuracy of the measurements by an order of magnitude.We also present a detailed analysis of uncertainties in these measurements using synthetic magnetograms and the quantification of an upper limit below which meridional flow measurements cannot be trusted as a function of latitude.
NASA Astrophysics Data System (ADS)
Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.
2015-10-01
All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. Here, we are applying a consistent approach based on auto- and cross-covariance functions to quantify the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining data sets from several analysers and using simulations, we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time lag eliminates these effects (provided the time lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.
NASA Astrophysics Data System (ADS)
Langford, B.; Acton, W.; Ammann, C.; Valach, A.; Nemitz, E.
2015-03-01
All eddy-covariance flux measurements are associated with random uncertainties which are a combination of sampling error due to natural variability in turbulence and sensor noise. The former is the principal error for systems where the signal-to-noise ratio of the analyser is high, as is usually the case when measuring fluxes of heat, CO2 or H2O. Where signal is limited, which is often the case for measurements of other trace gases and aerosols, instrument uncertainties dominate. We are here applying a consistent approach based on auto- and cross-covariance functions to quantifying the total random flux error and the random error due to instrument noise separately. As with previous approaches, the random error quantification assumes that the time-lag between wind and concentration measurement is known. However, if combined with commonly used automated methods that identify the individual time-lag by looking for the maximum in the cross-covariance function of the two entities, analyser noise additionally leads to a systematic bias in the fluxes. Combining datasets from several analysers and using simulations we show that the method of time-lag determination becomes increasingly important as the magnitude of the instrument error approaches that of the sampling error. The flux bias can be particularly significant for disjunct data, whereas using a prescribed time-lag eliminates these effects (provided the time-lag does not fluctuate unduly over time). We also demonstrate that when sampling at higher elevations, where low frequency turbulence dominates and covariance peaks are broader, both the probability and magnitude of bias are magnified. We show that the statistical significance of noisy flux data can be increased (limit of detection can be decreased) by appropriate averaging of individual fluxes, but only if systematic biases are avoided by using a prescribed time-lag. Finally, we make recommendations for the analysis and reporting of data with low signal-to-noise and their associated errors.
BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements.
Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang
2017-10-27
This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm.
BeiDou Geostationary Satellite Code Bias Modeling Using Fengyun-3C Onboard Measurements
Jiang, Kecai; Li, Min; Zhao, Qile; Li, Wenwen; Guo, Xiang
2017-01-01
This study validated and investigated elevation- and frequency-dependent systematic biases observed in ground-based code measurements of the Chinese BeiDou navigation satellite system, using the onboard BeiDou code measurement data from the Chinese meteorological satellite Fengyun-3C. Particularly for geostationary earth orbit satellites, sky-view coverage can be achieved over the entire elevation and azimuth angle ranges with the available onboard tracking data, which is more favorable to modeling code biases. Apart from the BeiDou-satellite-induced biases, the onboard BeiDou code multipath effects also indicate pronounced near-field systematic biases that depend only on signal frequency and the line-of-sight directions. To correct these biases, we developed a proposed code correction model by estimating the BeiDou-satellite-induced biases as linear piece-wise functions in different satellite groups and the near-field systematic biases in a grid approach. To validate the code bias model, we carried out orbit determination using single-frequency BeiDou data with and without code bias corrections applied. Orbit precision statistics indicate that those code biases can seriously degrade single-frequency orbit determination. After the correction model was applied, the orbit position errors, 3D root mean square, were reduced from 150.6 to 56.3 cm. PMID:29076998
Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP)
NASA Technical Reports Server (NTRS)
Adler, Robert; Gu, Guojun; Huffman, George
2012-01-01
A procedure is described to estimate bias errors for mean precipitation by using multiple estimates from different algorithms, satellite sources, and merged products. The Global Precipitation Climatology Project (GPCP) monthly product is used as a base precipitation estimate, with other input products included when they are within +/- 50% of the GPCP estimates on a zonal-mean basis (ocean and land separately). The standard deviation s of the included products is then taken to be the estimated systematic, or bias, error. The results allow one to examine monthly climatologies and the annual climatology, producing maps of estimated bias errors, zonal-mean errors, and estimated errors over large areas such as ocean and land for both the tropics and the globe. For ocean areas, where there is the largest question as to absolute magnitude of precipitation, the analysis shows spatial variations in the estimated bias errors, indicating areas where one should have more or less confidence in the mean precipitation estimates. In the tropics, relative bias error estimates (s/m, where m is the mean precipitation) over the eastern Pacific Ocean are as large as 20%, as compared with 10%-15% in the western Pacific part of the ITCZ. An examination of latitudinal differences over ocean clearly shows an increase in estimated bias error at higher latitudes, reaching up to 50%. Over land, the error estimates also locate regions of potential problems in the tropics and larger cold-season errors at high latitudes that are due to snow. An empirical technique to area average the gridded errors (s) is described that allows one to make error estimates for arbitrary areas and for the tropics and the globe (land and ocean separately, and combined). Over the tropics this calculation leads to a relative error estimate for tropical land and ocean combined of 7%, which is considered to be an upper bound because of the lack of sign-of-the-error canceling when integrating over different areas with a different number of input products. For the globe the calculated relative error estimate from this study is about 9%, which is also probably a slight overestimate. These tropical and global estimated bias errors provide one estimate of the current state of knowledge of the planet's mean precipitation.
Cognitions and emotions in eating disorders.
Siep, Nicolette; Jansen, Anita; Havermans, Remco; Roefs, Anne
2011-01-01
The cognitive model of eating disorders (EDs) states that the processing of external and internal stimuli might be biased in mental disorders. These biases, or cognitive errors, systematically distort the individual's experiences and, in that way, maintains the eating disorder. This chapter presents an updated literature review of experimental studies investigating these cognitive biases. Results indicate that ED patients show biases in attention, interpretation, and memory when it comes to the processing of food-, weight-, and body shape-related cues. Some recent studies show that they also demonstrate errors in general cognitive abilities such as set shifting, central coherence, and decision making. A future challenge is whether cognitive biases and processes can be manipulated. Few preliminary studies suggest that an attention retraining and training in the cognitive modulation of food reward processing might be effective strategies to change body satisfaction, food cravings, and eating behavior.
NASA Astrophysics Data System (ADS)
Gatti, M.; Vielzeuf, P.; Davis, C.; Cawthon, R.; Rau, M. M.; DeRose, J.; De Vicente, J.; Alarcon, A.; Rozo, E.; Gaztanaga, E.; Hoyle, B.; Miquel, R.; Bernstein, G. M.; Bonnett, C.; Carnero Rosell, A.; Castander, F. J.; Chang, C.; da Costa, L. N.; Gruen, D.; Gschwend, J.; Hartley, W. G.; Lin, H.; MacCrann, N.; Maia, M. A. G.; Ogando, R. L. C.; Roodman, A.; Sevilla-Noarbe, I.; Troxel, M. A.; Wechsler, R. H.; Asorey, J.; Davis, T. M.; Glazebrook, K.; Hinton, S. R.; Lewis, G.; Lidman, C.; Macaulay, E.; Möller, A.; O'Neill, C. R.; Sommer, N. E.; Uddin, S. A.; Yuan, F.; Zhang, B.; Abbott, T. M. C.; Allam, S.; Annis, J.; Bechtol, K.; Brooks, D.; Burke, D. L.; Carollo, D.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Evrard, A. E.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gerdes, D. W.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Hoormann, J. K.; Jain, B.; James, D. J.; Jarvis, M.; Jeltema, T.; Johnson, M. W. G.; Johnson, M. D.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Li, T. S.; Lima, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nichol, R. C.; Nord, B.; Plazas, A. A.; Reil, K.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schubnell, M.; Sheldon, E.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Tucker, B. E.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Weller, J.; Wester, W.; Wolf, R. C.
2018-06-01
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing source galaxies from the Dark Energy Survey Year 1 sample with redMaGiC galaxies (luminous red galaxies with secure photometric redshifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We apply the method to two photo-z codes run in our simulated data: Bayesian Photometric Redshift and Directional Neighbourhood Fitting. We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering versus photo-zs. The systematic uncertainty in the mean redshift bias of the source galaxy sample is Δz ≲ 0.02, though the precise value depends on the redshift bin under consideration. We discuss possible ways to mitigate the impact of our dominant systematics in future analyses.
Uncertainty Analysis of Seebeck Coefficient and Electrical Resistivity Characterization
NASA Technical Reports Server (NTRS)
Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred
2014-01-01
In order to provide a complete description of a materials thermoelectric power factor, in addition to the measured nominal value, an uncertainty interval is required. The uncertainty may contain sources of measurement error including systematic bias error and precision error of a statistical nature. The work focuses specifically on the popular ZEM-3 (Ulvac Technologies) measurement system, but the methods apply to any measurement system. The analysis accounts for sources of systematic error including sample preparation tolerance, measurement probe placement, thermocouple cold-finger effect, and measurement parameters; in addition to including uncertainty of a statistical nature. Complete uncertainty analysis of a measurement system allows for more reliable comparison of measurement data between laboratories.
Self-calibration of photometric redshift scatter in weak-lensing surveys
Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary
2010-06-11
Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less
Comment on 3PL IRT Adjustment for Guessing
ERIC Educational Resources Information Center
Chiu, Ting-Wei; Camilli, Gregory
2013-01-01
Guessing behavior is an issue discussed widely with regard to multiple choice tests. Its primary effect is on number-correct scores for examinees at lower levels of proficiency. This is a systematic error or bias, which increases observed test scores. Guessing also can inflate random error variance. Correction or adjustment for guessing formulas…
Hurford, Amy
2009-05-20
Movement data are frequently collected using Global Positioning System (GPS) receivers, but recorded GPS locations are subject to errors. While past studies have suggested methods to improve location accuracy, mechanistic movement models utilize distributions of turning angles and directional biases and these data present a new challenge in recognizing and reducing the effect of measurement error. I collected locations from a stationary GPS collar, analyzed a probabilistic model and used Monte Carlo simulations to understand how measurement error affects measured turning angles and directional biases. Results from each of the three methods were in complete agreement: measurement error gives rise to a systematic bias where a stationary animal is most likely to be measured as turning 180 degrees or moving towards a fixed point in space. These spurious effects occur in GPS data when the measured distance between locations is <20 meters. Measurement error must be considered as a possible cause of 180 degree turning angles in GPS data. Consequences of failing to account for measurement error are predicting overly tortuous movement, numerous returns to previously visited locations, inaccurately predicting species range, core areas, and the frequency of crossing linear features. By understanding the effect of GPS measurement error, ecologists are able to disregard false signals to more accurately design conservation plans for endangered wildlife.
Location Memory in the Real World: Category Adjustment Effects in 3-Dimensional Space
ERIC Educational Resources Information Center
Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F.
2013-01-01
The ability to remember spatial locations is critical to human functioning, both in an evolutionary and in an everyday sense. Yet spatial memories and judgments often show systematic errors and biases. Bias has been explained by models such as the Category Adjustment model (CAM), in which fine-grained and categorical information about locations…
Climate model biases in seasonality of continental water storage revealed by satellite gravimetry
Swenson, Sean; Milly, P.C.D.
2006-01-01
Satellite gravimetric observations of monthly changes in continental water storage are compared with outputs from five climate models. All models qualitatively reproduce the global pattern of annual storage amplitude, and the seasonal cycle of global average storage is reproduced well, consistent with earlier studies. However, global average agreements mask systematic model biases in low latitudes. Seasonal extrema of low‐latitude, hemispheric storage generally occur too early in the models, and model‐specific errors in amplitude of the low‐latitude annual variations are substantial. These errors are potentially explicable in terms of neglected or suboptimally parameterized water stores in the land models and precipitation biases in the climate models.
Internal robustness: systematic search for systematic bias in SN Ia data
NASA Astrophysics Data System (ADS)
Amendola, Luca; Marra, Valerio; Quartin, Miguel
2013-04-01
A great deal of effort is currently being devoted to understanding, estimating and removing systematic errors in cosmological data. In the particular case of Type Ia supernovae, systematics are starting to dominate the error budget. Here we propose a Bayesian tool for carrying out a systematic search for systematic contamination. This serves as an extension to the standard goodness-of-fit tests and allows not only to cross-check raw or processed data for the presence of systematics but also to pin-point the data that are most likely contaminated. We successfully test our tool with mock catalogues and conclude that the Union2.1 data do not possess a significant amount of systematics. Finally, we show that if one includes in Union2.1 the supernovae that originally failed the quality cuts, our tool signals the presence of systematics at over 3.8σ confidence level.
The distribution of probability values in medical abstracts: an observational study.
Ginsel, Bastiaan; Aggarwal, Abhinav; Xuan, Wei; Harris, Ian
2015-11-26
A relatively high incidence of p values immediately below 0.05 (such as 0.047 or 0.04) compared to p values immediately above 0.05 (such as 0.051 or 0.06) has been noticed anecdotally in published medical abstracts. If p values immediately below 0.05 are over-represented, such a distribution may reflect the true underlying distribution of p values or may be due to error (a false distribution). If due to error, a consistent over-representation of p values immediately below 0.05 would be a systematic error due either to publication bias or (overt or inadvertent) bias within studies. We searched the Medline 2012 database to identify abstracts containing a p value. Two thousand abstracts out of 80,649 abstracts were randomly selected. Two independent researchers extracted all p values. The p values were plotted and compared to a predicted curve. Chi square test was used to test assumptions and significance was set at 0.05. 2798 p value ranges and 3236 exact p values were reported. 4973 of these (82%) were significant (<0.05). There was an over-representation of p values immediately below 0.05 (between 0.01 and 0.049) compared to those immediately above 0.05 (between 0.05 and 0.1) (p = 0.001). The distribution of p values in reported medical abstracts provides evidence for systematic error in the reporting of p values. This may be due to publication bias, methodological errors (underpowering, selective reporting and selective analyses) or fraud.
Quotation accuracy in medical journal articles-a systematic review and meta-analysis.
Jergas, Hannah; Baethge, Christopher
2015-01-01
Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose-quotation errors-may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress.
NASA Astrophysics Data System (ADS)
Ho, Shirley; Agarwal, Nishant; Myers, Adam D.; Lyons, Richard; Disbrow, Ashley; Seo, Hee-Jong; Ross, Ashley; Hirata, Christopher; Padmanabhan, Nikhil; O'Connell, Ross; Huff, Eric; Schlegel, David; Slosar, Anže; Weinberg, David; Strauss, Michael; Ross, Nicholas P.; Schneider, Donald P.; Bahcall, Neta; Brinkmann, J.; Palanque-Delabrouille, Nathalie; Yèche, Christophe
2015-05-01
The Sloan Digital Sky Survey has surveyed 14,555 square degrees of the sky, and delivered over a trillion pixels of imaging data. We present the large-scale clustering of 1.6 million quasars between z=0.5 and z=2.5 that have been classified from this imaging, representing the highest density of quasars ever studied for clustering measurements. This data set spans 0~ 11,00 square degrees and probes a volume of 80 h-3 Gpc3. In principle, such a large volume and medium density of tracers should facilitate high-precision cosmological constraints. We measure the angular clustering of photometrically classified quasars using an optimal quadratic estimator in four redshift slices with an accuracy of ~ 25% over a bin width of δl ~ 10-15 on scales corresponding to matter-radiation equality and larger (0l ~ 2-3). Observational systematics can strongly bias clustering measurements on large scales, which can mimic cosmologically relevant signals such as deviations from Gaussianity in the spectrum of primordial perturbations. We account for systematics by employing a new method recently proposed by Agarwal et al. (2014) to the clustering of photometrically classified quasars. We carefully apply our methodology to mitigate known observational systematics and further remove angular bins that are contaminated by unknown systematics. Combining quasar data with the photometric luminous red galaxy (LRG) sample of Ross et al. (2011) and Ho et al. (2012), and marginalizing over all bias and shot noise-like parameters, we obtain a constraint on local primordial non-Gaussianity of fNL = -113+154-154 (1σ error). We next assume that the bias of quasar and galaxy distributions can be obtained independently from quasar/galaxy-CMB lensing cross-correlation measurements (such as those in Sherwin et al. (2013)). This can be facilitated by spectroscopic observations of the sources, enabling the redshift distribution to be completely determined, and allowing precise estimates of the bias parameters. In this paper, if the bias and shot noise parameters are fixed to their known values (which we model by fixing them to their best-fit Gaussian values), we find that the error bar reduces to 1σ simeq 65. We expect this error bar to reduce further by at least another factor of five if the data is free of any observational systematics. We therefore emphasize that in order to make best use of large scale structure data we need an accurate modeling of known systematics, a method to mitigate unknown systematics, and additionally independent theoretical models or observations to probe the bias of dark matter halos.
Why GPS makes distances bigger than they are
Ranacher, Peter; Brunauer, Richard; Trutschnig, Wolfgang; Van der Spek, Stefan; Reich, Siegfried
2016-01-01
ABSTRACT Global navigation satellite systems such as the Global Positioning System (GPS) is one of the most important sensors for movement analysis. GPS is widely used to record the trajectories of vehicles, animals and human beings. However, all GPS movement data are affected by both measurement and interpolation errors. In this article we show that measurement error causes a systematic bias in distances recorded with a GPS; the distance between two points recorded with a GPS is – on average – bigger than the true distance between these points. This systematic ‘overestimation of distance’ becomes relevant if the influence of interpolation error can be neglected, which in practice is the case for movement sampled at high frequencies. We provide a mathematical explanation of this phenomenon and illustrate that it functionally depends on the autocorrelation of GPS measurement error (C). We argue that C can be interpreted as a quality measure for movement data recorded with a GPS. If there is a strong autocorrelation between any two consecutive position estimates, they have very similar error. This error cancels out when average speed, distance or direction is calculated along the trajectory. Based on our theoretical findings we introduce a novel approach to determine C in real-world GPS movement data sampled at high frequencies. We apply our approach to pedestrian trajectories and car trajectories. We found that the measurement error in the data was strongly spatially and temporally autocorrelated and give a quality estimate of the data. Most importantly, our findings are not limited to GPS alone. The systematic bias and its implications are bound to occur in any movement data collected with absolute positioning if interpolation error can be neglected. PMID:27019610
The role of bias in simulation of the Indian monsoon and its relationship to predictability
NASA Astrophysics Data System (ADS)
Kelly, P.
2016-12-01
Confidence in future projections of how climate change will affect the Indian monsoon is currently limited by- among other things-model biases. That is, the systematic error in simulating the mean present day climate. An important priority question in seamless prediction involves the role of the mean state. How much of the prediction error in imperfect models stems from a biased mean state (itself a result of many interacting process errors), and how much stems from the flow dependence of processes during an oscillation or variation we are trying to predict? Using simple but effective nudging techniques, we are able to address this question in a clean and incisive framework that teases apart the roles of the mean state vs. transient flow dependence in constraining predictability. The role of bias in model fidelity of simulations of the Indian monsoon is investigated in CAM5, and the relationship to predictability in remote regions in the "free" (non-nudged) domain is explored.
Antioxidant supplements and mortality.
Bjelakovic, Goran; Nikolova, Dimitrinka; Gluud, Christian
2014-01-01
Oxidative damage to cells and tissues is considered involved in the aging process and in the development of chronic diseases in humans, including cancer and cardiovascular diseases, the leading causes of death in high-income countries. This has stimulated interest in the preventive potential of antioxidant supplements. Today, more than one half of adults in high-income countries ingest antioxidant supplements hoping to improve their health, oppose unhealthy behaviors, and counteract the ravages of aging. Older observational studies and some randomized clinical trials with high risks of systematic errors ('bias') have suggested that antioxidant supplements may improve health and prolong life. A number of randomized clinical trials with adequate methodologies observed neutral or negative results of antioxidant supplements. Recently completed large randomized clinical trials with low risks of bias and systematic reviews of randomized clinical trials taking systematic errors ('bias') and risks of random errors ('play of chance') into account have shown that antioxidant supplements do not seem to prevent cancer, cardiovascular diseases, or death. Even more, beta-carotene, vitamin A, and vitamin E may increase mortality. Some recent large observational studies now support these findings. According to recent dietary guidelines, there is no evidence to support the use of antioxidant supplements in the primary prevention of chronic diseases or mortality. Antioxidant supplements do not possess preventive effects and may be harmful with unwanted consequences to our health, especially in well-nourished populations. The optimal source of antioxidants seems to come from our diet, not from antioxidant supplements in pills or tablets.
Hunnicutt, Jacob N; Ulbricht, Christine M; Chrysanthopoulou, Stavroula A; Lapane, Kate L
2016-12-01
We systematically reviewed pharmacoepidemiologic and comparative effectiveness studies that use probabilistic bias analysis to quantify the effects of systematic error including confounding, misclassification, and selection bias on study results. We found articles published between 2010 and October 2015 through a citation search using Web of Science and Google Scholar and a keyword search using PubMed and Scopus. Eligibility of studies was assessed by one reviewer. Three reviewers independently abstracted data from eligible studies. Fifteen studies used probabilistic bias analysis and were eligible for data abstraction-nine simulated an unmeasured confounder and six simulated misclassification. The majority of studies simulating an unmeasured confounder did not specify the range of plausible estimates for the bias parameters. Studies simulating misclassification were in general clearer when reporting the plausible distribution of bias parameters. Regardless of the bias simulated, the probability distributions assigned to bias parameters, number of simulated iterations, sensitivity analyses, and diagnostics were not discussed in the majority of studies. Despite the prevalence and concern of bias in pharmacoepidemiologic and comparative effectiveness studies, probabilistic bias analysis to quantitatively model the effect of bias was not widely used. The quality of reporting and use of this technique varied and was often unclear. Further discussion and dissemination of the technique are warranted. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Quotation accuracy in medical journal articles—a systematic review and meta-analysis
Jergas, Hannah
2015-01-01
Background. Quotations and references are an indispensable element of scientific communication. They should support what authors claim or provide important background information for readers. Studies indicate, however, that quotations not serving their purpose—quotation errors—may be prevalent. Methods. We carried out a systematic review, meta-analysis and meta-regression of quotation errors, taking account of differences between studies in error ascertainment. Results. Out of 559 studies screened we included 28 in the main analysis, and estimated major, minor and total quotation error rates of 11,9%, 95% CI [8.4, 16.6] 11.5% [8.3, 15.7], and 25.4% [19.5, 32.4]. While heterogeneity was substantial, even the lowest estimate of total quotation errors was considerable (6.7%). Indirect references accounted for less than one sixth of all quotation problems. The findings remained robust in a number of sensitivity and subgroup analyses (including risk of bias analysis) and in meta-regression. There was no indication of publication bias. Conclusions. Readers of medical journal articles should be aware of the fact that quotation errors are common. Measures against quotation errors include spot checks by editors and reviewers, correct placement of citations in the text, and declarations by authors that they have checked cited material. Future research should elucidate if and to what degree quotation errors are detrimental to scientific progress. PMID:26528420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv <0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3% rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well belowmore » the 1% statistical error of this measurement. In conclusion, this constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.« less
Slepian, Zachary; Slosar, Anze; Eisenstein, Daniel J.; ...
2017-10-24
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv <0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of Baryon Acoustic Oscillation (BAO) method measurements of the cosmic distance scale using the 2-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3% rms in the distance scale inferred from the BAO feature in the BOSS 2-point clustering, well belowmore » the 1% statistical error of this measurement. In conclusion, this constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as DESI to self-protect against the relative velocity as a possible systematic.« less
NASA Astrophysics Data System (ADS)
Slepian, Zachary; Eisenstein, Daniel J.; Blazek, Jonathan A.; Brownstein, Joel R.; Chuang, Chia-Hsun; Gil-Marín, Héctor; Ho, Shirley; Kitaura, Francisco-Shu; McEwen, Joseph E.; Percival, Will J.; Ross, Ashley J.; Rossi, Graziano; Seo, Hee-Jong; Slosar, Anže; Vargas-Magaña, Mariana
2018-02-01
We search for a galaxy clustering bias due to a modulation of galaxy number with the baryon-dark matter relative velocity resulting from recombination-era physics. We find no detected signal and place the constraint bv < 0.01 on the relative velocity bias for the CMASS galaxies. This bias is an important potential systematic of baryon acoustic oscillation (BAO) method measurements of the cosmic distance scale using the two-point clustering. Our limit on the relative velocity bias indicates a systematic shift of no more than 0.3 per cent rms in the distance scale inferred from the BAO feature in the BOSS two-point clustering, well below the 1 per cent statistical error of this measurement. This constraint is the most stringent currently available and has important implications for the ability of upcoming large-scale structure surveys such as the Dark Energy Spectroscopic Instrument (DESI) to self-protect against the relative velocity as a possible systematic.
Effects of waveform model systematics on the interpretation of GW150914
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.
2017-05-01
Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.
Improvement of VLBI EOP Accuracy and Precision
NASA Technical Reports Server (NTRS)
MacMillan, Daniel; Ma, Chopo
2000-01-01
In the CORE program, EOP measurements will be made with several different networks, each operating on a different day. It is essential that systematic differences between EOP derived by the different networks be minimized. Observed biases between the simultaneous CORE-A and NEOS-A sessions are about 60-130 micro(as) for PM, UT1 and nutation parameters. After removing biases, the observed rms differences are consistent with an increase in the formal precision of the measurements by factors ranging from 1.05 to 1.4. We discuss the possible sources of unmodeled error that account for these factors and the biases and the sensitivities of the network differences to modeling errors. We also discuss differences between VLBI and GPS PM measurements.
NASA Technical Reports Server (NTRS)
Heck, M. L.; Findlay, J. T.; Compton, H. R.
1983-01-01
The Aerodynamic Coefficient Identification Package (ACIP) is an instrument consisting of body mounted linear accelerometers, rate gyros, and angular accelerometers for measuring the Space Shuttle vehicular dynamics. The high rate recorded data are utilized for postflight aerodynamic coefficient extraction studies. Although consistent with pre-mission accuracies specified by the manufacturer, the ACIP data were found to contain detectable levels of systematic error, primarily bias, as well as scale factor, static misalignment, and temperature dependent errors. This paper summarizes the technique whereby the systematic ACIP error sources were detected, identified, and calibrated with the use of recorded dynamic data from the low rate, highly accurate Inertial Measurement Units.
Improved uncertainty quantification in nondestructive assay for nonproliferation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burr, Tom; Croft, Stephen; Jarman, Ken
2016-12-01
This paper illustrates methods to improve uncertainty quantification (UQ) for non-destructive assay (NDA) measurements used in nuclear nonproliferation. First, it is shown that current bottom-up UQ applied to calibration data is not always adequate, for three main reasons: (1) Because there are errors in both the predictors and the response, calibration involves a ratio of random quantities, and calibration data sets in NDA usually consist of only a modest number of samples (3–10); therefore, asymptotic approximations involving quantities needed for UQ such as means and variances are often not sufficiently accurate; (2) Common practice overlooks that calibration implies a partitioningmore » of total error into random and systematic error, and (3) In many NDA applications, test items exhibit non-negligible departures in physical properties from calibration items, so model-based adjustments are used, but item-specific bias remains in some data. Therefore, improved bottom-up UQ using calibration data should predict the typical magnitude of item-specific bias, and the suggestion is to do so by including sources of item-specific bias in synthetic calibration data that is generated using a combination of modeling and real calibration data. Second, for measurements of the same nuclear material item by both the facility operator and international inspectors, current empirical (top-down) UQ is described for estimating operator and inspector systematic and random error variance components. A Bayesian alternative is introduced that easily accommodates constraints on variance components, and is more robust than current top-down methods to the underlying measurement error distributions.« less
Form and Objective of the Decision Rule in Absolute Identification
NASA Technical Reports Server (NTRS)
Balakrishnan, J. D.
1997-01-01
In several conditions of a line length identification experiment, the subjects' decision making strategies were systematically biased against the responses on the edges of the stimulus range. When the range and number of the stimuli were small, the bias caused the percentage of correct responses to be highest in the center and lowest on the extremes of the range. Two general classes of decision rules that would explain these results are considered. The first class assumes that subjects intend to adopt an optimal decision rule, but systematically misrepresent one or more parameters of the decision making context. The second class assumes that subjects use a different measure of performance than the one assumed by the experimenter: instead of maximizing the chances of a correct response, the subject attempts to minimize the expected size of the response error (a "fidelity criterion"). In a second experiment, extended experience and feedback did not diminish the bias effect, but explicitly penalizing all response errors equally, regardless of their size, did reduce or eliminate it in some subjects. Both results favor the fidelity criterion over the optimal rule.
NASA Astrophysics Data System (ADS)
Zhang, Chengzhu; Xie, Shaocheng; Klein, Stephen A.; Ma, Hsi-yen; Tang, Shuaiqi; Van Weverberg, Kwinten; Morcrette, Cyril J.; Petch, Jon
2018-03-01
All the weather and climate models participating in the Clouds Above the United States and Errors at the Surface project show a summertime surface air temperature (T2 m) warm bias in the region of the central United States. To understand the warm bias in long-term climate simulations, we assess the Atmospheric Model Intercomparison Project simulations from the Coupled Model Intercomparison Project Phase 5, with long-term observations mainly from the Atmospheric Radiation Measurement program Southern Great Plains site. Quantities related to the surface energy and water budget, and large-scale circulation are analyzed to identify possible factors and plausible links involved in the warm bias. The systematic warm season bias is characterized by an overestimation of T2 m and underestimation of surface humidity, precipitation, and precipitable water. Accompanying the warm bias is an overestimation of absorbed solar radiation at the surface, which is due to a combination of insufficient cloud reflection and clear-sky shortwave absorption by water vapor and an underestimation in surface albedo. The bias in cloud is shown to contribute most to the radiation bias. The surface layer soil moisture impacts T2 m through its control on evaporative fraction. The error in evaporative fraction is another important contributor to T2 m. Similar sources of error are found in hindcast from other Clouds Above the United States and Errors at the Surface studies. In Atmospheric Model Intercomparison Project simulations, biases in meridional wind velocity associated with the low-level jet and the 500 hPa vertical velocity may also relate to T2 m bias through their control on the surface energy and water budget.
Observing Climate with GNSS Radio Occultation: Characterization and Mitigation of Systematic Errors
NASA Astrophysics Data System (ADS)
Foelsche, U.; Scherllin-Pirscher, B.; Danzer, J.; Ladstädter, F.; Schwarz, J.; Steiner, A. K.; Kirchengast, G.
2013-05-01
GNSS Radio Occultation (RO) data a very well suited for climate applications, since they do not require external calibration and only short-term measurement stability over the occultation event duration (1 - 2 min), which is provided by the atomic clocks onboard the GPS satellites. With this "self-calibration", it is possible to combine data from different sensors and different missions without need for inter-calibration and overlap (which is extremely hard to achieve for conventional satellite data). Using the same retrieval for all datasets we obtained monthly refractivity and temperature climate records from multiple radio occultation satellites, which are consistent within 0.05 % and 0.05 K in almost any case (taking global averages over the altitude range 10 km to 30 km). Longer-term average deviations are even smaller. Even though the RO record is still short, its high quality already allows to see statistically significant temperature trends in the lower stratosphere. The value of RO data for climate monitoring is therefore increasingly recognized by the scientific community, but there is also concern about potential residual systematic errors in RO climatologies, which might be common to data from all satellites. We started to look at different error sources, like the influence of the quality control and the high altitude initialization. We will focus on recent results regarding (apparent) constants used in the retrieval and systematic ionospheric errors. (1) All current RO retrievals use a "classic" set of (measured) constants, relating atmospheric microwave refractivity with atmospheric parameters. With the increasing quality of RO climatologies, errors in these constants are not negligible anymore. We show how these parameters can be related to more fundamental physical quantities (fundamental constants, the molecular/atomic polarizabilities of the constituents of air, and the dipole moment of water vapor). This approach also allows computing sensitivities to changes in atmospheric composition. We found that changes caused by the anthropogenic CO2 increase are still almost exactly offset by the concurrent O2 decrease. (2) Since the ionospheric correction of RO data is an approximation to first order, we have to consider an ionospheric residual, which can be expected to be larger when the ionization is high (day vs. night, high vs. low solar activity). In climate applications this could lead to a time dependent bias, which could induce wrong trends in atmospheric parameters at high altitudes. We studied this systematic ionospheric residual by analyzing the bending angle bias characteristics of CHAMP and COSMIC RO data from the years 2001 to 2011. We found that the night time bending angle bias stays constant over the whole period of 11 years, while the day time bias increases from low to high solar activity. As a result, the difference between night and day time bias increases from -0.05 μrad to -0.4 μrad. This behavior paves the way to correct the (small) solar cycle dependent bias of large ensembles of day time RO profiles.
A framework to analyse gender bias in epidemiological research
Ruiz‐Cantero, María Teresa; Vives‐Cases, Carmen; Artazcoz, Lucía; Delgado, Ana; del Mar García Calvente, Maria; Miqueo, Consuelo; Montero, Isabel; Ortiz, Rocío; Ronda, Elena; Ruiz, Isabel; Valls, Carme
2007-01-01
The design and analysis of research may cause systematic gender dependent errors to be produced in results because of gender insensitivity or androcentrism. Gender bias in research could be defined as a systematically erroneous gender dependent approach related to social construct, which incorrectly regards women and men as similar/different. Most gender bias can be found in the context of discovery (development of hypotheses), but it has also been found in the context of justification (methodological process), which must be improved. In fact, one of the main effects of gender bias in research is partial or incorrect knowledge in the results, which are systematically different from the real values. This paper discusses some forms of conceptual and methodological bias that may affect women's health. It proposes a framework to analyse gender bias in the design and analysis of research carried out on women's and men's health problems, and on specific women's health issues. Using examples, the framework aims to show the different theoretical perspectives in a social or clinical research context where forms of selection, measurement and confounding bias are produced as a result of gender insensitivity. Finally, this paper underlines the importance of re‐examining results so that they may be reinterpreted to produce new gender based knowledge. PMID:18000118
A framework to analyse gender bias in epidemiological research.
Ruiz-Cantero, María Teresa; Vives-Cases, Carmen; Artazcoz, Lucía; Delgado, Ana; García Calvente, Maria Mar; Miqueo, Consuelo; Montero, Isabel; Ortiz, Rocío; Ronda, Elena; Ruiz, Isabel; Valls, Carme
2007-12-01
The design and analysis of research may cause systematic gender dependent errors to be produced in results because of gender insensitivity or androcentrism. Gender bias in research could be defined as a systematically erroneous gender dependent approach related to social construct, which incorrectly regards women and men as similar/different. Most gender bias can be found in the context of discovery (development of hypotheses), but it has also been found in the context of justification (methodological process), which must be improved. In fact, one of the main effects of gender bias in research is partial or incorrect knowledge in the results, which are systematically different from the real values. This paper discusses some forms of conceptual and methodological bias that may affect women's health. It proposes a framework to analyse gender bias in the design and analysis of research carried out on women's and men's health problems, and on specific women's health issues. Using examples, the framework aims to show the different theoretical perspectives in a social or clinical research context where forms of selection, measurement and confounding bias are produced as a result of gender insensitivity. Finally, this paper underlines the importance of re-examining results so that they may be reinterpreted to produce new gender based knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.
An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less
Tweardy, Matthew C.; McConchie, Seth; Hayward, Jason P.
2017-06-13
An extension of the point kinetics model is developed in this paper to describe the neutron multiplicity response of a bare uranium object under interrogation by an associated particle imaging deuterium-tritium (D-T) measurement system. This extended model is used to estimate the total neutron multiplication of the uranium. Both MCNPX-PoliMi simulations and data from active interrogation measurements of highly enriched and depleted uranium geometries are used to evaluate the potential of this method and to identify the sources of systematic error. The detection efficiency correction for measured coincidence response is identified as a large source of systematic error. If themore » detection process is not considered, results suggest that the method can estimate total multiplication to within 13% of the simulated value. Values for multiplicity constants in the point kinetics equations are sensitive to enrichment due to (n, xn) interactions by D-T neutrons and can introduce another significant source of systematic bias. This can theoretically be corrected if isotopic composition is known a priori. Finally, the spatial dependence of multiplication is also suspected of introducing further systematic bias for high multiplication uranium objects.« less
Weak lensing measurement of the mass–richness relation of SDSS redMaPPer clusters
Simet, Melanie; McClintock, Tom; Mandelbaum, Rachel; ...
2016-12-15
Here, we perform a measurement of the mass–richness relation of the redMaPPer galaxy cluster catalogue using weak lensing data from the Sloan Digital Sky Survey. We carefully characterized a broad range of systematic uncertainties, including shear calibration errors, photo-zz biases, dilution by member galaxies, source obscuration, magnification bias, incorrect assumptions about cluster mass profiles, cluster centering, halo triaxiality, and projection effects. We then compare measurements of the lensing signal from two independently-produced shear and photometric redshift catalogues to characterize systematic errors in the lensing signal itself. Using a sample of 5,570 clusters from 0.1 ≤ zz ≤ 0.33, the normalization of our power-law mass vs. λ relation is log 10[M 200m/h -1 M ⊙] = 14.344 ± 0.021 (statistical) ±0.023 (systematic) at a richness λ = 40, a 7 per cent calibration uncertainty, with a power-law index of 1.33+0.09-0.101.33more » $$+0.09\\atop{-0.10}$$ (1σ). Finally, the detailed systematics characterization in this work renders it the definitive weak lensing mass calibration for SDSS redMaPPer clusters at this time.« less
Evaluating the utility of dynamical downscaling in agricultural impacts projections
Glotter, Michael; Elliott, Joshua; McInerney, David; Best, Neil; Foster, Ian; Moyer, Elisabeth J.
2014-01-01
Interest in estimating the potential socioeconomic costs of climate change has led to the increasing use of dynamical downscaling—nested modeling in which regional climate models (RCMs) are driven with general circulation model (GCM) output—to produce fine-spatial-scale climate projections for impacts assessments. We evaluate here whether this computationally intensive approach significantly alters projections of agricultural yield, one of the greatest concerns under climate change. Our results suggest that it does not. We simulate US maize yields under current and future CO2 concentrations with the widely used Decision Support System for Agrotechnology Transfer crop model, driven by a variety of climate inputs including two GCMs, each in turn downscaled by two RCMs. We find that no climate model output can reproduce yields driven by observed climate unless a bias correction is first applied. Once a bias correction is applied, GCM- and RCM-driven US maize yields are essentially indistinguishable in all scenarios (<10% discrepancy, equivalent to error from observations). Although RCMs correct some GCM biases related to fine-scale geographic features, errors in yield are dominated by broad-scale (100s of kilometers) GCM systematic errors that RCMs cannot compensate for. These results support previous suggestions that the benefits for impacts assessments of dynamically downscaling raw GCM output may not be sufficient to justify its computational demands. Progress on fidelity of yield projections may benefit more from continuing efforts to understand and minimize systematic error in underlying climate projections. PMID:24872455
Measurement error is often neglected in medical literature: a systematic review.
Brakenhoff, Timo B; Mitroiu, Marian; Keogh, Ruth H; Moons, Karel G M; Groenwold, Rolf H H; van Smeden, Maarten
2018-06-01
In medical research, covariates (e.g., exposure and confounder variables) are often measured with error. While it is well accepted that this introduces bias and imprecision in exposure-outcome relations, it is unclear to what extent such issues are currently considered in research practice. The objective was to study common practices regarding covariate measurement error via a systematic review of general medicine and epidemiology literature. Original research published in 2016 in 12 high impact journals was full-text searched for phrases relating to measurement error. Reporting of measurement error and methods to investigate or correct for it were quantified and characterized. Two hundred and forty-seven (44%) of the 565 original research publications reported on the presence of measurement error. 83% of these 247 did so with respect to the exposure and/or confounder variables. Only 18 publications (7% of 247) used methods to investigate or correct for measurement error. Consequently, it is difficult for readers to judge the robustness of presented results to the existence of measurement error in the majority of publications in high impact journals. Our systematic review highlights the need for increased awareness about the possible impact of covariate measurement error. Additionally, guidance on the use of measurement error correction methods is necessary. Copyright © 2018 Elsevier Inc. All rights reserved.
A procedure for the significance testing of unmodeled errors in GNSS observations
NASA Astrophysics Data System (ADS)
Li, Bofeng; Zhang, Zhetao; Shen, Yunzhong; Yang, Ling
2018-01-01
It is a crucial task to establish a precise mathematical model for global navigation satellite system (GNSS) observations in precise positioning. Due to the spatiotemporal complexity of, and limited knowledge on, systematic errors in GNSS observations, some residual systematic errors would inevitably remain even after corrected with empirical model and parameterization. These residual systematic errors are referred to as unmodeled errors. However, most of the existing studies mainly focus on handling the systematic errors that can be properly modeled and then simply ignore the unmodeled errors that may actually exist. To further improve the accuracy and reliability of GNSS applications, such unmodeled errors must be handled especially when they are significant. Therefore, a very first question is how to statistically validate the significance of unmodeled errors. In this research, we will propose a procedure to examine the significance of these unmodeled errors by the combined use of the hypothesis tests. With this testing procedure, three components of unmodeled errors, i.e., the nonstationary signal, stationary signal and white noise, are identified. The procedure is tested by using simulated data and real BeiDou datasets with varying error sources. The results show that the unmodeled errors can be discriminated by our procedure with approximately 90% confidence. The efficiency of the proposed procedure is further reassured by applying the time-domain Allan variance analysis and frequency-domain fast Fourier transform. In summary, the spatiotemporally correlated unmodeled errors are commonly existent in GNSS observations and mainly governed by the residual atmospheric biases and multipath. Their patterns may also be impacted by the receiver.
NASA Technical Reports Server (NTRS)
Ramirez, Daniel Perez; Whiteman, David N.; Veselovskii, Igor; Kolgotin, Alexei; Korenskiy, Michael; Alados-Arboledas, Lucas
2013-01-01
In this work we study the effects of systematic and random errors on the inversion of multiwavelength (MW) lidar data using the well-known regularization technique to obtain vertically resolved aerosol microphysical properties. The software implementation used here was developed at the Physics Instrumentation Center (PIC) in Troitsk (Russia) in conjunction with the NASA/Goddard Space Flight Center. Its applicability to Raman lidar systems based on backscattering measurements at three wavelengths (355, 532 and 1064 nm) and extinction measurements at two wavelengths (355 and 532 nm) has been demonstrated widely. The systematic error sensitivity is quantified by first determining the retrieved parameters for a given set of optical input data consistent with three different sets of aerosol physical parameters. Then each optical input is perturbed by varying amounts and the inversion is repeated. Using bimodal aerosol size distributions, we find a generally linear dependence of the retrieved errors in the microphysical properties on the induced systematic errors in the optical data. For the retrievals of effective radius, number/surface/volume concentrations and fine-mode radius and volume, we find that these results are not significantly affected by the range of the constraints used in inversions. But significant sensitivity was found to the allowed range of the imaginary part of the particle refractive index. Our results also indicate that there exists an additive property for the deviations induced by the biases present in the individual optical data. This property permits the results here to be used to predict deviations in retrieved parameters when multiple input optical data are biased simultaneously as well as to study the influence of random errors on the retrievals. The above results are applied to questions regarding lidar design, in particular for the spaceborne multiwavelength lidar under consideration for the upcoming ACE mission.
Mayo-Wilson, Evan; Ng, Sueko Matsumura; Chuck, Roy S; Li, Tianjing
2017-09-05
Systematic reviews should inform American Academy of Ophthalmology (AAO) Preferred Practice Pattern® (PPP) guidelines. The quality of systematic reviews related to the forthcoming Preferred Practice Pattern® guideline (PPP) Refractive Errors & Refractive Surgery is unknown. We sought to identify reliable systematic reviews to assist the AAO Refractive Errors & Refractive Surgery PPP. Systematic reviews were eligible if they evaluated the effectiveness or safety of interventions included in the 2012 PPP Refractive Errors & Refractive Surgery. To identify potentially eligible systematic reviews, we searched the Cochrane Eyes and Vision United States Satellite database of systematic reviews. Two authors identified eligible reviews and abstracted information about the characteristics and quality of the reviews independently using the Systematic Review Data Repository. We classified systematic reviews as "reliable" when they (1) defined criteria for the selection of studies, (2) conducted comprehensive literature searches for eligible studies, (3) assessed the methodological quality (risk of bias) of the included studies, (4) used appropriate methods for meta-analyses (which we assessed only when meta-analyses were reported), (5) presented conclusions that were supported by the evidence provided in the review. We identified 124 systematic reviews related to refractive error; 39 met our eligibility criteria, of which we classified 11 to be reliable. Systematic reviews classified as unreliable did not define the criteria for selecting studies (5; 13%), did not assess methodological rigor (10; 26%), did not conduct comprehensive searches (17; 44%), or used inappropriate quantitative methods (3; 8%). The 11 reliable reviews were published between 2002 and 2016. They included 0 to 23 studies (median = 9) and analyzed 0 to 4696 participants (median = 666). Seven reliable reviews (64%) assessed surgical interventions. Most systematic reviews of interventions for refractive error are low methodological quality. Following widely accepted guidance, such as Cochrane or Institute of Medicine standards for conducting systematic reviews, would contribute to improved patient care and inform future research.
Why Three Heads Are a Better Bet than Four: A Reply to Sun, Tweney, and Wang (2010)
ERIC Educational Resources Information Center
Hahn, Ulrike; Warren, Paul A.
2010-01-01
We (Hahn & Warren, 2009) recently proposed a new account of the systematic errors and biases that appear to be present in people's perception of randomly generated events. In a comment on that article, Sun, Tweney, and Wang (2010) critiqued our treatment of the gambler's fallacy. We had argued that this fallacy was less gross an error than it…
Comparing interval estimates for small sample ordinal CFA models
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research. PMID:26579002
Comparing interval estimates for small sample ordinal CFA models.
Natesan, Prathiba
2015-01-01
Robust maximum likelihood (RML) and asymptotically generalized least squares (AGLS) methods have been recommended for fitting ordinal structural equation models. Studies show that some of these methods underestimate standard errors. However, these studies have not investigated the coverage and bias of interval estimates. An estimate with a reasonable standard error could still be severely biased. This can only be known by systematically investigating the interval estimates. The present study compares Bayesian, RML, and AGLS interval estimates of factor correlations in ordinal confirmatory factor analysis models (CFA) for small sample data. Six sample sizes, 3 factor correlations, and 2 factor score distributions (multivariate normal and multivariate mildly skewed) were studied. Two Bayesian prior specifications, informative and relatively less informative were studied. Undercoverage of confidence intervals and underestimation of standard errors was common in non-Bayesian methods. Underestimated standard errors may lead to inflated Type-I error rates. Non-Bayesian intervals were more positive biased than negatively biased, that is, most intervals that did not contain the true value were greater than the true value. Some non-Bayesian methods had non-converging and inadmissible solutions for small samples and non-normal data. Bayesian empirical standard error estimates for informative and relatively less informative priors were closer to the average standard errors of the estimates. The coverage of Bayesian credibility intervals was closer to what was expected with overcoverage in a few cases. Although some Bayesian credibility intervals were wider, they reflected the nature of statistical uncertainty that comes with the data (e.g., small sample). Bayesian point estimates were also more accurate than non-Bayesian estimates. The results illustrate the importance of analyzing coverage and bias of interval estimates, and how ignoring interval estimates can be misleading. Therefore, editors and policymakers should continue to emphasize the inclusion of interval estimates in research.
Gatti, M.
2018-02-22
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gatti, M.
We use numerical simulations to characterize the performance of a clustering-based method to calibrate photometric redshift biases. In particular, we cross-correlate the weak lensing (WL) source galaxies from the Dark Energy Survey Year 1 (DES Y1) sample with redMaGiC galaxies (luminous red galaxies with secure photometric red- shifts) to estimate the redshift distribution of the former sample. The recovered redshift distributions are used to calibrate the photometric redshift bias of standard photo-z methods applied to the same source galaxy sample. We also apply the method to three photo-z codes run in our simulated data: Bayesian Photometric Redshift (BPZ), Directional Neighborhoodmore » Fitting (DNF), and Random Forest-based photo-z (RF). We characterize the systematic uncertainties of our calibration procedure, and find that these systematic uncertainties dominate our error budget. The dominant systematics are due to our assumption of unevolving bias and clustering across each redshift bin, and to differences between the shapes of the redshift distributions derived by clustering vs photo-z's. The systematic uncertainty in the mean redshift bias of the source galaxy sample is z ≲ 0.02, though the precise value depends on the redshift bin under consideration. Here, we discuss possible ways to mitigate the impact of our dominant systematics in future analyses.« less
NASA Technical Reports Server (NTRS)
Liu, Zhong; Heo, Gil
2015-01-01
Data quality (DQ) has many attributes or facets (i.e., errors, biases, systematic differences, uncertainties, benchmark, false trends, false alarm ratio, etc.)Sources can be complicated (measurements, environmental conditions, surface types, algorithms, etc.) and difficult to be identified especially for multi-sensor and multi-satellite products with bias correction (TMPA, IMERG, etc.) How to obtain DQ info fast and easily, especially quantified info in ROI Existing parameters (random error), literature, DIY, etc.How to apply the knowledge in research and applications.Here, we focus on online systems for integration of products and parameters, visualization and analysis as well as investigation and extraction of DQ information.
ERIC Educational Resources Information Center
Wolbring, Tobias; Treischl, Edgar
2016-01-01
Systematic sampling error due to self-selection is a common topic in methodological research and a key challenge for every empirical study. Since selection bias is often not sufficiently considered as a potential flaw in research on and evaluations in higher education, the aim of this paper is to raise awareness for the topic using the case of…
An Approach to Remove the Systematic Bias from the Storm Surge forecasts in the Venice Lagoon
NASA Astrophysics Data System (ADS)
Canestrelli, A.
2017-12-01
In this work a novel approach is proposed for removing the systematic bias from the storm surge forecast computed by a two-dimensional shallow-water model. The model covers both the Adriatic and Mediterranean seas and provides the forecast at the entrance of the Venice Lagoon. The wind drag coefficient at the water-air interface is treated as a calibration parameter, with a different value for each range of wind velocities and wind directions. This sums up to a total of 16-64 parameters to be calibrated, depending on the chosen resolution. The best set of parameters is determined by means of an optimization procedure, which minimizes the RMS error between measured and modeled water level in Venice for the period 2011-2015. It is shown that a bias is present, for which the peaks of wind velocities provided by the weather forecast are largely underestimated, and that the calibration procedure removes this bias. When the calibrated model is used to reproduce events not included in the calibration dataset, the forecast error is strongly reduced, thus confirming the quality of our procedure. The proposed approach it is not site-specific and could be applied to different situations, such as storm surges caused by intense hurricanes.
SSC Geopositional Assessment of the Advanced Wide Field Sensor
NASA Technical Reports Server (NTRS)
Ross, Kenton
2006-01-01
The geopositional accuracy of the standard geocorrected product from the Advanced Wide Field Sensor (AWiFS) was evaluated using digital orthophoto quarter quadrangles and other reference sources of similar accuracy. Images were analyzed from summer 2004 through spring 2005. Forty to fifty check points were collected manually per scene and analyzed to determine overall circular error, estimates of horizontal bias, and other systematic errors. Measured errors were somewhat higher than the specifications for the data, but they were consistent with the analysis of the distributing vendor.
Evaluation of normalization methods for cDNA microarray data by k-NN classification
Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J
2005-01-01
Background Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Results Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Conclusion Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics. PMID:16045803
Evaluation of normalization methods for cDNA microarray data by k-NN classification.
Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J
2005-07-26
Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics.
NASA Astrophysics Data System (ADS)
Gebregiorgis, A. S.; Peters-Lidard, C. D.; Tian, Y.; Hossain, F.
2011-12-01
Hydrologic modeling has benefited from operational production of high resolution satellite rainfall products. The global coverage, near-real time availability, spatial and temporal sampling resolutions have advanced the application of physically based semi-distributed and distributed hydrologic models for wide range of environmental decision making processes. Despite these successes, the existence of uncertainties due to indirect way of satellite rainfall estimates and hydrologic models themselves remain a challenge in making meaningful and more evocative predictions. This study comprises breaking down of total satellite rainfall error into three independent components (hit bias, missed precipitation and false alarm), characterizing them as function of land use and land cover (LULC), and tracing back the source of simulated soil moisture and runoff error in physically based distributed hydrologic model. Here, we asked "on what way the three independent total bias components, hit bias, missed, and false precipitation, affect the estimation of soil moisture and runoff in physically based hydrologic models?" To understand the clear picture of the outlined question above, we implemented a systematic approach by characterizing and decomposing the total satellite rainfall error as a function of land use and land cover in Mississippi basin. This will help us to understand the major source of soil moisture and runoff errors in hydrologic model simulation and trace back the information to algorithm development and sensor type which ultimately helps to improve algorithms better and will improve application and data assimilation in future for GPM. For forest and woodland and human land use system, the soil moisture was mainly dictated by the total bias for 3B42-RT, CMORPH, and PERSIANN products. On the other side, runoff error was largely dominated by hit bias than the total bias. This difference occurred due to the presence of missed precipitation which is a major contributor to the total bias both during the summer and winter seasons. Missed precipitation, most likely light rain and rain over snow cover, has significant effect on soil moisture and are less capable of producing runoff that results runoff dependency on the hit bias only.
On the sea-state bias of the Geosat altimeter
NASA Technical Reports Server (NTRS)
Ray, Richard D.; Koblinsky, Chester J.
1991-01-01
The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.
On the sea-state bias of the Geosat altimeter
NASA Astrophysics Data System (ADS)
Ray, Richard D.; Koblinsky, Chester J.
1991-06-01
The sea-state bias in a satellite altimeter's range measurement is caused by the influence of ocean waves on the radar return pulse; it results in an estimate of sea level that is too low according to some function of the wave height. This bias is here estimated for Geosat by correlating collinear differences of altimetric sea-surface heights with collinear differences of significant wave heights (H1/3). Corrections for satellite orbit error are estimated simultaneously with the sea-state bias. Based on twenty 17-day repeat cycles of the Geosat Exact Repeat Mission, the solution for the sea-state bias is 2.6 + or - 0.2 percent of H1/3. The least-squares residuals, however, show a correlation with wind speed U, so the traditional model of the bias has been supplemented with a second term: H1/3 + alpha-2H1/3U. This second term produces a small, but statistically significant, reduction in variance of the residuals. Both systematic and random errors in H1/3 and U tend to bias the estimates of alpha-1 and alpha-2, which complicates comparisons of the results with ground-based measurements of the sea-state bias.
Meta-regression approximations to reduce publication selection bias.
Stanley, T D; Doucouliagos, Hristos
2014-03-01
Publication selection bias is a serious challenge to the integrity of all empirical sciences. We derive meta-regression approximations to reduce this bias. Our approach employs Taylor polynomial approximations to the conditional mean of a truncated distribution. A quadratic approximation without a linear term, precision-effect estimate with standard error (PEESE), is shown to have the smallest bias and mean squared error in most cases and to outperform conventional meta-analysis estimators, often by a great deal. Monte Carlo simulations also demonstrate how a new hybrid estimator that conditionally combines PEESE and the Egger regression intercept can provide a practical solution to publication selection bias. PEESE is easily expanded to accommodate systematic heterogeneity along with complex and differential publication selection bias that is related to moderator variables. By providing an intuitive reason for these approximations, we can also explain why the Egger regression works so well and when it does not. These meta-regression methods are applied to several policy-relevant areas of research including antidepressant effectiveness, the value of a statistical life, the minimum wage, and nicotine replacement therapy. Copyright © 2013 John Wiley & Sons, Ltd.
Good practices for quantitative bias analysis.
Lash, Timothy L; Fox, Matthew P; MacLehose, Richard F; Maldonado, George; McCandless, Lawrence C; Greenland, Sander
2014-12-01
Quantitative bias analysis serves several objectives in epidemiological research. First, it provides a quantitative estimate of the direction, magnitude and uncertainty arising from systematic errors. Second, the acts of identifying sources of systematic error, writing down models to quantify them, assigning values to the bias parameters and interpreting the results combat the human tendency towards overconfidence in research results, syntheses and critiques and the inferences that rest upon them. Finally, by suggesting aspects that dominate uncertainty in a particular research result or topic area, bias analysis can guide efficient allocation of sparse research resources. The fundamental methods of bias analyses have been known for decades, and there have been calls for more widespread use for nearly as long. There was a time when some believed that bias analyses were rarely undertaken because the methods were not widely known and because automated computing tools were not readily available to implement the methods. These shortcomings have been largely resolved. We must, therefore, contemplate other barriers to implementation. One possibility is that practitioners avoid the analyses because they lack confidence in the practice of bias analysis. The purpose of this paper is therefore to describe what we view as good practices for applying quantitative bias analysis to epidemiological data, directed towards those familiar with the methods. We focus on answering questions often posed to those of us who advocate incorporation of bias analysis methods into teaching and research. These include the following. When is bias analysis practical and productive? How does one select the biases that ought to be addressed? How does one select a method to model biases? How does one assign values to the parameters of a bias model? How does one present and interpret a bias analysis?. We hope that our guide to good practices for conducting and presenting bias analyses will encourage more widespread use of bias analysis to estimate the potential magnitude and direction of biases, as well as the uncertainty in estimates potentially influenced by the biases. © The Author 2014; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
Model parameter-related optimal perturbations and their contributions to El Niño prediction errors
NASA Astrophysics Data System (ADS)
Tao, Ling-Jiang; Gao, Chuan; Zhang, Rong-Hua
2018-04-01
Errors in initial conditions and model parameters (MPs) are the main sources that limit the accuracy of ENSO predictions. In addition to exploring the initial error-induced prediction errors, model errors are equally important in determining prediction performance. In this paper, the MP-related optimal errors that can cause prominent error growth in ENSO predictions are investigated using an intermediate coupled model (ICM) and a conditional nonlinear optimal perturbation (CNOP) approach. Two MPs related to the Bjerknes feedback are considered in the CNOP analysis: one involves the SST-surface wind coupling ({α _τ } ), and the other involves the thermocline effect on the SST ({α _{Te}} ). The MP-related optimal perturbations (denoted as CNOP-P) are found uniformly positive and restrained in a small region: the {α _τ } component is mainly concentrated in the central equatorial Pacific, and the {α _{Te}} component is mainly located in the eastern cold tongue region. This kind of CNOP-P enhances the strength of the Bjerknes feedback and induces an El Niño- or La Niña-like error evolution, resulting in an El Niño-like systematic bias in this model. The CNOP-P is also found to play a role in the spring predictability barrier (SPB) for ENSO predictions. Evidently, such error growth is primarily attributed to MP errors in small areas based on the localized distribution of CNOP-P. Further sensitivity experiments firmly indicate that ENSO simulations are sensitive to the representation of SST-surface wind coupling in the central Pacific and to the thermocline effect in the eastern Pacific in the ICM. These results provide guidance and theoretical support for the future improvement in numerical models to reduce the systematic bias and SPB phenomenon in ENSO predictions.
Le Mens, Gaël; Denrell, Jerker
2011-04-01
Recent research has argued that several well-known judgment biases may be due to biases in the available information sample rather than to biased information processing. Most of these sample-based explanations assume that decision makers are "naive": They are not aware of the biases in the available information sample and do not correct for them. Here, we show that this "naivety" assumption is not necessary. Systematically biased judgments can emerge even when decision makers process available information perfectly and are also aware of how the information sample has been generated. Specifically, we develop a rational analysis of Denrell's (2005) experience sampling model, and we prove that when information search is interested rather than disinterested, even rational information sampling and processing can give rise to systematic patterns of errors in judgments. Our results illustrate that a tendency to favor alternatives for which outcome information is more accessible can be consistent with rational behavior. The model offers a rational explanation for behaviors that had previously been attributed to cognitive and motivational biases, such as the in-group bias or the tendency to prefer popular alternatives. 2011 APA, all rights reserved
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-01-01
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-06-15
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.
A review of multimodel superensemble forecasting for weather, seasonal climate, and hurricanes
NASA Astrophysics Data System (ADS)
Krishnamurti, T. N.; Kumar, V.; Simon, A.; Bhardwaj, A.; Ghosh, T.; Ross, R.
2016-06-01
This review provides a summary of work in the area of ensemble forecasts for weather, climate, oceans, and hurricanes. This includes a combination of multiple forecast model results that does not dwell on the ensemble mean but uses a unique collective bias reduction procedure. A theoretical framework for this procedure is provided, utilizing a suite of models that is constructed from the well-known Lorenz low-order nonlinear system. A tutorial that includes a walk-through table and illustrates the inner workings of the multimodel superensemble's principle is provided. Systematic errors in a single deterministic model arise from a host of features that range from the model's initial state (data assimilation), resolution, representation of physics, dynamics, and ocean processes, local aspects of orography, water bodies, and details of the land surface. Models, in their diversity of representation of such features, end up leaving unique signatures of systematic errors. The multimodel superensemble utilizes as many as 10 million weights to take into account the bias errors arising from these diverse features of multimodels. The design of a single deterministic forecast models that utilizes multiple features from the use of the large volume of weights is provided here. This has led to a better understanding of the error growths and the collective bias reductions for several of the physical parameterizations within diverse models, such as cumulus convection, planetary boundary layer physics, and radiative transfer. A number of examples for weather, seasonal climate, hurricanes and sub surface oceanic forecast skills of member models, the ensemble mean, and the superensemble are provided.
NASA Technical Reports Server (NTRS)
Tangborn, Andrew; Menard, Richard; Ortland, David; Einaudi, Franco (Technical Monitor)
2001-01-01
A new approach to the analysis of systematic and random observation errors is presented in which the error statistics are obtained using forecast data rather than observations from a different instrument type. The analysis is carried out at an intermediate retrieval level, instead of the more typical state variable space. This method is carried out on measurements made by the High Resolution Doppler Imager (HRDI) on board the Upper Atmosphere Research Satellite (UARS). HRDI, a limb sounder, is the only satellite instrument measuring winds in the stratosphere, and the only instrument of any kind making global wind measurements in the upper atmosphere. HRDI measures doppler shifts in the two different O2 absorption bands (alpha and B) and the retrieved products are tangent point Line-of-Sight wind component (level 2 retrieval) and UV winds (level 3 retrieval). This analysis is carried out on a level 1.9 retrieval, in which the contributions from different points along the line-of-sight have not been removed. Biases are calculated from O-F (observed minus forecast) LOS wind components and are separated into a measurement parameter space consisting of 16 different values. The bias dependence on these parameters (plus an altitude dependence) is used to create a bias correction scheme carried out on the level 1.9 retrieval. The random error component is analyzed by separating the gamma and B band observations and locating observation pairs where both bands are very nearly looking at the same location at the same time. It is shown that the two observation streams are uncorrelated and that this allows the forecast error variance to be estimated. The bias correction is found to cut the effective observation error variance in half.
Evaluation of NMME temperature and precipitation bias and forecast skill for South Asia
NASA Astrophysics Data System (ADS)
Cash, Benjamin A.; Manganello, Julia V.; Kinter, James L.
2017-08-01
Systematic error and forecast skill for temperature and precipitation in two regions of Southern Asia are investigated using hindcasts initialized May 1 from the North American Multi-Model Ensemble. We focus on two contiguous but geographically and dynamically diverse regions: the Extended Indian Monsoon Rainfall (70-100E, 10-30 N) and the nearby mountainous area of Pakistan and Afghanistan (60-75E, 23-39 N). Forecast skill is assessed using the Sign test framework, a rigorous statistical method that can be applied to non-Gaussian variables such as precipitation and to different ensemble sizes without introducing bias. We find that models show significant systematic error in both precipitation and temperature for both regions. The multi-model ensemble mean (MMEM) consistently yields the lowest systematic error and the highest forecast skill for both regions and variables. However, we also find that the MMEM consistently provides a statistically significant increase in skill over climatology only in the first month of the forecast. While the MMEM tends to provide higher overall skill than climatology later in the forecast, the differences are not significant at the 95% level. We also find that MMEMs constructed with a relatively small number of ensemble members per model can equal or outperform MMEMs constructed with more members in skill. This suggests some ensemble members either provide no contribution to overall skill or even detract from it.
Assessing the quality of humidity measurements from global operational radiosonde sensors
NASA Astrophysics Data System (ADS)
Moradi, Isaac; Soden, Brian; Ferraro, Ralph; Arkin, Phillip; Vömel, Holger
2013-07-01
The quality of humidity measurements from global operational radiosonde sensors in upper, middle, and lower troposphere for the period 2000-2011 were investigated using satellite observations from three microwave water vapor channels operating at 183.31±1, 183.31±3, and 183.31±7 GHz. The radiosonde data were partitioned based on sensor type into 19 classes. The satellite brightness temperatures (Tb) were simulated using radiosonde profiles and a radiative transfer model, then the radiosonde simulated Tb's were compared with the observed Tb's from the satellites. The surface affected Tb's were excluded from the comparison due to the lack of reliable surface emissivity data at the microwave frequencies. Daytime and nighttime data were examined separately to see the possible effect of daytime radiation bias on the sonde data. The error characteristics among different radiosondes vary significantly, which largely reflects the differences in sensor type. These differences are more evident in the mid-upper troposphere than in the lower troposphere, mainly because some of the sensors stop responding to tropospheric humidity somewhere in the upper or even in the middle troposphere. In the upper troposphere, most sensors have a dry bias but Russian sensors and a few other sensors including GZZ2, VZB2, and RS80H have a wet bias. In middle troposphere, Russian sensors still have a wet bias but all other sensors have a dry bias. All sensors, including Russian sensors, have a dry bias in lower troposphere. The systematic and random errors generally decrease from upper to lower troposphere. Sensors from China, India, Russia, and the U.S. have a large random error in upper troposphere, which indicates that these sensors are not suitable for upper tropospheric studies as they fail to respond to humidity changes in the upper and even middle troposphere. Overall, Vaisala sensors perform better than other sensors throughout the troposphere exhibiting the smallest systematic and random errors. Because of the large differences between different radiosonde humidity sensors, it is important for long-term trend studies to only use data measured using a single type of sensor at any given station. If multiple sensor types are used then it is necessary to consider the bias between sensor types and its possible dependence on humidity and temperature.
