Radial gas motions in The H I Nearby Galaxy Survey (THINGS)
NASA Astrophysics Data System (ADS)
Schmidt, Tobias M.; Bigiel, Frank; Klessen, Ralf S.; de Blok, W. J. G.
2016-04-01
The study of 21 cm line observations of atomic hydrogen allows detailed insight into the kinematics of spiral galaxies. We use sensitive high-resolution Very Large Array data from The H I Nearby Galaxy Survey (THINGS) to search for radial gas flows primarily in the outer parts (up to 3 × r25) of 10 nearby spiral galaxies. Inflows are expected to replenish the gas reservoir and fuel star formation under the assumption that galaxies evolve approximately in steady state. We carry out a detailed investigation of existing tilted ring fitting schemes and discover systematics that can hamper their ability to detect signatures of radial flows. We develop a new Fourier decomposition scheme that fits for rotational and radial velocities and simultaneously determines position angle and inclination as a function of radius. Using synthetic velocity fields we show that our novel fitting scheme is less prone to such systematic errors and that it is well suited to detect radial inflows in discs. We apply our fitting scheme to 10 THINGS galaxies and find clear indications of, at least partly previously unidentified, radial gas flows, in particular for NGC 2403 and NGC 3198 and to a lesser degree for NGC 7331, NGC 2903 and NGC 6946. The mass flow rates are of the same order but usually larger than the star formation rates. At least for these galaxies a scenario in which continuous mass accretion feeds star formation seems plausible. The other galaxies show a more complicated picture with either no clear inflow, outward motions or complex kinematic signatures.
Running coupling constant from lattice studies of gluon and ghost propagators
NASA Astrophysics Data System (ADS)
Cucchieri, A.; Mendes, T.
2004-12-01
We present a numerical study of the running coupling constant in four-dimensional pure-SU(2) lattice gauge theory. The running coupling is evaluated by fitting data for the gluon and ghost propagators in minimal Landau gauge. Following Refs. [1, 2], the fitting formulae are obtained by a simultaneous integration of the β function and of a function coinciding with the anomalous dimension of the propagator in the momentum subtraction scheme. We consider these formulae at three and four loops. The fitting method works well, especially for the ghost case, for which statistical error and hyper-cubic effects are very small. Our present result for ΛMS is 200-40+60 MeV, where the error is purely systematic. We are currently extending this analysis to five loops in order to reduce this systematic error.
Dissipative particle dynamics: Systematic parametrization using water-octanol partition coefficients
NASA Astrophysics Data System (ADS)
Anderson, Richard L.; Bray, David J.; Ferrante, Andrea S.; Noro, Massimo G.; Stott, Ian P.; Warren, Patrick B.
2017-09-01
We present a systematic, top-down, thermodynamic parametrization scheme for dissipative particle dynamics (DPD) using water-octanol partition coefficients, supplemented by water-octanol phase equilibria and pure liquid phase density data. We demonstrate the feasibility of computing the required partition coefficients in DPD using brute-force simulation, within an adaptive semi-automatic staged optimization scheme. We test the methodology by fitting to experimental partition coefficient data for twenty one small molecules in five classes comprising alcohols and poly-alcohols, amines, ethers and simple aromatics, and alkanes (i.e., hexane). Finally, we illustrate the transferability of a subset of the determined parameters by calculating the critical micelle concentrations and mean aggregation numbers of selected alkyl ethoxylate surfactants, in good agreement with reported experimental values.
Two-nucleon S10 amplitude zero in chiral effective field theory
NASA Astrophysics Data System (ADS)
Sánchez, M. Sánchez; Yang, C.-J.; Long, Bingwei; van Kolck, U.
2018-02-01
We present a new rearrangement of short-range interactions in the S10 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg's scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-production threshold. An approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.
The genetic code as a periodic table: algebraic aspects.
Bashford, J D; Jarvis, P D
2000-01-01
The systematics of indices of physico-chemical properties of codons and amino acids across the genetic code are examined. Using a simple numerical labelling scheme for nucleic acid bases, A=(-1,0), C=(0,-1), G=(0,1), U=(1,0), data can be fitted as low order polynomials of the six coordinates in the 64-dimensional codon weight space. The work confirms and extends the recent studies by Siemion et al. (1995. BioSystems 36, 231-238) of the conformational parameters. Fundamental patterns in the data such as codon periodicities, and related harmonics and reflection symmetries, are here associated with the structure of the set of basis monomials chosen for fitting. Results are plotted using the Siemion one-step mutation ring scheme, and variants thereof. The connections between the present work, and recent studies of the genetic code structure using dynamical symmetry algebras, are pointed out.
Two-nucleon S 0 1 amplitude zero in chiral effective field theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, M. Sanchez; Yang, C. -J.; Long, Bingwei
We present a new rearrangement of short-range interactions in the 1S 0 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg’s scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to themore » pion-production threshold. As a result, an approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.« less
Two-nucleon S 0 1 amplitude zero in chiral effective field theory
Sanchez, M. Sanchez; Yang, C. -J.; Long, Bingwei; ...
2018-02-05
We present a new rearrangement of short-range interactions in the 1S 0 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg’s scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to themore » pion-production threshold. As a result, an approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.« less
NASA Astrophysics Data System (ADS)
Usvyat, Denis; Maschio, Lorenzo; Manby, Frederick R.; Casassa, Silvia; Schütz, Martin; Pisani, Cesare
2007-08-01
A density fitting scheme for calculating electron repulsion integrals used in local second order Møller-Plesset perturbation theory for periodic systems (DFP) is presented. Reciprocal space techniques are systematically adopted, for which the use of Poisson fitting functions turned out to be instrumental. The role of the various parameters (truncation thresholds, density of the k net, Coulomb versus overlap metric, etc.) on computational times and accuracy is explored, using as test cases primitive-cell- and conventional-cell-diamond, proton-ordered ice, crystalline carbon dioxide, and a three-layer slab of magnesium oxide. Timings and results obtained when the electron repulsion integrals are calculated without invoking the DFP approximation, are taken as the reference. It is shown that our DFP scheme is both accurate and very efficient once properly calibrated. The lattice constant and cohesion energy of the CO2 crystal are computed to illustrate the capabilities of providing a physically correct description also for weakly bound crystals, in strong contrast to present density functional approaches.
Metz, Thomas; Walewski, Joachim; Kaminski, Clemens F
2003-03-20
Evaluation schemes, e.g., least-squares fitting, are not generally applicable to any types of experiments. If the evaluation schemes were not derived from a measurement model that properly described the experiment to be evaluated, poorer precision or accuracy than attainable from the measured data could result. We outline ways in which statistical data evaluation schemes should be derived for all types of experiment, and we demonstrate them for laser-spectroscopic experiments, in which pulse-to-pulse fluctuations of the laser power cause correlated variations of laser intensity and generated signal intensity. The method of maximum likelihood is demonstrated in the derivation of an appropriate fitting scheme for this type of experiment. Statistical data evaluation contains the following steps. First, one has to provide a measurement model that considers statistical variation of all enclosed variables. Second, an evaluation scheme applicable to this particular model has to be derived or provided. Third, the scheme has to be characterized in terms of accuracy and precision. A criterion for accepting an evaluation scheme is that it have accuracy and precision as close as possible to the theoretical limit. The fitting scheme derived for experiments with pulsed lasers is compared to well-established schemes in terms of fitting power and rational functions. The precision is found to be as much as three timesbetter than for simple least-squares fitting. Our scheme also suppresses the bias on the estimated model parameters that other methods may exhibit if they are applied in an uncritical fashion. We focus on experiments in nonlinear spectroscopy, but the fitting scheme derived is applicable in many scientific disciplines.
Taylor, A H; Fox, K R; Hillsdon, M; Anokye, N; Campbell, J L; Foster, C; Green, C; Moxham, T; Mutrie, N; Searle, J; Trueman, P; Taylor, R S
2011-01-01
Objective To assess the impact of exercise referral schemes on physical activity and health outcomes. Design Systematic review and meta-analysis. Data sources Medline, Embase, PsycINFO, Cochrane Library, ISI Web of Science, SPORTDiscus, and ongoing trial registries up to October 2009. We also checked study references. Study selection Design: randomised controlled trials or non-randomised controlled (cluster or individual) studies published in peer review journals. Population: sedentary individuals with or without medical diagnosis. Exercise referral schemes defined as: clear referrals by primary care professionals to third party service providers to increase physical activity or exercise, physical activity or exercise programmes tailored to individuals, and initial assessment and monitoring throughout programmes. Comparators: usual care, no intervention, or alternative exercise referral schemes. Results Eight randomised controlled trials met the inclusion criteria, comparing exercise referral schemes with usual care (six trials), alternative physical activity intervention (two), and an exercise referral scheme plus a self determination theory intervention (one). Compared with usual care, follow-up data for exercise referral schemes showed an increased number of participants who achieved 90-150 minutes of physical activity of at least moderate intensity per week (pooled relative risk 1.16, 95% confidence intervals 1.03 to 1.30) and a reduced level of depression (pooled standardised mean difference −0.82, −1.28 to −0.35). Evidence of a between group difference in physical activity of moderate or vigorous intensity or in other health outcomes was inconsistent at follow-up. We did not find any difference in outcomes between exercise referral schemes and the other two comparator groups. None of the included trials separately reported outcomes in individuals with specific medical diagnoses.Substantial heterogeneity in the quality and nature of the exercise referral schemes across studies might have contributed to the inconsistency in outcome findings. Conclusions Considerable uncertainty remains as to the effectiveness of exercise referral schemes for increasing physical activity, fitness, or health indicators, or whether they are an efficient use of resources for sedentary people with or without a medical diagnosis. PMID:22058134
Comparison of two integration methods for dynamic causal modeling of electrophysiological data.
Lemaréchal, Jean-Didier; George, Nathalie; David, Olivier
2018-06-01
Dynamic causal modeling (DCM) is a methodological approach to study effective connectivity among brain regions. Based on a set of observations and a biophysical model of brain interactions, DCM uses a Bayesian framework to estimate the posterior distribution of the free parameters of the model (e.g. modulation of connectivity) and infer architectural properties of the most plausible model (i.e. model selection). When modeling electrophysiological event-related responses, the estimation of the model relies on the integration of the system of delay differential equations (DDEs) that describe the dynamics of the system. In this technical note, we compared two numerical schemes for the integration of DDEs. The first, and standard, scheme approximates the DDEs (more precisely, the state of the system, with respect to conduction delays among brain regions) using ordinary differential equations (ODEs) and solves it with a fixed step size. The second scheme uses a dedicated DDEs solver with adaptive step sizes to control error, making it theoretically more accurate. To highlight the effects of the approximation used by the first integration scheme in regard to parameter estimation and Bayesian model selection, we performed simulations of local field potentials using first, a simple model comprising 2 regions and second, a more complex model comprising 6 regions. In these simulations, the second integration scheme served as the standard to which the first one was compared. Then, the performances of the two integration schemes were directly compared by fitting a public mismatch negativity EEG dataset with different models. The simulations revealed that the use of the standard DCM integration scheme was acceptable for Bayesian model selection but underestimated the connectivity parameters and did not allow an accurate estimation of conduction delays. Fitting to empirical data showed that the models systematically obtained an increased accuracy when using the second integration scheme. We conclude that inference on connectivity strength and delay based on DCM for EEG/MEG requires an accurate integration scheme. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Polarizable atomistic calculation of site energy disorder in amorphous Alq3.
Nagata, Yuki
2010-02-01
A polarizable molecular dynamics simulation and calculation scheme for site energy disorder is presented in amorphous tris(8-hydroxyquinolinato)aluminum (Alq(3)) by means of the charge response kernel (CRK) method. The CRK fit to the electrostatic potential and the tight-binding approximation are introduced, which enables modeling of the polarizable electrostatic interaction for a large molecule systematically from an ab initio calculation. The site energy disorder for electron and hole transfers is calculated in amorphous Alq(3) and the effect of the polarization on the site energy disorder is discussed.
How Good Are Statistical Models at Approximating Complex Fitness Landscapes?
du Plessis, Louis; Leventhal, Gabriel E.; Bonhoeffer, Sebastian
2016-01-01
Fitness landscapes determine the course of adaptation by constraining and shaping evolutionary trajectories. Knowledge of the structure of a fitness landscape can thus predict evolutionary outcomes. Empirical fitness landscapes, however, have so far only offered limited insight into real-world questions, as the high dimensionality of sequence spaces makes it impossible to exhaustively measure the fitness of all variants of biologically meaningful sequences. We must therefore revert to statistical descriptions of fitness landscapes that are based on a sparse sample of fitness measurements. It remains unclear, however, how much data are required for such statistical descriptions to be useful. Here, we assess the ability of regression models accounting for single and pairwise mutations to correctly approximate a complex quasi-empirical fitness landscape. We compare approximations based on various sampling regimes of an RNA landscape and find that the sampling regime strongly influences the quality of the regression. On the one hand it is generally impossible to generate sufficient samples to achieve a good approximation of the complete fitness landscape, and on the other hand systematic sampling schemes can only provide a good description of the immediate neighborhood of a sequence of interest. Nevertheless, we obtain a remarkably good and unbiased fit to the local landscape when using sequences from a population that has evolved under strong selection. Thus, current statistical methods can provide a good approximation to the landscape of naturally evolving populations. PMID:27189564
xMDFF: molecular dynamics flexible fitting of low-resolution X-ray structures.
McGreevy, Ryan; Singharoy, Abhishek; Li, Qufei; Zhang, Jingfen; Xu, Dong; Perozo, Eduardo; Schulten, Klaus
2014-09-01
X-ray crystallography remains the most dominant method for solving atomic structures. However, for relatively large systems, the availability of only medium-to-low-resolution diffraction data often limits the determination of all-atom details. A new molecular dynamics flexible fitting (MDFF)-based approach, xMDFF, for determining structures from such low-resolution crystallographic data is reported. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron-density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density, as tested with synthetic low-resolution maps of D-ribose-binding protein. xMDFF has been successfully applied to re-refine six low-resolution protein structures of varying sizes that had already been submitted to the Protein Data Bank. Finally, via systematic refinement of a series of data from 3.6 to 7 Å resolution, xMDFF refinements together with electrophysiology experiments were used to validate the first all-atom structure of the voltage-sensing protein Ci-VSP.
Fast auto-focus scheme based on optical defocus fitting model
NASA Astrophysics Data System (ADS)
Wang, Yeru; Feng, Huajun; Xu, Zhihai; Li, Qi; Chen, Yueting; Cen, Min
2018-04-01
An optical defocus fitting model-based (ODFM) auto-focus scheme is proposed. Considering the basic optical defocus principle, the optical defocus fitting model is derived to approximate the potential-focus position. By this accurate modelling, the proposed auto-focus scheme can make the stepping motor approach the focal plane more accurately and rapidly. Two fitting positions are first determined for an arbitrary initial stepping motor position. Three images (initial image and two fitting images) at these positions are then collected to estimate the potential-focus position based on the proposed ODFM method. Around the estimated potential-focus position, two reference images are recorded. The auto-focus procedure is then completed by processing these two reference images and the potential-focus image to confirm the in-focus position using a contrast based method. Experimental results prove that the proposed scheme can complete auto-focus within only 5 to 7 steps with good performance even under low-light condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Luning; Neuscamman, Eric
We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently-introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involvingmore » both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we demonstrate on a hydrogen ring a prototype approach for making systematically convergent, non-perturbative predictions of Mott-insulators’ optical band gaps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julkarnain, M., E-mail: s13ds053@mail.saitama-u.ac.jp, E-mail: jnain.apee@ru.ac.bd; Department of Applied Physics and Electronic Engineering, University of Rajshahi, Rajshahi 6205; Fukuda, T.
2015-11-23
The behavior of below-gap luminescence of undoped GaN grown by MOCVD has been studied by the scheme of two-wavelength-excited photoluminescence. The emission intensity of shallow donor to valence band transition (I{sub OX}) increased while intensities of donor-acceptor pair transition and the Yellow Luminescence band (YLB) decreased after the irradiation of a below-gap excitation source of 1.17 eV. The conventional energy schemes and recombination models have been considered to explain our experimental result but only one model in which YLB is the transition of a shallow donor to a deep state placed at ∼1 eV above the valence band maximum satisfies our result.more » The defect related parameters that give a qualitative insight in the samples have been evaluated by systematically solving the rate equations and fitting the result with the experiment.« less
Smith, Raymond; Greenwood, Nan
2014-02-01
This systematic review aims to examine the differences and similarities between the various types of volunteer mentoring (befriending, mentoring and peer support) and to identify the benefits for carers and volunteers. Literature searching was performed using 8 electronic databases, gray literature, and reference list searching of relevant systematic reviews. Searches were carried out in January 2013. Four studies fitted the inclusion criteria, with 3 investigating peer support and 1 befriending for carers. Quantitative findings highlighted a weak but statistically significant (P =.04) reduction in depression after 6 months of befriending. Qualitative findings highlighted the value carers placed on the volunteer mentors' experiential similarity. Matching was not essential for the development of successful volunteer mentoring relationships. In conclusion, the lack of need for matching and the importance of experiential similarity deserve further investigation. However, this review highlights a lack of demonstrated efficacy of volunteer mentoring for carers of people with dementia.
Efficient scheme for parametric fitting of data in arbitrary dimensions.
Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching
2008-07-01
We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.
van der Meulen, Miriam P; Lansdorp-Vogelaar, Iris; van Heijningen, Else-Mariëtte B; Kuipers, Ernst J; van Ballegooijen, Marjolein
2016-06-01
If some adenomas do not bleed over several years, they will cause systematic false-negative fecal immunochemical test (FIT) results. The long-term effectiveness of FIT screening has been estimated without accounting for such systematic false-negativity. There are now data with which to evaluate this issue. The authors developed one microsimulation model (MISCAN [MIcrosimulation SCreening ANalysis]-Colon) without systematic false-negative FIT results and one model that allowed a percentage of adenomas to be systematically missed in successive FIT screening rounds. Both variants were adjusted to reproduce the first-round findings of the Dutch CORERO FIT screening trial. The authors then compared simulated detection rates in the second screening round with those observed, and adjusted the simulated percentage of systematically missed adenomas to those data. Finally, the authors calculated the impact of systematic false-negative FIT results on the effectiveness of repeated FIT screening. The model without systematic false-negativity simulated higher detection rates in the second screening round than observed. These observed rates could be reproduced when assuming that FIT systematically missed 26% of advanced and 73% of nonadvanced adenomas. To reduce the false-positive rate in the second round to the observed level, the authors also had to assume that 30% of false-positive findings were systematically false-positive. Systematic false-negative FIT testing limits the long-term reduction of biennial FIT screening in the incidence of colorectal cancer (35.6% vs 40.9%) and its mortality (55.2% vs 59.0%) in participants. The results of the current study provide convincing evidence based on the combination of real-life and modeling data that a percentage of adenomas are systematically missed by repeat FIT screening. This impairs the efficacy of FIT screening. Cancer 2016;122:1680-8. © 2016 American Cancer Society. © 2016 American Cancer Society.
NASA Astrophysics Data System (ADS)
Antoshechkina, P. M.; Wolf, A. S.; Hamecher, E. A.; Asimow, P. D.; Ghiorso, M. S.
2013-12-01
Community databases such as EarthChem, LEPR, and AMCSD both increase demand for quantitative petrological tools, including thermodynamic models like the MELTS family of algorithms, and are invaluable in development of such tools. The need to extend existing solid solution models to include minor components such as Cr and Na has been evident for years but as the number of components increases it becomes impossible to completely separate derivation of end-member thermodynamic data from calibration of solution properties. In Hamecher et al. (2012; 2013) we developed a calibration scheme that directly interfaces with a MySQL database based on LEPR, with volume data from AMCSD and elsewhere. Here we combine that scheme with a Bayesian approach, where independent constraints on parameter values (e.g. existence of miscibility gaps) are combined with uncertainty propagation to give a more reliable best-fit along with associated model uncertainties. We illustrate the scheme with a new model of molar volume for (Ca,Fe,Mg,Mn,Na)3(Al,Cr,Fe3+,Fe2+,Mg,Mn,Si,Ti)2Si3O12 cubic garnets. For a garnet in this chemical system, the model molar volume is obtained by adding excess volume terms to a linear combination of nine independent end-member volumes. The model calibration is broken into three main stages: (1) estimation of individual end-member thermodynamic properties; (2) calibration of standard state volumes for all available independent and dependent end members; (3) fitting of binary and mixed composition data. For each calibration step, the goodness-of-fit includes weighted residuals as well as χ2-like penalty terms representing the (not necessarily Gaussian) prior constraints on parameter values. Using the Bayesian approach, uncertainties are correctly propagated forward to subsequent steps, allowing determination of final parameter values and correlated uncertainties that account for the entire calibration process. For the aluminosilicate garnets, optimal values of the bulk modulus and its pressure derivative are obtained by fitting published compression data using the Vinet equation of state, with the Mie-Grüneisen-Debye thermal pressure formalism to model thermal expansion. End-member thermal parameters are obtained by fitting volume data while ensuring that the heat capacity is consistent with the thermodynamic database of Berman and co-workers. For other end members, data for related compositions are used where such data exist; otherwise ultrasonic data or density functional theory results are taken or, for thermal parameters, systematics in cation radii are used. In stages (2) and (3) the remaining data at ambient conditions are fit. Using this step-wise calibration scheme, most parameters are modified little by subsequent calibration steps but some, such as the standard state volume of the Ti-bearing end member, can vary within calculated uncertainties. The final model satisfies desired criteria and fits almost all the data (more than 1000 points); only excess parameters that are justified by the data are activated. The scheme can be easily extended to calibration of end-member and solution properties from experimental phase equilibria. As a first step we obtain the internally consistent standard state entropy and enthalpy of formation for knorringite and discuss differences between our results and those of Klemme and co-workers.
Variational and robust density fitting of four-center two-electron integrals in local metrics
NASA Astrophysics Data System (ADS)
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł
2008-09-01
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Variational and robust density fitting of four-center two-electron integrals in local metrics.
Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjaergaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Host, Stinne; Salek, Paweł
2008-09-14
Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.
Theoretical Systematics of Future Baryon Acoustic Oscillation Surveys
NASA Astrophysics Data System (ADS)
Ding, Zhejie; Seo, Hee-Jong; Vlah, Zvonimir; Feng, Yu; Schmittfull, Marcel; Beutler, Florian
2018-05-01
Future Baryon Acoustic Oscillation surveys aim at observing galaxy clustering over a wide range of redshift and galaxy populations at great precision, reaching tenths of a percent, in order to detect any deviation of dark energy from the ΛCDM model. We utilize a set of paired quasi-N-body FastPM simulations that were designed to mitigate the sample variance effect on the BAO feature and evaluated the BAO systematics as precisely as ˜0.01%. We report anisotropic BAO scale shifts before and after density field reconstruction in the presence of redshift-space distortions over a wide range of redshift, galaxy/halo biases, and shot noise levels. We test different reconstruction schemes and different smoothing filter scales, and introduce physically-motivated BAO fitting models. For the first time, we derive a Galilean-invariant infrared resummed model for halos in real and redshift space. We test these models from the perspective of robust BAO measurements and non-BAO information such as growth rate and nonlinear bias. We find that pre-reconstruction BAO scale has moderate fitting-model dependence at the level of 0.1% - 0.2% for matter while the dependence is substantially reduced to less than 0.07% for halos. We find that post-reconstruction BAO shifts are generally reduced to below 0.1% in the presence of galaxy/halo bias and show much smaller fitting model dependence. Different reconstruction conventions can potentially make a much larger difference on the line-of-sight BAO scale, upto 0.3%. Meanwhile, the precision (error) of the BAO measurements is quite consistent regardless of the choice of the fitting model or reconstruction convention.
Irvine, Michael A; Hollingsworth, T Déirdre
2018-05-26
Fitting complex models to epidemiological data is a challenging problem: methodologies can be inaccessible to all but specialists, there may be challenges in adequately describing uncertainty in model fitting, the complex models may take a long time to run, and it can be difficult to fully capture the heterogeneity in the data. We develop an adaptive approximate Bayesian computation scheme to fit a variety of epidemiologically relevant data with minimal hyper-parameter tuning by using an adaptive tolerance scheme. We implement a novel kernel density estimation scheme to capture both dispersed and multi-dimensional data, and directly compare this technique to standard Bayesian approaches. We then apply the procedure to a complex individual-based simulation of lymphatic filariasis, a human parasitic disease. The procedure and examples are released alongside this article as an open access library, with examples to aid researchers to rapidly fit models to data. This demonstrates that an adaptive ABC scheme with a general summary and distance metric is capable of performing model fitting for a variety of epidemiological data. It also does not require significant theoretical background to use and can be made accessible to the diverse epidemiological research community. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
A back-fitting algorithm to improve real-time flood forecasting
NASA Astrophysics Data System (ADS)
Zhang, Xiaojing; Liu, Pan; Cheng, Lei; Liu, Zhangjun; Zhao, Yan
2018-07-01
Real-time flood forecasting is important for decision-making with regards to flood control and disaster reduction. The conventional approach involves a postprocessor calibration strategy that first calibrates the hydrological model and then estimates errors. This procedure can simulate streamflow consistent with observations, but obtained parameters are not optimal. Joint calibration strategies address this issue by refining hydrological model parameters jointly with the autoregressive (AR) model. In this study, five alternative schemes are used to forecast floods. Scheme I uses only the hydrological model, while scheme II includes an AR model for error correction. In scheme III, differencing is used to remove non-stationarity in the error series. A joint inference strategy employed in scheme IV calibrates the hydrological and AR models simultaneously. The back-fitting algorithm, a basic approach for training an additive model, is adopted in scheme V to alternately recalibrate hydrological and AR model parameters. The performance of the five schemes is compared with a case study of 15 recorded flood events from China's Baiyunshan reservoir basin. Our results show that (1) schemes IV and V outperform scheme III during the calibration and validation periods and (2) scheme V is inferior to scheme IV in the calibration period, but provides better results in the validation period. Joint calibration strategies can therefore improve the accuracy of flood forecasting. Additionally, the back-fitting recalibration strategy produces weaker overcorrection and a more robust performance compared with the joint inference strategy.
Batur, Fulya; Dedeurwaerdere, Tom
2014-12-01
Focused on the impact of stringent intellectual property mechanisms over the uses of plant agricultural biodiversity in crop improvement, the article delves into a systematic analysis of the relationship between institutional paradigms and their technological contexts of application, identified as mass selection, controlled hybridisation, molecular breeding tools and transgenics. While the strong property paradigm has proven effective in the context of major leaps forward in genetic engineering, it faces a systematic breakdown when extended to mass selection, where innovation often displays a collective nature. However, it also creates partial blockages in those innovation schemes rested between on-farm observation and genetic modification, i.e. conventional plant breeding and upstream molecular biology research tools. Neither overly strong intellectual property rights, nor the absence of well delineated protection have proven an optimal fit for these two intermediary socio-technological systems of cumulative incremental innovation. To address these challenges, the authors look at appropriate institutional alternatives which can create effective incentives for in situ agrobiodiversity conservation and the equitable distribution of technologies in plant improvement, using the flexibilities of the TRIPS Agreement, the liability rules set forth in patents or plant variety rights themselves (in the form of farmers', breeders' and research exceptions), and other ad hoc reward regimes.
A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo
Zhao, Luning; Neuscamman, Eric
2017-05-17
We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently-introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involvingmore » both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we demonstrate on a hydrogen ring a prototype approach for making systematically convergent, non-perturbative predictions of Mott-insulators’ optical band gaps.« less
Modelling the Maillard reaction during the cooking of a model cheese.
Bertrand, Emmanuel; Meyer, Xuân-Mi; Machado-Maturana, Elizabeth; Berdagué, Jean-Louis; Kondjoyan, Alain
2015-10-01
During processing and storage of industrial processed cheese, odorous compounds are formed. Some of them are potentially unwanted for the flavour of the product. To reduce the appearance of these compounds, a methodological approach was employed. It consists of: (i) the identification of the key compounds or precursors responsible for the off-flavour observed, (ii) the monitoring of these markers during the heat treatments applied to the cheese medium, (iii) the establishment of an observable reaction scheme adapted from a literature survey to the compounds identified in the heated cheese medium (iv) the multi-responses stoichiokinetic modelling of these reaction markers. Systematic two-dimensional gas chromatography time-of-flight mass spectrometry was used for the semi-quantitation of trace compounds. Precursors were quantitated by high-performance liquid chromatography. The experimental data obtained were fitted to the model with 14 elementary linked reactions forming a multi-response observable reaction scheme. Copyright © 2015 Elsevier Ltd. All rights reserved.
Two-point motional Stark effect diagnostic for Madison Symmetric Torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, J.; Den Hartog, D. J.; Caspary, K. J.
2010-10-15
A high-precision spectral motional Stark effect (MSE) diagnostic provides internal magnetic field measurements for Madison Symmetric Torus (MST) plasmas. Currently, MST uses two spatial views - on the magnetic axis and on the midminor (off-axis) radius, the latter added recently. A new analysis scheme has been developed to infer both the pitch angle and the magnitude of the magnetic field from MSE spectra. Systematic errors are reduced by using atomic data from atomic data and analysis structure in the fit. Reconstructed current density and safety factor profiles are more strongly and globally constrained with the addition of the off-axis radiusmore » measurement than with the on-axis one only.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Fei; Tao, Ye; Zhao, Haifeng
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less
Zhan, Fei; Tao, Ye; Zhao, Haifeng
2017-07-01
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.
Eberhard, Wynn L
2017-04-01
The maximum likelihood estimator (MLE) is derived for retrieving the extinction coefficient and zero-range intercept in the lidar slope method in the presence of random and independent Gaussian noise. Least-squares fitting, weighted by the inverse of the noise variance, is equivalent to the MLE. Monte Carlo simulations demonstrate that two traditional least-squares fitting schemes, which use different weights, are less accurate. Alternative fitting schemes that have some positive attributes are introduced and evaluated. The principal factors governing accuracy of all these schemes are elucidated. Applying these schemes to data with Poisson rather than Gaussian noise alters accuracy little, even when the signal-to-noise ratio is low. Methods to estimate optimum weighting factors in actual data are presented. Even when the weighting estimates are coarse, retrieval accuracy declines only modestly. Mathematical tools are described for predicting retrieval accuracy. Least-squares fitting with inverse variance weighting has optimum accuracy for retrieval of parameters from single-wavelength lidar measurements when noise, errors, and uncertainties are Gaussian distributed, or close to optimum when only approximately Gaussian.
Wu, Yao; Dai, Xiaodong; Huang, Niu; Zhao, Lifeng
2013-06-05
In force field parameter development using ab initio potential energy surfaces (PES) as target data, an important but often neglected matter is the lack of a weighting scheme with optimal discrimination power to fit the target data. Here, we developed a novel partition function-based weighting scheme, which not only fits the target potential energies exponentially like the general Boltzmann weighting method, but also reduces the effect of fitting errors leading to overfitting. The van der Waals (vdW) parameters of benzene and propane were reparameterized by using the new weighting scheme to fit the high-level ab initio PESs probed by a water molecule in global configurational space. The molecular simulation results indicate that the newly derived parameters are capable of reproducing experimental properties in a broader range of temperatures, which supports the partition function-based weighting scheme. Our simulation results also suggest that structural properties are more sensitive to vdW parameters than partial atomic charge parameters in these systems although the electrostatic interactions are still important in energetic properties. As no prerequisite conditions are required, the partition function-based weighting method may be applied in developing any types of force field parameters. Copyright © 2013 Wiley Periodicals, Inc.
Long-range analysis of density fitting in extended systems
NASA Astrophysics Data System (ADS)
Varga, Scarontefan
Density fitting scheme is analyzed for the Coulomb problem in extended systems from the correctness of long-range behavior point of view. We show that for the correct cancellation of divergent long-range Coulomb terms it is crucial for the density fitting scheme to reproduce the overlap matrix exactly. It is demonstrated that from all possible fitting metric choices the Coulomb metric is the only one which inherently preserves the overlap matrix for infinite systems with translational periodicity. Moreover, we show that by a small additional effort any non-Coulomb metric fit can be made overlap-preserving as well. The problem is analyzed for both ordinary and Poisson basis set choices.
Kinetic modeling and fitting software for interconnected reaction schemes: VisKin.
Zhang, Xuan; Andrews, Jared N; Pedersen, Steen E
2007-02-15
Reaction kinetics for complex, highly interconnected kinetic schemes are modeled using analytical solutions to a system of ordinary differential equations. The algorithm employs standard linear algebra methods that are implemented using MatLab functions in a Visual Basic interface. A graphical user interface for simple entry of reaction schemes facilitates comparison of a variety of reaction schemes. To ensure microscopic balance, graph theory algorithms are used to determine violations of thermodynamic cycle constraints. Analytical solutions based on linear differential equations result in fast comparisons of first order kinetic rates and amplitudes as a function of changing ligand concentrations. For analysis of higher order kinetics, we also implemented a solution using numerical integration. To determine rate constants from experimental data, fitting algorithms that adjust rate constants to fit the model to imported data were implemented using the Levenberg-Marquardt algorithm or using Broyden-Fletcher-Goldfarb-Shanno methods. We have included the ability to carry out global fitting of data sets obtained at varying ligand concentrations. These tools are combined in a single package, which we have dubbed VisKin, to guide and analyze kinetic experiments. The software is available online for use on PCs.
Zhu, Xiaolei; Yarkony, David R
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H(d), and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility, has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H(d) individually provides a starting point (seed) from which convergence of the full H(d) construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4(1)A states of phenol and the 1,2(1)A states of NH3, states which are coupled by conical intersections.
Short-Term Effects of Different Loading Schemes in Fitness-Related Resistance Training.
Eifler, Christoph
2016-07-01
Eifler, C. Short-term effects of different loading schemes in fitness-related resistance training. J Strength Cond Res 30(7): 1880-1889, 2016-The purpose of this investigation was to analyze the short-term effects of different loading schemes in fitness-related resistance training and to identify the most effective loading method for advanced recreational athletes. The investigation was designed as a longitudinal field-test study. Two hundred healthy mature subjects with at least 12 months' experience in resistance training were randomized in 4 samples of 50 subjects each. Gender distribution was homogenous in all samples. Training effects were quantified by 10 repetition maximum (10RM) and 1 repetition maximum (1RM) testing (pre-post-test design). Over a period of 6 weeks, a standardized resistance training protocol with 3 training sessions per week was realized. Testing and training included 8 resistance training exercises in a standardized order. The following loading schemes were randomly matched to each sample: constant load (CL) with constant volume of repetitions, increasing load (IL) with decreasing volume of repetitions, decreasing load (DL) with increasing volume of repetitions, daily changing load (DCL), and volume of repetitions. For all loading schemes, significant strength gains (p < 0.001) could be noted for all resistance training exercises and both dependent variables (10RM, 1RM). In all cases, DCL obtained significantly higher strength gains (p < 0.001) than CL, IL, and DL. There were no significant differences in strength gains between CL, IL, and DL. The present data indicate that resistance training following DCL is more effective for advanced recreational athletes than CL, IL, or DL. Considering that DCL is widely unknown in fitness-related resistance training, the present data indicate, there is potential for improving resistance training in commercial fitness clubs.
A Systematic Methodology for Constructing High-Order Energy-Stable WENO Schemes
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2008-01-01
A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter (AIAA 2008-2876, 2008) was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables \\energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.
A Systematic Methodology for Constructing High-Order Energy Stable WENO Schemes
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2009-01-01
A third-order Energy Stable Weighted Essentially Non{Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter [1] was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables "energy stable" modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.
Lommen, Jonathan M; Flassbeck, Sebastian; Behl, Nicolas G R; Niesporek, Sebastian; Bachert, Peter; Ladd, Mark E; Nagel, Armin M
2018-08-01
To investigate and to reduce influences on the determination of the short and long apparent transverse relaxation times ( T2,s*, T2,l*) of 23 Na in vivo with respect to signal sampling. The accuracy of T2* determination was analyzed in simulations for five different sampling schemes. The influence of noise in the parameter fit was investigated for three different models. A dedicated sampling scheme was developed for brain parenchyma by numerically optimizing the parameter estimation. This scheme was compared in vivo to linear sampling at 7T. For the considered sampling schemes, T2,s* / T2,l* exhibit an average bias of 3% / 4% with a variation of 25% / 15% based on simulations with previously published T2* values. The accuracy could be improved with the optimized sampling scheme by strongly averaging the earliest sample. A fitting model with constant noise floor can increase accuracy while additional fitting of a noise term is only beneficial in case of sampling until late echo time > 80 ms. T2* values in white matter were determined to be T2,s* = 5.1 ± 0.8 / 4.2 ± 0.4 ms and T2,l* = 35.7 ± 2.4 / 34.4 ± 1.5 ms using linear/optimized sampling. Voxel-wise T2* determination of 23 Na is feasible in vivo. However, sampling and fitting methods have to be chosen carefully to retrieve accurate results. Magn Reson Med 80:571-584, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.
CrossFit Overview: Systematic Review and Meta-analysis.
Claudino, João Gustavo; Gabbett, Tim J; Bourgeois, Frank; Souza, Helton de Sá; Miranda, Rafael Chagas; Mezêncio, Bruno; Soncin, Rafael; Cardoso Filho, Carlos Alberto; Bottaro, Martim; Hernandez, Arnaldo Jose; Amadio, Alberto Carlos; Serrão, Julio Cerca
2018-02-26
CrossFit is recognized as one of the fastest growing high-intensity functional training modes in the world. However, scientific data regarding the practice of CrossFit is sparse. Therefore, the objective of this study is to analyze the findings of scientific literature related to CrossFit via systematic review and meta-analysis. Systematic searches of the PubMed, Web of Science, Scopus, Bireme/MedLine, and SciELO online databases were conducted for articles reporting the effects of CrossFit training. The systematic review followed the PRISMA guidelines. The Oxford Levels of Evidence was used for all included articles, and only studies that investigated the effects of CrossFit as a training program were included in the meta-analysis. For the meta-analysis, effect sizes (ESs) with 95% confidence interval (CI) were calculated and heterogeneity was assessed using a random-effects model. Thirty-one articles were included in the systematic review and four were included in the meta-analysis. However, only two studies had a high level of evidence at low risk of bias. Scientific literature related to CrossFit has reported on body composition, psycho-physiological parameters, musculoskeletal injury risk, life and health aspects, and psycho-social behavior. In the meta-analysis, significant results were not found for any variables. The current scientific literature related to CrossFit has few studies with high level of evidence at low risk of bias. However, preliminary data has suggested that CrossFit practice is associated with higher levels of sense of community, satisfaction, and motivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roux, A.; Gicquel, L.Y.M.; Staffelbach, G.
2010-01-15
Among all the undesired phenomena observed in ramjet combustors, combustion instabilities are of foremost importance and predicting them using Large Eddy Simulation (LES) is an active research field. While acoustics are naturally captured by compressible LES provided that the proper boundary conditions are applied, combustion/chemistry modelling remains a critical issue and its impact on numerical predictions must still be assessed for complex applications. To do so, two different ramjet LES's are compared here. The first simulation is based on a standard one-step chemistry known to over-estimate the laminar flame speed in fuel rich conditions. The second simulation uses the samemore » scheme but introduces a correction of reaction rates for rich flames to match a detailed mechanism provided by Peters (1993). Even though the two chemical schemes are very similar and very few points burn in rich regimes, distinct limit-cycles are obtained with LES depending on which scheme is used. Results obtained with the standard one-step chemistry exhibit high frequency self-sustained oscillations. Multiple flame fronts are stabilized in the vicinity of the shear layer developing at the exit of the air inlets. When compared to the experiment, the fitted one-step scheme yields better predictions than the standard scheme. With the fitted scheme, the flame is detached from the air inlets and stabilizes in the regions identified in the experiment (Ristori et al. (2005), Heid and Ristori (2003), Heid and Ristori (2005), Ristori et al. (1999)). LES and experiments exhibit all main low-frequency modes including the first longitudinal acoustic mode. The high frequencies excited with the standard scheme are damped with the fitted scheme. The chemical scheme is found, for this ramjet burner, to have a strong impact on the predicted stability: approximate chemical schemes even in a limited range of equivalence ratio can lead to the occurence of non-physical combustion oscillations. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2016-01-28
We have recently introduced a diabatization scheme, which simultaneously fits and diabatizes adiabatic ab initio electronic wave functions, Zhu and Yarkony J. Chem. Phys. 140, 024112 (2014). The algorithm uses derivative couplings in the defining equations for the diabatic Hamiltonian, H{sup d}, and fits all its matrix elements simultaneously to adiabatic state data. This procedure ultimately provides an accurate, quantifiably diabatic, representation of the adiabatic electronic structure data. However, optimizing the large number of nonlinear parameters in the basis functions and adjusting the number and kind of basis functions from which the fit is built, which provide the essential flexibility,more » has proved challenging. In this work, we introduce a procedure that combines adiabatic state and diabatic state data to efficiently optimize the nonlinear parameters and basis function expansion. Further, we consider using direct properties based diabatizations to initialize the fitting procedure. To address this issue, we introduce a systematic method for eliminating the debilitating (diabolical) singularities in the defining equations of properties based diabatizations. We exploit the observation that if approximate diabatic data are available, the commonly used approach of fitting each matrix element of H{sup d} individually provides a starting point (seed) from which convergence of the full H{sup d} construction algorithm is rapid. The optimization of nonlinear parameters and basis functions and the elimination of debilitating singularities are, respectively, illustrated using the 1,2,3,4{sup 1}A states of phenol and the 1,2{sup 1}A states of NH{sub 3}, states which are coupled by conical intersections.« less
Shear Recovery Accuracy in Weak-Lensing Analysis with the Elliptical Gauss-Laguerre Method
NASA Astrophysics Data System (ADS)
Nakajima, Reiko; Bernstein, Gary
2007-04-01
We implement the elliptical Gauss-Laguerre (EGL) galaxy-shape measurement method proposed by Bernstein & Jarvis and quantify the shear recovery accuracy in weak-lensing analysis. This method uses a deconvolution fitting scheme to remove the effects of the point-spread function (PSF). The test simulates >107 noisy galaxy images convolved with anisotropic PSFs and attempts to recover an input shear. The tests are designed to be immune to statistical (random) distributions of shapes, selection biases, and crowding, in order to test more rigorously the effects of detection significance (signal-to-noise ratio [S/N]), PSF, and galaxy resolution. The systematic error in shear recovery is divided into two classes, calibration (multiplicative) and additive, with the latter arising from PSF anisotropy. At S/N > 50, the deconvolution method measures the galaxy shape and input shear to ~1% multiplicative accuracy and suppresses >99% of the PSF anisotropy. These systematic errors increase to ~4% for the worst conditions, with poorly resolved galaxies at S/N simeq 20. The EGL weak-lensing analysis has the best demonstrated accuracy to date, sufficient for the next generation of weak-lensing surveys.
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit
2015-10-01
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF(2) fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF(2) fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF(2) fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF(2) fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF(2) fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF(2) fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search.
Bettadapura, Radhakrishna; Rasheed, Muhibur; Vollrath, Antje; Bajaj, Chandrajit
2015-01-01
There continue to be increasing occurrences of both atomistic structure models in the PDB (possibly reconstructed from X-ray diffraction or NMR data), and 3D reconstructed cryo-electron microscopy (3D EM) maps (albeit at coarser resolution) of the same or homologous molecule or molecular assembly, deposited in the EMDB. To obtain the best possible structural model of the molecule at the best achievable resolution, and without any missing gaps, one typically aligns (match and fits) the atomistic structure model with the 3D EM map. We discuss a new algorithm and generalized framework, named PF2 fit (Polar Fast Fourier Fitting) for the best possible structural alignment of atomistic structures with 3D EM. While PF2 fit enables only a rigid, six dimensional (6D) alignment method, it augments prior work on 6D X-ray structure and 3D EM alignment in multiple ways: Scoring. PF2 fit includes a new scoring scheme that, in addition to rewarding overlaps between the volumes occupied by the atomistic structure and 3D EM map, rewards overlaps between the volumes complementary to them. We quantitatively demonstrate how this new complementary scoring scheme improves upon existing approaches. PF2 fit also includes two scoring functions, the non-uniform exterior penalty and the skeleton-secondary structure score, and implements the scattering potential score as an alternative to traditional Gaussian blurring. Search. PF2 fit utilizes a fast polar Fourier search scheme, whose main advantage is the ability to search over uniformly and adaptively sampled subsets of the space of rigid-body motions. PF2 fit also implements a new reranking search and scoring methodology that considerably improves alignment metrics in results obtained from the initial search. PMID:26469938
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guozhu, E-mail: gzhang6@ncsu.edu
Zebrafish have become a key alternative model for studying health effects of environmental stressors, partly due to their genetic similarity to humans, fast generation time, and the efficiency of generating high-dimensional systematic data. Studies aiming to characterize adverse health effects in zebrafish typically include several phenotypic measurements (endpoints). While there is a solid biomedical basis for capturing a comprehensive set of endpoints, making summary judgments regarding health effects requires thoughtful integration across endpoints. Here, we introduce a Bayesian method to quantify the informativeness of 17 distinct zebrafish endpoints as a data-driven weighting scheme for a multi-endpoint summary measure, called weightedmore » Aggregate Entropy (wAggE). We implement wAggE using high-throughput screening (HTS) data from zebrafish exposed to five concentrations of all 1060 ToxCast chemicals. Our results show that our empirical weighting scheme provides better performance in terms of the Receiver Operating Characteristic (ROC) curve for identifying significant morphological effects and improves robustness over traditional curve-fitting approaches. From a biological perspective, our results suggest that developmental cascade effects triggered by chemical exposure can be recapitulated by analyzing the relationships among endpoints. Thus, wAggE offers a powerful approach for analysis of multivariate phenotypes that can reveal underlying etiological processes. - Highlights: • Introduced a data-driven weighting scheme for multiple phenotypic endpoints. • Weighted Aggregate Entropy (wAggE) implies differential importance of endpoints. • Endpoint relationships reveal developmental cascade effects triggered by exposure. • wAggE is generalizable to multi-endpoint data of different shapes and scales.« less
Qualitative analysis scheme based on the properties of ion exchangers (in French)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machiroux, R.; Merciny, E.; Schreiber, A.
1973-01-01
A systematic scheme of qualitative analysis of some cations is presented. For didactic purposes the properties of cationic and anionic ion exchangers were used. At the present time, this scheme is limited to 23 ions, including Sr. (auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollman, David S.; Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061; Schaefer, Henry F.
2014-02-14
A local density fitting scheme is considered in which atomic orbital (AO) products are approximated using only auxiliary AOs located on one of the nuclei in that product. The possibility of variational collapse to an unphysical “attractive electron” state that can affect such density fitting [P. Merlot, T. Kjærgaard, T. Helgaker, R. Lindh, F. Aquilante, S. Reine, and T. B. Pedersen, J. Comput. Chem. 34, 1486 (2013)] is alleviated by including atom-wise semidiagonal integrals exactly. Our approach leads to a significant decrease in the computational cost of density fitting for Hartree–Fock theory while still producing results with errors 2–5 timesmore » smaller than standard, nonlocal density fitting. Our method allows for large Hartree–Fock and density functional theory computations with exact exchange to be carried out efficiently on large molecules, which we demonstrate by benchmarking our method on 200 of the most widely used prescription drug molecules. Our new fitting scheme leads to smooth and artifact-free potential energy surfaces and the possibility of relatively simple analytic gradients.« less
Team interaction during surgery: a systematic review of communication coding schemes.
Tiferes, Judith; Bisantz, Ann M; Guru, Khurshid A
2015-05-15
Communication problems have been systematically linked to human errors in surgery and a deep understanding of the underlying processes is essential. Although a number of tools exist to assess nontechnical skills, methods to study communication and other team-related processes are far from being standardized, making comparisons challenging. We conducted a systematic review to analyze methods used to study events in the operating room (OR) and to develop a synthesized coding scheme for OR team communication. Six electronic databases were accessed to search for articles that collected individual events during surgery and included detailed coding schemes. Additional articles were added based on cross-referencing. That collection was then classified based on type of events collected, environment type (real or simulated), number of procedures, type of surgical task, team characteristics, method of data collection, and coding scheme characteristics. All dimensions within each coding scheme were grouped based on emergent content similarity. Categories drawn from articles, which focused on communication events, were further analyzed and synthesized into one common coding scheme. A total of 34 of 949 articles met the inclusion criteria. The methodological characteristics and coding dimensions of the articles were summarized. A priori coding was used in nine studies. The synthesized coding scheme for OR communication included six dimensions as follows: information flow, period, statement type, topic, communication breakdown, and effects of communication breakdown. The coding scheme provides a standardized coding method for OR communication, which can be used to develop a priori codes for future studies especially in comparative effectiveness research. Copyright © 2015 Elsevier Inc. All rights reserved.
Niedermaier, Tobias; Weigl, Korbinian; Hoffmeister, Michael; Brenner, Hermann
2017-01-01
Background Colorectal cancer (CRC) is a common but largely preventable cancer. Although fecal immunochemical tests (FITs) detect the majority of CRCs, they miss some of the cancers and most advanced adenomas (AAs). The potential of blood tests in complementing FITs for the detection of CRC or AA has not yet been systematically investigated. Methods We conducted a systematic review of performance of FIT combined with an additional blood test for CRC and AA detection versus FIT alone. PubMed and Web of Science were searched until June 9, 2017. Results Some markers substantially increased sensitivity for CRC when combined with FIT, albeit typically at a major loss of specificity. For AA, no relevant increase in sensitivity could be achieved. Conclusion Combining FIT and blood tests might be a promising approach to enhance sensitivity of CRC screening, but comprehensive evaluation of promising marker combinations in screening populations is needed. PMID:29435309
Gray, Casey; Gibbons, Rebecca; Larouche, Richard; Sandseter, Ellen Beate Hansen; Bienenstock, Adam; Brussoni, Mariana; Chabot, Guylaine; Herrington, Susan; Janssen, Ian; Pickett, William; Power, Marlene; Stanger, Nick; Sampson, Margaret; Tremblay, Mark S.
2015-01-01
The objective of this systematic review was to examine the relationship between outdoor time and: (1) physical activity, (2) cardiorespiratory fitness, (3) musculoskeletal fitness, (4) sedentary behaviour; or (5) motor skill development in children aged 3–12 years. We identified 28 relevant studies that were assessed for quality using the GRADE framework. The systematic review revealed overall positive effects of outdoor time on physical activity, sedentary behaviour, and cardiorespiratory fitness, although causality could not be assumed due to a lack of RCTs. Motor skill development was unrelated to outdoor time; however, this relationship was only examined in a single study of preschool children. No studies were found that examined associations between outdoor time and musculoskeletal fitness. PMID:26062039
Cubic scaling algorithms for RPA correlation using interpolative separable density fitting
NASA Astrophysics Data System (ADS)
Lu, Jianfeng; Thicke, Kyle
2017-12-01
We present a new cubic scaling algorithm for the calculation of the RPA correlation energy. Our scheme splits up the dependence between the occupied and virtual orbitals in χ0 by use of Cauchy's integral formula. This introduces an additional integral to be carried out, for which we provide a geometrically convergent quadrature rule. Our scheme also uses the newly developed Interpolative Separable Density Fitting algorithm to further reduce the computational cost in a way analogous to that of the Resolution of Identity method.
Numerical scoring for the Classic BILAG index.
Cresswell, Lynne; Yee, Chee-Seng; Farewell, Vernon; Rahman, Anisur; Teh, Lee-Suan; Griffiths, Bridget; Bruce, Ian N; Ahmad, Yasmeen; Prabu, Athiveeraramapandian; Akil, Mohammed; McHugh, Neil; Toescu, Veronica; D'Cruz, David; Khamashta, Munther A; Maddison, Peter; Isenberg, David A; Gordon, Caroline
2009-12-01
To develop an additive numerical scoring scheme for the Classic BILAG index. SLE patients were recruited into this multi-centre cross-sectional study. At every assessment, data were collected on disease activity and therapy. Logistic regression was used to model an increase in therapy, as an indicator of active disease, by the Classic BILAG score in eight systems. As both indicate inactivity, scores of D and E were set to 0 and used as the baseline in the fitted model. The coefficients from the fitted model were used to determine the numerical values for Grades A, B and C. Different scoring schemes were then compared using receiver operating characteristic (ROC) curves. Validation analysis was performed using assessments from a single centre. There were 1510 assessments from 369 SLE patients. The currently used coding scheme (A = 9, B = 3, C = 1 and D/E = 0) did not fit the data well. The regression model suggested three possible numerical scoring schemes: (i) A = 11, B = 6, C = 1 and D/E = 0; (ii) A = 12, B = 6, C = 1 and D/E = 0; and (iii) A = 11, B = 7, C = 1 and D/E = 0. These schemes produced comparable ROC curves. Based on this, A = 12, B = 6, C = 1 and D/E = 0 seemed a reasonable and practical choice. The validation analysis suggested that although the A = 12, B = 6, C = 1 and D/E = 0 coding is still reasonable, a scheme with slightly less weighting for B, such as A = 12, B = 5, C = 1 and D/E = 0, may be more appropriate. A reasonable additive numerical scoring scheme based on treatment decision for the Classic BILAG index is A = 12, B = 5, C = 1, D = 0 and E = 0.
Numerical scoring for the Classic BILAG index
Cresswell, Lynne; Yee, Chee-Seng; Farewell, Vernon; Rahman, Anisur; Teh, Lee-Suan; Griffiths, Bridget; Bruce, Ian N.; Ahmad, Yasmeen; Prabu, Athiveeraramapandian; Akil, Mohammed; McHugh, Neil; Toescu, Veronica; D’Cruz, David; Khamashta, Munther A.; Maddison, Peter; Isenberg, David A.
2009-01-01
Objective. To develop an additive numerical scoring scheme for the Classic BILAG index. Methods. SLE patients were recruited into this multi-centre cross-sectional study. At every assessment, data were collected on disease activity and therapy. Logistic regression was used to model an increase in therapy, as an indicator of active disease, by the Classic BILAG score in eight systems. As both indicate inactivity, scores of D and E were set to 0 and used as the baseline in the fitted model. The coefficients from the fitted model were used to determine the numerical values for Grades A, B and C. Different scoring schemes were then compared using receiver operating characteristic (ROC) curves. Validation analysis was performed using assessments from a single centre. Results. There were 1510 assessments from 369 SLE patients. The currently used coding scheme (A = 9, B = 3, C = 1 and D/E = 0) did not fit the data well. The regression model suggested three possible numerical scoring schemes: (i) A = 11, B = 6, C = 1 and D/E = 0; (ii) A = 12, B = 6, C = 1 and D/E = 0; and (iii) A = 11, B = 7, C = 1 and D/E = 0. These schemes produced comparable ROC curves. Based on this, A = 12, B = 6, C = 1 and D/E = 0 seemed a reasonable and practical choice. The validation analysis suggested that although the A = 12, B = 6, C = 1 and D/E = 0 coding is still reasonable, a scheme with slightly less weighting for B, such as A = 12, B = 5, C = 1 and D/E = 0, may be more appropriate. Conclusions. A reasonable additive numerical scoring scheme based on treatment decision for the Classic BILAG index is A = 12, B = 5, C = 1, D = 0 and E = 0. PMID:19779027
Revisiting Grodzins systematics of B(E2) values
Pritychenko, B.; Birch, M.; Singh, B.
2017-04-03
Using Grodzins formalism, we analyze systematics of our latest evaluated B(E2) data for all the even–even nuclei in Z=2–104. The analysis indicates a low predictive power of systematics for a large number of cases, and a strong correlation between B(E2) fit values and nuclear structure effects. These findings provide a strong rationale for introduction of individual or elemental (grouped by Z) fit parameters. The current estimates of quadrupole collectivities for systematics of even–even nuclei yield complementary values for comparison with experimental results and theoretical calculations. Furthermore, the lists of fit parameters and predicted B(E2) values are given and possible implicationsmore » are discussed.« less
2014-06-30
U.S. Army Public Health Command Correlations between Physical Fitness Tests and Performance of Military Tasks: A Systematic Review and Meta...30 JUN 2014 2. REPORT TYPE Final 3. DATES COVERE D 4. TITLE AN D SUBTITLE Correlations between Physical Fitness Tests and Performance of... Physical Fitness Test (APFT) and ensure a future test is associated with Soldiers’ performance of common physical job requirements, the USAPHC applied
The Benefits and Risks of CrossFit: A Systematic Review.
Meyer, Jena; Morrison, Janet; Zuniga, Julie
2017-12-01
With the increase in popularity of the CrossFit exercise program, occupational health nurses may be asked questions about the appropriateness of CrossFit training for workers. This systematic literature review was conducted to analyze the current research on CrossFit, and assess the benefits and risks of this exercise strategy. Thirteen studies ( N = 2,326 participants) examined the use of CrossFit training among adults; CrossFit is comparable to other exercise programs with similar injury rates and health outcomes. Occupational health nurses should assess previous injuries prior to recommending this form of exercise. Ideal candidates for CrossFit are adults who seek high-intensity exercise with a wide variety of exercise components.
Measurement of sin2θw and ϱ in deep inelastic neutrino-nucleon scattering
NASA Astrophysics Data System (ADS)
Reutens, P. G.; Merritt, F. S.; Macfarlane, D. B.; Messner, R. L.; Novikoff, D. B.; Purohit, M. V.; Blair, R. E.; Sciulli, F. J.; Shaevitz, M. H.; Fisk, H. E.; Fukushima, Y.; Jin, B. N.; Kondo, T.; Rapidis, P. A.; Yovanovitch, D. D.; Bodek, A.; Coleman, R. N.; Marsh, W. L.; Fackler, O. D.; Jenkins, K. A.
1985-03-01
We describe a high statistics measurement from deep inelastic neutrino-nucleon scattering of the electroweak parameters ϱ and sin2θw, performed in the Fermilab narrow-band neutrino beam. Our measurement uses a radius-dependent cut in y = EH/Ev which reduces the systematic error in sin2θw, and incorporates electromagnetic and electroweak radiative corrections. In a renormalization scheme where sin2θw ≡ 1-m2W/m2Z, a value of sin2θw = 0.242+/-0.011+/-0.005 is obtained fixing ϱ = 1. If both sin2θw and ϱ are allowed to vary in a fit to our data, we measure ϱ = 0.991 +/- 0.025 +/- 0.009. Present address: IBM Thomas J. Watson Research Center, PO Box 218, Yorktown Heights, NY 10598, USA.
Reinforcement learning in complementarity game and population dynamics
NASA Astrophysics Data System (ADS)
Jost, Jürgen; Li, Wei
2014-02-01
We systematically test and compare different reinforcement learning schemes in a complementarity game [J. Jost and W. Li, Physica A 345, 245 (2005), 10.1016/j.physa.2004.07.005] played between members of two populations. More precisely, we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue of quick adaptation as opposed to systematic exploration or the role of learning rates.