Constraints on a scale-dependent bias from galaxy clustering
NASA Astrophysics Data System (ADS)
Amendola, L.; Menegoni, E.; Di Porto, C.; Corsi, M.; Branchini, E.
2017-01-01
We forecast the future constraints on scale-dependent parametrizations of galaxy bias and their impact on the estimate of cosmological parameters from the power spectrum of galaxies measured in a spectroscopic redshift survey. For the latter we assume a wide survey at relatively large redshifts, similar to the planned Euclid survey, as the baseline for future experiments. To assess the impact of the bias we perform a Fisher matrix analysis, and we adopt two different parametrizations of scale-dependent bias. The fiducial models for galaxy bias are calibrated using mock catalogs of H α emitting galaxies mimicking the expected properties of the objects that will be targeted by the Euclid survey. In our analysis we have obtained two main results. First of all, allowing for a scale-dependent bias does not significantly increase the errors on the other cosmological parameters apart from the rms amplitude of density fluctuations, σ8 , and the growth index γ , whose uncertainties increase by a factor up to 2, depending on the bias model adopted. Second, we find that the accuracy in the linear bias parameter b0 can be estimated to within 1%-2% at various redshifts regardless of the fiducial model. The nonlinear bias parameters have significantly large errors that depend on the model adopted. Despite this, in the more realistic scenarios departures from the simple linear bias prescription can be detected with a ˜2 σ significance at each redshift explored. Finally, we use the Fisher matrix formalism to assess the impact od assuming an incorrect bias model and find that the systematic errors induced on the cosmological parameters are similar or even larger than the statistical ones.
Iudici, Antonio; Salvini, Alessandro; Faccio, Elena; Castelnuovo, Gianluca
2015-01-01
According to the literature, psychological assessment in forensic contexts is one of the most controversial application areas for clinical psychology. This paper presents a review of systematic judgment errors in the forensic field. Forty-six psychological reports written by psychologists, court consultants, have been analyzed with content analysis to identify typical judgment errors related to the following areas: (a) distortions in the attribution of causality, (b) inferential errors, and (c) epistemological inconsistencies. Results indicated that systematic errors of judgment, usually referred also as “the man in the street,” are widely present in the forensic evaluations of specialist consultants. Clinical and practical implications are taken into account. This article could lead to significant benefits for clinical psychologists who want to deal with this sensitive issue and are interested in improving the quality of their contribution to the justice system. PMID:26648892
Assessing the Performance Management of National Preparedness - A Conceptual Model
2015-12-01
biased outcomes with “ambiguous and uncertain preparedness goals, a lack of agreement about what the measures should aim at and how they should be...there may also be undue influence, either intentionally or subconsciously , on how the data is presented. These influences are caused by the...ensure that data are free of systematic error or bias , and that what is intended to be measured is actually measured.”349 This step is critical to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindle, R.; Gal, R. R.; La Barbera, F.
2011-10-15
We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less
Drought Persistence in Models and Observations
NASA Astrophysics Data System (ADS)
Moon, Heewon; Gudmundsson, Lukas; Seneviratne, Sonia
2017-04-01
Many regions of the world have experienced drought events that persisted several years and caused substantial economic and ecological impacts in the 20th century. However, it remains unclear whether there are significant trends in the frequency or severity of these prolonged drought events. In particular, an important issue is linked to systematic biases in the representation of persistent drought events in climate models, which impedes analysis related to the detection and attribution of drought trends. This study assesses drought persistence errors in global climate model (GCM) simulations from the 5th phase of Coupled Model Intercomparison Project (CMIP5), in the period of 1901-2010. The model simulations are compared with five gridded observational data products. The analysis focuses on two aspects: the identification of systematic biases in the models and the partitioning of the spread of drought-persistence-error into four possible sources of uncertainty: model uncertainty, observation uncertainty, internal climate variability and the estimation error of drought persistence. We use monthly and yearly dry-to-dry transition probabilities as estimates for drought persistence with drought conditions defined as negative precipitation anomalies. For both time scales we find that most model simulations consistently underestimated drought persistence except in a few regions such as India and Eastern South America. Partitioning the spread of the drought-persistence-error shows that at the monthly time scale model uncertainty and observation uncertainty are dominant, while the contribution from internal variability does play a minor role in most cases. At the yearly scale, the spread of the drought-persistence-error is dominated by the estimation error, indicating that the partitioning is not statistically significant, due to a limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current climate models and highlight the main contributors of uncertainty of drought-persistence-error. Future analyses will focus on investigating the temporal propagation of drought persistence to better understand the causes for the identified errors in the representation of drought persistence in state-of-the-art climate models.
Dynamically corrected gates for singlet-triplet spin qubits with control-dependent errors
NASA Astrophysics Data System (ADS)
Jacobson, N. Tobias; Witzel, Wayne M.; Nielsen, Erik; Carroll, Malcolm S.
2013-03-01
Magnetic field inhomogeneity due to random polarization of quasi-static local magnetic impurities is a major source of environmentally induced error for singlet-triplet double quantum dot (DQD) spin qubits. Moreover, for singlet-triplet qubits this error may depend on the applied controls. This effect is significant when a static magnetic field gradient is applied to enable full qubit control. Through a configuration interaction analysis, we observe that the dependence of the field inhomogeneity-induced error on the DQD bias voltage can vary systematically as a function of the controls for certain experimentally relevant operating regimes. To account for this effect, we have developed a straightforward prescription for adapting dynamically corrected gate sequences that assume control-independent errors into sequences that compensate for systematic control-dependent errors. We show that accounting for such errors may lead to a substantial increase in gate fidelities. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Brogniez, Helene; English, Stephen; Mahfouf, Jean-Francois; Behrendt, Andreas; Berg, Wesley; Boukabara, Sid; Buehler, Stefan Alexander; Chambon, Philippe; Gambacorta, Antonia; Geer, Alan; Ingram, William; Kursinski, E. Robert; Matricardi, Marco; Odintsova, Tatyana A.; Payne, Vivienne H.; Thorne, Peter W.; Tretyakov, Mikhail Yu.; Wang, Junhong
2016-05-01
Several recent studies have observed systematic differences between measurements in the 183.31 GHz water vapor line by space-borne sounders and calculations using radiative transfer models, with inputs from either radiosondes (radiosonde observations, RAOBs) or short-range forecasts by numerical weather prediction (NWP) models. This paper discusses all the relevant categories of observation-based or model-based data, quantifies their uncertainties and separates biases that could be common to all causes from those attributable to a particular cause. Reference observations from radiosondes, Global Navigation Satellite System (GNSS) receivers, differential absorption lidar (DIAL) and Raman lidar are thus overviewed. Biases arising from their calibration procedures, NWP models and data assimilation, instrument biases and radiative transfer models (both the models themselves and the underlying spectroscopy) are presented and discussed. Although presently no single process in the comparisons seems capable of explaining the observed structure of bias, recommendations are made in order to better understand the causes.
An improved procedure for the validation of satellite-based precipitation estimates
NASA Astrophysics Data System (ADS)
Tang, Ling; Tian, Yudong; Yan, Fang; Habib, Emad
2015-09-01
The objective of this study is to propose and test a new procedure to improve the validation of remote-sensing, high-resolution precipitation estimates. Our recent studies show that many conventional validation measures do not accurately capture the unique error characteristics in precipitation estimates to better inform both data producers and users. The proposed new validation procedure has two steps: 1) an error decomposition approach to separate the total retrieval error into three independent components: hit error, false precipitation and missed precipitation; and 2) the hit error is further analyzed based on a multiplicative error model. In the multiplicative error model, the error features are captured by three model parameters. In this way, the multiplicative error model separates systematic and random errors, leading to more accurate quantification of the uncertainties. The proposed procedure is used to quantitatively evaluate the recent two versions (Version 6 and 7) of TRMM's Multi-sensor Precipitation Analysis (TMPA) real-time and research product suite (3B42 and 3B42RT) for seven years (2005-2011) over the continental United States (CONUS). The gauge-based National Centers for Environmental Prediction (NCEP) Climate Prediction Center (CPC) near-real-time daily precipitation analysis is used as the reference. In addition, the radar-based NCEP Stage IV precipitation data are also model-fitted to verify the effectiveness of the multiplicative error model. The results show that winter total bias is dominated by the missed precipitation over the west coastal areas and the Rocky Mountains, and the false precipitation over large areas in Midwest. The summer total bias is largely coming from the hit bias in Central US. Meanwhile, the new version (V7) tends to produce more rainfall in the higher rain rates, which moderates the significant underestimation exhibited in the previous V6 products. Moreover, the error analysis from the multiplicative error model provides a clear and concise picture of the systematic and random errors, with both versions of 3B42RT have higher errors in varying degrees than their research (post-real-time) counterparts. The new V7 algorithm shows obvious improvements in reducing random errors in both winter and summer seasons, compared to its predecessors V6. Stage IV, as expected, surpasses the satellite-based datasets in all the metrics over CONUS. Based on the results, we recommend the new procedure be adopted for routine validation of satellite-based precipitation datasets, and we expect the procedure will work effectively for higher resolution data to be produced in the Global Precipitation Measurement (GPM) era.
Jakobsen, Janus Christian
2014-10-01
Major depressive disorder afflicts an estimated 17% of individuals during their lifetimes at tremendous suffering and costs. Cognitive therapy and psychodynamic therapy may be effective treatment options for major depressive disorder, but the effects have only had limited assessment in systematic reviews. The two modern forms of psychotherapy, "third wave" cognitive therapy and mentalization-based treatment, have both gained some ground as treatments of psychiatric disorders. No randomised trial has compared the effects of these two interventions for major depressive disorder. We performed two systematic reviews with meta-analyses and trial sequential analyses using The Cochrane Collaboration methodology examining the effects of cognitive therapy and psycho-dynamic therapy for major depressive disorder. We developed a thorough treatment protocol for a randomised trial with low risks of bias (systematic error) and low risks of random errors ("play of chance") examining the effects of third wave' cognitive therapy versus mentalization-based treatment for major depressive disorder. We conducted a randomised trial according to good clinical practice examining the effects of "third wave" cognitive therapy versus mentalisation-based treatment for major depressive disorder. The first systematic review included five randomised trials examining the effects of psychodynamic therapy versus "no intervention' for major depressive disorder. Altogether the five trials randomised 365 participants who in each trial received similar antidepressants as co-interventions. All trials had high risk of bias. Four trials assessed "interpersonal psychotherapy" and one trial "short psychodynamic supportive psychotherapy". Both of these interventions are different forms of psychodynamic therapy. Meta-analysis showed that psychodynamic therapy significantly reduced depressive symptoms on the Hamilton Depression Rating Scale (HDRS) compared with "no intervention" (mean difference -3.01 (95% confidence interval -3.98 to -2.03; p = 0.00001), no significant heterogeneity between trials). Trial sequential analysis confirmed this result. The second systematic review included 12 randomised trials examining the effects of cognitive therapy versus "no intervention" for major depressive disorder. Altogether a total of 669 participants were randomised. All trials had high risk of bias. Meta-analysis showed that cognitive therapy significantly reduced depressive symptoms on the HDRS compared with "no intervention" (four trials; mean difference -3.05 (95% confidence interval, -5.23 to -0.87; p = 0.006)). Trial sequential analysis could not confirm this result. The trial protocol showed that it seemed feasible to conduct a randomised trial with low risks of bias and low risks of random errors examining the effects of "third wave" cognitive therapy versus mentalization-based therapy in a setting in the Danish healthcare system. It turned out to be much more difficult to recruit participants in the randomised trial than expected. We only included about half of the planned participants. The results from the randomised trial showed that participants randomised to "third wave" therapy compared with participants randomised to mentalization-based treatment had borderline significantly lower HDRS scores at 18 weeks in an unadjusted analysis (mean difference -4.14 score; 95% CI -8.30 to 0.03; p = 0.051). In the adjusted analysis, the difference was significant (p = 0.039). Five (22.7%) of the participants randomised to "third wave" cognitive therapy had remission at 18 weeks versus none of the participants randomised to mentalization-based treatment (p = 0.049). Sequential analysis showed that these findings could be due to random errors. No significant differences between the two groups was found regarding Beck's Depression Inventory (BDI II), Symptom Checklist 90 Revised (SCL 90-R), and The World Health Organization-Five Well-being Index 1999 (WHO 5). We concluded that cognitive therapy and psychodynamic therapy might be effective interventions for depression measured on HDRS and BDI, but the review results might be erroneous due to risks of bias and random errors. Furthermore, the effects seem relatively small. The trial protocol showed that it was possible to develop a protocol for a randomised trial examining the effects of "third wave" cognitive therapy versus mentalization-based treatment with low risks of bias and low risks of random errors. Our trial results showed that "third wave" cognitive therapy might be a more effective intervention for depressive symptoms measured on the HDRS compared with mentalization-based treatment. The two interventions did not seem to differ significantly regarding BDI II, SCL 90-R, and WHO 5. More randomised trials with low risks of bias and low risks of random errors are needed to assess the effects of cognitive therapy, psychodynamic therapy, "third wave" cognitive therapy, and mentalization-based treatment.
Quantifying Errors in TRMM-Based Multi-Sensor QPE Products Over Land in Preparation for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian, Yudong
2011-01-01
Determining uncertainties in satellite-based multi-sensor quantitative precipitation estimates over land of fundamental importance to both data producers and hydro climatological applications. ,Evaluating TRMM-era products also lays the groundwork and sets the direction for algorithm and applications development for future missions including GPM. QPE uncertainties result mostly from the interplay of systematic errors and random errors. In this work, we will synthesize our recent results quantifying the error characteristics of satellite-based precipitation estimates. Both systematic errors and total uncertainties have been analyzed for six different TRMM-era precipitation products (3B42, 3B42RT, CMORPH, PERSIANN, NRL and GSMap). For systematic errors, we devised an error decomposition scheme to separate errors in precipitation estimates into three independent components, hit biases, missed precipitation and false precipitation. This decomposition scheme reveals hydroclimatologically-relevant error features and provides a better link to the error sources than conventional analysis, because in the latter these error components tend to cancel one another when aggregated or averaged in space or time. For the random errors, we calculated the measurement spread from the ensemble of these six quasi-independent products, and thus produced a global map of measurement uncertainties. The map yields a global view of the error characteristics and their regional and seasonal variations, reveals many undocumented error features over areas with no validation data available, and provides better guidance to global assimilation of satellite-based precipitation data. Insights gained from these results and how they could help with GPM will be highlighted.
NASA Technical Reports Server (NTRS)
Beutter, Brent R.; Stone, Leland S.
1997-01-01
Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.
NASA Technical Reports Server (NTRS)
Beutter, B. R.; Stone, L. S.
1998-01-01
Although numerous studies have examined the relationship between smooth-pursuit eye movements and motion perception, it remains unresolved whether a common motion-processing system subserves both perception and pursuit. To address this question, we simultaneously recorded perceptual direction judgments and the concomitant smooth eye-movement response to a plaid stimulus that we have previously shown generates systematic perceptual errors. We measured the perceptual direction biases psychophysically and the smooth eye-movement direction biases using two methods (standard averaging and oculometric analysis). We found that the perceptual and oculomotor biases were nearly identical, suggesting that pursuit and perception share a critical motion processing stage, perhaps in area MT or MST of extrastriate visual cortex.
NASA Technical Reports Server (NTRS)
Kirstettier, Pierre-Emmanual; Honh, Y.; Gourley, J. J.; Chen, S.; Flamig, Z.; Zhang, J.; Howard, K.; Schwaller, M.; Petersen, W.; Amitai, E.
2011-01-01
Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving space-born passive and active microwave measurement") for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of NASA's Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem is addressed by comparison of PR QPEs with reference values derived from ground-based measurements using NOAA/NSSL ground radar-based National Mosaic and QPE system (NMQ/Q2). A preliminary investigation of this subject has been carried out at the PR estimation scale (instantaneous and 5 km) using a three-month data sample in the southern part of US. The primary contribution of this study is the presentation of the detailed steps required to derive trustworthy reference rainfall dataset from Q2 at the PR pixel resolution. It relics on a bias correction and a radar quality index, both of which provide a basis to filter out the less trustworthy Q2 values. Several aspects of PR errors arc revealed and quantified including sensitivity to the processing steps with the reference rainfall, comparisons of rainfall detectability and rainfall rate distributions, spatial representativeness of error, and separation of systematic biases and random errors. The methodology and framework developed herein applies more generally to rainfall rate estimates from other sensors onboard low-earth orbiting satellites such as microwave imagers and dual-wavelength radars such as with the Global Precipitation Measurement (GPM) mission.
NASA Astrophysics Data System (ADS)
Hardy, Ryan A.; Nerem, R. Steven; Wiese, David N.
2017-12-01
Systematic errors in Gravity Recovery and Climate Experiment (GRACE) monthly mass estimates over the Greenland and Antarctic ice sheets can originate from low-frequency biases in the European Centre for Medium-Range Weather Forecasts (ECMWF) Operational Analysis model, the atmospheric component of the Atmospheric and Ocean Dealising Level-1B (AOD1B) product used to forward model atmospheric and ocean gravity signals in GRACE processing. These biases are revealed in differences in surface pressure between the ECMWF Operational Analysis model, state-of-the-art reanalyses, and in situ surface pressure measurements. While some of these errors are attributable to well-understood discrete model changes and have published corrections, we examine errors these corrections do not address. We compare multiple models and in situ data in Antarctica and Greenland to determine which models have the most skill relative to monthly averages of the dealiasing model. We also evaluate linear combinations of these models and synthetic pressure fields generated from direct interpolation of pressure observations. These models consistently reveal drifts in the dealiasing model that cause the acceleration of Antarctica's mass loss between April 2002 and August 2016 to be underestimated by approximately 4 Gt yr-2. We find similar results after attempting to solve the inverse problem, recovering pressure biases directly from the GRACE Jet Propulsion Laboratory RL05.1 M mascon solutions. Over Greenland, we find a 2 Gt yr-1 bias in mass trend. While our analysis focuses on errors in Release 05 of AOD1B, we also evaluate the new AOD1B RL06 product. We find that this new product mitigates some of the aforementioned biases.
A Framework for Reconsidering the Lake Wobegon Effect
ERIC Educational Resources Information Center
Haley, M. Ryan; Johnson, Marianne F.; McGee, M. Kevin
2010-01-01
The "Lake Wobegon Effect" (LWE) describes the potential measurement-error bias introduced into survey-based analyses of education issues. Although this effect potentially applies to any student-report variable, the systematic overreporting of academic achievements such as grade point average is often of preeminent concern. This concern can be…
Systematic reviews need systematic searchers
McGowan, Jessie; Sampson, Margaret
2005-01-01
Purpose: This paper will provide a description of the methods, skills, and knowledge of expert searchers working on systematic review teams. Brief Description: Systematic reviews and meta-analyses are very important to health care practitioners, who need to keep abreast of the medical literature and make informed decisions. Searching is a critical part of conducting these systematic reviews, as errors made in the search process potentially result in a biased or otherwise incomplete evidence base for the review. Searches for systematic reviews need to be constructed to maximize recall and deal effectively with a number of potentially biasing factors. Librarians who conduct the searches for systematic reviews must be experts. Discussion/Conclusion: Expert searchers need to understand the specifics about data structure and functions of bibliographic and specialized databases, as well as the technical and methodological issues of searching. Search methodology must be based on research about retrieval practices, and it is vital that expert searchers keep informed about, advocate for, and, moreover, conduct research in information retrieval. Expert searchers are an important part of the systematic review team, crucial throughout the review process—from the development of the proposal and research question to publication. PMID:15685278
Improving Photometry and Stellar Signal Preservation with Pixel-Level Systematic Error Correction
NASA Technical Reports Server (NTRS)
Kolodzijczak, Jeffrey J.; Smith, Jeffrey C.; Jenkins, Jon M.
2013-01-01
The Kepler Mission has demonstrated that excellent stellar photometric performance can be achieved using apertures constructed from optimally selected CCD pixels. The clever methods used to correct for systematic errors, while very successful, still have some limitations in their ability to extract long-term trends in stellar flux. They also leave poorly correlated bias sources, such as drifting moiré pattern, uncorrected. We will illustrate several approaches where applying systematic error correction algorithms to the pixel time series, rather than the co-added raw flux time series, provide significant advantages. Examples include, spatially localized determination of time varying moiré pattern biases, greater sensitivity to radiation-induced pixel sensitivity drops (SPSDs), improved precision of co-trending basis vectors (CBV), and a means of distinguishing the stellar variability from co-trending terms even when they are correlated. For the last item, the approach enables physical interpretation of appropriately scaled coefficients derived in the fit of pixel time series to the CBV as linear combinations of various spatial derivatives of the pixel response function (PRF). We demonstrate that the residuals of a fit of soderived pixel coefficients to various PRF-related components can be deterministically interpreted in terms of physically meaningful quantities, such as the component of the stellar flux time series which is correlated with the CBV, as well as, relative pixel gain, proper motion and parallax. The approach also enables us to parameterize and assess the limiting factors in the uncertainties in these quantities.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo; Redder, Christopher
2010-01-01
MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.
NASA Astrophysics Data System (ADS)
da Silva, A.; Redder, C. R.
2010-12-01
MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum-likelihood estimates of background and observation errors, as well as global bias estimates. Starting with the joint PDF of innovations and analysis increments at observation locations we propose a technique for diagnosing bias among the observing systems, and document how these contextual biases have evolved during the satellite era covered by MERRA.
Characterizing the impact of model error in hydrologic time series recovery inverse problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.
Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less
Characterizing the impact of model error in hydrologic time series recovery inverse problems
Hansen, Scott K.; He, Jiachuan; Vesselinov, Velimir V.
2017-10-28
Hydrologic models are commonly over-smoothed relative to reality, owing to computational limitations and to the difficulty of obtaining accurate high-resolution information. When used in an inversion context, such models may introduce systematic biases which cannot be encapsulated by an unbiased “observation noise” term of the type assumed by standard regularization theory and typical Bayesian formulations. Despite its importance, model error is difficult to encapsulate systematically and is often neglected. In this paper, model error is considered for an important class of inverse problems that includes interpretation of hydraulic transients and contaminant source history inference: reconstruction of a time series thatmore » has been convolved against a transfer function (i.e., impulse response) that is only approximately known. Using established harmonic theory along with two results established here regarding triangular Toeplitz matrices, upper and lower error bounds are derived for the effect of systematic model error on time series recovery for both well-determined and over-determined inverse problems. It is seen that use of additional measurement locations does not improve expected performance in the face of model error. A Monte Carlo study of a realistic hydraulic reconstruction problem is presented, and the lower error bound is seen informative about expected behavior. Finally, a possible diagnostic criterion for blind transfer function characterization is also uncovered.« less
NASA Astrophysics Data System (ADS)
Chegwidden, O.; Nijssen, B.; Pytlak, E.
2017-12-01
Any model simulation has errors, including errors in meteorological data, process understanding, model structure, and model parameters. These errors may express themselves as bias, timing lags, and differences in sensitivity between the model and the physical world. The evaluation and handling of these errors can greatly affect the legitimacy, validity and usefulness of the resulting scientific product. In this presentation we will discuss a case study of handling and communicating model errors during the development of a hydrologic climate change dataset for the Pacific Northwestern United States. The dataset was the result of a four-year collaboration between the University of Washington, Oregon State University, the Bonneville Power Administration, the United States Army Corps of Engineers and the Bureau of Reclamation. Along the way, the partnership facilitated the discovery of multiple systematic errors in the streamflow dataset. Through an iterative review process, some of those errors could be resolved. For the errors that remained, honest communication of the shortcomings promoted the dataset's legitimacy. Thoroughly explaining errors also improved ways in which the dataset would be used in follow-on impact studies. Finally, we will discuss the development of the "streamflow bias-correction" step often applied to climate change datasets that will be used in impact modeling contexts. We will describe the development of a series of bias-correction techniques through close collaboration among universities and stakeholders. Through that process, both universities and stakeholders learned about the others' expectations and workflows. This mutual learning process allowed for the development of methods that accommodated the stakeholders' specific engineering requirements. The iterative revision process also produced a functional and actionable dataset while preserving its scientific merit. We will describe how encountering earlier techniques' pitfalls allowed us to develop improved methods for scientists and practitioners alike.
Estimating Gravity Biases with Wavelets in Support of a 1-cm Accurate Geoid Model
NASA Astrophysics Data System (ADS)
Ahlgren, K.; Li, X.
2017-12-01
Systematic errors that reside in surface gravity datasets are one of the major hurdles in constructing a high-accuracy geoid model at high resolutions. The National Oceanic and Atmospheric Administration's (NOAA) National Geodetic Survey (NGS) has an extensive historical surface gravity dataset consisting of approximately 10 million gravity points that are known to have systematic biases at the mGal level (Saleh et al. 2013). As most relevant metadata is absent, estimating and removing these errors to be consistent with a global geopotential model and airborne data in the corresponding wavelength is quite a difficult endeavor. However, this is crucial to support a 1-cm accurate geoid model for the United States. With recently available independent gravity information from GRACE/GOCE and airborne gravity from the NGS Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project, several different methods of bias estimation are investigated which utilize radial basis functions and wavelet decomposition. We estimate a surface gravity value by incorporating a satellite gravity model, airborne gravity data, and forward-modeled topography at wavelet levels according to each dataset's spatial wavelength. Considering the estimated gravity values over an entire gravity survey, an estimate of the bias and/or correction for the entire survey can be found and applied. In order to assess the accuracy of each bias estimation method, two techniques are used. First, each bias estimation method is used to predict the bias for two high-quality (unbiased and high accuracy) geoid slope validation surveys (GSVS) (Smith et al. 2013 & Wang et al. 2017). Since these surveys are unbiased, the various bias estimation methods should reflect that and provide an absolute accuracy metric for each of the bias estimation methods. Secondly, the corrected gravity datasets from each of the bias estimation methods are used to build a geoid model. The accuracy of each geoid model provides an additional metric to assess the performance of each bias estimation method. The geoid model accuracies are assessed using the two GSVS lines and GPS-leveling data across the United States.
Identifying causes of Western Pacific ITCZ drift in ECMWF System 4 hindcasts
NASA Astrophysics Data System (ADS)
Shonk, Jonathan K. P.; Guilyardi, Eric; Toniazzo, Thomas; Woolnough, Steven J.; Stockdale, Tim
2018-02-01
The development of systematic biases in climate models used in operational seasonal forecasting adversely affects the quality of forecasts they produce. In this study, we examine the initial evolution of systematic biases in the ECMWF System 4 forecast model, and isolate aspects of the model simulations that lead to the development of these biases. We focus on the tendency of the simulated intertropical convergence zone in the western equatorial Pacific to drift northwards by between 0.5° and 3° of latitude depending on season. Comparing observations with both fully coupled atmosphere-ocean hindcasts and atmosphere-only hindcasts (driven by observed sea-surface temperatures), we show that the northward drift is caused by a cooling of the sea-surface temperature on the Equator. The cooling is associated with anomalous easterly wind stress and excessive evaporation during the first twenty days of hindcast, both of which occur whether air-sea interactions are permitted or not. The easterly wind bias develops immediately after initialisation throughout the lower troposphere; a westerly bias develops in the upper troposphere after about 10 days of hindcast. At this point, the baroclinic structure of the wind bias suggests coupling with errors in convective heating, although the initial wind bias is barotropic in structure and appears to have an alternative origin.
An evaluation of multipass electrofishing for estimating the abundance of stream-dwelling salmonids
James T. Peterson; Russell F. Thurow; John W. Guzevich
2004-01-01
Failure to estimate capture efficiency, defined as the probability of capturing individual fish, can introduce a systematic error or bias into estimates of fish abundance. We evaluated the efficacy of multipass electrofishing removal methods for estimating fish abundance by comparing estimates of capture efficiency from multipass removal estimates to capture...
A Category Adjustment Approach to Memory for Spatial Location in Natural Scenes
ERIC Educational Resources Information Center
Holden, Mark P.; Curby, Kim M.; Newcombe, Nora S.; Shipley, Thomas F.
2010-01-01
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in…
Kaye, Stephen B
2009-04-01
To provide a scalar measure of refractive error, based on geometric lens power through principal, orthogonal and oblique meridians, that is not limited to the paraxial and sag height approximations. A function is derived to model sections through the principal meridian of a lens, followed by rotation of the section through orthogonal and oblique meridians. Average focal length is determined using the definition for the average of a function. Average univariate power in the principal meridian (including spherical aberration), can be computed from the average of a function over the angle of incidence as determined by the parameters of the given lens, or adequately computed from an integrated series function. Average power through orthogonal and oblique meridians, can be similarly determined using the derived formulae. The widely used computation for measuring refractive error, the spherical equivalent, introduces non-constant approximations, leading to a systematic bias. The equations proposed provide a good univariate representation of average lens power and are not subject to a systematic bias. They are particularly useful for the analysis of aggregate data, correlating with biological treatment variables and for developing analyses, which require a scalar equivalent representation of refractive power.
Historical MOBLAS system characterization
NASA Technical Reports Server (NTRS)
Husson, Van S.
1993-01-01
This paper is written as a direct response to the published NASA Laser Geodynamic Satellite (LAGEOS) orbital solution SL7.1, in order to close the data information loop with an emphasis on the NASA Mobile Laser Ranging System's (MOBLAS) LAGEOS full rate data since November 1, 1983. A preliminary analysis of the supporting information (i.e. satellite laser ranging system eccentricities and system dependent range and time bias corrections) contained in SL7.1 indicated centimeter (cm) level discrepancies. In addition, a preliminary analysis of the computed monthly MOBLAS range biases from SL7.1 appear to show cm level systematic trends, some of which appear to be 'real', particularly in the 1984 to 1987 time period. This paper is intended to be a reference document for known MOBLAS systematic errors (magnitude and direction) and for supporting MOBLAS information (eccentricities, hardware configurations, and potential data problem periods). Therefore, this report is different than your typical system characterization report, but will be more valuable to the user. The MOBLAS error models and supporting information contained in this paper will be easily accessible from the Crustal Dynamics Data Information System (CDDIS).
Possible systematics in the VLBI catalogs as seen from Gaia
NASA Astrophysics Data System (ADS)
Liu, N.; Zhu, Z.; Liu, J.-C.
2018-01-01
Aims: In order to investigate the systematic errors in the very long baseline interferometry (VLBI) positions of extragalactic sources (quasars) and the global differences between Gaia and VLBI catalogs, we use the first data release of Gaia (Gaia DR1) quasar positions as the reference and study the positional offsets of the second realization of the International Celestial Reference Frame (ICRF2) and the Goddard VLBI solution 2016a (gsf2016a) catalogs. Methods: We select a sample of 1032 common sources among three catalogs and adopt two methods to represent the systematics: considering the differential orientation (offset) and declination bias; analyzing with the vector spherical harmonics (VSH) functions. Results: Between two VLBI catalogs and Gaia DR1, we find that: i) the estimated orientation is consistent with the alignment accuracy of Gaia DR1 to ICRF, of 0.1 mas, but the southern and northern hemispheres show opposite orientations; ii) the declination bias in the southern hemisphere between Gaia DR1 and ICRF2 is estimated to be +152 μas, much larger than that between Gaia DR1 and gsf2016a which is +34 μas. Between two VLBI catalogs, we find that: i) the rotation component shows that ICRF2 and gsf2016a are generally consistent within 30 μas; ii) the glide component and quadrupole component report two declination-dependent offsets: dipolar deformation of +50 μas along the Z-axis, and quadrupolar deformation of -50 μas that would induce a pattern of sin2δ. Conclusions: The significant declination bias between Gaia DR1 and ICRF2 catalogs reported in previous studies is possibly attributed to the systematic errors of ICRF2 in the southern hemisphere. The global differences between ICRF2 and gsf2016a catalogs imply that possible, mainly declination-dependent systematics exit in the VLBI positions and need further investigations in the future Gaia data release and the next generation of ICRF.
Empirical evidence for resource-rational anchoring and adjustment.
Lieder, Falk; Griffiths, Thomas L; M Huys, Quentin J; Goodman, Noah D
2018-04-01
People's estimates of numerical quantities are systematically biased towards their initial guess. This anchoring bias is usually interpreted as sign of human irrationality, but it has recently been suggested that the anchoring bias instead results from people's rational use of their finite time and limited cognitive resources. If this were true, then adjustment should decrease with the relative cost of time. To test this hypothesis, we designed a new numerical estimation paradigm that controls people's knowledge and varies the cost of time and error independently while allowing people to invest as much or as little time and effort into refining their estimate as they wish. Two experiments confirmed the prediction that adjustment decreases with time cost but increases with error cost regardless of whether the anchor was self-generated or provided. These results support the hypothesis that people rationally adapt their number of adjustments to achieve a near-optimal speed-accuracy tradeoff. This suggests that the anchoring bias might be a signature of the rational use of finite time and limited cognitive resources rather than a sign of human irrationality.
The role of the basic state in the ENSO-monsoon relationship and implications for predictability
NASA Astrophysics Data System (ADS)
Turner, A. G.; Inness, P. M.; Slingo, J. M.
2005-04-01
The impact of systematic model errors on a coupled simulation of the Asian summer monsoon and its interannual variability is studied. Although the mean monsoon climate is reasonably well captured, systematic errors in the equatorial Pacific mean that the monsoon-ENSO teleconnection is rather poorly represented in the general-circulation model. A system of ocean-surface heat flux adjustments is implemented in the tropical Pacific and Indian Oceans in order to reduce the systematic biases. In this version of the general-circulation model, the monsoon-ENSO teleconnection is better simulated, particularly the lag-lead relationships in which weak monsoons precede the peak of El Niño. In part this is related to changes in the characteristics of El Niño, which has a more realistic evolution in its developing phase. A stronger ENSO amplitude in the new model version also feeds back to further strengthen the teleconnection. These results have important implications for the use of coupled models for seasonal prediction of systems such as the monsoon, and suggest that some form of flux correction may have significant benefits where model systematic error compromises important teleconnections and modes of interannual variability.
A spectral filter for ESMR's sidelobe errors
NASA Technical Reports Server (NTRS)
Chesters, D.
1979-01-01
Fourier analysis was used to remove periodic errors from a series of NIMBUS-5 electronically scanned microwave radiometer brightness temperatures. The observations were all taken from the midnight orbits over fixed sites in the Australian grasslands. The angular dependence of the data indicates calibration errors consisted of broad sidelobes and some miscalibration as a function of beam position. Even though an angular recalibration curve cannot be derived from the available data, the systematic errors can be removed with a spectral filter. The 7 day cycle in the drift of the orbit of NIMBUS-5, coupled to the look-angle biases, produces an error pattern with peaks in its power spectrum at the weekly harmonics. About plus or minus 4 K of error is removed by simply blocking the variations near two- and three-cycles-per-week.
Efficient Solar Scene Wavefront Estimation with Reduced Systematic and RMS Errors: Summary
NASA Astrophysics Data System (ADS)
Anugu, N.; Garcia, P.
2016-04-01
Wave front sensing for solar telescopes is commonly implemented with the Shack-Hartmann sensors. Correlation algorithms are usually used to estimate the extended scene Shack-Hartmann sub-aperture image shifts or slopes. The image shift is computed by correlating a reference sub-aperture image with the target distorted sub-aperture image. The pixel position where the maximum correlation is located gives the image shift in integer pixel coordinates. Sub-pixel precision image shifts are computed by applying a peak-finding algorithm to the correlation peak Poyneer (2003); Löfdahl (2010). However, the peak-finding algorithm results are usually biased towards the integer pixels, these errors are called as systematic bias errors Sjödahl (1994). These errors are caused due to the low pixel sampling of the images. The amplitude of these errors depends on the type of correlation algorithm and the type of peak-finding algorithm being used. To study the systematic errors in detail, solar sub-aperture synthetic images are constructed by using a Swedish Solar Telescope solar granulation image1. The performance of cross-correlation algorithm in combination with different peak-finding algorithms is investigated. The studied peak-finding algorithms are: parabola Poyneer (2003); quadratic polynomial Löfdahl (2010); threshold center of gravity Bailey (2003); Gaussian Nobach & Honkanen (2005) and Pyramid Bailey (2003). The systematic error study reveals that that the pyramid fit is the most robust to pixel locking effects. The RMS error analysis study reveals that the threshold centre of gravity behaves better in low SNR, although the systematic errors in the measurement are large. It is found that no algorithm is best for both the systematic and the RMS error reduction. To overcome the above problem, a new solution is proposed. In this solution, the image sampling is increased prior to the actual correlation matching. The method is realized in two steps to improve its computational efficiency. In the first step, the cross-correlation is implemented at the original image spatial resolution grid (1 pixel). In the second step, the cross-correlation is performed using a sub-pixel level grid by limiting the field of search to 4 × 4 pixels centered at the first step delivered initial position. The generation of these sub-pixel grid based region of interest images is achieved with the bi-cubic interpolation. The correlation matching with sub-pixel grid technique was previously reported in electronic speckle photography Sjö'dahl (1994). This technique is applied here for the solar wavefront sensing. A large dynamic range and a better accuracy in the measurements are achieved with the combination of the original pixel grid based correlation matching in a large field of view and a sub-pixel interpolated image grid based correlation matching within a small field of view. The results revealed that the proposed method outperforms all the different peak-finding algorithms studied in the first approach. It reduces both the systematic error and the RMS error by a factor of 5 (i.e., 75% systematic error reduction), when 5 times improved image sampling was used. This measurement is achieved at the expense of twice the computational cost. With the 5 times improved image sampling, the wave front accuracy is increased by a factor of 5. The proposed solution is strongly recommended for wave front sensing in the solar telescopes, particularly, for measuring large dynamic image shifts involved open loop adaptive optics. Also, by choosing an appropriate increment of image sampling in trade-off between the computational speed limitation and the aimed sub-pixel image shift accuracy, it can be employed in closed loop adaptive optics. The study is extended to three other class of sub-aperture images (a point source; a laser guide star; a Galactic Center extended scene). The results are planned to submit for the Optical Express journal.
Reference-free error estimation for multiple measurement methods.
Madan, Hennadii; Pernuš, Franjo; Špiclin, Žiga
2018-01-01
We present a computational framework to select the most accurate and precise method of measurement of a certain quantity, when there is no access to the true value of the measurand. A typical use case is when several image analysis methods are applied to measure the value of a particular quantitative imaging biomarker from the same images. The accuracy of each measurement method is characterized by systematic error (bias), which is modeled as a polynomial in true values of measurand, and the precision as random error modeled with a Gaussian random variable. In contrast to previous works, the random errors are modeled jointly across all methods, thereby enabling the framework to analyze measurement methods based on similar principles, which may have correlated random errors. Furthermore, the posterior distribution of the error model parameters is estimated from samples obtained by Markov chain Monte-Carlo and analyzed to estimate the parameter values and the unknown true values of the measurand. The framework was validated on six synthetic and one clinical dataset containing measurements of total lesion load, a biomarker of neurodegenerative diseases, which was obtained with four automatic methods by analyzing brain magnetic resonance images. The estimates of bias and random error were in a good agreement with the corresponding least squares regression estimates against a reference.
Biases in Planet Occurrence Caused by Unresolved Binaries in Transit Surveys
NASA Astrophysics Data System (ADS)
Bouma, L. G.; Masuda, Kento; Winn, Joshua N.
2018-06-01
Wide-field surveys for transiting planets, such as the NASA Kepler and TESS missions, are usually conducted without knowing which stars have binary companions. Unresolved and unrecognized binaries give rise to systematic errors in planet occurrence rates, including misclassified planets and mistakes in completeness corrections. The individual errors can have different signs, making it difficult to anticipate the net effect on inferred occurrence rates. Here, we use simplified models of signal-to-noise limited transit surveys to try and clarify the situation. We derive a formula for the apparent occurrence rate density measured by an observer who falsely assumes all stars are single. The formula depends on the binary fraction, the mass function of the secondary stars, and the true occurrence of planets around primaries, secondaries, and single stars. It also takes into account the Malmquist bias by which binaries are over-represented in flux-limited samples. Application of the formula to an idealized Kepler-like survey shows that for planets larger than 2 R ⊕, the net systematic error is of order 5%. In particular, unrecognized binaries are unlikely to be the reason for the apparent discrepancies between hot-Jupiter occurrence rates measured in different surveys. For smaller planets the errors are potentially larger: the occurrence of Earth-sized planets could be overestimated by as much as 50%. We also show that whenever high-resolution imaging reveals a transit host star to be a binary, the planet is usually more likely to orbit the primary star than the secondary star.
Suspected time errors along the satellite laser ranging network and impact on the reference frame
NASA Astrophysics Data System (ADS)
Belli, Alexandre; Exertier, Pierre; Lemoine, Frank; Zelensky, Nikita
2017-04-01
Systematic errors in the laser ranging technologies must be considered when considering the GGOS objective to maintain a network with an accuracy of 1 mm and a stability of 0.1 mm per year for the station ground coordinates in the ITRF. Range and Time biases are identified to be part of these systematic errors, for a major part, and are difficult to detect. Concerning the range bias, analysts and working groups estimate their values from LAGEOS-1 & 2 observations (c.f. Appleby et al. 2016). On the other hand, time errors are often neglected (they are presumed to be < 100 ns) and remain difficult to estimate (at this level), from using the observations of geodetic satellites passes and precise orbit determination (i.e. LAGEOS). The Time Transfer by Laser Link (T2L2) experiment on-board Jason-2 is a unique opportunity to determine, globally and independently, the synchronization of all laser stations. Because of the low altitude of Jason-2, we computed the time transfer in non-common view from the Grasse primary station to all other SLR stations. We used a method to synchronize the whole network which consists of the integration of an Ultra Stable Oscillator (USO) frequency model, in order to take care of the frequency instabilities caused by the space environment. The integration provides a model which becomes an "on-orbit" time realization which can be connected to each of the SLR stations by the ground to space laser link. We estimated time biases per station, with a repeatability of 3 - 4 ns, for 25 stations which observe T2L2 regularly. We investigated the effect on LAGEOS and Starlette orbits and we discuss the impact of time errors on the station coordinates. We show that the effects on the global POD are negligible (< 1 mm) but are at the level of 4 - 6 mm for the coordinates. We conclude and propose to introduce time errors in the future analyses (IDS and ILRS) that would lead to the computation of improved reference frame solutions.
NASA Astrophysics Data System (ADS)
Alharbi, Raied; Hsu, Kuolin; Sorooshian, Soroosh; Braithwaite, Dan
2018-01-01
Precipitation is a key input variable for hydrological and climate studies. Rain gauges are capable of providing reliable precipitation measurements at point scale. However, the uncertainty of rain measurements increases when the rain gauge network is sparse. Satellite -based precipitation estimations appear to be an alternative source of precipitation measurements, but they are influenced by systematic bias. In this study, a method for removing the bias from the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping, climate classification, and inverse-weighted distance method. Daily PERSIANN-CCS is selected to test the capability of the method for removing the bias over Saudi Arabia during the period of 2010 to 2016. The first six years (2010 - 2015) are calibrated years and 2016 is used for validation. The results show that the yearly correlation coefficient was enhanced by 12%, the yearly mean bias was reduced by 93% during validated year. Root mean square error was reduced by 73% during validated year. The correlation coefficient, the mean bias, and the root mean square error show that the proposed method removes the bias on PERSIANN-CCS effectively that the method can be applied to other regions where the rain gauge network is sparse.
An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path
NASA Astrophysics Data System (ADS)
Greenwald, Thomas J.; Bennartz, Ralf; Lebsock, Matthew; Teixeira, João.
2018-04-01
The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9-year record of the Advanced Microwave Scanning Radiometer-EOS (AMSR-E): clear-sky bias, cloud-rain partition (CRP) bias, cloud-fraction-dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR-E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud-Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud-fraction-dependent bias was found to be a combination of the CRP bias, an in-cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in-cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias-corrected AMSR-E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible-infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations.
Adaptive correction of ensemble forecasts
NASA Astrophysics Data System (ADS)
Pelosi, Anna; Battista Chirico, Giovanni; Van den Bergh, Joris; Vannitsem, Stephane
2017-04-01
Forecasts from numerical weather prediction (NWP) models often suffer from both systematic and non-systematic errors. These are present in both deterministic and ensemble forecasts, and originate from various sources such as model error and subgrid variability. Statistical post-processing techniques can partly remove such errors, which is particularly important when NWP outputs concerning surface weather variables are employed for site specific applications. Many different post-processing techniques have been developed. For deterministic forecasts, adaptive methods such as the Kalman filter are often used, which sequentially post-process the forecasts by continuously updating the correction parameters as new ground observations become available. These methods are especially valuable when long training data sets do not exist. For ensemble forecasts, well-known techniques are ensemble model output statistics (EMOS), and so-called "member-by-member" approaches (MBM). Here, we introduce a new adaptive post-processing technique for ensemble predictions. The proposed method is a sequential Kalman filtering technique that fully exploits the information content of the ensemble. One correction equation is retrieved and applied to all members, however the parameters of the regression equations are retrieved by exploiting the second order statistics of the forecast ensemble. We compare our new method with two other techniques: a simple method that makes use of a running bias correction of the ensemble mean, and an MBM post-processing approach that rescales the ensemble mean and spread, based on minimization of the Continuous Ranked Probability Score (CRPS). We perform a verification study for the region of Campania in southern Italy. We use two years (2014-2015) of daily meteorological observations of 2-meter temperature and 10-meter wind speed from 18 ground-based automatic weather stations distributed across the region, comparing them with the corresponding COSMO-LEPS ensemble forecasts. Deterministic verification scores (e.g., mean absolute error, bias) and probabilistic scores (e.g., CRPS) are used to evaluate the post-processing techniques. We conclude that the new adaptive method outperforms the simpler running bias-correction. The proposed adaptive method often outperforms the MBM method in removing bias. The MBM method has the advantage of correcting the ensemble spread, although it needs more training data.
Correction for Guessing in the Framework of the 3PL Item Response Theory
ERIC Educational Resources Information Center
Chiu, Ting-Wei
2010-01-01
Guessing behavior is an important topic with regard to assessing proficiency on multiple choice tests, particularly for examinees at lower levels of proficiency due to greater the potential for systematic error or bias which that inflates observed test scores. Methods that incorporate a correction for guessing on high-stakes tests generally rely…
Characterization and visualization of the accuracy of FIA's CONUS-wide tree species datasets
Rachel Riemann; Barry T. Wilson
2014-01-01
Modeled geospatial datasets have been created for 325 tree species across the contiguous United States (CONUS). Effective application of all geospatial datasets depends on their accuracy. Dataset error can be systematic (bias) or unsystematic (scatter), and their magnitude can vary by region and scale. Each of these characteristics affects the locations, scales, uses,...
Cognitive Bias in Systems Verification
NASA Technical Reports Server (NTRS)
Larson, Steve
2012-01-01
Working definition of cognitive bias: Patterns by which information is sought and interpreted that can lead to systematic errors in decisions. Cognitive bias is used in diverse fields: Economics, Politics, Intelligence, Marketing, to name a few. Attempts to ground cognitive science in physical characteristics of the cognitive apparatus exceed our knowledge. Studies based on correlations; strict cause and effect is difficult to pinpoint. Effects cited in the paper and discussed here have been replicated many times over, and appear sound. Many biases have been described, but it is still unclear whether they are all distinct. There may only be a handful of fundamental biases, which manifest in various ways. Bias can effect system verification in many ways . Overconfidence -> Questionable decisions to deploy. Availability -> Inability to conceive critical tests. Representativeness -> Overinterpretation of results. Positive Test Strategies -> Confirmation bias. Debiasing at individual level very difficult. The potential effect of bias on the verification process can be managed, but not eliminated. Worth considering at key points in the process.
Examining reference frame interaction in spatial memory using a distribution analysis.
Street, Whitney N; Wang, Ranxiao Frances
2016-02-01
Previous research showed competition among reference frames in spatial attention and language. The present studies developed a new distribution analysis to examine reference frame interactions in spatial memory. Participants viewed virtual arrays of colored pegs and were instructed to remember them either from their own perspective or from the perspective aligned with the rectangular floor. Then they made judgments of relative directions from their respective encoding orientation. Those taking the floor-axis perspective showed systematic bias in the signed errors toward their egocentric perspective, while those taking their own perspective showed no systematic bias, both for random and symmetrical object arrays. The bias toward the egocentric perspective was observed when learning a real symmetric regular object array with strong environmental cues for the aligned axis. These results indicate automatic processing of the self reference while taking the floor-axis perspective but not vice versa, and suggest that research on spatial memory needs to consider the implications of competition effects in reference frame use.
An Uncertainty Data Set for Passive Microwave Satellite Observations of Warm Cloud Liquid Water Path
Bennartz, Ralf; Lebsock, Matthew; Teixeira, João
2018-01-01
Abstract The first extended comprehensive data set of the retrieval uncertainties in passive microwave observations of cloud liquid water path (CLWP) for warm oceanic clouds has been created for practical use in climate applications. Four major sources of systematic errors were considered over the 9‐year record of the Advanced Microwave Scanning Radiometer‐EOS (AMSR‐E): clear‐sky bias, cloud‐rain partition (CRP) bias, cloud‐fraction‐dependent bias, and cloud temperature bias. Errors were estimated using a unique merged AMSR‐E/Moderate resolution Imaging Spectroradiometer Level 2 data set as well as observations from the Cloud‐Aerosol Lidar with Orthogonal Polarization and the CloudSat Cloud Profiling Radar. To quantify the CRP bias more accurately, a new parameterization was developed to improve the inference of CLWP in warm rain. The cloud‐fraction‐dependent bias was found to be a combination of the CRP bias, an in‐cloud bias, and an adjacent precipitation bias. Globally, the mean net bias was 0.012 kg/m2, dominated by the CRP and in‐cloud biases, but with considerable regional and seasonal variation. Good qualitative agreement between a bias‐corrected AMSR‐E CLWP climatology and ship observations in the Northeast Pacific suggests that the bias estimates are reasonable. However, a possible underestimation of the net bias in certain conditions may be due in part to the crude method used in classifying precipitation, underscoring the need for an independent method of detecting rain in warm clouds. This study demonstrates the importance of combining visible‐infrared imager data and passive microwave CLWP observations for estimating uncertainties and improving the accuracy of these observations. PMID:29938146
On the use of the covariance matrix to fit correlated data
NASA Astrophysics Data System (ADS)
D'Agostini, G.
1994-07-01
Best fits to data which are affected by systematic uncertainties on the normalization factor have the tendency to produce curves lower than expected if the covariance matrix of the data points is used in the definition of the χ2. This paper shows that the effect is a direct consequence of the hypothesis used to estimate the empirical covariance matrix, namely the linearization on which the usual error propagation relies. The bias can become unacceptable if the normalization error is large, or a large number of data points are fitted.
Cooper, Glinda S.; Lunn, Ruth M.; Ågerstrand, Marlene; Glenn, Barbara S.; Kraft, Andrew D.; Luke, April M.; Ratcliffe, Jennifer M.
2016-01-01
A critical step in systematic reviews of potential health hazards is the structured evaluation of the strengths and weaknesses of the included studies; risk of bias is a term often used to represent this process, specifically with respect to the evaluation of systematic errors that can lead to inaccurate (biased) results (i.e. focusing on internal validity). Systematic review methods developed in the clinical medicine arena have been adapted for use in evaluating environmental health hazards; this expansion raises questions about the scope of risk of bias tools and the extent to which they capture the elements that can affect the interpretation of results from environmental and occupational epidemiology studies and in vivo animal toxicology studies, (the studies typically available for assessment of risk of chemicals). One such element, described here as “sensitivity”, is a measure of the ability of a study to detect a true effect or hazard. This concept is similar to the concept of the sensitivity of an assay; an insensitive study may fail to show a difference that truly exists, leading to a false conclusion of no effect. Factors relating to study sensitivity should be evaluated in a systematic manner with the same rigor as the evaluation of other elements within a risk of bias framework. We discuss the importance of this component for the interpretation of individual studies, examine approaches proposed or in use to address it, and describe how it relates to other evaluation components. The evaluation domains contained within a risk of bias tool can include, or can be modified to include, some features relating to study sensitivity; the explicit inclusion of these sensitivity criteria with the same rigor and at the same stage of study evaluation as other bias-related criteria can improve the evaluation process. In some cases, these and other features may be better addressed through a separate sensitivity domain. The combined evaluation of risk of bias and sensitivity can be used to identify the most informative studies, to evaluate the confidence of the findings from individual studies and to identify those study elements that may help to explain heterogeneity across the body of literature. PMID:27156196
GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelbaum, R.; Rowe, B.; Armstrong, R.
2015-05-01
We present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty about amore » spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.« less
GREAT3 results - I. Systematic errors in shear estimation and the impact of real galaxy morphology
Mandelbaum, Rachel; Rowe, Barnaby; Armstrong, Robert; ...
2015-05-11
The study present first results from the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, the third in a sequence of challenges for testing methods of inferring weak gravitational lensing shear distortions from simulated galaxy images. GREAT3 was divided into experiments to test three specific questions, and included simulated space- and ground-based data with constant or cosmologically varying shear fields. The simplest (control) experiment included parametric galaxies with a realistic distribution of signal-to-noise, size, and ellipticity, and a complex point spread function (PSF). The other experiments tested the additional impact of realistic galaxy morphology, multiple exposure imaging, and the uncertainty aboutmore » a spatially varying PSF; the last two questions will be explored in Paper II. The 24 participating teams competed to estimate lensing shears to within systematic error tolerances for upcoming Stage-IV dark energy surveys, making 1525 submissions overall. GREAT3 saw considerable variety and innovation in the types of methods applied. Several teams now meet or exceed the targets in many of the tests conducted (to within the statistical errors). We conclude that the presence of realistic galaxy morphology in simulations changes shear calibration biases by ~1 per cent for a wide range of methods. Other effects such as truncation biases due to finite galaxy postage stamps, and the impact of galaxy type as measured by the Sérsic index, are quantified for the first time. Our results generalize previous studies regarding sensitivities to galaxy size and signal-to-noise, and to PSF properties such as seeing and defocus. Almost all methods’ results support the simple model in which additive shear biases depend linearly on PSF ellipticity.« less
Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods
NASA Technical Reports Server (NTRS)
Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo
2004-01-01
In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression of random errors requires averaging to at least half-degree resolution. Analysis of mesoscale and larger space-time scale phenomena based upon passive and passive/active microwave heating estimates from TRMM, SSMI, and AMSR data will be presented at the conference.
Method for revealing biases in precision mass measurements
NASA Astrophysics Data System (ADS)
Vabson, V.; Vendt, R.; Kübarsepp, T.; Noorma, M.
2013-02-01
A practical method for the quantification of systematic errors of large-scale automatic comparators is presented. This method is based on a comparison of the performance of two different comparators. First, the differences of 16 equal partial loads of 1 kg are measured with a high-resolution mass comparator featuring insignificant bias and 1 kg maximum load. At the second stage, a large-scale comparator is tested by using combined loads with known mass differences. Comparing the different results, the biases of any comparator can be easily revealed. These large-scale comparator biases are determined over a 16-month period, and for the 1 kg loads, a typical pattern of biases in the range of ±0.4 mg is observed. The temperature differences recorded inside the comparator concurrently with mass measurements are found to remain within a range of ±30 mK, which obviously has a minor effect on the detected biases. Seasonal variations imply that the biases likely arise mainly due to the functioning of the environmental control at the measurement location.
NASA Astrophysics Data System (ADS)
Nesladek, Pavel; Wiswesser, Andreas; Sass, Björn; Mauermann, Sebastian
2008-04-01
The Critical dimension off-target (CDO) is a key parameter for mask house customer, affecting directly the performance of the mask. The CDO is the difference between the feature size target and the measured feature size. The change of CD during the process is either compensated within the process or by data correction. These compensation methods are commonly called process bias and data bias, respectively. The difference between data bias and process bias in manufacturing results in systematic CDO error, however, this systematic error does not take into account the instability of the process bias. This instability is a result of minor variations - instabilities of manufacturing processes and changes in materials and/or logistics. Using several masks the CDO of the manufacturing line can be estimated. For systematic investigation of the unit process contribution to CDO and analysis of the factors influencing the CDO contributors, a solid understanding of each unit process and huge number of masks is necessary. Rough identification of contributing processes and splitting of the final CDO variation between processes can be done with approx. 50 masks with identical design, material and process. Such amount of data allows us to identify the main contributors and estimate the effect of them by means of Analysis of variance (ANOVA) combined with multivariate analysis. The analysis does not provide information about the root cause of the variation within the particular unit process, however, it provides a good estimate of the impact of the process on the stability of the manufacturing line. Additionally this analysis can be used to identify possible interaction between processes, which cannot be investigated if only single processes are considered. Goal of this work is to evaluate limits for CDO budgeting models given by the precision and the number of measurements as well as partitioning the variation within the manufacturing process. The CDO variation splits according to the suggested model into contributions from particular processes or process groups. Last but not least the power of this method to determine the absolute strength of each parameter will be demonstrated. Identification of the root cause of this variation within the unit process itself is not scope of this work.
Sjövall, Fredrik; Perner, Anders; Hylander Møller, Morten
2017-04-01
To assess benefits and harms of empirical mono- vs. combination antibiotic therapy in adult patients with severe sepsis in the intensive care unit (ICU). We performed a systematic review according to the Cochrane Collaboration methodology, including meta-analysis, risk of bias assessment and trial sequential analysis (TSA). We included randomised clinical trials (RCT) assessing empirical mono-antibiotic therapy versus a combination of two or more antibiotics in adult ICU patients with severe sepsis. We exclusively assessed patient-important outcomes, including mortality. Two reviewers independently evaluated studies for inclusion, extracted data, and assessed risk of bias. Risk ratios (RRs) with 95% confidence intervals (CIs) were estimated and the risk of random errors was assessed by TSA. Thirteen RCTs (n = 2633) were included; all were judged as having high risk of bias. Carbapenems were the most frequently used mono-antibiotic (8 of 13 trials). There was no difference in mortality (RR 1.11, 95% CI 0.95-1.29; p = 0.19) or in any other patient-important outcomes between mono- vs. combination therapy. In TSA of mortality, the Z-curve reached the futility area, indicating that a 20% relative risk difference in mortality may be excluded between the two groups. For the other outcomes, TSA indicated lack of data and high risk of random errors. This systematic review of RCTs with meta-analysis and TSA demonstrated no differences in mortality or other patient-important outcomes between empirical mono- vs. combination antibiotic therapy in adult ICU patients with severe sepsis. The quantity and quality of data was low without firm evidence for benefit or harm of combination therapy. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Assessing implicit gender bias in Medical Student Performance Evaluations.
Axelson, Rick D; Solow, Catherine M; Ferguson, Kristi J; Cohen, Michael B
2010-09-01
For medical schools, the increasing presence of women makes it especially important that potential sources of gender bias be identified and removed from student evaluation methods. Our study looked for patterns of gender bias in adjective data used to inform our Medical Student Performance Evaluations (MSPEs). Multigroup Confirmatory Factor Analysis (CFA) was used to model the latent structure of the adjectives attributed to students (n = 657) and to test for systematic scoring errors by gender. Gender bias was evident in two areas: (a) women were more likely than comparable men to be described as ''compassionate,'' ''sensitive,'' and ''enthusiastic'' and (b) men were more likely than comparable women to be seen as ''quick learners.'' The gender gap in ''quick learner'' attribution grows with increasing student proficiency; men's rate of increase is over twice that of women's. Technical and nontechnical approaches for ameliorating the impact of gender bias on student recommendations are suggested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchhoff, William H.
2012-09-15
The extended logistic function provides a physically reasonable description of interfaces such as depth profiles or line scans of surface topological or compositional features. It describes these interfaces with the minimum number of parameters, namely, position, width, and asymmetry. Logistic Function Profile Fit (LFPF) is a robust, least-squares fitting program in which the nonlinear extended logistic function is linearized by a Taylor series expansion (equivalent to a Newton-Raphson approach) with no apparent introduction of bias in the analysis. The program provides reliable confidence limits for the parameters when systematic errors are minimal and provides a display of the residuals frommore » the fit for the detection of systematic errors. The program will aid researchers in applying ASTM E1636-10, 'Standard practice for analytically describing sputter-depth-profile and linescan-profile data by an extended logistic function,' and may also prove useful in applying ISO 18516: 2006, 'Surface chemical analysis-Auger electron spectroscopy and x-ray photoelectron spectroscopy-determination of lateral resolution.' Examples are given of LFPF fits to a secondary ion mass spectrometry depth profile, an Auger surface line scan, and synthetic data generated to exhibit known systematic errors for examining the significance of such errors to the extrapolation of partial profiles.« less
On the Need for Quantitative Bias Analysis in the Peer-Review Process.
Fox, Matthew P; Lash, Timothy L
2017-05-15
Peer review is central to the process through which epidemiologists generate evidence to inform public health and medical interventions. Reviewers thereby act as critical gatekeepers to high-quality research. They are asked to carefully consider the validity of the proposed work or research findings by paying careful attention to the methodology and critiquing the importance of the insight gained. However, although many have noted problems with the peer-review system for both manuscripts and grant submissions, few solutions have been proposed to improve the process. Quantitative bias analysis encompasses all methods used to quantify the impact of systematic error on estimates of effect in epidemiologic research. Reviewers who insist that quantitative bias analysis be incorporated into the design, conduct, presentation, and interpretation of epidemiologic research could substantially strengthen the process. In the present commentary, we demonstrate how quantitative bias analysis can be used by investigators and authors, reviewers, funding agencies, and editors. By utilizing quantitative bias analysis in the peer-review process, editors can potentially avoid unnecessary rejections, identify key areas for improvement, and improve discussion sections by shifting from speculation on the impact of sources of error to quantification of the impact those sources of bias may have had. © The Author 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirasaki, Masato; Yoshida, Naoki, E-mail: masato.shirasaki@utap.phys.s.u-tokyo.ac.jp
2014-05-01
The measurement of cosmic shear using weak gravitational lensing is a challenging task that involves a number of complicated procedures. We study in detail the systematic errors in the measurement of weak-lensing Minkowski Functionals (MFs). Specifically, we focus on systematics associated with galaxy shape measurements, photometric redshift errors, and shear calibration correction. We first generate mock weak-lensing catalogs that directly incorporate the actual observational characteristics of the Canada-France-Hawaii Lensing Survey (CFHTLenS). We then perform a Fisher analysis using the large set of mock catalogs for various cosmological models. We find that the statistical error associated with the observational effects degradesmore » the cosmological parameter constraints by a factor of a few. The Subaru Hyper Suprime-Cam (HSC) survey with a sky coverage of ∼1400 deg{sup 2} will constrain the dark energy equation of the state parameter with an error of Δw {sub 0} ∼ 0.25 by the lensing MFs alone, but biases induced by the systematics can be comparable to the 1σ error. We conclude that the lensing MFs are powerful statistics beyond the two-point statistics only if well-calibrated measurement of both the redshifts and the shapes of source galaxies is performed. Finally, we analyze the CFHTLenS data to explore the ability of the MFs to break degeneracies between a few cosmological parameters. Using a combined analysis of the MFs and the shear correlation function, we derive the matter density Ω{sub m0}=0.256±{sub 0.046}{sup 0.054}.« less
Dealing with systematic laser scanner errors due to misalignment at area-based deformation analyses
NASA Astrophysics Data System (ADS)
Holst, Christoph; Medić, Tomislav; Kuhlmann, Heiner
2018-04-01
The ability to acquire rapid, dense and high quality 3D data has made terrestrial laser scanners (TLS) a desirable instrument for tasks demanding a high geometrical accuracy, such as geodetic deformation analyses. However, TLS measurements are influenced by systematic errors due to internal misalignments of the instrument. The resulting errors in the point cloud might exceed the magnitude of random errors. Hence, it is important to assure that the deformation analysis is not biased by these influences. In this study, we propose and evaluate several strategies for reducing the effect of TLS misalignments on deformation analyses. The strategies are based on the bundled in-situ self-calibration and on the exploitation of two-face measurements. The strategies are verified analyzing the deformation of the Onsala Space Observatory's radio telescope's main reflector. It is demonstrated that either two-face measurements as well as the in-situ calibration of the laser scanner in a bundle adjustment improve the results of deformation analysis. The best solution is gained by a combination of both strategies.
A variational regularization of Abel transform for GPS radio occultation
NASA Astrophysics Data System (ADS)
Wee, Tae-Kwon
2018-04-01
In the Global Positioning System (GPS) radio occultation (RO) technique, the inverse Abel transform of measured bending angle (Abel inversion, hereafter AI) is the standard means of deriving the refractivity. While concise and straightforward to apply, the AI accumulates and propagates the measurement error downward. The measurement error propagation is detrimental to the refractivity in lower altitudes. In particular, it builds up negative refractivity bias in the tropical lower troposphere. An alternative to AI is the numerical inversion of the forward Abel transform, which does not incur the integration of error-possessing measurement and thus precludes the error propagation. The variational regularization (VR) proposed in this study approximates the inversion of the forward Abel transform by an optimization problem in which the regularized solution describes the measurement as closely as possible within the measurement's considered accuracy. The optimization problem is then solved iteratively by means of the adjoint technique. VR is formulated with error covariance matrices, which permit a rigorous incorporation of prior information on measurement error characteristics and the solution's desired behavior into the regularization. VR holds the control variable in the measurement space to take advantage of the posterior height determination and to negate the measurement error due to the mismodeling of the refractional radius. The advantages of having the solution and the measurement in the same space are elaborated using a purposely corrupted synthetic sounding with a known true solution. The competency of VR relative to AI is validated with a large number of actual RO soundings. The comparison to nearby radiosonde observations shows that VR attains considerably smaller random and systematic errors compared to AI. A noteworthy finding is that in the heights and areas that the measurement bias is supposedly small, VR follows AI very closely in the mean refractivity deserting the first guess. In the lowest few kilometers that AI produces large negative refractivity bias, VR reduces the refractivity bias substantially with the aid of the background, which in this study is the operational forecasts of the European Centre for Medium-Range Weather Forecasts (ECMWF). It is concluded based on the results presented in this study that VR offers a definite advantage over AI in the quality of refractivity.
CO2 Flux Estimation Errors Associated with Moist Atmospheric Processes
NASA Technical Reports Server (NTRS)
Parazoo, N. C.; Denning, A. S.; Kawa, S. R.; Pawson, S.; Lokupitiya, R.
2012-01-01
Vertical transport by moist sub-grid scale processes such as deep convection is a well-known source of uncertainty in CO2 source/sink inversion. However, a dynamical link between vertical transport, satellite based retrievals of column mole fractions of CO2, and source/sink inversion has not yet been established. By using the same offline transport model with meteorological fields from slightly different data assimilation systems, we examine sensitivity of frontal CO2 transport and retrieved fluxes to different parameterizations of sub-grid vertical transport. We find that frontal transport feeds off background vertical CO2 gradients, which are modulated by sub-grid vertical transport. The implication for source/sink estimation is two-fold. First, CO2 variations contained in moist poleward moving air masses are systematically different from variations in dry equatorward moving air. Moist poleward transport is hidden from orbital sensors on satellites, causing a sampling bias, which leads directly to small but systematic flux retrieval errors in northern mid-latitudes. Second, differences in the representation of moist sub-grid vertical transport in GEOS-4 and GEOS-5 meteorological fields cause differences in vertical gradients of CO2, which leads to systematic differences in moist poleward and dry equatorward CO2 transport and therefore the fraction of CO2 variations hidden in moist air from satellites. As a result, sampling biases are amplified and regional scale flux errors enhanced, most notably in Europe (0.43+/-0.35 PgC /yr). These results, cast from the perspective of moist frontal transport processes, support previous arguments that the vertical gradient of CO2 is a major source of uncertainty in source/sink inversion.
A toolkit for measurement error correction, with a focus on nutritional epidemiology
Keogh, Ruth H; White, Ian R
2014-01-01
Exposure measurement error is a problem in many epidemiological studies, including those using biomarkers and measures of dietary intake. Measurement error typically results in biased estimates of exposure-disease associations, the severity and nature of the bias depending on the form of the error. To correct for the effects of measurement error, information additional to the main study data is required. Ideally, this is a validation sample in which the true exposure is observed. However, in many situations, it is not feasible to observe the true exposure, but there may be available one or more repeated exposure measurements, for example, blood pressure or dietary intake recorded at two time points. The aim of this paper is to provide a toolkit for measurement error correction using repeated measurements. We bring together methods covering classical measurement error and several departures from classical error: systematic, heteroscedastic and differential error. The correction methods considered are regression calibration, which is already widely used in the classical error setting, and moment reconstruction and multiple imputation, which are newer approaches with the ability to handle differential error. We emphasize practical application of the methods in nutritional epidemiology and other fields. We primarily consider continuous exposures in the exposure-outcome model, but we also outline methods for use when continuous exposures are categorized. The methods are illustrated using the data from a study of the association between fibre intake and colorectal cancer, where fibre intake is measured using a diet diary and repeated measures are available for a subset. © 2014 The Authors. PMID:24497385
NASA Astrophysics Data System (ADS)
Oh, Seok-Geun; Suh, Myoung-Seok
2017-07-01
The projection skills of five ensemble methods were analyzed according to simulation skills, training period, and ensemble members, using 198 sets of pseudo-simulation data (PSD) produced by random number generation assuming the simulated temperature of regional climate models. The PSD sets were classified into 18 categories according to the relative magnitude of bias, variance ratio, and correlation coefficient, where each category had 11 sets (including 1 truth set) with 50 samples. The ensemble methods used were as follows: equal weighted averaging without bias correction (EWA_NBC), EWA with bias correction (EWA_WBC), weighted ensemble averaging based on root mean square errors and correlation (WEA_RAC), WEA based on the Taylor score (WEA_Tay), and multivariate linear regression (Mul_Reg). The projection skills of the ensemble methods improved generally as compared with the best member for each category. However, their projection skills are significantly affected by the simulation skills of the ensemble member. The weighted ensemble methods showed better projection skills than non-weighted methods, in particular, for the PSD categories having systematic biases and various correlation coefficients. The EWA_NBC showed considerably lower projection skills than the other methods, in particular, for the PSD categories with systematic biases. Although Mul_Reg showed relatively good skills, it showed strong sensitivity to the PSD categories, training periods, and number of members. On the other hand, the WEA_Tay and WEA_RAC showed relatively superior skills in both the accuracy and reliability for all the sensitivity experiments. This indicates that WEA_Tay and WEA_RAC are applicable even for simulation data with systematic biases, a short training period, and a small number of ensemble members.
Hypothesis Testing Using Factor Score Regression
Devlieger, Ines; Mayer, Axel; Rosseel, Yves
2015-01-01
In this article, an overview is given of four methods to perform factor score regression (FSR), namely regression FSR, Bartlett FSR, the bias avoiding method of Skrondal and Laake, and the bias correcting method of Croon. The bias correcting method is extended to include a reliable standard error. The four methods are compared with each other and with structural equation modeling (SEM) by using analytic calculations and two Monte Carlo simulation studies to examine their finite sample characteristics. Several performance criteria are used, such as the bias using the unstandardized and standardized parameterization, efficiency, mean square error, standard error bias, type I error rate, and power. The results show that the bias correcting method, with the newly developed standard error, is the only suitable alternative for SEM. While it has a higher standard error bias than SEM, it has a comparable bias, efficiency, mean square error, power, and type I error rate. PMID:29795886
Automated Mounting Bias Calibration for Airborne LIDAR System
NASA Astrophysics Data System (ADS)
Zhang, J.; Jiang, W.; Jiang, S.
2012-07-01
Mounting bias is the major error source of Airborne LIDAR system. In this paper, an automated calibration method for estimating LIDAR system mounting parameters is introduced. LIDAR direct geo-referencing model is used to calculate systematic errors. Due to LIDAR footprints discretely sampled, the real corresponding laser points are hardly existence among different strips. The traditional corresponding point methodology does not seem to apply to LIDAR strip registration. We proposed a Virtual Corresponding Point Model to resolve the corresponding problem among discrete laser points. Each VCPM contains a corresponding point and three real laser footprints. Two rules are defined to calculate tie point coordinate from real laser footprints. The Scale Invariant Feature Transform (SIFT) is used to extract corresponding points in LIDAR strips, and the automatic flow of LIDAR system calibration based on VCPM is detailed described. The practical examples illustrate the feasibility and effectiveness of the proposed calibration method.
A new way of analyzing occlusion 3 dimensionally.
Hayasaki, Haruaki; Martins, Renato Parsekian; Gandini, Luiz Gonzaga; Saitoh, Issei; Nonaka, Kazuaki
2005-07-01
This article introduces a new method for 3-dimensional dental cast analysis, by using a mechanical 3-dimensional digitizer, MicroScribe 3DX (Immersion, San Jose, Calif), and TIGARO software (not yet released, but available from the author at hayasaki@dent.kyushu-u.ac.jp ). By digitizing points on the model, multiple measurements can be made, including tooth dimensions; arch length, width, and perimeter; curve of Spee; overjet and overbite; and anteroposterior discrepancy. The bias of the system can be evaluated by comparing the distance between 2 points as determined by the new system and as measured with digital calipers. Fifteen pairs of models were measured digitally and manually, and the bias was evaluated by comparing the variances of both methods and checking for the type of error obtained by each method. No systematic errors were found. The results showed that the method is accurate, and it can be applied to both clinical practice and research.
Optimized tuner selection for engine performance estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)
2013-01-01
A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.
Galaxy Bias and its Effects on the Baryon Acoustic Oscillations Measurements
NASA Astrophysics Data System (ADS)
Mehta, Kushal; Seo, H.; Eckel, J.; Eisenstein, D.; Metchnik, M.; Pinto, P.; Xu, X.
2011-05-01
The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the non-linear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al (2010). For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. (2007) in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07% - 0.15%.
Galaxy Bias and Its Effects on the Baryon Acoustic Oscillation Measurements
NASA Astrophysics Data System (ADS)
Mehta, Kushal T.; Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Metchnik, Marc; Pinto, Philip; Xu, Xiaoying
2011-06-01
The baryon acoustic oscillation (BAO) feature in the clustering of matter in the universe serves as a robust standard ruler and hence can be used to map the expansion history of the universe. We use high force resolution simulations to analyze the effects of galaxy bias on the measurements of the BAO signal. We apply a variety of Halo Occupation Distributions (HODs) and produce biased mass tracers to mimic different galaxy populations. We investigate whether galaxy bias changes the nonlinear shifts on the acoustic scale relative to the underlying dark matter distribution presented by Seo et al. For the less biased HOD models (b < 3), we do not detect any shift in the acoustic scale relative to the no-bias case, typically 0.10% ± 0.10%. However, the most biased HOD models (b > 3) show a shift at moderate significance (0.79% ± 0.31% for the most extreme case). We test the one-step reconstruction technique introduced by Eisenstein et al. in the case of realistic galaxy bias and shot noise. The reconstruction scheme increases the correlation between the initial and final (z = 1) density fields, achieving an equivalent level of correlation at nearly twice the wavenumber after reconstruction. Reconstruction reduces the shifts and errors on the shifts. We find that after reconstruction the shifts from the galaxy cases and the dark matter case are consistent with each other and with no shift. The 1σ systematic errors on the distance measurements inferred from our BAO measurements with various HODs after reconstruction are about 0.07%-0.15%.
NASA Astrophysics Data System (ADS)
Güttler, I.
2012-04-01
Systematic errors in near-surface temperature (T2m), total cloud cover (CLD), shortwave albedo (ALB) and surface net longwave (SNL) and shortwave energy flux (SNS) are detected in simulations of RegCM on 50 km resolution over the European CORDEX domain when forced with ERA-Interim reanalysis. Simulated T2m is compared to CRU 3.0 and other variables to GEWEX-SRB 3.0 dataset. Most of systematic errors found in SNL and SNS are consistent with errors in T2m, CLD and ALB: they include prevailing negative errors in T2m and positive errors in CLD present during most of the year. Errors in T2m and CLD can be associated with the overestimation of SNL and SNS in most simulations. Impact of errors in albedo are primarily confined to north Africa, where e.g. underestimation of albedo in JJA is consistent with associated surface heating and positive SNS and T2m errors. Sensitivity to the choice of the PBL scheme and various parameters in PBL schemes is examined from an ensemble of 20 simulations. The recently implemented prognostic PBL scheme performs over Europe with a mixed success when compared to standard diagnostic scheme with a general increase of errors in T2m and CLD over all of the domain. Nevertheless, the improvements in T2m can be found in e.g. north-eastern Europe during DJF and western Europe during JJA where substantial warm biases existed in simulations with the diagnostic scheme. The most detectable impact, in terms of the JJA T2m errors over western Europe, comes form the variation in the formulation of mixing length. In order to reduce the above errors an update of the RegCM albedo values and further work in customizing PBL scheme is suggested.
Interventions to reduce medication errors in neonatal care: a systematic review
Nguyen, Minh-Nha Rhylie; Mosel, Cassandra
2017-01-01
Background: Medication errors represent a significant but often preventable cause of morbidity and mortality in neonates. The objective of this systematic review was to determine the effectiveness of interventions to reduce neonatal medication errors. Methods: A systematic review was undertaken of all comparative and noncomparative studies published in any language, identified from searches of PubMed and EMBASE and reference-list checking. Eligible studies were those investigating the impact of any medication safety interventions aimed at reducing medication errors in neonates in the hospital setting. Results: A total of 102 studies were identified that met the inclusion criteria, including 86 comparative and 16 noncomparative studies. Medication safety interventions were classified into six themes: technology (n = 38; e.g. electronic prescribing), organizational (n = 16; e.g. guidelines, policies, and procedures), personnel (n = 13; e.g. staff education), pharmacy (n = 9; e.g. clinical pharmacy service), hazard and risk analysis (n = 8; e.g. error detection tools), and multifactorial (n = 18; e.g. any combination of previous interventions). Significant variability was evident across all included studies, with differences in intervention strategies, trial methods, types of medication errors evaluated, and how medication errors were identified and evaluated. Most studies demonstrated an appreciable risk of bias. The vast majority of studies (>90%) demonstrated a reduction in medication errors. A similar median reduction of 50–70% in medication errors was evident across studies included within each of the identified themes, but findings varied considerably from a 16% increase in medication errors to a 100% reduction in medication errors. Conclusion: While neonatal medication errors can be reduced through multiple interventions aimed at improving the medication use process, no single intervention appeared clearly superior. Further research is required to evaluate the relative cost-effectiveness of the various medication safety interventions to facilitate decisions regarding uptake and implementation into clinical practice. PMID:29387337
Detecting Climate Variability in Tropical Rainfall
NASA Astrophysics Data System (ADS)
Berg, W.
2004-05-01
A number of satellite and merged satellite/in-situ rainfall products have been developed extending as far back as 1979. While the availability of global rainfall data covering over two decades and encompassing two major El Niño events is a valuable resource for a variety of climate studies, significant differences exist between many of these products. Unfortunately, issues such as availability often determine the use of a product for a given application instead of an understanding of the strengths and weaknesses of the various products. Significant efforts have been made to address the impact of sparse sampling by satellite sensors of variable rainfall processes by merging various satellite and in-situ rainfall products. These combine high spatial and temporal frequency satellite infrared data with higher quality passive microwave observations and rain gauge observations. Combining such an approach with spatial and temporal averaging of the data can reduce the large random errors inherent in satellite rainfall estimates to very small levels. Unfortunately, systematic biases can and do result in artificial climate signals due to the underconstrained nature of the rainfall retrieval problem. Because all satellite retrieval algorithms make assumptions regarding the cloud structure and microphysical properties, systematic changes in these assumed parameters between regions and/or times results in regional and/or temporal biases in the rainfall estimates. These biases tend to be relatively small compared to random errors in the retrieval, however, when random errors are reduced through spatial and temporal averaging for climate applications, they become the dominant source of error. Whether or not such biases impact the results for climate studies is very much dependent on the application. For example, all of the existing satellite rainfall products capture the increased rainfall in the east Pacific associated with El Niño, however, the resulting tropical response to El Niño is substantially smaller due to decreased rainfall in the west Pacific partially canceling increases in the central and east Pacific. These differences are not limited to the long-term merged rainfall products using infrared data, but are also exist in state-of-the-art rainfall retrievals from the active and passive microwave sensors on board the Tropical Rainfall Measuring Mission (TRMM). For example, large differences exist in the response of tropical mean rainfall retrieved from the TRMM microwave imager (TMI) 2A12 algorithm and the precipitation radar (PR) 2A25 algorithm to the 1997/98 El Niño. To assist scientists attempting to wade through the vast array of climate rainfall products currently available, and to help them determine whether systematic biases in these rainfall products impact the conclusions of a given study, we have developed a Climate Rainfall Data Center (CRDC). The CRDC web site (rain.atmos.colostate.edu/CRDC) provides climate researchers information on the various rainfall datasets available as well as access to experts in the field of satellite rainfall retrievals to assist them in the appropriate selection and use of climate rainfall products.
Using ridge regression in systematic pointing error corrections
NASA Technical Reports Server (NTRS)
Guiar, C. N.
1988-01-01
A pointing error model is used in the antenna calibration process. Data from spacecraft or radio star observations are used to determine the parameters in the model. However, the regression variables are not truly independent, displaying a condition known as multicollinearity. Ridge regression, a biased estimation technique, is used to combat the multicollinearity problem. Two data sets pertaining to Voyager 1 spacecraft tracking (days 105 and 106 of 1987) were analyzed using both linear least squares and ridge regression methods. The advantages and limitations of employing the technique are presented. The problem is not yet fully resolved.
Totton, Sarah C; Glanville, Julie M; Dzikamunhenga, Rungano S; Dickson, James S; O'Connor, Annette M
2016-06-01
In this systematic review, we summarized change in Salmonella prevalence and/or quantity associated with pathogen reduction treatments (washes, sprays, steam) on pork carcasses or skin-on carcass parts in comparative designs (natural or artificial contamination). In January 2015, CAB Abstracts (1910-2015), SCI and CPCI-Science (1900-2015), Medline® and Medline® In-Process (1946-2015) (OVIDSP), Science.gov, and Safe Pork (1996-2012) were searched with no language or publication type restrictions. Reference lists of 24 review articles were checked. Two independent reviewers screened 4001 titles/abstracts and assessed 122 full-text articles for eligibility. Only English-language records were extracted. Fourteen studies (5 in commercial abattoirs) were extracted and risk of bias was assessed by two reviewers independently. Risk of bias due to systematic error was moderate; a major source of bias was the potential differential recovery of Salmonella from treated carcasses due to knowledge of the intervention. The most consistently observed association was a positive effect of acid washes on categorical measures of Salmonella; however, this was based on individual results, not a summary effect measure. There was no strong evidence that any one intervention protocol (acid temperature, acid concentration, water temperature) was clearly superior to others for Salmonella control.
Elevation Change of the Southern Greenland Ice Sheet from Satellite Radar Altimeter Data
NASA Technical Reports Server (NTRS)
Haines, Bruce J.
1999-01-01
Long-term changes in the thickness of the polar ice sheets are important indicators of climate change. Understanding the contributions to the global water mass balance from the accumulation or ablation of grounded ice in Greenland and Antarctica is considered crucial for determining the source of the about 2 mm/yr sea-level rise in the last century. Though the Antarctic ice sheet is much larger than its northern counterpart, the Greenland ice sheet is more likely to undergo dramatic changes in response to a warming trend. This can be attributed to the warmer Greenland climate, as well as a potential for amplification of a global warming trend in the polar regions of the Northern Hemisphere. In collaboration with Drs. Curt Davis and Craig Kluever of the University of Missouri, we are using data from satellite radar altimeters to measure changes in the elevation of the Southern Greenland ice sheet from 1978 to the present. Difficulties with systematic altimeter measurement errors, particularly in intersatellite comparisons, beset earlier studies of the Greenland ice sheet thickness. We use altimeter data collected contemporaneously over the global ocean to establish a reference for correcting ice-sheet data. In addition, the waveform data from the ice-sheet radar returns are reprocessed to better determine the range from the satellite to the ice surface. At JPL, we are focusing our efforts principally on the reduction of orbit errors and range biases in the measurement systems on the various altimeter missions. Our approach emphasizes global characterization and reduction of the long-period orbit errors and range biases using altimeter data from NASA's Ocean Pathfinder program. Along-track sea-height residuals are sequentially filtered and backwards smoothed, and the radial orbit errors are modeled as sinusoids with a wavelength equal to one revolution of the satellite. The amplitudes of the sinusoids are treated as exponentially-correlated noise processes with a time-constant of six days. Measurement errors (e.g., altimeter range bias) are simultaneously recovered as constant parameters. The corrections derived from the global ocean analysis are then applied over the Greenland ice sheet. The orbit error and measurement bias corrections for different missions are developed in a single framework to enable robust linkage of ice-sheet measurements from 1978 to the present. In 1998, we completed our re-evaluation of the 1978 Seasat and 1985-1989 Geosat Exact Repeat Mission data. The estimates of ice thickness over Southern Greenland (south of 72N and above 2000 m) from 1978 to 1988 show large regional variations (+/-18 cm/yr), but yield an overall rate of +1.5 +/- 0.5 cm/yr (one standard error). Accounting for systematic errors, the estimate may not be significantly different from the null growth rate. The average elevation change from 1978 to 1988 is too small to assess whether the Greenland ice sheet is undergoing a long-term change.
NASA Technical Reports Server (NTRS)
Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.
2006-01-01
Rainfall rate estimates from spaceborne microwave radiometers are generally accepted as reliable by a majority of the atmospheric science community. One of the Tropical Rainfall Measuring Mission (TRMM) facility rain-rate algorithms is based upon passive microwave observations from the TRMM Microwave Imager (TMI). In Part I of this series, improvements of the TMI algorithm that are required to introduce latent heating as an additional algorithm product are described. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, 0.5 deg. -resolution estimates of surface rain rate over ocean from the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over earlier algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly 2.5 -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data is limited, TMI-estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain-rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with (a) additional contextual information brought to the estimation problem and/or (b) physically consistent and representative databases supporting the algorithm. A model of the random error in instantaneous 0.5 deg. -resolution rain-rate estimates appears to be consistent with the levels of error determined from TMI comparisons with collocated radar. Error model modifications for nonraining situations will be required, however. Sampling error represents only a portion of the total error in monthly 2.5 -resolution TMI estimates; the remaining error is attributed to random and systematic algorithm errors arising from the physical inconsistency and/or nonrepresentativeness of cloud-resolving-model-simulated profiles that support the algorithm.
Cooper, Glinda S; Lunn, Ruth M; Ågerstrand, Marlene; Glenn, Barbara S; Kraft, Andrew D; Luke, April M; Ratcliffe, Jennifer M
2016-01-01
A critical step in systematic reviews of potential health hazards is the structured evaluation of the strengths and weaknesses of the included studies; risk of bias is a term often used to represent this process, specifically with respect to the evaluation of systematic errors that can lead to inaccurate (biased) results (i.e. focusing on internal validity). Systematic review methods developed in the clinical medicine arena have been adapted for use in evaluating environmental health hazards; this expansion raises questions about the scope of risk of bias tools and the extent to which they capture the elements that can affect the interpretation of results from environmental and occupational epidemiology studies and in vivo animal toxicology studies, (the studies typically available for assessment of risk of chemicals). One such element, described here as "sensitivity", is a measure of the ability of a study to detect a true effect or hazard. This concept is similar to the concept of the sensitivity of an assay; an insensitive study may fail to show a difference that truly exists, leading to a false conclusion of no effect. Factors relating to study sensitivity should be evaluated in a systematic manner with the same rigor as the evaluation of other elements within a risk of bias framework. We discuss the importance of this component for the interpretation of individual studies, examine approaches proposed or in use to address it, and describe how it relates to other evaluation components. The evaluation domains contained within a risk of bias tool can include, or can be modified to include, some features relating to study sensitivity; the explicit inclusion of these sensitivity criteria with the same rigor and at the same stage of study evaluation as other bias-related criteria can improve the evaluation process. In some cases, these and other features may be better addressed through a separate sensitivity domain. The combined evaluation of risk of bias and sensitivity can be used to identify the most informative studies, to evaluate the confidence of the findings from individual studies and to identify those study elements that may help to explain heterogeneity across the body of literature. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Follin, B.; Knox, L.
2018-03-01
Recent determination of the Hubble constant via Cepheid-calibrated supernovae by Riess et al. (2016) (R16) find ˜3σ tension with inferences based on cosmic microwave background temperature and polarization measurements from Planck. This tension could be an indication of inadequacies in the concordance ΛCDM model. Here we investigate the possibility that the discrepancy could instead be due to systematic bias or uncertainty in the Cepheid calibration step of the distance ladder measurement by R16. We consider variations in total-to-selective extinction of Cepheid flux as a function of line-of-sight, hidden structure in the period-luminosity relationship, and potentially different intrinsic colour distributions of Cepheids as a function of host galaxy. Considering all potential sources of error, our final determination of H0 = 73.3 ± 1.7 km/s/Mpc (not including systematic errors from the treatment of geometric distances or Type Ia Supernovae) shows remarkable robustness and agreement with R16. We conclude systematics from the modelling of Cepheid photometry, including Cepheid selection criteria, cannot explain the observed tension between Cepheid-variable and CMB-based inferences of the Hubble constant. Considering a `model-independent' approach to relating Cepheids in galaxies with known distances to Cepheids in galaxies hosting a Type Ia supernova and finding agreement with the R16 result, we conclude no generalization of the model relating anchor and host Cepheid magnitude measurements can introduce significant bias in the H0 inference.
NASA Astrophysics Data System (ADS)
Follin, B.; Knox, L.
2018-07-01
Recent determination of the Hubble constant via Cepheid-calibrated supernovae by Riess et al.find ˜3σ tension with inferences based on cosmic microwave background (CMB) temperature and polarization measurements from Planck. This tension could be an indication of inadequacies in the concordance Λcold dark matter model. Here, we investigate the possibility that the discrepancy could instead be due to systematic bias or uncertainty in the Cepheid calibration step of the distance ladder measurement by Riess et al. We consider variations in total-to-selective extinction of Cepheid flux as a function of line of sight, hidden structure in the period-luminosity relationship, and potentially different intrinsic colour distributions of Cepheids as a function of host galaxy. Considering all potential sources of error, our final determination of H0 = 73.3 ± 1.7 km s-1Mpc-1 (not including systematic errors from the treatment of geometric distances or Type Ia supernovae) shows remarkable robustness and agreement with Riess et al. We conclude systematics from the modelling of Cepheid photometry, including Cepheid selection criteria, cannot explain the observed tension between Cepheid-variable and CMB-based inferences of the Hubble constant. Considering a `model-independent' approach to relating Cepheids in galaxies with known distances to Cepheids in galaxies hosting a Type Ia supernova and finding agreement with the Riess et al. result, we conclude no generalization of the model relating anchor and host Cepheid magnitude measurements can introduce significant bias in the H0 inference.
Irregular analytical errors in diagnostic testing - a novel concept.
Vogeser, Michael; Seger, Christoph
2018-02-23
In laboratory medicine, routine periodic analyses for internal and external quality control measurements interpreted by statistical methods are mandatory for batch clearance. Data analysis of these process-oriented measurements allows for insight into random analytical variation and systematic calibration bias over time. However, in such a setting, any individual sample is not under individual quality control. The quality control measurements act only at the batch level. Quantitative or qualitative data derived for many effects and interferences associated with an individual diagnostic sample can compromise any analyte. It is obvious that a process for a quality-control-sample-based approach of quality assurance is not sensitive to such errors. To address the potential causes and nature of such analytical interference in individual samples more systematically, we suggest the introduction of a new term called the irregular (individual) analytical error. Practically, this term can be applied in any analytical assay that is traceable to a reference measurement system. For an individual sample an irregular analytical error is defined as an inaccuracy (which is the deviation from a reference measurement procedure result) of a test result that is so high it cannot be explained by measurement uncertainty of the utilized routine assay operating within the accepted limitations of the associated process quality control measurements. The deviation can be defined as the linear combination of the process measurement uncertainty and the method bias for the reference measurement system. Such errors should be coined irregular analytical errors of the individual sample. The measurement result is compromised either by an irregular effect associated with the individual composition (matrix) of the sample or an individual single sample associated processing error in the analytical process. Currently, the availability of reference measurement procedures is still highly limited, but LC-isotope-dilution mass spectrometry methods are increasingly used for pre-market validation of routine diagnostic assays (these tests also involve substantial sets of clinical validation samples). Based on this definition/terminology, we list recognized causes of irregular analytical error as a risk catalog for clinical chemistry in this article. These issues include reproducible individual analytical errors (e.g. caused by anti-reagent antibodies) and non-reproducible, sporadic errors (e.g. errors due to incorrect pipetting volume due to air bubbles in a sample), which can both lead to inaccurate results and risks for patients.
Shimansky, Y P
2011-05-01
It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.
Bias in the Wagner-Nelson estimate of the fraction of drug absorbed.
Wang, Yibin; Nedelman, Jerry
2002-04-01
To examine and quantify bias in the Wagner-Nelson estimate of the fraction of drug absorbed resulting from the estimation error of the elimination rate constant (k), measurement error of the drug concentration, and the truncation error in the area under the curve. Bias in the Wagner-Nelson estimate was derived as a function of post-dosing time (t), k, ratio of absorption rate constant to k (r), and the coefficient of variation for estimates of k (CVk), or CV% for the observed concentration, by assuming a one-compartment model and using an independent estimate of k. The derived functions were used for evaluating the bias with r = 0.5, 3, or 6; k = 0.1 or 0.2; CV, = 0.2 or 0.4; and CV, =0.2 or 0.4; for t = 0 to 30 or 60. Estimation error of k resulted in an upward bias in the Wagner-Nelson estimate that could lead to the estimate of the fraction absorbed being greater than unity. The bias resulting from the estimation error of k inflates the fraction of absorption vs. time profiles mainly in the early post-dosing period. The magnitude of the bias in the Wagner-Nelson estimate resulting from estimation error of k was mainly determined by CV,. The bias in the Wagner-Nelson estimate resulting from to estimation error in k can be dramatically reduced by use of the mean of several independent estimates of k, as in studies for development of an in vivo-in vitro correlation. The truncation error in the area under the curve can introduce a negative bias in the Wagner-Nelson estimate. This can partially offset the bias resulting from estimation error of k in the early post-dosing period. Measurement error of concentration does not introduce bias in the Wagner-Nelson estimate. Estimation error of k results in an upward bias in the Wagner-Nelson estimate, mainly in the early drug absorption phase. The truncation error in AUC can result in a downward bias, which may partially offset the upward bias due to estimation error of k in the early absorption phase. Measurement error of concentration does not introduce bias. The joint effect of estimation error of k and truncation error in AUC can result in a non-monotonic fraction-of-drug-absorbed-vs-time profile. However, only estimation error of k can lead to the Wagner-Nelson estimate of fraction of drug absorbed greater than unity.
Armijo-Olivo, Susan; Cummings, Greta G.; Amin, Maryam; Flores-Mir, Carlos
2017-01-01
Objectives To examine the risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions and the development of these aspects over time. Methods We included 540 randomized clinical trials from 64 selected systematic reviews. We extracted, in duplicate, details from each of the selected randomized clinical trials with respect to publication and trial characteristics, reporting and methodologic characteristics, and Cochrane risk of bias domains. We analyzed data using logistic regression and Chi-square statistics. Results Sequence generation was assessed to be inadequate (at unclear or high risk of bias) in 68% (n = 367) of the trials, while allocation concealment was inadequate in the majority of trials (n = 464; 85.9%). Blinding of participants and blinding of the outcome assessment were judged to be inadequate in 28.5% (n = 154) and 40.5% (n = 219) of the trials, respectively. A sample size calculation before the initiation of the study was not performed/reported in 79.1% (n = 427) of the trials, while the sample size was assessed as adequate in only 17.6% (n = 95) of the trials. Two thirds of the trials were not described as double blinded (n = 358; 66.3%), while the method of blinding was appropriate in 53% (n = 286) of the trials. We identified a significant decrease over time (1955–2013) in the proportion of trials assessed as having inadequately addressed methodological quality items (P < 0.05) in 30 out of the 40 quality criteria, or as being inadequate (at high or unclear risk of bias) in five domains of the Cochrane risk of bias tool: sequence generation, allocation concealment, incomplete outcome data, other sources of bias, and overall risk of bias. Conclusions The risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions have improved over time; however, further efforts that contribute to the development of more stringent methodology and detailed reporting of trials are still needed. PMID:29272315
Saltaji, Humam; Armijo-Olivo, Susan; Cummings, Greta G; Amin, Maryam; Flores-Mir, Carlos
2017-01-01
To examine the risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions and the development of these aspects over time. We included 540 randomized clinical trials from 64 selected systematic reviews. We extracted, in duplicate, details from each of the selected randomized clinical trials with respect to publication and trial characteristics, reporting and methodologic characteristics, and Cochrane risk of bias domains. We analyzed data using logistic regression and Chi-square statistics. Sequence generation was assessed to be inadequate (at unclear or high risk of bias) in 68% (n = 367) of the trials, while allocation concealment was inadequate in the majority of trials (n = 464; 85.9%). Blinding of participants and blinding of the outcome assessment were judged to be inadequate in 28.5% (n = 154) and 40.5% (n = 219) of the trials, respectively. A sample size calculation before the initiation of the study was not performed/reported in 79.1% (n = 427) of the trials, while the sample size was assessed as adequate in only 17.6% (n = 95) of the trials. Two thirds of the trials were not described as double blinded (n = 358; 66.3%), while the method of blinding was appropriate in 53% (n = 286) of the trials. We identified a significant decrease over time (1955-2013) in the proportion of trials assessed as having inadequately addressed methodological quality items (P < 0.05) in 30 out of the 40 quality criteria, or as being inadequate (at high or unclear risk of bias) in five domains of the Cochrane risk of bias tool: sequence generation, allocation concealment, incomplete outcome data, other sources of bias, and overall risk of bias. The risks of bias, risks of random errors, reporting quality, and methodological quality of randomized clinical trials of oral health interventions have improved over time; however, further efforts that contribute to the development of more stringent methodology and detailed reporting of trials are still needed.
Koster, Geert; Bekema, Hanneke J; Wetterslev, Jørn; Gluud, Christian; Keus, Frederik; van der Horst, Iwan C C
2016-09-01
Milrinone is an inotrope widely used for treatment of cardiac failure. Because previous meta-analyses had methodological flaws, we decided to conduct a systematic review of the effect of milrinone in critically ill adult patients with cardiac dysfunction. This systematic review was performed according to The Cochrane Handbook for Systematic Reviews of Interventions. Searches were conducted until November 2015. Patients with cardiac dysfunction were included. The primary outcome was serious adverse events (SAE) including mortality at maximum follow-up. The risk of bias was evaluated and trial sequential analyses were conducted. The quality of evidence was assessed by the Grading of Recommendations Assessment, Development and Evaluation criteria. A total of 31 randomised clinical trials fulfilled the inclusion criteria, of which 16 provided data for our analyses. All trials were at high risk of bias, and none reported the primary composite outcome SAE. Fourteen trials with 1611 randomised patients reported mortality data at maximum follow-up (RR 0.96; 95% confidence interval 0.76-1.21). Milrinone did not significantly affect other patient-centred outcomes. All analyses displayed statistical and/or clinical heterogeneity of patients, interventions, comparators, outcomes, and/or settings and all featured missing data. The current evidence on the use of milrinone in critically ill adult patients with cardiac dysfunction suffers from considerable risks of both bias and random error and demonstrates no benefits. The use of milrinone for the treatment of critically ill patients with cardiac dysfunction can be neither recommended nor refuted. Future randomised clinical trials need to be sufficiently large and designed to have low risk of bias.
Intercalibration of research survey vessels on Lake Erie
Tyson, J.T.; Johnson, T.B.; Knight, C.T.; Bur, M.T.
2006-01-01
Fish abundance indices obtained from annual research trawl surveys are an integral part of fisheries stock assessment and management in the Great Lakes. It is difficult, however, to administer trawl surveys using a single vessel-gear combination owing to the large size of these systems, the jurisdictional boundaries that bisect the Great Lakes, and changes in vessels as a result of fleet replacement. When trawl surveys are administered by multiple vessel-gear combinations, systematic error may be introduced in combining catch-per-unit-effort (CPUE) data across vessels. This bias is associated with relative differences in catchability among vessel-gear combinations. In Lake Erie, five different research vessels conduct seasonal trawl surveys in the western half of the lake. To eliminate this systematic bias, the Lake Erie agencies conducted a side-by-side trawling experiment in 2003 to develop correction factors for CPUE data associated with different vessel-gear combinations. Correcting for systematic bias in CPUE data should lead to more accurate and comparable estimates of species density and biomass. We estimated correction factors for the 10 most commonly collected species age-groups for each vessel during the experiment. Most of the correction factors (70%) ranged from 0.5 to 2.0, indicating that the systematic bias associated with different vessel-gear combinations was not large. Differences in CPUE were most evident for vessels using different sampling gears, although significant differences also existed for vessels using the same gears. These results suggest that standardizing gear is important for multiple-vessel surveys, but there will still be significant differences in catchability stemming from the vessel effects and agencies must correct for this. With standardized estimates of CPUE, the Lake Erie agencies will have the ability to directly compare and combine time series for species abundance. ?? Copyright by the American Fisheries Society 2006.
Assessment of Biases in MODIS Surface Reflectance Due to Lambertian Approximation
NASA Technical Reports Server (NTRS)
Wang, Yujie; Lyapustin, Alexei I.; Privette, Jeffrey L.; Cook, Robert B.; SanthanaVannan, Suresh K.; Vermote, Eric F.; Schaaf, Crystal
2010-01-01
Using MODIS data and the AERONET-based Surface Reflectance Validation Network (ASRVN), this work studies errors of MODIS atmospheric correction caused by the Lambertian approximation. On one hand, this approximation greatly simplifies the radiative transfer model, reduces the size of the look-up tables, and makes operational algorithm faster. On the other hand, uncompensated atmospheric scattering caused by Lambertian model systematically biases the results. For example, for a typical bowl-shaped bidirectional reflectance distribution function (BRDF), the derived reflectance is underestimated at high solar or view zenith angles, where BRDF is high, and is overestimated at low zenith angles where BRDF is low. The magnitude of biases grows with the amount of scattering in the atmosphere, i.e., at shorter wavelengths and at higher aerosol concentration. The slope of regression of Lambertian surface reflectance vs. ASRVN bidirectional reflectance factor (BRF) is about 0.85 in the red and 0.6 in the green bands. This error propagates into the MODIS BRDF/albedo algorithm, slightly reducing the magnitude of overall reflectance and anisotropy of BRDF. This results in a small negative bias of spectral surface albedo. An assessment for the GSFC (Greenbelt, USA) validation site shows the albedo reduction by 0.004 in the near infrared, 0.005 in the red, and 0.008 in the green MODIS bands.
Sources of Response Bias in Older Ethnic Minorities: A Case of Korean American Elderly
Kim, Miyong T.; Ko, Jisook; Yoon, Hyunwoo; Kim, Kim B.; Jang, Yuri
2015-01-01
The present study was undertaken to investigate potential sources of response bias in empirical research involving older ethnic minorities and to identify prudent strategies to reduce those biases, using Korean American elderly (KAE) as an example. Data were obtained from three independent studies of KAE (N=1,297; age ≥60) in three states (Florida, New York, and Maryland) from 2000 to 2008. Two common measures, Pearlin’s Mastery Scale and the CES-D scale, were selected for a series of psychometric tests based on classical measurement theory. Survey items were analyzed in depth, using psychometric properties generated from both exploratory factor analysis and confirmatory factor analysis as well as correlational analysis. Two types of potential sources of bias were identified as the most significant contributors to increases in error variances for these psychological instruments. Error variances were most prominent when (1) items were not presented in a manner that was culturally or contextually congruent with respect to the target population and/or (2) the response anchors for items were mixed (e.g., positive vs. negative). The systemic patterns and magnitudes of the biases were also cross-validated for the three studies. The results demonstrate sources and impacts of measurement biases in studies of older ethnic minorities. The identified response biases highlight the need for re-evaluation of current measurement practices, which are based on traditional recommendations that response anchors should be mixed or that the original wording of instruments should be rigidly followed. Specifically, systematic guidelines for accommodating cultural and contextual backgrounds into instrument design are warranted. PMID:26049971
Malyarenko, Dariya I; Wilmes, Lisa J; Arlinghaus, Lori R; Jacobs, Michael A; Huang, Wei; Helmer, Karl G; Taouli, Bachir; Yankeelov, Thomas E; Newitt, David; Chenevert, Thomas L
2016-12-01
Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, -35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI.
Malyarenko, Dariya I.; Wilmes, Lisa J.; Arlinghaus, Lori R.; Jacobs, Michael A.; Huang, Wei; Helmer, Karl G.; Taouli, Bachir; Yankeelov, Thomas E.; Newitt, David; Chenevert, Thomas L.
2017-01-01
Previous research has shown that system-dependent gradient nonlinearity (GNL) introduces a significant spatial bias (nonuniformity) in apparent diffusion coefficient (ADC) maps. Here, the feasibility of centralized retrospective system-specific correction of GNL bias for quantitative diffusion-weighted imaging (DWI) in multisite clinical trials is demonstrated across diverse scanners independent of the scanned object. Using corrector maps generated from system characterization by ice-water phantom measurement completed in the previous project phase, GNL bias correction was performed for test ADC measurements from an independent DWI phantom (room temperature agar) at two offset locations in the bore. The precomputed three-dimensional GNL correctors were retrospectively applied to test DWI scans by the central analysis site. The correction was blinded to reference DWI of the agar phantom at magnet isocenter where the GNL bias is negligible. The performance was evaluated from changes in ADC region of interest histogram statistics before and after correction with respect to the unbiased reference ADC values provided by sites. Both absolute error and nonuniformity of the ADC map induced by GNL (median, 12%; range, −35% to +10%) were substantially reduced by correction (7-fold in median and 3-fold in range). The residual ADC nonuniformity errors were attributed to measurement noise and other non-GNL sources. Correction of systematic GNL bias resulted in a 2-fold decrease in technical variability across scanners (down to site temperature range). The described validation of GNL bias correction marks progress toward implementation of this technology in multicenter trials that utilize quantitative DWI. PMID:28105469
Sources of Response Bias in Older Ethnic Minorities: A Case of Korean American Elderly.
Kim, Miyong T; Lee, Ju-Young; Ko, Jisook; Yoon, Hyunwoo; Kim, Kim B; Jang, Yuri
2015-09-01
The present study was undertaken to investigate potential sources of response bias in empirical research involving older ethnic minorities and to identify prudent strategies to reduce those biases, using Korean American elderly (KAE) as an example. Data were obtained from three independent studies of KAE (N = 1,297; age ≥60) in three states (Florida, New York, and Maryland) from 2000 to 2008. Two common measures, Pearlin's Mastery Scale and the CES-D scale, were selected for a series of psychometric tests based on classical measurement theory. Survey items were analyzed in depth, using psychometric properties generated from both exploratory factor analysis and confirmatory factor analysis as well as correlational analysis. Two types of potential sources of bias were identified as the most significant contributors to increases in error variances for these psychological instruments. Error variances were most prominent when (1) items were not presented in a manner that was culturally or contextually congruent with respect to the target population and/or (2) the response anchors for items were mixed (e.g., positive vs. negative). The systemic patterns and magnitudes of the biases were also cross-validated for the three studies. The results demonstrate sources and impacts of measurement biases in studies of older ethnic minorities. The identified response biases highlight the need for re-evaluation of current measurement practices, which are based on traditional recommendations that response anchors should be mixed or that the original wording of instruments should be rigidly followed. Specifically, systematic guidelines for accommodating cultural and contextual backgrounds into instrument design are warranted.
Perceived Surface Slant Is Systematically Biased in the Actively-Generated Optic Flow
Fantoni, Carlo; Caudek, Corrado; Domini, Fulvio
2012-01-01
Humans make systematic errors in the 3D interpretation of the optic flow in both passive and active vision. These systematic distortions can be predicted by a biologically-inspired model which disregards self-motion information resulting from head movements (Caudek, Fantoni, & Domini 2011). Here, we tested two predictions of this model: (1) A plane that is stationary in an earth-fixed reference frame will be perceived as changing its slant if the movement of the observer's head causes a variation of the optic flow; (2) a surface that rotates in an earth-fixed reference frame will be perceived to be stationary, if the surface rotation is appropriately yoked to the head movement so as to generate a variation of the surface slant but not of the optic flow. Both predictions were corroborated by two experiments in which observers judged the perceived slant of a random-dot planar surface during egomotion. We found qualitatively similar biases for monocular and binocular viewing of the simulated surfaces, although, in principle, the simultaneous presence of disparity and motion cues allows for a veridical recovery of surface slant. PMID:22479473
Evaluation of the CORDEX-Africa multi-RCM hindcast: systematic model errors
NASA Astrophysics Data System (ADS)
Kim, J.; Waliser, Duane E.; Mattmann, Chris A.; Goodale, Cameron E.; Hart, Andrew F.; Zimdars, Paul A.; Crichton, Daniel J.; Jones, Colin; Nikulin, Grigory; Hewitson, Bruce; Jack, Chris; Lennard, Christopher; Favre, Alice
2014-03-01
Monthly-mean precipitation, mean (TAVG), maximum (TMAX) and minimum (TMIN) surface air temperatures, and cloudiness from the CORDEX-Africa regional climate model (RCM) hindcast experiment are evaluated for model skill and systematic biases. All RCMs simulate basic climatological features of these variables reasonably, but systematic biases also occur across these models. All RCMs show higher fidelity in simulating precipitation for the west part of Africa than for the east part, and for the tropics than for northern Sahara. Interannual variation in the wet season rainfall is better simulated for the western Sahel than for the Ethiopian Highlands. RCM skill is higher for TAVG and TMAX than for TMIN, and regionally, for the subtropics than for the tropics. RCM skill in simulating cloudiness is generally lower than for precipitation or temperatures. For all variables, multi-model ensemble (ENS) generally outperforms individual models included in ENS. An overarching conclusion in this study is that some model biases vary systematically for regions, variables, and metrics, posing difficulties in defining a single representative index to measure model fidelity, especially for constructing ENS. This is an important concern in climate change impact assessment studies because most assessment models are run for specific regions/sectors with forcing data derived from model outputs. Thus, model evaluation and ENS construction must be performed separately for regions, variables, and metrics as required by specific analysis and/or assessments. Evaluations using multiple reference datasets reveal that cross-examination, quality control, and uncertainty estimates of reference data are crucial in model evaluations.
ArcticDEM Validation and Accuracy Assessment
NASA Astrophysics Data System (ADS)
Candela, S. G.; Howat, I.; Noh, M. J.; Porter, C. C.; Morin, P. J.
2017-12-01
ArcticDEM comprises a growing inventory Digital Elevation Models (DEMs) covering all land above 60°N. As of August, 2017, ArcticDEM had openly released 2-m resolution, individual DEM covering over 51 million km2, which includes areas of repeat coverage for change detection, as well as over 15 million km2 of 5-m resolution seamless mosaics. By the end of the project, over 80 million km2 of 2-m DEMs will be produced, averaging four repeats of the 20 million km2 Arctic landmass. ArcticDEM is produced from sub-meter resolution, stereoscopic imagery using open source software (SETSM) on the NCSA Blue Waters supercomputer. These DEMs have known biases of several meters due to errors in the sensor models generated from satellite positioning. These systematic errors are removed through three-dimensional registration to high-precision Lidar or other control datasets. ArcticDEM is registered to seasonally-subsetted ICESat elevations due its global coverage and high report accuracy ( 10 cm). The vertical accuracy of ArcticDEM is then obtained from the statistics of the fit to the ICESat point cloud, which averages -0.01 m ± 0.07 m. ICESat, however, has a relatively coarse measurement footprint ( 70 m) which may impact the precision of the registration. Further, the ICESat data predates the ArcticDEM imagery by a decade, so that temporal changes in the surface may also impact the registration. Finally, biases may exist between different the different sensors in the ArcticDEM constellation. Here we assess the accuracy of ArcticDEM and the ICESat registration through comparison to multiple high-resolution airborne lidar datasets that were acquired within one year of the imagery used in ArcticDEM. We find the ICESat dataset is performing as anticipated, introducing no systematic bias during the coregistration process, and reducing vertical errors to within the uncertainty of the airborne Lidars. Preliminary sensor comparisons show no significant difference post coregistration, suggesting that there is no sensor bias between platforms, and all data is suitable for analysis without further correction. Here we will present accuracy assessments, observations and comparisons over diverse terrain in parts of Alaska and Greenland.
NASA Technical Reports Server (NTRS)
Grauer, Jared A.; Morelli, Eugene A.
2013-01-01
The NASA Generic Transport Model (GTM) nonlinear simulation was used to investigate the effects of errors in sensor measurements, mass properties, and aircraft geometry on the accuracy of identified parameters in mathematical models describing the flight dynamics and determined from flight data. Measurements from a typical flight condition and system identification maneuver were systematically and progressively deteriorated by introducing noise, resolution errors, and bias errors. The data were then used to estimate nondimensional stability and control derivatives within a Monte Carlo simulation. Based on these results, recommendations are provided for maximum allowable errors in sensor measurements, mass properties, and aircraft geometry to achieve desired levels of dynamic modeling accuracy. Results using additional flight conditions and parameter estimation methods, as well as a nonlinear flight simulation of the General Dynamics F-16 aircraft, were compared with these recommendations
NASA Astrophysics Data System (ADS)
Terray, P.; Sooraj, K. P.; Masson, S.; Krishna, R. P. M.; Samson, G.; Prajeesh, A. G.
2017-07-01
State-of-the-art global coupled models used in seasonal prediction systems and climate projections still have important deficiencies in representing the boreal summer tropical rainfall climatology. These errors include prominently a severe dry bias over all the Northern Hemisphere monsoon regions, excessive rainfall over the ocean and an unrealistic double inter-tropical convergence zone (ITCZ) structure in the tropical Pacific. While these systematic errors can be partly reduced by increasing the horizontal atmospheric resolution of the models, they also illustrate our incomplete understanding of the key mechanisms controlling the position of the ITCZ during boreal summer. Using a large collection of coupled models and dedicated coupled experiments, we show that these tropical rainfall errors are partly associated with insufficient surface thermal forcing and incorrect representation of the surface albedo over the Northern Hemisphere continents. Improving the parameterization of the land albedo in two global coupled models leads to a large reduction of these systematic errors and further demonstrates that the Northern Hemisphere subtropical deserts play a seminal role in these improvements through a heat low mechanism.
An Examination of the Spatial Distribution of Carbon Dioxide and Systematic Errors
NASA Technical Reports Server (NTRS)
Coffey, Brennan; Gunson, Mike; Frankenberg, Christian; Osterman, Greg
2011-01-01
The industrial period and modern age is characterized by combustion of coal, oil, and natural gas for primary energy and transportation leading to rising levels of atmospheric of CO2. This increase, which is being carefully measured, has ramifications throughout the biological world. Through remote sensing, it is possible to measure how many molecules of CO2 lie in a defined column of air. However, other gases and particles are present in the atmosphere, such as aerosols and water, which make such measurements more complicated1. Understanding the detailed geometry and path length of the observation is vital to computing the concentration of CO2. Comparing these satellite readings with ground-truth data (TCCON) the systematic errors arising from these sources can be assessed. Once the error is understood, it can be scaled for in the retrieval algorithms to create a set of data, which is closer to the TCCON measurements1. Using this process, the algorithms are being developed to reduce bias, within.1% worldwide of the true value. At this stage, the accuracy is within 1%, but through correcting small errors contained in the algorithms, such as accounting for the scattering of sunlight, the desired accuracy can be achieved.
Hydrologic Design in the Anthropocene
NASA Astrophysics Data System (ADS)
Vogel, R. M.; Farmer, W. H.; Read, L.
2014-12-01
In an era dubbed the Anthropocene, the natural world is being transformed by a myriad of human influences. As anthropogenic impacts permeate hydrologic systems, hydrologists are challenged to fully account for such changes and develop new methods of hydrologic design. Deterministic watershed models (DWM), which can account for the impacts of changes in land use, climate and infrastructure, are becoming increasing popular for the design of flood and/or drought protection measures. As with all models that are calibrated to existing datasets, DWMs are subject to model error or uncertainty. In practice, the model error component of DWM predictions is typically ignored yet DWM simulations which ignore model error produce model output which cannot reproduce the statistical properties of the observations they are intended to replicate. In the context of hydrologic design, we demonstrate how ignoring model error can lead to systematic downward bias in flood quantiles, upward bias in drought quantiles and upward bias in water supply yields. By reincorporating model error, we document how DWM models can be used to generate results that mimic actual observations and preserve their statistical behavior. In addition to use of DWM for improved predictions in a changing world, improved communication of the risk and reliability is also needed. Traditional statements of risk and reliability in hydrologic design have been characterized by return periods, but such statements often assume that the annual probability of experiencing a design event remains constant throughout the project horizon. We document the general impact of nonstationarity on the average return period and reliability in the context of hydrologic design. Our analyses reveal that return periods do not provide meaningful expressions of the likelihood of future hydrologic events. Instead, knowledge of system reliability over future planning horizons can more effectively prepare society and communicate the likelihood of future hydrologic events of interest.
On land-use modeling: A treatise of satellite imagery data and misclassification error
NASA Astrophysics Data System (ADS)
Sandler, Austin M.
Recent availability of satellite-based land-use data sets, including data sets with contiguous spatial coverage over large areas, relatively long temporal coverage, and fine-scale land cover classifications, is providing new opportunities for land-use research. However, care must be used when working with these datasets due to misclassification error, which causes inconsistent parameter estimates in the discrete choice models typically used to model land-use. I therefore adapt the empirical correction methods developed for other contexts (e.g., epidemiology) so that they can be applied to land-use modeling. I then use a Monte Carlo simulation, and an empirical application using actual satellite imagery data from the Northern Great Plains, to compare the results of a traditional model ignoring misclassification to those from models accounting for misclassification. Results from both the simulation and application indicate that ignoring misclassification will lead to biased results. Even seemingly insignificant levels of misclassification error (e.g., 1%) result in biased parameter estimates, which alter marginal effects enough to affect policy inference. At the levels of misclassification typical in current satellite imagery datasets (e.g., as high as 35%), ignoring misclassification can lead to systematically erroneous land-use probabilities and substantially biased marginal effects. The correction methods I propose, however, generate consistent parameter estimates and therefore consistent estimates of marginal effects and predicted land-use probabilities.
Briggs, Marc A.; Rumbold, Penny L. S.; Cockburn, Emma; Russell, Mark; Stevenson, Emma J.
2015-01-01
Collecting accurate and reliable nutritional data from adolescent populations is challenging, with current methods providing significant under-reporting. Therefore, the aim of the study was to determine the accuracy of a combined dietary data collection method (self-reported weighed food diary, supplemented with a 24-h recall) when compared to researcher observed energy intake in male adolescent soccer players. Twelve Academy players from an English Football League club participated in the study. Players attended a 12 h period in the laboratory (08:00 h–20:00 h), during which food and drink items were available and were consumed ad libitum. Food was also provided to consume at home between 20:00 h and 08:00 h the following morning under free-living conditions. To calculate the participant reported energy intake, food and drink items were weighed and recorded in a food diary by each participant, which was supplemented with information provided through a 24-h recall interview the following morning. Linear regression, limits of agreement (LOA) and typical error (coefficient of variation; CV) were used to quantify agreement between observer and participant reported 24-h energy intake. Difference between methods was assessed using a paired samples t-test. Participants systematically under-reported energy intake in comparison to that observed (p < 0.01) but the magnitude of this bias was small and consistent (mean bias = −88 kcal·day−1, 95% CI for bias = −146 to −29 kcal·day−1). For random error, the 95% LOA between methods ranged between −1.11 to 0.37 MJ·day−1 (−256 to 88 kcal·day−1). The standard error of the estimate was low, with a typical error between measurements of 3.1%. These data suggest that the combined dietary data collection method could be used interchangeably with the gold standard observed food intake technique in the population studied providing that appropriate adjustment is made for the systematic under-reporting common to such methods. PMID:26193315
NASA Astrophysics Data System (ADS)
Tugendhat, Tim M.; Schäfer, Björn Malte
2018-05-01
We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.
Drought Persistence Errors in Global Climate Models
NASA Astrophysics Data System (ADS)
Moon, H.; Gudmundsson, L.; Seneviratne, S. I.
2018-04-01
The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.
BAO from Angular Clustering: Optimization and Mitigation of Theoretical Systematics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocce, M.; et al.
We study the theoretical systematics and optimize the methodology in Baryon Acoustic Oscillations (BAO) detections using the angular correlation function with tomographic bins. We calibrate and optimize the pipeline for the Dark Energy Survey Year 1 dataset using 1800 mocks. We compare the BAO fitting results obtained with three estimators: the Maximum Likelihood Estimator (MLE), Profile Likelihood, and Markov Chain Monte Carlo. The MLE method yields the least bias in the fit results (bias/spreadmore » $$\\sim 0.02$$) and the error bar derived is the closest to the Gaussian results (1% from 68% Gaussian expectation). When there is mismatch between the template and the data either due to incorrect fiducial cosmology or photo-$z$ error, the MLE again gives the least-biased results. The BAO angular shift that is estimated based on the sound horizon and the angular diameter distance agree with the numerical fit. Various analysis choices are further tested: the number of redshift bins, cross-correlations, and angular binning. We propose two methods to correct the mock covariance when the final sample properties are slightly different from those used to create the mock. We show that the sample changes can be accommodated with the help of the Gaussian covariance matrix or more effectively using the eigenmode expansion of the mock covariance. The eigenmode expansion is significantly less susceptible to statistical fluctuations relative to the direct measurements of the covariance matrix because the number of free parameters is substantially reduced [$p$ parameters versus $p(p+1)/2$ from direct measurement].« less
NASA Astrophysics Data System (ADS)
Del Giudice, Dario; Löwe, Roland; Madsen, Henrik; Mikkelsen, Peter Steen; Rieckermann, Jörg
2015-07-01
In urban rainfall-runoff, commonly applied statistical techniques for uncertainty quantification mostly ignore systematic output errors originating from simplified models and erroneous inputs. Consequently, the resulting predictive uncertainty is often unreliable. Our objective is to present two approaches which use stochastic processes to describe systematic deviations and to discuss their advantages and drawbacks for urban drainage modeling. The two methodologies are an external bias description (EBD) and an internal noise description (IND, also known as stochastic gray-box modeling). They emerge from different fields and have not yet been compared in environmental modeling. To compare the two approaches, we develop a unifying terminology, evaluate them theoretically, and apply them to conceptual rainfall-runoff modeling in the same drainage system. Our results show that both approaches can provide probabilistic predictions of wastewater discharge in a similarly reliable way, both for periods ranging from a few hours up to more than 1 week ahead of time. The EBD produces more accurate predictions on long horizons but relies on computationally heavy MCMC routines for parameter inferences. These properties make it more suitable for off-line applications. The IND can help in diagnosing the causes of output errors and is computationally inexpensive. It produces best results on short forecast horizons that are typical for online applications.
A signal detection-item response theory model for evaluating neuropsychological measures.
Thomas, Michael L; Brown, Gregory G; Gur, Ruben C; Moore, Tyler M; Patt, Virginie M; Risbrough, Victoria B; Baker, Dewleen G
2018-02-05
Models from signal detection theory are commonly used to score neuropsychological test data, especially tests of recognition memory. Here we show that certain item response theory models can be formulated as signal detection theory models, thus linking two complementary but distinct methodologies. We then use the approach to evaluate the validity (construct representation) of commonly used research measures, demonstrate the impact of conditional error on neuropsychological outcomes, and evaluate measurement bias. Signal detection-item response theory (SD-IRT) models were fitted to recognition memory data for words, faces, and objects. The sample consisted of U.S. Infantry Marines and Navy Corpsmen participating in the Marine Resiliency Study. Data comprised item responses to the Penn Face Memory Test (PFMT; N = 1,338), Penn Word Memory Test (PWMT; N = 1,331), and Visual Object Learning Test (VOLT; N = 1,249), and self-report of past head injury with loss of consciousness. SD-IRT models adequately fitted recognition memory item data across all modalities. Error varied systematically with ability estimates, and distributions of residuals from the regression of memory discrimination onto self-report of past head injury were positively skewed towards regions of larger measurement error. Analyses of differential item functioning revealed little evidence of systematic bias by level of education. SD-IRT models benefit from the measurement rigor of item response theory-which permits the modeling of item difficulty and examinee ability-and from signal detection theory-which provides an interpretive framework encompassing the experimentally validated constructs of memory discrimination and response bias. We used this approach to validate the construct representation of commonly used research measures and to demonstrate how nonoptimized item parameters can lead to erroneous conclusions when interpreting neuropsychological test data. Future work might include the development of computerized adaptive tests and integration with mixture and random-effects models.
Effects of calcium on the incidence of recurrent colorectal adenomas
Veettil, Sajesh K.; Ching, Siew Mooi; Lim, Kean Ghee; Saokaew, Surasak; Phisalprapa, Pochamana; Chaiyakunapruk, Nathorn
2017-01-01
Abstract Background: Protective effects of calcium supplementation against colorectal adenomas have been documented in systematic reviews; however, the results have not been conclusive. Our objective was to update and systematically evaluate the evidence for calcium supplementation taking into consideration the risks of systematic and random error and to GRADE the evidence. Methods: The study comprised a systematic review with meta-analysis and trial sequential analysis (TSA) of randomized controlled trials (RCTs). We searched for RCTs published up until September 2016. Retrieved trials were evaluated using risk of bias. Primary outcome measures were the incidences of any recurrent adenomas and of advanced adenomas. Meta-analytic estimates were calculated with the random-effects model and random errors were evaluated with trial sequential analyses (TSAs). Results: Five randomized trials (2234 patients with a history of adenomas) were included. Two of the 5 trials showed either unclear or high risks of bias in most criteria. Meta-analysis of good quality RCTs suggest a moderate protective effect of calcium supplementation on recurrence of adenomas (relative risk [RR], 0.88 [95% CI 0.79–0.99]); however, its effects on advanced adenomas did not show statistical significance (RR, 1.02 [95% CI 0.67–1.55]). Subgroup analyses demonstrated a greater protective effect on recurrence of adenomas with elemental calcium dose ≥1600 mg/day (RR, 0.74 [95% CI 0.56–0.97]) compared to ≤1200 mg/day (RR, 0.84 [95% CI 0.73–0.97]). No major serious adverse events were associated with the use of calcium, but there was an increase in the incidence of hypercalcemia (P = .0095). TSA indicated a lack of firm evidence for a beneficial effect. Concerns with directness and imprecision rated down the quality of the evidence to “low.” Conclusion: The available good quality RCTs suggests a possible beneficial effect of calcium supplementation on the recurrence of adenomas; however, TSA indicated that the accumulated evidence is still inconclusive. Using GRADE-methodology, we conclude that the quality of evidence is low. Large well-designed randomized trials with low risk of bias are needed. PMID:28796047
Atwood, E.L.
1958-01-01
Response bias errors are studied by comparing questionnaire responses from waterfowl hunters using four large public hunting areas with actual hunting data from these areas during two hunting seasons. To the extent that the data permit, the sources of the error in the responses were studied and the contribution of each type to the total error was measured. Response bias errors, including both prestige and memory bias, were found to be very large as compared to non-response and sampling errors. Good fits were obtained with the seasonal kill distribution of the actual hunting data and the negative binomial distribution and a good fit was obtained with the distribution of total season hunting activity and the semi-logarithmic curve. A comparison of the actual seasonal distributions with the questionnaire response distributions revealed that the prestige and memory bias errors are both positive. The comparisons also revealed the tendency for memory bias errors to occur at digit frequencies divisible by five and for prestige bias errors to occur at frequencies which are multiples of the legal daily bag limit. A graphical adjustment of the response distributions was carried out by developing a smooth curve from those frequency classes not included in the predictable biased frequency classes referred to above. Group averages were used in constructing the curve, as suggested by Ezekiel [1950]. The efficiency of the technique described for reducing response bias errors in hunter questionnaire responses on seasonal waterfowl kill is high in large samples. The graphical method is not as efficient in removing response bias errors in hunter questionnaire responses on seasonal hunting activity where an average of 60 percent was removed.
Advancing a Framework for Regulatory Use of Real-World Evidence: When Real Is Reliable.
Dreyer, Nancy A
2018-05-01
There is growing interest in regulatory use of randomized pragmatic trials and noninterventional real-world (RW) studies of effectiveness and safety, but there is no agreed-on framework for assessing when this type of evidence is sufficiently reliable. Rather than impose a clinical trial-like paradigm on RW evidence, like blinded treatments or complete, source-verified data, the framework for assessing the utility of RW evidence should be grounded in the context of specific study objectives, clinical events that are likely to be detected in routine care, and the extent to which systematic error (bias) is likely to impact effect estimation. Whether treatment is blinded should depend on how well the outcome can be measured objectively. Qualification of a data source should be based on (1) numbers of patients of interest available for study; (2) if "must-have" data are likely to be recorded, and if so, how and where; (3) the accessibility of systematic follow-up data for the time period of interest; and (4) the potential for systematic errors (bias) in data collection and the likely magnitude of any such bias. Accessible data may not be representative of an entire population, but still may provide reliable evidence about the experience of typical patients treated under conditions of conventional care. Similarly, RW data that falls short of optimal length of follow-up or study size may still be useful in terms of its ability to provide evidence for regulators for subgroups of special interest. Developing a framework to qualify RW evidence in the context of a particular study purpose and data asset will enable broader regulatory use of RW data for approval of new molecular entities and label changes. Reliable information about diverse populations and settings should also help us move closer to more affordable, effective health care.