Model-Free CUSUM Methods for Person Fit
ERIC Educational Resources Information Center
Armstrong, Ronald D.; Shi, Min
2009-01-01
This article demonstrates the use of a new class of model-free cumulative sum (CUSUM) statistics to detect person fit given the responses to a linear test. The fundamental statistic being accumulated is the likelihood ratio of two probabilities. The detection performance of this CUSUM scheme is compared to other model-free person-fit statistics…
NASA Astrophysics Data System (ADS)
Chang, Qin; Li, Xiao-Nan; Sun, Jun-Feng; Yang, Yue-Ling
2016-10-01
In this paper, the contributions of weak annihilation and hard spectator scattering in B\\to ρ {K}* , {K}* {\\bar{K}}* , φ {K}* , ρ ρ and φ φ decays are investigated within the framework of quantum chromodynamics factorization. Using the experimental data available, we perform {χ }2 analyses of end-point parameters in four cases based on the topology-dependent and polarization-dependent parameterization schemes. The fitted results indicate that: (i) in the topology-dependent scheme, the relation ({ρ }Ai,{φ }Ai)\
Constraining the surface properties of effective Skyrme interactions
NASA Astrophysics Data System (ADS)
Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.
2016-08-01
Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The latter is of particular interest because it provides asurf as a numerical integral without the need to solve self-consistent equations. Results for semi-infinite nuclear matter obtained with the HF, ETF, and MTF methods will be compared with one another and with asurf, as deduced from ETF calculations of very heavy fictitious nuclei. Results: The surface energy coefficient of 76 parametrizations of the Skyrme EDF have been calculated. Values obtained with the HF, ETF, and MTF methods are not identical, but differ by fairly constant systematic offsets. By contrast, extracting asurf from the binding energy of semi-infinite matter or of very large nuclei within the same method gives the same result within the numerical uncertainties. Conclusions: Despite having some drawbacks compared to the other methods studied here, the MTF approach provides sufficiently precise values for asurf such that it can be used as a very robust constraint on surface properties during a parameter fit at negligible additional cost. While the excitation energy of superdeformed states and the height of fission barriers is obviously strongly correlated to asurf, the presence of shell effects prevents a one-to-one correspondence between them. As in addition the value of asurf providing realistic fission barriers depends on the choices made for corrections for spurious motion, its "best value" (within a given scheme to calculate it) depends on the fit protocol. Through the construction of a series of eight parametrizations SLy5s1-SLy5s8 of the standard Skyrme EDF with systematically varied asurf value, it is shown how to arrive at a fit with realistic deformation properties.
Predictors of 2,4-dichlorophenoxyacetic acid exposure among herbicide applicators
BHATTI, PARVEEN; BLAIR, AARON; BELL, ERIN M.; ROTHMAN, NATHANIEL; LAN, QING; BARR, DANA B.; NEEDHAM, LARRY L.; PORTENGEN, LUTZEN; FIGGS, LARRY W.; VERMEULEN, ROEL
2009-01-01
To determine the major factors affecting the urinary levels of 2,4-dichlorophenoxyacetic acid (2,4-D) among county noxious weed applicators in Kansas, we used a regression technique that accounted for multiple days of exposure. We collected 136 12-h urine samples from 31 applicators during the course of two spraying seasons (April to August of 1994 and 1995). Using mixed-effects models, we constructed exposure models that related urinary 2,4-D measurements to weighted self-reported work activities from daily diaries collected over 5 to 7 days before the collection of the urine sample. Our primary weights were based on an earlier pharmacokinetic analysis of turf applicators; however, we examined a series of alternative weighting schemes to assess the impact of the specific weights and the number of days before urine sample collection that were considered. The derived models accounting for multiple days of exposure related to a single urine measurement seemed robust with regard to the exact weights, but less to the number of days considered; albeit the determinants from the primary model could be fitted with marginal losses of fit to the data from the other weighting schemes that considered a different numbers of days. In the primary model, the total time of all activities (spraying, mixing, other activities), spraying method, month of observation, application concentration, and wet gloves were significant determinants of urinary 2,4-D concentration and explained 16% of the between-worker variance and 23% of the within-worker variance of urinary 2,4-D levels. As a large proportion of the variance remained unexplained, further studies should be conducted to try to systematically assess other exposure determinants. PMID:19319162
Graphical Evaluation of Hierarchical Clustering Schemes. Technical Report No. 1.
ERIC Educational Resources Information Center
Halff, Henry M.
Graphical methods for evaluating the fit of Johnson's hierarchical clustering schemes are presented together with an example. These evaluation methods examine the extent to which the clustering algorithm can minimize the overlap of the distributions of intracluster and intercluster distances. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almeida, Leandro G.; Physics Department, Brookhaven National Laboratory, Upton, New York 11973; Sturm, Christian
2010-09-01
Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the MS scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{sub {mu}} }schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f}=3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sturm, C.; Almeida, L.
2010-04-26
Light quark masses can be determined through lattice simulations in regularization invariant momentum-subtraction (RI/MOM) schemes. Subsequently, matching factors, computed in continuum perturbation theory, are used in order to convert these quark masses from a RI/MOM scheme to the {ovr MS} scheme. We calculate the two-loop corrections in QCD to these matching factors as well as the three-loop mass anomalous dimensions for the RI/SMOM and RI/SMOM{sub {gamma}{mu}} schemes. These two schemes are characterized by a symmetric subtraction point. Providing the conversion factors in the two different schemes allows for a better understanding of the systematic uncertainties. The two-loop expansion coefficients ofmore » the matching factors for both schemes turn out to be small compared to the traditional RI/MOM schemes. For n{sub f} = 3 quark flavors they are about 0.6%-0.7% and 2%, respectively, of the leading order result at scales of about 2 GeV. Therefore, they will allow for a significant reduction of the systematic uncertainty of light quark mass determinations obtained through this approach. The determination of these matching factors requires the computation of amputated Green's functions with the insertions of quark bilinear operators. As a by-product of our calculation we also provide the corresponding results for the tensor operator.« less
NASA Astrophysics Data System (ADS)
D'Ambrosio, Raffaele; Moccaldi, Martina; Paternoster, Beatrice
2018-05-01
In this paper, an adapted numerical scheme for reaction-diffusion problems generating periodic wavefronts is introduced. Adapted numerical methods for such evolutionary problems are specially tuned to follow prescribed qualitative behaviors of the solutions, making the numerical scheme more accurate and efficient as compared with traditional schemes already known in the literature. Adaptation through the so-called exponential fitting technique leads to methods whose coefficients depend on unknown parameters related to the dynamics and aimed to be numerically computed. Here we propose a strategy for a cheap and accurate estimation of such parameters, which consists essentially in minimizing the leading term of the local truncation error whose expression is provided in a rigorous accuracy analysis. In particular, the presented estimation technique has been applied to a numerical scheme based on combining an adapted finite difference discretization in space with an implicit-explicit time discretization. Numerical experiments confirming the effectiveness of the approach are also provided.
PSO-tuned PID controller for coupled tank system via priority-based fitness scheme
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Hussien, Sharifah Yuslinda Syed; Selamat, Nur Asmiza; Abidin, Amar Faiz Zainal; Aras, Mohd Shahrieel Mohd; Nasir, Mohamad Na'im Mohd; Bohari, Zul Hasrizal
2015-05-01
The industrial applications of Coupled Tank System (CTS) are widely used especially in chemical process industries. The overall process is require liquids to be pumped, stored in the tank and pumped again to another tank. Nevertheless, the level of liquid in tank need to be controlled and flow between two tanks must be regulated. This paper presents development of an optimal PID controller for controlling the desired liquid level of the CTS. Two method of Particle Swarm Optimization (PSO) algorithm will be tested in optimizing the PID controller parameters. These two methods of PSO are standard Particle Swarm Optimization (PSO) and Priority-based Fitness Scheme in Particle Swarm Optimization (PFPSO). Simulation is conducted within Matlab environment to verify the performance of the system in terms of settling time (Ts), steady state error (SSE) and overshoot (OS). It has been demonstrated that implementation of PSO via Priority-based Fitness Scheme (PFPSO) for this system is potential technique to control the desired liquid level and improve the system performances compared with standard PSO.
Understanding Systematics in ZZ Ceti Model Fitting to Enable Differential Seismology
NASA Astrophysics Data System (ADS)
Fuchs, J. T.; Dunlap, B. H.; Clemens, J. C.; Meza, J. A.; Dennihy, E.; Koester, D.
2017-03-01
We are conducting a large spectroscopic survey of over 130 Southern ZZ Cetis with the Goodman Spectrograph on the SOAR Telescope. Because it employs a single instrument with high UV throughput, this survey will both improve the signal-to-noise of the sample of SDSS ZZ Cetis and provide a uniform dataset for model comparison. We are paying special attention to systematics in the spectral fitting and quantify three of those systematics here. We show that relative positions in the log g -Teff plane are consistent for these three systematics.
π0 pole mass calculation in a strong magnetic field and lattice constraints
NASA Astrophysics Data System (ADS)
Avancini, Sidney S.; Farias, Ricardo L. S.; Benghi Pinto, Marcus; Tavares, William R.; Timóteo, Varese S.
2017-04-01
The π0 neutral meson pole mass is calculated in a strongly magnetized medium using the SU(2) Nambu-Jona-Lasinio model within the random phase approximation (RPA) at zero temperature and zero baryonic density. We employ a magnetic field dependent coupling, G (eB), fitted to reproduce lattice QCD results for the quark condensates. Divergent quantities are handled with a magnetic field independent regularization scheme in order to avoid unphysical oscillations. A comparison between the running and the fixed couplings reveals that the former produces results much closer to the predictions from recent lattice calculations. In particular, we find that the π0 meson mass systematically decreases when the magnetic field increases while the scalar mass remains almost constant. We also investigate how the magnetic background influences other mesonic properties such as fπ0 and gπ0qq.
NASA Astrophysics Data System (ADS)
Haji, Shaker; Durazi, Amal; Al-Alawi, Yaser
2018-05-01
In this study, the feed-in tariff (FIT) scheme was considered to facilitate an effective introduction of renewable energy in the Kingdom of Bahrain. An economic model was developed for the estimation of feasible FIT rates for photovoltaic (PV) electricity on a residential scale. The calculations of FIT rates were based mainly on the local solar radiation, the cost of a grid-connected PV system, the operation and maintenance cost, and the provided financial support. The net present value and internal rate of return methods were selected for model evaluation with the guide of simple payback period to determine the cost of energy and feasible FIT rates under several scenarios involving different capital rebate percentages, loan down payment percentages, and PV system costs. Moreover, to capitalise on the FIT benefits, its impact on the stakeholders beyond the households was investigated in terms of natural gas savings, emissions cutback, job creation, and PV-electricity contribution towards the energy demand growth. The study recommended the introduction of the FIT scheme in the Kingdom of Bahrain due to its considerable benefits through a setup where each household would purchase the PV system through a loan, with the government and the electricity customers sharing the FIT cost.
Majno, Pietro; Mentha, Gilles; Toso, Christian; Morel, Philippe; Peitgen, Heinz O; Fasel, Jean H D
2014-03-01
The vascular anatomy of the liver can be described at three different levels of complexity according to the use that the description has to serve. The first--conventional--level corresponds to the traditional 8-segments scheme of Couinaud and serves as a common language between clinicians from different specialties to describe the location of focal hepatic lesions. The second--surgical--level, to be applied to anatomical liver resections and transplantations, takes into account the real branching of the major portal pedicles and of the hepatic veins. Radiological and surgical techniques exist nowadays to make full use of this anatomy, but this requires accepting that the Couinaud scheme is a simplification, and looking at the vascular architecture with an unprejudiced eye. The third--academic--level of complexity concerns the anatomist, and the need to offer a systematization that resolves the apparent contradictions between anatomical literature, radiological imaging, and surgical practice. Based on the real number of second-order portal branches that, although variable averages 20, we submit a system called the "1-2-20 concept", and suggest that it fits best the number of actual--as opposed to idealized--anatomical liver segments. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Floating shock fitting via Lagrangian adaptive meshes
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1995-01-01
In recent work we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered on Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM), is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence.
Tradeoffs in the Design of Health Plan Payment Systems: Fit, Power and Balance
Geruso, Michael; McGuire, Thomas G.
2016-01-01
In many markets, including the new U.S. Marketplaces, health insurance plans are paid by risk-adjusted capitation, sometimes combined with reinsurance and other payment mechanisms. This paper proposes a framework for evaluating the de facto insurer incentives embedded in these complex payment systems. We discuss fit, power and balance, each of which addresses a distinct market failure in health insurance. We implement empirical metrics of fit, power, and balance in a study of Marketplace payment systems. Using data similar to that used to develop the Marketplace risk adjustment scheme, we quantify tradeoffs among the three classes of incentives. We show that an essential tradeoff arises between the goals of limiting costs and limiting cream skimming because risk adjustment, which is aimed at discouraging cream-skimming, weakens cost control incentives in practice. A simple reinsurance system scores better on our measures of fit, power and balance than the risk adjustment scheme in use in the Marketplaces. PMID:26922122
Tradeoffs in the design of health plan payment systems: Fit, power and balance.
Geruso, Michael; McGuire, Thomas G
2016-05-01
In many markets, including the new U.S. Marketplaces, health insurance plans are paid by risk-adjusted capitation, sometimes combined with reinsurance and other payment mechanisms. This paper proposes a framework for evaluating the de facto insurer incentives embedded in these complex payment systems. We discuss fit, power and balance, each of which addresses a distinct market failure in health insurance. We implement empirical metrics of fit, power, and balance in a study of Marketplace payment systems. Using data similar to that used to develop the Marketplace risk adjustment scheme, we quantify tradeoffs among the three classes of incentives. We show that an essential tradeoff arises between the goals of limiting costs and limiting cream skimming because risk adjustment, which is aimed at discouraging cream-skimming, weakens cost control incentives in practice. A simple reinsurance system scores better on our measures of fit, power and balance than the risk adjustment scheme in use in the Marketplaces. Copyright © 2016 Elsevier B.V. All rights reserved.
Ishizuka, Ryosuke; Matubayasi, Nobuyuki
2017-11-15
A self-consistent scheme combining the molecular dynamics (MD) simulation and density functional theory (DFT) was recently proposed to incorporate the effects of the charge transfer and polarization of ions into non-poralizable force fields of ionic liquids for improved description of energetics and dynamics. The purpose of the present work is to analyze the detailed setups of the MD/DFT scheme by focusing on how the basis set, exchange-correlation (XC) functional, charge-fitting method or force field for the intramolecular and Lennard-Jones interactions affects the MD/DFT results of 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ( [C1mim][NTf2]) and 1-ethyl-3-methylimidazolium glycinate ( [C2mim][Gly]). It was found that the double-zeta valence polarized or larger size of basis set is required for the convergence of the effective charge of the ion. The choice of the XC functional was further not influential as far as the generalized gradient approximation is used. The charge-fitting method and force field govern the accuracy of the MD/DFT scheme, on the other hand. We examined the charge-fitting methods of Blöchl, the iterative Hirshfeld (Hirshfeld-I), and REPEAT in combination with Lopes et al.'s force field and general AMBER force field. There is no single combination of charge fitting and force field that provides good agreements with the experiments, while the MD/DFT scheme reduces the effective charges of the ions and leads to better description of energetics and dynamics compared to the original force field with unit charges. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Richardson, Suzanna J; Brooks, Hannah L; Bramley, George; Coleman, Jamie J
2014-01-01
Self-administration of medicines is believed to increase patients' understanding about their medication and to promote their independence and autonomy in the hospital setting. The effect of inpatient self-administration of medication (SAM) schemes on patients, staff and institutions is currently unclear. To systematically review the literature relating to the effect of SAM schemes on the following outcomes: patient knowledge, patient compliance/medication errors, success in self-administration, patient satisfaction, staff satisfaction, staff workload, and costs. Keyword and text word searches of online databases were performed between January and March 2013. Included articles described and evaluated inpatient SAM schemes. Case studies and anecdotal studies were excluded. 43 papers were included for final analysis. Due to the heterogeneity of results and unclear findings it was not possible to perform a quantitative synthesis of results. Participation in SAM schemes often led to increased knowledge about drugs and drug regimens, but not side effects. However, the effect of SAM schemes on patient compliance/medication errors was inconclusive. Patients and staff were highly satisfied with their involvement in SAM schemes. SAM schemes appear to provide some benefits (e.g. increased patient knowledge), but their effect on other outcomes (e.g. compliance) is unclear. Few studies of high methodological quality using validated outcome measures exist. Inconsistencies in both measuring and reporting outcomes across studies make it challenging to compare results and draw substantive conclusions about the effectiveness of SAM schemes.
Measuring Systematic Error with Curve Fits
ERIC Educational Resources Information Center
Rupright, Mark E.
2011-01-01
Systematic errors are often unavoidable in the introductory physics laboratory. As has been demonstrated in many papers in this journal, such errors can present a fundamental problem for data analysis, particularly when comparing the data to a given model. In this paper I give three examples in which my students use popular curve-fitting software…
Is Your School Fit for Literacy? 10 Areas of Action for Principals
ERIC Educational Resources Information Center
Gaffney, Janet S.; Hesbol, Kristina; Corso, Laurie
2005-01-01
The goal of this document is to provide a scheme that may be used by principals, literacy leaders, and school teams to take stock of the literacy health of their school. The assessment may show that the school is fit on most factors, or that a boost is needed in several areas. Most importantly, as with physical fitness, is to determine priorities…
Obermann, Konrad; Chanturidze, Tata; Glazinski, Bernd; Dobberschuetz, Karin; Steinhauer, Heiko; Schmidt, Jean-Olivier
2018-02-20
Managers and administrators in charge of social protection and health financing, service purchasing and provision play a crucial role in harnessing the potential advantage of prudent organization, management and purchasing of health services, thereby supporting the attainment of Universal Health Coverage. However, very little is known about the needed quantity and quality of such staff, in particular when it comes to those institutions managing mandatory health insurance schemes and purchasing services. As many health care systems in low- and middle-income countries move towards independent institutions (both purchasers and providers) there is a clear need to have good data on staff and administrative cost in different social health protection schemes as a basis for investing in the development of a cadre of health managers and administrators for such schemes. We report on a systematic literature review of human resources in health management and administration in social protection schemes and suggest some aspects in moving research, practical applications and the policy debate forward.
Effects of Planetary Boundary Layer Parameterizations on CWRF Regional Climate Simulation
NASA Astrophysics Data System (ADS)
Liu, S.; Liang, X.
2011-12-01
Planetary Boundary Layer (PBL) parameterizations incorporated in CWRF (Climate extension of the Weather Research and Forecasting model) are first evaluated by comparing simulated PBL heights with observations. Among the 10 evaluated PBL schemes, 2 (CAM, UW) are new in CWRF while the other 8 are original WRF schemes. MYJ, QNSE and UW determine the PBL heights based on turbulent kinetic energy (TKE) profiles, while others (YSU, ACM, GFS, CAM, TEMF) are from bulk Richardson criteria. All TKE-based schemes (MYJ, MYNN, QNSE, UW, Boulac) substantially underestimate convective or residual PBL heights from noon toward evening, while others (ACM, CAM, YSU) well capture the observed diurnal cycle except for the GFS with systematic overestimation. These differences among the schemes are representative over most areas of the simulation domain, suggesting systematic behaviors of the parameterizations. Lower PBL heights simulated by the QNSE and MYJ are consistent with their smaller Bowen ratios and heavier rainfalls, while higher PBL tops by the GFS correspond to warmer surface temperatures. Effects of PBL parameterizations on CWRF regional climate simulation are then compared. The QNSE PBL scheme yields systematically heavier rainfall almost everywhere and throughout the year; this is identified with a much greater surface Bowen ratio (smaller sensible versus larger latent heating) and wetter soil moisture than other PBL schemes. Its predecessor MYJ scheme shares the same deficiency to a lesser degree. For temperature, the performance of the QNSE and MYJ schemes remains poor, having substantially larger rms errors in all seasons. GFS PBL scheme also produces large warm biases. Pronounced sensitivities are also found to the PBL schemes in winter and spring over most areas except the southern U.S. (Southeast, Gulf States, NAM); excluding the outliers (QNSE, MYJ, GFS) that cause extreme biases of -6 to +3°C, the differences among the schemes are still visible (±2°C), where the CAM is generally more realistic. QNSE, MYJ, GFS and BouLac PBL parameterizations are identified as obvious outliers of overall performance in representing precipitation, surface air temperature or PBL height variations. Their poor performance may result from deficiencies in physical formulations, dependences on applicable scales, or trouble numerical implementations, requiring future detailed investigation to isolate the actual cause.
A comparative study of advanced shock-capturing schemes applied to Burgers' equation
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Przekwas, A. J.
1992-01-01
A systematic evaluation is conducted of all extant numerical schemes for nonlinear scalar transport problems, and several advanced shock-capturing schemes are used to solve the nonlinear Burgers' equation in order to characterize their ability to resolve the sharp discontinuity, expansion zone, and propagation and collision features of shocks. For discontinuous functions, the Warming-Beam scheme generates preshock wiggles, while the Lax-Wendroff scheme generates postshock ones. Such limiters as the MUSCL or the superbee are more compressive than minimod or monotonic limiters. The performance of such TVD schemes as the upwind, the symmetric, and the Roe-Sweby, resemble each other.
Thivel, David; Ring-Dimitriou, Susanne; Weghuber, Daniel; Frelut, Marie-Laure; O'Malley, Grace
2016-01-01
The increasing prevalence of paediatric obesity and related metabolic complications has been mainly associated with lower aerobic fitness while less is known regarding potential musculoskeletal impairments. The purpose of the present systematic review was to report the evidence regarding muscular fitness in children and adolescents with obesity. A systematic article search was conducted between November 2014 and June 2015 using MEDLINE, EMBASE, CINAHL psycINFO, SPORTDiscus and SocINDEX. Articles published in English and reporting results on muscle strength and muscular fitness in children and adolescents aged 6 to 18 years were eligible. Of 548 identified titles, 36 studies were included for analyses. While laboratory-based studies described higher absolute muscular fitness in youth with obesity compared with their lean peers, these differences are negated when corrected for body weight and lean mass, then supporting field-based investigations. All interventional studies reviewed led to improved muscular fitness in youth with obesity. Children and adolescents with obesity display impaired muscular fitness compared to healthy-weight peers, which seems mainly due to factors such as excessive body weight and increased inertia of the body. Our analysis also points out the lack of information regarding the role of age, maturation or sex in the current literature and reveals that routinely used field tests analysing overall daily muscular fitness in children with obesity provide satisfactory results when compared to laboratory-based data. PMID:26901423
Peer counsellors' views on the collegial support scheme for doctors.
Rø, Karin Isaksson; Aasland, Olaf Gjerløw
2016-02-23
The health condition and health-related behaviour of doctors are important to the doctors themselves as well as for their treatment of patients. The collegial support scheme is a county-based and easily accessible health and care service for doctors. We therefore wanted to describe the framework and functions of this scheme and examine its utility. Fourteen focus-group interviews with a total of 61 peer counsellors from all the counties were conducted. The interviews were recorded, transcribed and analysed with the aid of systematic text condensation. The framework--easy accessibility, a readily available offer of up to three sessions, a high degree of confidentiality and informal contact--was emphasised as crucial for doctors to make use of the scheme. The peer counsellors described their role as that of a listener and supportive helper. They helped bring clarity and discuss possible needs for further follow-up or treatment of numerous different and frequently complex issues. The peer counsellors highlighted three benefits in particular: the scheme helps raise awareness by legitimising help-seeking behaviour among doctors, it is a contingency scheme, and it eases the burden by lowering the threshold to seeking out further advice and treatment. A systematic evaluation of the collegial support scheme is important for an understanding of the totality of the collegial health and care services. The collegial support scheme may lower the threshold to seeking help, and encourage some doctors to seek necessary treatment.
Ortega, Francisco B; Cadenas-Sánchez, Cristina; Sánchez-Delgado, Guillermo; Mora-González, José; Martínez-Téllez, Borja; Artero, Enrique G; Castro-Piñero, Jose; Labayen, Idoia; Chillón, Palma; Löf, Marie; Ruiz, Jonatan R
2015-04-01
Physical fitness is a powerful health marker in childhood and adolescence, and it is reasonable to think that it might be just as important in younger children, i.e. preschoolers. At the moment, researchers, clinicians and sport practitioners do not have enough information about which fitness tests are more reliable, valid and informative from the health point of view to be implemented in preschool children. Our aim was to systematically review the studies conducted in preschool children using field-based fitness tests, and examine their (1) reliability, (2) validity, and (3) relationship with health outcomes. Our ultimate goal was to propose a field-based physical fitness-test battery to be used in preschool children. PubMed and Web of Science. Studies conducted in healthy preschool children that included field-based fitness tests. When using PubMed, we included Medical Subject Heading (MeSH) terms to enhance the power of the search. A set of fitness-related terms were combined with 'child, preschool' [MeSH]. The same strategy and terms were used for Web of Science (except for the MeSH option). Since no previous reviews with a similar aim were identified, we searched for all articles published up to 1 April 2014 (no starting date). A total of 2,109 articles were identified, of which 22 articles were finally selected for this review. Most studies focused on reliability of the fitness tests (n = 21, 96%), while very few focused on validity (0 criterion-related validity and 4 (18%) convergent validity) or relationship with health outcomes (0 longitudinal and 1 (5%) cross-sectional study). Motor fitness, particularly balance, was the most studied fitness component, while cardiorespiratory fitness was the least studied. After analyzing the information retrieved in the current systematic review about fitness testing in preschool children, we propose the PREFIT battery, field-based FITness testing in PREschool children. The PREFIT battery is composed of the following tests: the 20 m shuttle-run test for assessing cardiorespiratory fitness, the handgrip-strength and the standing long-jump tests for assessing musculoskeletal fitness, and the 4 × 10 m shuttle run and the one-leg-stance tests for assessing motor fitness, i.e. speed/agility and balance, respectively. The rationale for the selection of each of the tests included in the PREFIT battery is provided in this review, as well as directions for future research. Levels of evidence based on quality assessment of selected studies could not be constructed due to the limited number of studies identified for each test. The present systematic review has identified a need for further research on the validity of fitness tests in preschool children, as well as on their relationship with health. Due to this limited information, the PREFIT battery hereby proposed is based on the output of the current systematic review in preschool children, together with existing evidence in older children and adolescents. While we wait for more evidence to be accumulated in preschool children, the PREFIT battery hereby proposed is a useful tool for assessing physical fitness in children aged 3-5 years.
Fadlallah, Racha; El-Jardali, Fadi; Hemadi, Nour; Morsi, Rami Z; Abou Samra, Clara Abou; Ahmad, Ali; Arif, Khurram; Hishi, Lama; Honein-AbouHaidar, Gladys; Akl, Elie A
2018-01-29
Community-based health insurance (CBHI) has evolved as an alternative health financing mechanism to out of pocket payments in low- and middle-income countries (LMICs), particularly in areas where government or employer-based health insurance is minimal. This systematic review aimed to assess the barriers and facilitators to implementation, uptake and sustainability of CHBI schemes in LMICs. We searched six electronic databases and grey literature. We included both quantitative and qualitative studies written in English language and published after year 1992. Two reviewers worked in duplicate and independently to complete study selection, data abstraction, and assessment of methodological features. We synthesized the findings based on thematic analysis and categorized according to the ecological model into individual, interpersonal, community and systems levels. Of 15,510 citations, 51 met the eligibility criteria. Individual factors included awareness and understanding of the concept of CBHI, trust in scheme and scheme managers, perceived service quality, and demographic characteristics, which influenced enrollment and sustainability. Interpersonal factors such as household dynamics, other family members enrolled in the scheme, and social solidarity influenced enrollment and renewal of membership. Community-level factors such as culture and community involvement in scheme development influenced enrollment and sustainability of scheme. Systems-level factors encompassed governance, financial and delivery arrangement. Government involvement, accountability of scheme management, and strong policymaker-implementer relation facilitated implementation and sustainability of scheme. Packages that covered outpatient and inpatient care and those tailored to community needs contributed to increased enrollment. Amount and timing of premium collection was reported to negatively influence enrollment while factors reported as threats to sustainability included facility bankruptcy, operating on small budgets, rising healthcare costs, small risk pool, irregular contributions, and overutilization of services. At the delivery level, accessibility of facilities, facility environment, and health personnel influenced enrollment, service utilization and dropout rates. There are a multitude of interrelated factors at the individual, interpersonal, community and systems levels that drive the implementation, uptake and sustainability of CBHI schemes. We discuss the implications of the findings at the policy and research level. The review protocol is registered in PROSPERO International prospective register of systematic reviews (ID = CRD42015019812 ).
ERIC Educational Resources Information Center
Butler, Jane M.; Scianni, Aline; Ada, Louise
2010-01-01
The question under consideration was does cardiorespiratory training improve aerobic fitness in children with cerebral palsy and is there any carryover into activity? The study design consisted of a systematic review of randomized trials using the Cochrane Collaboration guidelines. Participants were children of school age with cerebral palsy.…
Bayesian Methods for Effective Field Theories
NASA Astrophysics Data System (ADS)
Wesolowski, Sarah
Microscopic predictions of the properties of atomic nuclei have reached a high level of precision in the past decade. This progress mandates improved uncertainty quantification (UQ) for a robust comparison of experiment with theory. With the uncertainty from many-body methods under control, calculations are now sensitive to the input inter-nucleon interactions. These interactions include parameters that must be fit to experiment, inducing both uncertainty from the fit and from missing physics in the operator structure of the Hamiltonian. Furthermore, the implementation of the inter-nucleon interactions is not unique, which presents the additional problem of assessing results using different interactions. Effective field theories (EFTs) take advantage of a separation of high- and low-energy scales in the problem to form a power-counting scheme that allows the organization of terms in the Hamiltonian based on their expected contribution to observable predictions. This scheme gives a natural framework for quantification of uncertainty due to missing physics. The free parameters of the EFT, called the low-energy constants (LECs), must be fit to data, but in a properly constructed EFT these constants will be natural-sized, i.e., of order unity. The constraints provided by the EFT, namely the size of the systematic uncertainty from truncation of the theory and the natural size of the LECs, are assumed information even before a calculation is performed or a fit is done. Bayesian statistical methods provide a framework for treating uncertainties that naturally incorporates prior information as well as putting stochastic and systematic uncertainties on an equal footing. For EFT UQ Bayesian methods allow the relevant EFT properties to be incorporated quantitatively as prior probability distribution functions (pdfs). Following the logic of probability theory, observable quantities and underlying physical parameters such as the EFT breakdown scale may be expressed as pdfs that incorporate the prior pdfs. Problems of model selection, such as distinguishing between competing EFT implementations, are also natural in a Bayesian framework. In this thesis we focus on two complementary topics for EFT UQ using Bayesian methods--quantifying EFT truncation uncertainty and parameter estimation for LECs. Using the order-by-order calculations and underlying EFT constraints as prior information, we show how to estimate EFT truncation uncertainties. We then apply the result to calculating truncation uncertainties on predictions of nucleon-nucleon scattering in chiral effective field theory. We apply model-checking diagnostics to our calculations to ensure that the statistical model of truncation uncertainty produces consistent results. A framework for EFT parameter estimation based on EFT convergence properties and naturalness is developed which includes a series of diagnostics to ensure the extraction of the maximum amount of available information from data to estimate LECs with minimal bias. We develop this framework using model EFTs and apply it to the problem of extrapolating lattice quantum chromodynamics results for the nucleon mass. We then apply aspects of the parameter estimation framework to perform case studies in chiral EFT parameter estimation, investigating a possible operator redundancy at fourth order in the chiral expansion and the appropriate inclusion of truncation uncertainty in estimating LECs.
Dental claims in the Swedish Patient Insurance Scheme.
René, N; Owall, B; Cronström, R
1991-06-01
The Swedish Patient Insurance Scheme covers treatment injuries and guarantees the replacement of failed removable prostheses for 1 year and fixed prostheses for 2 years after fitting. In this paper, 573 dental cases are analysed for a 3-month period in 1986, during which crowns and bridges formed the vast majority of failed treatments that were reported.
Tripette, Julien; Murakami, Haruka; Ryan, Katie Rose; Ohta, Yuji; Miyachi, Motohiko
2017-01-01
Wii Fit was originally designed as a health and fitness interactive training experience for the general public. There are, however, many examples of Wii Fit being utilized in clinical settings. This article aims to identify the contribution of Wii Fit in the field of health promotion and rehabilitation by: (1) identifying the health-related domains for which the Wii Fit series has been tested, (2) clarifying the effect of Wii Fit in those identified health-related domains and (3) quantifying this effect. A systematic literature review was undertaken. The MEDLINE database and Games for Health Journal published content were explored using the search term "Wii-Fit." Occurrences resulting from manual searches on Google and material suggested by experts in the field were also considered. Included articles were required to have measurements from Wii Fit activities for at least one relevant health indicator. The effect of Wii Fit interventions was assessed using meta-analyses for the following outcomes: activity-specific balance confidence score, Berg balance score (BBC) and time-up-and-go test (TUG). A total of 115 articles highlighted that the Wii Fit has been tested in numerous healthy and pathological populations. Out of these, only a few intervention studies have focused on the prevention of chronic diseases. A large proportion of the studies focus on balance training ( N = 55). This systematic review highlights several potential benefits of Wii Fit interventions and these positive observations are supported by meta-analyses data ( N = 25). For example, the BBC and the TUG respond to a similar extend to Wii Fit interventions compared with traditional training. Wii Fit has the potential to be used as a rehabilitation tool in different clinical situations. However, the current literature includes relatively few randomized controlled trials in each population. Further research is therefore required.
Murakami, Haruka; Ryan, Katie Rose; Ohta, Yuji; Miyachi, Motohiko
2017-01-01
Background Wii Fit was originally designed as a health and fitness interactive training experience for the general public. There are, however, many examples of Wii Fit being utilized in clinical settings. This article aims to identify the contribution of Wii Fit in the field of health promotion and rehabilitation by: (1) identifying the health-related domains for which the Wii Fit series has been tested, (2) clarifying the effect of Wii Fit in those identified health-related domains and (3) quantifying this effect. Method A systematic literature review was undertaken. The MEDLINE database and Games for Health Journal published content were explored using the search term “Wii-Fit.” Occurrences resulting from manual searches on Google and material suggested by experts in the field were also considered. Included articles were required to have measurements from Wii Fit activities for at least one relevant health indicator. The effect of Wii Fit interventions was assessed using meta-analyses for the following outcomes: activity-specific balance confidence score, Berg balance score (BBC) and time-up-and-go test (TUG). Findings A total of 115 articles highlighted that the Wii Fit has been tested in numerous healthy and pathological populations. Out of these, only a few intervention studies have focused on the prevention of chronic diseases. A large proportion of the studies focus on balance training (N = 55). This systematic review highlights several potential benefits of Wii Fit interventions and these positive observations are supported by meta-analyses data (N = 25). For example, the BBC and the TUG respond to a similar extend to Wii Fit interventions compared with traditional training. Conclusion Wii Fit has the potential to be used as a rehabilitation tool in different clinical situations. However, the current literature includes relatively few randomized controlled trials in each population. Further research is therefore required. PMID:28890847
Measuring the fine structure constant with Bragg diffraction and Bloch oscillations
NASA Astrophysics Data System (ADS)
Parker, Richard; Yu, Chenghui; Zhong, Weicheng; Estey, Brian; Müller, Holger
2017-04-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δÎ+/-/Î+/-=0.25ppb in the fine structure constant measurement, which gives over 10 million radians of phase difference between freely evolving matter waves. We have suppressed many systematic effects known in most atom interferometers with Raman beam splitters such as light shift, Zeeman effect shift as well as vibration. We have also simulated multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implemented spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
On the use of the exact exchange optimized effective potential method for static response properties
NASA Astrophysics Data System (ADS)
Krykunov, Mykhaylo; Ziegler, Tom
In the present work, we question the notion that the modified Kohn-Sham orbital energies and smaller HOMO-LUMO gaps, produced from the exact exchange optimized effective potential (EXX-OEP) method, might significantly improve the paramagnetic contribution to the NMR chemical shifts compared with the regular Hartree-Fock (HF) scheme. First of all, it is shown analytically that if there is such a local potential that produces the HF energy, and the Kohn-Sham orbitals are obtained as a result of separate rotations of the occupied and virtual HF orbitals, any static magnetic property obtained from the coupled perturbed HF method will be identical to that obtained from the EXX-OEP approach. In fact the EXX-OEP method is equivalent to the improved virtual orbitals (IVO) scheme in which the energies of the virtual orbitals are modified by an effective potential. It is shown that the IVO procedure leaves static response properties unchanged. To test our analysis numerically we have employed several variants of the EXX-OEP method, based on the expansion of the local exchange potential into a linear combination of fit functions. The different EXX-OEP schemes have been used to calculate the NMR chemical shifts for a set of small molecules containing C, H, N, O, and F atoms. Comparison of the deviation between experimental and calculated chemical shifts from the HF, the EXX-OEP, and the common energy denominator approximation (CEDA) approximation to the EXX-OEP methods has shown that for carbon, hydrogen, and fluorine the EXX-OEP methods do not yield any improvement over the HF method. For nitrogen and oxygen we have found that the EXX-OEP performs better than the HF method. However, in the limit of infinite fit basis set and, as a consequence of it, a perfect fit of the HF potential the EXX-OEP and the HF methods would afford the same chemical shifts according to our theoretical analysis. Unfortunately, without a perfect fit the chemical shifts from the EXX-OEP method strongly depend on the fit convergence. In our opinion, the EXX-OEP method should not be used for response properties as it is numerically unstable. Thus, any apparent improvement of the EXX-OEP method over the HF scheme for a finite fit basis set must be considered spurious.
Thivel, David; Ring-Dimitriou, Susanne; Weghuber, Daniel; Frelut, Marie-Laure; O'Malley, Grace
2016-01-01
The increasing prevalence of paediatric obesity and related metabolic complications has been mainly associated with lower aerobic fitness while less is known regarding potential musculoskeletal impairments. The purpose of the present systematic review was to report the evidence regarding muscular fitness in children and adolescents with obesity. A systematic article search was conducted between November 2014 and June 2015 using MEDLINE, EMBASE, CINAHL psycINFO, SPORTDiscus and SocINDEX. Articles published in English and reporting results on muscle strength and muscular fitness in children and adolescents aged 6 to 18 years were eligible. Of 548 identified titles, 36 studies were included for analyses. While laboratory-based studies described higher absolute muscular fitness in youth with obesity compared with their lean peers, these differences are negated when corrected for body weight and lean mass, then supporting field-based investigations. All interventional studies reviewed led to improved muscular fitness in youth with obesity. Children and adolescents with obesity display impaired muscular fitness compared to healthy-weight peers, which seems mainly due to factors such as excessive body weight and increased inertia of the body. Our analysis also points out the lack of information regarding the role of age, maturation or sex in the current literature and reveals that routinely used field tests analysing overall daily muscular fitness in children with obesity provide satisfactory results when compared to laboratory-based data. © 2016 S. Karger GmbH, Freiburg.
Bilotta, Gary S; Burnside, Niall G; Turley, Matthew D; Gray, Jeremy C; Orr, Harriet G
2017-01-01
Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies.
2017-01-01
Run-of-river (ROR) hydroelectric power (HEP) schemes are often presumed to be less ecologically damaging than large-scale storage HEP schemes. However, there is currently limited scientific evidence on their ecological impact. The aim of this article is to investigate the effects of ROR HEP schemes on communities of invertebrates in temperate streams and rivers, using a multi-site Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 22 systematically-selected ROR HEP schemes and 22 systematically-selected paired control sites. Five widely-used family-level invertebrate metrics (richness, evenness, LIFE, E-PSI, WHPT) were analysed using a linear mixed effects model. The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the evenness of the invertebrate community. However, no statistically significant effects were detected on the four other metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future invertebrate community impact studies. PMID:28158282
How Can Conceptual Schemes Change Teaching?
ERIC Educational Resources Information Center
Wickman, Per-Olof
2012-01-01
Lundqvist, Almqvist and Ostman describe a teacher's manner of teaching and the possible consequences it may have for students' meaning making. In doing this the article examines a teacher's classroom practice by systematizing the teacher's transactions with the students in terms of certain conceptual schemes, namely the "epistemological moves",…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirchhoff, William H.
2012-09-15
The extended logistic function provides a physically reasonable description of interfaces such as depth profiles or line scans of surface topological or compositional features. It describes these interfaces with the minimum number of parameters, namely, position, width, and asymmetry. Logistic Function Profile Fit (LFPF) is a robust, least-squares fitting program in which the nonlinear extended logistic function is linearized by a Taylor series expansion (equivalent to a Newton-Raphson approach) with no apparent introduction of bias in the analysis. The program provides reliable confidence limits for the parameters when systematic errors are minimal and provides a display of the residuals frommore » the fit for the detection of systematic errors. The program will aid researchers in applying ASTM E1636-10, 'Standard practice for analytically describing sputter-depth-profile and linescan-profile data by an extended logistic function,' and may also prove useful in applying ISO 18516: 2006, 'Surface chemical analysis-Auger electron spectroscopy and x-ray photoelectron spectroscopy-determination of lateral resolution.' Examples are given of LFPF fits to a secondary ion mass spectrometry depth profile, an Auger surface line scan, and synthetic data generated to exhibit known systematic errors for examining the significance of such errors to the extrapolation of partial profiles.« less
Error function attack of chaos synchronization based encryption schemes.
Wang, Xingang; Zhan, Meng; Lai, C-H; Gang, Hu
2004-03-01
Different chaos synchronization based encryption schemes are reviewed and compared from the practical point of view. As an efficient cryptanalysis tool for chaos encryption, a proposal based on the error function attack is presented systematically and used to evaluate system security. We define a quantitative measure (quality factor) of the effective applicability of a chaos encryption scheme, which takes into account the security, the encryption speed, and the robustness against channel noise. A comparison is made of several encryption schemes and it is found that a scheme based on one-way coupled chaotic map lattices performs outstandingly well, as judged from quality factor. Copyright 2004 American Institute of Physics.
Dynamic Restarting Schemes for Eigenvalue Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Simon, Horst D.
1999-03-10
In studies of restarted Davidson method, a dynamic thick-restart scheme was found to be excellent in improving the overall effectiveness of the eigen value method. This paper extends the study of the dynamic thick-restart scheme to the Lanczos method for symmetric eigen value problems and systematically explore a range of heuristics and strategies. We conduct a series of numerical tests to determine their relative strength and weakness on a class of electronic structure calculation problems.
Hannan, Amanda L; Hing, Wayne; Simas, Vini; Climstein, Mike; Coombes, Jeff S; Jayasinghe, Rohan; Byrnes, Joshua; Furness, James
2018-01-01
Aerobic capacity has been shown to be inversely proportionate to cardiovascular mortality and morbidity and there is growing evidence that high-intensity interval training (HIIT) appears to be more effective than moderate-intensity continuous training (MICT) in improving cardiorespiratory fitness within the cardiac population. Previously published systematic reviews in cardiovascular disease have neither investigated the effect that the number of weeks of intervention has on cardiorespiratory fitness changes, nor have adverse events been collated. We aimed to undertake a systematic review and meta-analysis of randomized controlled trials (RCTs) within the cardiac population that investigated cardiorespiratory fitness changes resulting from HIIT versus MICT and to collate adverse events. A critical narrative synthesis and meta-analysis was conducted after systematically searching relevant databases up to July 2017. We searched for RCTs that compared cardiorespiratory fitness changes resulting from HIIT versus MICT interventions within the cardiac population. Seventeen studies, involving 953 participants (465 for HIIT and 488 for MICT) were included in the analysis. HIIT was significantly superior to MICT in improving cardiorespiratory fitness overall (SMD 0.34 mL/kg/min; 95% confidence interval [CI; 0.2-0.48]; p <0.00001; I 2 =28%). There were no deaths or cardiac events requiring hospitalization reported in any study during training. Overall, there were more adverse events reported as a result of the MICT (n=14) intervention than the HIIT intervention (n=9). However, some adverse events (n=5) were not classified by intervention group. HIIT is superior to MICT in improving cardiorespiratory fitness in participants of cardiac rehabilitation (CR). Improvements in cardiorespiratory fitness are significant for CR programs of >6-week duration. Programs of 7-12 weeks' duration resulted in the largest improvements in cardiorespiratory fitness for patients with coronary artery disease. HIIT appears to be as safe as MICT for CR participants.
Hannan, Amanda L; Hing, Wayne; Simas, Vini; Climstein, Mike; Coombes, Jeff S; Jayasinghe, Rohan; Byrnes, Joshua; Furness, James
2018-01-01
Background Aerobic capacity has been shown to be inversely proportionate to cardiovascular mortality and morbidity and there is growing evidence that high-intensity interval training (HIIT) appears to be more effective than moderate-intensity continuous training (MICT) in improving cardiorespiratory fitness within the cardiac population. Previously published systematic reviews in cardiovascular disease have neither investigated the effect that the number of weeks of intervention has on cardiorespiratory fitness changes, nor have adverse events been collated. Objective We aimed to undertake a systematic review and meta-analysis of randomized controlled trials (RCTs) within the cardiac population that investigated cardiorespiratory fitness changes resulting from HIIT versus MICT and to collate adverse events. Methods A critical narrative synthesis and meta-analysis was conducted after systematically searching relevant databases up to July 2017. We searched for RCTs that compared cardiorespiratory fitness changes resulting from HIIT versus MICT interventions within the cardiac population. Results Seventeen studies, involving 953 participants (465 for HIIT and 488 for MICT) were included in the analysis. HIIT was significantly superior to MICT in improving cardiorespiratory fitness overall (SMD 0.34 mL/kg/min; 95% confidence interval [CI; 0.2–0.48]; p<0.00001; I2=28%). There were no deaths or cardiac events requiring hospitalization reported in any study during training. Overall, there were more adverse events reported as a result of the MICT (n=14) intervention than the HIIT intervention (n=9). However, some adverse events (n=5) were not classified by intervention group. Conclusion HIIT is superior to MICT in improving cardiorespiratory fitness in participants of cardiac rehabilitation (CR). Improvements in cardiorespiratory fitness are significant for CR programs of >6-week duration. Programs of 7–12 weeks’ duration resulted in the largest improvements in cardiorespiratory fitness for patients with coronary artery disease. HIIT appears to be as safe as MICT for CR participants. PMID:29416382
A Systematic Error Correction Method for TOVS Radiances
NASA Technical Reports Server (NTRS)
Joiner, Joanna; Rokke, Laurie; Einaudi, Franco (Technical Monitor)
2000-01-01
Treatment of systematic errors is crucial for the successful use of satellite data in a data assimilation system. Systematic errors in TOVS radiance measurements and radiative transfer calculations can be as large or larger than random instrument errors. The usual assumption in data assimilation is that observational errors are unbiased. If biases are not effectively removed prior to assimilation, the impact of satellite data will be lessened and can even be detrimental. Treatment of systematic errors is important for short-term forecast skill as well as the creation of climate data sets. A systematic error correction algorithm has been developed as part of a 1D radiance assimilation. This scheme corrects for spectroscopic errors, errors in the instrument response function, and other biases in the forward radiance calculation for TOVS. Such algorithms are often referred to as tuning of the radiances. The scheme is able to account for the complex, air-mass dependent biases that are seen in the differences between TOVS radiance observations and forward model calculations. We will show results of systematic error correction applied to the NOAA 15 Advanced TOVS as well as its predecessors. We will also discuss the ramifications of inter-instrument bias with a focus on stratospheric measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwanda, C.; Mandl, F.; Mitaroff, W.
2008-08-01
Using the previous Belle measurement of the inclusive photon energy in B{yields}X{sub s}{gamma} decays, we determine the first and second moments of this spectrum for minimum photon energies in the B meson rest frame ranging from 1.8 to 2.3 GeV. Combining these measurements with recent Belle data on the lepton energy and hadronic mass moments in B{yields}X{sub c}l{nu} decays, we perform fits to theoretical expressions derived in the 1S and kinetic mass schemes and extract the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V{sub cb}, the b-quark mass, and other nonperturbative parameters. In the 1S scheme analysis we find |V{sub cb}|=(41.56{+-}0.68(fit){+-}0.08({tau}{submore » B}))x10{sup -3} and m{sub b}{sup 1S}=(4.723{+-}0.055) GeV. In the kinetic scheme, we obtain |V{sub cb}|=(41.58{+-}0.69(fit){+-}0.08({tau}{sub B}){+-}0.58(th))x10{sup -3} and m{sub b}{sup kin}=(4.543{+-}0.075) GeV.« less
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon—Salmo salar, number of >1 year old Atlantic salmon, number of brown trout—Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies. PMID:27191717
Bilotta, Gary S; Burnside, Niall G; Gray, Jeremy C; Orr, Harriet G
2016-01-01
The potential environmental impacts of large-scale storage hydroelectric power (HEP) schemes have been well-documented in the literature. In Europe, awareness of these potential impacts and limited opportunities for politically-acceptable medium- to large-scale schemes, have caused attention to focus on smaller-scale HEP schemes, particularly run-of-river (ROR) schemes, to contribute to meeting renewable energy targets. Run-of-river HEP schemes are often presumed to be less environmentally damaging than large-scale storage HEP schemes. However, there is currently a lack of peer-reviewed studies on their physical and ecological impact. The aim of this article was to investigate the effects of ROR HEP schemes on communities of fish in temperate streams and rivers, using a Before-After, Control-Impact (BACI) study design. The study makes use of routine environmental surveillance data collected as part of long-term national and international monitoring programmes at 23 systematically-selected ROR HEP schemes and 23 systematically-selected paired control sites. Six area-normalised metrics of fish community composition were analysed using a linear mixed effects model (number of species, number of fish, number of Atlantic salmon-Salmo salar, number of >1 year old Atlantic salmon, number of brown trout-Salmo trutta, and number of >1 year old brown trout). The analyses showed that there was a statistically significant effect (p<0.05) of ROR HEP construction and operation on the number of species. However, no statistically significant effects were detected on the other five metrics of community composition. The implications of these findings are discussed in this article and recommendations are made for best-practice study design for future fish community impact studies.
NASA Astrophysics Data System (ADS)
Siddans, Richard; Knappett, Diane; Kerridge, Brian; Waterfall, Alison; Hurley, Jane; Latter, Barry; Boesch, Hartmut; Parker, Robert
2017-11-01
This paper describes the global height-resolved methane (CH4) retrieval scheme for the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp, developed at the Rutherford Appleton Laboratory (RAL). The scheme precisely fits measured spectra in the 7.9 micron region to allow information to be retrieved on two independent layers centred in the upper and lower troposphere. It also uses nitrous oxide (N2O) spectral features in the same spectral interval to directly retrieve effective cloud parameters to mitigate errors in retrieved methane due to residual cloud and other geophysical variables. The scheme has been applied to analyse IASI measurements between 2007 and 2015. Results are compared to model fields from the MACC greenhouse gas inversion and independent measurements from satellite (GOSAT), airborne (HIPPO) and ground (TCCON) sensors. The estimated error on methane mixing ratio in the lower- and upper-tropospheric layers ranges from 20 to 100 and from 30 to 40 ppbv, respectively, and error on the derived column-average ranges from 20 to 40 ppbv. Vertical sensitivity extends through the lower troposphere, though it decreases near to the surface. Systematic differences with the other datasets are typically < 10 ppbv regionally and < 5 ppbv globally. In the Southern Hemisphere, a bias of around 20 ppbv is found with respect to MACC, which is not explained by vertical sensitivity or found in comparison of IASI to TCCON. Comparisons to HIPPO and MACC support the assertion that two layers can be independently retrieved and provide confirmation that the estimated random errors on the column- and layer-averaged amounts are realistic. The data have been made publically available via the Centre for Environmental Data Analysis (CEDA) data archive (Siddans, 2016).
Physical Fitness: A Way of Life. Second Edition.
ERIC Educational Resources Information Center
Getchell, Bud
The basics of physical fitness and information for developing a systematic program of exercise and physical activity for the individual are outlined. This book is divided into three major areas. Part one contains chapters dealing with basic physical fitness, understanding the human body and its needs, and methods of appraising individual fitness.…
NASA Astrophysics Data System (ADS)
Samoylov, O.; Petti, R.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Camilleri, L.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Degaudenzi, H.; De Santo, A.; Del Prete, T.; Di Lella, L.; do Couto e Silva, E.; Dumarchez, J.; Duyang, H.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kim, J. J.; Kirsanov, M.; Kulagin, S.; Kullenberg, C. T.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Levy, J.-M.; Libo, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Lyubushkin, V.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mezzetto, M.; Mishra, S. R.; Moorhead, G. F.; Naumov, D.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Popov, B.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Scott, A. M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Tian, X. C.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.
2013-11-01
We present our new measurement of the cross-section for charm dimuon production in neutrino-iron interactions based upon the full statistics collected by the NOMAD experiment. After background subtraction we observe 15 344 charm dimuon events, providing the largest sample currently available. The analysis exploits the large inclusive charged current sample - about 9×106 events after all analysis cuts - and the high resolution NOMAD detector to constrain the total systematic uncertainty on the ratio of charm dimuon to inclusive Charged Current (CC) cross-sections to ˜2%. We also perform a fit to the NOMAD data to extract the charm production parameters and the strange quark sea content of the nucleon within the NLO QCD approximation. We obtain a value of mc(mc)=1.159±0.075 GeV/c2 for the running mass of the charm quark in the MS¯ scheme and a strange quark sea suppression factor of κs=0.591±0.019 at Q2=20 GeV/c2.
Half-lives of α -decaying nuclei in the medium-mass region within the transfer matrix method
NASA Astrophysics Data System (ADS)
Wu, Shuangxiang; Qian, Yibin; Ren, Zhongzhou
2018-05-01
The α -decay half-lives of even-even nuclei from Sm to Th are systematically studied based on the transfer matrix method. For the nuclear potential, a type of cosh-parametrized form is applied to calculate the penetration probability. Through a least-squares fit to experimental half-lives, we optimize the parameters in the potential and the α preformation factor P0. During this process, P0 is treated as a constant for each parent nucleus. Eventually, the calculated half-lives are found to agree well with the experimental data, which verifies the accuracy of the present approach. Furthermore, in recent studies, P0 is regulated by the shell and paring effects plus the nuclear deformation. To this end, P0 is here associated with the structural quantity, i.e., the microscopic correction of nuclear mass (Emic). In this way, the agreement between theory and experiment is greatly improved by more than 20%, validating the appropriate treatment of P0 in the scheme of Emic.
B{sub K} with two flavors of dynamical overlap fermions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aoki, S.; Riken BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973; Fukaya, H.
2008-05-01
We present a two-flavor QCD calculation of B{sub K} on a 16{sup 3}x32 lattice at a{approx}0.12 fm (or equivalently a{sup -1}=1.67 GeV). Both valence and sea quarks are described by the overlap fermion formulation. The matching factor is calculated nonperturbatively with the so-called RI/MOM scheme. We find that the lattice data are well described by the next-to-leading order (NLO) partially quenched chiral perturbation theory (PQChPT) up to around a half of the strange quark mass (m{sub s}{sup phys}/2). The data at quark masses heavier than m{sub s}{sup phys}/2 are fitted including a part of next-to-next-to-leading order terms. We obtain B{submore » K}{sup MS}(2 GeV)=0.537(4)(40), where the first error is statistical and the second is an estimate of systematic uncertainties from finite volume, fixing topology, the matching factor, and the scale setting.« less
Measuring h /mCs and the Fine Structure Constant with Bragg Diffraction and Bloch Oscillations
NASA Astrophysics Data System (ADS)
Parker, Richard
2016-05-01
We have demonstrated a new scheme for atom interferometry based on large-momentum-transfer Bragg beam splitters and Bloch oscillations. In this new scheme, we have achieved a resolution of δα / α =0.25ppb in the fine structure constant measurement, which gives up to 4.4 million radians of phase difference between freely evolving matter waves. We suppress many systematic effects, e.g., Zeeman shifts and effects from Earth's gravity and vibrations, use Bloch oscillations to increase the signal and reduce the diffraction phase, simulate multi-atom Bragg diffraction to understand sub-ppb systematic effects, and implement spatial filtering to further suppress systematic effects. We present our recent progress toward a measurement of the fine structure constant, which will provide a stringent test of the standard model of particle physics.
A Guide to Systematic Planning for Vocational and Technical Schools. Research 22.
ERIC Educational Resources Information Center
Meckley, Richard F.; And Others
A school planning scheme involving 46 principle activities which occur over a 38-month period is presented. This scheme was developed for individuals responsible for the planning of vocational and technical schools, i.e., supervisors, state staff, university school plant planners, architects, and local school administrators. The activities…
Teacher Retirement Ponzi Schemes. Conference Paper 2009-02
ERIC Educational Resources Information Center
Kotlikoff, Laurence J.
2009-01-01
This paper is about the funding status of teachers' retirement pension schemes. Its goal is to relate the accounting for the funding of these pension obligations to the endemic, systematic, and fundamentally fraudulent system of accounting our country uses to assess the financial positions of federal, state, and local government as well as many…
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Gottlieb, David; Abarbanel, Saul
1993-01-01
We present a systematic method for constructing boundary conditions (numerical and physical) of the required accuracy, for compact (Pade-like) high-order finite-difference schemes for hyperbolic systems. First, a roper summation-by-parts formula is found for the approximate derivative. A 'simultaneous approximation term' (SAT) is then introduced to treat the boundary conditions. This procedure leads to time-stable schemes even in the system case. An explicit construction of the fourth-order compact case is given. Numerical studies are presented to verify the efficacy of the approach.
High-Order Energy Stable WENO Schemes
NASA Technical Reports Server (NTRS)
Yamaleev, Nail K.; Carpenter, Mark H.
2009-01-01
A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables 'energy stable' modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.
An unstructured shock-fitting solver for hypersonic plasma flows in chemical non-equilibrium
NASA Astrophysics Data System (ADS)
Pepe, R.; Bonfiglioli, A.; D'Angola, A.; Colonna, G.; Paciorri, R.
2015-11-01
A CFD solver, using Residual Distribution Schemes on unstructured grids, has been extended to deal with inviscid chemical non-equilibrium flows. The conservative equations have been coupled with a kinetic model for argon plasma which includes the argon metastable state as independent species, taking into account electron-atom and atom-atom processes. Results in the case of an hypersonic flow around an infinite cylinder, obtained by using both shock-capturing and shock-fitting approaches, show higher accuracy of the shock-fitting approach.
NASA Astrophysics Data System (ADS)
Güttler, I.
2012-04-01
Systematic errors in near-surface temperature (T2m), total cloud cover (CLD), shortwave albedo (ALB) and surface net longwave (SNL) and shortwave energy flux (SNS) are detected in simulations of RegCM on 50 km resolution over the European CORDEX domain when forced with ERA-Interim reanalysis. Simulated T2m is compared to CRU 3.0 and other variables to GEWEX-SRB 3.0 dataset. Most of systematic errors found in SNL and SNS are consistent with errors in T2m, CLD and ALB: they include prevailing negative errors in T2m and positive errors in CLD present during most of the year. Errors in T2m and CLD can be associated with the overestimation of SNL and SNS in most simulations. Impact of errors in albedo are primarily confined to north Africa, where e.g. underestimation of albedo in JJA is consistent with associated surface heating and positive SNS and T2m errors. Sensitivity to the choice of the PBL scheme and various parameters in PBL schemes is examined from an ensemble of 20 simulations. The recently implemented prognostic PBL scheme performs over Europe with a mixed success when compared to standard diagnostic scheme with a general increase of errors in T2m and CLD over all of the domain. Nevertheless, the improvements in T2m can be found in e.g. north-eastern Europe during DJF and western Europe during JJA where substantial warm biases existed in simulations with the diagnostic scheme. The most detectable impact, in terms of the JJA T2m errors over western Europe, comes form the variation in the formulation of mixing length. In order to reduce the above errors an update of the RegCM albedo values and further work in customizing PBL scheme is suggested.