Cosmological measurements with general relativistic galaxy correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raccanelli, Alvise; Montanari, Francesco; Durrer, Ruth
We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ''relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxymore » bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.« less
On the Limitations of Variational Bias Correction
NASA Technical Reports Server (NTRS)
Moradi, Isaac; Mccarty, Will; Gelaro, Ronald
2018-01-01
Satellite radiances are the largest dataset assimilated into Numerical Weather Prediction (NWP) models, however the data are subject to errors and uncertainties that need to be accounted for before assimilating into the NWP models. Variational bias correction uses the time series of observation minus background to estimate the observations bias. This technique does not distinguish between the background error, forward operator error, and observations error so that all these errors are summed up together and counted as observation error. We identify some sources of observations errors (e.g., antenna emissivity, non-linearity in the calibration, and antenna pattern) and show the limitations of variational bias corrections on estimating these errors.
Shades of Gray: Releasing the Cognitive Binds that Blind Us
2016-09-01
The availability heuristic is the cognitive process of problem solving based on learning and experience. This intuitive thinking process requires...describe a person’s systematic but flawed patterns of response to both judgment and decision problems .2 Research on the effects of cognitive bias on the...errors made. The ICArUS sensemaking model currently being developed could provide the IC with software that has the ability to mirror human cognitive
Research gaps identified during systematic reviews of clinical trials: glass-ionomer cements.
Mickenautsch, Steffen
2012-06-29
To report the results of an audit concerning research gaps in clinical trials that were accepted for appraisal in authored and published systematic reviews regarding the application of glass-ionomer cements (GIC) in dental practice Information concerning research gaps in trial precision was extracted, following a framework that included classification of the research gap reasons: 'imprecision of information (results)', 'biased information', 'inconsistency or unknown consistency' and 'not the right information', as well as research gap characterization using PICOS elements: population (P), intervention (I), comparison (C), outcomes (O) and setting (S). Internal trial validity assessment was based on the understanding that successful control for systematic error cannot be assured on the basis of inclusion of adequate methods alone, but also requires empirical evidence about whether such attempt was successful. A comprehensive and interconnected coverage of GIC-related clinical topics was established. The most common reasons found for gaps in trial precision were lack of sufficient trials and lack of sufficient large sample size. Only a few research gaps were ascribed to 'Lack of information' caused by focus on mainly surrogate trial outcomes. According to the chosen assessment criteria, a lack of adequate randomisation, allocation concealment and blinding/masking in trials covering all reviewed GIC topics was noted (selection- and detection/performance bias risk). Trial results appear to be less affected by loss-to-follow-up (attrition bias risk). This audit represents an adjunct of the systematic review articles it has covered. Its results do not change the systematic review's conclusions but highlight existing research gaps concerning the precision and internal validity of reviewed trials in detail. These gaps should be addressed in future GIC-related clinical research.
NASA Technical Reports Server (NTRS)
Blucker, T. J.; Ferry, W. W.
1971-01-01
An error model is described for the Apollo 15 sun compass, a contingency navigational device. Field test data are presented along with significant results of the test. The errors reported include a random error resulting from tilt in leveling the sun compass, a random error because of observer sighting inaccuracies, a bias error because of mean tilt in compass leveling, a bias error in the sun compass itself, and a bias error because the device is leveled to the local terrain slope.
A category adjustment approach to memory for spatial location in natural scenes.
Holden, Mark P; Curby, Kim M; Newcombe, Nora S; Shipley, Thomas F
2010-05-01
Memories for spatial locations often show systematic errors toward the central value of the surrounding region. This bias has been explained using a Bayesian model in which fine-grained and categorical information are combined (Huttenlocher, Hedges, & Duncan, 1991). However, experiments testing this model have largely used locations contained in simple geometric shapes. Use of this paradigm raises 2 issues. First, do results generalize to the complex natural world? Second, what types of information might be used to segment complex spaces into constituent categories? Experiment 1 addressed the 1st question by showing a bias toward prototypical values in memory for spatial locations in complex natural scenes. Experiment 2 addressed the 2nd question by manipulating the availability of basic visual cues (using color negatives) or of semantic information about the scene (using inverted images). Error patterns suggest that both perceptual and conceptual information are involved in segmentation. The possible neurological foundations of location memory of this kind are discussed. PsycINFO Database Record (c) 2010 APA, all rights reserved.
Gajewski, Byron J.; Lee, Robert; Dunton, Nancy
2012-01-01
Data Envelopment Analysis (DEA) is the most commonly used approach for evaluating healthcare efficiency (Hollingsworth, 2008), but a long-standing concern is that DEA assumes that data are measured without error. This is quite unlikely, and DEA and other efficiency analysis techniques may yield biased efficiency estimates if it is not realized (Gajewski, Lee, Bott, Piamjariyakul and Taunton, 2009; Ruggiero, 2004). We propose to address measurement error systematically using a Bayesian method (Bayesian DEA). We will apply Bayesian DEA to data from the National Database of Nursing Quality Indicators® (NDNQI®) to estimate nursing units’ efficiency. Several external reliability studies inform the posterior distribution of the measurement error on the DEA variables. We will discuss the case of generalizing the approach to situations where an external reliability study is not feasible. PMID:23328796
Impact of spurious shear on cosmological parameter estimates from weak lensing observables
Petri, Andrea; May, Morgan; Haiman, Zoltán; ...
2014-12-30
We research, residual errors in shear measurements, after corrections for instrument systematics and atmospheric effects, can impact cosmological parameters derived from weak lensing observations. Here we combine convergence maps from our suite of ray-tracing simulations with random realizations of spurious shear. This allows us to quantify the errors and biases of the triplet (Ω m,w,σ 8) derived from the power spectrum (PS), as well as from three different sets of non-Gaussian statistics of the lensing convergence field: Minkowski functionals (MFs), low-order moments (LMs), and peak counts (PKs). Our main results are as follows: (i) We find an order of magnitudemore » smaller biases from the PS than in previous work. (ii) The PS and LM yield biases much smaller than the morphological statistics (MF, PK). (iii) For strictly Gaussian spurious shear with integrated amplitude as low as its current estimate of σ sys 2 ≈ 10 -7, biases from the PS and LM would be unimportant even for a survey with the statistical power of Large Synoptic Survey Telescope. However, we find that for surveys larger than ≈ 100 deg 2, non-Gaussianity in the noise (not included in our analysis) will likely be important and must be quantified to assess the biases. (iv) The morphological statistics (MF, PK) introduce important biases even for Gaussian noise, which must be corrected in large surveys. The biases are in different directions in (Ωm,w,σ8) parameter space, allowing self-calibration by combining multiple statistics. Our results warrant follow-up studies with more extensive lensing simulations and more accurate spurious shear estimates.« less
NASA Astrophysics Data System (ADS)
Worqlul, Abeyou W.; Ayana, Essayas K.; Maathuis, Ben H. P.; MacAlister, Charlotte; Philpot, William D.; Osorio Leyton, Javier M.; Steenhuis, Tammo S.
2018-01-01
In many developing countries and remote areas of important ecosystems, good quality precipitation data are neither available nor readily accessible. Satellite observations and processing algorithms are being extensively used to produce satellite rainfall products (SREs). Nevertheless, these products are prone to systematic errors and need extensive validation before to be usable for streamflow simulations. In this study, we investigated and corrected the bias of Multi-Sensor Precipitation Estimate-Geostationary (MPEG) data. The corrected MPEG dataset was used as input to a semi-distributed hydrological model Hydrologiska Byråns Vattenbalansavdelning (HBV) for simulation of discharge of the Gilgel Abay and Gumara watersheds in the Upper Blue Nile basin, Ethiopia. The result indicated that the MPEG satellite rainfall captured 81% and 78% of the gauged rainfall variability with a consistent bias of underestimating the gauged rainfall by 60%. A linear bias correction applied significantly reduced the bias while maintaining the coefficient of correlation. The simulated flow using bias corrected MPEG SRE resulted in a simulated flow comparable to the gauge rainfall for both watersheds. The study indicated the potential of MPEG SRE in water budget studies after applying a linear bias correction.
Between-day reliability of the trapezius muscle H-reflex and M-wave.
Vangsgaard, Steffen; Hansen, Ernst A; Madeleine, Pascal
2015-12-01
The aim of this study was to investigate the between-day reliability of the trapezius muscle H-reflex and M-wave. Sixteen healthy subjects were studied on 2 consecutive days. Trapezius muscle H-reflexes were evoked by electrical stimulation of the C3/4 cervical nerves; M-waves were evoked by electrical stimulation of the accessory nerve. Relative reliability was estimated by intraclass correlation coefficients (ICC2,1 ). Absolute reliability was estimated by computing the standard error of measurement (SEM) and the smallest real difference (SRD). Bland-Altman plots were constructed to detect any systematic bias. Variables showed substantial to excellent relative reliability (ICC = 0.70-0.99). The relative SEM ranged from 1.4% to 34.8%; relative SRD ranged from 3.8% to 96.5%. No systematic bias was present in the data. The amplitude and latency of the trapezius muscle H-reflex and M-wave in healthy young subjects can be measured reliably across days. © 2015 Wiley Periodicals, Inc.
Uncertainties in the cluster-cluster correlation function
NASA Astrophysics Data System (ADS)
Ling, E. N.; Frenk, C. S.; Barrow, J. D.
1986-12-01
The bootstrap resampling technique is applied to estimate sampling errors and significance levels of the two-point correlation functions determined for a subset of the CfA redshift survey of galaxies and a redshift sample of 104 Abell clusters. The angular correlation function for a sample of 1664 Abell clusters is also calculated. The standard errors in xi(r) for the Abell data are found to be considerably larger than quoted 'Poisson errors'. The best estimate for the ratio of the correlation length of Abell clusters (richness class R greater than or equal to 1, distance class D less than or equal to 4) to that of CfA galaxies is 4.2 + 1.4 or - 1.0 (68 percentile error). The enhancement of cluster clustering over galaxy clustering is statistically significant in the presence of resampling errors. The uncertainties found do not include the effects of possible systematic biases in the galaxy and cluster catalogs and could be regarded as lower bounds on the true uncertainty range.
NASA Astrophysics Data System (ADS)
Shen, Xiang; Liu, Bin; Li, Qing-Quan
2017-03-01
The Rational Function Model (RFM) has proven to be a viable alternative to the rigorous sensor models used for geo-processing of high-resolution satellite imagery. Because of various errors in the satellite ephemeris and instrument calibration, the Rational Polynomial Coefficients (RPCs) supplied by image vendors are often not sufficiently accurate, and there is therefore a clear need to correct the systematic biases in order to meet the requirements of high-precision topographic mapping. In this paper, we propose a new RPC bias-correction method using the thin-plate spline modeling technique. Benefiting from its excellent performance and high flexibility in data fitting, the thin-plate spline model has the potential to remove complex distortions in vendor-provided RPCs, such as the errors caused by short-period orbital perturbations. The performance of the new method was evaluated by using Ziyuan-3 satellite images and was compared against the recently developed least-squares collocation approach, as well as the classical affine-transformation and quadratic-polynomial based methods. The results show that the accuracies of the thin-plate spline and the least-squares collocation approaches were better than the other two methods, which indicates that strong non-rigid deformations exist in the test data because they cannot be adequately modeled by simple polynomial-based methods. The performance of the thin-plate spline method was close to that of the least-squares collocation approach when only a few Ground Control Points (GCPs) were used, and it improved more rapidly with an increase in the number of redundant observations. In the test scenario using 21 GCPs (some of them located at the four corners of the scene), the correction residuals of the thin-plate spline method were about 36%, 37%, and 19% smaller than those of the affine transformation method, the quadratic polynomial method, and the least-squares collocation algorithm, respectively, which demonstrates that the new method can be more effective at removing systematic biases in vendor-supplied RPCs.
The AFGL (Air Force Geophysics Laboratory) Absolute Gravity System’s Error Budget Revisted.
1985-05-08
also be induced by equipment not associated with the system. A systematic bias of 68 pgal was observed by the Istituto di Metrologia "G. Colonnetti...Laboratory Astrophysics, Univ. of Colo., Boulder, Colo. IMGC: Istituto di Metrologia "G. Colonnetti", Torino, Italy Table 1. Absolute Gravity Values...measurements were made with three Model D and three Model G La Coste-Romberg gravity meters. These instruments were operated by the following agencies
Heping Liu; James T. Randerson; Jamie Lindfors; William J. Massman; Thomas Foken
2006-01-01
We present an approach for assessing the impact of systematic biases in measured energy fluxes on CO2 flux estimates obtained from open-path eddy-covariance systems. In our analysis, we present equations to analyse the propagation of errors through the Webb, Pearman, and Leuning (WPL) algorithm [Quart. J. Roy. Meteorol. Soc. 106, 85Â100, 1980] that is widely used to...
Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laurent, Pierre; Goff, Jean-Marc Le; Burtin, Etienne
2017-07-01
We study the first year of the eBOSS quasar sample in the redshift range 0.9< z <2.2 which includes 68,772 homogeneously selected quasars. We show that the main source of systematics in the evaluation of the correlation function arises from inhomogeneities in the quasar target selection, particularly related to the extinction and depth of the imaging data used for targeting. We propose a weighting scheme that mitigates these systematics. We measure the quasar correlation function and provide the most accurate measurement to date of the quasar bias in this redshift range, b {sub Q} = 2.45 ± 0.05 at z-barmore » =1.55, together with its evolution with redshift. We use this information to determine the minimum mass of the halo hosting the quasars and the characteristic halo mass, which we find to be both independent of redshift within statistical error. Using a recently-measured quasar-luminosity-function we also determine the quasar duty cycle. The size of this first year sample is insufficient to detect any luminosity dependence to quasar clustering and this issue should be further studied with the final ∼500,000 eBOSS quasar sample.« less
Clustering of quasars in SDSS-IV eBOSS: study of potential systematics and bias determination
NASA Astrophysics Data System (ADS)
Laurent, Pierre; Eftekharzadeh, Sarah; Le Goff, Jean-Marc; Myers, Adam; Burtin, Etienne; White, Martin; Ross, Ashley J.; Tinker, Jeremy; Tojeiro, Rita; Bautista, Julian; Brinkmann, Jonathan; Comparat, Johan; Dawson, Kyle; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; McGreer, Ian D.; Palanque-Delabrouille, Nathalie; Percival, Will J.; Prada, Francisco; Rossi, Graziano; Schneider, Donald P.; Weinberg, David; Yèche, Christophe; Zarrouk, Pauline; Zhao, Gong-Bo
2017-07-01
We study the first year of the eBOSS quasar sample in the redshift range 0.9
Anatomy of the Higgs fits: A first guide to statistical treatments of the theoretical uncertainties
NASA Astrophysics Data System (ADS)
Fichet, Sylvain; Moreau, Grégory
2016-04-01
The studies of the Higgs boson couplings based on the recent and upcoming LHC data open up a new window on physics beyond the Standard Model. In this paper, we propose a statistical guide to the consistent treatment of the theoretical uncertainties entering the Higgs rate fits. Both the Bayesian and frequentist approaches are systematically analysed in a unified formalism. We present analytical expressions for the marginal likelihoods, useful to implement simultaneously the experimental and theoretical uncertainties. We review the various origins of the theoretical errors (QCD, EFT, PDF, production mode contamination…). All these individual uncertainties are thoroughly combined with the help of moment-based considerations. The theoretical correlations among Higgs detection channels appear to affect the location and size of the best-fit regions in the space of Higgs couplings. We discuss the recurrent question of the shape of the prior distributions for the individual theoretical errors and find that a nearly Gaussian prior arises from the error combinations. We also develop the bias approach, which is an alternative to marginalisation providing more conservative results. The statistical framework to apply the bias principle is introduced and two realisations of the bias are proposed. Finally, depending on the statistical treatment, the Standard Model prediction for the Higgs signal strengths is found to lie within either the 68% or 95% confidence level region obtained from the latest analyses of the 7 and 8 TeV LHC datasets.
The East Asian Atmospheric Water Cycle and Monsoon Circulation in the Met Office Unified Model
NASA Astrophysics Data System (ADS)
Rodríguez, José M.; Milton, Sean F.; Marzin, Charline
2017-10-01
In this study the low-level monsoon circulation and observed sources of moisture responsible for the maintenance and seasonal evolution of the East Asian monsoon are examined, studying the detailed water budget components. These observational estimates are contrasted with the Met Office Unified Model (MetUM) climate simulation performance in capturing the circulation and water cycle at a variety of model horizontal resolutions and in fully coupled ocean-atmosphere simulations. We study the role of large-scale circulation in determining the hydrological cycle by analyzing key systematic errors in the model simulations. MetUM climate simulations exhibit robust circulation errors, including a weakening of the summer west Pacific Subtropical High, which leads to an underestimation of the southwesterly monsoon flow over the region. Precipitation and implied diabatic heating biases in the South Asian monsoon and Maritime Continent region are shown, via nudging sensitivity experiments, to have an impact on the East Asian monsoon circulation. By inference, the improvement of these tropical biases with increased model horizontal resolution is hypothesized to be a factor in improvements seen over East Asia with increased resolution. Results from the annual cycle of the hydrological budget components in five domains show a good agreement between MetUM simulations and ERA-Interim reanalysis in northern and Tibetan domains. In simulations, the contribution from moisture convergence is larger than in reanalysis, and they display less precipitation recycling over land. The errors are closely linked to monsoon circulation biases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnett, C.; Troxel, M. A.; Hartley, W.
We present photometric redshift estimates for galaxies used in the weak lensing analysis of the Dark Energy Survey Science Verification (DES SV) data. Four model- or machine learning-based photometric redshift methods { annz2, bpz calibrated against BCC-U fig simulations, skynet, and tpz { are analysed. For training, calibration, and testing of these methods, we also construct a catalogue of spectroscopically confirmed galaxies matched against DES SV data. The performance of the methods is evalu-ated against the matched spectroscopic catalogue, focusing on metrics relevant for weak lensing analyses, with additional validation against COSMOS photo-zs. From the galaxies in the DES SVmore » shear catalogue, which have mean redshift 0.72 ±0.01 over the range 0:3 < z < 1:3, we construct three tomographic bins with means of z = {0.45; 0.67,1.00g}. These bins each have systematic uncertainties δ z ≲ 0.05 in the mean of the fiducial skynet photo-z n(z). We propagate the errors in the redshift distributions through to their impact on cosmological parameters estimated with cosmic shear, and find that they cause shifts in the value of σ 8 of approx. 3%. This shift is within the one sigma statistical errors on σ8 for the DES SV shear catalog. We also found that further study of the potential impact of systematic differences on the critical surface density, Σ crit, contained levels of bias safely less than the statistical power of DES SV data. We recommend a final Gaussian prior for the photo-z bias in the mean of n(z) of width 0:05 for each of the three tomographic bins, and show that this is a sufficient bias model for the corresponding cosmology analysis.« less
NASA Astrophysics Data System (ADS)
Pokhrel, Samir; Saha, Subodh Kumar; Dhakate, Ashish; Rahman, Hasibur; Chaudhari, Hemantkumar S.; Salunke, Kiran; Hazra, Anupam; Sujith, K.; Sikka, D. R.
2016-04-01
A detailed analysis of sensitivity to the initial condition for the simulation of the Indian summer monsoon using retrospective forecast by the latest version of the Climate Forecast System version-2 (CFSv2) is carried out. This study primarily focuses on the tropical region of Indian and Pacific Ocean basin, with special emphasis on the Indian land region. The simulated seasonal mean and the inter-annual standard deviations of rainfall, upper and lower level atmospheric circulations and Sea Surface Temperature (SST) tend to be more skillful as the lead forecast time decreases (5 month lead to 0 month lead time i.e. L5-L0). In general spatial correlation (bias) increases (decreases) as forecast lead time decreases. This is further substantiated by their averaged value over the selected study regions over the Indian and Pacific Ocean basins. The tendency of increase (decrease) of model bias with increasing (decreasing) forecast lead time also indicates the dynamical drift of the model. Large scale lower level circulation (850 hPa) shows enhancement of anomalous westerlies (easterlies) over the tropical region of the Indian Ocean (Western Pacific Ocean), which indicates the enhancement of model error with the decrease in lead time. At the upper level circulation (200 hPa) biases in both tropical easterly jet and subtropical westerlies jet tend to decrease as the lead time decreases. Despite enhancement of the prediction skill, mean SST bias seems to be insensitive to the initialization. All these biases are significant and together they make CFSv2 vulnerable to seasonal uncertainties in all the lead times. Overall the zeroth lead (L0) seems to have the best skill, however, in case of Indian summer monsoon rainfall (ISMR), the 3 month lead forecast time (L3) has the maximum ISMR prediction skill. This is valid using different independent datasets, wherein these maximum skill scores are 0.64, 0.42 and 0.57 with respect to the Global Precipitation Climatology Project, CPC Merged Analysis of Precipitation and the India Meteorological Department precipitation dataset respectively for L3. Despite significant El-Niño Southern Oscillation (ENSO) spring predictability barrier at L3, the ISMR skill score is highest at L3. Further, large scale zonal wind shear (Webster-Yang index) and SST over Niño3.4 region is best at L1 and L0. This implies that predictability aspect of ISMR is controlled by factors other than ENSO and Indian Ocean Dipole. Also, the model error (forecast error) outruns the error acquired by the inadequacies in the initial conditions (predictability error). Thus model deficiency is having more serious consequences as compared to the initial condition error for the seasonal forecast. All the model parameters show the increase in the predictability error as the lead decreases over the equatorial eastern Pacific basin and peaks at L2, then it further decreases. The dynamical consistency of both the forecast and the predictability error among all the variables indicates that these biases are purely systematic in nature and improvement of the physical processes in the CFSv2 may enhance the overall predictability.
Reliable estimation of orbit errors in spaceborne SAR interferometry. The network approach
NASA Astrophysics Data System (ADS)
Bähr, Hermann; Hanssen, Ramon F.
2012-12-01
An approach to improve orbital state vectors by orbit error estimates derived from residual phase patterns in synthetic aperture radar interferograms is presented. For individual interferograms, an error representation by two parameters is motivated: the baseline error in cross-range and the rate of change of the baseline error in range. For their estimation, two alternatives are proposed: a least squares approach that requires prior unwrapping and a less reliable gridsearch method handling the wrapped phase. In both cases, reliability is enhanced by mutual control of error estimates in an overdetermined network of linearly dependent interferometric combinations of images. Thus, systematic biases, e.g., due to unwrapping errors, can be detected and iteratively eliminated. Regularising the solution by a minimum-norm condition results in quasi-absolute orbit errors that refer to particular images. For the 31 images of a sample ENVISAT dataset, orbit corrections with a mutual consistency on the millimetre level have been inferred from 163 interferograms. The method itself qualifies by reliability and rigorous geometric modelling of the orbital error signal but does not consider interfering large scale deformation effects. However, a separation may be feasible in a combined processing with persistent scatterer approaches or by temporal filtering of the estimates.
Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides*
Bogdanow, Boris; Zauber, Henrik; Selbach, Matthias
2016-01-01
The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20–50% of false positive identifications in deep proteomic data sets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a “cleaned search” strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation. PMID:27215553
Norman, Geoffrey R; Monteiro, Sandra D; Sherbino, Jonathan; Ilgen, Jonathan S; Schmidt, Henk G; Mamede, Silvia
2017-01-01
Contemporary theories of clinical reasoning espouse a dual processing model, which consists of a rapid, intuitive component (Type 1) and a slower, logical and analytical component (Type 2). Although the general consensus is that this dual processing model is a valid representation of clinical reasoning, the causes of diagnostic errors remain unclear. Cognitive theories about human memory propose that such errors may arise from both Type 1 and Type 2 reasoning. Errors in Type 1 reasoning may be a consequence of the associative nature of memory, which can lead to cognitive biases. However, the literature indicates that, with increasing expertise (and knowledge), the likelihood of errors decreases. Errors in Type 2 reasoning may result from the limited capacity of working memory, which constrains computational processes. In this article, the authors review the medical literature to answer two substantial questions that arise from this work: (1) To what extent do diagnostic errors originate in Type 1 (intuitive) processes versus in Type 2 (analytical) processes? (2) To what extent are errors a consequence of cognitive biases versus a consequence of knowledge deficits?The literature suggests that both Type 1 and Type 2 processes contribute to errors. Although it is possible to experimentally induce cognitive biases, particularly availability bias, the extent to which these biases actually contribute to diagnostic errors is not well established. Educational strategies directed at the recognition of biases are ineffective in reducing errors; conversely, strategies focused on the reorganization of knowledge to reduce errors have small but consistent benefits.
Angrisani, Leopoldo; Simone, Domenico De
2018-01-01
This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS) gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input. PMID:29735956
Fontanella, Rita; Accardo, Domenico; Moriello, Rosario Schiano Lo; Angrisani, Leopoldo; Simone, Domenico De
2018-05-07
This paper presents an innovative model for integrating thermal compensation of gyro bias error into an augmented state Kalman filter. The developed model is applied in the Zero Velocity Update filter for inertial units manufactured by exploiting Micro Electro-Mechanical System (MEMS) gyros. It is used to remove residual bias at startup. It is a more effective alternative to traditional approach that is realized by cascading bias thermal correction by calibration and traditional Kalman filtering for bias tracking. This function is very useful when adopted gyros are manufactured using MEMS technology. These systems have significant limitations in terms of sensitivity to environmental conditions. They are characterized by a strong correlation of the systematic error with temperature variations. The traditional process is divided into two separated algorithms, i.e., calibration and filtering, and this aspect reduces system accuracy, reliability, and maintainability. This paper proposes an innovative Zero Velocity Update filter that just requires raw uncalibrated gyro data as input. It unifies in a single algorithm the two steps from the traditional approach. Therefore, it saves time and economic resources, simplifying the management of thermal correction process. In the paper, traditional and innovative Zero Velocity Update filters are described in detail, as well as the experimental data set used to test both methods. The performance of the two filters is compared both in nominal conditions and in the typical case of a residual initial alignment bias. In this last condition, the innovative solution shows significant improvements with respect to the traditional approach. This is the typical case of an aircraft or a car in parking conditions under solar input.
NASA Astrophysics Data System (ADS)
Pérez-Ràfols, Ignasi; Font-Ribera, Andreu; Miralda-Escudé, Jordi; Blomqvist, Michael; Bird, Simeon; Busca, Nicolás; du Mas des Bourboux, Hélion; Mas-Ribas, Lluís; Noterdaeme, Pasquier; Petitjean, Patrick; Rich, James; Schneider, Donald P.
2018-01-01
We present a measurement of the damped Ly α absorber (DLA) mean bias from the cross-correlation of DLAs and the Ly α forest, updating earlier results of Font-Ribera et al. (2012) with the final Baryon Oscillations Spectroscopic Survey data release and an improved method to address continuum fitting corrections. Our cross-correlation is well fitted by linear theory with the standard ΛCDM model, with a DLA bias of bDLA = 1.99 ± 0.11; a more conservative analysis, which removes DLA in the Ly β forest and uses only the cross-correlation at r > 10 h-1 Mpc, yields bDLA = 2.00 ± 0.19. This assumes the cosmological model from Planck Collaboration (2016) and the Ly α forest bias factors of Bautista et al. (2017) and includes only statistical errors obtained from bootstrap analysis. The main systematic errors arise from possible impurities and selection effects in the DLA catalogue and from uncertainties in the determination of the Ly α forest bias factors and a correction for effects of high column density absorbers. We find no dependence of the DLA bias on column density or redshift. The measured bias value corresponds to a host halo mass ∼4 × 1011 h-1 M⊙ if all DLAs were hosted in haloes of a similar mass. In a realistic model where host haloes over a broad mass range have a DLA cross-section Σ (M_h) ∝ M_h^{α } down to Mh > Mmin = 108.5 h-1 M⊙, we find that α > 1 is required to have bDLA > 1.7, implying a steeper relation or higher value of Mmin than is generally predicted in numerical simulations of galaxy formation.
Judgment under Uncertainty: Heuristics and Biases.
Tversky, A; Kahneman, D
1974-09-27
This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available. These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgements and decisions in situations of uncertainty.
Participation in the TOMS Science Team
NASA Technical Reports Server (NTRS)
Chance, Kelly; Hilsenrath, Ernest (Technical Monitor)
2002-01-01
Because of the nominal funding provided by this grant, some of the relevant research is partially funded by other sources. Research performed for this funding period included the following items: We have investigated errors in TOMS ozone measurements caused by the uncertainty in wavelength calibration, coupled with the ozone cross sections in the Huggins bands and their temperature dependence. Preliminary results show that 0.1 nm uncertainty in TOMS wavelength calibration at the ozone active wavelengths corresponds to approx. 1% systematic error in O3, and thus potential 1% biases among ozone trends from the various TOMS instruments. This conclusion will be revised for absolute O3 Measurements as cross sections are further investigated for inclusion in the HITRAN database at the SAO, but the potential for relative errors remains. In order to aid further comparisons among TOMS and GOME ozone measurements, we have implemented our method of direct fitting of GOME radiances (BOAS) for O3, and now obtain the best fitting precision to date for GOME O3 Columns. This will aid in future comparisons of the actual quantities measured and fitted for the two instrument types. We have made comparisons between GOME ICFA cloud fraction and cloud fraction determined from GOME data using the Ring effect in the Ca II lines. There is a strong correlation, as expected, but there are substantial systematic biases between the determinations. This study will be refined in the near future using the recently-developed GOME Cloud Retrieval Algorithm (GOMECAT). We have improved the SAO Ring effect determination to include better convolution with instrument transfer functions and inclusion of interferences by atmospheric absorbers (e.g., O3). This has been made available to the general community.
Estimating Bias Error Distributions
NASA Technical Reports Server (NTRS)
Liu, Tian-Shu; Finley, Tom D.
2001-01-01
This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecasting and climate models simulate a warm surface air temperature (T2m) bias over mid-latitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multi-model intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to T2m bias using a short-term hindcast approach with observations mainly from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site during the period of April to August 2011. The present study examines the contributionmore » of surface energy budget errors to the bias. All participating models simulate higher net shortwave and longwave radiative fluxes at the surface but there is no consistency on signs of biases in latent and sensible heat fluxes over the Central U.S. and ARM SGP. Nevertheless, biases in net shortwave and downward longwave fluxes, as well as surface evaporative fraction (EF) are the main contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF is affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis suggests that radiation errors are always an important source of T2m error for long-term climate runs with EF errors either of equal or lesser importance. However, for the short-term hindcasts, EF errors are more important provided a model has a substantial EF bias.« less
On the impact of the resolution on the surface and subsurface Eastern Tropical Atlantic warm bias
NASA Astrophysics Data System (ADS)
Martín-Rey, Marta; Lazar, Alban
2016-04-01
The tropical variability has a great importance for the climate of adjacent areas. Its sea surface temperature anomalies (SSTA) affect in particular the Brazilian Nordeste and the Sahelian region, as well as the tropical Pacific or the Euro-Atlantic sector. Nevertheless, the state-of the art climate models exhibits very large systematic errors in reproducing the seasonal cycle and inter-annual variability in the equatorial and coastal Africa upwelling zones (up to several °C for SST). Theses biases exist already, in smaller proportions though, in forced ocean models (several 1/10th of °C), and affect not only the mixed layer but also the whole thermocline. Here, we present an analysis of the impact of horizontal and vertical resolution changes on these biases. Three different DRAKKAR NEMO OGCM simulations have been analysed, associated to the same forcing set (DFS4.4) with different grid resolutions: "REF" for reference (1/4°, 46 vertical levels), "HH" with a finer horizontal grid (1/12°, 46 v.l.) and "HV" with a finer vertical grid (1/4°, 75 v.l.). At the surface, a more realistic seasonal SST cycle is produced in HH in the three upwellings, where the warm bias decreases (by 10% - 20%) during boreal spring and summer. A notable result is that increasing vertical resolution in HV causes a shift (in advance) of the upwelling SST seasonal cycles. In order to better understand these results, we estimate the three upwelling subsurface temperature errors, using various in-situ datasets, and provide thus a three-dimensional view of the biases.
Biased interpretation and memory in children with varying levels of spider fear.
Klein, Anke M; Titulaer, Geraldine; Simons, Carlijn; Allart, Esther; de Gier, Erwin; Bögels, Susan M; Becker, Eni S; Rinck, Mike
2014-01-01
This study investigated multiple cognitive biases in children simultaneously, to investigate whether spider-fearful children display an interpretation bias, a recall bias, and source monitoring errors, and whether these biases are specific for spider-related materials. Furthermore, the independent ability of these biases to predict spider fear was investigated. A total of 121 children filled out the Spider Anxiety and Disgust Screening for Children (SADS-C), and they performed an interpretation task, a memory task, and a Behavioural Assessment Test (BAT). As expected, a specific interpretation bias was found: Spider-fearful children showed more negative interpretations of ambiguous spider-related scenarios, but not of other scenarios. We also found specific source monitoring errors: Spider-fearful children made more fear-related source monitoring errors for the spider-related scenarios, but not for the other scenarios. Only limited support was found for a recall bias. Finally, interpretation bias, recall bias, and source monitoring errors predicted unique variance components of spider fear.
NASA Astrophysics Data System (ADS)
Singh, Sanjeev Kumar; Prasad, V. S.
2018-02-01
This paper presents a systematic investigation of medium-range rainfall forecasts from two versions of the National Centre for Medium Range Weather Forecasting (NCMRWF)-Global Forecast System based on three-dimensional variational (3D-Var) and hybrid analysis system namely, NGFS and HNGFS, respectively, during Indian summer monsoon (June-September) 2015. The NGFS uses gridpoint statistical interpolation (GSI) 3D-Var data assimilation system, whereas HNGFS uses hybrid 3D ensemble-variational scheme. The analysis includes the evaluation of rainfall fields and comparisons of rainfall using statistical score such as mean precipitation, bias, correlation coefficient, root mean square error and forecast improvement factor. In addition to these, categorical scores like Peirce skill score and bias score are also computed to describe particular aspects of forecasts performance. The comparison results of mean precipitation reveal that both the versions of model produced similar large-scale feature of Indian summer monsoon rainfall for day-1 through day-5 forecasts. The inclusion of fully flow-dependent background error covariance significantly improved the wet biases in HNGFS over the Indian Ocean. The forecast improvement factor and Peirce skill score in the HNGFS have also found better than NGFS for day-1 through day-5 forecasts.
Assessment of bias correction under transient climate change
NASA Astrophysics Data System (ADS)
Van Schaeybroeck, Bert; Vannitsem, Stéphane
2015-04-01
Calibration of climate simulations is necessary since large systematic discrepancies are generally found between the model climate and the observed climate. Recent studies have cast doubt upon the common assumption of the bias being stationary when the climate changes. This led to the development of new methods, mostly based on linear sensitivity of the biases as a function of time or forcing (Kharin et al. 2012). However, recent studies uncovered more fundamental problems using both low-order systems (Vannitsem 2011) and climate models, showing that the biases may display complicated non-linear variations under climate change. This last analysis focused on biases derived from the equilibrium climate sensitivity, thereby ignoring the effect of the transient climate sensitivity. Based on the linear response theory, a general method of bias correction is therefore proposed that can be applied on any climate forcing scenario. The validity of the method is addressed using twin experiments with a climate model of intermediate complexity LOVECLIM (Goosse et al., 2010). We evaluate to what extent the bias change is sensitive to the structure (frequency) of the applied forcing (here greenhouse gases) and whether the linear response theory is valid for global and/or local variables. To answer these question we perform large-ensemble simulations using different 300-year scenarios of forced carbon-dioxide concentrations. Reality and simulations are assumed to differ by a model error emulated as a parametric error in the wind drag or in the radiative scheme. References [1] H. Goosse et al., 2010: Description of the Earth system model of intermediate complexity LOVECLIM version 1.2, Geosci. Model Dev., 3, 603-633. [2] S. Vannitsem, 2011: Bias correction and post-processing under climate change, Nonlin. Processes Geophys., 18, 911-924. [3] V.V. Kharin, G. J. Boer, W. J. Merryfield, J. F. Scinocca, and W.-S. Lee, 2012: Statistical adjustment of decadal predictions in a changing climate, Geophys. Res. Lett., 39, L19705.
Crocce, M.
2015-12-09
We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocce, M.
We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less
Consistent evaluation of GOSAT, SCIAMACHY, carbontracker, and MACC through comparisons to TCCON
Kulawik, S. S.; Wunch, D.; O'Dell, C.; ...
2015-06-22
Consistent validation of satellite CO 2 estimates is a prerequisite for using multiple satellite CO 2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO 2 data record. We focus on validating model and satellite observation attributes that impact flux estimates and CO 2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry air mole fraction (X CO 2) for GOSAT (ACOS b3.5) and SCIAMACHY (BESD v2.00.08) as wellmore » as the CarbonTracker (CT2013b) simulated CO 2 mole fraction fields and the MACC CO 2 inversion system (v13.1) and compare these to TCCON observations (GGG2014). We find standard deviations of 0.9 ppm, 0.9, 1.7, and 2.1 ppm versus TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single target errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. When satellite data are averaged and interpreted according to error 2 = a 2+ b 2 / n (where n are the number of observations averaged, a are the systematic (correlated) errors, and b are the random (uncorrelated) errors), we find that the correlated error term a = 0.6 ppm and the uncorrelated error term b = 1.7 ppm for GOSAT and a = 1.0 ppm, b = 1.4 ppm for SCIAMACHY regional averages. Biases at individual stations have year-to-year variability of ~ 0.3 ppm, with biases larger than the TCCON predicted bias uncertainty of 0.4 ppm at many stations. Using fitting software, we find that GOSAT underpredicts the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46–53° N. In the Southern Hemisphere (SH), CT2013b underestimates the seasonal cycle amplitude. Biases are calculated for 3-month intervals and indicate the months that contribute to the observed amplitude differences. The seasonal cycle phase indicates whether a dataset or model lags another dataset in time. We calculate this at a subset of stations where there is adequate satellite data, and find that the GOSAT retrieved phase improves substantially over the prior and the SCIAMACHY retrieved phase improves substantially for 2 of 7 sites. The models reproduce the measured seasonal cycle phase well except for at Lauder125 (CT2013b), Darwin (MACC), and Izana (+ 10 days, CT2013b), as for Bremen and Four Corners, which are highly influenced by local effects. We compare the variability within one day between TCCON and models in JJA; there is correlation between 0.2 and 0.8 in the NH, with models showing 10–100 % the variability of TCCON at different stations (except Bremen and Four Corners which have no variability compared to TCCON) and CT2013b showing more variability than MACC. This paper highlights findings that provide inputs to estimate flux errors in model assimilations, and places where models and satellites need further investigation, e.g. the SH for models and 45–67° N for GOSAT« less
Measuring The cmb Polarization At 94 GHz With The QUIET Pseudo-cL Pipeline
NASA Astrophysics Data System (ADS)
Buder, Immanuel; QUIET Collaboration
2012-01-01
The Q/U Imaging ExperimenT (QUIET) aims to limit or detect cosmic microwave background (CMB) B-mode polarization from inflation. This talk is part of a 3-talk series on QUIET. The previous talk describes the QUIET science and instrument. QUIET has two parallel analysis pipelines which are part of an effort to validate the analysis and confirm the result. In this talk, I will describe the analysis methods of one of these: the pseudo-Cl pipeline. Calibration, noise modeling, filtering, and data-selection choices are made following a blind-analysis strategy. Central to this strategy is a suite of 30 null tests, each motivated by a possible instrumental problem or systematic effect. The systematic errors are also evaluated through full-season simulations in the blind stage of the analysis before the result is known. The CMB power spectra are calculated using a pseudo-Cl cross-correlation technique which suppresses contamination and makes the result insensitive to noise bias. QUIET will detect the first three peaks of the even-parity (E-mode) spectrum at high significance. I will show forecasts of the systematic errors for these results and for the upper limit on B-mode polarization. The very low systematic errors in these forecasts show that the technology is ready to be applied in a more sensitive next-generation experiment. The next and final talk in this series covers the other parallel analysis pipeline, based on maximum likelihood methods. This work was supported by NSF and the Department of Education.
Watts, Sarah E; Weems, Carl F
2006-12-01
The purpose of this study was to examine the linkages among selective attention, memory bias, cognitive errors, and anxiety problems by testing a model of the interrelations among these cognitive variables and childhood anxiety disorder symptoms. A community sample of 81 youth (38 females and 43 males) aged 9-17 years and their parents completed measures of the child's anxiety disorder symptoms. Youth completed assessments measuring selective attention, memory bias, and cognitive errors. Results indicated that selective attention, memory bias, and cognitive errors were each correlated with childhood anxiety problems and provide support for a cognitive model of anxiety which posits that these three biases are associated with childhood anxiety problems. Only limited support for significant interrelations among selective attention, memory bias, and cognitive errors was found. Finally, results point towards an effective strategy for moving the assessment of selective attention to younger and community samples of youth.
Modal Correction Method For Dynamically Induced Errors In Wind-Tunnel Model Attitude Measurements
NASA Technical Reports Server (NTRS)
Buehrle, R. D.; Young, C. P., Jr.
1995-01-01
This paper describes a method for correcting the dynamically induced bias errors in wind tunnel model attitude measurements using measured modal properties of the model system. At NASA Langley Research Center, the predominant instrumentation used to measure model attitude is a servo-accelerometer device that senses the model attitude with respect to the local vertical. Under smooth wind tunnel operating conditions, this inertial device can measure the model attitude with an accuracy of 0.01 degree. During wind tunnel tests when the model is responding at high dynamic amplitudes, the inertial device also senses the centrifugal acceleration associated with model vibration. This centrifugal acceleration results in a bias error in the model attitude measurement. A study of the response of a cantilevered model system to a simulated dynamic environment shows significant bias error in the model attitude measurement can occur and is vibration mode and amplitude dependent. For each vibration mode contributing to the bias error, the error is estimated from the measured modal properties and tangential accelerations at the model attitude device. Linear superposition is used to combine the bias estimates for individual modes to determine the overall bias error as a function of time. The modal correction model predicts the bias error to a high degree of accuracy for the vibration modes characterized in the simulated dynamic environment.
Systematic biases in group decision-making: implications for patient safety.
Mannion, Russell; Thompson, Carl
2014-12-01
Key decisions in modern health care systems are often made by groups of people rather than lone individuals. However, group decision-making can be imperfect and result in organizational and clinical errors which may harm patients-a fact highlighted graphically in recent (and historical) health scandals and inquiries such as the recent report by Sir Robert Francis into the serious failures in patient care and safety at Mid Staffordshire Hospitals NHS Trust in the English NHS. In this article, we draw on theories from organization studies and decision science to explore the ways in which patient safety may be undermined or threatened in health care contexts as a result of four systematic biases arising from group decision-making: 'groupthink', 'social loafing', 'group polarization' and 'escalation of commitment'. For each group bias, we describe its antecedents, illustrate how it can impair group decisions with regard to patient safety, outline a range of possible remedial organizational strategies that can be used to attenuate the potential for adverse consequences and look forward at the emerging research agenda in this important but hitherto neglected area of patient safety research. © The Author 2014. Published by Oxford University Press in association with the International Society for Quality in Health Care; all rights reserved.
Differential sea-state bias: A case study using TOPEX/POSEIDON data
NASA Technical Reports Server (NTRS)
Stewart, Robert H.; Devalla, B.
1994-01-01
We used selected data from the NASA altimeter TOPEX/POSEIDON to calculate differences in range measured by the C and Ku-band altimeters when the satellite overflew 5 to 15 m waves late at night. The range difference is due to free electrons in the ionosphere and to errors in sea-state bias. For the selected data the ionospheric influence on Ku range is less than 2 cm. Any difference in range over short horizontal distances is due only to a small along-track variability of the ionosphere and to errors in calculating the differential sea-state bias. We find that there is a barely detectable error in the bias in the geophysical data records. The wave-induced error in the ionospheric correction is less than 0.2% of significant wave height. The equivalent error in differential range is less than 1% of wave height. Errors in the differential sea-state bias calculations appear to be small even for extreme wave heights that greatly exceed the conditions on which the bias is based. The results also improved our confidence in the sea-state bias correction used for calculating the geophysical data records. Any error in the correction must influence Ku and C-band ranges almost equally.
Oh, Eric J; Shepherd, Bryan E; Lumley, Thomas; Shaw, Pamela A
2018-04-15
For time-to-event outcomes, a rich literature exists on the bias introduced by covariate measurement error in regression models, such as the Cox model, and methods of analysis to address this bias. By comparison, less attention has been given to understanding the impact or addressing errors in the failure time outcome. For many diseases, the timing of an event of interest (such as progression-free survival or time to AIDS progression) can be difficult to assess or reliant on self-report and therefore prone to measurement error. For linear models, it is well known that random errors in the outcome variable do not bias regression estimates. With nonlinear models, however, even random error or misclassification can introduce bias into estimated parameters. We compare the performance of 2 common regression models, the Cox and Weibull models, in the setting of measurement error in the failure time outcome. We introduce an extension of the SIMEX method to correct for bias in hazard ratio estimates from the Cox model and discuss other analysis options to address measurement error in the response. A formula to estimate the bias induced into the hazard ratio by classical measurement error in the event time for a log-linear survival model is presented. Detailed numerical studies are presented to examine the performance of the proposed SIMEX method under varying levels and parametric forms of the error in the outcome. We further illustrate the method with observational data on HIV outcomes from the Vanderbilt Comprehensive Care Clinic. Copyright © 2017 John Wiley & Sons, Ltd.
Hall, William L; Larkin, Gregory L; Trujillo, Mauricio J; Hinds, Jackie L; Delaney, Kathleen A
2004-10-01
To examine biases in weight estimation by Emergency Department (ED) providers and patients, a convenience sample of ED providers (faculty, residents, interns, nurses, medical students, paramedics) and patients was studied. Providers (n = 33), blinded to study hypothesis and patient data, estimated their own weight as well as the weight of 11-20 patients each. An independent sample of patients (n = 95) was used to assess biases in patients' estimation of their own weight. Data are represented as over, under, or within +/- 5 kg, the dose tolerance standard for thrombolytics. Logistic regression analysis revealed that patients are almost nine times more likely to accurately estimate their own weight than providers; yet 22% of patients were unable to estimate their own weight within 5 kg. Of all providers, paramedics were significantly worse estimators of patient weight than other providers. Providers were no better at guessing their own weight than were patients. Though there was no systematic estimate bias by weight, experience level (except paramedic), or gender for providers, those providers under 30 years of age were significantly better estimators of patient weight than older providers. Although patient gender did not create a bias in provider estimation accuracy, providers were more likely to underestimate women's weights than men's. In conclusion, patient self-estimates of weight are significantly better than estimates by providers. Inaccurate estimates by both groups could potentially contribute to medication dosing errors in the ED.
Phylogenomics of Lophotrochozoa with Consideration of Systematic Error.
Kocot, Kevin M; Struck, Torsten H; Merkel, Julia; Waits, Damien S; Todt, Christiane; Brannock, Pamela M; Weese, David A; Cannon, Johanna T; Moroz, Leonid L; Lieb, Bernhard; Halanych, Kenneth M
2017-03-01
Phylogenomic studies have improved understanding of deep metazoan phylogeny and show promise for resolving incongruences among analyses based on limited numbers of loci. One region of the animal tree that has been especially difficult to resolve, even with phylogenomic approaches, is relationships within Lophotrochozoa (the animal clade that includes molluscs, annelids, and flatworms among others). Lack of resolution in phylogenomic analyses could be due to insufficient phylogenetic signal, limitations in taxon and/or gene sampling, or systematic error. Here, we investigated why lophotrochozoan phylogeny has been such a difficult question to answer by identifying and reducing sources of systematic error. We supplemented existing data with 32 new transcriptomes spanning the diversity of Lophotrochozoa and constructed a new set of Lophotrochozoa-specific core orthologs. Of these, 638 orthologous groups (OGs) passed strict screening for paralogy using a tree-based approach. In order to reduce possible sources of systematic error, we calculated branch-length heterogeneity, evolutionary rate, percent missing data, compositional bias, and saturation for each OG and analyzed increasingly stricter subsets of only the most stringent (best) OGs for these five variables. Principal component analysis of the values for each factor examined for each OG revealed that compositional heterogeneity and average patristic distance contributed most to the variance observed along the first principal component while branch-length heterogeneity and, to a lesser extent, saturation contributed most to the variance observed along the second. Missing data did not strongly contribute to either. Additional sensitivity analyses examined effects of removing taxa with heterogeneous branch lengths, large amounts of missing data, and compositional heterogeneity. Although our analyses do not unambiguously resolve lophotrochozoan phylogeny, we advance the field by reducing the list of viable hypotheses. Moreover, our systematic approach for dissection of phylogenomic data can be applied to explore sources of incongruence and poor support in any phylogenomic data set. [Annelida; Brachiopoda; Bryozoa; Entoprocta; Mollusca; Nemertea; Phoronida; Platyzoa; Polyzoa; Spiralia; Trochozoa.]. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Refaat, Tamer F; Singh, Upendra N; Yu, Jirong; Petros, Mulugeta; Remus, Ruben; Ismail, Syed
2016-05-20
Field experiments were conducted to test and evaluate the initial atmospheric carbon dioxide (CO2) measurement capability of airborne, high-energy, double-pulsed, 2-μm integrated path differential absorption (IPDA) lidar. This IPDA was designed, integrated, and operated at the NASA Langley Research Center on-board the NASA B-200 aircraft. The IPDA was tuned to the CO2 strong absorption line at 2050.9670 nm, which is the optimum for lower tropospheric weighted column measurements. Flights were conducted over land and ocean under different conditions. The first validation experiments of the IPDA for atmospheric CO2 remote sensing, focusing on low surface reflectivity oceanic surface returns during full day background conditions, are presented. In these experiments, the IPDA measurements were validated by comparison to airborne flask air-sampling measurements conducted by the NOAA Earth System Research Laboratory. IPDA performance modeling was conducted to evaluate measurement sensitivity and bias errors. The IPDA signals and their variation with altitude compare well with predicted model results. In addition, off-off-line testing was conducted, with fixed instrument settings, to evaluate the IPDA systematic and random errors. Analysis shows an altitude-independent differential optical depth offset of 0.0769. Optical depth measurement uncertainty of 0.0918 compares well with the predicted value of 0.0761. IPDA CO2 column measurement compares well with model-driven, near-simultaneous air-sampling measurements from the NOAA aircraft at different altitudes. With a 10-s shot average, CO2 differential optical depth measurement of 1.0054±0.0103 was retrieved from a 6-km altitude and a 4-GHz on-line operation. As compared to CO2 weighted-average column dry-air volume mixing ratio of 404.08 ppm, derived from air sampling, IPDA measurement resulted in a value of 405.22±4.15 ppm with 1.02% uncertainty and 0.28% additional bias. Sensitivity analysis of environmental systematic errors correlates the additional bias to water vapor. IPDA ranging resulted in a measurement uncertainty of <3 m.
A new unified approach to determine geocentre motion using space geodetic and GRACE gravity data
NASA Astrophysics Data System (ADS)
Wu, Xiaoping; Kusche, Jürgen; Landerer, Felix W.
2017-06-01
Geocentre motion between the centre-of-mass of the Earth system and the centre-of-figure of the solid Earth surface is a critical signature of degree-1 components of global surface mass transport process that includes sea level rise, ice mass imbalance and continental-scale hydrological change. To complement GRACE data for complete-spectrum mass transport monitoring, geocentre motion needs to be measured accurately. However, current methods of geodetic translational approach and global inversions of various combinations of geodetic deformation, simulated ocean bottom pressure and GRACE data contain substantial biases and systematic errors. Here, we demonstrate a new and more reliable unified approach to geocentre motion determination using a recently formed satellite laser ranging based geocentric displacement time-series of an expanded geodetic network of all four space geodetic techniques and GRACE gravity data. The unified approach exploits both translational and deformational signatures of the displacement data, while the addition of GRACE's near global coverage significantly reduces biases found in the translational approach and spectral aliasing errors in the inversion.
Potential, velocity, and density fields from sparse and noisy redshift-distance samples - Method
NASA Technical Reports Server (NTRS)
Dekel, Avishai; Bertschinger, Edmund; Faber, Sandra M.
1990-01-01
A method for recovering the three-dimensional potential, velocity, and density fields from large-scale redshift-distance samples is described. Galaxies are taken as tracers of the velocity field, not of the mass. The density field and the initial conditions are calculated using an iterative procedure that applies the no-vorticity assumption at an initial time and uses the Zel'dovich approximation to relate initial and final positions of particles on a grid. The method is tested using a cosmological N-body simulation 'observed' at the positions of real galaxies in a redshift-distance sample, taking into account their distance measurement errors. Malmquist bias and other systematic and statistical errors are extensively explored using both analytical techniques and Monte Carlo simulations.
Classification based upon gene expression data: bias and precision of error rates.
Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L
2007-06-01
Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp
Effects of modeled tropical sea surface temperature variability on coral reef bleaching predictions
NASA Astrophysics Data System (ADS)
van Hooidonk, R.; Huber, M.
2012-03-01
Future widespread coral bleaching and subsequent mortality has been projected using sea surface temperature (SST) data derived from global, coupled ocean-atmosphere general circulation models (GCMs). While these models possess fidelity in reproducing many aspects of climate, they vary in their ability to correctly capture such parameters as the tropical ocean seasonal cycle and El Niño Southern Oscillation (ENSO) variability. Such weaknesses most likely reduce the accuracy of predicting coral bleaching, but little attention has been paid to the important issue of understanding potential errors and biases, the interaction of these biases with trends, and their propagation in predictions. To analyze the relative importance of various types of model errors and biases in predicting coral bleaching, various intra- and inter-annual frequency bands of observed SSTs were replaced with those frequencies from 24 GCMs 20th century simulations included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. Subsequent thermal stress was calculated and predictions of bleaching were made. These predictions were compared with observations of coral bleaching in the period 1982-2007 to calculate accuracy using an objective measure of forecast quality, the Peirce skill score (PSS). Major findings are that: (1) predictions are most sensitive to the seasonal cycle and inter-annual variability in the ENSO 24-60 months frequency band and (2) because models tend to understate the seasonal cycle at reef locations, they systematically underestimate future bleaching. The methodology we describe can be used to improve the accuracy of bleaching predictions by characterizing the errors and uncertainties involved in the predictions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, C.; Aldering, G.; Aragon, C.
2015-02-10
We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a givenmore » supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.« less
Rokicki, Slawa; Cohen, Jessica; Fink, Günther; Salomon, Joshua A; Landrum, Mary Beth
2018-01-01
Difference-in-differences (DID) estimation has become increasingly popular as an approach to evaluate the effect of a group-level policy on individual-level outcomes. Several statistical methodologies have been proposed to correct for the within-group correlation of model errors resulting from the clustering of data. Little is known about how well these corrections perform with the often small number of groups observed in health research using longitudinal data. First, we review the most commonly used modeling solutions in DID estimation for panel data, including generalized estimating equations (GEE), permutation tests, clustered standard errors (CSE), wild cluster bootstrapping, and aggregation. Second, we compare the empirical coverage rates and power of these methods using a Monte Carlo simulation study in scenarios in which we vary the degree of error correlation, the group size balance, and the proportion of treated groups. Third, we provide an empirical example using the Survey of Health, Ageing, and Retirement in Europe. When the number of groups is small, CSE are systematically biased downwards in scenarios when data are unbalanced or when there is a low proportion of treated groups. This can result in over-rejection of the null even when data are composed of up to 50 groups. Aggregation, permutation tests, bias-adjusted GEE, and wild cluster bootstrap produce coverage rates close to the nominal rate for almost all scenarios, though GEE may suffer from low power. In DID estimation with a small number of groups, analysis using aggregation, permutation tests, wild cluster bootstrap, or bias-adjusted GEE is recommended.
Selective Weighted Least Squares Method for Fourier Transform Infrared Quantitative Analysis.
Wang, Xin; Li, Yan; Wei, Haoyun; Chen, Xia
2017-06-01
Classical least squares (CLS) regression is a popular multivariate statistical method used frequently for quantitative analysis using Fourier transform infrared (FT-IR) spectrometry. Classical least squares provides the best unbiased estimator for uncorrelated residual errors with zero mean and equal variance. However, the noise in FT-IR spectra, which accounts for a large portion of the residual errors, is heteroscedastic. Thus, if this noise with zero mean dominates in the residual errors, the weighted least squares (WLS) regression method described in this paper is a better estimator than CLS. However, if bias errors, such as the residual baseline error, are significant, WLS may perform worse than CLS. In this paper, we compare the effect of noise and bias error in using CLS and WLS in quantitative analysis. Results indicated that for wavenumbers with low absorbance, the bias error significantly affected the error, such that the performance of CLS is better than that of WLS. However, for wavenumbers with high absorbance, the noise significantly affected the error, and WLS proves to be better than CLS. Thus, we propose a selective weighted least squares (SWLS) regression that processes data with different wavenumbers using either CLS or WLS based on a selection criterion, i.e., lower or higher than an absorbance threshold. The effects of various factors on the optimal threshold value (OTV) for SWLS have been studied through numerical simulations. These studies reported that: (1) the concentration and the analyte type had minimal effect on OTV; and (2) the major factor that influences OTV is the ratio between the bias error and the standard deviation of the noise. The last part of this paper is dedicated to quantitative analysis of methane gas spectra, and methane/toluene mixtures gas spectra as measured using FT-IR spectrometry and CLS, WLS, and SWLS. The standard error of prediction (SEP), bias of prediction (bias), and the residual sum of squares of the errors (RSS) from the three quantitative analyses were compared. In methane gas analysis, SWLS yielded the lowest SEP and RSS among the three methods. In methane/toluene mixture gas analysis, a modification of the SWLS has been presented to tackle the bias error from other components. The SWLS without modification presents the lowest SEP in all cases but not bias and RSS. The modification of SWLS reduced the bias, which showed a lower RSS than CLS, especially for small components.
Automation bias: a systematic review of frequency, effect mediators, and mitigators
Roudsari, Abdul; Wyatt, Jeremy C
2011-01-01
Automation bias (AB)—the tendency to over-rely on automation—has been studied in various academic fields. Clinical decision support systems (CDSS) aim to benefit the clinical decision-making process. Although most research shows overall improved performance with use, there is often a failure to recognize the new errors that CDSS can introduce. With a focus on healthcare, a systematic review of the literature from a variety of research fields has been carried out, assessing the frequency and severity of AB, the effect mediators, and interventions potentially mitigating this effect. This is discussed alongside automation-induced complacency, or insufficient monitoring of automation output. A mix of subject specific and freetext terms around the themes of automation, human–automation interaction, and task performance and error were used to search article databases. Of 13 821 retrieved papers, 74 met the inclusion criteria. User factors such as cognitive style, decision support systems (DSS), and task specific experience mediated AB, as did attitudinal driving factors such as trust and confidence. Environmental mediators included workload, task complexity, and time constraint, which pressurized cognitive resources. Mitigators of AB included implementation factors such as training and emphasizing user accountability, and DSS design factors such as the position of advice on the screen, updated confidence levels attached to DSS output, and the provision of information versus recommendation. By uncovering the mechanisms by which AB operates, this review aims to help optimize the clinical decision-making process for CDSS developers and healthcare practitioners. PMID:21685142
Automation bias: a systematic review of frequency, effect mediators, and mitigators.
Goddard, Kate; Roudsari, Abdul; Wyatt, Jeremy C
2012-01-01
Automation bias (AB)--the tendency to over-rely on automation--has been studied in various academic fields. Clinical decision support systems (CDSS) aim to benefit the clinical decision-making process. Although most research shows overall improved performance with use, there is often a failure to recognize the new errors that CDSS can introduce. With a focus on healthcare, a systematic review of the literature from a variety of research fields has been carried out, assessing the frequency and severity of AB, the effect mediators, and interventions potentially mitigating this effect. This is discussed alongside automation-induced complacency, or insufficient monitoring of automation output. A mix of subject specific and freetext terms around the themes of automation, human-automation interaction, and task performance and error were used to search article databases. Of 13 821 retrieved papers, 74 met the inclusion criteria. User factors such as cognitive style, decision support systems (DSS), and task specific experience mediated AB, as did attitudinal driving factors such as trust and confidence. Environmental mediators included workload, task complexity, and time constraint, which pressurized cognitive resources. Mitigators of AB included implementation factors such as training and emphasizing user accountability, and DSS design factors such as the position of advice on the screen, updated confidence levels attached to DSS output, and the provision of information versus recommendation. By uncovering the mechanisms by which AB operates, this review aims to help optimize the clinical decision-making process for CDSS developers and healthcare practitioners.
NASA Astrophysics Data System (ADS)
Bilonick, Richard A.; Connell, Daniel P.; Talbott, Evelyn O.; Rager, Judith R.; Xue, Tao
2015-02-01
The objective of this study was to remove systematic bias among fine particulate matter (PM2.5) mass concentration measurements made by different types of samplers used in the Pittsburgh Aerosol Research and Inhalation Epidemiology Study (PARIES). PARIES is a retrospective epidemiology study that aims to provide a comprehensive analysis of the associations between air quality and human health effects in the Pittsburgh, Pennsylvania, region from 1999 to 2008. Calibration was needed in order to minimize the amount of systematic error in PM2.5 exposure estimation as a result of including data from 97 different PM2.5 samplers at 47 monitoring sites. Ordinary regression often has been used for calibrating air quality measurements from pairs of measurement devices; however, this is only appropriate when one of the two devices (the "independent" variable) is free from random error, which is rarely the case. A group of methods known as "errors-in-variables" (e.g., Deming regression, reduced major axis regression) has been developed to handle calibration between two devices when both are subject to random error, but these methods require information on the relative sizes of the random errors for each device, which typically cannot be obtained from the observed data. When data from more than two devices (or repeats of the same device) are available, the additional information is not used to inform the calibration. A more general approach that often has been overlooked is the use of a measurement error structural equation model (SEM) that allows the simultaneous comparison of three or more devices (or repeats). The theoretical underpinnings of all of these approaches to calibration are described, and the pros and cons of each are discussed. In particular, it is shown that both ordinary regression (when used for calibration) and Deming regression are particular examples of SEMs but with substantial deficiencies. To illustrate the use of SEMs, the 7865 daily average PM2.5 mass concentration measurements made by seven collocated samplers at an urban monitoring site in Pittsburgh, Pennsylvania, were used. These samplers, which included three federal reference method (FRM) samplers, three speciation samplers, and a tapered element oscillating microbalance (TEOM), operated at various times during the 10-year PARIES study period. Because TEOM measurements are known to depend on temperature, the constructed SEM provided calibration equations relating the TEOM to the FRM and speciation samplers as a function of ambient temperature. It was shown that TEOM imprecision and TEOM bias (relative to the FRM) both decreased as temperature increased. It also was shown that the temperature dependency for bias was non-linear and followed a sigmoidal (logistic) pattern. The speciation samplers exhibited only small bias relative to the FRM samplers, although the FRM samplers were shown to be substantially more precise than both the TEOM and the speciation samplers. Comparison of the SEM results to pairwise simple linear regression results showed that the regression results can differ substantially from the correctly-derived calibration equations, especially if the less-precise device is used as the independent variable in the regression.
Tactical Defenses Against Systematic Variation in Wind Tunnel Testing
NASA Technical Reports Server (NTRS)
DeLoach, Richard
2002-01-01
This paper examines the role of unexplained systematic variation on the reproducibility of wind tunnel test results. Sample means and variances estimated in the presence of systematic variations are shown to be susceptible to bias errors that are generally non-reproducible functions of those variations. Unless certain precautions are taken to defend against the effects of systematic variation, it is shown that experimental results can be difficult to duplicate and of dubious value for predicting system response with the highest precision or accuracy that could otherwise be achieved. Results are reported from an experiment designed to estimate how frequently systematic variations are in play in a representative wind tunnel experiment. These results suggest that significant systematic variation occurs frequently enough to cast doubts on the common assumption that sample observations can be reliably assumed to be independent. The consequences of ignoring correlation among observations induced by systematic variation are considered in some detail. Experimental tactics are described that defend against systematic variation. The effectiveness of these tactics is illustrated through computational experiments and real wind tunnel experimental results. Some tutorial information describes how to analyze experimental results that have been obtained using such quality assurance tactics.