An improved lambda-scheme for one-dimensional flows
NASA Technical Reports Server (NTRS)
Moretti, G.; Dipiano, M. T.
1983-01-01
A code for the calculation of one-dimensional flows is presented, which combines a simple and efficient version of the lambda-scheme with tracking of discontinuities. The latter is needed to identify points where minor departures from the basic integration scheme are applied to prevent infiltration of numerical errors. Such a tracking is obtained via a systematic application of Boolean algebra. It is, therefore, very efficient. Fifteen examples are presented and discussed in detail. The results are exceptionally good. All discontinuites are captured within one mesh interval.
Community first responders and responder schemes in the United Kingdom: systematic scoping review.
Phung, Viet-Hai; Trueman, Ian; Togher, Fiona; Orner, Roderick; Siriwardena, A Niroshan
2017-06-19
Community First Responder (CFR) schemes support lay people to respond to medical emergencies, working closely with ambulance services. They operate widely in the UK. There has been no previous review of UK literature on these schemes. This is the first systematic scoping review of UK literature on CFR schemes, which identifies the reasons for becoming a CFR, requirements for training and feedback and confusion between the CFR role and that of ambulance service staff. This study also reveals gaps in the evidence base for CFR schemes. We conducted a systematic scoping review of the published literature, in the English language from 2000 onwards using specific search terms in six databases. Narrative synthesis was used to analyse article content. Nine articles remained from the initial search of 15,969 articles after removing duplicates, title and abstract and then full text review. People were motivated to become CFRs through an altruistic desire to help others. They generally felt rewarded by their work but recognised that the help they provided was limited by their training compared with ambulance staff. There were concerns about the possible emotional impact on CFRs responding to incidents. CFRs felt that better feedback would enhance their learning. Ongoing training and support were viewed as essential to enable CFRs to progress. They perceived that public recognition of the CFR role was low, patients sometimes confusing them with ambulance staff. Relationships with the ambulance service were sometimes ambivalent due to confusion over roles. There was support for local autonomy of CFR schemes but with greater sharing of best practice. Most studies dated from 2005 and were descriptive rather than analytical. In the UK and Australia CFRs are usually lay volunteers equipped with basic skills for responding to medical emergencies, whereas in the US they include other emergency staff as well as lay people. Opportunities for future research include exploring experiences and perceptions of patients who have been treated by CFRs and other stakeholders, while also evaluating the effectiveness and costs of CFR schemes.
One size fits all? An assessment tool for solid waste management at local and national levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broitman, Dani, E-mail: danib@techunix.technion.ac.il; Ayalon, Ofira; Kan, Iddo
2012-10-15
Highlights: Black-Right-Pointing-Pointer Waste management schemes are generally implemented at national or regional level. Black-Right-Pointing-Pointer Local conditions characteristics and constraints are often neglected. Black-Right-Pointing-Pointer We developed an economic model able to compare multi-level waste management options. Black-Right-Pointing-Pointer A detailed test case with real economic data and a best-fit scenario is described. Black-Right-Pointing-Pointer Most efficient schemes combine clear National directives with local level flexibility. - Abstract: As environmental awareness rises, integrated solid waste management (WM) schemes are increasingly being implemented all over the world. The different WM schemes usually address issues such as landfilling restrictions (mainly due to methane emissions and competingmore » land use), packaging directives and compulsory recycling goals. These schemes are, in general, designed at a national or regional level, whereas local conditions and constraints are sometimes neglected. When national WM top-down policies, in addition to setting goals, also dictate the methods by which they are to be achieved, local authorities lose their freedom to optimize their operational WM schemes according to their specific characteristics. There are a myriad of implementation options at the local level, and by carrying out a bottom-up approach the overall national WM system will be optimal on economic and environmental scales. This paper presents a model for optimizing waste strategies at a local level and evaluates this effect at a national level. This is achieved by using a waste assessment model which enables us to compare both the economic viability of several WM options at the local (single municipal authority) level, and aggregated results for regional or national levels. A test case based on various WM approaches in Israel (several implementations of mixed and separated waste) shows that local characteristics significantly influence WM costs, and therefore the optimal scheme is one under which each local authority is able to implement its best-fitting mechanism, given that national guidelines are kept. The main result is that strict national/regional WM policies may be less efficient, unless some type of local flexibility is implemented. Our model is designed both for top-down and bottom-up assessment, and can be easily adapted for a wide range of WM option comparisons at different levels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolphin, Andrew E., E-mail: adolphin@raytheon.com
The combination of spectroscopic stellar metallicities and resolved star color–magnitude diagrams (CMDs) has the potential to constrain the entire star formation history (SFH) of a galaxy better than fitting CMDs alone (as is most common in SFH studies using resolved stellar populations). In this paper, two approaches to incorporating external metallicity information into CMD-fitting techniques are presented. Overall, the joint fitting of metallicity and CMD information can increase the precision of measured age–metallicity relationships (AMRs) and star formation rates by 10% over CMD fitting alone. However, systematics in stellar isochrones and mismatches between spectroscopic and photometric determinations of metallicity canmore » reduce the accuracy of the recovered SFHs. I present a simple mitigation of these systematics that can reduce their amplitude to the level obtained from CMD fitting alone, while ensuring that the AMR is consistent with spectroscopic metallicities. As is the case in CMD-fitting analysis, improved stellar models and calibrations between spectroscopic and photometric metallicities are currently the primary impediment to gains in SFH precision from jointly fitting stellar metallicities and CMDs.« less
Richards, Emilie J; Brown, Jeremy M; Barley, Anthony J; Chong, Rebecca A; Thomson, Robert C
2018-02-19
The use of large genomic datasets in phylogenetics has highlighted extensive topological variation across genes. Much of this discordance is assumed to result from biological processes. However, variation among gene trees can also be a consequence of systematic error driven by poor model fit, and the relative importance of biological versus methodological factors in explaining gene tree variation is a major unresolved question. Using mitochondrial genomes to control for biological causes of gene tree variation, we estimate the extent of gene tree discordance driven by systematic error and employ posterior prediction to highlight the role of model fit in producing this discordance. We find that the amount of discordance among mitochondrial gene trees is similar to the amount of discordance found in other studies that assume only biological causes of variation. This similarity suggests that the role of systematic error in generating gene tree variation is underappreciated and critical evaluation of fit between assumed models and the data used for inference is important for the resolution of unresolved phylogenetic questions.
Morgan, Fiona; Battersby, Alysia; Weightman, Alison L; Searchfield, Lydia; Turley, Ruth; Morgan, Helen; Jagroo, James; Ellis, Simon
2016-03-05
Physical inactivity levels are rising worldwide with major implications for the health of the population and the prevalence of non-communicable diseases. Exercise referral schemes (ERS) continue to be a popular intervention utilised by healthcare practitioners to increase physical activity. We undertook a systematic review of views studies in order to inform guidance from the UK National Institute of Health and Care Excellence (NICE) on exercise referral schemes to promote physical activity. This paper reports on the participant views identified, to inform those seeking to refine schemes to increase attendance and adherence. Fifteen databases and a wide range of websites and grey literature sources were searched systematically for publications from 1995 to June 2013. In addition, a range of supplementary methods including, a call for evidence by NICE, contacting authors, reference list checking and citation tracking were utilised to identify additional research. Studies were included where they detailed schemes for adults aged 19 years or older who were 'inactive' (i.e. they are not currently meeting UK physical activity guidelines). Study selection was conducted independently in duplicate. Quality assessment was undertaken by one reviewer and checked by a second, with 20 % of papers being considered independently in duplicate. Papers were coded in qualitative data analysis software Atlas.ti. This review was reported in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement). Evidence from 33 UK-relevant studies identified that support from providers, other attendees and family was an important facilitator of adherence and 'making exercise a habit' post programme, as was the variety and personalised nature of sessions offered. Barriers to attendance included the inconvenient timing of sessions, their cost and location. An intimidating gym atmosphere, a dislike of the music and TV and a lack of confidence in operating gym equipment were frequently reported. These findings provide valuable insights that commissioners and providers should consider. The main themes were consistent across a large number of studies and further research should concentrate on programmes that reflect these findings.
NASA Astrophysics Data System (ADS)
Chen, Wei-Guo; Wan, Xia; Wang, You-Kai
2018-05-01
A top quark mass measurement scheme near the {{t}}\\bar{{{t}}} production threshold in future {{{e}}}+{{{e}}}- colliders, e.g. the Circular Electron Positron Collider (CEPC), is simulated. A {χ }2 fitting method is adopted to determine the number of energy points to be taken and their locations. Our results show that the optimal energy point is located near the largest slope of the cross section v. beam energy plot, and the most efficient scheme is to concentrate all luminosity on this single energy point in the case of one-parameter top mass fitting. This suggests that the so-called data-driven method could be the best choice for future real experimental measurements. Conveniently, the top mass statistical uncertainty can also be calculated directly by the error matrix even without any sampling and fitting. The agreement of the above two optimization methods has been checked. Our conclusion is that by taking 50 fb‑1 total effective integrated luminosity data, the statistical uncertainty of the top potential subtracted mass can be suppressed to about 7 MeV and the total uncertainty is about 30 MeV. This precision will help to identify the stability of the electroweak vacuum at the Planck scale. Supported by National Science Foundation of China (11405102) and the Fundamental Research Funds for the Central Universities of China (GK201603027, GK201803019)
Large-region acoustic source mapping using a movable array and sparse covariance fitting.
Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L
2017-01-01
Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].
Establishing Factor Validity Using Variable Reduction in Confirmatory Factor Analysis.
ERIC Educational Resources Information Center
Hofmann, Rich
1995-01-01
Using a 21-statement attitude-type instrument, an iterative procedure for improving confirmatory model fit is demonstrated within the context of the EQS program of P. M. Bentler and maximum likelihood factor analysis. Each iteration systematically eliminates the poorest fitting statement as identified by a variable fit index. (SLD)
Health Benefits of Zumba Fitness Training: A Systematic Review.
Vendramin, Barbara; Bergamin, Marco; Gobbo, Stefano; Cugusi, Lucia; Duregon, Federica; Bullo, Valentina; Zaccaria, Marco; Neunhaeuserer, Daniel; Ermolao, Andrea
2016-12-01
As an alternative to the traditional approach to physical exercise, new kinds of organized physical activity have been developed designed to engage large segments of the population. Among these, Zumba fitness is extremely popular, with a growing number of participants. This article aims to summarize and analyze the body of evidence on the effects of Zumba fitness interventions on physical function, fitness, and wellbeing. TYPE: Systematic review. Keyword "Zumba" was identified as term for the literature research in MEDLINE, Scopus, Bandolier, PEDro, and Web of Science. Only studies published in peer-reviewed journals written in English language were considered. Eleven manuscripts were classified as eligible with 586 total participants, ranging in age from 18 to 65 years. After a quality appraisal, we classified 4 studies as high-quality investigations and 7 as low quality. Results were summarized in several domains: "anthropometric parameters and body composition," "hormonal and metabolic profiles," "aerobic and cardiovascular performance," "muscular fitness parameters," and "quality of life, pain score and physical activity questionnaire." Results from this systematic review indicated that Zumba fitness could be considered an effective type of physical activity able to improve aerobic capacity. Small but positive benefits were noted for reducing body weight and other body measurements. Furthermore, other effects, including psychological and social benefits on quality of life, were found after Zumba fitness interventions. Otherwise, limited evidence described positive effects on muscular strength and flexibility. Zumba fitness could be considered an effective type of physical activity able to improve aerobic capacity. Limited evidence described positive effects on muscular strength and flexibility. II. Copyright © 2016 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem
2018-01-01
In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Unsworth, Carolyn A; Baker, Anne M; So, Man H; Harries, Priscilla; O'Neill, Desmond
2017-08-31
Limited evidence exists regarding fitness-to-drive for people with the mental health conditions of schizophrenia, stress/anxiety disorder, depression, personality disorder and obsessive compulsive disorder (herein simply referred to as 'mental health conditions'). The aim of this paper was to systematically search and classify all published studies regarding driving for this population, and then critically appraise papers addressing assessment of fitness-to-drive where the focus was not on the impact of medication on driving. A systematic search of three databases (CINAHL, PSYCHINFO, EMBASE) was completed from inception to May 2016 to identify all articles on driving and mental health conditions. Papers meeting the eligibility criteria of including data relating to assessment of fitness-to-drive were critically appraised using the American Academy of Neurology and Centre for Evidence-Based Medicine protocols. A total of 58 articles met the inclusion criteria of driving among people with mental health conditions studied, and of these, 16 contained data and an explicit focus on assessment of fitness-to-drive. Assessment of fitness-to-drive was reported in three ways: 1) factors impacting on the ability to drive safely among people with mental health conditions, 2) capability and perception of health professionals assessing fitness-to-drive of people with mental health conditions, and 3) crash rates. The level of evidence of the published studies was low due to the absence of controls, and the inability to pool data from different diagnostic groups. Evidence supporting fitness-to-drive is conflicting. There is a relatively small literature in the area of driving with mental health conditions, and the overall quality of studies examining fitness-to-drive is low. Large-scale longitudinal studies with age-matched controls are urgently needed in order to determine the effects of different conditions on fitness-to-drive.
Added value of double reading in diagnostic radiology,a systematic review.
Geijer, Håkan; Geijer, Mats
2018-06-01
Double reading in diagnostic radiology can find discrepancies in the original report, but a systematic program of double reading is resource consuming. There are conflicting opinions on the value of double reading. The purpose of the current study was to perform a systematic review on the value of double reading. A systematic review was performed to find studies calculating the rate of misses and overcalls with the aim of establishing the added value of double reading by human observers. The literature search resulted in 1610 hits. After abstract and full-text reading, 46 articles were selected for analysis. The rate of discrepancy varied from 0.4 to 22% depending on study setting. Double reading by a sub-specialist, in general, led to high rates of changed reports. The systematic review found rather low discrepancy rates. The benefit of double reading must be balanced by the considerable number of working hours a systematic double-reading scheme requires. A more profitable scheme might be to use systematic double reading for selected, high-risk examination types. A second conclusion is that there seems to be a value of sub-specialisation for increased report quality. A consequent implementation of this would have far-reaching organisational effects. • In double reading, two or more radiologists read the same images. • A systematic literature review was performed. • The discrepancy rates varied from 0.4 to 22% in various studies. • Double reading by sub-specialists found high discrepancy rates.
Activity Detection and Retrieval for Image and Video Data with Limited Training
2015-06-10
applications. Here we propose two techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a... automata . For our second approach to segmentation, we employ a region based segmentation technique that is capable of handling intensity inhomogeneity...techniques for image segmentation. The first involves an automata based multiple threshold selection scheme, where a mixture of Gaussian is fitted to the
NASA Astrophysics Data System (ADS)
Dong, Shidu; Yang, Xiaofan; He, Bo; Liu, Guojin
2006-11-01
Radiance coming from the interior of an uncooled infrared camera has a significant effect on the measured value of the temperature of the object. This paper presents a three-phase compensation scheme for coping with this effect. The first phase acquires the calibration data and forms the calibration function by least square fitting. Likewise, the second phase obtains the compensation data and builds the compensation function by fitting. With the aid of these functions, the third phase determines the temperature of the object in concern from any given ambient temperature. It is known that acquiring the compensation data of a camera is very time-consuming. For the purpose of getting the compensation data at a reasonable time cost, we propose a transplantable scheme. The idea of this scheme is to calculate the ratio between the central pixel’s responsivity of the child camera to the radiance from the interior and that of the mother camera, followed by determining the compensation data of the child camera using this ratio and the compensation data of the mother camera Experimental results show that either of the child camera and the mother camera can measure the temperature of the object with an error of no more than 2°C.
Probing the Cosmological Principle in the counts of radio galaxies at different frequencies
NASA Astrophysics Data System (ADS)
Bengaly, Carlos A. P.; Maartens, Roy; Santos, Mario G.
2018-04-01
According to the Cosmological Principle, the matter distribution on very large scales should have a kinematic dipole that is aligned with that of the CMB. We determine the dipole anisotropy in the number counts of two all-sky surveys of radio galaxies. For the first time, this analysis is presented for the TGSS survey, allowing us to check consistency of the radio dipole at low and high frequencies by comparing the results with the well-known NVSS survey. We match the flux thresholds of the catalogues, with flux limits chosen to minimise systematics, and adopt a strict masking scheme. We find dipole directions that are in good agreement with each other and with the CMB dipole. In order to compare the amplitude of the dipoles with theoretical predictions, we produce sets of lognormal realisations. Our realisations include the theoretical kinematic dipole, galaxy clustering, Poisson noise, simulated redshift distributions which fit the NVSS and TGSS source counts, and errors in flux calibration. The measured dipole for NVSS is ~2 times larger than predicted by the mock data. For TGSS, the dipole is almost ~ 5 times larger than predicted, even after checking for completeness and taking account of errors in source fluxes and in flux calibration. Further work is required to understand the nature of the systematics that are the likely cause of the anomalously large TGSS dipole amplitude.
Mishra, Dheerendra; Mukhopadhyay, Sourav; Kumari, Saru; Khan, Muhammad Khurram; Chaturvedi, Ankita
2014-05-01
Telecare medicine information systems (TMIS) present the platform to deliver clinical service door to door. The technological advances in mobile computing are enhancing the quality of healthcare and a user can access these services using its mobile device. However, user and Telecare system communicate via public channels in these online services which increase the security risk. Therefore, it is required to ensure that only authorized user is accessing the system and user is interacting with the correct system. The mutual authentication provides the way to achieve this. Although existing schemes are either vulnerable to attacks or they have higher computational cost while an scalable authentication scheme for mobile devices should be secure and efficient. Recently, Awasthi and Srivastava presented a biometric based authentication scheme for TMIS with nonce. Their scheme only requires the computation of the hash and XOR functions.pagebreak Thus, this scheme fits for TMIS. However, we observe that Awasthi and Srivastava's scheme does not achieve efficient password change phase. Moreover, their scheme does not resist off-line password guessing attack. Further, we propose an improvement of Awasthi and Srivastava's scheme with the aim to remove the drawbacks of their scheme.
Knowledge translation to fitness trainers: A systematic review
2010-01-01
Background This study investigates approaches for translating evidence-based knowledge for use by fitness trainers. Specific questions were: Where do fitness trainers get their evidence-based information? What types of interventions are effective for translating evidence-based knowledge for use by fitness trainers? What are the barriers and facilitators to the use of evidence-based information by fitness trainers in their practice? Methods We describe a systematic review of studies about knowledge translation interventions targeting fitness trainers. Fitness trainers were defined as individuals who provide exercise program design and supervision services to the public. Nurses, physicians, physiotherapists, school teachers, athletic trainers, and sport team strength coaches were excluded. Results Of 634 citations, two studies were eligible for inclusion: a survey of 325 registered health fitness professionals (66% response rate) and a qualitative study of 10 fitness instructors. Both studies identified that fitness trainers obtain information from textbooks, networking with colleagues, scientific journals, seminars, and mass media. Fitness trainers holding higher levels of education are reported to use evidence-based information sources such as scientific journals compared to those with lower education levels, who were reported to use mass media sources. The studies identified did not evaluate interventions to translate evidence-based knowledge for fitness trainers and did not explore factors influencing uptake of evidence in their practice. Conclusion Little is known about how fitness trainers obtain and incorporate new evidence-based knowledge into their practice. Further exploration and specific research is needed to better understand how emerging health-fitness evidence can be translated to maximize its use by fitness trainers providing services to the general public. PMID:20398317
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haustein, P.E.; Brenner, D.S.; Casten, R.F.
1988-07-01
A new semiempirical method that significantly simplifies atomic mass systematics and which provides a method for making mass predictions by linear interpolation is discussed in the context of the nuclear valence space. In certain regions complicated patterns of mass systematics in traditional plots versus Z, N, or isospin are consolidated and transformed into linear ones extending over long isotopic and isotonic sequences.
Motor competence and health related physical fitness in youth: A systematic review.
Cattuzzo, Maria Teresa; Dos Santos Henrique, Rafael; Ré, Alessandro Hervaldo Nicolai; de Oliveira, Ilana Santos; Melo, Bruno Machado; de Sousa Moura, Mariana; de Araújo, Rodrigo Cappato; Stodden, David
2016-02-01
This study aimed to review the scientific evidence on associations between motor competence (MC) and components of health related physical fitness (HRPF), in children and adolescents. Systematic review. Systematic search of Academic Search Premier, ERIC, PubMed, PsycInfo, Scopus, SportDiscus, and Web of Science databases was undertaken between October 2012 and December 2013. Studies examining associations between MC and HRPF components (body weight status, cardiorespiratory fitness, musculoskeletal fitness and flexibility) in healthy children and adolescents, published between 1990 and 2013, were included. Risk of bias within studies was assessed using CONSORT and STROBE guidelines. The origin, design, sample, measure of MC, measure of the HRPF, main results and statistics of the studies were analyzed and a narrative synthesis was conducted. Forty-four studies matched all criteria; 16 were classified as low risk of bias and 28 as medium risk. There is strong scientific evidence supporting an inverse association between MC and body weight status (27 out of 33 studies) and a positive association between MC and cardiorespiratory fitness (12 out of 12 studies) and musculoskeletal fitness (7 out of 11 studies). The relationship between MC and flexibility was uncertain. Considering the noted associations between various assessments of MC and with multiple aspects of HRPF, the development of MC in childhood may both directly and indirectly augment HRPF and may serve to enhance the development of long-term health outcomes in children and adolescents. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Jakobsen, Sofie; Jensen, Frank
2014-12-09
We assess the accuracy of force field (FF) electrostatics at several levels of approximation from the standard model using fixed partial charges to conformational specific multipole fits including up to quadrupole moments. Potential-derived point charges and multipoles are calculated using least-squares methods for a total of ∼1000 different conformations of the 20 natural amino acids. Opposed to standard charge fitting schemes the procedure presented in the current work employs fitting points placed on a single isodensity surface, since the electrostatic potential (ESP) on such a surface determines the ESP at all points outside this surface. We find that the effect of multipoles beyond partial atomic charges is of the same magnitude as the effect due to neglecting conformational dependency (i.e., polarizability), suggesting that the two effects should be included at the same level in FF development. The redundancy at both the partial charge and multipole levels of approximation is quantified. We present an algorithm which stepwise reduces or increases the dimensionality of the charge or multipole parameter space and provides an upper limit of the ESP error that can be obtained at a given truncation level. Thereby, we can identify a reduced set of multipole moments corresponding to ∼40% of the total number of multipoles. This subset of parameters provides a significant improvement in the representation of the ESP compared to the simple point charge model and close to the accuracy obtained using the complete multipole parameter space. The selection of the ∼40% most important multipole sites is highly transferable among different conformations, and we find that quadrupoles are of high importance for atoms involved in π-bonding, since the anisotropic electric field generated in such regions requires a large degree of flexibility.
Fast Track Teacher Education: A Review of the Research Literature on "Teach For All" Schemes
ERIC Educational Resources Information Center
McConney, Andrew; Price, Anne; Woods-McConney, Amanda
2012-01-01
This review of the research literature was commissioned by the New Zealand Post-Primary Teachers Association (PPTA) Te Wehengarua as a means of informing the decision-making of the Association and its members about the Teach For All (TFA) scheme seeking to prepare teachers for New Zealand's schools. The systematic review is about fast track…
Investigation of the particle-core structure of odd-mass nuclei in the NpNn scheme
NASA Astrophysics Data System (ADS)
Bucurescu, D.; Cata, G.; Cutoiu, D.; Dragulescu, E.; Ivasu, M.; Zamfir, N. V.; Gizon, A.; Gizon, J.
1989-10-01
The NpNn scheme is applied to data related to collective band structures determined by the unique parity shell model orbitals in odd-A nuclei from the mass regions A≌80-100 and A≌130. Simple systematics are obtained which give a synthetic picture of the evolution of the particle-core coupling in these nuclear regions.
Pay-for-performance in disease management: a systematic review of the literature.
de Bruin, Simone R; Baan, Caroline A; Struijs, Jeroen N
2011-10-14
Pay-for-performance (P4P) is increasingly implemented in the healthcare system to encourage improvements in healthcare quality. P4P is a payment model that rewards healthcare providers for meeting pre-established targets for delivery of healthcare services by financial incentives. Based on their performance, healthcare providers receive either additional or reduced payment. Currently, little is known about P4P schemes intending to improve delivery of chronic care through disease management. The objectives of this paper are therefore to provide an overview of P4P schemes used to stimulate delivery of chronic care through disease management and to provide insight into their effects on healthcare quality and costs. A systematic PubMed search was performed for English language papers published between 2000 and 2010 describing P4P schemes related to the implementation of disease management. Wagner's chronic care model was used to make disease management operational. Eight P4P schemes were identified, introduced in the USA (n = 6), Germany (n = 1), and Australia (n = 1). Five P4P schemes were part of a larger scheme of interventions to improve quality of care, whereas three P4P schemes were solely implemented. Most financial incentives were rewards, selective, and granted on the basis of absolute performance. More variation was found in incented entities and the basis for providing incentives. Information about motivation, certainty, size, frequency, and duration of the financial incentives was generally limited. Five studies were identified that evaluated the effects of P4P on healthcare quality. Most studies showed positive effects of P4P on healthcare quality. No studies were found that evaluated the effects of P4P on healthcare costs. The number of P4P schemes to encourage disease management is limited. Hardly any information is available about the effects of such schemes on healthcare quality and costs. © 2011 de Bruin et al; licensee BioMed Central Ltd.
Pay-for-performance in disease management: a systematic review of the literature
2011-01-01
Background Pay-for-performance (P4P) is increasingly implemented in the healthcare system to encourage improvements in healthcare quality. P4P is a payment model that rewards healthcare providers for meeting pre-established targets for delivery of healthcare services by financial incentives. Based on their performance, healthcare providers receive either additional or reduced payment. Currently, little is known about P4P schemes intending to improve delivery of chronic care through disease management. The objectives of this paper are therefore to provide an overview of P4P schemes used to stimulate delivery of chronic care through disease management and to provide insight into their effects on healthcare quality and costs. Methods A systematic PubMed search was performed for English language papers published between 2000 and 2010 describing P4P schemes related to the implementation of disease management. Wagner's chronic care model was used to make disease management operational. Results Eight P4P schemes were identified, introduced in the USA (n = 6), Germany (n = 1), and Australia (n = 1). Five P4P schemes were part of a larger scheme of interventions to improve quality of care, whereas three P4P schemes were solely implemented. Most financial incentives were rewards, selective, and granted on the basis of absolute performance. More variation was found in incented entities and the basis for providing incentives. Information about motivation, certainty, size, frequency, and duration of the financial incentives was generally limited. Five studies were identified that evaluated the effects of P4P on healthcare quality. Most studies showed positive effects of P4P on healthcare quality. No studies were found that evaluated the effects of P4P on healthcare costs. Conclusion The number of P4P schemes to encourage disease management is limited. Hardly any information is available about the effects of such schemes on healthcare quality and costs. PMID:21999234
Rabow, A. A.; Scheraga, H. A.
1996-01-01
We have devised a Cartesian combination operator and coding scheme for improving the performance of genetic algorithms applied to the protein folding problem. The genetic coding consists of the C alpha Cartesian coordinates of the protein chain. The recombination of the genes of the parents is accomplished by: (1) a rigid superposition of one parent chain on the other, to make the relation of Cartesian coordinates meaningful, then, (2) the chains of the children are formed through a linear combination of the coordinates of their parents. The children produced with this Cartesian combination operator scheme have similar topology and retain the long-range contacts of their parents. The new scheme is significantly more efficient than the standard genetic algorithm methods for locating low-energy conformations of proteins. The considerable superiority of genetic algorithms over Monte Carlo optimization methods is also demonstrated. We have also devised a new dynamic programming lattice fitting procedure for use with the Cartesian combination operator method. The procedure finds excellent fits of real-space chains to the lattice while satisfying bond-length, bond-angle, and overlap constraints. PMID:8880904
A policy-capturing study of the simultaneous effects of fit with jobs, groups, and organizations.
Kristof-Brown, Amy L; Jansen, Karen J; Colbert, Amy E
2002-10-01
The authors report an experimental policy-capturing study that examines the simultaneous impact of person-job (PJ), person-group (PG), and person-organization (PO) fit on work satisfaction. Using hierarchical linear modeling, the authors determined that all 3 types of fit had important, independent effects on satisfaction. Work experience explained systematic differences in how participants weighted each type of fit. Multiple interactions also showed participants used complex strategies for combining fit cues.
Is compensation "bad for health"? A systematic meta-review.
Spearing, Natalie M; Connelly, Luke B
2011-01-01
There is a common perception that injury compensation has a negative impact on health status, and systematic reviews supporting this thesis have been used to influence policy and practice decisions. This study evaluates the quality of the empirical evidence of a negative correlation between injury compensation and health outcomes, based on systematic reviews involving both verifiable and non-verifiable injuries. Systematic meta-review (a "review of reviews"). PubMED, CINAHL, EMBASE, PEDro, PsycInfo, EconLit, Lexis, ABI/INFORM, The Cochrane Library, and the AHRQ EPC were searched from the date of their inception to August 2008, and hand searches were conducted. Selection criteria were established a priori. Included systematic reviews examined the impact of compensation on health, involved adults, were published in English and used a range of outcome measures. Two investigators independently applied standard instruments to evaluate the methodological quality of the included reviews. Data on compensation scheme design (i.e., the intervention) and outcome measures were also extracted. Eleven systematic reviews involving verifiable and non-verifiable injuries met the inclusion criteria. Nine reviews reported an association between compensation and poor health outcomes. All of them were affected by the generally low quality of the primary (observational) research in this field, the heterogeneous nature of compensation laws (schemes) and legal processes for seeking compensation, and the difficulties in measuring compensation in relation to health. Notwithstanding the limitations of the research in this field, one higher quality review examining a single compensation process and relying on primary studies using health outcome (rather than proxy) measures found strong evidence of no association between litigation and poor health following whiplash, challenging the general belief that legal processes have a negative impact on health status. Moves to alter scheme design and limit access to compensation on the basis that it is "bad for health" are therefore premature, as evidence of such an association is unclear. 2009 Elsevier Ltd. All rights reserved.
Bi, Huan -Yu; Wu, Xing -Gang; Ma, Yang; ...
2015-06-26
The Principle of Maximum Conformality (PMC) eliminates QCD renormalization scale-setting uncertainties using fundamental renormalization group methods. The resulting scale-fixed pQCD predictions are independent of the choice of renormalization scheme and show rapid convergence. The coefficients of the scale-fixed couplings are identical to the corresponding conformal series with zero β-function. Two all-orders methods for systematically implementing the PMC-scale setting procedure for existing high order calculations are discussed in this article. One implementation is based on the PMC-BLM correspondence (PMC-I); the other, more recent, method (PMC-II) uses the R δ-scheme, a systematic generalization of the minimal subtraction renormalization scheme. Both approaches satisfymore » all of the principles of the renormalization group and lead to scale-fixed and scheme-independent predictions at each finite order. In this work, we show that PMC-I and PMC-II scale-setting methods are in practice equivalent to each other. We illustrate this equivalence for the four-loop calculations of the annihilation ratio R e+e– and the Higgs partial width I'(H→bb¯). Both methods lead to the same resummed (‘conformal’) series up to all orders. The small scale differences between the two approaches are reduced as additional renormalization group {β i}-terms in the pQCD expansion are taken into account. In addition, we show that special degeneracy relations, which underly the equivalence of the two PMC approaches and the resulting conformal features of the pQCD series, are in fact general properties of non-Abelian gauge theory.« less
NASA Astrophysics Data System (ADS)
Dinesh Kumar, S.; Nageshwar Rao, R.; Pramod Chakravarthy, P.
2017-11-01
In this paper, we consider a boundary value problem for a singularly perturbed delay differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior layers arising from the delay term. An extensive amount of computational work has been carried out to demonstrate the applicability of the proposed method.
Conformal Electromagnetic Particle in Cell: A Review
Meierbachtol, Collin S.; Greenwood, Andrew D.; Verboncoeur, John P.; ...
2015-10-26
We review conformal (or body-fitted) electromagnetic particle-in-cell (EM-PIC) numerical solution schemes. Included is a chronological history of relevant particle physics algorithms often employed in these conformal simulations. We also provide brief mathematical descriptions of particle-tracking algorithms and current weighting schemes, along with a brief summary of major time-dependent electromagnetic solution methods. Several research areas are also highlighted for recommended future development of new conformal EM-PIC methods.
Saberi, Saeed; Farré, Pau; Cuvier, Olivier; Emberly, Eldon
2015-05-23
A variety of DNA binding proteins are involved in regulating and shaping the packing of chromatin. They aid the formation of loops in the DNA that function to isolate different structural domains. A recent experimental technique, Hi-C, provides a method for determining the frequency of such looping between all distant parts of the genome. Given that the binding locations of many chromatin associated proteins have also been measured, it has been possible to make estimates for their influence on the long-range interactions as measured by Hi-C. However, a challenge in this analysis is the predominance of non-specific contacts that mask out the specific interactions of interest. We show that transforming the Hi-C contact frequencies into free energies gives a natural method for separating out the distance dependent non-specific interactions. In particular we apply Principal Component Analysis (PCA) to the transformed free energy matrix to identify the dominant modes of interaction. PCA identifies systematic effects as well as high frequency spatial noise in the Hi-C data which can be filtered out. Thus it can be used as a data driven approach for normalizing Hi-C data. We assess this PCA based normalization approach, along with several other normalization schemes, by fitting the transformed Hi-C data using a pairwise interaction model that takes as input the known locations of bound chromatin factors. The result of fitting is a set of predictions for the coupling energies between the various chromatin factors and their effect on the energetics of looping. We show that the quality of the fit can be used as a means to determine how much PCA filtering should be applied to the Hi-C data. We find that the different normalizations of the Hi-C data vary in the quality of fit to the pairwise interaction model. PCA filtering can improve the fit, and the predicted coupling energies lead to biologically meaningful insights for how various chromatin bound factors influence the stability of DNA loops in chromatin.
O'Brien, Thomas D; Noyes, Jane; Spencer, Llinos Haf; Kubis, Hans-Peter; Hastings, Richard P; Edwards, Rhiannon T; Bray, Nathan; Whitaker, Rhiannon
2014-12-01
This mixed-method systematic review aims to establish the current evidence base for 'keep fit', exercise or physical activity interventions for children and young people who use wheelchairs. Nurses have a vital health promotion, motivational and monitoring role in optimizing the health and well-being of disabled children. Children with mobility impairments are prone to have low participation levels in physical activity, which reduces fitness and well-being. Effective physical activity interventions that are fun and engaging for children are required to promote habitual participation as part of a healthy lifestyle. Previous intervention programmes have been trialled, but little is known about the most effective types of exercise to improve the fitness of young wheelchair users. Mixed-method design using Cochrane systematic processes. Evidence regarding physiological and psychological effectiveness, health economics, user perspectives and service evaluations will be included and analysed under distinct streams. The project was funded from October 2012. Multiple databases will be searched using search strings combining relevant medical subheadings and intervention-specific terms. Articles will also be identified from ancestral references and by approaching authors to identify unpublished work. Only studies or reports evaluating the effectiveness, participation experiences or cost of a physical activity programme will be included. Separate analyses will be performed for each data stream, including a meta-analysis if sufficient homogeneity exists and thematic analyses. Findings across streams will be synthesized in an overarching narrative summary. Evidence from the first systematic review of this type will inform development of effective child-centred physical activity interventions and their evaluation. © 2014 John Wiley & Sons Ltd.
Study on the design schemes of the air-conditioning system in a gymnasium
NASA Astrophysics Data System (ADS)
Zhang, Yujin; Wu, Xinwei; Zhang, Jing; Pan, Zhixin
2017-08-01
In view of designing the air conditioning project for a gymnasium successfully, the cooling and heating source schemes are fully studied by analyzing the surrounding environment and energy conditions of the project, as well as the analysis of the initial investment and operating costs, which indicates the air source heat pump air conditioning system is the best choice for the project. The indoor air conditioning schemes are also studied systematically and the optimization of air conditioning schemes is carried out in each area. The principle of operating conditions for the whole year is followed and the quality of indoor air and energy-saving are ensured by the optimized design schemes, which provide references for the air conditioning system design in the same kinds of building.
Leyland, M J; Beurskens, M N A; Flanagan, J C; Frassinetti, L; Gibson, K J; Kempenaars, M; Maslov, M; Scannell, R
2016-01-01
The Joint European Torus (JET) high resolution Thomson scattering (HRTS) system measures radial electron temperature and density profiles. One of the key capabilities of this diagnostic is measuring the steep pressure gradient, termed the pedestal, at the edge of JET plasmas. The pedestal is susceptible to limiting instabilities, such as Edge Localised Modes (ELMs), characterised by a periodic collapse of the steep gradient region. A common method to extract the pedestal width, gradient, and height, used on numerous machines, is by performing a modified hyperbolic tangent (mtanh) fit to overlaid profiles selected from the same region of the ELM cycle. This process of overlaying profiles, termed ELM synchronisation, maximises the number of data points defining the pedestal region for a given phase of the ELM cycle. When fitting to HRTS profiles, it is necessary to incorporate the diagnostic radial instrument function, particularly important when considering the pedestal width. A deconvolved fit is determined by a forward convolution method requiring knowledge of only the instrument function and profiles. The systematic error due to the deconvolution technique incorporated into the JET pedestal fitting tool has been documented by Frassinetti et al. [Rev. Sci. Instrum. 83, 013506 (2012)]. This paper seeks to understand and quantify the systematic error introduced to the pedestal width due to ELM synchronisation. Synthetic profiles, generated with error bars and point-to-point variation characteristic of real HRTS profiles, are used to evaluate the deviation from the underlying pedestal width. We find on JET that the ELM synchronisation systematic error is negligible in comparison to the statistical error when assuming ten overlaid profiles (typical for a pre-ELM fit to HRTS profiles). This confirms that fitting a mtanh to ELM synchronised profiles is a robust and practical technique for extracting the pedestal structure.
Complexity of Fit, with Application to Space Suits
NASA Technical Reports Server (NTRS)
Rajulu, Sudhakar; Benson, Elizabeth
2009-01-01
Although fitting a garment is often considered more of an art than a science, experts suggest that a subjectively poor fit is a symptom of inappropriate ease, the space between the wearer and the garment. The condition of poor suit fit is a unique problem for the space program and it can be attributed primarily to: a) NASA s policy to accommodate a wide variety of people (males and females from 1st to 99th percentile range and with various shapes and sizes) and b) its requirement to deploy a minimum number of suit sizes for logistical reasons. These factors make the space suit fit difficult to assess, where a wide range of people must be fit by the minimum possible number of suits, and yet, fit is crucial for operability and safety. Existing simplistic sizing scheme do not account for wide variations in shape within a diverse population with very limited sizing options. The complex issue of fit has been addressed by a variety of methods, many of which have been developed by the military, which has always had a keen interest in fitting its diverse population but with a multitude of sizing options. The space program has significantly less sizing options, so a combination of these advanced methods should be used to optimize space suit size and assess space suit fit. Multivariate methods can be used to develop sizing schemes that better reflect the wearer population, and integrated sizing systems can form a compromise between fitting men and women. Range of motion and operability testing can be combined with subjective feedback to provide a comprehensive evaluation of fit. The amount of ease can be tailored using these methods, to provide enough extra room where it is needed, without compromising mobility and comfort. This paper discusses the problem of fit in one of its most challenging applications: providing a safe and comfortable spacesuit that will protect its wearer from the extreme environment of space. It will discuss the challenges and necessity of closely fitting its potential wearers, a group of people from a broad spectrum of the population, and will detail some of the methods that can be employed to ensure and validate a good fit.
NASA Astrophysics Data System (ADS)
McCraig, Michael A.; Osinski, Gordon R.; Cloutis, Edward A.; Flemming, Roberta L.; Izawa, Matthew R. M.; Reddy, Vishnu; Fieber-Beyer, Sherry K.; Pompilio, Loredana; van der Meer, Freek; Berger, Jeffrey A.; Bramble, Michael S.; Applin, Daniel M.
2017-03-01
Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to working with spectra may find inadequate help or documentation in the scientific literature or in the software packages available for curve fitting. This problem also extends to the parameterization of spectra and the dissemination of derived metrics. Often, when derived metrics are reported, such as band centres, the discussion of exactly how the metrics were derived, or if there was any systematic curve fitting performed, is not included. Herein we provide both recommendations and methods for curve fitting and explanations of the terms and methods used. Techniques to curve fit spectral data of various types are demonstrated using simple-to-understand mathematics and equations written to be used in Microsoft Excel® software, free of macros, in a cut-and-paste fashion that allows one to curve fit spectra in a reasonably user-friendly manner. The procedures use empirical curve fitting, include visualizations, and ameliorates many of the unknowns one may encounter when using black-box commercial software. The provided framework is a comprehensive record of the curve fitting parameters used, the derived metrics, and is intended to be an example of a format for dissemination when curve fitting data.
Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi
2017-10-11
We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.
Fields, Sally M; Unsworth, Carolyn A
2017-08-01
Determination of fitness-to-drive after illness or injury is a complex process typically requiring a comprehensive driving assessment, including off-road and on-road assessment components. The competency standards for occupational therapy driver assessors (Victoria, Australia) define the requirements for performance of a comprehensive driving assessment, and we are currently revising these. Assessment of cognitive and perceptual skills forms an important part of the off-road assessment. The aim of this systematic review of systematic reviews (known as an overview) is to identify what evidence exists for including assessment of cognitive and perceptual skills within fitness-to-drive evaluations to inform revision of the competency standards. Five electronic databases (MEDLINE, CINAHL, PsycINFO, The Cochrane Library, OT Seeker) were systematically searched. Systematic review articles were appraised by two authors for eligibility. Methodological quality was independently assessed using the AMSTAR tool. Narrative analysis was conducted to summarise the content of eligible reviews. A total of 1228 results were retrieved. Fourteen reviews met the inclusion criteria. Reviews indicated that the components of cognition and perception most frequently identified as being predictive of fitness-to-drive were executive function (n = 13), processing speed (n = 12), visuospatial skills, attention, memory and mental flexibility (n = 11). Components less indicative were perception, concentration (n = 10), praxis (n = 9), language (n = 7) and neglect (n = 6). This overview of systematic reviews supports the inclusion of assessment of a range of cognitive and perceptual skills as key elements in a comprehensive driver assessment and therefore should be included in the revised competency standards for occupational therapy driver assessors. © 2017 Occupational Therapy Australia.
Automated image segmentation-assisted flattening of atomic force microscopy images.
Wang, Yuliang; Lu, Tongda; Li, Xiaolai; Wang, Huimin
2018-01-01
Atomic force microscopy (AFM) images normally exhibit various artifacts. As a result, image flattening is required prior to image analysis. To obtain optimized flattening results, foreground features are generally manually excluded using rectangular masks in image flattening, which is time consuming and inaccurate. In this study, a two-step scheme was proposed to achieve optimized image flattening in an automated manner. In the first step, the convex and concave features in the foreground were automatically segmented with accurate boundary detection. The extracted foreground features were taken as exclusion masks. In the second step, data points in the background were fitted as polynomial curves/surfaces, which were then subtracted from raw images to get the flattened images. Moreover, sliding-window-based polynomial fitting was proposed to process images with complex background trends. The working principle of the two-step image flattening scheme were presented, followed by the investigation of the influence of a sliding-window size and polynomial fitting direction on the flattened images. Additionally, the role of image flattening on the morphological characterization and segmentation of AFM images were verified with the proposed method.
Properties of {sup 112}Cd from the (n,n'{gamma}) reaction: Levels and level densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, P. E.; Lehmann, H.; Jolie, J.
2001-08-01
Levels in {sup 112}Cd have been studied through the (n,n'{gamma}) reaction with monoenergetic neutrons. An extended set of experiments that included excitation functions, {gamma}-ray angular distributions, and {gamma}{gamma} coincidence measurements was performed. A total of 375 {gamma} rays were placed in a level scheme comprising 200 levels (of which 238 {gamma}-ray assignments and 58 levels are newly established) up to 4 MeV in excitation. No evidence to support the existence of 47 levels as suggested in previous studies was found, and these have been removed from the level scheme. From the results, a comparison of the level density is mademore » with the constant temperature and back-shifted Fermi gas models. The back-shifted Fermi gas model with the Gilbert-Cameron spin cutoff parameter provided the best overall fit. Without using the neutron resonance information and only fitting the cumulative number of low-lying levels, the level density parameters extracted are a sensitive function of the maximum energy used in the fit.« less
Impact of insects on multiple-use values of north-central forests: an experimental rating scheme.
Norton D. Addy; Harold O. Batzer; William J. Mattson; William E. Miller
1971-01-01
Ranking or assigning priorities to problems is an essential step in research problem selection. Up to now, no rigorous basis for ranking forest insects has been available. We evaluate and rank forest insects with a systematic numerical scheme that considers insect impact on the multiple-use values of timber, wildlife, recreation, and water. The result is a better...
Health benefits of tai chi: What is the evidence?
Huston, Patricia; McFarlane, Bruce
2016-11-01
To summarize the evidence on the health benefits of tai chi. A literature review was conducted on the benefits of tai chi for 25 specific conditions, as well as for general health and fitness, to update a 2014 review of systematic reviews. Systematic reviews and recent clinical trials were assessed and organized into 5 different groups: evidence of benefit as excellent, good, fair, or preliminary, or evidence of no direct benefit. During the past 45 years more than 500 trials and 120 systematic reviews have been published on the health benefits of tai chi. Systematic reviews of tai chi for specific conditions indicate excellent evidence of benefit for preventing falls, osteoarthritis, Parkinson disease, rehabilitation for chronic obstructive pulmonary disease, and improving cognitive capacity in older adults. There is good evidence of benefit for depression, cardiac and stroke rehabilitation, and dementia. There is fair evidence of benefit for improving quality of life for cancer patients, fibromyalgia, hypertension, and osteoporosis. Current evidence indicates no direct benefit for diabetes, rheumatoid arthritis, or chronic heart failure. Systematic reviews of general health and fitness benefits show excellent evidence of benefit for improving balance and aerobic capacity in those with poor fitness. There is good evidence for increased strength in the lower limbs. There is fair evidence for increased well-being and improved sleep. There were no studies that found tai chi worsened a condition. A recent systematic review on the safety of tai chi found adverse events were typically minor and primarily musculoskeletal; no intervention-related serious adverse events have been reported. There is abundant evidence on the health and fitness effects of tai chi. Based on this, physicians can now offer evidence-based recommendations to their patients, noting that tai chi is still an area of active research, and patients should continue to receive medical follow-up for any clinical conditions. Copyright© the College of Family Physicians of Canada.
A constrained-gradient method to control divergence errors in numerical MHD
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2016-10-01
In numerical magnetohydrodynamics (MHD), a major challenge is maintaining nabla \\cdot {B}=0. Constrained transport (CT) schemes achieve this but have been restricted to specific methods. For more general (meshless, moving-mesh, ALE) methods, `divergence-cleaning' schemes reduce the nabla \\cdot {B} errors; however they can still be significant and can lead to systematic errors which converge away slowly. We propose a new constrained gradient (CG) scheme which augments these with a projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. Unlike `locally divergence free' methods, this actually minimizes the numerically unstable nabla \\cdot {B} terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare various test problems. Compared to cleaning schemes, our CG method reduces the maximum nabla \\cdot {B} errors by ˜1-3 orders of magnitude (˜2-5 dex below typical errors if no nabla \\cdot {B} cleaning is used). By preventing large nabla \\cdot {B} at discontinuities, this eliminates systematic errors at jumps. Our CG results are comparable to CT methods; for practical purposes, the nabla \\cdot {B} errors are eliminated. The cost is modest, ˜30 per cent of the hydro algorithm, and the CG correction can be implemented in a range of numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a range of problems where using only Powell or `8-wave' cleaning can produce order-of-magnitude errors.
Williams, Nefyn H; Hendry, Maggie; France, Barbara; Lewis, Ruth; Wilkinson, Clare
2007-12-01
Despite the health benefits of physical activity, most adults do not take the recommended amount of exercise. To assess whether exercise-referral schemes are effective in improving exercise participation in sedentary adults. Systematic review. Studies were identified by searching MEDLINE, CINAHL, EMBASE, AMED, PsycINFO, SPORTDiscus, The Cochrane Library and SIGLE until March 2007. Randomised controlled trials (RCTs), observational studies, process evaluations and qualitative studies of exercise-referral schemes, defined as referral by a primary care clinician to a programme that encouraged physical activity or exercise were included. RCT results were combined in a meta-analysis where there was sufficient homogeneity. Eighteen studies were included in the review. These comprised six RCTs, one non-randomised controlled study, four observational studies, six process evaluations and one qualitative study. In addition, two of the RCTs and two of the process evaluations incorporated a qualitative component. Results from five RCTs were combined in a meta-analysis. There was a statistically significant increase in the numbers of participants doing moderate exercise with a combined relative risk of 1.20 (95% confidence intervals = 1.06 to 1.35). This means that 17 sedentary adults would need to be referred for one to become moderately active. This small effect may be at least partly due to poor rates of uptake and adherence to the exercise schemes. Exercise-referral schemes have a small effect on increasing physical activity in sedentary people. The key challenge, if future exercise-referral schemes are to be commissioned by the NHS, is to increase uptake and improve adherence by addressing the barriers described in these studies.
Keall, Michael D; Newstead, Stuart
2013-09-01
Although previous research suggests that safety benefits accrue from periodic vehicle inspection programmes, little consideration has been given to whether the benefits are sufficient to justify the often considerable costs of such schemes. Methodological barriers impede many attempts to evaluate the overall safety benefits of periodic vehicle inspection schemes, including this study, which did not attempt to evaluate the New Zealand warrant of fitness scheme as a whole. Instead, this study evaluated one aspect of the scheme: the effects of doubling the inspection frequency, from annual to biannual, when the vehicle reaches six years of age. In particular, reductions in safety-related vehicle faults were estimated together with the value of the safety benefits compared to the costs. When merged crash data, licensing data and roadworthiness inspection data were analysed, there were estimated to be improvements in injury crash involvement rates and prevalence of safety-related faults of respectively 8% (95% CI 0.4-15%) and 13.5% (95% CI 12.8-14.2%) associated with the increase from annual to 6-monthly inspections. The wide confidence interval for the drop in crash rate shows considerably statistical uncertainty about the precise size of the drop. Even assuming that this proportion of vehicle faults prevented by doubling the inspection frequency could be maintained over the vehicle age range 7-20 years, the safety benefits are very unlikely to exceed the additional costs of the 6-monthly inspections to the motorists, valued at $NZ 500 million annually excluding the overall costs of administering the scheme. The New Zealand warrant of fitness scheme as a whole cannot be robustly evaluated using the analysis approach used here, but the safety benefits would need to be substantial--yielding an unlikely 12% reduction in injury crashes--for benefits to equal costs. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Luo, H.; Zhang, H.; Gao, J.
2016-12-01
Seismic and magnetotelluric (MT) imaging methods are generally used to characterize subsurface structures at various scales. The two methods are complementary to each other and the integration of them is helpful for more reliably determining the resistivity and velocity models of the target region. Because of the difficulty in finding empirical relationship between resistivity and velocity parameters, Gallardo and Meju [2003] proposed a joint inversion method enforcing resistivity and velocity models consistent in structure, which is realized by minimizing cross gradients between two models. However, it is extremely challenging to combine two different inversion systems together along with the cross gradient constraints. For this reason, Gallardo [2007] proposed a joint inversion scheme that decouples the seismic and MT inversion systems by iteratively performing seismic and MT inversions as well as cross gradient minimization separately. This scheme avoids the complexity of combining two different systems together but it suffers the issue of balancing between data fitting and structure constraint. In this study, we have developed a new joint inversion scheme that avoids the problem encountered by the scheme of Gallardo [2007]. In the new scheme, seismic and MT inversions are still separately performed but the cross gradient minimization is also constrained by model perturbations from separate inversions. In this way, the new scheme still avoids the complexity of combining two different systems together and at the same time the balance between data fitting and structure consistency constraint can be enforced. We have tested our joint inversion algorithm for both 2D and 3D cases. Synthetic tests show that joint inversion better reconstructed the velocity and resistivity models than separate inversions. Compared to separate inversions, joint inversion can remove artifacts in the resistivity model and can improve the resolution for deeper resistivity structures. We will also show results applying the new joint seismic and MT inversion scheme to southwest China, where several MT profiles are available and earthquakes are very active.
NASA Astrophysics Data System (ADS)
Zhong, Xiaolin
1998-08-01
Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.
Ruiz, Jonatan R; Cavero-Redondo, Ivan; Ortega, Francisco B; Welk, Gregory J; Andersen, Lars B; Martinez-Vizcaino, Vicente
2016-09-26
Poor cardiorespiratory fitness is associated with cardiovascular disease risk factors. To perform a systematic review and meta-analysis of the relationship between poor cardiorespiratory fitness and cardiovascular disease risk in children and adolescents. Systematic literature search (1980 to 11 April 2015) for studies that determined a cardiorespiratory fitness cut point that predicted cardiovascular disease risk in children and adolescents. We identified 7 studies that included 9280 children and adolescents (49% girls) aged 8-19 years from 14 countries. Cardiovascular disease risk was already present in boys (6-39%) and girls (6-86%). Boys with low fitness (<41.8 mL/kg/min) had a 5.7 times greater likelihood of having cardiovascular disease risk (95% CI 4.8 to 6.7). The comparable diagnostic OR for girls with low fitness (<34.6 mL/kg/min) was 3.6 (95% CI 3.0 to 4.3). The 95% confidence region of cardiorespiratory fitness associated with low cardiovascular disease risk ranges, 41.8-47.0 mL/kg/min in boys (eg, stages 6-8 for a boy aged 15 years) and 34.6-39.5 mL/kg/min in girls (eg, stages 3-5 for a girl aged 15 years). The cardiorespiratory fitness cut point to avoid cardiovascular disease risk ranged 41.8 mL/kg/min in boys and was 34.6 mL/kg/min in girls. Fitness levels below 42 and 35 mL/kg/min for boys and girls, respectively, should raise a red flag. These translate to 6 and 3 stages on the shuttle run test for a boy and a girl, both aged 15 years, respectively. These cut points identify children and adolescents who may benefit from primary and secondary cardiovascular prevention programming. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Kearney, Sean P; Scoglietti, Daniel J; Kliewer, Christopher J
2013-05-20
A hybrid fs/ps pure-rotational CARS scheme is characterized in furnace-heated air at temperatures from 290 to 800 K. Impulsive femtosecond excitation is used to prepare a rotational Raman coherence that is probed with a ps-duration beam generated from an initially broadband fs pulse that is bandwidth limited using air-spaced Fabry-Perot etalons. CARS spectra are generated using 1.5- and 7.0-ps duration probe beams with corresponding coarse and narrow spectral widths. The spectra are fitted using a simple phenomenological model for both shot-averaged and single-shot measurements of temperature and oxygen mole fraction. Our single-shot temperature measurements exhibit high levels of precision and accuracy when the spectrally coarse 1.5-ps probe beam is used, demonstrating that high spectral resolution is not required for thermometry. An initial assessment of concentration measurements in air is also provided, with best results obtained using the higher resolution 7.0-ps probe. This systematic assessment of the hybrid CARS technique demonstrates its utility for practical application in low-temperature gas-phase systems.
Development of a mechanism for nitrate photochemistry in snow.
Bock, Josué; Jacobi, Hans-Werner
2010-02-04
A reaction mechanism to reproduce photochemical processes in the snow is reported. We developed a box model to represent snow chemistry. Constrained by laboratory experiments carried out with artificial snow, we deduced first a reaction mechanism for N-containing species including 13 reactions. An optimization tool was developed to adjust systematically unknown photolysis rates of nitrate and nitrite (NO(2)(-)) and transfer rates of nitrogen oxides from the snow to the gas phase resulting in an optimum fit with respect to the experimental data. Further experiments with natural snow samples are presented, indicating that NO(2)(-) concentrations were much lower than in the artificial snow experiments. These observations were used to extend the reaction mechanism into a more general scheme including hydrogen peroxide (H(2)O(2)) and formaldehyde (HCHO) chemistry leading to a set of 18 reactions. The simulations indicate the importance of H(2)O(2) and HCHO as either a source or sink of hydroxyl radicals in the snow photochemistry mechanism. The addition of H(2)O(2) and HCHO in the mechanism allows the reproduction of the observed low NO(2)(-) concentration.
High resolution schemes and the entropy condition
NASA Technical Reports Server (NTRS)
Osher, S.; Chakravarthy, S.
1983-01-01
A systematic procedure for constructing semidiscrete, second order accurate, variation diminishing, five point band width, approximations to scalar conservation laws, is presented. These schemes are constructed to also satisfy a single discrete entropy inequality. Thus, in the convex flux case, convergence is proven to be the unique physically correct solution. For hyperbolic systems of conservation laws, this construction is used formally to extend the first author's first order accurate scheme, and show (under some minor technical hypotheses) that limit solutions satisfy an entropy inequality. Results concerning discrete shocks, a maximum principle, and maximal order of accuracy are obtained. Numerical applications are also presented.
NASA Astrophysics Data System (ADS)
Wang, Yang; Beirle, Steffen; Hendrick, Francois; Hilboll, Andreas; Jin, Junli; Kyuberis, Aleksandra A.; Lampel, Johannes; Li, Ang; Luo, Yuhan; Lodi, Lorenzo; Ma, Jianzhong; Navarro, Monica; Ortega, Ivan; Peters, Enno; Polyansky, Oleg L.; Remmers, Julia; Richter, Andreas; Puentedura, Olga; Van Roozendael, Michel; Seyler, André; Tennyson, Jonathan; Volkamer, Rainer; Xie, Pinhua; Zobov, Nikolai F.; Wagner, Thomas
2017-10-01
In order to promote the development of the passive DOAS technique the Multi Axis DOAS - Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany, from June to October 2013. Here, we systematically compare the differential slant column densities (dSCDs) of nitrous acid (HONO) derived from measurements of seven different instruments. We also compare the tropospheric difference of SCDs (delta SCD) of HONO, namely the difference of the SCDs for the non-zenith observations and the zenith observation of the same elevation sequence. Different research groups analysed the spectra from their own instruments using their individual fit software. All the fit errors of HONO dSCDs from the instruments with cooled large-size detectors are mostly in the range of 0.1 to 0.3 × 1015 molecules cm-2 for an integration time of 1 min. The fit error for the mini MAX-DOAS is around 0.7 × 1015 molecules cm-2. Although the HONO delta SCDs are normally smaller than 6 × 1015 molecules cm-2, consistent time series of HONO delta SCDs are retrieved from the measurements of different instruments. Both fits with a sequential Fraunhofer reference spectrum (FRS) and a daily noon FRS lead to similar consistency. Apart from the mini-MAX-DOAS, the systematic absolute differences of HONO delta SCDs between the instruments are smaller than 0.63 × 1015 molecules cm-2. The correlation coefficients are higher than 0.7 and the slopes of linear regressions deviate from unity by less than 16 % for the elevation angle of 1°. The correlations decrease with an increase in elevation angle. All the participants also analysed synthetic spectra using the same baseline DOAS settings to evaluate the systematic errors of HONO results from their respective fit programs. In general the errors are smaller than 0.3 × 1015 molecules cm-2, which is about half of the systematic difference between the real measurements.The differences of HONO delta SCDs retrieved in the selected three spectral ranges 335-361, 335-373 and 335-390 nm are considerable (up to 0.57 × 1015 molecules cm-2) for both real measurements and synthetic spectra. We performed sensitivity studies to quantify the dominant systematic error sources and to find a recommended DOAS setting in the three spectral ranges. The results show that water vapour absorption, temperature and wavelength dependence of O4 absorption, temperature dependence of Ring spectrum, and polynomial and intensity offset correction all together dominate the systematic errors. We recommend a fit range of 335-373 nm for HONO retrievals. In such fit range the overall systematic uncertainty is about 0.87 × 1015 molecules cm-2, much smaller than those in the other two ranges. The typical random uncertainty is estimated to be about 0.16 × 1015 molecules cm-2, which is only 25 % of the total systematic uncertainty for most of the instruments in the MAD-CAT campaign. In summary for most of the MAX-DOAS instruments for elevation angle below 5°, half daytime measurements (usually in the morning) of HONO delta SCD can be over the detection limit of 0.2 × 1015 molecules cm-2 with an uncertainty of ˜ 0.9 × 1015 molecules cm-2.