Methodological Consequences of Situation Specificity: Biases in Assessments
Patry, Jean-Luc
2011-01-01
Social research is plagued by many biases. Most of them are due to situation specificity of social behavior and can be explained using a theory of situation specificity. The historical background of situation specificity in personality social psychology research is briefly sketched, then a theory of situation specificity is presented in detail, with as centerpiece the relationship between the behavior and its outcome which can be described as either “the more, the better” or “not too much and not too little.” This theory is applied to reliability and validity of assessments in social research. The distinction between “maximum performance” and “typical performance” is shown to correspond to the two behavior-outcome relations. For maximum performance, issues of reliability and validity are much easier to be solved, whereas typical performance is sensitive to biases, as predicted by the theory. Finally, it is suggested that biases in social research are not just systematic error, but represent relevant features to be explained just as other behavior, and that the respective theories should be integrated into a theory system. PMID:21713072
Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope
Li, Xuyou; Guang, Xingxing; Xu, Zhenlong; Li, Guangchun
2017-01-01
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG. PMID:28880203
Temperature Dependence of Faraday Effect-Induced Bias Error in a Fiber Optic Gyroscope.
Li, Xuyou; Liu, Pan; Guang, Xingxing; Xu, Zhenlong; Guan, Lianwu; Li, Guangchun
2017-09-07
Improving the performance of interferometric fiber optic gyroscope (IFOG) in harsh environments, such as magnetic field and temperature field variation, is necessary for its practical applications. This paper presents an investigation of Faraday effect-induced bias error of IFOG under varying temperature. Jones matrix method is utilized to formulize the temperature dependence of Faraday effect-induced bias error. Theoretical results show that the Faraday effect-induced bias error changes with the temperature in the non-skeleton polarization maintaining (PM) fiber coil. This phenomenon is caused by the temperature dependence of linear birefringence and Verdet constant of PM fiber. Particularly, Faraday effect-induced bias errors of two polarizations always have opposite signs that can be compensated optically regardless of the changes of the temperature. Two experiments with a 1000 m non-skeleton PM fiber coil are performed, and the experimental results support these theoretical predictions. This study is promising for improving the bias stability of IFOG.
Assessing the validity of subjective reports in the auditory streaming paradigm.
Farkas, Dávid; Denham, Susan L; Bendixen, Alexandra; Winkler, István
2016-04-01
While subjective reports provide a direct measure of perception, their validity is not self-evident. Here, the authors tested three possible biasing effects on perceptual reports in the auditory streaming paradigm: errors due to imperfect understanding of the instructions, voluntary perceptual biasing, and susceptibility to implicit expectations. (1) Analysis of the responses to catch trials separately promoting each of the possible percepts allowed the authors to exclude participants who likely have not fully understood the instructions. (2) Explicit biasing instructions led to markedly different behavior than the conventional neutral-instruction condition, suggesting that listeners did not voluntarily bias their perception in a systematic way under the neutral instructions. Comparison with a random response condition further supported this conclusion. (3) No significant relationship was found between social desirability, a scale-based measure of susceptibility to implicit social expectations, and any of the perceptual measures extracted from the subjective reports. This suggests that listeners did not significantly bias their perceptual reports due to possible implicit expectations present in the experimental context. In sum, these results suggest that valid perceptual data can be obtained from subjective reports in the auditory streaming paradigm.
Publication bias and the failure of replication in experimental psychology.
Francis, Gregory
2012-12-01
Replication of empirical findings plays a fundamental role in science. Among experimental psychologists, successful replication enhances belief in a finding, while a failure to replicate is often interpreted to mean that one of the experiments is flawed. This view is wrong. Because experimental psychology uses statistics, empirical findings should appear with predictable probabilities. In a misguided effort to demonstrate successful replication of empirical findings and avoid failures to replicate, experimental psychologists sometimes report too many positive results. Rather than strengthen confidence in an effect, too much successful replication actually indicates publication bias, which invalidates entire sets of experimental findings. Researchers cannot judge the validity of a set of biased experiments because the experiment set may consist entirely of type I errors. This article shows how an investigation of the effect sizes from reported experiments can test for publication bias by looking for too much successful replication. Simulated experiments demonstrate that the publication bias test is able to discriminate biased experiment sets from unbiased experiment sets, but it is conservative about reporting bias. The test is then applied to several studies of prominent phenomena that highlight how publication bias contaminates some findings in experimental psychology. Additional simulated experiments demonstrate that using Bayesian methods of data analysis can reduce (and in some cases, eliminate) the occurrence of publication bias. Such methods should be part of a systematic process to remove publication bias from experimental psychology and reinstate the important role of replication as a final arbiter of scientific findings.
Troutman, Brent M.
1982-01-01
Errors in runoff prediction caused by input data errors are analyzed by treating precipitation-runoff models as regression (conditional expectation) models. Independent variables of the regression consist of precipitation and other input measurements; the dependent variable is runoff. In models using erroneous input data, prediction errors are inflated and estimates of expected storm runoff for given observed input variables are biased. This bias in expected runoff estimation results in biased parameter estimates if these parameter estimates are obtained by a least squares fit of predicted to observed runoff values. The problems of error inflation and bias are examined in detail for a simple linear regression of runoff on rainfall and for a nonlinear U.S. Geological Survey precipitation-runoff model. Some implications for flood frequency analysis are considered. A case study using a set of data from Turtle Creek near Dallas, Texas illustrates the problems of model input errors.
Constraining the mass–richness relationship of redMaPPer clusters with angular clustering
Baxter, Eric J.; Rozo, Eduardo; Jain, Bhuvnesh; ...
2016-08-04
The potential of using cluster clustering for calibrating the mass–richness relation of galaxy clusters has been recognized theoretically for over a decade. In this paper, we demonstrate the feasibility of this technique to achieve high-precision mass calibration using redMaPPer clusters in the Sloan Digital Sky Survey North Galactic Cap. By including cross-correlations between several richness bins in our analysis, we significantly improve the statistical precision of our mass constraints. The amplitude of the mass–richness relation is constrained to 7 per cent statistical precision by our analysis. However, the error budget is systematics dominated, reaching a 19 per cent total errormore » that is dominated by theoretical uncertainty in the bias–mass relation for dark matter haloes. We confirm the result from Miyatake et al. that the clustering amplitude of redMaPPer clusters depends on galaxy concentration as defined therein, and we provide additional evidence that this dependence cannot be sourced by mass dependences: some other effect must account for the observed variation in clustering amplitude with galaxy concentration. Assuming that the observed dependence of redMaPPer clustering on galaxy concentration is a form of assembly bias, we find that such effects introduce a systematic error on the amplitude of the mass–richness relation that is comparable to the error bar from statistical noise. Finally, the results presented here demonstrate the power of cluster clustering for mass calibration and cosmology provided the current theoretical systematics can be ameliorated.« less
Systematic Biases in Weak Lensing Cosmology with the Dark Energy Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuroff, Simon
This thesis sets out a practical guide to applying shear measurements as a cosmological tool. We first present one of two science-ready galaxy shape catalogues from Year 1 of the Dark Energy Survey (DES Y1), which covers 1500 square degrees in four bandsmore » $griz$, with a median redshift of $0.59$. We describe the shape measurement process implemented by the DES Y1 imshape catalogue, which contains 21.9 million high-quality $r$-band bulge/disc fits. In Chapter 3 a new suite of image simulations, referred to as Hoopoe, are presented. The Hoopoe dataset is tailored to DES Y1 and includes realistic blending, spatial masks and variation in the point spread function. We derive shear corrections, which we show are robust to changes in calibration method, galaxy binning and variance within the simulated dataset. Sources of systematic uncertainty in the simulation-based shear calibration are discussed, leading to a final estimate of the $$1\\sigma$$ uncertainties in the residual multiplica tive bias after calibration of 0.025. Chapter 4 describes an extension of the analysis on the Hoopoe simulations into a detailed investigation of the impact of galaxy neighbours on shape measurement and shear cosmology. Four mechanisms by which neighbours can have a non-negligible influence on shear measurement are identified. These effects, if ignored, would contribute a net multiplicative bias of $$m \\sim 0.03 - 0.09$$ in DES Y1, though the precise impact will depend on both the measurement code and the selection cuts applied. We use the cosmological inference pipeline of DES Y1 to explore the cosmological implications of neighbour bias and show that omitting blending from the calibration simulation for DES Y1 would bias the inferred clustering amplitude $$S_8 \\equiv \\sigma_8 (\\omegam /0.3)^{0.5}$$ by $$1.5 \\sigma$$ towards low values. Finally, we use the Hoopoe simulations to test the effect of neighbour-induced spatial correlations in the multiplicative bias. We find the cosmo logical impact to be subdominant to statistical error at the! current level of precision. Another major uncertainity in shear cosmology is the accuracy of our ensemble redshift distributions. Chapter 5 presents a numerical investigation into the combined constraining power of cosmic shear, galaxy clustering and their cross-correlation in DES Y1, and the potential for internal calibration of redshift errors. Introducing a moderate uniform bias into the redshift distributions used to model the weak lensing (WL) galaxies is shown to produce a $$> 2\\sigma$$ bias in $$S_8$$. We demonstrate that this cosmological bias can be eliminated by marginalising over redshift error nuisance parameters. Strikingly, the cosmological constraint of the combined dataset is largely undiminished by the loss of prior information on the WL distributions. We demonstrate that this implicit self-calibration is the result of complementary degeneracy directions in the combined data. In Chapter 6 we present the preliminary results of an investigation into galaxy intrin sic alignments. Using the DES Y1 data, we show a clear dependence in alignment amplitude on galaxy type, in agreement with previous results. We subject these findings to a series of initial robustness tests. We conclude with a short overview of the work presented, and discuss prospects for the future.« less
The Decay of Motor Memories Is Independent of Context Change Detection
Brennan, Andrew E.; Smith, Maurice A.
2015-01-01
When the error signals that guide human motor learning are withheld following training, recently-learned motor memories systematically regress toward untrained performance. It has previously been hypothesized that this regression results from an intrinsic volatility in these memories, resulting in an inevitable decay in the absence of ongoing error signals. However, a recently-proposed alternative posits that even recently-acquired motor memories are intrinsically stable, decaying only if a change in context is detected. This new theory, the context-dependent decay hypothesis, makes two key predictions: (1) after error signals are withheld, decay onset should be systematically delayed until the context change is detected; and (2) manipulations that impair detection by masking context changes should result in prolonged delays in decay onset and reduced decay amplitude at any given time. Here we examine the decay of motor adaptation following the learning of novel environmental dynamics in order to carefully evaluate this hypothesis. To account for potential issues in previous work that supported the context-dependent decay hypothesis, we measured decay using a balanced and baseline-referenced experimental design that allowed for direct comparisons between analogous masked and unmasked context changes. Using both an unbiased variant of the previous decay onset analysis and a novel highly-powered group-level version of this analysis, we found no evidence for systematically delayed decay onset nor for the masked context change affecting decay amplitude or its onset time. We further show how previous estimates of decay onset latency can be substantially biased in the presence of noise, and even more so with correlated noise, explaining the discrepancy between the previous results and our findings. Our results suggest that the decay of motor memories is an intrinsic feature of error-based learning that does not depend on context change detection. PMID:26111244
[Introduction to critical reading of articles: study design and biases].
García Villar, C
2015-01-01
The critical evaluation of an article enables professionals to make good use of the new information and therefore has direct repercussions for the benefit of our patients. Before undertaking a detailed critical reading of the chosen article, we need to consider whether the study used the most appropriate design for the question it aimed to answer (i.e., whether the level of evidence is adequate). To do this, we need to know how to classify studies in function of their design (descriptive or analytical; prospective or retrospective; cross-sectional or longitudinal) as well as their correlation with the levels of evidence. In critical reading it is also important to know the main systematic errors or biases that can affect a study. Biases can appear in any phase of a study; they can affect the sample, the development of the study, or the measurement of the results. Copyright © 2014 SERAM. Published by Elsevier España, S.L.U. All rights reserved.
Accounting for measurement error in log regression models with applications to accelerated testing.
Richardson, Robert; Tolley, H Dennis; Evenson, William E; Lunt, Barry M
2018-01-01
In regression settings, parameter estimates will be biased when the explanatory variables are measured with error. This bias can significantly affect modeling goals. In particular, accelerated lifetime testing involves an extrapolation of the fitted model, and a small amount of bias in parameter estimates may result in a significant increase in the bias of the extrapolated predictions. Additionally, bias may arise when the stochastic component of a log regression model is assumed to be multiplicative when the actual underlying stochastic component is additive. To account for these possible sources of bias, a log regression model with measurement error and additive error is approximated by a weighted regression model which can be estimated using Iteratively Re-weighted Least Squares. Using the reduced Eyring equation in an accelerated testing setting, the model is compared to previously accepted approaches to modeling accelerated testing data with both simulations and real data.
MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms
NASA Technical Reports Server (NTRS)
Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory
2011-01-01
To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.
A Psychological Model for Aggregating Judgments of Magnitude
NASA Astrophysics Data System (ADS)
Merkle, Edgar C.; Steyvers, Mark
In this paper, we develop and illustrate a psychologically-motivated model for aggregating judgments of magnitude across experts. The model assumes that experts' judgments are perturbed from the truth by both systematic biases and random error, and it provides aggregated estimates that are implicitly based on the application of nonlinear weights to individual judgments. The model is also easily extended to situations where experts report multiple quantile judgments. We apply the model to expert judgments concerning flange leaks in a chemical plant, illustrating its use and comparing it to baseline measures.
NASA Astrophysics Data System (ADS)
Swenson, S. C.; Lawrence, D. M.
2014-12-01
Estimating the relative contributions of human withdrawals and climate variability to changes in groundwater is a challenging task at present. One method that has been used recently is a model-data synthesis combining GRACE total water storage estimates with simulated water storage estimates from land surface models. In this method, water storage changes due to natural climate variations simulated by a model are removed from total water storage changes observed by GRACE; the residual is then interpreted as anthropogenic groundwater change. If the modeled water storage estimate contains systematic errors, these errors will also be present in the residual groundwater estimate. For example, simulations performed with the Community Land Model (CLM; the land component of the Community Earth System Model) generally show a weak (as much as 50% smaller) seasonal cycle of water storage in semi-arid regions when compared to GRACE satellite water storage estimates. This bias propagates into GRACE-CLM anthropogenic groundwater change estimates, which then exhibit unphysical seasonal variability. The CLM bias can be traced to the parameterization of soil evaporative resistance. Incorporating a new soil resistance parameterization in CLM greatly reduces the seasonal bias with respect to GRACE. In this study, we compare the improved CLM water storage estimates to GRACE and discuss the implications for estimates of anthropogenic groundwater withdrawal, showing examples for the Middle East and Southwestern United States.
The cost of adherence mismeasurement in serious mental illness: a claims-based analysis.
Shafrin, Jason; Forma, Felicia; Scherer, Ethan; Hatch, Ainslie; Vytlacil, Edward; Lakdawalla, Darius
2017-05-01
To quantify how adherence mismeasurement affects the estimated impact of adherence on inpatient costs among patients with serious mental illness (SMI). Proportion of days covered (PDC) is a common claims-based measure of medication adherence. Because PDC does not measure medication ingestion, however, it may inaccurately measure adherence. We derived a formula to correct the bias that occurs in adherence-utilization studies resulting from errors in claims-based measures of adherence. We conducted a literature review to identify the correlation between gold-standard and claims-based adherence measures. We derived a bias-correction methodology to address claims-based medication adherence measurement error. We then applied this methodology to a case study of patients with SMI who initiated atypical antipsychotics in 2 large claims databases. Our literature review identified 6 studies of interest. The 4 most relevant ones measured correlations between 0.38 and 0.91. Our preferred estimate implies that the effect of adherence on inpatient spending estimated from claims data would understate the true effect by a factor of 5.3, if there were no other sources of bias. Although our procedure corrects for measurement error, such error also may amplify or mitigate other potential biases. For instance, if adherent patients are healthier than nonadherent ones, measurement error makes the resulting bias worse. On the other hand, if adherent patients are sicker, measurement error mitigates the other bias. Measurement error due to claims-based adherence measures is worth addressing, alongside other more widely emphasized sources of bias in inference.
Automated detection of heuristics and biases among pathologists in a computer-based system.
Crowley, Rebecca S; Legowski, Elizabeth; Medvedeva, Olga; Reitmeyer, Kayse; Tseytlin, Eugene; Castine, Melissa; Jukic, Drazen; Mello-Thoms, Claudia
2013-08-01
The purpose of this study is threefold: (1) to develop an automated, computer-based method to detect heuristics and biases as pathologists examine virtual slide cases, (2) to measure the frequency and distribution of heuristics and errors across three levels of training, and (3) to examine relationships of heuristics to biases, and biases to diagnostic errors. The authors conducted the study using a computer-based system to view and diagnose virtual slide cases. The software recorded participant responses throughout the diagnostic process, and automatically classified participant actions based on definitions of eight common heuristics and/or biases. The authors measured frequency of heuristic use and bias across three levels of training. Biases studied were detected at varying frequencies, with availability and search satisficing observed most frequently. There were few significant differences by level of training. For representativeness and anchoring, the heuristic was used appropriately as often or more often than it was used in biased judgment. Approximately half of the diagnostic errors were associated with one or more biases. We conclude that heuristic use and biases were observed among physicians at all levels of training using the virtual slide system, although their frequencies varied. The system can be employed to detect heuristic use and to test methods for decreasing diagnostic errors resulting from cognitive biases.
NASA Technical Reports Server (NTRS)
Pauwels, V. R. N.; DeLannoy, G. J. M.; Hendricks Franssen, H.-J.; Vereecken, H.
2013-01-01
In this paper, we present a two-stage hybrid Kalman filter to estimate both observation and forecast bias in hydrologic models, in addition to state variables. The biases are estimated using the discrete Kalman filter, and the state variables using the ensemble Kalman filter. A key issue in this multi-component assimilation scheme is the exact partitioning of the difference between observation and forecasts into state, forecast bias and observation bias updates. Here, the error covariances of the forecast bias and the unbiased states are calculated as constant fractions of the biased state error covariance, and the observation bias error covariance is a function of the observation prediction error covariance. In a series of synthetic experiments, focusing on the assimilation of discharge into a rainfall-runoff model, it is shown that both static and dynamic observation and forecast biases can be successfully estimated. The results indicate a strong improvement in the estimation of the state variables and resulting discharge as opposed to the use of a bias-unaware ensemble Kalman filter. Furthermore, minimal code modification in existing data assimilation software is needed to implement the method. The results suggest that a better performance of data assimilation methods should be possible if both forecast and observation biases are taken into account.
Impact of lateral boundary conditions on regional analyses
NASA Astrophysics Data System (ADS)
Chikhar, Kamel; Gauthier, Pierre
2017-04-01
Regional and global climate models are usually validated by comparison to derived observations or reanalyses. Using a model in data assimilation results in a direct comparison to observations to produce its own analyses that may reveal systematic errors. In this study, regional analyses over North America are produced based on the fifth-generation Canadian Regional Climate Model (CRCM5) combined with the variational data assimilation system of the Meteorological Service of Canada (MSC). CRCM5 is driven at its boundaries by global analyses from ERA-interim or produced with the global configuration of the CRCM5. Assimilation cycles for the months of January and July 2011 revealed systematic errors in winter through large values in the mean analysis increments. This bias is attributed to the coupling of the lateral boundary conditions of the regional model with the driving data particularly over the northern boundary where a rapidly changing large scale circulation created significant cross-boundary flows. Increasing the time frequency of the lateral driving and applying a large-scale spectral nudging improved significantly the circulation through the lateral boundaries which translated in a much better agreement with observations.
Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method
NASA Astrophysics Data System (ADS)
Nakajima, Reiko; Bernstein, Gary
2007-04-01
We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.
A Liberal Account of Addiction
Foddy, Bennett; Savulescu, Julian
2014-01-01
Philosophers and psychologists have been attracted to two differing accounts of addictive motivation. In this paper, we investigate these two accounts and challenge their mutual claim that addictions compromise a person’s self-control. First, we identify some incompatibilities between this claim of reduced self-control and the available evidence from various disciplines. A critical assessment of the evidence weakens the empirical argument for reduced autonomy. Second, we identify sources of unwarranted normative bias in the popular theories of addiction that introduce systematic errors in interpreting the evidence. By eliminating these errors, we are able to generate a minimal, but correct account, of addiction that presumes addicts to be autonomous in their addictive behavior, absent further evidence to the contrary. Finally, we explore some of the implications of this minimal, correct view. PMID:24659901
NASA Astrophysics Data System (ADS)
Martin, Gill; Levine, Richard; Klingaman, Nicholas; Bush, Stephanie; Turner, Andrew; Woolnough, Steven
2015-04-01
Despite considerable efforts worldwide to improve model simulations of the Asian summer monsoon, significant biases still remain in climatological seasonal mean rainfall distribution, timing of the onset, and northward and eastward extent of the monsoon domain (Sperber et al., 2013). Many modelling studies have shown sensitivity to convection and boundary layer parameterization, cloud microphysics and land surface properties, as well as model resolution. Here we examine the problems in representing short-timescale rainfall variability (related to convection parameterization), problems in representing synoptic-scale systems such as monsoon depressions (related to model resolution), and the relationship of each of these with longer-term systematic biases. Analysis of the spatial distribution of rainfall intensity on a range of timescales ranging from ~30 minutes to daily, in the MetUM and in observations (where available), highlights how rainfall biases in the South Asian monsoon region on different timescales in different regions can be achieved in models through a combination of the incorrect frequency and/or intensity of rainfall. Over the Indian land area, the typical dry bias is related to sub-daily rainfall events being too infrequent, despite being too intense when they occur. In contrast, the wet bias regions over the equatorial Indian Ocean are mainly related to too frequent occurrence of lower-than-observed 3-hourly rainfall accumulations which result in too frequent occurrence of higher-than-observed daily rainfall accumulations. This analysis sheds light on the model deficiencies behind the climatological seasonal mean rainfall biases that many models exhibit in this region. Changing physical parameterizations alters this behaviour, with associated adjustments in the climatological rainfall distribution, although the latter is not always improved (Bush et al., 2014). This suggests a more complex interaction between the diabatic heating and the large-scale circulation than is indicated by the intensity and frequency of rainfall alone. Monsoon depressions and low pressure systems are important contributors to monsoon rainfall over central and northern India, areas where MetUM climate simulations typically show deficient monsoon rainfall. Analysis of MetUM climate simulations at resolutions ranging from N96 (~135km) to N512 (~25km) suggests that at lower resolution the numbers and intensities of monsoon depressions and low pressure systems and their associated rainfall are very low compared with re-analyses/observations. We show that there are substantial increases with horizontal resolution, but resolution is not the only factor. Idealised simulations, either using nudged atmospheric winds or initialised coupled hindcasts, which improve (strengthen) the mean state monsoon and cyclonic circulation over the Indian peninsula, also result in a substantial increase in monsoon depressions and associated rainfall. This suggests that a more realistic representation of monsoon depressions is possible even at lower resolution if the larger-scale systematic error pattern in the monsoon is improved.
Radar error statistics for the space shuttle
NASA Technical Reports Server (NTRS)
Lear, W. M.
1979-01-01
Radar error statistics of C-band and S-band that are recommended for use with the groundtracking programs to process space shuttle tracking data are presented. The statistics are divided into two parts: bias error statistics, using the subscript B, and high frequency error statistics, using the subscript q. Bias errors may be slowly varying to constant. High frequency random errors (noise) are rapidly varying and may or may not be correlated from sample to sample. Bias errors were mainly due to hardware defects and to errors in correction for atmospheric refraction effects. High frequency noise was mainly due to hardware and due to atmospheric scintillation. Three types of atmospheric scintillation were identified: horizontal, vertical, and line of sight. This was the first time that horizontal and line of sight scintillations were identified.
NASA Technical Reports Server (NTRS)
Cohen, Charlie; Robertson, Franklin; Molod, Andrea
2014-01-01
The representation of convective processes, particularly deep convection in the tropics, remains a persistent problem in climate models. In fact structural biases in the distribution of tropical rainfall in the CMIP5 models is hardly different than that of the CMIP3 versions. Given that regional climate change at higher latitudes is sensitive to the configuration of tropical forcing, this persistent bias is a major issue for the credibility of climate change projections. In this study we use model output from integrations of the NASA Global Earth Observing System Five (GEOS5) climate modeling system to study the evolution of biases in the location and intensity of convective processes. We take advantage of a series of hindcast experiments done in support of the US North American Multi-Model Ensemble (NMME) initiative. For these experiments a nine-month forecast using a coupled model configuration is made approximately every five days over the past 30 years. Each forecast is started with an updated analysis of the ocean, atmosphere and land states. For a given calendar month we have approximately 180 forecasts with daily means of various quantities. These forecasts can be averaged to essentially remove "weather scales" and highlight systematic errors as they evolve. Our primary question is to ask how the spatial structure of daily mean precipitation over the tropics evolves from the initial state and what physical processes are involved. Errors in parameterized convection, various water and energy fluxes and the divergent circulation are found to set up on fast time scales (order five days) compared to errors in the ocean, although SST changes can be non-negligible over that time. For the month of June the difference between forecast day five versus day zero precipitation looks quite similar to the difference between the June precipitation climatology and that from the Global Precipitation Climatology Project (GPCP). We focus much of our analysis on the influence of SST gradients, associated PBL baroclinicity enabled by turbulent mixing, the ensuing PBL moisture convergence, and how changes in these processes relate to convective precipitation bias growth over this short period.
NASA Astrophysics Data System (ADS)
Robertson, F. R.; Cohen, C.
2014-12-01
The representation of convective processes, particularly deep convection in the tropics, remains a persistent problem in climate models. In fact structural biases in the distribution of tropical rainfall in the CMIP5 models is hardly different than that of the CMIP3 versions. Given that regional climate change at higher latitudes is sensitive to the configuration of tropical forcing, this persistent bias is a major issue for the credibility of climate change projections. In this study we use model output from integrations of the NASA Global Earth Observing System Five (GEOS5) climate modeling system to study the evolution of biases in the location and intensity of convective processes. We take advantage of a series of hindcast experiments done in support of the US North American Multi-Model Ensemble (NMME) initiative. For these experiments a nine-month forecast using a coupled model configuration is made approximately every five days over the past 30 years. Each forecast is started with an updated analysis of the ocean, atmosphere and land states. For a given calendar month we have approximately 180 forecasts with daily means of various quantities. These forecasts can be averaged to essentially remove "weather scales" and highlight systematic errors as they evolve. Our primary question is to ask how the spatial structure of daily mean precipitation over the tropics evolves from the initial state and what physical processes are involved. Errors in parameterized convection, various water and energy fluxes and the divergent circulation are found to set up on fast time scales (order five days) compared to errors in the ocean, although SST changes can be non-negligible over that time. For the month of June the difference between forecast day five versus day zero precipitation looks quite similar to the difference between the June precipitation climatology and that from the Global Precipitation Climatology Project (GPCP). We focus much of our analysis on the influence of SST gradients, associated PBL baroclinicity enabled by turbulent mixing, the ensuing PBL moisture convergence, and how changes in these processes relate to convective precipitation bias growth over this short period.
Bergen, Silas; Sheppard, Lianne; Kaufman, Joel D.; Szpiro, Adam A.
2016-01-01
Summary Air pollution epidemiology studies are trending towards a multi-pollutant approach. In these studies, exposures at subject locations are unobserved and must be predicted using observed exposures at misaligned monitoring locations. This induces measurement error, which can bias the estimated health effects and affect standard error estimates. We characterize this measurement error and develop an analytic bias correction when using penalized regression splines to predict exposure. Our simulations show bias from multi-pollutant measurement error can be severe, and in opposite directions or simultaneously positive or negative. Our analytic bias correction combined with a non-parametric bootstrap yields accurate coverage of 95% confidence intervals. We apply our methodology to analyze the association of systolic blood pressure with PM2.5 and NO2 in the NIEHS Sister Study. We find that NO2 confounds the association of systolic blood pressure with PM2.5 and vice versa. Elevated systolic blood pressure was significantly associated with increased PM2.5 and decreased NO2. Correcting for measurement error bias strengthened these associations and widened 95% confidence intervals. PMID:27789915
Greenland, Sander; Gustafson, Paul
2006-07-01
Researchers sometimes argue that their exposure-measurement errors are independent of other errors and are nondifferential with respect to disease, resulting in estimation bias toward the null. Among well-known problems with such arguments are that independence and nondifferentiality are harder to satisfy than ordinarily appreciated (e.g., because of correlation of errors in questionnaire items, and because of uncontrolled covariate effects on error rates); small violations of independence or nondifferentiality may lead to bias away from the null; and, if exposure is polytomous, the bias produced by independent nondifferential error is not always toward the null. The authors add to this list by showing that, in a 2 x 2 table (for which independent nondifferential error produces bias toward the null), accounting for independent nondifferential error does not reduce the p value even though it increases the point estimate. Thus, such accounting should not increase certainty that an association is present.
Visuospatial biases in preschool children: Evidence from line bisection in three-dimensional space.
Patro, Katarzyna; Nuerk, Hans-Christoph; Brugger, Peter
2018-04-09
Spatial attention in adults is characterized by systematic asymmetries across all three spatial dimensions. These asymmetries are evident when participants bisect horizontal, vertical, or radial lines and misplace their midpoints to the left, the top, or far from the body, respectively. However, bisection errors are rarely examined during early childhood. In this study, we examined the development of spatial-attentional asymmetries in three-dimensional (3D) space by asking preschool children (aged 3-6 years) to bisect horizontal, vertical, and radial lines. Children erred to the left with horizontal lines and to the top with vertical lines, consistent with the pattern reported in adults. These biases got stronger with age and were absent in the youngest preschoolers. However, by controlling for a possible failure in hitting the line, we observed an additional unpredicted pattern: Children's pointing systematically deviated away from the line to an empty space on its left side (for vertical and radial lines) or above it (for horizontal lines). Notably, this task-irrelevant deviation was pronounced in children as young as 3 or 4 years. We conclude that asymmetries in spatial-attentional functions should be measured not only in task-relevant dimensions but also in task-irrelevant dimensions because the latter may reveal biases in very young children not typically observed in task-relevant measures. Copyright © 2018 Elsevier Inc. All rights reserved.
Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing
2015-01-01
The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188
Determination of Shift/Bias in Digital Aerial Triangulation of UAV Imagery Sequences
NASA Astrophysics Data System (ADS)
Wierzbicki, Damian
2017-12-01
Currently UAV Photogrammetry is characterized a largely automated and efficient data processing. Depicting from the low altitude more often gains on the meaning in the uses of applications as: cities mapping, corridor mapping, road and pipeline inspections or mapping of large areas e.g. forests. Additionally, high-resolution video image (HD and bigger) is more often use for depicting from the low altitude from one side it lets deliver a lot of details and characteristics of ground surfaces features, and from the other side is presenting new challenges in the data processing. Therefore, determination of elements of external orientation plays a substantial role the detail of Digital Terrain Models and artefact-free ortophoto generation. Parallel a research on the quality of acquired images from UAV and above the quality of products e.g. orthophotos are conducted. Despite so fast development UAV photogrammetry still exists the necessity of accomplishment Automatic Aerial Triangulation (AAT) on the basis of the observations GPS/INS and via ground control points. During low altitude photogrammetric flight, the approximate elements of external orientation registered by UAV are burdened with the influence of some shift/bias errors. In this article, methods of determination shift/bias error are presented. In the process of the digital aerial triangulation two solutions are applied. In the first method shift/bias error was determined together with the drift/bias error, elements of external orientation and coordinates of ground control points. In the second method shift/bias error was determined together with the elements of external orientation, coordinates of ground control points and drift/bias error equals 0. When two methods were compared the difference for shift/bias error is more than ±0.01 m for all terrain coordinates XYZ.
Wu, Zhijin; Liu, Dongmei; Sui, Yunxia
2008-02-01
The process of identifying active targets (hits) in high-throughput screening (HTS) usually involves 2 steps: first, removing or adjusting for systematic variation in the measurement process so that extreme values represent strong biological activity instead of systematic biases such as plate effect or edge effect and, second, choosing a meaningful cutoff on the calculated statistic to declare positive compounds. Both false-positive and false-negative errors are inevitable in this process. Common control or estimation of error rates is often based on an assumption of normal distribution of the noise. The error rates in hit detection, especially false-negative rates, are hard to verify because in most assays, only compounds selected in primary screening are followed up in confirmation experiments. In this article, the authors take advantage of a quantitative HTS experiment in which all compounds are tested 42 times over a wide range of 14 concentrations so true positives can be found through a dose-response curve. Using the activity status defined by dose curve, the authors analyzed the effect of various data-processing procedures on the sensitivity and specificity of hit detection, the control of error rate, and hit confirmation. A new summary score is proposed and demonstrated to perform well in hit detection and useful in confirmation rate estimation. In general, adjusting for positional effects is beneficial, but a robust test can prevent overadjustment. Error rates estimated based on normal assumption do not agree with actual error rates, for the tails of noise distribution deviate from normal distribution. However, false discovery rate based on empirically estimated null distribution is very close to observed false discovery proportion.
Large Uncertainty in Estimating pCO2 From Carbonate Equilibria in Lakes
NASA Astrophysics Data System (ADS)
Golub, Malgorzata; Desai, Ankur R.; McKinley, Galen A.; Remucal, Christina K.; Stanley, Emily H.
2017-11-01
Most estimates of carbon dioxide (CO2) evasion from freshwaters rely on calculating partial pressure of aquatic CO2 (pCO2) from two out of three CO2-related parameters using carbonate equilibria. However, the pCO2 uncertainty has not been systematically evaluated across multiple lake types and equilibria. We quantified random errors in pH, dissolved inorganic carbon, alkalinity, and temperature from the North Temperate Lakes Long-Term Ecological Research site in four lake groups across a broad gradient of chemical composition. These errors were propagated onto pCO2 calculated from three carbonate equilibria, and for overlapping observations, compared against uncertainties in directly measured pCO2. The empirical random errors in CO2-related parameters were mostly below 2% of their median values. Resulting random pCO2 errors ranged from ±3.7% to ±31.5% of the median depending on alkalinity group and choice of input parameter pairs. Temperature uncertainty had a negligible effect on pCO2. When compared with direct pCO2 measurements, all parameter combinations produced biased pCO2 estimates with less than one third of total uncertainty explained by random pCO2 errors, indicating that systematic uncertainty dominates over random error. Multidecadal trend of pCO2 was difficult to reconstruct from uncertain historical observations of CO2-related parameters. Given poor precision and accuracy of pCO2 estimates derived from virtually any combination of two CO2-related parameters, we recommend direct pCO2 measurements where possible. To achieve consistently robust estimates of CO2 emissions from freshwater components of terrestrial carbon balances, future efforts should focus on improving accuracy and precision of CO2-related parameters (including direct pCO2) measurements and associated pCO2 calculations.
Validity of mail survey data on bagged waterfowl
Atwood, E.L.
1956-01-01
Knowledge of the pattern of occurrence and characteristics of response errors obtained during an investigation of the validity of post-season surveys of hunters was used to advantage to devise a two-step method for removing the response-bias errors from the raw survey data. The method was tested on data with known errors and found to have a high efficiency in reducing the effect of response-bias errors. The development of this method for removing the effect of the response-bias errors, and its application to post-season hunter-take survey data, increased the reliability of the data from below the point of practical management significance up to the approximate reliability limits corresponding to the sampling errors.
Speyer, Helene; Gluud, Christian; Nordentoft, Merete
2017-01-01
Objectives To assess the benefits and harms of exercise in patients with depression. Design Systematic review Data sources Bibliographical databases were searched until 20 June 2017. Eligibility criteria and outcomes Eligible trials were randomised clinical trials assessing the effect of exercise in participants diagnosed with depression. Primary outcomes were depression severity, lack of remission and serious adverse events (eg, suicide) assessed at the end of the intervention. Secondary outcomes were quality of life and adverse events such as injuries, as well as assessment of depression severity and lack of remission during follow-up after the intervention. Results Thirty-five trials enrolling 2498 participants were included. The effect of exercise versus control on depression severity was −0.66 standardised mean difference (SMD) (95% CI −0.86 to −0.46; p<0.001; grading of recommendations assessment, development and evaluation (GRADE): very low quality). Restricting this analysis to the four trials that seemed less affected of bias, the effect vanished into −0.11 SMD (−0.41 to 0.18; p=0.45; GRADE: low quality). Exercise decreased the relative risk of no remission to 0.78 (0.68 to 0.90; p<0.001; GRADE: very low quality). Restricting this analysis to the two trials that seemed less affected of bias, the effect vanished into 0.95 (0.74 to 1.23; p=0.78). Trial sequential analysis excluded random error when all trials were analysed, but not if focusing on trials less affected of bias. Subgroup analyses found that trial size and intervention duration were inversely associated with effect size for both depression severity and lack of remission. There was no significant effect of exercise on secondary outcomes. Conclusions Trials with less risk of bias suggested no antidepressant effects of exercise and there were no significant effects of exercise on quality of life, depression severity or lack of remission during follow-up. Data for serious adverse events and adverse events were scarce not allowing conclusions for these outcomes. Systematic review registration The protocol was published in the journal Systematic Reviews: 2015; 4:40. PMID:28928174
Addressing and Presenting Quality of Satellite Data via Web-Based Services
NASA Technical Reports Server (NTRS)
Leptoukh, Gregory; Lynnes, C.; Ahmad, S.; Fox, P.; Zednik, S.; West, P.
2011-01-01
With the recent attention to climate change and proliferation of remote-sensing data utilization, climate model and various environmental monitoring and protection applications have begun to increasingly rely on satellite measurements. Research application users seek good quality satellite data, with uncertainties and biases provided for each data point. However, different communities address remote sensing quality issues rather inconsistently and differently. We describe our attempt to systematically characterize, capture, and provision quality and uncertainty information as it applies to the NASA MODIS Aerosol Optical Depth data product. In particular, we note the semantic differences in quality/bias/uncertainty at the pixel, granule, product, and record levels. We outline various factors contributing to uncertainty or error budget; errors. Web-based science analysis and processing tools allow users to access, analyze, and generate visualizations of data while alleviating users from having directly managing complex data processing operations. These tools provide value by streamlining the data analysis process, but usually shield users from details of the data processing steps, algorithm assumptions, caveats, etc. Correct interpretation of the final analysis requires user understanding of how data has been generated and processed and what potential biases, anomalies, or errors may have been introduced. By providing services that leverage data lineage provenance and domain-expertise, expert systems can be built to aid the user in understanding data sources, processing, and the suitability for use of products generated by the tools. We describe our experiences developing a semantic, provenance-aware, expert-knowledge advisory system applied to NASA Giovanni web-based Earth science data analysis tool as part of the ESTO AIST-funded Multi-sensor Data Synergy Advisor project.
Improved Stratospheric Temperature Retrievals for Climate Reanalysis
NASA Technical Reports Server (NTRS)
Rokke, L.; Joiner, J.
1999-01-01
The Data Assimilation Office (DAO) is embarking on plans to generate a twenty year reanalysis data set of climatic atmospheric variables. One of the focus points will be in the evaluation of the dynamics of the stratosphere. The Stratospheric Sounding Unit (SSU), flown as part of the TIROS Operational Vertical Sounder (TOVS), is one of the primary stratospheric temperature sensors flown consistently throughout the reanalysis period. Seven unique sensors made the measurements over time, with individual instrument characteristics that need to be addressed. The stratospheric temperatures being assimilated across satellite platforms will profoundly impact the reanalysis dynamical fields. To attempt to quantify aspects of instrument and retrieval bias we are carefully collecting and analyzing all available information on the sensors, their instrument anomalies, forward model errors and retrieval biases. For the retrieval of stratospheric temperatures, we adapted the minimum variance approach of Jazwinski (1970) and Rodgers (1976) and applied it to the SSU soundings. In our algorithm, the state vector contains an initial guess of temperature from a model six hour forecast provided by the Goddard EOS Data Assimilation System (GEOS/DAS). This is combined with an a priori covariance matrix, a forward model parameterization, and specifications of instrument noise characteristics. A quasi-Newtonian iteration is used to obtain convergence of the retrieved state to the measurement vector. This algorithm also enables us to analyze and address the systematic errors associated with the unique characteristics of the cell pressures on the individual SSU instruments and the resolving power of the instruments to vertical gradients in the stratosphere. The preliminary results of the improved retrievals and their assimilation as well as baseline calculations of bias and rms error between the NESDIS operational product and col-located ground measurements will be presented.
NASA Astrophysics Data System (ADS)
Fathalli, Bilel; Pohl, Benjamin; Castel, Thierry; Safi, Mohamed Jomâa
2018-02-01
Temporal and spatial variability of rainfall over Tunisia (at 12 km spatial resolution) is analyzed in a multi-year (1992-2011) ten-member ensemble simulation performed using the WRF model, and a sample of regional climate hindcast simulations from Euro-CORDEX. RCM errors and skills are evaluated against a dense network of local rain gauges. Uncertainties arising, on the one hand, from the different model configurations and, on the other hand, from internal variability are furthermore quantified and ranked at different timescales using simple spread metrics. Overall, the WRF simulation shows good skill for simulating spatial patterns of rainfall amounts over Tunisia, marked by strong altitudinal and latitudinal gradients, as well as the rainfall interannual variability, in spite of systematic errors. Mean rainfall biases are wet in both DJF and JJA seasons for the WRF ensemble, while they are dry in winter and wet in summer for most of the used Euro-CORDEX models. The sign of mean annual rainfall biases over Tunisia can also change from one member of the WRF ensemble to another. Skills in regionalizing precipitation over Tunisia are season dependent, with better correlations and weaker biases in winter. Larger inter-member spreads are observed in summer, likely because of (1) an attenuated large-scale control on Mediterranean and Tunisian climate, and (2) a larger contribution of local convective rainfall to the seasonal amounts. Inter-model uncertainties are globally stronger than those attributed to model's internal variability. However, inter-member spreads can be of the same magnitude in summer, emphasizing the important stochastic nature of the summertime rainfall variability over Tunisia.
Bias-field equalizer for bubble memories
NASA Technical Reports Server (NTRS)
Keefe, G. E.
1977-01-01
Magnetoresistive Perm-alloy sensor monitors bias field required to maintain bubble memory. Sensor provides error signal that, in turn, corrects magnitude of bias field. Error signal from sensor can be used to control magnitude of bias field in either auxiliary set of bias-field coils around permanent magnet field, or current in small coils used to remagnetize permanent magnet by infrequent, short, high-current pulse or short sequence of pulses.
Perceptual Bias in Speech Error Data Collection: Insights from Spanish Speech Errors
ERIC Educational Resources Information Center
Perez, Elvira; Santiago, Julio; Palma, Alfonso; O'Seaghdha, Padraig G.
2007-01-01
This paper studies the reliability and validity of naturalistic speech errors as a tool for language production research. Possible biases when collecting naturalistic speech errors are identified and specific predictions derived. These patterns are then contrasted with published reports from Germanic languages (English, German and Dutch) and one…
Monaghan, Kieran A.
2016-01-01
Natural ecological variability and analytical design can bias the derived value of a biotic index through the variable influence of indicator body-size, abundance, richness, and ascribed tolerance scores. Descriptive statistics highlight this risk for 26 aquatic indicator systems; detailed analysis is provided for contrasting weighted-average indices applying the example of the BMWP, which has the best supporting data. Differences in body size between taxa from respective tolerance classes is a common feature of indicator systems; in some it represents a trend ranging from comparatively small pollution tolerant to larger intolerant organisms. Under this scenario, the propensity to collect a greater proportion of smaller organisms is associated with negative bias however, positive bias may occur when equipment (e.g. mesh-size) selectively samples larger organisms. Biotic indices are often derived from systems where indicator taxa are unevenly distributed along the gradient of tolerance classes. Such skews in indicator richness can distort index values in the direction of taxonomically rich indicator classes with the subsequent degree of bias related to the treatment of abundance data. The misclassification of indicator taxa causes bias that varies with the magnitude of the misclassification, the relative abundance of misclassified taxa and the treatment of abundance data. These artifacts of assessment design can compromise the ability to monitor biological quality. The statistical treatment of abundance data and the manipulation of indicator assignment and class richness can be used to improve index accuracy. While advances in methods of data collection (i.e. DNA barcoding) may facilitate improvement, the scope to reduce systematic bias is ultimately limited to a strategy of optimal compromise. The shortfall in accuracy must be addressed by statistical pragmatism. At any particular site, the net bias is a probabilistic function of the sample data, resulting in an error variance around an average deviation. Following standardized protocols and assigning precise reference conditions, the error variance of their comparative ratio (test-site:reference) can be measured and used to estimate the accuracy of the resultant assessment. PMID:27392036
NASA Technical Reports Server (NTRS)
Bey, I.; Jacob, D. J.; Liu, H.; Yantosca, R. M.; Sachse, G. W.
2004-01-01
We propose a new methodology to characterize errors in the representation of transport processes in chemical transport models. We constrain the evaluation of a global three-dimensional chemical transport model (GEOS-CHEM) with an extended dataset of carbon monoxide (CO) concentrations obtained during the Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft campaign. The TRACEP mission took place over the western Pacific, a region frequently impacted by continental outflow associated with different synoptic-scale weather systems (such as cold fronts) and deep convection, and thus provides a valuable dataset. for our analysis. Model simulations using both forecast and assimilated meteorology are examined. Background CO concentrations are computed as a function of latitude and altitude and subsequently subtracted from both the observed and the model datasets to focus on the ability of the model to simulate variability on a synoptic scale. Different sampling strategies (i.e., spatial displacement and smoothing) are applied along the flight tracks to search for systematic model biases. Statistical quantities such as correlation coefficient and centered root-mean-square difference are computed between the simulated and the observed fields and are further inter-compared using Taylor diagrams. We find no systematic bias in the model for the TRACE-P region when we consider the entire dataset (i.e., from the surface to 12 km ). This result indicates that the transport error in our model is globally unbiased, which has important implications for using the model to conduct inverse modeling studies. Using the First-Look assimilated meteorology only provides little improvement of the correlation, in comparison with the forecast meteorology. These general statements can be refined when the entire dataset is divided into different vertical domains, i.e., the lower troposphere (less than 2 km), the middle troposphere (2-6 km), and the upper troposphere (greater than 6 km). The best agreement between the observations and the model is found in the lower and middle troposphere. Downward displacements in the lower troposphere provide a better fit with the observed value, which could indicate a problem in the representation of boundary layer height in the model. Significant improvement is also found for downward and southward displacements in the upper troposphere. There are several potential sources of errors in our simulation of the continental outflow in the upper troposphere which could lead to such biases, including the location and/or the strength of deep convective cells as well as that of wildfires in Southeast Asia.
NASA Astrophysics Data System (ADS)
Baker, D. F.; Oda, T.; O'Dell, C.; Wunch, D.; Jacobson, A. R.; Yoshida, Y.; Partners, T.
2012-12-01
Measurements of column CO2 concentration from space are now being taken at a spatial and temporal density that permits regional CO2 sources and sinks to be estimated. Systematic errors in the satellite retrievals must be minimized for these estimates to be useful, however. CO2 retrievals from the TANSO instrument aboard the GOSAT satellite are compared to similar column retrievals from the Total Carbon Column Observing Network (TCCON) as the primary method of validation; while this is a powerful approach, it can only be done for overflights of 10-20 locations and has not, for example, permitted validation of GOSAT data over the oceans or deserts. Here we present a complementary approach that uses a global atmospheric transport model and flux inversion method to compare different types of CO2 measurements (GOSAT, TCCON, surface in situ, and aircraft) at different locations, at the cost of added transport error. The measurements from any single type of data are used in a variational carbon data assimilation method to optimize surface CO2 fluxes (with a CarbonTracker prior), then the corresponding optimized CO2 concentration fields are compared to those data types not inverted, using the appropriate vertical weighting. With this approach, we find that GOSAT column CO2 retrievals from the ACOS project (version 2.9 and 2.10) contain systematic errors that make the modeled fit to the independent data worse. However, we find that the differences between the GOSAT data and our prior model are correlated with certain physical variables (aerosol amount, surface albedo, correction to total column mass) that are likely driving errors in the retrievals, independent of CO2 concentration. If we correct the GOSAT data using a fit to these variables, then we find the GOSAT data to improve the fit to independent CO2 data, which suggests that the useful information in the measurements outweighs the negative impact of the remaining systematic errors. With this assurance, we compare the flux estimates given by assimilating the ACOS GOSAT retrievals to similar ones given by NIES GOSAT column retrievals, bias-corrected in a similar manner. Finally, we have found systematic differences on the order of a half ppm between column CO2 integrals from 18 TCCON sites and those given by assimilating NOAA in situ data (both surface and aircraft profile) in this approach. We assess how these differences change in switching to a newer version of the TCCON retrieval software.
Publication bias in dermatology systematic reviews and meta-analyses.
Atakpo, Paul; Vassar, Matt
2016-05-01
Systematic reviews and meta-analyses in dermatology provide high-level evidence for clinicians and policy makers that influence clinical decision making and treatment guidelines. One methodological problem with systematic reviews is the under representation of unpublished studies. This problem is due in part to publication bias. Omission of statistically non-significant data from meta-analyses may result in overestimation of treatment effect sizes which may lead to clinical consequences. Our goal was to assess whether systematic reviewers in dermatology evaluate and report publication bias. Further, we wanted to conduct our own evaluation of publication bias on meta-analyses that failed to do so. Our study considered systematic reviews and meta-analyses from ten dermatology journals from 2006 to 2016. A PubMed search was conducted, and all full-text articles that met our inclusion criteria were retrieved and coded by the primary author. 293 articles were included in our analysis. Additionally, we formally evaluated publication bias in meta-analyses that failed to do so using trim and fill and cumulative meta-analysis by precision methods. Publication bias was mentioned in 107 articles (36.5%) and was formally evaluated in 64 articles (21.8%). Visual inspection of a funnel plot was the most common method of evaluating publication bias. Publication bias was present in 45 articles (15.3%), not present in 57 articles (19.5%) and not determined in 191 articles (65.2%). Using the trim and fill method, 7 meta-analyses (33.33%) showed evidence of publication bias. Although the trim and fill method only found evidence of publication bias in 7 meta-analyses, the cumulative meta-analysis by precision method found evidence of publication bias in 15 meta-analyses (71.4%). Many of the reviews in our study did not mention or evaluate publication bias. Further, of the 42 articles that stated following PRISMA reporting guidelines, 19 (45.2%) evaluated for publication bias. In comparison to other studies, we found that systematic reviews in dermatology were less likely to evaluate for publication bias. Evaluating and reporting the likelihood of publication bias should be standard practice in systematic reviews when appropriate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.
The Clouds Above the United States and Errors at the Surface (CAUSES) project is aimed at gaining a better understanding of the physical processes that are leading to the creation of warm screen-temperature biases over the American Midwest, which are seen in many numerical models. Here in Part 1, a series of 5-day hindcasts, each initialised from re-analyses and performed by 11 different models, are evaluated against screen-temperature observations. All the models have a warm bias over parts of the Midwest. Several ways of quantifying the impact of the initial conditions on the evolution of the simulations are presented, showingmore » that within a day or so all models have produced a warm bias that is representative of their bias after 5 days, and not closely tied to the conditions at the initial time. Although the surface temperature biases sometimes coincide with locations where the re-analyses themselves have a bias, there are many regions in each of the models where biases grow over the course of 5 days or are larger than the biases present in the reanalyses. At the Southern Great Plains site, the model biases are shown to not be confined to the surface, but extend several kilometres into the atmosphere. In most of the models, there is a strong diurnal cycle in the screen-temperature bias and in some models the biases are largest around midday, while in the others it is largest during the night. While the different physical processes that are contributing to a given model having a screen-temperature error will be discussed in more detail in the companion papers (Parts 2 and 3) the fact that there is a spatial coherence in the phase of the diurnal cycle of the error across wide regions and that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP suggest that the detailed evaluations of the role of different processes in contributing to errors at SGP will be representative of errors that are prevalent over a much larger spatial scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcrette, Cyril J.; Van Weverberg, Kwinten; Ma, H
2018-02-16
The Clouds Above the United States and Errors at the Surface (CAUSES) project is aimed at gaining a better understanding of the physical processes that are leading to the creation of warm screen-temperature biases over the American Midwest, which are seen in many numerical models. Here in Part 1, a series of 5-day hindcasts, each initialised from re-analyses and performed by 11 different models, are evaluated against screen-temperature observations. All the models have a warm bias over parts of the Midwest. Several ways of quantifying the impact of the initial conditions on the evolution of the simulations are presented, showingmore » that within a day or so all models have produced a warm bias that is representative of their bias after 5 days, and not closely tied to the conditions at the initial time. Although the surface temperature biases sometimes coincide with locations where the re-analyses themselves have a bias, there are many regions in each of the models where biases grow over the course of 5 days or are larger than the biases present in the reanalyses. At the Southern Great Plains site, the model biases are shown to not be confined to the surface, but extend several kilometres into the atmosphere. In most of the models, there is a strong diurnal cycle in the screen-temperature bias and in some models the biases are largest around midday, while in the others it is largest during the night. While the different physical processes that are contributing to a given model having a screen-temperature error will be discussed in more detail in the companion papers (Parts 2 and 3) the fact that there is a spatial coherence in the phase of the diurnal cycle of the error across wide regions and that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP suggest that the detailed evaluations of the role of different processes in contributing to errors at SGP will be representative of errors that are prevalent over a much larger spatial scale.« less
Allegrini, Maria-Cristina; Canullo, Roberto; Campetella, Giandiego
2009-04-01
Knowledge of accuracy and precision rates is particularly important for long-term studies. Vegetation assessments include many sources of error related to overlooking and misidentification, that are usually influenced by some factors, such as cover estimate subjectivity, observer biased species lists and experience of the botanist. The vegetation assessment protocol adopted in the Italian forest monitoring programme (CONECOFOR) contains a Quality Assurance programme. The paper presents the different phases of QA, separates the 5 main critical points of the whole protocol as sources of random or systematic errors. Examples of Measurement Quality Objectives (MQOs) expressed as Data Quality Limits (DQLs) are given for vascular plant cover estimates, in order to establish the reproducibility of the data. Quality control activities were used to determine the "distance" between the surveyor teams and the control team. Selected data were acquired during the training and inter-calibration courses. In particular, an index of average cover by species groups was used to evaluate the random error (CV 4%) as the dispersion around the "true values" of the control team. The systematic error in the evaluation of species composition, caused by overlooking or misidentification of species, was calculated following the pseudo-turnover rate; detailed species censuses on smaller sampling units were accepted as the pseudo-turnover which always fell below the 25% established threshold; species density scores recorded at community level (100 m(2) surface) rarely exceeded that limit.
The power spectrum of galaxies in the 2dF 100k redshift survey
NASA Astrophysics Data System (ADS)
Tegmark, Max; Hamilton, Andrew J. S.; Xu, Yongzhong
2002-10-01
We compute the real-space power spectrum and the redshift-space distortions of galaxies in the 2dF 100k galaxy redshift survey using pseudo-Karhunen-Loève eigenmodes and the stochastic bias formalism. Our results agree well with those published by the 2dFGRS team, and have the added advantage of producing easy-to-interpret uncorrelated minimum-variance measurements of the galaxy-galaxy, galaxy-velocity and velocity-velocity power spectra in 27 k-bands, with narrow and well-behaved window functions in the range 0.01 h Mpc-1 < k < 0.8 h Mpc-1. We find no significant detection of baryonic wiggles, although our results are consistent with a standard flat ΩΛ= 0.7`concordance' model and previous tantalizing hints of baryonic oscillations. We measure the galaxy-matter correlation coefficient r > 0.4 and the redshift-distortion parameter β= 0.49 +/- 0.16 for r= 1 (β= 0.47 +/- 0.16 without finger-of-god compression). Since this is an apparent-magnitude limited sample, luminosity-dependent bias may cause a slight red-tilt in the power spectrum. A battery of systematic error tests indicate that the survey is not only impressive in size, but also unusually clean, free of systematic errors at the level to which our tests are sensitive. Our measurements and window functions are available at
Positioning accuracy in a registration-free CT-based navigation system
NASA Astrophysics Data System (ADS)
Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.
2007-12-01
In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.
The accuracy of estimates of the overturning circulation from basin-wide mooring arrays
NASA Astrophysics Data System (ADS)
Sinha, B.; Smeed, D. A.; McCarthy, G.; Moat, B. I.; Josey, S. A.; Hirschi, J. J.-M.; Frajka-Williams, E.; Blaker, A. T.; Rayner, D.; Madec, G.
2018-01-01
Previous modeling and observational studies have established that it is possible to accurately monitor the Atlantic Meridional Overturning Circulation (AMOC) at 26.5°N using a coast-to-coast array of instrumented moorings supplemented by direct transport measurements in key boundary regions (the RAPID/MOCHA/WBTS Array). The main sources of observational and structural errors have been identified in a variety of individual studies. Here a unified framework for identifying and quantifying structural errors associated with the RAPID array-based AMOC estimates is established using a high-resolution (eddy resolving at low-mid latitudes, eddy permitting elsewhere) ocean general circulation model, which simulates the ocean state between 1978 and 2010. We define a virtual RAPID array in the model in close analogy to the real RAPID array and compare the AMOC estimate from the virtual array with the true model AMOC. The model analysis suggests that the RAPID method underestimates the mean AMOC by ∼1.5 Sv (1 Sv = 106 m3 s-1) at ∼900 m depth, however it captures the variability to high accuracy. We examine three major contributions to the streamfunction bias: (i) due to the assumption of a single fixed reference level for calculation of geostrophic transports, (ii) due to regions not sampled by the array and (iii) due to ageostrophic transport. A key element in (i) and (iii) is use of the model sea surface height to establish the true (or absolute) geostrophic transport. In the upper 2000 m, we find that the reference level bias is strongest and most variable in time, whereas the bias due to unsampled regions is largest below 3000 m. The ageostrophic transport is significant in the upper 1000 m but shows very little variability. The results establish, for the first time, the uncertainty of the AMOC estimate due to the combined structural errors in the measurement design and suggest ways in which the error could be reduced. Our work has applications to basin-wide circulation measurement arrays at other latitudes and in other basins as well as quantifying systematic errors in ocean model estimates of the AMOC at 26.5°N.
Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Garg, Sanjay
2010-01-01
A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy
Ma, H. -Y.; Klein, S. A.; Xie, S.; ...
2018-02-27
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
NASA Astrophysics Data System (ADS)
Ma, H.-Y.; Klein, S. A.; Xie, S.; Zhang, C.; Tang, S.; Tang, Q.; Morcrette, C. J.; Van Weverberg, K.; Petch, J.; Ahlgrimm, M.; Berg, L. K.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Liu, Y.; Merryfield, W.; Qian, Y.; Roehrig, R.; Wang, Y.-C.
2018-03-01
Many weather forecast and climate models simulate warm surface air temperature (T2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions of surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, H. -Y.; Klein, S. A.; Xie, S.
Many weather forecast and climate models simulate warm surface air temperature (T 2m) biases over midlatitude continents during the summertime, especially over the Great Plains. We present here one of a series of papers from a multimodel intercomparison project (CAUSES: Cloud Above the United States and Errors at the Surface), which aims to evaluate the role of cloud, radiation, and precipitation biases in contributing to the T 2m bias using a short-term hindcast approach during the spring and summer of 2011. Observations are mainly from the Atmospheric Radiation Measurement Southern Great Plains sites. The present study examines the contributions ofmore » surface energy budget errors. All participating models simulate too much net shortwave and longwave fluxes at the surface but with no consistent mean bias sign in turbulent fluxes over the Central United States and Southern Great Plains. Nevertheless, biases in the net shortwave and downward longwave fluxes as well as surface evaporative fraction (EF) are contributors to T 2m bias. Radiation biases are largely affected by cloud simulations, while EF bias is largely affected by soil moisture modulated by seasonal accumulated precipitation and evaporation. An approximate equation based upon the surface energy budget is derived to further quantify the magnitudes of radiation and EF contributions to T 2m bias. Our analysis ascribes that a large EF underestimate is the dominant source of error in all models with a large positive temperature bias, whereas an EF overestimate compensates for an excess of absorbed shortwave radiation in nearly all the models with the smallest temperature bias.« less
NASA Astrophysics Data System (ADS)
Acebron, Ana; Jullo, Eric; Limousin, Marceau; Tilquin, André; Giocoli, Carlo; Jauzac, Mathilde; Mahler, Guillaume; Richard, Johan
2017-09-01
Strong gravitational lensing by galaxy clusters is a fundamental tool to study dark matter and constrain the geometry of the Universe. Recently, the Hubble Space Telescope Frontier Fields programme has allowed a significant improvement of mass and magnification measurements but lensing models still have a residual root mean square between 0.2 arcsec and few arcseconds, not yet completely understood. Systematic errors have to be better understood and treated in order to use strong lensing clusters as reliable cosmological probes. We have analysed two simulated Hubble-Frontier-Fields-like clusters from the Hubble Frontier Fields Comparison Challenge, Ares and Hera. We use several estimators (relative bias on magnification, density profiles, ellipticity and orientation) to quantify the goodness of our reconstructions by comparing our multiple models, optimized with the parametric software lenstool, with the input models. We have quantified the impact of systematic errors arising, first, from the choice of different density profiles and configurations and, secondly, from the availability of constraints (spectroscopic or photometric redshifts, redshift ranges of the background sources) in the parametric modelling of strong lensing galaxy clusters and therefore on the retrieval of cosmological parameters. We find that substructures in the outskirts have a significant impact on the position of the multiple images, yielding tighter cosmological contours. The need for wide-field imaging around massive clusters is thus reinforced. We show that competitive cosmological constraints can be obtained also with complex multimodal clusters and that photometric redshifts improve the constraints on cosmological parameters when considering a narrow range of (spectroscopic) redshifts for the sources.
Martin, José Luis R; Pérez, Víctor; Sacristán, Montse; Alvarez, Enric
2005-12-01
Systematic reviews in mental health have become useful tools for health professionals in view of the massive amount and heterogeneous nature of biomedical information available today. In order to determine the risk of bias in the studies evaluated and to avoid bias in generalizing conclusions from the reviews it is therefore important to use a very strict methodology in systematic reviews. One bias which may affect the generalization of results is publication bias, which is determined by the nature and direction of the study results. To control or minimize this type of bias, the authors of systematic reviews undertake comprehensive searches of medical databases and expand on the findings, often undertaking searches of grey literature (material which is not formally published). This paper attempts to show the consequences (and risk) of generalizing the implications of grey literature in the control of publication bias, as was proposed in a recent systematic work. By repeating the analyses for the same outcome from three different systematic reviews that included both published and grey literature our results showed that confusion between grey literature and publication bias may affect the results of a concrete meta-analysis.
Geographically correlated errors observed from a laser-based short-arc technique
NASA Astrophysics Data System (ADS)
Bonnefond, P.; Exertier, P.; Barlier, F.
1999-07-01
The laser-based short-arc technique has been developed in order to avoid local errors which affect the dynamical orbit computation, such as those due to mismodeling in the geopotential. It is based on a geometric method and consists in fitting short arcs (about 4000 km), issued from a global orbit, with satellite laser ranging tracking measurements from a ground station network. Ninety-two TOPEX/Poseidon (T/P) cycles of laser-based short-arc orbits have then been compared to JGM-2 and JGM-3 T/P orbits computed by the Precise Orbit Determination (POD) teams (Service d'Orbitographie Doris/Centre National d'Etudes Spatiales and Goddard Space Flight Center/NASA) over two areas: (1) the Mediterranean area and (2) a part of the Pacific (including California and Hawaii) called hereafter the U.S. area. Geographically correlated orbit errors in these areas are clearly evidenced: for example, -2.6 cm and +0.7 cm for the Mediterranean and U.S. areas, respectively, relative to JGM-3 orbits. However, geographically correlated errors (GCE) which are commonly linked to errors in the gravity model, can also be due to systematic errors in the reference frame and/or to biases in the tracking measurements. The short-arc technique being very sensitive to such error sources, our analysis however demonstrates that the induced geographical systematic effects are at the level of 1-2 cm on the radial orbit component. Results are also compared with those obtained with the GPS-based reduced dynamic technique. The time-dependent part of GCE has also been studied. Over 6 years of T/P data, coherent signals in the radial component of T/P Precise Orbit Ephemeris (POE) are clearly evidenced with a time period of about 6 months. In addition, impact of time varying-error sources coming from the reference frame and the tracking data accuracy has been analyzed, showing a possible linear trend of about 0.5-1 mm/yr in the radial component of T/P POE.
2015-02-01
WRF ) Model using a Geographic Information System (GIS) by Jeffrey A Smith, Theresa A Foley, John W Raby, and Brian Reen...ARL-TR-7212 ● FEB 2015 US Army Research Laboratory Investigating Surface Bias Errors in the Weather Research and Forecasting ( WRF ) Model...SUBTITLE Investigating surface bias errors in the Weather Research and Forecasting ( WRF ) Model using a Geographic Information System (GIS) 5a
NASA Astrophysics Data System (ADS)
Peters, Ande; Durner, Wolfgang; Schrader, Frederik; Groh, Jannis; Pütz, Thomas
2017-04-01
Weighing lysimeters are known to be the best means for a precise and unbiased measurement of water fluxes at the interface between the soil-plant system and the atmosphere. The measured data need to be filtered to separate evapotranspiration (ET) and precipitation (P) from noise. Such filter routines apply typically two steps: (i) a low pass filter, like moving average, which is used to smooth noisy data, and (ii) a threshold filter to separate significant from insignificant mass changes. Recent developments of these filters have revealed and solved many problems regarding bias in the data processing. A remaining problem is that each change in flow direction is accompanied with a systematic flow underestimation due to the threshold scheme. In this contribution we show and analyze this systematic effect and propose a heuristic solution by introducing a so-called snap routine. The routine is calibrated and tested with synthetic flux data and applied to real data from a precision lysimeter for a 10-month period. We show that the absolute systematic effect is independent of the magnitude of a certain flux event. Thus, for small events, like dew or rime formation, the relative error is highest and can be in the same order of magnitude as the flux itself. The heuristic snap routine effectively overcomes these problems and yields an almost unbiased representation of the real signal.
Mismeasurement and the resonance of strong confounders: uncorrelated errors.
Marshall, J R; Hastrup, J L
1996-05-15
Greenland first documented (Am J Epidemiol 1980; 112:564-9) that error in the measurement of a confounder could resonate--that it could bias estimates of other study variables, and that the bias could persist even with statistical adjustment for the confounder as measured. An important question is raised by this finding: can such bias be more than trivial within the bounds of realistic data configurations? The authors examine several situations involving dichotomous and continuous data in which a confounder and a null variable are measured with error, and they assess the extent of resultant bias in estimates of the effect of the null variable. They show that, with continuous variables, measurement error amounting to 40% of observed variance in the confounder could cause the observed impact of the null study variable to appear to alter risk by as much as 30%. Similarly, they show, with dichotomous independent variables, that 15% measurement error in the form of misclassification could lead the null study variable to appear to alter risk by as much as 50%. Such bias would result only from strong confounding. Measurement error would obscure the evidence that strong confounding is a likely problem. These results support the need for every epidemiologic inquiry to include evaluations of measurement error in each variable considered.
Saltaji, Humam; Ospina, Maria B; Armijo-Olivo, Susan; Agarwal, Shruti; Cummings, Greta G; Amin, Maryam; Flores-Mir, Carlos
2016-09-01
The authors aimed to describe how often and by what means investigators assessed the risk of bias of clinical trials in systematic reviews of oral health interventions and to identify factors associated with risk of bias assessments. The authors selected therapeutic oral health systematic reviews published from 1991 through 2014. They extracted data related to the tools used for risk of bias assessment of primary studies and data related to other review characteristics. They descriptively analyzed the data and used multivariate logistic regression. The authors identified 1,114 oral health systematic reviews (130 Cochrane reviews and 984 non-Cochrane reviews). The investigators of the primary studies assessed risk of bias in 61.4% of the reviews, and the risk of bias assessments occurred more often in Cochrane reviews than in non-Cochrane reviews (100% versus 56.3%; P < .001) and in reviews published after the dissemination of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.17-2.06). Compared with the investigators of reviews of public oral health interventions, investigators of reviews of oral surgery were less likely to assess risk of bias (OR, 0.41; 95% CI, 0.25-0.67). Furthermore, the investigators of systematic reviews published in dental journals were less likely to assess risk of bias of individual trials (OR, 0.28; 95% CI, 0.19-0.41) compared with the investigators of reviews published in nondental journals. The investigators of primary studies did not undertake risk of bias assessment in a considerable portion of non-Cochrane oral health systematic reviews. The investigators of reviews published in dental journals were less likely to assess risk of bias than the investigators of reviews published in nondental journals. The results of this study provide evidence of the need for improving the conduct and reporting of oral health systematic reviews with respect to risk of bias assessment. Clinicians should determine to what extent the findings of a systematic review are valid on the basis of whether the investigators assessed and considered risk of bias during the interpretation of findings. Copyright © 2016 American Dental Association. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Kulawik, Susan; Wunch, Debra; O’Dell, Christopher; Frankenberg, Christian; Reuter, Maximilian; Chevallier, Frederic; Oda, Tomohiro; Sherlock, Vanessa; Buchwitz, Michael; Osterman, Greg;
2016-01-01
Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. Harmonizing satellite CO2 measurements is particularly important since the differences in instruments, observing geometries, sampling strategies, etc. imbue different measurement characteristics in the various satellite CO2 data products. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry-air mole fraction (X(sub CO2)) for Greenhouse gases Observing SATellite (GOSAT) (Atmospheric CO2 Observations from Space, ACOS b3.5) and SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) (Bremen Optimal Estimation DOAS, BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the Monitoring Atmospheric Composition and Climate (MACC) CO2 inversion system (v13.1) and compare these to Total Carbon Column Observing Network (TCCON) observations (GGG2012/2014). We find standard deviations of 0.9, 0.9, 1.7, and 2.1 parts per million vs. TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single observation errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. We quantify how satellite error drops with data averaging by interpreting according to (error(sup 2) equals a(sup 2) plus b(sup 2) divided by n (with n being the number of observations averaged, a the systematic (correlated) errors, and b the random (uncorrelated) errors). a and b are estimated by satellites, coincidence criteria, and hemisphere. Biases at individual stations have year-to-year variability of 0.3 parts per million, with biases larger than the TCCON predicted bias uncertainty of 0.4 parts per million at many stations. We find that GOSAT and CT2013b under-predict the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46 and 53 degrees North latitude, MACC over-predicts between 26 and 37 degrees North latitude, and CT2013b under-predicts the seasonal cycle amplitude in the Southern Hemisphere (SH). The seasonal cycle phase indicates whether a data set or model lags another data set in time. We find that the GOSAT measurements improve the seasonal cycle phase substantially over the prior while SCIAMACHY measurements improve the phase significantly for just two of seven sites. The models reproduce the measured seasonal cycle phase well except for at Lauder_125HR (CT2013b) and Darwin (MACC). We compare the variability within 1 day between TCCON and models in June-July-August; there is correlation between 0.2 and 0.8 in the NH, with models showing 10-50 percent the variability of TCCON at different stations and CT2013b showing more variability than MACC. This paper highlights findings that provide inputs to estimate flux errors in model assimilations, and places where models and satellites need further investigation, e.g., the SH for models and 45-67 degrees North latitude for GOSAT and CT2013b.
Fensham, J R; Bubner, E; D'Antignana, T; Landos, M; Caraguel, C G B
2018-05-01
The Australian farmed yellowtail kingfish (Seriola lalandi, YTK) industry monitor skin fluke (Benedenia seriolae) and gill fluke (Zeuxapta seriolae) burden by pooling the fluke count of 10 hooked YTK. The random and systematic error of this sampling strategy was evaluated to assess potential impact on treatment decisions. Fluke abundance (fluke count per fish) in a study cage (estimated 30,502 fish) was assessed five times using the current sampling protocol and its repeatability was estimated the repeatability coefficient (CR) and the coefficient of variation (CV). Individual body weight, fork length, fluke abundance, prevalence, intensity (fluke count per infested fish) and density (fluke count per Kg of fish) were compared between 100 hooked and 100 seined YTK (assumed representative of the entire population) to estimate potential selection bias. Depending on the fluke species and age category, CR (expected difference in parasite count between 2 sampling iterations) ranged from 0.78 to 114 flukes per fish. Capturing YTK by hooking increased the selection of fish of a weight and length in the lowest 5th percentile of the cage (RR = 5.75, 95% CI: 2.06-16.03, P-value = 0.0001). These lower end YTK had on average an extra 31 juveniles and 6 adults Z. seriolae per Kg of fish and an extra 3 juvenile and 0.4 adult B. seriolae per Kg of fish, compared to the rest of the cage population (P-value < 0.05). Hooking YTK on the edge of the study cage biases sampling towards the smallest and most heavily infested fish in the population, resulting in poor repeatability (more variability amongst sampled fish) and an overestimation of parasite burden in the population. In this particular commercial situation these finding supported that health management program, where the finding of an underestimation of parasite burden could provide a production impact on the study population. In instances where fish populations and parasite burdens are more homogenous, sampling error may be less severe. Sampling error when capturing fish from sea cage is difficult to predict. The amplitude and direction of this error should be investigated for a given cultured fish species across a range of parasite burden and fish profile scenarios. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shin, H. H.; Zhao, M.; Ming, Y.; Chen, X.; Lin, S. J.
2017-12-01
Surface layer (SL) parameters in atmospheric models - such as 2-m air temperature (T2), 10-m wind speed (U10), and surface turbulent fluxes - are computed by applying the Monin-Obukhov Similarity Theory (MOST) to the lowest model level height (LMH) in the models. The underlying assumption is that LMH is within surface layer height (SLH), but most AGCMs hardly meet the condition in stable boundary layers (SBLs) over land. To assess the errors in modeled SL parameters caused by this, offline computations of the MOST are performed with different LMHs from 1 to 100 m, for an idealized SBL case with prescribed surface parameters (surface temperature, roughness length and Obukhov length), and vertical profiles of temperature and winds. The results show that when LMH is higher than SLH, T2 and U10 are underestimated by O(1 K) and O(1 m/s), respectively, and the biases increase as LMH increases. Based on this, the refined vertical resolution with an additional layer in the SL is applied to the GFDL AGCM, and it reduces the systematic cold biases in T2 and the systematic underestimation of U10.
A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables
NASA Astrophysics Data System (ADS)
Zhang, Bonnie R.; Childress, Michael J.; Davis, Tamara M.; Karpenka, Natallia V.; Lidman, Chris; Schmidt, Brian P.; Smith, Mathew
2017-10-01
Presently, a >3σ tension exists between values of the Hubble constant H0 derived from analysis of fluctuations in the cosmic microwave background by Planck, and local measurements of the expansion using calibrators of Type Ia supernovae (SNe Ia). We perform a blinded re-analysis of Riess et al. (2011) to measure H0 from low-redshift SNe Ia, calibrated by Cepheid variables and geometric distances including to NGC 4258. This paper is a demonstration of techniques to be applied to the Riess et al. (2016) data. Our end-to-end analysis starts from available Harvard -Smithsonian Center for Astrophysics (CfA3) and Lick Observatory Supernova Search (LOSS) photometries, providing an independent validation of Riess et al. (2011). We obscure the value of H0 throughout our analysis and the first stage of the referee process, because calibration of SNe Ia requires a series of often subtle choices, and the potential for results to be affected by human bias is significant. Our analysis departs from that of Riess et al. (2011) by incorporating the covariance matrix method adopted in Supernova Legacy Survey and Joint Lightcurve Analysis to quantify SN Ia systematics, and by including a simultaneous fit of all SN Ia and Cepheid data. We find H_0 = 72.5 ± 3.1 ({stat}) ± 0.77 ({sys}) km s-1 Mpc-1with a three-galaxy (NGC 4258+LMC+MW) anchor. The relative uncertainties are 4.3 per cent statistical, 1.1 per cent systematic, and 4.4 per cent total, larger than in Riess et al. (2011) (3.3 per cent total) and the Efstathiou (2014) re-analysis (3.4 per cent total). Our error budget for H0 is dominated by statistical errors due to the small size of the SN sample, whilst the systematic contribution is dominated by variation in the Cepheid fits, and for the SNe Ia, uncertainties in the host galaxy mass dependence and Malmquist bias.
García-González, Miguel A; Fernández-Chimeno, Mireya; Ramos-Castro, Juan
2009-02-01
An analysis of the errors due to the finite resolution of RR time series in the estimation of the approximate entropy (ApEn) is described. The quantification errors in the discrete RR time series produce considerable errors in the ApEn estimation (bias and variance) when the signal variability or the sampling frequency is low. Similar errors can be found in indices related to the quantification of recurrence plots. An easy way to calculate a figure of merit [the signal to resolution of the neighborhood ratio (SRN)] is proposed in order to predict when the bias in the indices could be high. When SRN is close to an integer value n, the bias is higher than when near n - 1/2 or n + 1/2. Moreover, if SRN is close to an integer value, the lower this value, the greater the bias is.
An empirical examination of WISE/NEOWISE asteroid analysis and results
NASA Astrophysics Data System (ADS)
Myhrvold, Nathan
2017-10-01
Observations made by the WISE space telescope and subsequent analysis by the NEOWISE project represent the largest corpus of asteroid data to date, describing the diameter, albedo, and other properties of the ~164,000 asteroids in the collection. I present a critical reanalysis of the WISE observational data, and NEOWISE results published in numerous papers and in the JPL Planetary Data System (PDS). This analysis reveals shortcomings and a lack of clarity, both in the original analysis and in the presentation of results. The procedures used to generate NEOWISE results fall short of established thermal modelling standards. Rather than using a uniform protocol, 10 modelling methods were applied to 12 combinations of WISE band data. Over half the NEOWISE results are based on a single band of data. Most NEOWISE curve fits are poor quality, frequently missing many or all the data points. About 30% of the single-band results miss all the data; 43% of the results derived from the most common multiple-band combinations miss all the data in at least one band. The NEOWISE data processing procedures rely on inconsistent assumptions, and introduce bias by systematically discarding much of the original data. I show that error estimates for the WISE observational data have a true uncertainty factor of ~1.2 to 1.9 times larger than previously described, and that the error estimates do not fit a normal distribution. These issues call into question the validity of the NEOWISE Monte-Carlo error analysis. Comparing published NEOWISE diameters to published estimates using radar, occultation, or spacecraft measurements (ROS) reveals 150 for which the NEOWISE diameters were copied exactly from the ROS source. My findings show that the accuracy of diameter estimates for NEOWISE results depend heavily on the choice of data bands and model. Systematic errors in the diameter estimates are much larger than previously described. Systematic errors for diameters in the PDS range from -3% to +27%. Random errors range from -14% to +19% when using all four WISE bands, and from -45% to +74% in cases using only the W2 band. The results presented here show that much work remains to be done towards understanding asteroid data from WISE/NEOWISE.
A GLM Post-processor to Adjust Ensemble Forecast Traces
NASA Astrophysics Data System (ADS)
Thiemann, M.; Day, G. N.; Schaake, J. C.; Draijer, S.; Wang, L.
2011-12-01
The skill of hydrologic ensemble forecasts has improved in the last years through a better understanding of climate variability, better climate forecasts and new data assimilation techniques. Having been extensively utilized for probabilistic water supply forecasting, interest is developing to utilize these forecasts in operational decision making. Hydrologic ensemble forecast members typically have inherent biases in flow timing and volume caused by (1) structural errors in the models used, (2) systematic errors in the data used to calibrate those models, (3) uncertain initial hydrologic conditions, and (4) uncertainties in the forcing datasets. Furthermore, hydrologic models have often not been developed for operational decision points and ensemble forecasts are thus not always available where needed. A statistical post-processor can be used to address these issues. The post-processor should (1) correct for systematic biases in flow timing and volume, (2) preserve the skill of the available raw forecasts, (3) preserve spatial and temporal correlation as well as the uncertainty in the forecasted flow data, (4) produce adjusted forecast ensembles that represent the variability of the observed hydrograph to be predicted, and (5) preserve individual forecast traces as equally likely. The post-processor should also allow for the translation of available ensemble forecasts to hydrologically similar locations where forecasts are not available. This paper introduces an ensemble post-processor (EPP) developed in support of New York City water supply operations. The EPP employs a general linear model (GLM) to (1) adjust available ensemble forecast traces and (2) create new ensembles for (nearby) locations where only historic flow observations are available. The EPP is calibrated by developing daily and aggregated statistical relationships form historical flow observations and model simulations. These are then used in operation to obtain the conditional probability density function (PDF) of the observations to be predicted, thus jointly adjusting individual ensemble members. These steps are executed in a normalized transformed space ('z'-space) to account for the strong non-linearity in the flow observations involved. A data window centered on each calibration date is used to minimize impacts from sampling errors and data noise. Testing on datasets from California and New York suggests that the EPP can successfully minimize biases in ensemble forecasts, while preserving the raw forecast skill in a 'days to weeks' forecast horizon and reproducing the variability of climatology for 'weeks to years' forecast horizons.
Ultrahigh Error Threshold for Surface Codes with Biased Noise
NASA Astrophysics Data System (ADS)
Tuckett, David K.; Bartlett, Stephen D.; Flammia, Steven T.
2018-02-01
We show that a simple modification of the surface code can exhibit an enormous gain in the error correction threshold for a noise model in which Pauli Z errors occur more frequently than X or Y errors. Such biased noise, where dephasing dominates, is ubiquitous in many quantum architectures. In the limit of pure dephasing noise we find a threshold of 43.7(1)% using a tensor network decoder proposed by Bravyi, Suchara, and Vargo. The threshold remains surprisingly large in the regime of realistic noise bias ratios, for example 28.2(2)% at a bias of 10. The performance is, in fact, at or near the hashing bound for all values of the bias. The modified surface code still uses only weight-4 stabilizers on a square lattice, but merely requires measuring products of Y instead of Z around the faces, as this doubles the number of useful syndrome bits associated with the dominant Z errors. Our results demonstrate that large efficiency gains can be found by appropriately tailoring codes and decoders to realistic noise models, even under the locality constraints of topological codes.
Hedin, Riley J; Umberham, Blake A; Detweiler, Byron N; Kollmorgen, Lauren; Vassar, Matt
2016-10-01
Systematic reviews and meta-analyses are used by clinicians to derive treatment guidelines and make resource allocation decisions in anesthesiology. One cause for concern with such reviews is the possibility that results from unpublished trials are not represented in the review findings or data synthesis. This problem, known as publication bias, results when studies reporting statistically nonsignificant findings are left unpublished and, therefore, not included in meta-analyses when estimating a pooled treatment effect. In turn, publication bias may lead to skewed results with overestimated effect sizes. The primary objective of this study is to determine the extent to which evaluations for publication bias are conducted by systematic reviewers in highly ranked anesthesiology journals and which practices reviewers use to mitigate publication bias. The secondary objective of this study is to conduct publication bias analyses on the meta-analyses that did not perform these assessments and examine the adjusted pooled effect estimates after accounting for publication bias. This study considered meta-analyses and systematic reviews from 5 peer-reviewed anesthesia journals from 2007 through 2015. A PubMed search was conducted, and full-text systematic reviews that fit inclusion criteria were downloaded and coded independently by 2 authors. Coding was then validated, and disagreements were settled by consensus. In total, 207 systematic reviews were included for analysis. In addition, publication bias evaluation was performed for 25 systematic reviews that did not do so originally. We used Egger regression, Duval and Tweedie trim and fill, and funnel plots for these analyses. Fifty-five percent (n = 114) of the reviews discussed publication bias, and 43% (n = 89) of the reviews evaluated publication bias. Funnel plots and Egger regression were the most common methods for evaluating publication bias. Publication bias was reported in 34 reviews (16%). Thirty-six of the 45 (80.0%) publication bias analyses indicated the presence of publication bias by trim and fill analysis, whereas Egger regression indicated publication bias in 23 of 45 (51.1%) analyses. The mean absolute percent difference between adjusted and observed point estimates was 15.5%, the median was 6.2%, and the range was 0% to 85.5%. Many of these reviews reported following published guidelines such as PRISMA or MOOSE, yet only half appropriately addressed publication bias in their reviews. Compared with previous research, our study found fewer reviews assessing publication bias and greater likelihood of publication bias among reviews not performing these evaluations.
Schindler, Simon; Reinhard, Marc-André
2015-01-01
With the present research, we investigated effects of existential threat on veracity judgments. According to several meta-analyses, people judge potentially deceptive messages of other people as true rather than as false (so-called truth bias). This judgmental bias has been shown to depend on how people weigh the error of judging a true message as a lie (error 1) and the error of judging a lie as a true message (error 2). The weight of these errors has been further shown to be affected by situational variables. Given that research on terror management theory has found evidence that mortality salience (MS) increases the sensitivity toward the compliance of cultural norms, especially when they are of focal attention, we assumed that when the honesty norm is activated, MS affects judgmental error weighing and, consequently, judgmental biases. Specifically, activating the norm of honesty should decrease the weight of error 1 (the error of judging a true message as a lie) and increase the weight of error 2 (the error of judging a lie as a true message) when mortality is salient. In a first study, we found initial evidence for this assumption. Furthermore, the change in error weighing should reduce the truth bias, automatically resulting in better detection accuracy of actual lies and worse accuracy of actual true statements. In two further studies, we manipulated MS and honesty norm activation before participants judged several videos containing actual truths or lies. Results revealed evidence for our prediction. Moreover, in Study 3, the truth bias was increased after MS when group solidarity was previously emphasized. PMID:26388815
Agogo, George O; van der Voet, Hilko; van 't Veer, Pieter; Ferrari, Pietro; Muller, David C; Sánchez-Cantalejo, Emilio; Bamia, Christina; Braaten, Tonje; Knüppel, Sven; Johansson, Ingegerd; van Eeuwijk, Fred A; Boshuizen, Hendriek C
2016-10-13
Measurement error in self-reported dietary intakes is known to bias the association between dietary intake and a health outcome of interest such as risk of a disease. The association can be distorted further by mismeasured confounders, leading to invalid results and conclusions. It is, however, difficult to adjust for the bias in the association when there is no internal validation data. We proposed a method to adjust for the bias in the diet-disease association (hereafter, association), due to measurement error in dietary intake and a mismeasured confounder, when there is no internal validation data. The method combines prior information on the validity of the self-report instrument with the observed data to adjust for the bias in the association. We compared the proposed method with the method that ignores the confounder effect, and with the method that ignores measurement errors completely. We assessed the sensitivity of the estimates to various magnitudes of measurement error, error correlations and uncertainty in the literature-reported validation data. We applied the methods to fruits and vegetables (FV) intakes, cigarette smoking (confounder) and all-cause mortality data from the European Prospective Investigation into Cancer and Nutrition study. Using the proposed method resulted in about four times increase in the strength of association between FV intake and mortality. For weakly correlated errors, measurement error in the confounder minimally affected the hazard ratio estimate for FV intake. The effect was more pronounced for strong error correlations. The proposed method permits sensitivity analysis on measurement error structures and accounts for uncertainties in the reported validity coefficients. The method is useful in assessing the direction and quantifying the magnitude of bias in the association due to measurement errors in the confounders.
NASA Astrophysics Data System (ADS)
Angling, Matthew J.; Elvidge, Sean; Healy, Sean B.
2018-04-01
The standard approach to remove the effects of the ionosphere from neutral atmosphere GPS radio occultation measurements is to estimate a corrected bending angle from a combination of the L1 and L2 bending angles. This approach is known to result in systematic errors and an extension has been proposed to the standard ionospheric correction that is dependent on the squared L1 / L2 bending angle difference and a scaling term (κ). The variation of κ with height, time, season, location and solar activity (i.e. the F10.7 flux) has been investigated by applying a 1-D bending angle operator to electron density profiles provided by a monthly median ionospheric climatology model. As expected, the residual bending angle is well correlated (negatively) with the vertical total electron content (TEC). κ is more strongly dependent on the solar zenith angle, indicating that the TEC-dependent component of the residual error is effectively modelled by the squared L1 / L2 bending angle difference term in the correction. The residual error from the ionospheric correction is likely to be a major contributor to the overall error budget of neutral atmosphere retrievals between 40 and 80 km. Over this height range κ is approximately linear with height. A simple κ model has also been developed. It is independent of ionospheric measurements, but incorporates geophysical dependencies (i.e. solar zenith angle, solar flux, altitude). The global mean error (i.e. bias) and the standard deviation of the residual errors are reduced from -1.3×10-8 and 2.2×10-8 for the uncorrected case to -2.2×10-10 rad and 2.0×10-9 rad, respectively, for the corrections using the κ model. Although a fixed scalar κ also reduces bias for the global average, the selected value of κ (14 rad-1) is only appropriate for a small band of locations around the solar terminator. In the daytime, the scalar κ is consistently too high and this results in an overcorrection of the bending angles and a positive bending angle bias. Similarly, in the nighttime, the scalar κ is too low. However, in this case, the bending angles are already small and the impact of the choice of κ is less pronounced.
NASA Astrophysics Data System (ADS)
Singh, Upendra N.; Refaat, Tamer F.; Ismail, Syed; Petros, Mulugeta; Davis, Kenneth J.; Kawa, Stephan R.; Menzies, Robert T.
2018-04-01
Modeling of a space-based high-energy 2-μm triple-pulse Integrated Path Differential Absorption (IPDA) lidar was conducted to demonstrate carbon dioxide (CO2) measurement capability and to evaluate random and systematic errors. A high pulse energy laser and an advanced MCT e-APD detector were incorporated in this model. Projected performance shows 0.5 ppm precision and 0.3 ppm bias in low-tropospheric column CO2 mixing ratio measurements from space for 10 second signal averaging over Railroad Valley (RRV) reference surface.
Estimation of diagnostic test accuracy without full verification: a review of latent class methods
Collins, John; Huynh, Minh
2014-01-01
The performance of a diagnostic test is best evaluated against a reference test that is without error. For many diseases, this is not possible, and an imperfect reference test must be used. However, diagnostic accuracy estimates may be biased if inaccurately verified status is used as the truth. Statistical models have been developed to handle this situation by treating disease as a latent variable. In this paper, we conduct a systematized review of statistical methods using latent class models for estimating test accuracy and disease prevalence in the absence of complete verification. PMID:24910172
Identification and correction of systematic error in high-throughput sequence data
2011-01-01
Background A feature common to all DNA sequencing technologies is the presence of base-call errors in the sequenced reads. The implications of such errors are application specific, ranging from minor informatics nuisances to major problems affecting biological inferences. Recently developed "next-gen" sequencing technologies have greatly reduced the cost of sequencing, but have been shown to be more error prone than previous technologies. Both position specific (depending on the location in the read) and sequence specific (depending on the sequence in the read) errors have been identified in Illumina and Life Technology sequencing platforms. We describe a new type of systematic error that manifests as statistically unlikely accumulations of errors at specific genome (or transcriptome) locations. Results We characterize and describe systematic errors using overlapping paired reads from high-coverage data. We show that such errors occur in approximately 1 in 1000 base pairs, and that they are highly replicable across experiments. We identify motifs that are frequent at systematic error sites, and describe a classifier that distinguishes heterozygous sites from systematic error. Our classifier is designed to accommodate data from experiments in which the allele frequencies at heterozygous sites are not necessarily 0.5 (such as in the case of RNA-Seq), and can be used with single-end datasets. Conclusions Systematic errors can easily be mistaken for heterozygous sites in individuals, or for SNPs in population analyses. Systematic errors are particularly problematic in low coverage experiments, or in estimates of allele-specific expression from RNA-Seq data. Our characterization of systematic error has allowed us to develop a program, called SysCall, for identifying and correcting such errors. We conclude that correction of systematic errors is important to consider in the design and interpretation of high-throughput sequencing experiments. PMID:22099972
A method of bias correction for maximal reliability with dichotomous measures.
Penev, Spiridon; Raykov, Tenko
2010-02-01
This paper is concerned with the reliability of weighted combinations of a given set of dichotomous measures. Maximal reliability for such measures has been discussed in the past, but the pertinent estimator exhibits a considerable bias and mean squared error for moderate sample sizes. We examine this bias, propose a procedure for bias correction, and develop a more accurate asymptotic confidence interval for the resulting estimator. In most empirically relevant cases, the bias correction and mean squared error correction can be performed simultaneously. We propose an approximate (asymptotic) confidence interval for the maximal reliability coefficient, discuss the implementation of this estimator, and investigate the mean squared error of the associated asymptotic approximation. We illustrate the proposed methods using a numerical example.
Process-based evaluation of the ÖKS15 Austrian climate scenarios: First results
NASA Astrophysics Data System (ADS)
Mendlik, Thomas; Truhetz, Heimo; Jury, Martin; Maraun, Douglas
2017-04-01
The climate scenarios for Austria from the ÖKS15 project consists of 13 downscaled and bias-corrected RCMs from the EURO-CORDEX project. This dataset is meant for the broad public and is now available at the central national archive for climate data (CCCA Data Center). Because of this huge public outreach it is absolutely necessary to objectively discuss the limitations of this dataset and to publish these limitations, which should also be understood by a non-scientific audience. Even though systematical climatological biases have been accounted for by the Scaled-Distribution-Mapping (SDM) bias-correction method, it is not guaranteed that the model biases have been removed for the right reasons. If climate scenarios do not get the patterns of synoptic variability right, biases will still prevail in certain weather patterns. Ultimately this will have consequences for the projected climate change signals. In this study we derive typical weather types in the Alpine Region based on patterns from mean sea level pressure from ERA-INTERIM data and check the occurrence of these synoptic phenomena in EURO-CORDEX data and their corresponding driving GCMs. Based on these weather patterns we analyze the remaining biases of the downscaled and bias-corrected scenarios. We argue that such a process-based evaluation is not only necessary from a scientific point of view, but can also help the broader public to understand the limitations of downscaled climate scenarios, as model errors can be interpreted in terms of everyday observable weather.
Effects of vibration on inertial wind-tunnel model attitude measurement devices
NASA Technical Reports Server (NTRS)
Young, Clarence P., Jr.; Buehrle, Ralph D.; Balakrishna, S.; Kilgore, W. Allen
1994-01-01
Results of an experimental study of a wind tunnel model inertial angle-of-attack sensor response to a simulated dynamic environment are presented. The inertial device cannot distinguish between the gravity vector and the centrifugal accelerations associated with wind tunnel model vibration, this situation results in a model attitude measurement bias error. Significant bias error in model attitude measurement was found for the model system tested. The model attitude bias error was found to be vibration mode and amplitude dependent. A first order correction model was developed and used for estimating attitude measurement bias error due to dynamic motion. A method for correcting the output of the model attitude inertial sensor in the presence of model dynamics during on-line wind tunnel operation is proposed.
THE EFFECT OF UNRESOLVED BINARIES ON GLOBULAR CLUSTER PROPER-MOTION DISPERSION PROFILES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchini, P.; Norris, M. A.; Ven, G. van de
2016-03-20
High-precision kinematic studies of globular clusters (GCs) require an accurate knowledge of all possible sources of contamination. Among other sources, binary stars can introduce systematic biases in the kinematics. Using a set of Monte Carlo cluster simulations with different concentrations and binary fractions, we investigate the effect of unresolved binaries on proper-motion dispersion profiles, treating the simulations like Hubble Space Telescope proper-motion samples. Since GCs evolve toward a state of partial energy equipartition, more-massive stars lose energy and decrease their velocity dispersion. As a consequence, on average, binaries have a lower velocity dispersion, since they are more-massive kinematic tracers. Wemore » show that, in the case of clusters with high binary fractions (initial binary fractions of 50%) and high concentrations (i.e., closer to energy equipartition), unresolved binaries introduce a color-dependent bias in the velocity dispersion of main-sequence stars of the order of 0.1–0.3 km s{sup −1} (corresponding to 1%−6% of the velocity dispersion), with the reddest stars having a lower velocity dispersion, due to the higher fraction of contaminating binaries. This bias depends on the ability to distinguish binaries from single stars, on the details of the color–magnitude diagram and the photometric errors. We apply our analysis to the HSTPROMO data set of NGC 7078 (M15) and show that no effect ascribable to binaries is observed, consistent with the low binary fraction of the cluster. Our work indicates that binaries do not significantly bias proper-motion velocity-dispersion profiles, but should be taken into account in the error budget of kinematic analyses.« less
NASA Astrophysics Data System (ADS)
Slater, Louise J.; Villarini, Gabriele; Bradley, Allen A.
2016-08-01
This paper examines the forecasting skill of eight Global Climate Models from the North-American Multi-Model Ensemble project (CCSM3, CCSM4, CanCM3, CanCM4, GFDL2.1, FLORb01, GEOS5, and CFSv2) over seven major regions of the continental United States. The skill of the monthly forecasts is quantified using the mean square error skill score. This score is decomposed to assess the accuracy of the forecast in the absence of biases (potential skill) and in the presence of conditional (slope reliability) and unconditional (standardized mean error) biases. We summarize the forecasting skill of each model according to the initialization month of the forecast and lead time, and test the models' ability to predict extended periods of extreme climate conducive to eight `billion-dollar' historical flood and drought events. Results indicate that the most skillful predictions occur at the shortest lead times and decline rapidly thereafter. Spatially, potential skill varies little, while actual model skill scores exhibit strong spatial and seasonal patterns primarily due to the unconditional biases in the models. The conditional biases vary little by model, lead time, month, or region. Overall, we find that the skill of the ensemble mean is equal to or greater than that of any of the individual models. At the seasonal scale, the drought events are better forecast than the flood events, and are predicted equally well in terms of high temperature and low precipitation. Overall, our findings provide a systematic diagnosis of the strengths and weaknesses of the eight models over a wide range of temporal and spatial scales.
PHYSICAL PROPERTIES OF THE 0.94-DAY PERIOD TRANSITING PLANETARY SYSTEM WASP-18
DOE Office of Scientific and Technical Information (OSTI.GOV)
Southworth, John; Anderson, D. R.; Maxted, P. F. L.
2009-12-10
We present high-precision photometry of five consecutive transits of WASP-18, an extrasolar planetary system with one of the shortest orbital periods known. Through the use of telescope defocusing we achieve a photometric precision of 0.47-0.83 mmag per observation over complete transit events. The data are analyzed using the JKTEBOP code and three different sets of stellar evolutionary models. We find the mass and radius of the planet to be M {sub b} = 10.43 +- 0.30 +- 0.24 M {sub Jup} and R {sub b} = 1.165 +- 0.055 +- 0.014 R {sub Jup} (statistical and systematic errors), respectively. Themore » systematic errors in the orbital separation and the stellar and planetary masses, arising from the use of theoretical predictions, are of a similar size to the statistical errors and set a limit on our understanding of the WASP-18 system. We point out that seven of the nine known massive transiting planets (M {sub b} > 3 M {sub Jup}) have eccentric orbits, whereas significant orbital eccentricity has been detected for only four of the 46 less-massive planets. This may indicate that there are two different populations of transiting planets, but could also be explained by observational biases. Further radial velocity observations of low-mass planets will make it possible to choose between these two scenarios.« less
Error Biases in Inner and Overt Speech: Evidence from Tongue Twisters
ERIC Educational Resources Information Center
Corley, Martin; Brocklehurst, Paul H.; Moat, H. Susannah
2011-01-01
To compare the properties of inner and overt speech, Oppenheim and Dell (2008) counted participants' self-reported speech errors when reciting tongue twisters either overtly or silently and found a bias toward substituting phonemes that resulted in words in both conditions, but a bias toward substituting similar phonemes only when speech was…
Efficiently estimating salmon escapement uncertainty using systematically sampled data
Reynolds, Joel H.; Woody, Carol Ann; Gove, Nancy E.; Fair, Lowell F.
2007-01-01
Fish escapement is generally monitored using nonreplicated systematic sampling designs (e.g., via visual counts from towers or hydroacoustic counts). These sampling designs support a variety of methods for estimating the variance of the total escapement. Unfortunately, all the methods give biased results, with the magnitude of the bias being determined by the underlying process patterns. Fish escapement commonly exhibits positive autocorrelation and nonlinear patterns, such as diurnal and seasonal patterns. For these patterns, poor choice of variance estimator can needlessly increase the uncertainty managers have to deal with in sustaining fish populations. We illustrate the effect of sampling design and variance estimator choice on variance estimates of total escapement for anadromous salmonids from systematic samples of fish passage. Using simulated tower counts of sockeye salmon Oncorhynchus nerka escapement on the Kvichak River, Alaska, five variance estimators for nonreplicated systematic samples were compared to determine the least biased. Using the least biased variance estimator, four confidence interval estimators were compared for expected coverage and mean interval width. Finally, five systematic sampling designs were compared to determine the design giving the smallest average variance estimate for total annual escapement. For nonreplicated systematic samples of fish escapement, all variance estimators were positively biased. Compared to the other estimators, the least biased estimator reduced bias by, on average, from 12% to 98%. All confidence intervals gave effectively identical results. Replicated systematic sampling designs consistently provided the smallest average estimated variance among those compared.
Johnson, Jeffrey S; Spencer, John P
2016-05-01
Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: If attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal was reexamined in light of a neural-process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color discrimination task during the delay interval of a spatial-recall task. In the critical shifting-attention condition, the color stimulus could appear either toward or away from the midline reference axis, relative to the memorized location. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors, but no change in directional errors, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations-as predicted by the model-systematic changes in the patterns of spatial-recall errors should occur that would depend on the direction of the shift. The results were consistent with the latter possibility-recall errors were biased toward the locations of discrimination targets appearing during the delay.
Testing a Dynamic Field Account of Interactions between Spatial Attention and Spatial Working Memory
Johnson, Jeffrey S.; Spencer, John P.
2016-01-01
Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay. PMID:26810574
CCD image sensor induced error in PIV applications
NASA Astrophysics Data System (ADS)
Legrand, M.; Nogueira, J.; Vargas, A. A.; Ventas, R.; Rodríguez-Hidalgo, M. C.
2014-06-01
The readout procedure of charge-coupled device (CCD) cameras is known to generate some image degradation in different scientific imaging fields, especially in astrophysics. In the particular field of particle image velocimetry (PIV), widely extended in the scientific community, the readout procedure of the interline CCD sensor induces a bias in the registered position of particle images. This work proposes simple procedures to predict the magnitude of the associated measurement error. Generally, there are differences in the position bias for the different images of a certain particle at each PIV frame. This leads to a substantial bias error in the PIV velocity measurement (˜0.1 pixels). This is the order of magnitude that other typical PIV errors such as peak-locking may reach. Based on modern CCD technology and architecture, this work offers a description of the readout phenomenon and proposes a modeling for the CCD readout bias error magnitude. This bias, in turn, generates a velocity measurement bias error when there is an illumination difference between two successive PIV exposures. The model predictions match the experiments performed with two 12-bit-depth interline CCD cameras (MegaPlus ES 4.0/E incorporating the Kodak KAI-4000M CCD sensor with 4 megapixels). For different cameras, only two constant values are needed to fit the proposed calibration model and predict the error from the readout procedure. Tests by different researchers using different cameras would allow verification of the model, that can be used to optimize acquisition setups. Simple procedures to obtain these two calibration values are also described.
Publication bias was not a good reason to discourage trials with low power.
Borm, George F; den Heijer, Martin; Zielhuis, Gerhard A
2009-01-01
The objective was to investigate whether it is justified to discourage trials with less than 80% power. Trials with low power are unlikely to produce conclusive results, but their findings can be used by pooling then in a meta-analysis. However, such an analysis may be biased, because trials with low power are likely to have a nonsignificant result and are less likely to be published than trials with a statistically significant outcome. We simulated several series of studies with varying degrees of publication bias and then calculated the "real" one-sided type I error and the bias of meta-analyses with a "nominal" error rate (significance level) of 2.5%. In single trials, in which heterogeneity was set at zero, low, and high, the error rates were 2.3%, 4.7%, and 16.5%, respectively. In multiple trials with 80%-90% power and a publication rate of 90% when the results were nonsignificant, the error rates could be as high as 5.1%. When the power was 50% and the publication rate of non-significant results was 60%, the error rates did not exceed 5.3%, whereas the bias was at most 15% of the difference used in the power calculation. The impact of publication bias does not warrant the exclusion of trials with 50% power.
Using Audit Information to Adjust Parameter Estimates for Data Errors in Clinical Trials
Shepherd, Bryan E.; Shaw, Pamela A.; Dodd, Lori E.
2013-01-01
Background Audits are often performed to assess the quality of clinical trial data, but beyond detecting fraud or sloppiness, the audit data is generally ignored. In earlier work using data from a non-randomized study, Shepherd and Yu (2011) developed statistical methods to incorporate audit results into study estimates, and demonstrated that audit data could be used to eliminate bias. Purpose In this manuscript we examine the usefulness of audit-based error-correction methods in clinical trial settings where a continuous outcome is of primary interest. Methods We demonstrate the bias of multiple linear regression estimates in general settings with an outcome that may have errors and a set of covariates for which some may have errors and others, including treatment assignment, are recorded correctly for all subjects. We study this bias under different assumptions including independence between treatment assignment, covariates, and data errors (conceivable in a double-blinded randomized trial) and independence between treatment assignment and covariates but not data errors (possible in an unblinded randomized trial). We review moment-based estimators to incorporate the audit data and propose new multiple imputation estimators. The performance of estimators is studied in simulations. Results When treatment is randomized and unrelated to data errors, estimates of the treatment effect using the original error-prone data (i.e., ignoring the audit results) are unbiased. In this setting, both moment and multiple imputation estimators incorporating audit data are more variable than standard analyses using the original data. In contrast, in settings where treatment is randomized but correlated with data errors and in settings where treatment is not randomized, standard treatment effect estimates will be biased. And in all settings, parameter estimates for the original, error-prone covariates will be biased. Treatment and covariate effect estimates can be corrected by incorporating audit data using either the multiple imputation or moment-based approaches. Bias, precision, and coverage of confidence intervals improve as the audit size increases. Limitations The extent of bias and the performance of methods depend on the extent and nature of the error as well as the size of the audit. This work only considers methods for the linear model. Settings much different than those considered here need further study. Conclusions In randomized trials with continuous outcomes and treatment assignment independent of data errors, standard analyses of treatment effects will be unbiased and are recommended. However, if treatment assignment is correlated with data errors or other covariates, naive analyses may be biased. In these settings, and when covariate effects are of interest, approaches for incorporating audit results should be considered. PMID:22848072
PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XII. MAPPING STELLAR METALLICITY DISTRIBUTIONS IN M31
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregersen, Dylan; Seth, Anil C.; Williams, Benjamin F.
We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromeda’s galactic disk. We see a clear metallicity gradient of −0.020 ± 0.004 dex kpc{sup −1} from ∼4–20 kpc assuming a constant red giant branch age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction, and ismore » quite insensitive to these effects. The unknown age gradient in M31's disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1σ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3–6 kpc that appears to be associated with Andromeda’s elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.« less
Adaptable gene-specific dye bias correction for two-channel DNA microarrays.
Margaritis, Thanasis; Lijnzaad, Philip; van Leenen, Dik; Bouwmeester, Diane; Kemmeren, Patrick; van Hooff, Sander R; Holstege, Frank C P
2009-01-01
DNA microarray technology is a powerful tool for monitoring gene expression or for finding the location of DNA-bound proteins. DNA microarrays can suffer from gene-specific dye bias (GSDB), causing some probes to be affected more by the dye than by the sample. This results in large measurement errors, which vary considerably for different probes and also across different hybridizations. GSDB is not corrected by conventional normalization and has been difficult to address systematically because of its variance. We show that GSDB is influenced by label incorporation efficiency, explaining the variation of GSDB across different hybridizations. A correction method (Gene- And Slide-Specific Correction, GASSCO) is presented, whereby sequence-specific corrections are modulated by the overall bias of individual hybridizations. GASSCO outperforms earlier methods and works well on a variety of publically available datasets covering a range of platforms, organisms and applications, including ChIP on chip. A sequence-based model is also presented, which predicts which probes will suffer most from GSDB, useful for microarray probe design and correction of individual hybridizations. Software implementing the method is publicly available.
Adaptable gene-specific dye bias correction for two-channel DNA microarrays
Margaritis, Thanasis; Lijnzaad, Philip; van Leenen, Dik; Bouwmeester, Diane; Kemmeren, Patrick; van Hooff, Sander R; Holstege, Frank CP
2009-01-01
DNA microarray technology is a powerful tool for monitoring gene expression or for finding the location of DNA-bound proteins. DNA microarrays can suffer from gene-specific dye bias (GSDB), causing some probes to be affected more by the dye than by the sample. This results in large measurement errors, which vary considerably for different probes and also across different hybridizations. GSDB is not corrected by conventional normalization and has been difficult to address systematically because of its variance. We show that GSDB is influenced by label incorporation efficiency, explaining the variation of GSDB across different hybridizations. A correction method (Gene- And Slide-Specific Correction, GASSCO) is presented, whereby sequence-specific corrections are modulated by the overall bias of individual hybridizations. GASSCO outperforms earlier methods and works well on a variety of publically available datasets covering a range of platforms, organisms and applications, including ChIP on chip. A sequence-based model is also presented, which predicts which probes will suffer most from GSDB, useful for microarray probe design and correction of individual hybridizations. Software implementing the method is publicly available. PMID:19401678
Physical Validation of TRMM TMI and PR Monthly Rain Products Over Oklahoma
NASA Technical Reports Server (NTRS)
Fisher, Brad L.
2004-01-01
The Tropical Rainfall Measuring Mission (TRMM) provides monthly rainfall estimates using data collected by the TRMM satellite. These estimates cover a substantial fraction of the earth's surface. The physical validation of TRMM estimates involves corroborating the accuracy of spaceborne estimates of areal rainfall by inferring errors and biases from ground-based rain estimates. The TRMM error budget consists of two major sources of error: retrieval and sampling. Sampling errors are intrinsic to the process of estimating monthly rainfall and occur because the satellite extrapolates monthly rainfall from a small subset of measurements collected only during satellite overpasses. Retrieval errors, on the other hand, are related to the process of collecting measurements while the satellite is overhead. One of the big challenges confronting the TRMM validation effort is how to best estimate these two main components of the TRMM error budget, which are not easily decoupled. This four-year study computed bulk sampling and retrieval errors for the TRMM microwave imager (TMI) and the precipitation radar (PR) by applying a technique that sub-samples gauge data at TRMM overpass times. Gridded monthly rain estimates are then computed from the monthly bulk statistics of the collected samples, providing a sensor-dependent gauge rain estimate that is assumed to include a TRMM equivalent sampling error. The sub-sampled gauge rain estimates are then used in conjunction with the monthly satellite and gauge (without sub- sampling) estimates to decouple retrieval and sampling errors. The computed mean sampling errors for the TMI and PR were 5.9% and 7.796, respectively, in good agreement with theoretical predictions. The PR year-to-year retrieval biases exceeded corresponding TMI biases, but it was found that these differences were partially due to negative TMI biases during cold months and positive TMI biases during warm months.
Greifeneder, Rainer; Zelt, Sarah; Seele, Tim; Bottenberg, Konstantin; Alt, Alexander
2012-09-01
Handwriting legibility systematically biases evaluations in that highly legible handwriting results in more positive evaluations than less legible handwriting. Because performance assessments in educational contexts are not only based on computerized or multiple choice tests but often include the evaluation of handwritten work samples, understanding the causes of this bias is critical. This research was designed to replicate and extend the legibility bias in two tightly controlled experiments and to explore whether gender-based inferences contribute to its occurrence. A total of 132 students from a German university participated in one pre-test and two independent experiments. Participants were asked to read and evaluate several handwritten essays varying in content quality. Each essay was presented to some participants in highly legible handwriting and to other participants in less legible handwriting. In addition, the assignment of legibility to participant group was reversed from essay to essay, resulting in a mixed-factor design. The legibility bias was replicated in both experiments. Results suggest that gender-based inferences do not account for its occurrence. Rather it appears that fluency from legibility exerts a biasing impact on evaluations of content and author abilities. The legibility bias was shown to be genuine and strong. By refuting a series of alternative explanations, this research contributes to a better understanding of what underlies the legibility bias. The present research may inform those who grade on what to focus and thus help to better allocate cognitive resources when trying to reduce this important source of error. ©2011 The British Psychological Society.
NASA Astrophysics Data System (ADS)
Santer, B. D.; Mears, C. A.; Gleckler, P. J.; Solomon, S.; Wigley, T.; Arblaster, J.; Cai, W.; Gillett, N. P.; Ivanova, D. P.; Karl, T. R.; Lanzante, J.; Meehl, G. A.; Stott, P.; Taylor, K. E.; Thorne, P.; Wehner, M. F.; Zou, C.
2010-12-01
We perform the most comprehensive comparison to date of simulated and observed temperature trends. Comparisons are made for different latitude bands, timescales, and temperature variables, using information from a multi-model archive and a variety of observational datasets. Our focus is on temperature changes in the lower troposphere (TLT), the mid- to upper troposphere (TMT), and at the sea surface (SST). For SST, TLT, and TMT, trend comparisons over the satellite era (1979 to 2009) always yield closest agreement in mid-latitudes of the Northern Hemisphere. There are pronounced discrepancies in the tropics and in the Southern Hemisphere: in both regions, the multi-model average warming is consistently larger than observed. At high latitudes in the Northern Hemisphere, the observed tropospheric warming exceeds multi-model average trends. The similarity in the latitudinal structure of this discrepancy pattern across different temperature variables and observational data sets suggests that these trend differences are real, and are not due to residual inhomogeneities in the observations. The interpretation of these results is hampered by the fact that the CMIP-3 multi-model archive analyzed here convolves errors in key external forcings with errors in the model response to forcing. Under a "forcing error" interpretation, model-average temperature trends in the Southern Hemisphere extratropics are biased warm because many models neglect (and/or inaccurately specify) changes in stratospheric ozone and the indirect effects of aerosols. An alternative "response error" explanation for the model trend errors is that there are fundamental problems with model clouds and ocean heat uptake over the Southern Ocean. When SST changes are compared over the longer period 1950 to 2009, there is close agreement between simulated and observed trends poleward of 50°S. This result is difficult to reconcile with the hypothesis that the trend discrepancies over 1979 to 2009 are primarily attributable to response errors. Our results suggest that biases in multi-model average temperature trends over the satellite era can be plausibly linked to forcing errors. Better partitioning of the forcing and response components of model errors will require a systematic program of numerical experimentation, with a focus on exploring the climate response to uncertainties in key historical forcings.
Calibration of remotely sensed proportion or area estimates for misclassification error
Raymond L. Czaplewski; Glenn P. Catts
1992-01-01
Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...
Correction of stream quality trends for the effects of laboratory measurement bias
Alexander, Richard B.; Smith, Richard A.; Schwarz, Gregory E.
1993-01-01
We present a statistical model relating measurements of water quality to associated errors in laboratory methods. Estimation of the model allows us to correct trends in water quality for long-term and short-term variations in laboratory measurement errors. An illustration of the bias correction method for a large national set of stream water quality and quality assurance data shows that reductions in the bias of estimates of water quality trend slopes are achieved at the expense of increases in the variance of these estimates. Slight improvements occur in the precision of estimates of trend in bias by using correlative information on bias and water quality to estimate random variations in measurement bias. The results of this investigation stress the need for reliable, long-term quality assurance data and efficient statistical methods to assess the effects of measurement errors on the detection of water quality trends.
Are phonological influences on lexical (mis)selection the result of a monitoring bias?
Ratinckx, Elie; Ferreira, Victor S.; Hartsuiker, Robert J.
2009-01-01
A monitoring bias account is often used to explain speech error patterns that seem to be the result of an interactive language production system, like phonological influences on lexical selection errors. A biased monitor is suggested to detect and covertly correct certain errors more often than others. For instance, this account predicts that errors which are phonologically similar to intended words are harder to detect than ones that are phonologically dissimilar. To test this, we tried to elicit phonological errors under the same conditions that show other kinds of lexical selection errors. In five experiments, we presented participants with high cloze probability sentence fragments followed by a picture that was either semantically related, a homophone of a semantically related word, or phonologically related to the (implicit) last word of the sentence. All experiments elicited semantic completions or homophones of semantic completions, but none elicited phonological completions. This finding is hard to reconcile with a monitoring bias account and is better explained with an interactive production system. Additionally, this finding constrains the amount of bottom-up information flow in interactive models. PMID:18942035
NASA Technical Reports Server (NTRS)
James, R.; Brownlow, J. D.
1985-01-01
A study is performed under NASA contract to evaluate data from an AN/FPS-16 radar installed for support of flight programs at Dryden Flight Research Facility of NASA Ames Research Center. The purpose of this study is to provide information necessary for improving post-flight data reduction and knowledge of accuracy of derived radar quantities. Tracking data from six flights are analyzed. Noise and bias errors in raw tracking data are determined for each of the flights. A discussion of an altitude bias error during all of the tracking missions is included. This bias error is defined by utilizing pressure altitude measurements made during survey flights. Four separate filtering methods, representative of the most widely used optimal estimation techniques for enhancement of radar tracking data, are analyzed for suitability in processing both real-time and post-mission data. Additional information regarding the radar and its measurements, including typical noise and bias errors in the range and angle measurements, is also presented. This report is in two parts. This is part 2, a discussion of the modeling of propagation path errors.
A Nonlinear Adaptive Filter for Gyro Thermal Bias Error Cancellation
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Sanner, Robert M.
2012-01-01
Deterministic errors in angular rate gyros, such as thermal biases, can have a significant impact on spacecraft attitude knowledge. In particular, thermal biases are often the dominant error source in MEMS gyros after calibration. Filters, such as J\\,fEKFs, are commonly used to mitigate the impact of gyro errors and gyro noise on spacecraft closed loop pointing accuracy, but often have difficulty in rapidly changing thermal environments and can be computationally expensive. In this report an existing nonlinear adaptive filter is used as the basis for a new nonlinear adaptive filter designed to estimate and cancel thermal bias effects. A description of the filter is presented along with an implementation suitable for discrete-time applications. A simulation analysis demonstrates the performance of the filter in the presence of noisy measurements and provides a comparison with existing techniques.
Evolution of errors in the altimetric bathymetry model used by Google Earth and GEBCO
NASA Astrophysics Data System (ADS)
Marks, K. M.; Smith, W. H. F.; Sandwell, D. T.
2010-09-01
We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as "ground truth" to compare against model versions 7.2 through 12.1, defining vertical differences as "errors." Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15-160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.
Kawakami, Hiromasa; Mihara, Takahiro; Nakamura, Nobuhito; Ka, Koui; Goto, Takahisa
2018-01-01
Magnesium has been investigated as an adjuvant for neuraxial anesthesia, but the effect of caudal magnesium on postoperative pain is inconsistent. The aim of this systematic review and meta-analysis was to evaluate the analgesic effect of caudal magnesium. We searched six databases, including trial registration sites. Randomized clinical trials reporting the effect of caudal magnesium on postoperative pain after general anesthesia were eligible. The risk ratio for use of rescue analgesics after surgery was combined using a random-effects model. We also assessed adverse events. The I2 statistic was used to assess heterogeneity. We assessed risk of bias with Cochrane domains. We controlled type I and II errors due to sparse data and repetitive testing with Trial Sequential Analysis. We assessed the quality of evidence with GRADE. Four randomized controlled trials (247 patients) evaluated the need for rescue analgesics. In all four trials, 50 mg of magnesium was administered with caudal ropivacaine. The results suggested that the need for rescue analgesia was reduced significantly by caudal magnesium administration (risk ratio 0.45; 95% confidence interval 0.24-0.86). There was considerable heterogeneity as indicated by an I2 value of 62.5%. The Trial Sequential Analysis-adjusted confidence interval was 0.04-5.55, indicating that further trials are required. The quality of evidence was very low. The rate of adverse events was comparable between treatment groups. Caudal magnesium may reduce the need for rescue analgesia after surgery, but further randomized clinical trials with a low risk of bias and a low risk of random errors are necessary to assess the effect of caudal magnesium on postoperative pain and adverse events. University Hospital Medical Information Network Clinical Trials Registry UMIN000025344.
Wee, Leonard; Hackett, Sara Lyons; Jones, Andrew; Lim, Tee Sin; Harper, Christopher Stirling
2013-01-01
This study evaluated the agreement of fiducial marker localization between two modalities — an electronic portal imaging device (EPID) and cone‐beam computed tomography (CBCT) — using a low‐dose, half‐rotation scanning protocol. Twenty‐five prostate cancer patients with implanted fiducial markers were enrolled. Before each daily treatment, EPID and half‐rotation CBCT images were acquired. Translational shifts were computed for each modality and two marker‐matching algorithms, seed‐chamfer and grey‐value, were performed for each set of CBCT images. The localization offsets, and systematic and random errors from both modalities were computed. Localization performances for both modalities were compared using Bland‐Altman limits of agreement (LoA) analysis, Deming regression analysis, and Cohen's kappa inter‐rater analysis. The differences in the systematic and random errors between the modalities were within 0.2 mm in all directions. The LoA analysis revealed a 95% agreement limit of the modalities of 2 to 3.5 mm in any given translational direction. Deming regression analysis demonstrated that constant biases existed in the shifts computed by the modalities in the superior–inferior (SI) direction, but no significant proportional biases were identified in any direction. Cohen's kappa analysis showed good agreement between the modalities in prescribing translational corrections of the couch at 3 and 5 mm action levels. Images obtained from EPID and half‐rotation CBCT showed acceptable agreement for registration of fiducial markers. The seed‐chamfer algorithm for tracking of fiducial markers in CBCT datasets yielded better agreement than the grey‐value matching algorithm with EPID‐based registration. PACS numbers: 87.55.km, 87.55.Qr PMID:23835391
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rau, U.; Bhatnagar, S.; Owen, F. N., E-mail: rurvashi@nrao.edu
Many deep wideband wide-field radio interferometric surveys are being designed to accurately measure intensities, spectral indices, and polarization properties of faint source populations. In this paper, we compare various wideband imaging methods to evaluate the accuracy to which intensities and spectral indices of sources close to the confusion limit can be reconstructed. We simulated a wideband single-pointing (C-array, L-Band (1–2 GHz)) and 46-pointing mosaic (D-array, C-Band (4–8 GHz)) JVLA observation using a realistic brightness distribution ranging from 1 μ Jy to 100 mJy and time-, frequency-, polarization-, and direction-dependent instrumental effects. The main results from these comparisons are (a) errors in themore » reconstructed intensities and spectral indices are larger for weaker sources even in the absence of simulated noise, (b) errors are systematically lower for joint reconstruction methods (such as Multi-Term Multi-Frequency-Synthesis (MT-MFS)) along with A-Projection for accurate primary beam correction, and (c) use of MT-MFS for image reconstruction eliminates Clean-bias (which is present otherwise). Auxiliary tests include solutions for deficiencies of data partitioning methods (e.g., the use of masks to remove clean bias and hybrid methods to remove sidelobes from sources left un-deconvolved), the effect of sources not at pixel centers, and the consequences of various other numerical approximations within software implementations. This paper also demonstrates the level of detail at which such simulations must be done in order to reflect reality, enable one to systematically identify specific reasons for every trend that is observed, and to estimate scientifically defensible imaging performance metrics and the associated computational complexity of the algorithms/analysis procedures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, J.P.; et al.
Uncertainty in the mass-observable scaling relations is currently the limiting factor for galaxy cluster based cosmology. Weak gravitational lensing can provide a direct mass calibration and reduce the mass uncertainty. We present new ground-based weak lensing observations of 19 South Pole Telescope (SPT) selected clusters and combine them with previously reported space-based observations of 13 galaxy clusters to constrain the cluster mass scaling relations with the Sunyaev-Zel'dovich effect (SZE), the cluster gas massmore » $$M_\\mathrm{gas}$$, and $$Y_\\mathrm{X}$$, the product of $$M_\\mathrm{gas}$$ and X-ray temperature. We extend a previously used framework for the analysis of scaling relations and cosmological constraints obtained from SPT-selected clusters to make use of weak lensing information. We introduce a new approach to estimate the effective average redshift distribution of background galaxies and quantify a number of systematic errors affecting the weak lensing modelling. These errors include a calibration of the bias incurred by fitting a Navarro-Frenk-White profile to the reduced shear using $N$-body simulations. We blind the analysis to avoid confirmation bias. We are able to limit the systematic uncertainties to 6.4% in cluster mass (68% confidence). Our constraints on the mass-X-ray observable scaling relations parameters are consistent with those obtained by earlier studies, and our constraints for the mass-SZE scaling relation are consistent with the the simulation-based prior used in the most recent SPT-SZ cosmology analysis. We can now replace the external mass calibration priors used in previous SPT-SZ cosmology studies with a direct, internal calibration obtained on the same clusters.« less
NASA Astrophysics Data System (ADS)
Contreras, Carlos; Blake, Chris; Poole, Gregory B.; Marin, Felipe
2013-04-01
We use high-resolution N-body simulations to develop a new, flexible empirical approach for measuring the growth rate from redshift-space distortions in the 2-point galaxy correlation function. We quantify the systematic error in measuring the growth rate in a 1 h-3 Gpc3 volume over a range of redshifts, from the dark matter particle distribution and a range of halo-mass catalogues with a number density comparable to the latest large-volume galaxy surveys such as the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. Our simulations allow us to span halo masses with bias factors ranging from unity (probed by emission-line galaxies) to more massive haloes hosting luminous red galaxies. We show that the measured growth rate is sensitive to the model adopted for the small-scale real-space correlation function, and in particular that the `standard' assumption of a power-law correlation function can result in a significant systematic error in the growth-rate determination. We introduce a new, empirical fitting function that produces results with a lower (5-10 per cent) amplitude of systematic error. We also introduce a new technique which permits the galaxy pairwise velocity distribution, the quantity which drives the non-linear growth of structure, to be measured as a non-parametric stepwise function. Our (model-independent) results agree well with an exponential pairwise velocity distribution, expected from theoretical considerations, and are consistent with direct measurements of halo velocity differences from the parent catalogues. In a companion paper, we present the application of our new methodology to the WiggleZ Survey data set.
ERIC Educational Resources Information Center
Asendorpf, Jens B.; van de Schoot, Rens; Denissen, Jaap J. A.; Hutteman, Roos
2014-01-01
Most longitudinal studies are plagued by drop-out related to variables at earlier assessments (systematic attrition). Although systematic attrition is often analysed in longitudinal studies, surprisingly few researchers attempt to reduce biases due to systematic attrition, even though this is possible and nowadays technically easy. This is…
NASA Astrophysics Data System (ADS)
Zhang, Rong-Hua; Tao, Ling-Jiang; Gao, Chuan
2017-09-01
Large uncertainties exist in real-time predictions of the 2015 El Niño event, which have systematic intensity biases that are strongly model-dependent. It is critically important to characterize those model biases so they can be reduced appropriately. In this study, the conditional nonlinear optimal perturbation (CNOP)-based approach was applied to an intermediate coupled model (ICM) equipped with a four-dimensional variational data assimilation technique. The CNOP-based approach was used to quantify prediction errors that can be attributed to initial conditions (ICs) and model parameters (MPs). Two key MPs were considered in the ICM: one represents the intensity of the thermocline effect, and the other represents the relative coupling intensity between the ocean and atmosphere. Two experiments were performed to illustrate the effects of error corrections, one with a standard simulation and another with an optimized simulation in which errors in the ICs and MPs derived from the CNOP-based approach were optimally corrected. The results indicate that simulations of the 2015 El Niño event can be effectively improved by using CNOP-derived error correcting. In particular, the El Niño intensity in late 2015 was adequately captured when simulations were started from early 2015. Quantitatively, the Niño3.4 SST index simulated in Dec. 2015 increased to 2.8 °C in the optimized simulation, compared with only 1.5 °C in the standard simulation. The feasibility and effectiveness of using the CNOP-based technique to improve ENSO simulations are demonstrated in the context of the 2015 El Niño event. The limitations and further applications are also discussed.
NASA Astrophysics Data System (ADS)
Kollat, J. B.; Reed, P. M.
2009-12-01
This study contributes the ASSIST (Adaptive Strategies for Sampling in Space and Time) framework for improving long-term groundwater monitoring decisions across space and time while accounting for the influences of systematic model errors (or predictive bias). The ASSIST framework combines contaminant flow-and-transport modeling, bias-aware ensemble Kalman filtering (EnKF) and many-objective evolutionary optimization. Our goal in this work is to provide decision makers with a fuller understanding of the information tradeoffs they must confront when performing long-term groundwater monitoring network design. Our many-objective analysis considers up to 6 design objectives simultaneously and consequently synthesizes prior monitoring network design methodologies into a single, flexible framework. This study demonstrates the ASSIST framework using a tracer study conducted within a physical aquifer transport experimental tank located at the University of Vermont. The tank tracer experiment was extensively sampled to provide high resolution estimates of tracer plume behavior. The simulation component of the ASSIST framework consists of stochastic ensemble flow-and-transport predictions using ParFlow coupled with the Lagrangian SLIM transport model. The ParFlow and SLIM ensemble predictions are conditioned with tracer observations using a bias-aware EnKF. The EnKF allows decision makers to enhance plume transport predictions in space and time in the presence of uncertain and biased model predictions by conditioning them on uncertain measurement data. In this initial demonstration, the position and frequency of sampling were optimized to: (i) minimize monitoring cost, (ii) maximize information provided to the EnKF, (iii) minimize failure to detect the tracer, (iv) maximize the detection of tracer flux, (v) minimize error in quantifying tracer mass, and (vi) minimize error in quantifying the moment of the tracer plume. The results demonstrate that the many-objective problem formulation provides a tremendous amount of information for decision makers. Specifically our many-objective analysis highlights the limitations and potentially negative design consequences of traditional single and two-objective problem formulations. These consequences become apparent through visual exploration of high-dimensional tradeoffs and the identification of regions with interesting compromise solutions. The prediction characteristics of these compromise designs are explored in detail, as well as their implications for subsequent design decisions in both space and time.
NASA Astrophysics Data System (ADS)
Davis, K. J.; Bakwin, P. S.; Yi, C.; Cook, B. D.; Wang, W.; Denning, A. S.; Teclaw, R.; Isebrands, J. G.