Semivariogram modeling by weighted least squares
Jian, X.; Olea, R.A.; Yu, Y.-S.
1996-01-01
Permissible semivariogram models are fundamental for geostatistical estimation and simulation of attributes having a continuous spatiotemporal variation. The usual practice is to fit those models manually to experimental semivariograms. Fitting by weighted least squares produces comparable results to fitting manually in less time, systematically, and provides an Akaike information criterion for the proper comparison of alternative models. We illustrate the application of a computer program with examples showing the fitting of simple and nested models. Copyright ?? 1996 Elsevier Science Ltd.
Costigan, S A; Eather, N; Plotnikoff, R C; Taaffe, D R; Lubans, D R
2015-10-01
High-intensity interval training (HIIT) may be a feasible and efficacious strategy for improving health-related fitness in young people. The objective of this systematic review and meta-analysis was to evaluate the utility of HIIT to improve health-related fitness in adolescents and to identify potential moderators of training effects. Studies were considered eligible if they: (1) examined adolescents (13-18 years); (2) examined health-related fitness outcomes; (3) involved an intervention of ≥4 weeks in duration; (4) included a control or moderate intensity comparison group; and (5) prescribed high-intensity activity for the HIIT condition. Meta-analyses were conducted to determine the effect of HIIT on health-related fitness components using Comprehensive Meta-analysis software and potential moderators were explored (ie, study duration, risk of bias and type of comparison group). The effects of HIIT on cardiorespiratory fitness and body composition were large, and medium, respectively. Study duration was a moderator for the effect of HIIT on body fat percentage. Intervention effects for waist circumference and muscular fitness were not statistically significant. HIIT is a feasible and time-efficient approach for improving cardiorespiratory fitness and body composition in adolescent populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Liu, Hao; Zhu, Lili; Bai, Shuming; Shi, Qiang
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly in the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.
NASA Astrophysics Data System (ADS)
Al-Rawashdeh, S. M.; Jaghoub, M. I.
2018-04-01
In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hao; Zhu, Lili; Bai, Shuming
2014-04-07
We investigated applications of the hierarchical equation of motion (HEOM) method to perform high order perturbation calculations of reduced quantum dynamics for a harmonic bath with arbitrary spectral densities. Three different schemes are used to decompose the bath spectral density into analytical forms that are suitable to the HEOM treatment: (1) The multiple Lorentzian mode model that can be obtained by numerically fitting the model spectral density. (2) The combined Debye and oscillatory Debye modes model that can be constructed by fitting the corresponding classical bath correlation function. (3) A new method that uses undamped harmonic oscillator modes explicitly inmore » the HEOM formalism. Methods to extract system-bath correlations were investigated for the above bath decomposition schemes. We also show that HEOM in the undamped harmonic oscillator modes can give detailed information on the partial Wigner transform of the total density operator. Theoretical analysis and numerical simulations of the spin-Boson dynamics and the absorption line shape of molecular dimers show that the HEOM formalism for high order perturbations can serve as an important tool in studying the quantum dissipative dynamics in the intermediate coupling regime.« less
GA-based fuzzy reinforcement learning for control of a magnetic bearing system.
Lin, C T; Jou, C P
2000-01-01
This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.
Complex absorbing potential based Lorentzian fitting scheme and time dependent quantum transport.
Xie, Hang; Kwok, Yanho; Jiang, Feng; Zheng, Xiao; Chen, GuanHua
2014-10-28
Based on the complex absorbing potential (CAP) method, a Lorentzian expansion scheme is developed to express the self-energy. The CAP-based Lorentzian expansion of self-energy is employed to solve efficiently the Liouville-von Neumann equation of one-electron density matrix. The resulting method is applicable for both tight-binding and first-principles models and is used to simulate the transient currents through graphene nanoribbons and a benzene molecule sandwiched between two carbon-atom chains.
1987-09-01
Later, when these alloca- :t)il t rate(-ies beconme a p)erfornmance concern, the schieduler can be inolded 4 toN fit the p~ articular appllicationi... distracts attention from the more important points that this example is intended to demonstrate. The implementation, therefore, is described separately in...for the benefit of outsiders. From the object’s point of view the pipeline is nothing but a list of messages that tell it how to mutate its own state
Safari, Mohammad Reza; Meier, Margrit Regula
2015-01-01
This review is an attempt to untangle the complexity of transtibial prosthetic socket fit and perhaps find some indication of whether a particular prosthetic socket type might be best for a given situation. In addition, we identified knowledge gaps, thus providing direction for possible future research. We followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, using medical subject headings and standard key words to search for articles in relevant databases. No restrictions were made on study design and type of outcome measure used. From the obtained search results (n = 1,863), 35 articles were included. The relevant data were entered into a predefined data form that included the Downs and Black risk of bias assessment checklist. This article presents the results from the systematic review of the quantitative outcomes (n = 27 articles). Trends indicate that vacuum-assisted suction sockets improve gait symmetry, volume control, and residual limb health more than other socket designs. Hydrostatic sockets seem to create less inconsistent socket fittings, reducing a problem that greatly influences outcome measures. Knowledge gaps exist in the understanding of clinically meaningful changes in socket fit and its effect on biomechanical outcomes. Further, safe and comfortable pressure thresholds under various conditions should be determined through a systematic approach.
Hunter, Benjamin M; Murray, Susan F
2017-08-31
Demand-side financing (DSF) interventions, including cash transfers and vouchers, have been introduced to promote maternal and newborn health in a range of low- and middle-income countries. These interventions vary in design but have typically been used to increase health service utilisation by offsetting some financial costs for users, or increasing household income and incentivising 'healthy behaviours'. This article documents experiences and implementation factors associated with use of DSF in maternal and newborn health. A secondary analysis (using an adapted Supporting the Use of Research Evidence framework - SURE) was performed on studies that had previously been identified in a systematic review of evidence on DSF interventions in maternal and newborn health. The article draws on findings from 49 quantitative and 49 qualitative studies. The studies give insights on difficulties with exclusion of migrants, young and multiparous women, with demands for informal fees at facilities, and with challenges maintaining quality of care under increasing demand. Schemes experienced difficulties if communities faced long distances to reach participating facilities and poor access to transport, and where there was inadequate health infrastructure and human resources, shortages of medicines and problems with corruption. Studies that documented improved care-seeking indicated the importance of adequate programme scope (in terms of programme eligibility, size and timing of payments and voucher entitlements) to address the issue of concern, concurrent investments in supply-side capacity to sustain and/or improve quality of care, and awareness generation using community-based workers, leaders and women's groups. Evaluations spanning more than 15 years of implementation of DSF programmes reveal a complex picture of experiences that reflect the importance of financial and other social, geographical and health systems factors as barriers to accessing care. Careful design of DSF programmes as part of broader maternal and newborn health initiatives would need to take into account these barriers, the behaviours of staff and the quality of care in health facilities. Research is still needed on the policy context for DSF schemes in order to understand how they become sustainable and where they fit, or do not fit, with plans to achieve equitable universal health coverage.
Modeling dust emission in the Magellanic Clouds with Spitzer and Herschel
NASA Astrophysics Data System (ADS)
Chastenet, Jérémy; Bot, Caroline; Gordon, Karl D.; Bocchio, Marco; Roman-Duval, Julia; Jones, Anthony P.; Ysard, Nathalie
2017-05-01
Context. Dust modeling is crucial to infer dust properties and budget for galaxy studies. However, there are systematic disparities between dust grain models that result in corresponding systematic differences in the inferred dust properties of galaxies. Quantifying these systematics requires a consistent fitting analysis. Aims: We compare the output dust parameters and assess the differences between two dust grain models, the DustEM model and THEMIS. In this study, we use a single fitting method applied to all the models to extract a coherent and unique statistical analysis. Methods: We fit the models to the dust emission seen by Spitzer and Herschel in the Small and Large Magellanic Clouds (SMC and LMC). The observations cover the infrared (IR) spectrum from a few microns to the sub-millimeter range. For each fitted pixel, we calculate the full n-D likelihood based on a previously described method. The free parameters are both environmental (U, the interstellar radiation field strength; αISRF, power-law coefficient for a multi-U environment; Ω∗, the starlight strength) and intrinsic to the model (YI: abundances of the grain species I; αsCM20, coefficient in the small carbon grain size distribution). Results: Fractional residuals of five different sets of parameters show that fitting THEMIS brings a more accurate reproduction of the observations than the DustEM model. However, independent variations of the dust species show strong model-dependencies. We find that the abundance of silicates can only be constrained to an upper-limit and that the silicate/carbon ratio is different than that seen in our Galaxy. In the LMC, our fits result in dust masses slightly lower than those found in the literature, by a factor lower than 2. In the SMC, we find dust masses in agreement with previous studies.
O'Brien, Thomas D; Noyes, Jane; Spencer, Llinos Haf; Kubis, Hans-Peter; Hastings, Richard P; Whitaker, Rhiannon
2016-01-01
To perform a systematic review establishing the current evidence base for physical activity and exercise interventions that promote health, fitness and well-being, rather than specific functional improvements, for children who use wheelchairs. A systematic review using a mixed methods design. A wide range of databases, including Web of Science, PubMed, BMJ Best Practice, NHS EED, CINAHL, AMED, NICAN, PsychINFO, were searched for quantitative, qualitative and health economics evidence. participants: children/young people aged >25 years who use a wheelchair, or parents and therapists/carers. Intervention: home-based or community-based physical activity to improve health, fitness and well-being. Thirty quantitative studies that measured indicators of health, fitness and well-being and one qualitative study were included. Studies were very heterogeneous preventing a meta-analysis, and the risk of bias was generally high. Most studies focused on children with cerebral palsy and used an outcome measure of walking or standing, indicating that they were generally designed for children with already good motor function and mobility. Improvements in health, fitness and well-being were found across the range of outcome types. There were no reports of negative changes. No economics evidence was found. It was found that children who use wheelchairs can participate in physical activity interventions safely. The paucity of robust studies evaluating interventions to improve health and fitness is concerning. This hinders adequate policymaking and guidance for practitioners, and requires urgent attention. However, the evidence that does exist suggests that children who use wheelchairs are able to experience the positive benefits associated with appropriately designed exercise. CRD42013003939.
O'Brien, Thomas D; Noyes, Jane; Spencer, Llinos Haf; Kubis, Hans-Peter; Hastings, Richard P; Whitaker, Rhiannon
2016-01-01
Aim To perform a systematic review establishing the current evidence base for physical activity and exercise interventions that promote health, fitness and well-being, rather than specific functional improvements, for children who use wheelchairs. Design A systematic review using a mixed methods design. Data sources A wide range of databases, including Web of Science, PubMed, BMJ Best Practice, NHS EED, CINAHL, AMED, NICAN, PsychINFO, were searched for quantitative, qualitative and health economics evidence. Eligibility participants: children/young people aged >25 years who use a wheelchair, or parents and therapists/carers. Intervention: home-based or community-based physical activity to improve health, fitness and well-being. Results Thirty quantitative studies that measured indicators of health, fitness and well-being and one qualitative study were included. Studies were very heterogeneous preventing a meta-analysis, and the risk of bias was generally high. Most studies focused on children with cerebral palsy and used an outcome measure of walking or standing, indicating that they were generally designed for children with already good motor function and mobility. Improvements in health, fitness and well-being were found across the range of outcome types. There were no reports of negative changes. No economics evidence was found. Conclusions It was found that children who use wheelchairs can participate in physical activity interventions safely. The paucity of robust studies evaluating interventions to improve health and fitness is concerning. This hinders adequate policymaking and guidance for practitioners, and requires urgent attention. However, the evidence that does exist suggests that children who use wheelchairs are able to experience the positive benefits associated with appropriately designed exercise. Trial registration number CRD42013003939. PMID:27900176
NASA Technical Reports Server (NTRS)
Chang, T. S.
1974-01-01
A numerical scheme using the method of characteristics to calculate the flow properties and pressures behind decaying shock waves for materials under hypervelocity impact is developed. Time-consuming double interpolation subroutines are replaced by a technique based on orthogonal polynomial least square surface fits. Typical calculated results are given and compared with the double interpolation results. The complete computer program is included.
Automated composite ellipsoid modelling for high frequency GTD analysis
NASA Technical Reports Server (NTRS)
Sze, K. Y.; Rojas, R. G.; Klevenow, F. T.; Scheick, J. T.
1991-01-01
The preliminary results of a scheme currently being developed to fit a composite ellipsoid to the fuselage of a helicopter in the vicinity of the antenna location are discussed under the assumption that the antenna is mounted on the fuselage. The parameters of the close-fit composite ellipsoid would then be utilized as inputs into NEWAIR3, a code programmed in FORTRAN 77 for high frequency Geometrical Theory of Diffraction (GTD) Analysis of the radiation of airborne antennas.
Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg
2017-05-09
A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.
Xin-Gang, Zhao; Yu-Zhuo, Zhang; Ling-Zhi, Ren; Yi, Zuo; Zhi-Gong, Wu
2017-10-01
Among the regulatory policies, feed-in tariffs (FIT) and renewable portfolio standards (RPS) are the most popular to promote the development of renewable energy power industry. They can significantly contribute to the expansion of domestic industrial activities in terms of sustainable energy. This paper uses system dynamics (SD) to establish models of long-term development of China's waste incineration power industry under FIT and RPS schemes, and provides a case study by using scenario analysis method. The model, on the one hand, not only clearly shows the complex logical relationship between the factors but also assesses policy effects of the two policy tools in the development of the industry. On the other hand, it provides a reference for scholars to study similar problems in different countries, thereby facilitating an understanding of waste incineration power's long-term sustainable development pattern under FIT and RPS schemes, and helping to provide references for policy-making institutions. The results show that in the perfect competitive market, the implementation of RPS can promote long-term and rapid development of China's waste incineration power industry given the constraints and actions of the mechanisms of RPS quota proportion, the TGC valid period, and fines, compared with FIT. At the end of the paper, policy implications are offered as references for the government. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Milani, G.; Milani, F.
A GUI software (GURU) for experimental data fitting of rheometer curves in Natural Rubber (NR) vulcanized with sulphur at different curing temperatures is presented. Experimental data are automatically loaded in GURU from an Excel spreadsheet coming from the output of the experimental machine (moving die rheometer). To fit the experimental data, the general reaction scheme proposed by Han and co-workers for NR vulcanized with sulphur is considered. From the simplified kinetic scheme adopted, a closed form solution can be found for the crosslink density, with the only limitation that the induction period is excluded from computations. Three kinetic constants must be determined in such a way to minimize the absolute error between normalized experimental data and numerical prediction. Usually, this result is achieved by means of standard least-squares data fitting. On the contrary, GURU works interactively by means of a Graphical User Interface (GUI) to minimize the error and allows an interactive calibration of the kinetic constants by means of sliders. A simple mouse click on the sliders allows the assignment of a value for each kinetic constant and a visual comparison between numerical and experimental curves. Users will thus find optimal values of the constants by means of a classic trial and error strategy. An experimental case of technical relevance is shown as benchmark.
NASA Technical Reports Server (NTRS)
Warming, R. F.; Beam, R. M.
1978-01-01
Efficient, noniterative, implicit finite difference algorithms are systematically developed for nonlinear conservation laws including purely hyperbolic systems and mixed hyperbolic parabolic systems. Utilization of a rational fraction or Pade time differencing formulas, yields a direct and natural derivation of an implicit scheme in a delta form. Attention is given to advantages of the delta formation and to various properties of one- and two-dimensional algorithms.
Fundamental Limits of Delay and Security in Device-to-Device Communication
2013-01-01
systematic MDS (maximum distance separable) codes and random binning strategies that achieve a Pareto optimal delayreconstruction tradeoff. The erasure MD...file, and a coding scheme based on erasure compression and Slepian-Wolf binning is presented. The coding scheme is shown to provide a Pareto optimal...ble) codes and random binning strategies that achieve a Pareto optimal delay- reconstruction tradeoff. The erasure MD setup is then used to propose a
Bottom and charm mass determinations from global fits to Q\\overline{Q} bound states at N3LO
NASA Astrophysics Data System (ADS)
Mateu, Vicent; Ortega, Pablo G.
2018-01-01
The bottomonium spectrum up to n = 3 is studied within Non-Relativistic Quantum Chromodynamics up to N3LO. We consider finite charm quark mass effects both in the QCD potential and the \\overline{MS} -pole mass relation up to third order in the Y-scheme counting. The u = 1 /2 renormalon of the static potential is canceled by expressing the bottom quark pole mass in terms of the MSR mass. A careful investigation of scale variation reveals that, while n = 1 , 2 states are well behaved within perturbation theory, n = 3 bound states are no longer reliable. We carry out our analysis in the n ℓ = 3 and n ℓ = 4 schemes and conclude that, as long as finite m c effects are smoothly incorporated in the MSR mass definition, the difference between the two schemes is rather small. Performing a fit to b\\overline{b} bound states we find {\\overline{m}}_b({\\overline{m}}_b) = 4 .216 ± 0 .039 GeV. We extend our analysis to the lowest lying charmonium states finding {\\overline{m}}_c({\\overline{m}}_c) = 1 .273 ± 0 .054 GeV. Finally, we perform simultaneous fits for {\\overline{m}}_b and α s finding {α}_s^{({n}_f=5)}({m}_Z)=0.1178± 0.0051 . Additionally, using a modified version of the MSR mass with lighter massive quarks we are able to predict the uncalculated O({α}_s^4) virtual massive quark corrections to the relation between the \\overline{MS} and pole masses.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
Assessing Institutional Fitness: A Population Ecology Perspective on College and University Health.
ERIC Educational Resources Information Center
Emmert, Mark A.
1985-01-01
A population ecology model of institutional fitness broadens the scope of perspectives on organizational success. The approach allows systematic thinking about internal and external factors identifies the critical dependency relationships between a college and other organizations that supply resources. (MLW)
Integrated optical 3D digital imaging based on DSP scheme
NASA Astrophysics Data System (ADS)
Wang, Xiaodong; Peng, Xiang; Gao, Bruce Z.
2008-03-01
We present a scheme of integrated optical 3-D digital imaging (IO3DI) based on digital signal processor (DSP), which can acquire range images independently without PC support. This scheme is based on a parallel hardware structure with aid of DSP and field programmable gate array (FPGA) to realize 3-D imaging. In this integrated scheme of 3-D imaging, the phase measurement profilometry is adopted. To realize the pipeline processing of the fringe projection, image acquisition and fringe pattern analysis, we present a multi-threads application program that is developed under the environment of DSP/BIOS RTOS (real-time operating system). Since RTOS provides a preemptive kernel and powerful configuration tool, with which we are able to achieve a real-time scheduling and synchronization. To accelerate automatic fringe analysis and phase unwrapping, we make use of the technique of software optimization. The proposed scheme can reach a performance of 39.5 f/s (frames per second), so it may well fit into real-time fringe-pattern analysis and can implement fast 3-D imaging. Experiment results are also presented to show the validity of proposed scheme.
Anthropometric Procedures for Protective Equipment Sizing and Design
Hsiao, Hongwei
2015-01-01
Objectives This article presented four anthropometric theories (univariate, bivariate/probability distribution, multivariate, and shape-based methods) for protective equipment design decisions. Background While the significance of anthropometric information for product design is well recognized, designers continue to face challenges in selecting efficient anthropometric data processing methods and translating the acquired information into effective product designs. Methods For this study, 100 farm tractor operators, 3,718 respirator users, 951 firefighters, and 816 civilian workers participated in four studies on the design of tractor roll-over protective structures (ROPS), respirator test panels, fire truck cabs, and fall-arrest harnesses, respectively. Their anthropometry and participant-equipment interfaces were evaluated. Results Study 1 showed a need to extend the 90-cm vertical clearance for tractor ROPS in the current industrial standards to 98.3 to 101.3 cm. Study 2 indicated that current respirator test panel would have excluded 10% of the male firefighter population; a systematic adjustment to the boundaries of test panel cells was suggested. Study 3 provided 24 principal component analysis-based firefighter body models to facilitate fire truck cab design. Study 4 developed an improved gender-based fall-arrest harness sizing scheme to supplant the current unisex system. Conclusions This article presented four anthropometric approaches and a six-step design paradigm for ROPS, respirator test panel, fire truck cab, and fall-arrest harness applications, which demonstrated anthropometric theories and practices for defining protective equipment fit and sizing schemes. Applications The study provided a basis for equipment designers, standards writers, and industry manufacturers to advance anthropometric applications for product design and improve product efficacy. PMID:23516791
NASA Astrophysics Data System (ADS)
Yadav, Dharmendra Singh; Babu, Sarath; Manoj, B. S.
2018-03-01
Spectrum conflict during primary and backup routes assignment in elastic optical networks results in increased resource consumption as well as high Bandwidth Blocking Probability. In order to avoid such conflicts, we propose a new scheme, Quasi Path Restoration (QPR), where we divide the available spectrum into two: (1) primary spectrum (for primary routes allocation) and (2) backup spectrum (for rerouting the data on link failures). QPR exhibits three advantages over existing survivable strategies such as Shared Path Protection (SPP), Primary First Fit Backup Last Fit (PFFBLF), Jointly Releasing and re-establishment Defragmentation SPP (JRDSSPP), and Path Restoration (PR): (1) the conflict between primary and backup spectrum during route assignment is completely eliminated, (2) upon a link failure, connection recovery requires less backup resources compared to SPP, PFFBLF, and PR, and (3) availability of the same backup spectrum on each link improves the recovery guarantee. The performance of our scheme is analyzed with different primary backup spectrum partitions on varying connection-request demands and number of frequency slots. Our results show that QPR provides better connection recovery guarantee and Backup Resources Utilization (BRU) compared to bandwidth recovery of PR strategy. In addition, we compare QPR with Shared Path Protection and Primary First-Fit Backup Last Fit strategies in terms of Bandwidth Blocking Probability (BBP) and average frequency slots per connection request. Simulation results show that BBP of SPP, PFFBLF, and JRDSPP varies between 18.59% and 14.42%, while in QPR, BBP ranges from 2.55% to 17.76% for Cost239, NSFNET, and ARPANET topologies. Also, QPR provides bandwidth recovery between 93.61% and 100%, while in PR, the recovery ranges from 86.81% to 98.99%. It is evident from our analysis that QPR provides a reasonable trade-off between bandwidth blocking probability and connection recoverability.
Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.
Yang, Shengxiang
2008-01-01
In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.
Use of hyperbolic partial differential equations to generate body fitted coordinates
NASA Technical Reports Server (NTRS)
Steger, J. L.; Sorenson, R. L.
1980-01-01
The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions.
Lai, Samuel K; Costigan, Sarah A; Morgan, Philip J; Lubans, David R; Stodden, David F; Salmon, Jo; Barnett, Lisa M
2014-01-01
The aim of this systematic review was to determine whether typically developing children and adolescents (aged 3-18 years) who have participated in school-based interventions have sustained outcomes in PA, fitness, and/or FMS. A systematic search of six electronic databases (CINAHL® Plus with Full Text, Ovid MEDLINE®, SPORTDiscus™, Scopus, PsycINFO® and ERIC) was conducted from 1995 to 26 July 2012. Included studies were school-based studies (including randomized controlled trials, longitudinal cohort, quasi-experimental, and experimental) that had a positive effect at post intervention in at least one variable and had a follow-up PA, fitness, or FMS assessment at least 6 months after the post-intervention assessment. Risk of bias assessment was guided by the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" statement. The search identified 14 articles, and some studies addressed multiple outcomes: 13 articles assessed PA; three assessed fitness; and two assessed FMS. No study in this review met four key methodological criteria that have been shown to influence results, i.e., clarity on the randomization process, assessor blinding, analyzing participants in their original groups, and retaining sufficient participants through the entire study. Three-quarters (ten of 13) of the studies addressing PA, reported PA behavior change maintenance. The length of follow-up ranged from 6 months to 20 years, and the degree of PA difference reported was between 3 and 14 min per day. Only one of the three studies assessing fitness reported a sustained impact, whilst both studies that assessed FMS reported maintenance of effects. It is likely that PA is a sustainable outcome from interventions in children and adolescents, and there is reasonable evidence that interventions of longer than 1 year and interventions that utilize a theoretical model or framework are effective in producing this sustained impact. It would seem probable that FMS are a sustainable outcome in children and adolescents; however, this finding should be viewed with caution given the lack of studies and the risk of bias assessment. More research is needed to assess the sustainability of fitness interventions as this review only included a handful of studies that addressed fitness and only one of these studies found a sustained impact.
Robyn, Paul Jacob; Sauerborn, Rainer; Bärnighausen, Till
2013-01-01
Objectives Community-based health insurance (CBI) is a common mechanism to generate financial resources for health care in developing countries. We review for the first time provider payment methods used in CBI in developing countries and their impact on CBI performance. Methods We conducted a systematic review of the literature on provider payment methods used by CBI in developing countries published up to January 2010. Results Information on provider payment was available for a total of 32 CBI schemes in 34 reviewed publications: 17 schemes in South Asia, 10 in sub-Saharan Africa, 4 in East Asia and 1 in Latin America. Various types of provider payment were applied by the CBI schemes: 17 used fee-for-service, 12 used salaries, 9 applied a coverage ceiling, 7 used capitation and 6 applied a co-insurance. The evidence suggests that provider payment impacts CBI performance through provider participation and support for CBI, population enrolment and patient satisfaction with CBI, quantity and quality of services provided and provider and patient retention. Lack of provider participation in designing and choosing a CBI payment method can lead to reduced provider support for the scheme. Conclusion CBI schemes in developing countries have used a wide range of provider payment methods. The existing evidence suggests that payment methods are a key determinant of CBI performance and sustainability, but the strength of this evidence is limited since it is largely based on observational studies rather than on trials or on quasi-experimental research. According to the evidence, provider payment can affect provider participation, satisfaction and retention in CBI; the quantity and quality of services provided to CBI patients; patient demand of CBI services; and population enrollment, risk pooling and financial sustainability of CBI. CBI schemes should carefully consider how their current payment methods influence their performance, how changes in the methods could improve performance, and how such effects could be assessed with scientific rigour to increase the strength of evidence on this topic. PMID:22522770
Robyn, Paul Jacob; Sauerborn, Rainer; Bärnighausen, Till
2013-03-01
Community-based health insurance (CBI) is a common mechanism to generate financial resources for health care in developing countries. We review for the first time provider payment methods used in CBI in developing countries and their impact on CBI performance. We conducted a systematic review of the literature on provider payment methods used by CBI in developing countries published up to January 2010. Information on provider payment was available for a total of 32 CBI schemes in 34 reviewed publications: 17 schemes in South Asia, 10 in sub-Saharan Africa, 4 in East Asia and 1 in Latin America. Various types of provider payment were applied by the CBI schemes: 17 used fee-for-service, 12 used salaries, 9 applied a coverage ceiling, 7 used capitation and 6 applied a co-insurance. The evidence suggests that provider payment impacts CBI performance through provider participation and support for CBI, population enrolment and patient satisfaction with CBI, quantity and quality of services provided and provider and patient retention. Lack of provider participation in designing and choosing a CBI payment method can lead to reduced provider support for the scheme. CBI schemes in developing countries have used a wide range of provider payment methods. The existing evidence suggests that payment methods are a key determinant of CBI performance and sustainability, but the strength of this evidence is limited since it is largely based on observational studies rather than on trials or on quasi-experimental research. According to the evidence, provider payment can affect provider participation, satisfaction and retention in CBI; the quantity and quality of services provided to CBI patients; patient demand of CBI services; and population enrollment, risk pooling and financial sustainability of CBI. CBI schemes should carefully consider how their current payment methods influence their performance, how changes in the methods could improve performance, and how such effects could be assessed with scientific rigour to increase the strength of evidence on this topic.
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED.
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-25
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.
Lubans, David R; Boreham, Colin A; Kelly, Paul; Foster, Charlie E
2011-01-26
Active travel to school (ATS) has been identified as an important source of physical activity for youth. However, the relationship between ATS and health-related fitness (HRF) among youth remains unclear. A systematic search of seven electronic databases (EMBASE, OVID MEDLINE, PsycINFO, PubMed, Scopus, SPORTDiscus and TRIS on line) was conducted in December 2009 and studies published since 1980 were considered for inclusion. Twenty seven articles were identified that explored the relationship between ATS and the following aspects of HRF: weight status/body composition, cardiorespiratory fitness, muscular fitness and flexibility. Forty-eight percent of the studies that examined the relationship between ATS and weight status/body composition reported significant associations, this increased to 55% once poor quality studies were removed. Furthermore, the findings from five studies, including one longitudinal study, indicate that ATS is positively associated with cardiorespiratory fitness in youth. However, the evidence for the relationships between ATS and muscular fitness or flexibility is equivocal and limited by low study numbers. There is some evidence to suggest that ATS is associated with a healthier body composition and level of cardiorespiratory fitness among youth. Strategies to increase ATS are warranted and should be included in whole-of-school approaches to the promotion of physical activity. © 2011 Lubans et al; licensee BioMed Central Ltd.