2001-05-01
Long-term, tower-based measurements using the eddy-covariance method have revealed a wealth of detail about the temporal dynamics of netecosystem-atmosphere exchange (NEE) of CO2. The data also provide a measure of the annual net CO2 exchange. The area represented by these flux measurements, however, is limited, and doubts remain about possible systematic errors that may bias the annual net exchange measurements. Flux and mixing ratio measurements conducted at the WLEF tall tower as part of the Chequamegon Ecosystem-Atmosphere Study (ChEAS) allow for unique assessment of the uncertainties in NEE of CO2. The synergy between flux and mixing ratio observations shows the potential for comparing inverse and eddy-covariance methods of estimating NEE of CO2. Such comparisons may strengthen confidence in both results and begin to bridge the huge gap in spatial scales (at least 3 orders of magnitude) between continental or hemispheric scale inverse studies and kilometer-scale eddy covariance flux measurements. Data from WLEF and Willow Creek, another ChEAS tower, are used to estimate random and systematic errors in NEE of CO2. Random uncertainty in seasonal exchange rates and the annual integrated NEE, including both turbulent sampling errors and variability in enviromental conditions, is small. Systematic errors are identified by examining changes in flux as a function of atmospheric stability and wind direction, and by comparing the multiple level flux measurements on the WLEF tower. Nighttime drainage is modest but evident. Systematic horizontal advection occurs during the morning turbulence transition. The potential total systematic error appears to be larger than random uncertainty, but still modest. The total systematic error, however, is difficult to assess. It appears that the WLEF region ecosystems were a small net sink of CO2 in 1997. It is clear that the summer uptake rate at WLEF is much smaller than that at most deciduous forest sites, including the nearby Willow Creek site. The WLEF tower also allows us to study the potential for monitoring continental CO2 mixing ratios from tower sites. Despite concerns about the proximity to ecosystem sources and sinks, it is clear that boundary layer CO2 mixing ratios can be monitored using typical surface layer towers. Seasonal and annual land-ocean mixing ratio gradients are readily detectable, providing the motivation for a flux-tower based mixing ratio observation network that could greatly improve the accuracy of inversion-based estimates of NEE of CO2, and enable inversions to be applied on smaller temporal and spatial scales. Results from the WLEF tower illustrate the degree to which local flux measurements represent interannual, seasonal and synoptic CO2 mixing ratio trends. This coherence between fluxes and mixing ratios serves to "regionalize" the eddy-covariance based local NEE observations.
Anderson, N G; Jolley, I J; Wells, J E
2007-08-01
To determine the major sources of error in ultrasonographic assessment of fetal weight and whether they have changed over the last decade. We performed a prospective observational study in 1991 and again in 2000 of a mixed-risk pregnancy population, estimating fetal weight within 7 days of delivery. In 1991, the Rose and McCallum formula was used for 72 deliveries. Inter- and intraobserver agreement was assessed within this group. Bland-Altman measures of agreement from log data were calculated as ratios. We repeated the study in 2000 in 208 consecutive deliveries, comparing predicted and actual weights for 12 published equations using Bland-Altman and percentage error methods. We compared bias (mean percentage error), precision (SD percentage error), and their consistency across the weight ranges. 95% limits of agreement ranged from - 4.4% to + 3.3% for inter- and intraobserver estimates, but were - 18.0% to 24.0% for estimated and actual birth weight. There was no improvement in accuracy between 1991 and 2000. In 2000 only six of the 12 published formulae had overall bias within 7% and precision within 15%. There was greater bias and poorer precision in nearly all equations if the birth weight was < 1,000 g. Observer error is a relatively minor component of the error in estimating fetal weight; error due to the equation is a larger source of error. Improvements in ultrasound technology have not improved the accuracy of estimating fetal weight. Comparison of methods of estimating fetal weight requires statistical methods that can separate out bias, precision and consistency. Estimating fetal weight in the very low birth weight infant is subject to much greater error than it is in larger babies. Copyright (c) 2007 ISUOG. Published by John Wiley & Sons, Ltd.
Lamadrid-Figueroa, Héctor; Téllez-Rojo, Martha M; Angeles, Gustavo; Hernández-Ávila, Mauricio; Hu, Howard
2011-01-01
In-vivo measurement of bone lead by means of K-X-ray fluorescence (KXRF) is the preferred biological marker of chronic exposure to lead. Unfortunately, considerable measurement error associated with KXRF estimations can introduce bias in estimates of the effect of bone lead when this variable is included as the exposure in a regression model. Estimates of uncertainty reported by the KXRF instrument reflect the variance of the measurement error and, although they can be used to correct the measurement error bias, they are seldom used in epidemiological statistical analyzes. Errors-in-variables regression (EIV) allows for correction of bias caused by measurement error in predictor variables, based on the knowledge of the reliability of such variables. The authors propose a way to obtain reliability coefficients for bone lead measurements from uncertainty data reported by the KXRF instrument and compare, by the use of Monte Carlo simulations, results obtained using EIV regression models vs. those obtained by the standard procedures. Results of the simulations show that Ordinary Least Square (OLS) regression models provide severely biased estimates of effect, and that EIV provides nearly unbiased estimates. Although EIV effect estimates are more imprecise, their mean squared error is much smaller than that of OLS estimates. In conclusion, EIV is a better alternative than OLS to estimate the effect of bone lead when measured by KXRF. Copyright © 2010 Elsevier Inc. All rights reserved.
Complacency and Automation Bias in the Use of Imperfect Automation.
Wickens, Christopher D; Clegg, Benjamin A; Vieane, Alex Z; Sebok, Angelia L
2015-08-01
We examine the effects of two different kinds of decision-aiding automation errors on human-automation interaction (HAI), occurring at the first failure following repeated exposure to correctly functioning automation. The two errors are incorrect advice, triggering the automation bias, and missing advice, reflecting complacency. Contrasts between analogous automation errors in alerting systems, rather than decision aiding, have revealed that alerting false alarms are more problematic to HAI than alerting misses are. Prior research in decision aiding, although contrasting the two aiding errors (incorrect vs. missing), has confounded error expectancy. Participants performed an environmental process control simulation with and without decision aiding. For those with the aid, automation dependence was created through several trials of perfect aiding performance, and an unexpected automation error was then imposed in which automation was either gone (one group) or wrong (a second group). A control group received no automation support. The correct aid supported faster and more accurate diagnosis and lower workload. The aid failure degraded all three variables, but "automation wrong" had a much greater effect on accuracy, reflecting the automation bias, than did "automation gone," reflecting the impact of complacency. Some complacency was manifested for automation gone, by a longer latency and more modest reduction in accuracy. Automation wrong, creating the automation bias, appears to be a more problematic form of automation error than automation gone, reflecting complacency. Decision-aiding automation should indicate its lower degree of confidence in uncertain environments to avoid the automation bias. © 2015, Human Factors and Ergonomics Society.
Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays
NASA Technical Reports Server (NTRS)
Troy, Mitchell; Chanan, Gary; Roberts, Jennifer
2010-01-01
The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with sub-apertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.
Shan, S.; Bevis, M.; Kendrick, E.; Mader, G.L.; Raleigh, D.; Hudnut, K.; Sartori, M.; Phillips, D.
2007-01-01
When kinematic GPS processing software is used to estimate the trajectory of an aircraft, unless the delays imposed on the GPS signals by the atmosphere are either estimated or calibrated via external observations, then vertical height errors of decimeters can occur. This problem is clearly manifested when the aircraft is positioned against multiple base stations in areas of pronounced topography because the aircraft height solutions obtained using different base stations will tend to be mutually offset, or biased, in proportion to the elevation differences between the base stations. When performing kinematic surveys in areas with significant topography it should be standard procedure to use multiple base stations, and to separate them vertically to the maximum extent possible, since it will then be much easier to detect mis-modeling of the atmosphere. Copyright 2007 by the American Geophysical Union.
A Systematic Approach to Error Free Telemetry
2017-06-28
A SYSTEMATIC APPROACH TO ERROR FREE TELEMETRY 412TW-TIM-17-03 DISTRIBUTION A: Approved for public release. Distribution is...Systematic Approach to Error-Free Telemetry) was submitted by the Commander, 412th Test Wing, Edwards AFB, California 93524. Prepared by...Technical Information Memorandum 3. DATES COVERED (From - Through) February 2016 4. TITLE AND SUBTITLE A Systematic Approach to Error-Free
Lights All Askew: Systematics in Galaxy Images from Megaparsecs to Microns
NASA Astrophysics Data System (ADS)
Bradshaw, Andrew Kenneth
The stars and galaxies are not where they seem. In the process of imaging and measurement, the light from distant objects is distorted, blurred, and skewed by several physical effects on scales from megaparsecs to microns. Charge-coupled devices (CCDs) provide sensitive detection of this light, but introduce their own problems in the form of systematic biases. Images of these stars and galaxies are formed in CCDs when incoming light generates photoelectrons which are then collected in a pixel's potential well and measured as signal. However, these signal electrons can be diverted from purely parallel paths toward the pixel wells by transverse fields sourced by structural elements of the CCD, accidental imperfections in fabrication, or dynamic electric fields induced by other collected charges. These charge transport anomalies lead to measurable systematic errors in the images which bias cosmological inferences based on them. The physics of imaging therefore deserves thorough investigation, which is performed in the laboratory using a unique optical beam simulator and in computer simulations of charge transport. On top of detector systematics, there are often biases in the mathematical analysis of pixelized images; in particular, the location, shape, and orientation of stars and galaxies. Using elliptical Gaussians as a toy model for galaxies, it is demonstrated how small biases in the computed image moments lead to observable orientation patterns in modern survey data. Also presented are examples of the reduction of data and fitting of optical aberrations of images in the lab and on the sky which are modeled by physically or mathematically-motivated methods. Finally, end-to-end analysis of the weak gravitational lensing signal is presented using deep sky data as well as in N-body simulations. It is demonstrated how measured weak lens shear can be transformed by signal matched filters which aid in the detection of mass overdensities and separate signal from noise. A commonly-used decomposition of shear into two components, E- and B-modes, is thoroughly tested and both modes are shown to be useful in the detection of large scale structure. We find several astrophysical sources of B-mode and explain their apparent origin. The methods presented therefore offer an optimal way to filter weak gravitational shear into maps of large scale structure through the process of cosmic mass cartography.
Bias of apparent tracer ages in heterogeneous environments.
McCallum, James L; Cook, Peter G; Simmons, Craig T; Werner, Adrian D
2014-01-01
The interpretation of apparent ages often assumes that a water sample is composed of a single age. In heterogeneous aquifers, apparent ages estimated with environmental tracer methods do not reflect mean water ages because of the mixing of waters from many flow paths with different ages. This is due to nonlinear variations in atmospheric concentrations of the tracer with time resulting in biases of mixed concentrations used to determine apparent ages. The bias of these methods is rarely reported and has not been systematically evaluated in heterogeneous settings. We simulate residence time distributions (RTDs) and environmental tracers CFCs, SF6 , (85) Kr, and (39) Ar in synthetic heterogeneous confined aquifers and compare apparent ages to mean ages. Heterogeneity was simulated as both K-field variance (σ(2) ) and structure. We demonstrate that an increase in heterogeneity (increase in σ(2) or structure) results in an increase in the width of the RTD. In low heterogeneity cases, widths were generally on the order of 10 years and biases generally less than 10%. In high heterogeneity cases, widths can reach 100 s of years and biases can reach up to 100%. In cases where the temporal variations of atmospheric concentration of individual tracers vary, different patterns of bias are observed for the same mean age. We show that CFC-12 and CFC-113 ages may be used to correct for the mean age if analytical errors are small. © 2013, National Ground Water Association.
Phobos laser ranging: Numerical Geodesy experiments for Martian system science
NASA Astrophysics Data System (ADS)
Dirkx, D.; Vermeersen, L. L. A.; Noomen, R.; Visser, P. N. A. M.
2014-09-01
Laser ranging is emerging as a technology for use over (inter)planetary distances, having the advantage of high (mm-cm) precision and accuracy and low mass and power consumption. We have performed numerical simulations to assess the science return in terms of geodetic observables of a hypothetical Phobos lander performing active two-way laser ranging with Earth-based stations. We focus our analysis on the estimation of Phobos and Mars gravitational, tidal and rotational parameters. We explicitly include systematic error sources in addition to uncorrelated random observation errors. This is achieved through the use of consider covariance parameters, specifically the ground station position and observation biases. Uncertainties for the consider parameters are set at 5 mm and at 1 mm for the Gaussian uncorrelated observation noise (for an observation integration time of 60 s). We perform the analysis for a mission duration up to 5 years. It is shown that a Phobos Laser Ranging (PLR) can contribute to a better understanding of the Martian system, opening the possibility for improved determination of a variety of physical parameters of Mars and Phobos. The simulations show that the mission concept is especially suited for estimating Mars tidal deformation parameters, estimating degree 2 Love numbers with absolute uncertainties at the 10-2 to 10-4 level after 1 and 4 years, respectively and providing separate estimates for the Martian quality factors at Sun and Phobos-forced frequencies. The estimation of Phobos libration amplitudes and gravity field coefficients provides an estimate of Phobos' relative equatorial and polar moments of inertia with an absolute uncertainty of 10-4 and 10-7, respectively, after 1 year. The observation of Phobos tidal deformation will be able to differentiate between a rubble pile and monolithic interior within 2 years. For all parameters, systematic errors have a much stronger influence (per unit uncertainty) than the uncorrelated Gaussian observation noise. This indicates the need for the inclusion of systematic errors in simulation studies and special attention to the mitigation of these errors in mission and system design.
Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan
2015-07-22
Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation.
Pan, Shuguo; Chen, Weirong; Jin, Xiaodong; Shi, Xiaofei; He, Fan
2015-01-01
Satellite orbit error and clock bias are the keys to precise point positioning (PPP). The traditional PPP algorithm requires precise satellite products based on worldwide permanent reference stations. Such an algorithm requires considerable work and hardly achieves real-time performance. However, real-time positioning service will be the dominant mode in the future. IGS is providing such an operational service (RTS) and there are also commercial systems like Trimble RTX in operation. On the basis of the regional Continuous Operational Reference System (CORS), a real-time PPP algorithm is proposed to apply the coupling estimation of clock bias and orbit error. The projection of orbit error onto the satellite-receiver range has the same effects on positioning accuracy with clock bias. Therefore, in satellite clock estimation, part of the orbit error can be absorbed by the clock bias and the effects of residual orbit error on positioning accuracy can be weakened by the evenly distributed satellite geometry. In consideration of the simple structure of pseudorange equations and the high precision of carrier-phase equations, the clock bias estimation method coupled with orbit error is also improved. Rovers obtain PPP results by receiving broadcast ephemeris and real-time satellite clock bias coupled with orbit error. By applying the proposed algorithm, the precise orbit products provided by GNSS analysis centers are rendered no longer necessary. On the basis of previous theoretical analysis, a real-time PPP system was developed. Some experiments were then designed to verify this algorithm. Experimental results show that the newly proposed approach performs better than the traditional PPP based on International GNSS Service (IGS) real-time products. The positioning accuracies of the rovers inside and outside the network are improved by 38.8% and 36.1%, respectively. The PPP convergence speeds are improved by up to 61.4% and 65.9%. The new approach can change the traditional PPP mode because of its advantages of independence, high positioning precision, and real-time performance. It could be an alternative solution for regional positioning service before global PPP service comes into operation. PMID:26205276
NASA Astrophysics Data System (ADS)
Herbonnet, Ricardo; Buddendiek, Axel; Kuijken, Konrad
2017-03-01
Context. Current optical imaging surveys for cosmology cover large areas of sky. Exploiting the statistical power of these surveys for weak lensing measurements requires shape measurement methods with subpercent systematic errors. Aims: We introduce a new weak lensing shear measurement algorithm, shear nulling after PSF Gaussianisation (SNAPG), designed to avoid the noise biases that affect most other methods. Methods: SNAPG operates on images that have been convolved with a kernel that renders the point spread function (PSF) a circular Gaussian, and uses weighted second moments of the sources. The response of such second moments to a shear of the pre-seeing galaxy image can be predicted analytically, allowing us to construct a shear nulling scheme that finds the shear parameters for which the observed galaxies are consistent with an unsheared, isotropically oriented population of sources. The inverse of this nulling shear is then an estimate of the gravitational lensing shear. Results: We identify the uncertainty of the estimated centre of each galaxy as the source of noise bias, and incorporate an approximate estimate of the centroid covariance into the scheme. We test the method on extensive suites of simulated galaxies of increasing complexity, and find that it is capable of shear measurements with multiplicative bias below 0.5 percent.
Light curves of 213 Type Ia supernovae from the Essence survey
Narayan, G.; Rest, A.; Tucker, B. E.; ...
2016-05-06
The ESSENCE survey discovered 213 Type Ia supernovae at redshiftsmore » $$0.1\\lt z\\lt 0.81$$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.« less
Light curves of 213 Type Ia supernovae from the Essence survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narayan, G.; Rest, A.; Tucker, B. E.
The ESSENCE survey discovered 213 Type Ia supernovae at redshiftsmore » $$0.1\\lt z\\lt 0.81$$ between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. Here, we assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ~1%.« less
Use of the Magnetic Field for Improving Gyroscopes’ Biases Estimation
Munoz Diaz, Estefania; de Ponte Müller, Fabian; García Domínguez, Juan Jesús
2017-01-01
An accurate orientation is crucial to a satisfactory position in pedestrian navigation. The orientation estimation, however, is greatly affected by errors like the biases of gyroscopes. In order to minimize the error in the orientation, the biases of gyroscopes must be estimated and subtracted. In the state of the art it has been proposed, but not proved, that the estimation of the biases can be accomplished using magnetic field measurements. The objective of this work is to evaluate the effectiveness of using magnetic field measurements to estimate the biases of medium-cost micro-electromechanical sensors (MEMS) gyroscopes. We carry out the evaluation with experiments that cover both, quasi-error-free turn rate and magnetic measurements and medium-cost MEMS turn rate and magnetic measurements. The impact of different homogeneous magnetic field distributions and magnetically perturbed environments is analyzed. Additionally, the effect of the successful biases subtraction on the orientation and the estimated trajectory is detailed. Our results show that the use of magnetic field measurements is beneficial to the correct biases estimation. Further, we show that different magnetic field distributions affect differently the biases estimation process. Moreover, the biases are likewise correctly estimated under perturbed magnetic fields. However, for indoor and urban scenarios the biases estimation process is very slow. PMID:28398232
Hunt, Andrew P; Bach, Aaron J E; Borg, David N; Costello, Joseph T; Stewart, Ian B
2017-01-01
An accurate measure of core body temperature is critical for monitoring individuals, groups and teams undertaking physical activity in situations of high heat stress or prolonged cold exposure. This study examined the range in systematic bias of ingestible temperature sensors compared to a certified and traceable reference thermometer. A total of 119 ingestible temperature sensors were immersed in a circulated water bath at five water temperatures (TEMP A: 35.12 ± 0.60°C, TEMP B: 37.33 ± 0.56°C, TEMP C: 39.48 ± 0.73°C, TEMP D: 41.58 ± 0.97°C, and TEMP E: 43.47 ± 1.07°C) along with a certified traceable reference thermometer. Thirteen sensors (10.9%) demonstrated a systematic bias > ±0.1°C, of which 4 (3.3%) were > ± 0.5°C. Limits of agreement (95%) indicated that systematic bias would likely fall in the range of -0.14 to 0.26°C, highlighting that it is possible for temperatures measured between sensors to differ by more than 0.4°C. The proportion of sensors with systematic bias > ±0.1°C (10.9%) confirms that ingestible temperature sensors require correction to ensure their accuracy. An individualized linear correction achieved a mean systematic bias of 0.00°C, and limits of agreement (95%) to 0.00-0.00°C, with 100% of sensors achieving ±0.1°C accuracy. Alternatively, a generalized linear function (Corrected Temperature (°C) = 1.00375 × Sensor Temperature (°C) - 0.205549), produced as the average slope and intercept of a sub-set of 51 sensors and excluding sensors with accuracy outside ±0.5°C, reduced the systematic bias to < ±0.1°C in 98.4% of the remaining sensors ( n = 64). In conclusion, these data show that using an uncalibrated ingestible temperature sensor may provide inaccurate data that still appears to be statistically, physiologically, and clinically meaningful. Correction of sensor temperature to a reference thermometer by linear function eliminates this systematic bias (individualized functions) or ensures systematic bias is within ±0.1°C in 98% of the sensors (generalized function).
Catastrophic photometric redshift errors: Weak-lensing survey requirements
Bernstein, Gary; Huterer, Dragan
2010-01-11
We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number N spec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of N spec is ~10 6 we findmore » that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in N spec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the z s – z p distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less
On framing the research question and choosing the appropriate research design.
Parfrey, Patrick S; Ravani, Pietro
2015-01-01
Clinical epidemiology is the science of human disease investigation with a focus on diagnosis, prognosis, and treatment. The generation of a reasonable question requires definition of patients, interventions, controls, and outcomes. The goal of research design is to minimize error, to ensure adequate samples, to measure input and output variables appropriately, to consider external and internal validities, to limit bias, and to address clinical as well as statistical relevance. The hierarchy of evidence for clinical decision-making places randomized controlled trials (RCT) or systematic review of good quality RCTs at the top of the evidence pyramid. Prognostic and etiologic questions are best addressed with longitudinal cohort studies.
On framing the research question and choosing the appropriate research design.
Parfrey, Patrick; Ravani, Pietro
2009-01-01
Clinical epidemiology is the science of human disease investigation with a focus on diagnosis, prognosis, and treatment. The generation of a reasonable question requires the definition of patients, interventions, controls, and outcomes. The goal of research design is to minimize error, ensure adequate samples, measure input and output variables appropriately, consider external and internal validities, limit bias, and address clinical as well as statistical relevance. The hierarchy of evidence for clinical decision making places randomized controlled trials (RCT) or systematic review of good quality RCTs at the top of the evidence pyramid. Prognostic and etiologic questions are best addressed with longitudinal cohort studies.
ROBIS: A new tool to assess risk of bias in systematic reviews was developed.
Whiting, Penny; Savović, Jelena; Higgins, Julian P T; Caldwell, Deborah M; Reeves, Barnaby C; Shea, Beverley; Davies, Philippa; Kleijnen, Jos; Churchill, Rachel
2016-01-01
To develop ROBIS, a new tool for assessing the risk of bias in systematic reviews (rather than in primary studies). We used four-stage approach to develop ROBIS: define the scope, review the evidence base, hold a face-to-face meeting, and refine the tool through piloting. ROBIS is currently aimed at four broad categories of reviews mainly within health care settings: interventions, diagnosis, prognosis, and etiology. The target audience of ROBIS is primarily guideline developers, authors of overviews of systematic reviews ("reviews of reviews"), and review authors who might want to assess or avoid risk of bias in their reviews. The tool is completed in three phases: (1) assess relevance (optional), (2) identify concerns with the review process, and (3) judge risk of bias. Phase 2 covers four domains through which bias may be introduced into a systematic review: study eligibility criteria; identification and selection of studies; data collection and study appraisal; and synthesis and findings. Phase 3 assesses the overall risk of bias in the interpretation of review findings and whether this considered limitations identified in any of the phase 2 domains. Signaling questions are included to help judge concerns with the review process (phase 2) and the overall risk of bias in the review (phase 3); these questions flag aspects of review design related to the potential for bias and aim to help assessors judge risk of bias in the review process, results, and conclusions. ROBIS is the first rigorously developed tool designed specifically to assess the risk of bias in systematic reviews. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
ROBIS: A new tool to assess risk of bias in systematic reviews was developed
Whiting, Penny; Savović, Jelena; Higgins, Julian P.T.; Caldwell, Deborah M.; Reeves, Barnaby C.; Shea, Beverley; Davies, Philippa; Kleijnen, Jos; Churchill, Rachel
2016-01-01
Objective To develop ROBIS, a new tool for assessing the risk of bias in systematic reviews (rather than in primary studies). Study Design and Setting We used four-stage approach to develop ROBIS: define the scope, review the evidence base, hold a face-to-face meeting, and refine the tool through piloting. Results ROBIS is currently aimed at four broad categories of reviews mainly within health care settings: interventions, diagnosis, prognosis, and etiology. The target audience of ROBIS is primarily guideline developers, authors of overviews of systematic reviews (“reviews of reviews”), and review authors who might want to assess or avoid risk of bias in their reviews. The tool is completed in three phases: (1) assess relevance (optional), (2) identify concerns with the review process, and (3) judge risk of bias. Phase 2 covers four domains through which bias may be introduced into a systematic review: study eligibility criteria; identification and selection of studies; data collection and study appraisal; and synthesis and findings. Phase 3 assesses the overall risk of bias in the interpretation of review findings and whether this considered limitations identified in any of the phase 2 domains. Signaling questions are included to help judge concerns with the review process (phase 2) and the overall risk of bias in the review (phase 3); these questions flag aspects of review design related to the potential for bias and aim to help assessors judge risk of bias in the review process, results, and conclusions. Conclusions ROBIS is the first rigorously developed tool designed specifically to assess the risk of bias in systematic reviews. PMID:26092286
Guo, Hongbin; Renaut, Rosemary A; Chen, Kewei; Reiman, Eric M
2010-01-01
Graphical analysis methods are widely used in positron emission tomography quantification because of their simplicity and model independence. But they may, particularly for reversible kinetics, lead to bias in the estimated parameters. The source of the bias is commonly attributed to noise in the data. Assuming a two-tissue compartmental model, we investigate the bias that originates from modeling error. This bias is an intrinsic property of the simplified linear models used for limited scan durations, and it is exaggerated by random noise and numerical quadrature error. Conditions are derived under which Logan's graphical method either over- or under-estimates the distribution volume in the noise-free case. The bias caused by modeling error is quantified analytically. The presented analysis shows that the bias of graphical methods is inversely proportional to the dissociation rate. Furthermore, visual examination of the linearity of the Logan plot is not sufficient for guaranteeing that equilibrium has been reached. A new model which retains the elegant properties of graphical analysis methods is presented, along with a numerical algorithm for its solution. We perform simulations with the fibrillar amyloid β radioligand [11C] benzothiazole-aniline using published data from the University of Pittsburgh and Rotterdam groups. The results show that the proposed method significantly reduces the bias due to modeling error. Moreover, the results for data acquired over a 70 minutes scan duration are at least as good as those obtained using existing methods for data acquired over a 90 minutes scan duration. PMID:20493196
NASA Technical Reports Server (NTRS)
Xie, F.; Wu, D. L.; Ao, C. O.; Mannucci, A. J.; Kursinski, E. R.
2012-01-01
The typical atmospheric boundary layer (ABL) over the southeast (SE) Pacific Ocean is featured with a strong temperature inversion and a sharp moisture gradient across the ABL top. The strong moisture and temperature gradients result in a sharp refractivity gradient that can be precisely detected by the Global Positioning System (GPS) radio occultation (RO) measurements. In this paper, the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) GPS RO soundings, radiosondes and the high-resolution ECMWF analysis over the SE Pacific are analyzed. COSMIC RO is able to detect a wide range of ABL height variations (1-2 kilometer) as observed from the radiosondes. However, the ECMWF analysis systematically underestimates the ABL heights. The sharp refractivity gradient at the ABL top frequently exceeds the critical refraction (e.g., -157 N-unit per kilometer) and becomes the so-called ducting condition, which results in a systematic RO refractivity bias (or called N-bias) inside the ABL. Simulation study based on radiosonde profiles reveals the magnitudes of the N-biases are vertical resolution dependent. The N-bias is also the primary cause of the systematically smaller refractivity gradient (rarely exceeding -110 N-unit per kilometer) at the ABL top from RO measurement. However, the N-bias seems not affect the ABL height detection. Instead, the very large RO bending angle and the sharp refractivity gradient due to ducting allow reliable detection of the ABL height from GPS RO. The seasonal mean climatology of ABL heights derived from a nine-month composite of COSMIC RO soundings over the SE Pacific reveals significant differences from the ECMWF analysis. Both show an increase of ABL height from the shallow stratocumulus near the coast to a much higher trade wind inversion further off the coast. However, COSMIC RO shows an overall deeper ABL and reveals different locations of the minimum and maximum ABL heights as compared to the ECMWF analysis. At low latitudes, despite the decreasing number of COSMIC RO soundings and the lower percentage of soundings that penetrate into the lowest 500-m above the mean-sea-level, there are small sampling errors in the mean ABL height climatology. The difference of ABL height climatology between COSMIC RO and ECMWF analysis over SE Pacific is significant and requires further studies.
Experiences from the testing of a theory for modelling groundwater flow in heterogeneous media
Christensen, S.; Cooley, R.L.
2002-01-01
Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.
Experience gained in testing a theory for modelling groundwater flow in heterogeneous media
Christensen, S.; Cooley, R.L.
2002-01-01
Usually, small-scale model error is present in groundwater modelling because the model only represents average system characteristics having the same form as the drift, and small-scale variability is neglected. These errors cause the true errors of a regression model to be correlated. Theory and an example show that the errors also contribute to bias in the estimates of model parameters. This bias originates from model nonlinearity. In spite of this bias, predictions of hydraulic head are nearly unbiased if the model intrinsic nonlinearity is small. Individual confidence and prediction intervals are accurate if the t-statistic is multiplied by a correction factor. The correction factor can be computed from the true error second moment matrix, which can be determined when the stochastic properties of the system characteristics are known.
Lockhart, Joseph J; Satya-Murti, Saty
2017-11-01
Cognitive effort is an essential part of both forensic and clinical decision-making. Errors occur in both fields because the cognitive process is complex and prone to bias. We performed a selective review of full-text English language literature on cognitive bias leading to diagnostic and forensic errors. Earlier work (1970-2000) concentrated on classifying and raising bias awareness. Recently (2000-2016), the emphasis has shifted toward strategies for "debiasing." While the forensic sciences have focused on the control of misleading contextual cues, clinical debiasing efforts have relied on checklists and hypothetical scenarios. No single generally applicable and effective bias reduction strategy has emerged so far. Generalized attempts at bias elimination have not been particularly successful. It is time to shift focus to the study of errors within specific domains, and how to best communicate uncertainty in order to improve decision making on the part of both the expert and the trier-of-fact. © 2017 American Academy of Forensic Sciences.
Randomized trials published in Chinese or Western journals: comparative empirical analysis.
Purgato, Marianna; Cipriani, Andrea; Barbui, Corrado
2012-06-01
A major concern to the inclusion in systematic reviews of studies originating in China and published in Chinese journals refers to the quality of study reporting. In this systematic survey of randomized trials, we compared the characteristics of studies published in Chinese journals with those of studies published in Western journals. We included 69 studies comparing citalopram with other antidepressant drugs in the treatment of major depression. Of these, 37 (54%) were published in Chinese journals. The standard of reporting was generally poor in both Western and Chinese studies. In some Chinese studies, the generation of the randomization sequence raised concern about their experimental nature, and in almost all included studies, the concealment of allocation was not properly described. Blinding was seldom adopted in Chinese studies, and the risk of sponsorship bias was uncertain because Chinese studies did not report any financial support. In most Western studies, outcome data were selectively and incompletely reported. Pooling together all trials revealed that citalopram was similarly effective in comparison with all other antidepressant drugs both in Western studies (standardized mean difference, -0.04; 95% confidence interval, -0.15 to 0.06) and in Chinese studies (standardized mean difference, -0.08, 95% confidence interval, -0.18 to 0.02). Randomized controlled trials published in Chinese journals represent most of the studies included in this review. This suggests that omitting to search biomedical databases originating from China would systematically exclude a relevant proportion of randomized trials published in Chinese journals, with a risk of random error or bias. The increasing inclusion of Chinese studies in systematic reviews reinforces the need to check the quality of randomized trials that are meta-analyzed.
NASA Technical Reports Server (NTRS)
Berg, Wesley; Avery, Susan K.
1995-01-01
Estimates of monthly rainfall have been computed over the tropical Pacific using passive microwave satellite observations from the special sensor microwave/imager (SSM/I) for the period from July 1987 through December 1990. These monthly estimates are calibrated using data from a network of Pacific atoll rain gauges in order to account for systematic biases and are then compared with several visible and infrared satellite-based rainfall estimation techniques for the purpose of evaluating the performance of the microwave-based estimates. Although several key differences among the various techniques are observed, the general features of the monthly rainfall time series agree very well. Finally, the significant error sources contributing to uncertainties in the monthly estimates are examined and an estimate of the total error is produced. The sampling error characteristics are investigated using data from two SSM/I sensors and a detailed analysis of the characteristics of the diurnal cycle of rainfall over the oceans and its contribution to sampling errors in the monthly SSM/I estimates is made using geosynchronous satellite data. Based on the analysis of the sampling and other error sources the total error was estimated to be of the order of 30 to 50% of the monthly rainfall for estimates averaged over 2.5 deg x 2.5 deg latitude/longitude boxes, with a contribution due to diurnal variability of the order of 10%.
Validation of high-resolution MAIAC aerosol product over South America
NASA Astrophysics Data System (ADS)
Martins, V. S.; Lyapustin, A.; de Carvalho, L. A. S.; Barbosa, C. C. F.; Novo, E. M. L. M.
2017-07-01
Multiangle Implementation of Atmospheric Correction (MAIAC) is a new Moderate Resolution Imaging Spectroradiometer (MODIS) algorithm that combines time series approach and image processing to derive surface reflectance and atmosphere products, such as aerosol optical depth (AOD) and columnar water vapor (CWV). The quality assessment of MAIAC AOD at 1 km resolution is still lacking across South America. In the present study, critical assessment of MAIAC AOD550 was performed using ground-truth data from 19 Aerosol Robotic Network (AERONET) sites over South America. Additionally, we validated the MAIAC CWV retrievals using the same AERONET sites. In general, MAIAC AOD Terra/Aqua retrievals show high agreement with ground-based measurements, with a correlation coefficient (R) close to unity (RTerra:0.956 and RAqua: 0.949). MAIAC accuracy depends on the surface properties and comparisons revealed high confidence retrievals over cropland, forest, savanna, and grassland covers, where more than 2/3 ( 66%) of retrievals are within the expected error (EE = ±(0.05 + 0.05 × AOD)) and R exceeding 0.86. However, AOD retrievals over bright surfaces show lower correlation than those over vegetated areas. Both MAIAC Terra and Aqua retrievals are similarly comparable to AERONET AOD over the MODIS lifetime (small bias offset 0.006). Additionally, MAIAC CWV presents quantitative information with R 0.97 and more than 70% of retrievals within error (±15%). Nonetheless, the time series validation shows an upward bias trend in CWV Terra retrievals and systematic negative bias for CWV Aqua. These results contribute to a comprehensive evaluation of MAIAC AOD retrievals as a new atmospheric product for future aerosol studies over South America.
Yelland, Lisa N; Kahan, Brennan C; Dent, Elsa; Lee, Katherine J; Voysey, Merryn; Forbes, Andrew B; Cook, Jonathan A
2018-06-01
Background/aims In clinical trials, it is not unusual for errors to occur during the process of recruiting, randomising and providing treatment to participants. For example, an ineligible participant may inadvertently be randomised, a participant may be randomised in the incorrect stratum, a participant may be randomised multiple times when only a single randomisation is permitted or the incorrect treatment may inadvertently be issued to a participant at randomisation. Such errors have the potential to introduce bias into treatment effect estimates and affect the validity of the trial, yet there is little motivation for researchers to report these errors and it is unclear how often they occur. The aim of this study is to assess the prevalence of recruitment, randomisation and treatment errors and review current approaches for reporting these errors in trials published in leading medical journals. Methods We conducted a systematic review of individually randomised, phase III, randomised controlled trials published in New England Journal of Medicine, Lancet, Journal of the American Medical Association, Annals of Internal Medicine and British Medical Journal from January to March 2015. The number and type of recruitment, randomisation and treatment errors that were reported and how they were handled were recorded. The corresponding authors were contacted for a random sample of trials included in the review and asked to provide details on unreported errors that occurred during their trial. Results We identified 241 potentially eligible articles, of which 82 met the inclusion criteria and were included in the review. These trials involved a median of 24 centres and 650 participants, and 87% involved two treatment arms. Recruitment, randomisation or treatment errors were reported in 32 in 82 trials (39%) that had a median of eight errors. The most commonly reported error was ineligible participants inadvertently being randomised. No mention of recruitment, randomisation or treatment errors was found in the remaining 50 of 82 trials (61%). Based on responses from 9 of the 15 corresponding authors who were contacted regarding recruitment, randomisation and treatment errors, between 1% and 100% of the errors that occurred in their trials were reported in the trial publications. Conclusion Recruitment, randomisation and treatment errors are common in individually randomised, phase III trials published in leading medical journals, but reporting practices are inadequate and reporting standards are needed. We recommend researchers report all such errors that occurred during the trial and describe how they were handled in trial publications to improve transparency in reporting of clinical trials.
NASA Astrophysics Data System (ADS)
Xu, H.; Luo, L.; Wu, Z.
2016-12-01
Drought, regarded as one of the major disasters all over the world, is not always easy to detect and forecast. Hydrological models coupled with Numerical Weather Prediction (NWP) has become a relatively effective method for drought monitoring and prediction. The accuracy of hydrological initial condition (IC) and the skill of NWP precipitation forecast can both heavily affect the quality and skill of hydrological forecast. In the study, the Variable Infiltration Capacity (VIC) model and Global Environmental Multi-scale (GEM) model were used to investigate the roles of IC and NWP forecast accuracy on hydrological predictions. A rev-ESP type experiment was conducted for a number of drought events in the Huaihe river basin. The experiment suggests that errors in ICs indeed affect the drought simulations by VIC and thus the drought monitoring. Although errors introduced in the ICs diminish gradually, the influence sometimes can last beyond 12 months. Using the soil moisture anomaly percentage index (SMAPI) as the metric to measure drought severity for the study region, we are able to quantify that time scale of influence from IC ranges. The analysis shows that the time scale is directly related to the magnitude of the introduced IC range and the average precipitation intensity. In order to explore how systematic bias correction in GEM forecasted precipitation can affect precipitation and hydrological forecast, we then both used station and gridded observations to eliminate biases of forecasted data. Meanwhile, different precipitation inputs with corrected data during drought process were conducted by VIC to investigate the changes of drought simulations, thus demonstrated short-term rolling drought prediction using a better performed corrected precipitation forecast. There is a word limit on the length of the abstract. So make sure your abstract fits the requirement. If this version is too long, try to shorten it as much as you can.
The effects of non-stationary noise on electromagnetic response estimates
NASA Astrophysics Data System (ADS)
Banks, R. J.
1998-11-01
The noise in natural electromagnetic time series is typically non-stationary. Sections of data with high magnetic noise levels bias impedances and generate unreliable error estimates. Sections containing noise that is coherent between electric and magnetic channels also produce inappropriate impedances and errors. The answer is to compute response values for data sections which are as short as is feasible, i.e. which are compatible both with the chosen bandwidth and with the need to over-determine the least-squares estimation of the impedance and coherence. Only those values that are reliable are selected, and the best single measure of the reliability of Earth impedance estimates is their temporal invariance, which is tested by the coherence between the measured and predicted electric fields. Complex demodulation is the method used here to explore the temporal structure of electromagnetic fields in the period range 20-6000 s. For periods above 300 s, noisy sections are readily identified in time series of impedance values. The corresponding estimates deviate strongly from the normal value, are biased towards low impedance values, and are associated with low coherences. Plots of the impedance against coherence are particularly valuable diagnostic aids. For periods below 300 s, impedance bias increases systematically as the coherence falls, identifying input channel noise as the cause. By selecting sections with high coherence (equivalent to the impedance being invariant over the section) unbiased impedances and realistic errors can be determined. The scatter in impedance values among high-coherence sections is due to noise that is coherent between input and output channels, implying the presence of two or more systems for which a consistent response can be defined. Where the Earth and noise responses are significantly different, it may be possible to improve estimates of the former by rejecting sections that do not generate satisfactory values for all the response elements.
NASA Technical Reports Server (NTRS)
Gracey, William; Jewel, Joseph W., Jr.; Carpenter, Gene T.
1960-01-01
The overall errors of the service altimeter installations of a variety of civil transport, military, and general-aviation airplanes have been experimentally determined during normal landing-approach and take-off operations. The average height above the runway at which the data were obtained was about 280 feet for the landings and about 440 feet for the take-offs. An analysis of the data obtained from 196 airplanes during 415 landing approaches and from 70 airplanes during 152 take-offs showed that: 1. The overall error of the altimeter installations in the landing- approach condition had a probable value (50 percent probability) of +/- 36 feet and a maximum probable value (99.7 percent probability) of +/- 159 feet with a bias of +10 feet. 2. The overall error in the take-off condition had a probable value of +/- 47 feet and a maximum probable value of +/- 207 feet with a bias of -33 feet. 3. The overall errors of the military airplanes were generally larger than those of the civil transports in both the landing-approach and take-off conditions. In the landing-approach condition the probable error and the maximum probable error of the military airplanes were +/- 43 and +/- 189 feet, respectively, with a bias of +15 feet, whereas those for the civil transports were +/- 22 and +/- 96 feet, respectively, with a bias of +1 foot. 4. The bias values of the error distributions (+10 feet for the landings and -33 feet for the take-offs) appear to represent a measure of the hysteresis characteristics (after effect and recovery) and friction of the instrument and the pressure lag of the tubing-instrument system.
NASA Technical Reports Server (NTRS)
Kuehn, C. E.; Himwich, W. E.; Clark, T. A.; Ma, C.
1991-01-01
The internal consistency of the baseline-length measurements derived from analysis of several independent VLBI experiments is an estimate of the measurement precision. The paper investigates whether the inclusion of water vapor radiometer (WVR) data as an absolute calibration of the propagation delay due to water vapor improves the precision of VLBI baseline-length measurements. The paper analyzes 28 International Radio Interferometric Surveying runs between June 1988 and January 1989; WVR measurements were made during each session. The addition of WVR data decreased the scatter of the length measurements of the baselines by 5-10 percent. The observed reduction in the scatter of the baseline lengths is less than what is expected from the behavior of the formal errors, which suggest that the baseline-length measurement precision should improve 10-20 percent if WVR data are included in the analysis. The discrepancy between the formal errors and the baseline-length results can be explained as the consequence of systematic errors in the dry-mapping function parameters, instrumental biases in the WVR and the barometer, or both.
NASA Technical Reports Server (NTRS)
Doggett, Leroy E.; Schaefer, Bradley E.
1994-01-01
We report the results of five Moonwatches, in which more than 2000 observers throughout North America attempted to sight the thin lunar crescent. For each Moonwatch we were able to determine the position of the Lunar Date Line (LDL), the line along which a normal observer has a 50% probability of spotting the Moon. The observational LDLs were then compared with predicted LDLs derived from crescent visibility prediction algorithms. We find that ancient and medieval rules are higly unreliable. More recent empirical criteria, based on the relative altitude and azimuth of the Moon at the time of sunset, have a reasonable accuracy, with the best specific formulation being due to Yallop. The modern theoretical model by Schaefer (based on the physiology of the human eye and the local observing conditions) is found to have the least systematic error, the least average error, and the least maximum error of all models tested. Analysis of the observations also provided information about atmospheric, optical and human factors that affect the observations. We show that observational lunar calendars have a natural bias to begin early.
NASA Technical Reports Server (NTRS)
Kirstetter, Pierre-Emmanuel; Hong, Y.; Gourley, J. J.; Schwaller, M.; Petersen, W; Zhang, J.
2012-01-01
Characterization of the error associated to satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. We focus here on the error structure of Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) quantitative precipitation estimation (QPE) at ground. The problem was addressed in a previous paper by comparison of 2A25 version 6 (V6) product with reference values derived from NOAA/NSSL's ground radar-based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25 version 7 (V7) products that were recently released as a replacement of V6. This new version is considered superior over land areas. Several aspects of the two versions are compared and quantified including rainfall rate distributions, systematic biases, and random errors. All analyses indicate V7 is an improvement over V6.
Graeser, Karin; Zemtsovski, Mikhail; Kofoed, Klaus F; Winther-Jensen, Matilde; Nilsson, Jens C; Kjaergaard, Jesper; Møller-Sørensen, Hasse
2018-01-09
Estimation of cardiac output (CO) is essential in the treatment of circulatory unstable patients. CO measured by pulmonary artery catheter thermodilution is considered the gold standard but carries a small risk of severe complications. Stroke volume and CO can be measured by transesophageal echocardiography (TEE), which is widely used during cardiac surgery. We hypothesized that Doppler-derived CO by 3-dimensional (3D) TEE would agree well with CO measured with pulmonary artery catheter thermodilution as a reference method based on accurate measurements of the cross-sectional area of the left ventricular outflow tract. The primary aim was a systematic comparison of CO with Doppler-derived 3D TEE and CO by thermodilution in a broad population of patients undergoing cardiac surgery. A subanalysis was performed comparing cross-sectional area by TEE with cardiac computed tomography (CT) angiography. Sixty-two patients, scheduled for elective heart surgery, were included; 1 was subsequently excluded for logistic reasons. Inclusion criteria were coronary artery bypass surgery (N = 42) and aortic valve replacement (N = 19). Exclusion criteria were chronic atrial fibrillation, left ventricular ejection fraction below 0.40 and intracardiac shunts. Nineteen randomly selected patients had a cardiac CT the day before surgery. All images were stored for blinded post hoc analyses, and Bland-Altman plots were used to assess agreement between measurement methods, defined as the bias (mean difference between methods), limits of agreement (equal to bias ± 2 standard deviations of the bias), and percentage error (limits of agreement divided by the mean of the 2 methods). Precision was determined for the individual methods (equal to 2 standard deviations of the bias between replicate measurements) to determine the acceptable limits of agreement. We found a good precision for Doppler-derived CO measured by 3D TEE, but although the bias for Doppler-derived CO by 3D compared to thermodilution was only 0.3 L/min (confidence interval, 0.04-0.58), there were wide limits of agreement (-1.8 to 2.5 L/min) with a percentage error of 55%. Measurements of cross-sectional area by 3D TEE had low bias of -0.27 cm (confidence interval, -0.45 to -0.08) and a percentage error of 18% compared to cardiac CT angiography. Despite low bias, the wide limits of agreement of Doppler-derived CO by 3D TEE compared to CO by thermodilution will limit clinical application and can therefore not be considered interchangeable with CO obtained by thermodilution. The lack of agreement is not explained by lack of agreement of the 3D technique.
Kupek, Emil
2002-01-01
Background Frequent use of self-reports for investigating recent and past behavior in medical research requires statistical techniques capable of analyzing complex sources of bias associated with this methodology. In particular, although decreasing accuracy of recalling more distant past events is commonplace, the bias due to differential in memory errors resulting from it has rarely been modeled statistically. Methods Covariance structure analysis was used to estimate the recall error of self-reported number of sexual partners for past periods of varying duration and its implication for the bias. Results Results indicated increasing levels of inaccuracy for reports about more distant past. Considerable positive bias was found for a small fraction of respondents who reported ten or more partners in the last year, last two years and last five years. This is consistent with the effect of heteroscedastic random error where the majority of partners had been acquired in the more distant past and therefore were recalled less accurately than the partners acquired more recently to the time of interviewing. Conclusions Memory errors of this type depend on the salience of the events recalled and are likely to be present in many areas of health research based on self-reported behavior. PMID:12435276
Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing
Lefebvre, Germain; Blakemore, Sarah-Jayne
2017-01-01
Previous studies suggest that factual learning, that is, learning from obtained outcomes, is biased, such that participants preferentially take into account positive, as compared to negative, prediction errors. However, whether or not the prediction error valence also affects counterfactual learning, that is, learning from forgone outcomes, is unknown. To address this question, we analysed the performance of two groups of participants on reinforcement learning tasks using a computational model that was adapted to test if prediction error valence influences learning. We carried out two experiments: in the factual learning experiment, participants learned from partial feedback (i.e., the outcome of the chosen option only); in the counterfactual learning experiment, participants learned from complete feedback information (i.e., the outcomes of both the chosen and unchosen option were displayed). In the factual learning experiment, we replicated previous findings of a valence-induced bias, whereby participants learned preferentially from positive, relative to negative, prediction errors. In contrast, for counterfactual learning, we found the opposite valence-induced bias: negative prediction errors were preferentially taken into account, relative to positive ones. When considering valence-induced bias in the context of both factual and counterfactual learning, it appears that people tend to preferentially take into account information that confirms their current choice. PMID:28800597
Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing.
Palminteri, Stefano; Lefebvre, Germain; Kilford, Emma J; Blakemore, Sarah-Jayne
2017-08-01
Previous studies suggest that factual learning, that is, learning from obtained outcomes, is biased, such that participants preferentially take into account positive, as compared to negative, prediction errors. However, whether or not the prediction error valence also affects counterfactual learning, that is, learning from forgone outcomes, is unknown. To address this question, we analysed the performance of two groups of participants on reinforcement learning tasks using a computational model that was adapted to test if prediction error valence influences learning. We carried out two experiments: in the factual learning experiment, participants learned from partial feedback (i.e., the outcome of the chosen option only); in the counterfactual learning experiment, participants learned from complete feedback information (i.e., the outcomes of both the chosen and unchosen option were displayed). In the factual learning experiment, we replicated previous findings of a valence-induced bias, whereby participants learned preferentially from positive, relative to negative, prediction errors. In contrast, for counterfactual learning, we found the opposite valence-induced bias: negative prediction errors were preferentially taken into account, relative to positive ones. When considering valence-induced bias in the context of both factual and counterfactual learning, it appears that people tend to preferentially take into account information that confirms their current choice.
NASA Astrophysics Data System (ADS)
Fisher, B. L.; Wolff, D. B.; Silberstein, D. S.; Marks, D. M.; Pippitt, J. L.
2007-12-01
The Tropical Rainfall Measuring Mission's (TRMM) Ground Validation (GV) Program was originally established with the principal long-term goal of determining the random errors and systematic biases stemming from the application of the TRMM rainfall algorithms. The GV Program has been structured around two validation strategies: 1) determining the quantitative accuracy of the integrated monthly rainfall products at GV regional sites over large areas of about 500 km2 using integrated ground measurements and 2) evaluating the instantaneous satellite and GV rain rate statistics at spatio-temporal scales compatible with the satellite sensor resolution (Simpson et al. 1988, Thiele 1988). The GV Program has continued to evolve since the launch of the TRMM satellite on November 27, 1997. This presentation will discuss current GV methods of validating TRMM operational rain products in conjunction with ongoing research. The challenge facing TRMM GV has been how to best utilize rain information from the GV system to infer the random and systematic error characteristics of the satellite rain estimates. A fundamental problem of validating space-borne rain estimates is that the true mean areal rainfall is an ideal, scale-dependent parameter that cannot be directly measured. Empirical validation uses ground-based rain estimates to determine the error characteristics of the satellite-inferred rain estimates, but ground estimates also incur measurement errors and contribute to the error covariance. Furthermore, sampling errors, associated with the discrete, discontinuous temporal sampling by the rain sensors aboard the TRMM satellite, become statistically entangled in the monthly estimates. Sampling errors complicate the task of linking biases in the rain retrievals to the physics of the satellite algorithms. The TRMM Satellite Validation Office (TSVO) has made key progress towards effective satellite validation. For disentangling the sampling and retrieval errors, TSVO has developed and applied a methodology that statistically separates the two error sources. Using TRMM monthly estimates and high-resolution radar and gauge data, this method has been used to estimate sampling and retrieval error budgets over GV sites. More recently, a multi- year data set of instantaneous rain rates from the TRMM microwave imager (TMI), the precipitation radar (PR), and the combined algorithm was spatio-temporally matched and inter-compared to GV radar rain rates collected during satellite overpasses of select GV sites at the scale of the TMI footprint. The analysis provided a more direct probe of the satellite rain algorithms using ground data as an empirical reference. TSVO has also made significant advances in radar quality control through the development of the Relative Calibration Adjustment (RCA) technique. The RCA is currently being used to provide a long-term record of radar calibration for the radar at Kwajalein, a strategically important GV site in the tropical Pacific. The RCA technique has revealed previously undetected alterations in the radar sensitivity due to engineering changes (e.g., system modifications, antenna offsets, alterations of the receiver, or the data processor), making possible the correction of the radar rainfall measurements and ensuring the integrity of nearly a decade of TRMM GV observations and resources.
A misleading review of response bias: comment on McGrath, Mitchell, Kim, and Hough (2010).
Rohling, Martin L; Larrabee, Glenn J; Greiffenstein, Manfred F; Ben-Porath, Yossef S; Lees-Haley, Paul; Green, Paul; Greve, Kevin W
2011-07-01
In the May 2010 issue of Psychological Bulletin, R. E. McGrath, M. Mitchell, B. H. Kim, and L. Hough published an article entitled "Evidence for Response Bias as a Source of Error Variance in Applied Assessment" (pp. 450-470). They argued that response bias indicators used in a variety of settings typically have insufficient data to support such use in everyday clinical practice. Furthermore, they claimed that despite 100 years of research into the use of response bias indicators, "a sufficient justification for [their] use… in applied settings remains elusive" (p. 450). We disagree with McGrath et al.'s conclusions. In fact, we assert that the relevant and voluminous literature that has addressed the issues of response bias substantiates validity of these indicators. In addition, we believe that response bias measures should be used in clinical and research settings on a regular basis. Finally, the empirical evidence for the use of response bias measures is strongest in clinical neuropsychology. We argue that McGrath et al.'s erroneous perspective on response bias measures is a result of 3 errors in their research methodology: (a) inclusion criteria for relevant studies that are too narrow; (b) errors in interpreting results of the empirical research they did include; (c) evidence of a confirmatory bias in selectively citing the literature, as evidence of moderation appears to have been overlooked. Finally, their acknowledging experts in the field who might have highlighted these errors prior to publication may have prevented critiques during the review process.
Bias correction of satellite-based rainfall data
NASA Astrophysics Data System (ADS)
Bhattacharya, Biswa; Solomatine, Dimitri
2015-04-01
Limitation in hydro-meteorological data availability in many catchments limits the possibility of reliable hydrological analyses especially for near-real-time predictions. However, the variety of satellite based and meteorological model products for rainfall provides new opportunities. Often times the accuracy of these rainfall products, when compared to rain gauge measurements, is not impressive. The systematic differences of these rainfall products from gauge observations can be partially compensated by adopting a bias (error) correction. Many of such methods correct the satellite based rainfall data by comparing their mean value to the mean value of rain gauge data. Refined approaches may also first find out a suitable time scale at which different data products are better comparable and then employ a bias correction at that time scale. More elegant methods use quantile-to-quantile bias correction, which however, assumes that the available (often limited) sample size can be useful in comparing probabilities of different rainfall products. Analysis of rainfall data and understanding of the process of its generation reveals that the bias in different rainfall data varies in space and time. The time aspect is sometimes taken into account by considering the seasonality. In this research we have adopted a bias correction approach that takes into account the variation of rainfall in space and time. A clustering based approach is employed in which every new data point (e.g. of Tropical Rainfall Measuring Mission (TRMM)) is first assigned to a specific cluster of that data product and then, by identifying the corresponding cluster of gauge data, the bias correction specific to that cluster is adopted. The presented approach considers the space-time variation of rainfall and as a result the corrected data is more realistic. Keywords: bias correction, rainfall, TRMM, satellite rainfall
Cognitive bias in clinical practice - nurturing healthy skepticism among medical students.
Bhatti, Alysha
2018-01-01
Errors in clinical reasoning, known as cognitive biases, are implicated in a significant proportion of diagnostic errors. Despite this knowledge, little emphasis is currently placed on teaching cognitive psychology in the undergraduate medical curriculum. Understanding the origin of these biases and their impact on clinical decision making helps stimulate reflective practice. This article outlines some of the common types of cognitive biases encountered in the clinical setting as well as cognitive debiasing strategies. Medical educators should nurture healthy skepticism among medical students by raising awareness of cognitive biases and equipping them with robust tools to circumvent such biases. This will enable tomorrow's doctors to improve the quality of care delivered, thus optimizing patient outcomes.
Roon, David A.; Waits, L.P.; Kendall, K.C.
2005-01-01
Non-invasive genetic sampling (NGS) is becoming a popular tool for population estimation. However, multiple NGS studies have demonstrated that polymerase chain reaction (PCR) genotyping errors can bias demographic estimates. These errors can be detected by comprehensive data filters such as the multiple-tubes approach, but this approach is expensive and time consuming as it requires three to eight PCR replicates per locus. Thus, researchers have attempted to correct PCR errors in NGS datasets using non-comprehensive error checking methods, but these approaches have not been evaluated for reliability. We simulated NGS studies with and without PCR error and 'filtered' datasets using non-comprehensive approaches derived from published studies and calculated mark-recapture estimates using CAPTURE. In the absence of data-filtering, simulated error resulted in serious inflations in CAPTURE estimates; some estimates exceeded N by ??? 200%. When data filters were used, CAPTURE estimate reliability varied with per-locus error (E??). At E?? = 0.01, CAPTURE estimates from filtered data displayed < 5% deviance from error-free estimates. When E?? was 0.05 or 0.09, some CAPTURE estimates from filtered data displayed biases in excess of 10%. Biases were positive at high sampling intensities; negative biases were observed at low sampling intensities. We caution researchers against using non-comprehensive data filters in NGS studies, unless they can achieve baseline per-locus error rates below 0.05 and, ideally, near 0.01. However, we suggest that data filters can be combined with careful technique and thoughtful NGS study design to yield accurate demographic information. ?? 2005 The Zoological Society of London.
The Extended HANDS Characterization and Analysis of Metric Biases
NASA Astrophysics Data System (ADS)
Kelecy, T.; Knox, R.; Cognion, R.
The Extended High Accuracy Network Determination System (Extended HANDS) consists of a network of low cost, high accuracy optical telescopes designed to support space surveillance and development of space object characterization technologies. Comprising off-the-shelf components, the telescopes are designed to provide sub arc-second astrometric accuracy. The design and analysis team are in the process of characterizing the system through development of an error allocation tree whose assessment is supported by simulation, data analysis, and calibration tests. The metric calibration process has revealed 1-2 arc-second biases in the right ascension and declination measurements of reference satellite position, and these have been observed to have fairly distinct characteristics that appear to have some dependence on orbit geometry and tracking rates. The work presented here outlines error models developed to aid in development of the system error budget, and examines characteristic errors (biases, time dependence, etc.) that might be present in each of the relevant system elements used in the data collection and processing, including the metric calibration processing. The relevant reference frames are identified, and include the sensor (CCD camera) reference frame, Earth-fixed topocentric frame, topocentric inertial reference frame, and the geocentric inertial reference frame. The errors modeled in each of these reference frames, when mapped into the topocentric inertial measurement frame, reveal how errors might manifest themselves through the calibration process. The error analysis results that are presented use satellite-sensor geometries taken from periods where actual measurements were collected, and reveal how modeled errors manifest themselves over those specific time periods. These results are compared to the real calibration metric data (right ascension and declination residuals), and sources of the bias are hypothesized. In turn, the actual right ascension and declination calibration residuals are also mapped to other relevant reference frames in an attempt to validate the source of the bias errors. These results will serve as the basis for more focused investigation into specific components embedded in the system and system processes that might contain the source of the observed biases.
First Impressions of CARTOSAT-1
NASA Technical Reports Server (NTRS)
Lutes, James
2007-01-01
CARTOSAT-1 RPCs need special handling. Absolute accuracy of uncontrolled scenes is poor (biases > 300 m). Noticeable cross-track scale error (+/- 3-4 m across stereo pair). Most errors are either biases or linear in line/sample (These are easier to correct with ground control).
Treatment of systematic errors in land data assimilation systems
NASA Astrophysics Data System (ADS)
Crow, W. T.; Yilmaz, M.
2012-12-01
Data assimilation systems are generally designed to minimize the influence of random error on the estimation of system states. Yet, experience with land data assimilation systems has also revealed the presence of large systematic differences between model-derived and remotely-sensed estimates of land surface states. Such differences are commonly resolved prior to data assimilation through implementation of a pre-processing rescaling step whereby observations are scaled (or non-linearly transformed) to somehow "match" comparable predictions made by an assimilation model. While the rationale for removing systematic differences in means (i.e., bias) between models and observations is well-established, relatively little theoretical guidance is currently available to determine the appropriate treatment of higher-order moments during rescaling. This talk presents a simple analytical argument to define an optimal linear-rescaling strategy for observations prior to their assimilation into a land surface model. While a technique based on triple collocation theory is shown to replicate this optimal strategy, commonly-applied rescaling techniques (e.g., so called "least-squares regression" and "variance matching" approaches) are shown to represent only sub-optimal approximations to it. Since the triple collocation approach is likely infeasible in many real-world circumstances, general advice for deciding between various feasible (yet sub-optimal) rescaling approaches will be presented with an emphasis of the implications of this work for the case of directly assimilating satellite radiances. While the bulk of the analysis will deal with linear rescaling techniques, its extension to nonlinear cases will also be discussed.
NASA Astrophysics Data System (ADS)
Davis, C.; Rozo, E.; Roodman, A.; Alarcon, A.; Cawthon, R.; Gatti, M.; Lin, H.; Miquel, R.; Rykoff, E. S.; Troxel, M. A.; Vielzeuf, P.; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Bechtol, K.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Burke, D. L.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Castander, F. J.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Drlica-Wagner, A.; Fausti Neto, A.; Flaugher, B.; Fosalba, P.; Frieman, J.; García-Bellido, J.; Gaztanaga, E.; Gerdes, D. W.; Giannantonio, T.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Honscheid, K.; Jain, B.; James, D. J.; Jeltema, T.; Krause, E.; Kuehn, K.; Kuhlmann, S.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Ogando, R. L. C.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Sevilla-Noarbe, I.; Smith, M.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Vikram, V.; Walker, A. R.; Wechsler, R. H.
2018-06-01
Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogues with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty of Δz ˜ ±0.01. We forecast that our proposal can, in principle, control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Our results provide strong motivation to launch a programme to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.
Davis, C.; Rozo, E.; Roodman, A.; ...
2018-03-26
Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, C.; Rozo, E.; Roodman, A.
Galaxy cross-correlations with high-fidelity redshift samples hold the potential to precisely calibrate systematic photometric redshift uncertainties arising from the unavailability of complete and representative training and validation samples of galaxies. However, application of this technique in the Dark Energy Survey (DES) is hampered by the relatively low number density, small area, and modest redshift overlap between photometric and spectroscopic samples. We propose instead using photometric catalogs with reliable photometric redshifts for photo-z calibration via cross-correlations. We verify the viability of our proposal using redMaPPer clusters from the Sloan Digital Sky Survey (SDSS) to successfully recover the redshift distribution of SDSS spectroscopic galaxies. We demonstrate how to combine photo-z with cross-correlation data to calibrate photometric redshift biases while marginalizing over possible clustering bias evolution in either the calibration or unknown photometric samples. We apply our method to DES Science Verification (DES SV) data in order to constrain the photometric redshift distribution of a galaxy sample selected for weak lensing studies, constraining the mean of the tomographic redshift distributions to a statistical uncertainty ofmore » $$\\Delta z \\sim \\pm 0.01$$. We forecast that our proposal can in principle control photometric redshift uncertainties in DES weak lensing experiments at a level near the intrinsic statistical noise of the experiment over the range of redshifts where redMaPPer clusters are available. Here, our results provide strong motivation to launch a program to fully characterize the systematic errors from bias evolution and photo-z shapes in our calibration procedure.« less
Variance analysis of forecasted streamflow maxima in a wet temperate climate
NASA Astrophysics Data System (ADS)
Al Aamery, Nabil; Fox, James F.; Snyder, Mark; Chandramouli, Chandra V.
2018-05-01
Coupling global climate models, hydrologic models and extreme value analysis provides a method to forecast streamflow maxima, however the elusive variance structure of the results hinders confidence in application. Directly correcting the bias of forecasts using the relative change between forecast and control simulations has been shown to marginalize hydrologic uncertainty, reduce model bias, and remove systematic variance when predicting mean monthly and mean annual streamflow, prompting our investigation for maxima streamflow. We assess the variance structure of streamflow maxima using realizations of emission scenario, global climate model type and project phase, downscaling methods, bias correction, extreme value methods, and hydrologic model inputs and parameterization. Results show that the relative change of streamflow maxima was not dependent on systematic variance from the annual maxima versus peak over threshold method applied, albeit we stress that researchers strictly adhere to rules from extreme value theory when applying the peak over threshold method. Regardless of which method is applied, extreme value model fitting does add variance to the projection, and the variance is an increasing function of the return period. Unlike the relative change of mean streamflow, results show that the variance of the maxima's relative change was dependent on all climate model factors tested as well as hydrologic model inputs and calibration. Ensemble projections forecast an increase of streamflow maxima for 2050 with pronounced forecast standard error, including an increase of +30(±21), +38(±34) and +51(±85)% for 2, 20 and 100 year streamflow events for the wet temperate region studied. The variance of maxima projections was dominated by climate model factors and extreme value analyses.
The applications of statistical quantification techniques in nanomechanics and nanoelectronics.
Mai, Wenjie; Deng, Xinwei
2010-10-08
Although nanoscience and nanotechnology have been developing for approximately two decades and have achieved numerous breakthroughs, the experimental results from nanomaterials with a higher noise level and poorer repeatability than those from bulk materials still remain as a practical issue, and challenge many techniques of quantification of nanomaterials. This work proposes a physical-statistical modeling approach and a global fitting statistical method to use all the available discrete data or quasi-continuous curves to quantify a few targeted physical parameters, which can provide more accurate, efficient and reliable parameter estimates, and give reasonable physical explanations. In the resonance method for measuring the elastic modulus of ZnO nanowires (Zhou et al 2006 Solid State Commun. 139 222-6), our statistical technique gives E = 128.33 GPa instead of the original E = 108 GPa, and unveils a negative bias adjustment f(0). The causes are suggested by the systematic bias in measuring the length of the nanowires. In the electronic measurement of the resistivity of a Mo nanowire (Zach et al 2000 Science 290 2120-3), the proposed new method automatically identified the importance of accounting for the Ohmic contact resistance in the model of the Ohmic behavior in nanoelectronics experiments. The 95% confidence interval of resistivity in the proposed one-step procedure is determined to be 3.57 +/- 0.0274 x 10( - 5) ohm cm, which should be a more reliable and precise estimate. The statistical quantification technique should find wide applications in obtaining better estimations from various systematic errors and biased effects that become more significant at the nanoscale.
Dissemination Bias in Systematic Reviews of Animal Research: A Systematic Review
Mueller, Katharina F.; Briel, Matthias; Strech, Daniel; Meerpohl, Joerg J.; Lang, Britta; Motschall, Edith; Gloy, Viktoria; Lamontagne, Francois; Bassler, Dirk
2014-01-01
Background Systematic reviews of preclinical studies, in vivo animal experiments in particular, can influence clinical research and thus even clinical care. Dissemination bias, selective dissemination of positive or significant results, is one of the major threats to validity in systematic reviews also in the realm of animal studies. We conducted a systematic review to determine the number of published systematic reviews of animal studies until present, to investigate their methodological features especially with respect to assessment of dissemination bias, and to investigate the citation of preclinical systematic reviews on clinical research. Methods Eligible studies for this systematic review constitute systematic reviews that summarize in vivo animal experiments whose results could be interpreted as applicable to clinical care. We systematically searched Ovid Medline, Embase, ToxNet, and ScienceDirect from 1st January 2009 to 9th January 2013 for eligible systematic reviews without language restrictions. Furthermore we included articles from two previous systematic reviews by Peters et al. and Korevaar et al. Results The literature search and screening process resulted in 512 included full text articles. We found an increasing number of published preclinical systematic reviews over time. The methodological quality of preclinical systematic reviews was low. The majority of preclinical systematic reviews did not assess methodological quality of the included studies (71%), nor did they assess heterogeneity (81%) or dissemination bias (87%). Statistics quantifying the importance of clinical research citing systematic reviews of animal studies showed that clinical studies referred to the preclinical research mainly to justify their study or a future study (76%). Discussion Preclinical systematic reviews may have an influence on clinical research but their methodological quality frequently remains low. Therefore, systematic reviews of animal research should be critically appraised before translating them to a clinical context. PMID:25541734
NASA Astrophysics Data System (ADS)
McKibbin, Seann J.; Ireland, Trevor R.; Amelin, Yuri; Holden, Peter; Sugiura, Naoji
2013-12-01
‘Quenched’ angrite meteorites are among the best time markers of igneous activity in early formed planetesimals of the Solar System. They can be precisely dated by the Mn-Cr extinct nuclide decay system because they contain olivine with high Mn/Cr. Nevertheless, there is disagreement between various determinations of the initial 53Mn/55Mn for this meteorite, hindering their use for cross-calibration between chronometric systems and between Secondary Ion Mass Spectrometry (SIMS) and bulk measurement techniques. Here we re-evaluate the Mn-Cr systematics of olivine from the quenched angrite D’Orbigny using Sensitive High-mass Resolution Ion Micro Probe Reverse Geometry (SHRIMP-RG) to search for heterogeneity in isotope systematics and check for inter-laboratory bias. We investigated possible bias arising due to different data reduction methods and have paid careful attention to the relative sensitivities of Mn and Cr by utilising a three-component mixing model to correct for matrix effects associated with Mg, Fe and Ca zoning in angrite olivine. We have determined an initial 53Mn/55Mn of 3.60 (±0.39) × 10-6 and 3.44 (±0.29) × 10-6 (2σ errors) for D’Orbigny olivine by the Mean of Ratios and Ratio of Total Counts data reduction methods. These values are in agreement with those found by some previous bulk and mineral-scale determinations, and with the generally accepted initial 53Mn/55Mn of this meteorite, but not with previous SIMS work on this material. The source of this discrepancy remains unclear. We can exclude heterogeneity in D’Orbigny as a source of discrepancy because we used the same sample and the meteorite appears to have consistent initial 53Mn/55Mn over both micro- and macro-scales. The discrepancy between this and the previous SIMS study probably reflects an unrecognised systematic analytical bias, possibly associated with relative sensitivities of Mn and Cr or with mass spectrometric backgrounds (isobaric interferences or scattered ions) which may become significant at very low Cr count rates.
Technical Note: Introduction of variance component analysis to setup error analysis in radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuo, Yukinori, E-mail: ymatsuo@kuhp.kyoto-u.ac.
Purpose: The purpose of this technical note is to introduce variance component analysis to the estimation of systematic and random components in setup error of radiotherapy. Methods: Balanced data according to the one-factor random effect model were assumed. Results: Analysis-of-variance (ANOVA)-based computation was applied to estimate the values and their confidence intervals (CIs) for systematic and random errors and the population mean of setup errors. The conventional method overestimates systematic error, especially in hypofractionated settings. The CI for systematic error becomes much wider than that for random error. The ANOVA-based estimation can be extended to a multifactor model considering multiplemore » causes of setup errors (e.g., interpatient, interfraction, and intrafraction). Conclusions: Variance component analysis may lead to novel applications to setup error analysis in radiotherapy.« less
NASA Astrophysics Data System (ADS)
Zhang, Kuiyuan; Umehara, Shigehiro; Yamaguchi, Junki; Furuta, Jun; Kobayashi, Kazutoshi
2016-08-01
This paper analyzes how body bias and BOX region thickness affect soft error rates in 65-nm SOTB (Silicon on Thin BOX) and 28-nm UTBB (Ultra Thin Body and BOX) FD-SOI processes. Soft errors are induced by alpha-particle and neutron irradiation and the results are then analyzed by Monte Carlo based simulation using PHITS-TCAD. The alpha-particle-induced single event upset (SEU) cross-section and neutron-induced soft error rate (SER) obtained by simulation are consistent with measurement results. We clarify that SERs decreased in response to an increase in the BOX thickness for SOTB while SERs in UTBB are independent of BOX thickness. We also discover SOTB develops a higher tolerance to soft errors when reverse body bias is applied while UTBB become more susceptible.
Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Verónica M; Savitz, David A; Bartell, Scott M
2016-01-01
Uncertainty in exposure estimates from models can result in exposure measurement error and can potentially affect the validity of epidemiological studies. We recently used a suite of environmental models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations and assess the association with preeclampsia from 1990 through 2006 for the C8 Health Project participants. The aims of the current study are to evaluate impact of uncertainty in estimated PFOA drinking-water concentrations on estimated serum concentrations and their reported epidemiological association with preeclampsia. For each individual public water district, we used Monte Carlo simulations to vary the year-by-year PFOA drinking-water concentration by randomly sampling from lognormal distributions for random error in the yearly public water district PFOA concentrations, systematic error specific to each water district, and global systematic error in the release assessment (using the estimated concentrations from the original fate and transport model as medians and a range of 2-, 5-, and 10-fold uncertainty). Uncertainty in PFOA water concentrations could cause major changes in estimated serum PFOA concentrations among participants. However, there is relatively little impact on the resulting epidemiological association in our simulations. The contribution of exposure uncertainty to the total uncertainty (including regression parameter variance) ranged from 5% to 31%, and bias was negligible. We found that correlated exposure uncertainty can substantially change estimated PFOA serum concentrations, but results in only minor impacts on the epidemiological association between PFOA and preeclampsia. Avanasi R, Shin HM, Vieira VM, Savitz DA, Bartell SM. 2016. Impact of exposure uncertainty on the association between perfluorooctanoate and preeclampsia in the C8 Health Project population. Environ Health Perspect 124:126-132; http://dx.doi.org/10.1289/ehp.1409044.
Propagation of stage measurement uncertainties to streamflow time series
NASA Astrophysics Data System (ADS)
Horner, Ivan; Le Coz, Jérôme; Renard, Benjamin; Branger, Flora; McMillan, Hilary
2016-04-01
Streamflow uncertainties due to stage measurements errors are generally overlooked in the promising probabilistic approaches that have emerged in the last decade. We introduce an original error model for propagating stage uncertainties through a stage-discharge rating curve within a Bayesian probabilistic framework. The method takes into account both rating curve (parametric errors and structural errors) and stage uncertainty (systematic and non-systematic errors). Practical ways to estimate the different types of stage errors are also presented: (1) non-systematic errors due to instrument resolution and precision and non-stationary waves and (2) systematic errors due to gauge calibration against the staff gauge. The method is illustrated at a site where the rating-curve-derived streamflow can be compared with an accurate streamflow reference. The agreement between the two time series is overall satisfying. Moreover, the quantification of uncertainty is also satisfying since the streamflow reference is compatible with the streamflow uncertainty intervals derived from the rating curve and the stage uncertainties. Illustrations from other sites are also presented. Results are much contrasted depending on the site features. In some cases, streamflow uncertainty is mainly due to stage measurement errors. The results also show the importance of discriminating systematic and non-systematic stage errors, especially for long term flow averages. Perspectives for improving and validating the streamflow uncertainty estimates are eventually discussed.
Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training
Van de Winckel, Ann; Tseng, Yu-Ting; Chantigian, Daniel; Lorant, Kaitlyn; Zarandi, Zinat; Buchanan, Jeffrey; Zeffiro, Thomas A.; Larson, Mia; Olson-Kellogg, Becky; Konczak, Jürgen; Keller-Ross, Manda L.
2017-01-01
Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors (n = 107, mean age, 70 ± 5 years, range, 65–84 years) without cognitive decline (Mini Mental State Examination-brief version ≥13/16) and young adult students (n = 51, mean age, 20 ± 1 years, range, 19–26 years). Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision. Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01). Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38% contralateral, p < 0.01). Longer years of dance training were associated with smaller bias during ipsilateral matching (p < 0.01). Other types of training or physical activity levels did not affect bias or precision. Our findings demonstrate that aging is associated with a decline in proprioceptive bias in distal arm joints, but age does not negatively affect proprioceptive precision. Further, specific types of long-term dance related training may attenuate age-related decline in proprioceptive bias. PMID:29209188
Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training.
Van de Winckel, Ann; Tseng, Yu-Ting; Chantigian, Daniel; Lorant, Kaitlyn; Zarandi, Zinat; Buchanan, Jeffrey; Zeffiro, Thomas A; Larson, Mia; Olson-Kellogg, Becky; Konczak, Jürgen; Keller-Ross, Manda L
2017-01-01
Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors ( n = 107, mean age, 70 ± 5 years, range, 65-84 years) without cognitive decline (Mini Mental State Examination-brief version ≥13/16) and young adult students ( n = 51, mean age, 20 ± 1 years, range, 19-26 years). Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision . Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01). Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38% contralateral, p < 0.01). Longer years of dance training were associated with smaller bias during ipsilateral matching ( p < 0.01). Other types of training or physical activity levels did not affect bias or precision. Our findings demonstrate that aging is associated with a decline in proprioceptive bias in distal arm joints, but age does not negatively affect proprioceptive precision. Further, specific types of long-term dance related training may attenuate age-related decline in proprioceptive bias.
Cluster Randomised Trials in Cochrane Reviews: Evaluation of Methodological and Reporting Practice.
Richardson, Marty; Garner, Paul; Donegan, Sarah
2016-01-01
Systematic reviews can include cluster-randomised controlled trials (C-RCTs), which require different analysis compared with standard individual-randomised controlled trials. However, it is not known whether review authors follow the methodological and reporting guidance when including these trials. The aim of this study was to assess the methodological and reporting practice of Cochrane reviews that included C-RCTs against criteria developed from existing guidance. Criteria were developed, based on methodological literature and personal experience supervising review production and quality. Criteria were grouped into four themes: identifying, reporting, assessing risk of bias, and analysing C-RCTs. The Cochrane Database of Systematic Reviews was searched (2nd December 2013), and the 50 most recent reviews that included C-RCTs were retrieved. Each review was then assessed using the criteria. The 50 reviews we identified were published by 26 Cochrane Review Groups between June 2013 and November 2013. For identifying C-RCTs, only 56% identified that C-RCTs were eligible for inclusion in the review in the eligibility criteria. For reporting C-RCTs, only eight (24%) of the 33 reviews reported the method of cluster adjustment for their included C-RCTs. For assessing risk of bias, only one review assessed all five C-RCT-specific risk-of-bias criteria. For analysing C-RCTs, of the 27 reviews that presented unadjusted data, only nine (33%) provided a warning that confidence intervals may be artificially narrow. Of the 34 reviews that reported data from unadjusted C-RCTs, only 13 (38%) excluded the unadjusted results from the meta-analyses. The methodological and reporting practices in Cochrane reviews incorporating C-RCTs could be greatly improved, particularly with regard to analyses. Criteria developed as part of the current study could be used by review authors or editors to identify errors and improve the quality of published systematic reviews incorporating C-RCTs.
Measurement error in environmental epidemiology and the shape of exposure-response curves.
Rhomberg, Lorenz R; Chandalia, Juhi K; Long, Christopher M; Goodman, Julie E
2011-09-01
Both classical and Berkson exposure measurement errors as encountered in environmental epidemiology data can result in biases in fitted exposure-response relationships that are large enough to affect the interpretation and use of the apparent exposure-response shapes in risk assessment applications. A variety of sources of potential measurement error exist in the process of estimating individual exposures to environmental contaminants, and the authors review the evaluation in the literature of the magnitudes and patterns of exposure measurement errors that prevail in actual practice. It is well known among statisticians that random errors in the values of independent variables (such as exposure in exposure-response curves) may tend to bias regression results. For increasing curves, this effect tends to flatten and apparently linearize what is in truth a steeper and perhaps more curvilinear or even threshold-bearing relationship. The degree of bias is tied to the magnitude of the measurement error in the independent variables. It has been shown that the degree of bias known to apply to actual studies is sufficient to produce a false linear result, and that although nonparametric smoothing and other error-mitigating techniques may assist in identifying a threshold, they do not guarantee detection of a threshold. The consequences of this could be great, as it could lead to a misallocation of resources towards regulations that do not offer any benefit to public health.
A Systematic Review of Attention Biases in Opioid, Cannabis, Stimulant Use Disorders.
Zhang, Melvyn; Ying, Jiangbo; Wing, Tracey; Song, Guo; Fung, Daniel S S; Smith, Helen
2018-06-01
Background : Opiates, cannabis, and amphetamines are highly abused, and use of these substances are prevalent disorders. Psychological interventions are crucial given that they help individuals maintain abstinence following a lapse or relapse into substance use. Advances in experimental psychology have suggested that automatic attention biases might be responsible for relapse. Prior reviews have provided evidence for the presence of these biases in addictive disorders and the effectiveness of bias modification. However, the prior studies are limited, as they failed to include trials involving participants with these prevalent addictive disorders or have failed to adopt a systematic approach in evidence synthesis. Objectives : The primary aim of this current systematic review is to synthesise the current evidence for attention biases amongst opioid use, cannabis use, and stimulant use disorders. The secondary aim is to determine the efficacy of attention bias modification interventions and other addictions related outcomes. Methods : A search was conducted from November 2017 to January 2018 on PubMed, MEDLINE, Embase, PsycINFO, Science Direct, Cochrane Central, and Scopus. The selection process of the articles was in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. A qualitative synthesis was undertaken. Risk of bias was assessed using the Cochrane Risk of Bias tool. Results : Six randomised trials were identified. The evidence synthesized from these trials have provided strong evidence that attentional biases are present in opioid and stimulant use disorders. Evidence synthesis for other secondary outcome measures could not be performed given the heterogeneity in the measures reported and the limited number of trials. The risk of bias assessment for the included trials revealed a high risk of selection and attrition bias. Conclusions : This review demonstrates the potential need for interventions targeting attention biases in opiate and cocaine use disorders.
Miller, Chad S
2013-01-01
Nearly half of medical errors can be attributed to an error of clinical reasoning or decision making. It is estimated that the correct diagnosis is missed or delayed in between 5% and 14% of acute hospital admissions. Through understanding why and how physicians make these errors, it is hoped that strategies can be developed to decrease the number of these errors. In the present case, a patient presented with dyspnea, gastrointestinal symptoms and weight loss; the diagnosis was initially missed when the treating physicians took mental short cuts and used heuristics as in this case. Heuristics have an inherent bias that can lead to faulty reasoning or conclusions, especially in complex or difficult cases. Affective bias, which is the overinvolvement of emotion in clinical decision making, limited the available information for diagnosis because of the hesitancy to acquire a full history and perform a complete physical examination in this patient. Zebra retreat, another type of bias, is when a rare diagnosis figures prominently on the differential diagnosis but the physician retreats for various reasons. Zebra retreat also factored in the delayed diagnosis. Through the description of these clinical reasoning errors in an actual case, it is hoped that future errors can be prevented or inspiration for additional research in this area will develop.
Evaluation and error apportionment of an ensemble of ...
Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) helping to detect causes of models error, and iii) identifying the processes and scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2.5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance and covariance) can help to assess the nature and quality of the error. Each of the error components is analysed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day) using the error apportionment technique devised in the former phases of AQMEII.The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact
Barbosa, Marcília Medrado; Detmann, Edenio; Rocha, Gabriel Cipriano; de Oliveira Franco, Marcia; de Campos Valadares Filho, Sebastião
2015-01-01
A comparison was made of measurements of neutral detergent fiber concentrations obtained with AOAC Method 2002.04 and modified methods using pressurized environments or direct use of industrial heat-stable α-amylase in samples of forage (n=37), concentrate (n=30), and ruminant feces (n=39). The following method modifications were tested: AOAC Method 2002.04 with replacement of the reflux apparatus with an autoclave or Ankom(220®) extractor and F57 filter bags, and AOAC Method 2002.04 with replacement of the standardization procedures for α-amylase by a single addition of industrial α-amylase [250 μL of Termamyl 2X 240 Kilo Novo Units (KNU)-T/g] prior to heating the neutral detergent solution. For the feces and forage samples, the results obtained with the modified methods with an autoclave or modification of α-amylase use were similar to those obtained using AOAC Method 2002.04, but the use of the Ankom220 extractor resulted in overestimated values. For the concentrate samples, the modified methods using an autoclave or Ankom220 extractor resulted in positive systematic errors. However, the method using industrial α-amylase resulted in systematic error and slope bias despite that the obtained values were close to those obtained with AOAC Method 2002.04.
NASA Astrophysics Data System (ADS)
Raghunathan, Srinivasan; Patil, Sanjaykumar; Baxter, Eric J.; Bianchini, Federico; Bleem, Lindsey E.; Crawford, Thomas M.; Holder, Gilbert P.; Manzotti, Alessandro; Reichardt, Christian L.
2017-08-01
We develop a Maximum Likelihood estimator (MLE) to measure the masses of galaxy clusters through the impact of gravitational lensing on the temperature and polarization anisotropies of the cosmic microwave background (CMB). We show that, at low noise levels in temperature, this optimal estimator outperforms the standard quadratic estimator by a factor of two. For polarization, we show that the Stokes Q/U maps can be used instead of the traditional E- and B-mode maps without losing information. We test and quantify the bias in the recovered lensing mass for a comprehensive list of potential systematic errors. Using realistic simulations, we examine the cluster mass uncertainties from CMB-cluster lensing as a function of an experiment's beam size and noise level. We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT, and Simons Array experiments with 10,000 clusters and less than 1% for the CMB-S4 experiment with a sample containing 100,000 clusters. The mass constraints from CMB polarization are very sensitive to the experimental beam size and map noise level: for a factor of three reduction in either the beam size or noise level, the lensing signal-to-noise improves by roughly a factor of two.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weverberg, K.; Morcrette, C. J.; Petch, J.
Many numerical weather prediction (NWP) and climate models exhibit too warm lower tropospheres near the mid-latitude continents. This warm bias has been extensively studied before, but evidence about its origin remains inconclusive. Some studies point to deficiencies in the deep convective or low clouds. Other studies found an important contribution from errors in the land surface properties. The warm bias has been shown to coincide with important surface radiation biases that likely play a critical role in the inception or the growth of the warm bias. Documenting these radiation errors is hence an important step towards understanding and alleviating themore » warm bias. This paper presents an attribution study to quantify the net radiation biases in 9 model simulations, performed in the framework of the CAUSES project (Clouds Above the United States and Errors at the Surface). Contributions from deficiencies in the surface properties, clouds, integrated water vapor (IWV) and aerosols are quantified, using an array of radiation measurement stations near the ARM SGP site. Furthermore, an in depth-analysis is shown to attribute the radiation errors to specific cloud regimes. The net surface SW radiation is overestimated (LW underestimated) in all models throughout most of the simulation period. Cloud errors are shown to contribute most to this overestimation in all but one model, which has a dominant albedo issue. Using a cloud regime analysis, it was shown that missing deep cloud events and/or simulating deep clouds with too weak cloud-radiative effects account for most of these cloud-related radiation errors. Some models have compensating errors between excessive occurrence of deep cloud, but largely underestimating their radiative effect, while other models miss deep cloud events altogether. Surprisingly however, even the latter models tend to produce too much and too frequent afternoon surface precipitation. This suggests that rather than issues with the triggering of deep convection, the deep cloud problem in many models could be related to too weak convective cloud detrainment and too large precipitation efficiencies. This does not rule out that previously documented issues with the evaporative fraction contribute to the warm bias as well, since the majority of the models underestimate the surface rain rates overall, as they miss the observed large nocturnal precipitation peak.« less
Recommendations for assessing the risk of bias in systematic reviews of health-care interventions.
Viswanathan, Meera; Patnode, Carrie D; Berkman, Nancy D; Bass, Eric B; Chang, Stephanie; Hartling, Lisa; Murad, M Hassan; Treadwell, Jonathan R; Kane, Robert L
2018-05-01
Risk-of-bias assessment is a central component of systematic reviews, but little conclusive empirical evidence exists on the validity of such assessments. In the context of such uncertainty, we present pragmatic recommendations that promote transparency and reproducibility in processes, address methodological advances in the risk-of-bias assessment, and can be applied consistently across review topics. Epidemiological study design principles; available empirical evidence, risk-of-bias tools, and guidance; and workgroup consensus. We developed recommendations for assessing the risk of bias of studies of health-care interventions specific to framing the focus and scope of risk-of-bias assessment; selecting the risk-of-bias categories; choosing assessment instruments; and conducting, analyzing, and presenting results of risk-of-bias assessments. Key recommendations include transparency and reproducibility of judgments, separating risk of bias from other constructs such as applicability and precision, and evaluating the risk of bias per outcome. We recommend against certain past practices, such as focusing on reporting quality, relying solely on study design or numerical quality scores, and automatically downgrading for industry sponsorship. Risk-of-bias assessment remains a challenging but essential step in systematic reviews. We presented standards to promote transparency of judgments. Copyright © 2017 Elsevier Inc. All rights reserved.
Gole, Markus; Köchel, Angelika; Schäfer, Axel; Schienle, Anne
2012-03-01
The goal of the present study was to investigate a threat engagement, disengagement, and sensitivity bias in individuals suffering from pathological worry. Twenty participants high in worry proneness and 16 control participants low in worry proneness completed an emotional go/no-go task with worry-related threat words and neutral words. Shorter reaction times (i.e., threat engagement bias), smaller omission error rates (i.e., threat sensitivity bias), and larger commission error rates (i.e., threat disengagement bias) emerged only in the high worry group when worry-related words constituted the go-stimuli and neutral words the no-go stimuli. Also, smaller omission error rates as well as larger commission error rates were observed in the high worry group relative to the low worry group when worry-related go stimuli and neutral no-go stimuli were used. The obtained results await further replication within a generalized anxiety disorder sample. Also, further samples should include men as well. Our data suggest that worry-prone individuals are threat-sensitive, engage more rapidly with aversion, and disengage harder. Copyright © 2011 Elsevier Ltd. All rights reserved.
Bootstrap Estimates of Standard Errors in Generalizability Theory
ERIC Educational Resources Information Center
Tong, Ye; Brennan, Robert L.
2007-01-01
Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…
Spitzer Instrument Pointing Frame (IPF) Kalman Filter Algorithm
NASA Technical Reports Server (NTRS)
Bayard, David S.; Kang, Bryan H.
2004-01-01
This paper discusses the Spitzer Instrument Pointing Frame (IPF) Kalman Filter algorithm. The IPF Kalman filter is a high-order square-root iterated linearized Kalman filter, which is parametrized for calibrating the Spitzer Space Telescope focal plane and aligning the science instrument arrays with respect to the telescope boresight. The most stringent calibration requirement specifies knowledge of certain instrument pointing frames to an accuracy of 0.1 arcseconds, per-axis, 1-sigma relative to the Telescope Pointing Frame. In order to achieve this level of accuracy, the filter carries 37 states to estimate desired parameters while also correcting for expected systematic errors due to: (1) optical distortions, (2) scanning mirror scale-factor and misalignment, (3) frame alignment variations due to thermomechanical distortion, and (4) gyro bias and bias-drift in all axes. The resulting estimated pointing frames and calibration parameters are essential for supporting on-board precision pointing capability, in addition to end-to-end 'pixels on the sky' ground pointing reconstruction efforts.
Maugis, Pierre-André G
2018-07-01
Big data-the idea that an always-larger volume of information is being constantly recorded-suggests that new problems can now be subjected to scientific scrutiny. However, can classical statistical methods be used directly on big data? We analyze the problem by looking at two known pitfalls of big datasets. First, that they are biased, in the sense that they do not offer a complete view of the populations under consideration. Second, that they present a weak but pervasive level of dependence between all their components. In both cases we observe that the uncertainty of the conclusion obtained by statistical methods is increased when used on big data, either because of a systematic error (bias), or because of a larger degree of randomness (increased variance). We argue that the key challenge raised by big data is not only how to use big data to tackle new problems, but to develop tools and methods able to rigorously articulate the new risks therein. Copyright © 2016. Published by Elsevier Ltd.
Hicks, E Preston; Kluemper, G Thomas
2011-03-01
Studies show that our brains use 2 modes of reasoning: heuristic (intuitive, automatic, implicit processing) and analytic (deliberate, rule-based, explicit processing). The use of intuition often dominates problem solving when innovative, creative thinking is required. Under conditions of uncertainty, we default to an even greater reliance on the heuristic processing. In health care settings and other such environments of increased importance, this mode becomes problematic. Since choice heuristics are quickly constructed from fragments of memory, they are often biased by prior evaluations of and preferences for the alternatives being considered. Therefore, a rigorous and systematic decision process notwithstanding, clinical judgments under uncertainty are often flawed by a number of unwitting biases. Clinical orthodontics is as vulnerable to this fundamental failing in the decision-making process as any other health care discipline. Several of the more common cognitive biases relevant to clinical orthodontics are discussed in this article. By raising awareness of these sources of cognitive errors in our clinical decision making, our intent was to equip the clinician to take corrective action to avoid them. Our secondary goal was to expose this important area of empirical research and encourage those with expertise in the cognitive sciences to explore, through further research, the possible relevance and impact of cognitive heuristics and biases on the accuracy of orthodontic judgments and decision making. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Assessment of the sunk-cost effect in clinical decision-making.
Braverman, Jennifer A; Blumenthal-Barby, J S
2012-07-01
Despite the current push toward the practice of evidence-based medicine and comparative effectiveness research, clinicians' decisions may be influenced not only by evidence, but also by cognitive biases. A cognitive bias describes a tendency to make systematic errors in certain circumstances based on cognitive factors rather than evidence. Though health care providers have been shown in several studies to be susceptible to a variety of types of cognitive biases, research on the role of the sunk-cost bias in clinical decision-making is extremely limited. The sunk-cost bias is the tendency to pursue a course of action, even after it has proved to be suboptimal, because resources have been invested in that course of action. This study explores whether health care providers' medical treatment recommendations are affected by prior investments in a course of treatment. Specifically, we surveyed 389 health care providers in a large urban medical center in the United States during August 2009. We asked participants to make a treatment recommendation based on one of four hypothetical clinical scenarios that varied in the source and type of prior investment described. By comparing recommendations across scenarios, we found that providers did not demonstrate a sunk-cost effect; rather, they demonstrated a significant tendency to over-compensate for the effect. In addition, we found that more than one in ten health care providers recommended continuation of an ineffective treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Alderete, John; Davies, Monica
2018-04-01
This work describes a methodology of collecting speech errors from audio recordings and investigates how some of its assumptions affect data quality and composition. Speech errors of all types (sound, lexical, syntactic, etc.) were collected by eight data collectors from audio recordings of unscripted English speech. Analysis of these errors showed that: (i) different listeners find different errors in the same audio recordings, but (ii) the frequencies of error patterns are similar across listeners; (iii) errors collected "online" using on the spot observational techniques are more likely to be affected by perceptual biases than "offline" errors collected from audio recordings; and (iv) datasets built from audio recordings can be explored and extended in a number of ways that traditional corpus studies cannot be.
A minimalist approach to bias estimation for passive sensor measurements with targets of opportunity
NASA Astrophysics Data System (ADS)
Belfadel, Djedjiga; Osborne, Richard W.; Bar-Shalom, Yaakov
2013-09-01
In order to carry out data fusion, registration error correction is crucial in multisensor systems. This requires estimation of the sensor measurement biases. It is important to correct for these bias errors so that the multiple sensor measurements and/or tracks can be referenced as accurately as possible to a common tracking coordinate system. This paper provides a solution for bias estimation for the minimum number of passive sensors (two), when only targets of opportunity are available. The sensor measurements are assumed time-coincident (synchronous) and perfectly associated. Since these sensors provide only line of sight (LOS) measurements, the formation of a single composite Cartesian measurement obtained from fusing the LOS measurements from different sensors is needed to avoid the need for nonlinear filtering. We evaluate the Cramer-Rao Lower Bound (CRLB) on the covariance of the bias estimate, i.e., the quantification of the available information about the biases. Statistical tests on the results of simulations show that this method is statistically efficient, even for small sample sizes (as few as two sensors and six points on the trajectory of a single target of opportunity). We also show that the RMS position error is significantly improved with bias estimation compared with the target position estimation using the original biased measurements.
The Effect of Amplifier Bias Drift on Differential Magnitude Estimation in Multiple-Star Systems
NASA Astrophysics Data System (ADS)
Tyler, David W.; Muralimanohar, Hariharan; Borelli, Kathy J.
2007-02-01
We show how the temporal drift of CCD amplifier bias can cause significant relative magnitude estimation error in speckle interferometric observations of multiple-star systems. When amplifier bias varies over time, the estimation error arises if the time between acquisition of dark-frame calibration data and science data is long relative to the timescale over which the bias changes. Using analysis, we show that while detector-temperature drift over time causes a variation in accumulated dark current and a residual bias in calibrated imagery, only amplifier bias variations cause a residual bias in the estimated energy spectrum. We then use telescope data taken specifically to investigate this phenomenon to show that for the detector used, temporal bias drift can cause residual energy spectrum bias as large or larger than the mean value of the noise energy spectrum. Finally, we use a computer simulation to demonstrate the effect of residual bias on differential magnitude estimation. A supplemental calibration technique is described in the appendices.
Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset
NASA Astrophysics Data System (ADS)
Lange, Stefan
2018-05-01
Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.
Krajcsi, Attila; Lengyel, Gábor; Kojouharova, Petia
2018-01-01
HIGHLIGHTS We test whether symbolic number comparison is handled by an analog noisy system.Analog system model has systematic biases in describing symbolic number comparison.This suggests that symbolic and non-symbolic numbers are processed by different systems. Dominant numerical cognition models suppose that both symbolic and non-symbolic numbers are processed by the Analog Number System (ANS) working according to Weber's law. It was proposed that in a number comparison task the numerical distance and size effects reflect a ratio-based performance which is the sign of the ANS activation. However, increasing number of findings and alternative models propose that symbolic and non-symbolic numbers might be processed by different representations. Importantly, alternative explanations may offer similar predictions to the ANS prediction, therefore, former evidence usually utilizing only the goodness of fit of the ANS prediction is not sufficient to support the ANS account. To test the ANS model more rigorously, a more extensive test is offered here. Several properties of the ANS predictions for the error rates, reaction times, and diffusion model drift rates were systematically analyzed in both non-symbolic dot comparison and symbolic Indo-Arabic comparison tasks. It was consistently found that while the ANS model's prediction is relatively good for the non-symbolic dot comparison, its prediction is poorer and systematically biased for the symbolic Indo-Arabic comparison. We conclude that only non-symbolic comparison is supported by the ANS, and symbolic number comparisons are processed by other representation. PMID:29491845
Black hole mass measurement using molecular gas kinematics: what ALMA can do
NASA Astrophysics Data System (ADS)
Yoon, Ilsang
2017-04-01
We study the limits of the spatial and velocity resolution of radio interferometry to infer the mass of supermassive black holes (SMBHs) in galactic centres using the kinematics of circum-nuclear molecular gas, by considering the shapes of the galaxy surface brightness profile, signal-to-noise ratios (S/Ns) of the position-velocity diagram (PVD) and systematic errors due to the spatial and velocity structure of the molecular gas. We argue that for fixed galaxy stellar mass and SMBH mass, the spatial and velocity scales that need to be resolved increase and decrease, respectively, with decreasing Sérsic index of the galaxy surface brightness profile. We validate our arguments using simulated PVDs for varying beam size and velocity channel width. Furthermore, we consider the systematic effects on the inference of the SMBH mass by simulating PVDs including the spatial and velocity structure of the molecular gas, which demonstrates that their impacts are not significant for a PVD with good S/N unless the spatial and velocity scale associated with the systematic effects are comparable to or larger than the angular resolution and velocity channel width of the PVD from pure circular motion. Also, we caution that a bias in a galaxy surface brightness profile owing to the poor resolution of a galaxy photometric image can largely bias the SMBH mass by an order of magnitude. This study shows the promise and the limits of ALMA observations for measuring SMBH mass using molecular gas kinematics and provides a useful technical justification for an ALMA proposal with the science goal of measuring SMBH mass.
Nutritional therapy in cirrhosis or alcoholic hepatitis: a systematic review and meta-analysis.
Fialla, Annette D; Israelsen, Mads; Hamberg, Ole; Krag, Aleksander; Gluud, Lise Lotte
2015-09-01
Patients with cirrhosis and alcoholic hepatitis are often malnourished and have a superimposed stress metabolism, which increases nutritional demands. We performed a systematic review on the effects of nutritional therapy vs. no intervention for patients with cirrhosis or alcoholic hepatitis. We included trials on nutritional therapy designed to fulfil at least 75% of daily nutritional demand. Authors extracted data in an independent manner. Random-effects and fixed-effect meta-analyses were performed and the results expressed as risk ratios (RR) with 95% confidence intervals (CI). Sequential analyses were performed to evaluate the risk of spurious findings because of random and systematic errors. Subgroup and sensitivity analyses were performed to evaluate the risk of bias and sources of between trial heterogeneity. Thirteen randomized controlled trials with 329 allocated to enteral (nine trials) or intravenous (four trials) nutrition and 334 controls. All trials were classed as having a high risk of bias. Random-effects meta-analysis showed that nutritional therapy reduced mortality 0.80 (95% CI, 0.64 to 0.99). The result was not confirmed in sequential analysis. Fixed-effect analysis suggested that nutrition prevented overt hepatic encephalopathy (0.73; 95% CI, 0.55 to 0.96) and infection (0.66; 95% CI, 0.45 to 0.98, respectively), but the results were not confirmed in random-effects analyses. Our review suggests that nutritional therapy may have beneficial effects on clinical outcomes in cirrhosis and alcoholic hepatitis. High-quality trials are needed to verify our findings. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Jackson, Simon A.; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar
2016-01-01
In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants (N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation. PMID:27790170
Jackson, Simon A; Kleitman, Sabina; Howie, Pauline; Stankov, Lazar
2016-01-01
In this paper, we investigate whether individual differences in performance on heuristic and biases tasks can be explained by cognitive abilities, monitoring confidence, and control thresholds. Current theories explain individual differences in these tasks by the ability to detect errors and override automatic but biased judgments, and deliberative cognitive abilities that help to construct the correct response. Here we retain cognitive abilities but disentangle error detection, proposing that lower monitoring confidence and higher control thresholds promote error checking. Participants ( N = 250) completed tasks assessing their fluid reasoning abilities, stable monitoring confidence levels, and the control threshold they impose on their decisions. They also completed seven typical heuristic and biases tasks such as the cognitive reflection test and Resistance to Framing. Using structural equation modeling, we found that individuals with higher reasoning abilities, lower monitoring confidence, and higher control threshold performed significantly and, at times, substantially better on the heuristic and biases tasks. Individuals with higher control thresholds also showed lower preferences for risky alternatives in a gambling task. Furthermore, residual correlations among the heuristic and biases tasks were reduced to null, indicating that cognitive abilities, monitoring confidence, and control thresholds accounted for their shared variance. Implications include the proposal that the capacity to detect errors does not differ between individuals. Rather, individuals might adopt varied strategies that promote error checking to different degrees, regardless of whether they have made a mistake or not. The results support growing evidence that decision-making involves cognitive abilities that construct actions and monitoring and control processes that manage their initiation.
Outbreak Column 16: Cognitive errors in outbreak decision making.
Curran, Evonne T
2015-01-01
During outbreaks, decisions must be made without all the required information. People, including infection prevention and control teams (IPCTs), who have to make decisions during uncertainty use heuristics to fill the missing data gaps. Heuristics are mental model short cuts that by-and-large enable us to make good decisions quickly. However, these heuristics contain biases and effects that at times lead to cognitive (thinking) errors. These cognitive errors are not made to deliberately misrepresent any given situation; we are subject to heuristic biases when we are trying to perform optimally. The science of decision making is large; there are over 100 different biases recognised and described. Outbreak Column 16 discusses and relates these heuristics and biases to decision making during outbreak prevention, preparedness and management. Insights as to how we might recognise and avoid them are offered.
Bias Reduction and Filter Convergence for Long Range Stereo
NASA Technical Reports Server (NTRS)
Sibley, Gabe; Matthies, Larry; Sukhatme, Gaurav
2005-01-01
We are concerned here with improving long range stereo by filtering image sequences. Traditionally, measurement errors from stereo camera systems have been approximated as 3-D Gaussians, where the mean is derived by triangulation and the covariance by linearized error propagation. However, there are two problems that arise when filtering such 3-D measurements. First, stereo triangulation suffers from a range dependent statistical bias; when filtering this leads to over-estimating the true range. Second, filtering 3-D measurements derived via linearized error propagation leads to apparent filter divergence; the estimator is biased to under-estimate range. To address the first issue, we examine the statistical behavior of stereo triangulation and show how to remove the bias by series expansion. The solution to the second problem is to filter with image coordinates as measurements instead of triangulated 3-D coordinates.
Number-counts slope estimation in the presence of Poisson noise
NASA Technical Reports Server (NTRS)
Schmitt, Juergen H. M. M.; Maccacaro, Tommaso
1986-01-01
The slope determination of a power-law number flux relationship in the case of photon-limited sampling. This case is important for high-sensitivity X-ray surveys with imaging telescopes, where the error in an individual source measurement depends on integrated flux and is Poisson, rather than Gaussian, distributed. A bias-free method of slope estimation is developed that takes into account the exact error distribution, the influence of background noise, and the effects of varying limiting sensitivities. It is shown that the resulting bias corrections are quite insensitive to the bias correction procedures applied, as long as only sources with signal-to-noise ratio five or greater are considered. However, if sources with signal-to-noise ratio five or less are included, the derived bias corrections depend sensitively on the shape of the error distribution.
INCREASING THE ACCURACY OF MAYFIELD ESTIMATES USING KNOWLEDGE OF NEST AGE
This presentation will focus on the error introduced in nest-survival modeling when nest-cycles are assumed to be of constant length. I will present the types of error that may occur, including biases resulting from incorrect estimates of expected values, as well as biases that o...
Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations...
Effect of patient setup errors on simultaneously integrated boost head and neck IMRT treatment plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siebers, Jeffrey V.; Keall, Paul J.; Wu Qiuwen
2005-10-01
Purpose: The purpose of this study is to determine dose delivery errors that could result from random and systematic setup errors for head-and-neck patients treated using the simultaneous integrated boost (SIB)-intensity-modulated radiation therapy (IMRT) technique. Methods and Materials: Twenty-four patients who participated in an intramural Phase I/II parotid-sparing IMRT dose-escalation protocol using the SIB treatment technique had their dose distributions reevaluated to assess the impact of random and systematic setup errors. The dosimetric effect of random setup error was simulated by convolving the two-dimensional fluence distribution of each beam with the random setup error probability density distribution. Random setup errorsmore » of {sigma} = 1, 3, and 5 mm were simulated. Systematic setup errors were simulated by randomly shifting the patient isocenter along each of the three Cartesian axes, with each shift selected from a normal distribution. Systematic setup error distributions with {sigma} = 1.5 and 3.0 mm along each axis were simulated. Combined systematic and random setup errors were simulated for {sigma} = {sigma} = 1.5 and 3.0 mm along each axis. For each dose calculation, the gross tumor volume (GTV) received by 98% of the volume (D{sub 98}), clinical target volume (CTV) D{sub 90}, nodes D{sub 90}, cord D{sub 2}, and parotid D{sub 50} and parotid mean dose were evaluated with respect to the plan used for treatment for the structure dose and for an effective planning target volume (PTV) with a 3-mm margin. Results: Simultaneous integrated boost-IMRT head-and-neck treatment plans were found to be less sensitive to random setup errors than to systematic setup errors. For random-only errors, errors exceeded 3% only when the random setup error {sigma} exceeded 3 mm. Simulated systematic setup errors with {sigma} = 1.5 mm resulted in approximately 10% of plan having more than a 3% dose error, whereas a {sigma} = 3.0 mm resulted in half of the plans having more than a 3% dose error and 28% with a 5% dose error. Combined random and systematic dose errors with {sigma} = {sigma} = 3.0 mm resulted in more than 50% of plans having at least a 3% dose error and 38% of the plans having at least a 5% dose error. Evaluation with respect to a 3-mm expanded PTV reduced the observed dose deviations greater than 5% for the {sigma} = {sigma} = 3.0 mm simulations to 5.4% of the plans simulated. Conclusions: Head-and-neck SIB-IMRT dosimetric accuracy would benefit from methods to reduce patient systematic setup errors. When GTV, CTV, or nodal volumes are used for dose evaluation, plans simulated including the effects of random and systematic errors deviate substantially from the nominal plan. The use of PTVs for dose evaluation in the nominal plan improves agreement with evaluated GTV, CTV, and nodal dose values under simulated setup errors. PTV concepts should be used for SIB-IMRT head-and-neck squamous cell carcinoma patients, although the size of the margins may be less than those used with three-dimensional conformal radiation therapy.« less
NASA Technical Reports Server (NTRS)
Arnold, David; Kong, J. A.
1992-01-01
The electromagnetic bias is an error present in radar altimetry of the ocean due to the non-uniform reflection from wave troughs and crests. A study of the electromagnetic bias became necessary to permit error reduction in mean sea level measurements of satellite radar altimeters. Satellite radar altimeters have been used to find the upper and lower bounds for the electromagnetic bias. This report will present a theory using physical optics scattering and an empirical model of the short wave modulation to predict the electromagnetic bias. The predicted electromagnetic bias will be compared to measurements at C and Ku bands.
NASA Astrophysics Data System (ADS)
O, Sungmin; Foelsche, U.; Kirchengast, G.; Fuchsberger, J.
2018-01-01
Eight years of daily rainfall data from WegenerNet were analyzed by comparison with data from Austrian national weather stations. WegenerNet includes 153 ground level weather stations in an area of about 15 km × 20 km in the Feldbach region in southeast Austria. Rainfall has been measured by tipping bucket gauges at 150 stations of the network since the beginning of 2007. Since rain gauge measurements are considered close to true rainfall, there are increasing needs for WegenerNet data for the validation of rainfall data products such as remote sensing based estimates or model outputs. Serving these needs, this paper aims at providing a clearer interpretation on WegenerNet rainfall data for users in hydro-meteorological communities. Five clusters - a cluster consists of one national weather station and its four closest WegenerNet stations - allowed us close comparison of datasets between the stations. Linear regression analysis and error estimation with statistical indices were conducted to quantitatively evaluate the WegenerNet daily rainfall data. It was found that rainfall data between the stations show good linear relationships with an average correlation coefficient (r) of 0.97 , while WegenerNet sensors tend to underestimate rainfall according to the regression slope (0.87). For the five clusters investigated, the bias and relative bias were - 0.97 mm d-1 and - 11.5 % on average (except data from new sensors). The average of bias and relative bias, however, could be reduced by about 80 % through a simple linear regression-slope correction, with the assumption that the underestimation in WegenerNet data was caused by systematic errors. The results from the study have been employed to improve WegenerNet data for user applications so that a new version of the data (v5) is now available at the WegenerNet data portal (www.wegenernet.org).
Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.; ...
2018-02-16
We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcrette, C. J.; Van Weverberg, K.; Ma, H. -Y.
We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally,more » a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.« less
NASA Astrophysics Data System (ADS)
Morcrette, C. J.; Van Weverberg, K.; Ma, H.-Y.; Ahlgrimm, M.; Bazile, E.; Berg, L. K.; Cheng, A.; Cheruy, F.; Cole, J.; Forbes, R.; Gustafson, W. I.; Huang, M.; Lee, W.-S.; Liu, Y.; Mellul, L.; Merryfield, W. J.; Qian, Y.; Roehrig, R.; Wang, Y.-C.; Xie, S.; Xu, K.-M.; Zhang, C.; Klein, S.; Petch, J.
2018-03-01
We introduce the Clouds Above the United States and Errors at the Surface (CAUSES) project with its aim of better understanding the physical processes leading to warm screen temperature biases over the American Midwest in many numerical models. In this first of four companion papers, 11 different models, from nine institutes, perform a series of 5 day hindcasts, each initialized from reanalyses. After describing the common experimental protocol and detailing each model configuration, a gridded temperature data set is derived from observations and used to show that all the models have a warm bias over parts of the Midwest. Additionally, a strong diurnal cycle in the screen temperature bias is found in most models. In some models the bias is largest around midday, while in others it is largest during the night. At the Department of Energy Atmospheric Radiation Measurement Southern Great Plains (SGP) site, the model biases are shown to extend several kilometers into the atmosphere. Finally, to provide context for the companion papers, in which observations from the SGP site are used to evaluate the different processes contributing to errors there, it is shown that there are numerous locations across the Midwest where the diurnal cycle of the error is highly correlated with the diurnal cycle of the error at SGP. This suggests that conclusions drawn from detailed evaluation of models using instruments located at SGP will be representative of errors that are prevalent over a larger spatial scale.
Van Weverberg, Kwinten; Morcrette, Cyril J.; Ma, Hsi -Yen; ...
2015-06-17
Many global circulation models (GCMs) exhibit a persistent bias in the 2 m temperature over the midlatitude continents, present in short-range forecasts as well as long-term climate simulations. A number of hypotheses have been proposed, revolving around deficiencies in the soil–vegetation–atmosphere energy exchange, poorly resolved low-level boundary-layer clouds or misrepresentations of deep-convective storms. A common approach to evaluating model biases focuses on the model-mean state. However, this makes difficult an unambiguous interpretation of the origins of a bias, given that biases are the result of the superposition of impacts of clouds and land-surface deficiencies over multiple time steps. This articlemore » presents a new methodology to objectively detect the role of clouds in the creation of a surface warm bias. A unique feature of this study is its focus on temperature-error growth at the time-step level. It is shown that compositing the temperature-error growth by the coinciding bias in total downwelling radiation provides unambiguous evidence for the role that clouds play in the creation of the surface warm bias during certain portions of the day. Furthermore, the application of an objective cloud-regime classification allows for the detection of the specific cloud regimes that matter most for the creation of the bias. We applied this method to two state-of-the-art GCMs that exhibit a distinct warm bias over the Southern Great Plains of the USA. Our analysis highlights that, in one GCM, biases in deep-convective and low-level clouds contribute most to the temperature-error growth in the afternoon and evening respectively. In the second GCM, deep clouds persist too long in the evening, leading to a growth of the temperature bias. In conclusion, the reduction of the temperature bias in both models in the morning and the growth of the bias in the second GCM in the afternoon could not be assigned to a cloud issue, but are more likely caused by a land-surface deficiency.« less
Deffner, Veronika; Küchenhoff, Helmut; Breitner, Susanne; Schneider, Alexandra; Cyrys, Josef; Peters, Annette
2018-05-01
The ultrafine particle measurements in the Augsburger Umweltstudie, a panel study conducted in Augsburg, Germany, exhibit measurement error from various sources. Measurements of mobile devices show classical possibly individual-specific measurement error; Berkson-type error, which may also vary individually, occurs, if measurements of fixed monitoring stations are used. The combination of fixed site and individual exposure measurements results in a mixture of the two error types. We extended existing bias analysis approaches to linear mixed models with a complex error structure including individual-specific error components, autocorrelated errors, and a mixture of classical and Berkson error. Theoretical considerations and simulation results show, that autocorrelation may severely change the attenuation of the effect estimations. Furthermore, unbalanced designs and the inclusion of confounding variables influence the degree of attenuation. Bias correction with the method of moments using data with mixture measurement error partially yielded better results compared to the usage of incomplete data with classical error. Confidence intervals (CIs) based on the delta method achieved better coverage probabilities than those based on Bootstrap samples. Moreover, we present the application of these new methods to heart rate measurements within the Augsburger Umweltstudie: the corrected effect estimates were slightly higher than their naive equivalents. The substantial measurement error of ultrafine particle measurements has little impact on the results. The developed methodology is generally applicable to longitudinal data with measurement error. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
NASA Astrophysics Data System (ADS)
Koo, A.; Clare, J. F.
2012-06-01
Analysis of CIPM international comparisons is increasingly being carried out using a model-based approach that leads naturally to a generalized least-squares (GLS) solution. While this method offers the advantages of being easier to audit and having general applicability to any form of comparison protocol, there is a lack of consensus over aspects of its implementation. Two significant results are presented that show the equivalence of three differing approaches discussed by or applied in comparisons run by Consultative Committees of the CIPM. Both results depend on a mathematical condition equivalent to the requirement that any two artefacts in the comparison are linked through a sequence of measurements of overlapping pairs of artefacts. The first result is that a GLS estimator excluding all sources of error common to all measurements of a participant is equal to the GLS estimator incorporating all sources of error, including those associated with any bias in the standards or procedures of the measuring laboratory. The second result identifies the component of uncertainty in the estimate of bias that arises from possible systematic effects in the participants' measurement standards and procedures. The expression so obtained is a generalization of an expression previously published for a one-artefact comparison with no inter-participant correlations, to one for a comparison comprising any number of repeat measurements of multiple artefacts and allowing for inter-laboratory correlations.
A comparison of OCO-2 XCO2 Observations to GOSAT and Models
NASA Astrophysics Data System (ADS)
O'Dell, C.; Eldering, A.; Crisp, D.; Gunson, M. R.; Fisher, B.; Mandrake, L.; McDuffie, J. L.; Baker, D. F.; Wennberg, P. O.
2016-12-01
With their high spatial resolution and dense sampling density, observations of atmospheric carbon dioxide (CO2) from space-based sensors such as the Orbiting Carbon Observatory-2 (OCO-2) have the potential to revolutionize our understanding of carbon sources and sinks. To achieve this goal, however, requires the observations to have sub-ppm systematic errors; the large data density of OCO-2 generally reduces the importance of random errors in the retrieval of of regional scale fluxes. In this work, the Atmospheric Carbon Observations from Space (ACOS) algorithm has been applied to both OCO-2 and GOSAT observations, which overlap for the period spanning Sept 2014 to present (2+ years). Previous activities utilizing TCCON and aircraft data have shown the ACOS/GOSAT B3.5 product to be quite accurate (1-2 ppm) over both land and ocean. In this work, we apply nearly identical versions of the ACOS retrieval algorithm to both OCO-2 and GOSAT to enable comparisons during the period of overlap, and to minimize algorithm-induced differences. GOSAT/OCO-2 comparisons are used to explore potential biases in the OCO-2 data, and to better understand the nature of the bias correction required for each product. Finally, each product is compared to an ensemble of models in order to evaluate their relative consistency, a critical activity before both can be used simultaneously in carbon flux inversions with confidence.
NASA Astrophysics Data System (ADS)
Nunes, A.; Ivanov, V. Y.
2014-12-01
Although current global reanalyses provide reasonably accurate large-scale features of the atmosphere, systematic errors are still found in the hydrological and energy budgets of such products. In the tropics, precipitation is particularly challenging to model, which is also adversely affected by the scarcity of hydrometeorological datasets in the region. With the goal of producing downscaled analyses that are appropriate for a climate assessment at regional scales, a regional spectral model has used a combination of precipitation assimilation with scale-selective bias correction. The latter is similar to the spectral nudging technique, which prevents the departure of the regional model's internal states from the large-scale forcing. The target area in this study is the Amazon region, where large errors are detected in reanalysis precipitation. To generate the downscaled analysis, the regional climate model used NCEP/DOE R2 global reanalysis as the initial and lateral boundary conditions, and assimilated NOAA's Climate Prediction Center (CPC) MORPHed precipitation (CMORPH), available at 0.25-degree resolution, every 3 hours. The regional model's precipitation was successfully brought closer to the observations, in comparison to the NCEP global reanalysis products, as a result of the impact of a precipitation assimilation scheme on cumulus-convection parameterization, and improved boundary forcing achieved through a new version of scale-selective bias correction. Water and energy budget terms were also evaluated against global reanalyses and other datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnakumar, Raga; Sinha, Anupama; Bird, Sara W.
Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed themore » quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.« less
Smylie, Janet; Firestone, Michelle
2015-01-01
Canada is known internationally for excellence in both the quality and public policy relevance of its health and social statistics. There is a double standard however with respect to the relevance and quality of statistics for Indigenous populations in Canada. Indigenous specific health and social statistics gathering is informed by unique ethical, rights-based, policy and practice imperatives regarding the need for Indigenous participation and leadership in Indigenous data processes throughout the spectrum of indicator development, data collection, management, analysis and use. We demonstrate how current Indigenous data quality challenges including misclassification errors and non-response bias systematically contribute to a significant underestimate of inequities in health determinants, health status, and health care access between Indigenous and non-Indigenous people in Canada. The major quality challenge underlying these errors and biases is the lack of Indigenous specific identifiers that are consistent and relevant in major health and social data sources. The recent removal of an Indigenous identity question from the Canadian census has resulted in further deterioration of an already suboptimal system. A revision of core health data sources to include relevant, consistent, and inclusive Indigenous self-identification is urgently required. These changes need to be carried out in partnership with Indigenous peoples and their representative and governing organizations. PMID:26793283
Comparison of methods of temperature measurement in swine.
Hanneman, S K; Jesurum-Urbaitis, J T; Bickel, D R
2004-07-01
The purpose of these experiments was to test the equivalence of pulmonary artery, urinary bladder, tympanic, rectal and femoral artery methods of temperature measurement in healthy and critically ill swine under clinical intensive care unit (ICU) conditions using a prospective, time series design. First, sensors were tested for error and sensitivity to change in temperature with a precision-controlled water bath and a laboratory-certified digital thermometer for temperatures 34-42 degrees C. There was virtually no systematic (bias) or random (precision) error (<0.2 degrees C). The bladder sensor had the slowest response time to change in temperature (105-120 s). Next, testing was done in an experimental porcine ICU in a non-profit research institution with four male, sedated, and mechanically ventilated domestic farm pigs. The in vivo experiments were conducted over periods of 41-168 h with temperatures measured every 1-5 s. The bladder, tympanic and rectal methods had unacceptable bias (>or=0.5 degrees C) and/or precision (>or=0.2 degrees C). Response time varied from 7 s with the femoral artery method to 280 s (4.7 min) with the tympanic method. We concluded that equivalence of the methods was insufficient for them to be used interchangeably in the porcine ICU. Intravascular monitoring of core body temperature produces optimal measurement of porcine temperature under varying conditions of physiological stability.
Krishnakumar, Raga; Sinha, Anupama; Bird, Sara W.; ...
2018-02-16
Emerging sequencing technologies are allowing us to characterize environmental, clinical and laboratory samples with increasing speed and detail, including real-time analysis and interpretation of data. One example of this is being able to rapidly and accurately detect a wide range of pathogenic organisms, both in the clinic and the field. Genomes can have radically different GC content however, such that accurate sequence analysis can be challenging depending upon the technology used. Here, we have characterized the performance of the Oxford MinION nanopore sequencer for detection and evaluation of organisms with a range of genomic nucleotide bias. We have diagnosed themore » quality of base-calling across individual reads and discovered that the position within the read affects base-calling and quality scores. Finally, we have evaluated the performance of the current state-of-the-art neural network-based MinION basecaller, characterizing its behavior with respect to systemic errors as well as context- and sequence-specific errors. Overall, we present a detailed characterization the capabilities of the MinION in terms of generating high-accuracy sequence data from genomes with a wide range of nucleotide content. This study provides a framework for designing the appropriate experiments that are the likely to lead to accurate and rapid field-forward diagnostics.« less
Mossavar-Rahmani, Yasmin; Shaw, Pamela A.; Wong, William W.; Sotres-Alvarez, Daniela; Gellman, Marc D.; Van Horn, Linda; Stoutenberg, Mark; Daviglus, Martha L.; Wylie-Rosett, Judith; Siega-Riz, Anna Maria; Ou, Fang-Shu; Prentice, Ross L.
2015-01-01
We investigated measurement error in the self-reported diets of US Hispanics/Latinos, who are prone to obesity and related comorbidities, by background (Central American, Cuban, Dominican, Mexican, Puerto Rican, and South American) in 2010–2012. In 477 participants aged 18–74 years, doubly labeled water and urinary nitrogen were used as objective recovery biomarkers of energy and protein intakes. Self-report was captured from two 24-hour dietary recalls. All measures were repeated in a subsample of 98 individuals. We examined the bias of dietary recalls and their associations with participant characteristics using generalized estimating equations. Energy intake was underestimated by 25.3% (men, 21.8%; women, 27.3%), and protein intake was underestimated by 18.5% (men, 14.7%; women, 20.7%). Protein density was overestimated by 10.7% (men, 11.3%; women, 10.1%). Higher body mass index and Hispanic/Latino background were associated with underestimation of energy (P < 0.05). For protein intake, higher body mass index, older age, nonsmoking, Spanish speaking, and Hispanic/Latino background were associated with underestimation (P < 0.05). Systematic underreporting of energy and protein intakes and overreporting of protein density were found to vary significantly by Hispanic/Latino background. We developed calibration equations that correct for subject-specific error in reporting that can be used to reduce bias in diet-disease association studies. PMID:25995289
Intra-rater reliability of hallux flexor strength measures using the Nintendo Wii Balance Board.
Quek, June; Treleaven, Julia; Brauer, Sandra G; O'Leary, Shaun; Clark, Ross A
2015-01-01
The purpose of this study was to investigate the intra-rater reliability of a new method in combination with the Nintendo Wii Balance Board (NWBB) to measure the strength of hallux flexor muscle. Thirty healthy individuals (age: 34.9 ± 12.9 years, height: 170.4 ± 10.5 cm, weight: 69.3 ± 15.3 kg, female = 15) participated. Repeated testing was completed within 7 days. Participants performed strength testing in sitting using a wooden platform in combination with the NWBB. This new method was set up to selectively recruit an intrinsic muscle of the foot, specifically the flexor hallucis brevis muscle. Statistical analysis was performed using intra-class coefficients and ordinary least product analysis. To estimate measurement error, standard error of measurement (SEM), minimal detectable change (MDC) and percentage error were calculated. Results indicate excellent intra-rater reliability (ICC = 0.982, CI = 0.96-0.99) with an absence of systematic bias. SEM, MDC and percentage error value were 0.5, 1.4 and 12 % respectively. This study demonstrates that a new method in combination with the NWBB application is reliable to measure hallux flexor strength and has potential to be used for future research and clinical application.
The effect of surface anisotropy and viewing geometry on the estimation of NDVI from AVHRR
Meyer, David; Verstraete, M.; Pinty, B.
1995-01-01
Since terrestrial surfaces are anisotropic, all spectral reflectance measurements obtained with a small instantaneous field of view instrument are specific to these angular conditions, and the value of the corresponding NDVI, computed from these bidirectional reflectances, is relative to the particular geometry of illumination and viewing at the time of the measurement. This paper documents the importance of these geometric effects through simulations of the AVHRR data acquisition process, and investigates the systematic biases that result from the combination of ecosystem-specific anisotropies with instrument-specific sampling capabilities. Typical errors in the value of NDVI are estimated, and strategies to reduce these effects are explored. -from Authors
Estimation of attitude sensor timetag biases
NASA Technical Reports Server (NTRS)
Sedlak, J.
1995-01-01
This paper presents an extended Kalman filter for estimating attitude sensor timing errors. Spacecraft attitude is determined by finding the mean rotation from a set of reference vectors in inertial space to the corresponding observed vectors in the body frame. Any timing errors in the observations can lead to attitude errors if either the spacecraft is rotating or the reference vectors themselves vary with time. The state vector here consists of the attitude quaternion, timetag biases, and, optionally, gyro drift rate biases. The filter models the timetags as random walk processes: their expectation values propagate as constants and white noise contributes to their covariance. Thus, this filter is applicable to cases where the true timing errors are constant or slowly varying. The observability of the state vector is studied first through an examination of the algebraic observability condition and then through several examples with simulated star tracker timing errors. The examples use both simulated and actual flight data from the Extreme Ultraviolet Explorer (EUVE). The flight data come from times when EUVE had a constant rotation rate, while the simulated data feature large angle attitude maneuvers. The tests include cases with timetag errors on one or two sensors, both constant and time-varying, and with and without gyro bias errors. Due to EUVE's sensor geometry, the observability of the state vector is severely limited when the spacecraft rotation rate is constant. In the absence of attitude maneuvers, the state elements are highly correlated, and the state estimate is unreliable. The estimates are particularly sensitive to filter mistuning in this case. The EUVE geometry, though, is a degenerate case having coplanar sensors and rotation vector. Observability is much improved and the filter performs well when the rate is either varying or noncoplanar with the sensors, as during a slew. Even with bad geometry and constant rates, if gyro biases are independently known, the timetag error for a single sensor can be accurately estimated as long as its boresight is not too close to the spacecraft rotation axis.
NASA Astrophysics Data System (ADS)
Ge, Junqiang; Yan, Renbin; Cappellari, Michele; Mao, Shude; Li, Hongyu; Lu, Youjun
2018-05-01
Using mock spectra based on Vazdekis/MILES library fitted within the wavelength region 3600-7350Å, we analyze the bias and scatter on the resulting physical parameters induced by the choice of fitting algorithms and observational uncertainties, but avoid effects of those model uncertainties. We consider two full-spectrum fitting codes: pPXF and STARLIGHT, in fitting for stellar population age, metallicity, mass-to-light ratio, and dust extinction. With pPXF we find that both the bias μ in the population parameters and the scatter σ in the recovered logarithmic values follows the expected trend μ ∝ σ ∝ 1/(S/N). The bias increases for younger ages and systematically makes recovered ages older, M*/Lr larger and metallicities lower than the true values. For reference, at S/N=30, and for the worst case (t = 108yr), the bias is 0.06 dex in M/Lr, 0.03 dex in both age and [M/H]. There is no significant dependence on either E(B-V) or the shape of the error spectrum. Moreover, the results are consistent for both our 1-SSP and 2-SSP tests. With the STARLIGHT algorithm, we find trends similar to pPXF, when the input E(B-V)<0.2 mag. However, with larger input E(B-V), the biases of the output parameter do not converge to zero even at the highest S/N and are strongly affected by the shape of the error spectra. This effect is particularly dramatic for youngest age (t = 108yr), for which all population parameters can be strongly different from the input values, with significantly underestimated dust extinction and [M/H], and larger ages and M*/Lr. Results degrade when moving from our 1-SSP to the 2-SSP tests. The STARLIGHT convergence to the true values can be improved by increasing Markov Chains and annealing loops to the "slow mode". For the same input spectrum, pPXF is about two order of magnitudes faster than STARLIGHT's "default mode" and about three order of magnitude faster than STARLIGHT's "slow mode".
Clinical decision-making: heuristics and cognitive biases for the ophthalmologist.
Hussain, Ahsen; Oestreicher, James
Diagnostic errors have a significant impact on health care outcomes and patient care. The underlying causes and development of diagnostic error are complex with flaws in health care systems, as well as human error, playing a role. Cognitive biases and a failure of decision-making shortcuts (heuristics) are human factors that can compromise the diagnostic process. We describe these mechanisms, their role with the clinician, and provide clinical scenarios to highlight the various points at which biases may emerge. We discuss strategies to modify the development and influence of these processes and the vulnerability of heuristics to provide insight and improve clinical outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Working memory and the memory distortion component of hindsight bias.
Calvillo, Dustin P
2012-01-01
One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.