R & D on Beam Injection and Bunching Schemes in the Fermilab Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhat, C. M.
2016-01-01
Fermilab is committed to upgrade its accelerator complex to support HEP experiments at the intensity frontier. The ongoing Proton Improvement Plan (PIP) enables us to reach 700 kW beam power on the NuMI neutrino targets. By the end of the next decade, the current 400 MeV normal conducting LINAC will be replaced by an 800 MeV superconducting LINAC (PIP-II) with an increased beam power >50% of the PIP design goal. Both in PIP and PIP-II era, the existing Booster is going to play a very significant role, at least for next two decades. In the meanwhile, we have recently developedmore » an innovative beam injection and bunching scheme for the Booster called "early injection scheme" that continues to use the existing 400 MeV LINAC and implemented into operation. This scheme has the potential to increase the Booster beam intensity by >40% from the PIP design goal. Some benefits from the scheme have already been seen. In this paper, I will describe the basic principle of the scheme, results from recent beam experiments, our experience with the new scheme in operation, current status, issues and future plans. This scheme fits well with the current and future intensity upgrade programs at Fermilab.« less
Small, J R
1993-01-01
This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434
Dwumoh, Duah; Essuman, Edward Eyipe; Afagbedzi, Seth Kwaku
2014-01-01
The effects of National Health Insurance Scheme in Ghana and its impact on child health outcome and service utilization cannot be underestimated. Despite the tremendous improvement in child health care in Ghana, there are still some challenges in relation to how National health insurance membership, socioeconomic status and other demographic factors impacts on child health outcomes. The study seeks to determine the association between NHIS membership, socio-economic status, geographic location and other relevant background factors, on child health service utilization and outcomes. Secondary data from the Multiple Indicator Cluster Survey conducted in 2011 was used. Multivariate analysis based on Binary Logistic Regression Models and Multiple linear regression techniques was applied to determine factors associated with child health outcomes and service utilization. Collection of best models was based on Hosmer-Lemeshow Goodness-Of-Fit as one criterion of fit and the Akaike Information Criterion. Controlling for confounding effect of socioeconomic status, age of the child, mothers education level and geographic location, the odds of a child developing anemia for children with National Health Insurance Scheme Membership is 65.2% [95% CI: 52.9-80.2] times less than children without National Health Insurance Scheme Membership. The odds of being fully immunized against common childhood illnesses for children with NHIS membership is 2.3[95% CI: 1.4-3.7] times higher than children without National Health Insurance Scheme Membership. There was no association between National Health Insurance Scheme Membership and stunted growth in children. National Health Insurance Scheme Membership was found to be related to child health service utilization (full immunization) of children under five a child's anemia status. Children with NHIS are more likely to be fully immunized against common childhood diseases and are less likely to develop anemia. Stunted growth of children was not associated with National Health Insurance Scheme Membership. Health Education on the registration and the use of the National Health Insurance should be made a national priority to enable the Ministry of Health achieve routine Immunization targets and to reduce to the bearers minimum prevalence of anemia.
Zhang, Lei; Zhang, Jing
2017-08-07
A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users' private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and authentication mechanism is proposed for better fit to each individual demand-response situation. Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security threats and preserves user privacy while satisfying the individual requirement in a semi-honest model; it involves less communication overhead and computation time than the existing competing schemes.
Zhang, Lei; Zhang, Jing
2017-01-01
A Smart Grid (SG) facilitates bidirectional demand-response communication between individual users and power providers with high computation and communication performance but also brings about the risk of leaking users’ private information. Therefore, improving the individual power requirement and distribution efficiency to ensure communication reliability while preserving user privacy is a new challenge for SG. Based on this issue, we propose an efficient and privacy-preserving power requirement and distribution aggregation scheme (EPPRD) based on a hierarchical communication architecture. In the proposed scheme, an efficient encryption and authentication mechanism is proposed for better fit to each individual demand-response situation. Through extensive analysis and experiment, we demonstrate how the EPPRD resists various security threats and preserves user privacy while satisfying the individual requirement in a semi-honest model; it involves less communication overhead and computation time than the existing competing schemes. PMID:28783122
THE SCIENCE AND PRACTICE OF PHYTOREMEDIATION
This presentation will briefly review terminology, and define the types, benefits, and limitations of phytoremediation. A review of where phytoremediation fits in the scheme of hazardous waste management serves as a lead into an overview of the scientific advances on which the pr...
[The creative potential of Goethe. Approaches to a contradictory personality profile].
Gamm, H J
1989-07-01
The author contrasts the creative urbane Goethe with the unempathic, self-absorbed, and extravagant Goethe. The latter, though seized upon by the bourgeoisie as an exponent of its values, did not all fit into its social-normative schemes.
Simulation study on combination of GRACE monthly gravity field solutions
NASA Astrophysics Data System (ADS)
Jean, Yoomin; Meyer, Ulrich; Jäggi, Adrian
2016-04-01
The GRACE monthly gravity fields from different processing centers are combined in the frame of the project EGSIEM. This combination is done on solution level first to define weights which will be used for a combination on normal equation level. The applied weights are based on the deviation of the individual gravity fields from the arithmetic mean of all involved gravity fields. This kind of weighting scheme relies on the assumption that the true gravity field is close to the arithmetic mean of the involved individual gravity fields. However, the arithmetic mean can be affected by systematic errors in individual gravity fields, which consequently results in inappropriate weights. For the future operational scientific combination service of GRACE monthly gravity fields, it is necessary to examine the validity of the weighting scheme also in possible extreme cases. To investigate this, we make a simulation study on the combination of gravity fields. Firstly, we show how a deviated gravity field can affect the combined solution in terms of signal and noise in the spatial domain. We also show the impact of systematic errors in individual gravity fields on the resulting combined solution. Then, we investigate whether the weighting scheme still works in the presence of outliers. The result of this simulation study will be useful to understand and validate the weighting scheme applied to the combination of the monthly gravity fields.
Floating shock fitting via Lagrangian adaptive meshes
NASA Technical Reports Server (NTRS)
Vanrosendale, John
1994-01-01
In recent works we have formulated a new approach to compressible flow simulation, combining the advantages of shock-fitting and shock-capturing. Using a cell-centered Roe scheme discretization on unstructured meshes, we warp the mesh while marching to steady state, so that mesh edges align with shocks and other discontinuities. This new algorithm, the Shock-fitting Lagrangian Adaptive Method (SLAM) is, in effect, a reliable shock-capturing algorithm which yields shock-fitted accuracy at convergence. Shock-capturing algorithms like this, which warp the mesh to yield shock-fitted accuracy, are new and relatively untried. However, their potential is clear. In the context of sonic booms, accurate calculation of near-field sonic boom signatures is critical to the design of the High Speed Civil Transport (HSCT). SLAM should allow computation of accurate N-wave pressure signatures on comparatively coarse meshes, significantly enhancing our ability to design low-boom configurations for high-speed aircraft.
A Bayesian Approach to Systematic Error Correction in Kepler Photometric Time Series
NASA Astrophysics Data System (ADS)
Jenkins, Jon Michael; VanCleve, J.; Twicken, J. D.; Smith, J. C.; Kepler Science Team
2011-01-01
In order for the Kepler mission to achieve its required 20 ppm photometric precision for 6.5 hr observations of 12th magnitude stars, the Presearch Data Conditioning (PDC) software component of the Kepler Science Processing Pipeline must reduce systematic errors in flux time series to the limit of stochastic noise for errors with time-scales less than three days, without smoothing or over-fitting away the transits that Kepler seeks. The current version of PDC co-trends against ancillary engineering data and Pipeline generated data using essentially a least squares (LS) approach. This approach is successful for quiet stars when all sources of systematic error have been identified. If the stars are intrinsically variable or some sources of systematic error are unknown, LS will nonetheless attempt to explain all of a given time series, not just the part the model can explain well. Negative consequences can include loss of astrophysically interesting signal, and injection of high-frequency noise into the result. As a remedy, we present a Bayesian Maximum A Posteriori (MAP) approach, in which a subset of intrinsically quiet and highly-correlated stars is used to establish the probability density function (PDF) of robust fit parameters in a diagonalized basis. The PDFs then determine a "reasonable” range for the fit parameters for all stars, and brake the runaway fitting that can distort signals and inject noise. We present a closed-form solution for Gaussian PDFs, and show examples using publically available Quarter 1 Kepler data. A companion poster (Van Cleve et al.) shows applications and discusses current work in more detail. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.
NASA Astrophysics Data System (ADS)
Vogelsang, R.; Hoheisel, C.
1987-02-01
Molecular-dynamics (MD) calculations are reported for three thermodynamic states of a Lennard-Jones fluid. Systems of 2048 particles and 105 integration steps were used. The transverse current autocorrelation function, Ct(k,t), has been determined for wave vectors of the range 0.5<||k||σ<1.5. Ct(k,t) was fitted by hydrodynamic-type functions. The fits returned k-dependent decay times and shear viscosities which showed a systematic behavior as a function of k. Extrapolation to the hydrodynamic region at k=0 gave shear viscosity coefficients in good agreement with direct Green-Kubo results obtained in previous work. The two-exponential model fit for the memory function proposed by other authors does not provide a reasonable description of the MD results, as the fit parameters show no systematic wave-vector dependence, although the Ct(k,t) functions are somewhat better fitted. Similarly, the semiempirical interpolation formula for the decay time based on the viscoelastic concept proposed by Akcasu and Daniels fails to reproduce the correct k dependence for the wavelength range investigated herein.
A systematic way for the cost reduction of density fitting methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kállay, Mihály, E-mail: kallay@mail.bme.hu
2014-12-28
We present a simple approach for the reduction of the size of auxiliary basis sets used in methods exploiting the density fitting (resolution of identity) approximation for electron repulsion integrals. Starting out of the singular value decomposition of three-center two-electron integrals, new auxiliary functions are constructed as linear combinations of the original fitting functions. The new functions, which we term natural auxiliary functions (NAFs), are analogous to the natural orbitals widely used for the cost reduction of correlation methods. The use of the NAF basis enables the systematic truncation of the fitting basis, and thereby potentially the reduction of themore » computational expenses of the methods, though the scaling with the system size is not altered. The performance of the new approach has been tested for several quantum chemical methods. It is demonstrated that the most pronounced gain in computational efficiency can be expected for iterative models which scale quadratically with the size of the fitting basis set, such as the direct random phase approximation. The approach also has the promise of accelerating local correlation methods, for which the processing of three-center Coulomb integrals is a bottleneck.« less
Measurement and tricubic interpolation of the magnetic field for the OLYMPUS experiment
NASA Astrophysics Data System (ADS)
Bernauer, J. C.; Diefenbach, J.; Elbakian, G.; Gavrilov, G.; Goerrissen, N.; Hasell, D. K.; Henderson, B. S.; Holler, Y.; Karyan, G.; Ludwig, J.; Marukyan, H.; Naryshkin, Y.; O'Connor, C.; Russell, R. L.; Schmidt, A.; Schneekloth, U.; Suvorov, K.; Veretennikov, D.
2016-07-01
The OLYMPUS experiment used a 0.3 T toroidal magnetic spectrometer to measure the momenta of outgoing charged particles. In order to accurately determine particle trajectories, knowledge of the magnetic field was needed throughout the spectrometer volume. For that purpose, the magnetic field was measured at over 36,000 positions using a three-dimensional Hall probe actuated by a system of translation tables. We used these field data to fit a numerical magnetic field model, which could be employed to calculate the magnetic field at any point in the spectrometer volume. Calculations with this model were computationally intensive; for analysis applications where speed was crucial, we pre-computed the magnetic field and its derivatives on an evenly spaced grid so that the field could be interpolated between grid points. We developed a spline-based interpolation scheme suitable for SIMD implementations, with a memory layout chosen to minimize space and optimize the cache behavior to quickly calculate field values. This scheme requires only one-eighth of the memory needed to store necessary coefficients compared with a previous scheme (Lekien and Marsden, 2005 [1]). This method was accurate for the vast majority of the spectrometer volume, though special fits and representations were needed to improve the accuracy close to the magnet coils and along the toroidal axis.
Recovery Schemes for Primitive Variables in General-relativistic Magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Siegel, Daniel M.; Mösta, Philipp; Desai, Dhruv; Wu, Samantha
2018-05-01
General-relativistic magnetohydrodynamic (GRMHD) simulations are an important tool to study a variety of astrophysical systems such as neutron star mergers, core-collapse supernovae, and accretion onto compact objects. A conservative GRMHD scheme numerically evolves a set of conservation equations for “conserved” quantities and requires the computation of certain primitive variables at every time step. This recovery procedure constitutes a core part of any conservative GRMHD scheme and it is closely tied to the equation of state (EOS) of the fluid. In the quest to include nuclear physics, weak interactions, and neutrino physics, state-of-the-art GRMHD simulations employ finite-temperature, composition-dependent EOSs. While different schemes have individually been proposed, the recovery problem still remains a major source of error, failure, and inefficiency in GRMHD simulations with advanced microphysics. The strengths and weaknesses of the different schemes when compared to each other remain unclear. Here we present the first systematic comparison of various recovery schemes used in different dynamical spacetime GRMHD codes for both analytic and tabulated microphysical EOSs. We assess the schemes in terms of (i) speed, (ii) accuracy, and (iii) robustness. We find large variations among the different schemes and that there is not a single ideal scheme. While the computationally most efficient schemes are less robust, the most robust schemes are computationally less efficient. More robust schemes may require an order of magnitude more calls to the EOS, which are computationally expensive. We propose an optimal strategy of an efficient three-dimensional Newton–Raphson scheme and a slower but more robust one-dimensional scheme as a fall-back.
High Performance Thin Layer Chromatography.
ERIC Educational Resources Information Center
Costanzo, Samuel J.
1984-01-01
Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)
Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED
Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan
2016-01-01
We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326
Zeeman interaction in the Δ31 state of HfF+ to search for the electron electric dipole moment
NASA Astrophysics Data System (ADS)
Petrov, A. N.; Skripnikov, L. V.; Titov, A. V.
2017-08-01
A theoretical study devoted to suppression of magnetic systematic effects in HfF+ cation for an experiment to search for the electron electric dipole moment is reported. The g factors for J =1 , F =3 /2 , | MF|=3 /2 hyperfine levels of the Δ31 state are calculated as functions of the external electric field. The minimal value for the difference between the g factors of Ω -doublet levels, Δ g =3 ×10-6 , is attained at the electric field 7 V/cm. The body-fixed g factor, G∥, was obtained both within the ab initio electronic structure calculations and with our fit of the experimental data [H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, and E. A. Cornell, Science 342, 1220 (2013), 10.1126/science.1243683]. For the electronic structure calculations we used a combined scheme to perform correlation calculations of HfF+, which includes both the direct four-component all-electron and generalized relativistic effective core potential approaches. The electron correlation effects were treated using the coupled cluster methods. The calculated value G∥=0.0115 agrees very well with the G∥=0.0118 obtained with our fitting procedure. The calculated ab initio value D∥=-1.53 a.u. for the molecule-frame dipole moment (with the origin in the center of mass) is in agreement with the experimental datum D∥=-1.54 (1 ) a.u. [H. Loh, Ph.D. thesis, Massachusetts Institute of Technology, 2006.].
Demographics of Star-forming Galaxies since z ∼ 2.5. I. The UVJ Diagram in CANDELS
NASA Astrophysics Data System (ADS)
Fang, Jerome J.; Faber, S. M.; Koo, David C.; Rodríguez-Puebla, Aldo; Guo, Yicheng; Barro, Guillermo; Behroozi, Peter; Brammer, Gabriel; Chen, Zhu; Dekel, Avishai; Ferguson, Henry C.; Gawiser, Eric; Giavalisco, Mauro; Kartaltepe, Jeyhan; Kocevski, Dale D.; Koekemoer, Anton M.; McGrath, Elizabeth J.; McIntosh, Daniel; Newman, Jeffrey A.; Pacifici, Camilla; Pandya, Viraj; Pérez-González, Pablo G.; Primack, Joel R.; Salmon, Brett; Trump, Jonathan R.; Weiner, Benjamin; Willner, S. P.; Acquaviva, Viviana; Dahlen, Tomas; Finkelstein, Steven L.; Finlator, Kristian; Fontana, Adriano; Galametz, Audrey; Grogin, Norman A.; Gruetzbauch, Ruth; Johnson, Seth; Mobasher, Bahram; Papovich, Casey J.; Pforr, Janine; Salvato, Mara; Santini, P.; van der Wel, Arjen; Wiklind, Tommy; Wuyts, Stijn
2018-05-01
This is the first in a series of papers examining the demographics of star-forming (SF) galaxies at 0.2 < z < 2.5 in CANDELS. We study 9100 galaxies from GOODS-S and UDS, having published values of redshifts, masses, star formation rates (SFRs), and dust attenuation (A V ) derived from UV–optical spectral energy distribution fitting. In agreement with previous works, we find that the UVJ colors of a galaxy are closely correlated with its specific star formation rate (SSFR) and A V . We define rotated UVJ coordinate axes, termed S SED and C SED, that are parallel and perpendicular to the SF sequence and derive a quantitative calibration that predicts SSFR from C SED with an accuracy of ∼0.2 dex. SFRs from UV–optical fitting and from UV+IR values based on Spitzer/MIPS 24 μm agree well overall, but systematic differences of order 0.2 dex exist at high and low redshifts. A novel plotting scheme conveys the evolution of multiple galaxy properties simultaneously, and dust growth, as well as star formation decline and quenching, exhibit “mass-accelerated evolution” (“downsizing”). A population of transition galaxies below the SF main sequence is identified. These objects are located between SF and quiescent galaxies in UVJ space, and have lower A V and smaller radii than galaxies on the main sequence. Their properties are consistent with their being in transit between the two regions. The relative numbers of quenched, transition, and SF galaxies are given as a function of mass and redshift.
An application of the Krylov-FSP-SSA method to parameter fitting with maximum likelihood
NASA Astrophysics Data System (ADS)
Dinh, Khanh N.; Sidje, Roger B.
2017-12-01
Monte Carlo methods such as the stochastic simulation algorithm (SSA) have traditionally been employed in gene regulation problems. However, there has been increasing interest to directly obtain the probability distribution of the molecules involved by solving the chemical master equation (CME). This requires addressing the curse of dimensionality that is inherent in most gene regulation problems. The finite state projection (FSP) seeks to address the challenge and there have been variants that further reduce the size of the projection or that accelerate the resulting matrix exponential. The Krylov-FSP-SSA variant has proved numerically efficient by combining, on one hand, the SSA to adaptively drive the FSP, and on the other hand, adaptive Krylov techniques to evaluate the matrix exponential. Here we apply this Krylov-FSP-SSA to a mutual inhibitory gene network synthetically engineered in Saccharomyces cerevisiae, in which bimodality arises. We show numerically that the approach can efficiently approximate the transient probability distribution, and this has important implications for parameter fitting, where the CME has to be solved for many different parameter sets. The fitting scheme amounts to an optimization problem of finding the parameter set so that the transient probability distributions fit the observations with maximum likelihood. We compare five optimization schemes for this difficult problem, thereby providing further insights into this approach of parameter estimation that is often applied to models in systems biology where there is a need to calibrate free parameters. Work supported by NSF grant DMS-1320849.
Bermejo-Cantarero, Alberto; Álvarez-Bueno, Celia; Martinez-Vizcaino, Vicente; García-Hermoso, Antonio; Torres-Costoso, Ana Isabel; Sánchez-López, Mairena
2017-01-01
Abstract Background: Health related quality of life (HRQoL) is a subjective, multidimensional and changing over time construct. When HRQoL is decreased, a child is less likely to be able to develop normally and mature into a healthy adult. Physical inactivity is a priority public health problem. Evidence suggests how even moderate levels of physical activity or high fitness levels are associated with benefits for the health in children and adolescents. The aims of this systematic review are to examine the evidence about the relationship between physical activity, sedentary behavior, and fitness with HRQoL, and estimate the effects of interventions that have tested the effectiveness of the increase of the physical activity, the improvement of the physical fitness or the avoidance of sedentary behaviors in HRQoL in healthy subjects aged under 18 years old. Methods: This systematic review and meta-analysis protocol was conducted following the preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) statement. To identify relevant studies, the following electronic databases will be searched: MEDLINE, EMBASE, Cochrane Database, Web of Science, and PEDro. Reference lists of relevant studies will be examined for links to potential related articles. The methodological quality of the observational included studies will be scored using a quality assessment checklist. For the intervention studies, the risk of bias will be estimated using The Cochrane Collaboration tool for assessing risk of bias. Reviewers will determine whether a meta-analysis is possible when data have been extracted. If it is, subgroup analyses will be carried out by age and socioeconomic status, and by the different dimensions of the HRQoL. If is not possible, a descriptive analysis will be conducted. Conclusion: To our knowledge, this systematic review and meta-analysis will be the first that synthesizes the existing results about the relationship between physical activity, sedentary behavior, physical fitness, and HRQoL, and the effect of physical activity interventions on HRQoL, in healthy subjects under 18 years old. This study will clarify this relationship and will provide evidence for decision-making. Limitations may include the quality of the selected studies and their characteristics. Only studies published in English and Spanish will be included. Systematic review registration: PROSPERO CRD42015025823. PMID:28328839
Bermejo-Cantarero, Alberto; Álvarez-Bueno, Celia; Martinez-Vizcaino, Vicente; García-Hermoso, Antonio; Torres-Costoso, Ana Isabel; Sánchez-López, Mairena
2017-03-01
Health related quality of life (HRQoL) is a subjective, multidimensional and changing over time construct. When HRQoL is decreased, a child is less likely to be able to develop normally and mature into a healthy adult. Physical inactivity is a priority public health problem. Evidence suggests how even moderate levels of physical activity or high fitness levels are associated with benefits for the health in children and adolescents. The aims of this systematic review are to examine the evidence about the relationship between physical activity, sedentary behavior, and fitness with HRQoL, and estimate the effects of interventions that have tested the effectiveness of the increase of the physical activity, the improvement of the physical fitness or the avoidance of sedentary behaviors in HRQoL in healthy subjects aged under 18 years old. This systematic review and meta-analysis protocol was conducted following the preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) statement. To identify relevant studies, the following electronic databases will be searched: MEDLINE, EMBASE, Cochrane Database, Web of Science, and PEDro. Reference lists of relevant studies will be examined for links to potential related articles. The methodological quality of the observational included studies will be scored using a quality assessment checklist. For the intervention studies, the risk of bias will be estimated using The Cochrane Collaboration tool for assessing risk of bias. Reviewers will determine whether a meta-analysis is possible when data have been extracted. If it is, subgroup analyses will be carried out by age and socioeconomic status, and by the different dimensions of the HRQoL. If is not possible, a descriptive analysis will be conducted. To our knowledge, this systematic review and meta-analysis will be the first that synthesizes the existing results about the relationship between physical activity, sedentary behavior, physical fitness, and HRQoL, and the effect of physical activity interventions on HRQoL, in healthy subjects under 18 years old. This study will clarify this relationship and will provide evidence for decision-making. Limitations may include the quality of the selected studies and their characteristics. Only studies published in English and Spanish will be included. PROSPERO CRD42015025823.
A study of pressure-based methodology for resonant flows in non-linear combustion instabilities
NASA Technical Reports Server (NTRS)
Yang, H. Q.; Pindera, M. Z.; Przekwas, A. J.; Tucker, K.
1992-01-01
This paper presents a systematic assessment of a large variety of spatial and temporal differencing schemes on nonstaggered grids by the pressure-based methods for the problems of fast transient flows. The observation from the present study is that for steady state flow problems, pressure-based methods can be very competitive with the density-based methods. For transient flow problems, pressure-based methods utilizing the same differencing scheme are less accurate, even though the wave speeds are correctly predicted.
Chronopoulos, D
2017-01-01
A systematic expression quantifying the wave energy skewing phenomenon as a function of the mechanical characteristics of a non-isotropic structure is derived in this study. A structure of arbitrary anisotropy, layering and geometric complexity is modelled through Finite Elements (FEs) coupled to a periodic structure wave scheme. A generic approach for efficiently computing the angular sensitivity of the wave slowness for each wave type, direction and frequency is presented. The approach does not involve any finite differentiation scheme and is therefore computationally efficient and not prone to the associated numerical errors. Copyright © 2016 Elsevier B.V. All rights reserved.
Combining states without scale hierarchies with ordered parton showers
Fischer, Nadine; Prestel, Stefan
2017-09-12
Here, we present a parameter-free scheme to combine fixed-order multi-jet results with parton-shower evolution. The scheme produces jet cross sections with leading-order accuracy in the complete phase space of multiple emissions, resumming large logarithms when appropriate, while not arbitrarily enforcing ordering on momentum configurations beyond the reach of the parton-shower evolution equation. This then requires the development of a matrix-element correction scheme for complex phase-spaces including ordering conditions as well as a systematic scale-setting procedure for unordered phase-space points. Our algorithm does not require a merging-scale parameter. We implement the new method in the Vincia framework and compare to LHCmore » data.« less
Sastry, Madhavi; Lowrie, Jeffrey F; Dixon, Steven L; Sherman, Woody
2010-05-24
A systematic virtual screening study on 11 pharmaceutically relevant targets has been conducted to investigate the interrelation between 8 two-dimensional (2D) fingerprinting methods, 13 atom-typing schemes, 13 bit scaling rules, and 12 similarity metrics using the new cheminformatics package Canvas. In total, 157 872 virtual screens were performed to assess the ability of each combination of parameters to identify actives in a database screen. In general, fingerprint methods, such as MOLPRINT2D, Radial, and Dendritic that encode information about local environment beyond simple linear paths outperformed other fingerprint methods. Atom-typing schemes with more specific information, such as Daylight, Mol2, and Carhart were generally superior to more generic atom-typing schemes. Enrichment factors across all targets were improved considerably with the best settings, although no single set of parameters performed optimally on all targets. The size of the addressable bit space for the fingerprints was also explored, and it was found to have a substantial impact on enrichments. Small bit spaces, such as 1024, resulted in many collisions and in a significant degradation in enrichments compared to larger bit spaces that avoid collisions.
de Vos, Johan J; Biesheuvel, Jan Dirk; Briaire, Jeroen J; Boot, Pieter S; van Gendt, Margriet J; Dekkers, Olaf M; Fiocco, Marta; Frijns, Johan H M
The electrically evoked compound action potential (eCAP) is widely used in the clinic as an objective measure to assess cochlear implant functionality. During the past decade, there has been increasing interest in applying eCAPs for fitting of cochlear implants. Several studies have shown that eCAP-based fitting can potentially replace time-consuming behavioral fitting procedures, especially in young children. However, a closer look to all available literature revealed that there is no clear consensus on the validity of this fitting procedure. This study evaluated the validity of eCAP-based fitting of cochlear implant recipients based on a systematic review of the recent literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were used to search the PubMed, Web of Science, and Cochrane Library databases. The term "eCAP" was combined with "cochlear implants," "thresholds," and "levels," in addition to a range of related terms. Finally, 32 studies met the inclusion criteria. These studies were evaluated on the risk of bias and, when possible, compared by meta-analysis. Almost all assessed studies suffered from some form of risk of bias. Twenty-nine of the studies based their conclusion on a group correlation instead of individual subject correlations (analytical bias); 14 studies were unclear about randomization or blinding (outcome assessment bias); 9 studies provided no clear description of the populations used, for example, prelingually or postlingually implanted subjects (selection bias); and 4 studies had a high rate of loss (>10%) for patients or electrodes (attrition bias). Meta-analysis of these studies revealed a weak pooled correlation between eCAP thresholds and both behavioral T- and C-levels (r = 0.58 and r = 0.61, respectively). This review shows that the majority of the assessed studies suffered from substantial shortcomings in study design and statistical analysis. Meta-analysis showed that there is only weak evidence to support the use of eCAP data for cochlear implant fitting purposes; eCAP thresholds are an equally weak predictor for both T- and C-levels. Based on this review, it can be concluded that research on eCAP-based fitting needs a profound reflection on study design and analysis to draw well-grounded conclusions about the validity of eCAP-based fitting of cochlear implant recipients.
An unconditionally stable Runge-Kutta method for unsteady flows
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Chima, Rodrick V.
1988-01-01
A quasi-three dimensional analysis was developed for unsteady rotor-stator interaction in turbomachinery. The analysis solves the unsteady Euler or thin-layer Navier-Stokes equations in a body fitted coordinate system. It accounts for the effects of rotation, radius change, and stream surface thickness. The Baldwin-Lomax eddy viscosity model is used for turbulent flows. The equations are integrated in time using a four stage Runge-Kutta scheme with a constant time step. Implicit residual smoothing was employed to accelerate the solution of the time accurate computations. The scheme is described and accuracy analyses are given. Results are shown for a supersonic through-flow fan designed for NASA Lewis. The rotor:stator blade ratio was taken as 1:1. Results are also shown for the first stage of the Space Shuttle Main Engine high pressure fuel turbopump. Here the blade ratio is 2:3. Implicit residual smoothing was used to increase the time step limit of the unsmoothed scheme by a factor of six with negligible differences in the unsteady results. It is felt that the implicitly smoothed Runge-Kutta scheme is easily competitive with implicit schemes for unsteady flows while retaining the simplicity of an explicit scheme.
Scheme, Erik J; Englehart, Kevin B
2013-07-01
When controlling a powered upper limb prosthesis it is important not only to know how to move the device, but also when not to move. A novel approach to pattern recognition control, using a selective multiclass one-versus-one classification scheme has been shown to be capable of rejecting unintended motions. This method was shown to outperform other popular classification schemes when presented with muscle contractions that did not correspond to desired actions. In this work, a 3-D Fitts' Law test is proposed as a suitable alternative to using virtual limb environments for evaluating real-time myoelectric control performance. The test is used to compare the selective approach to a state-of-the-art linear discriminant analysis classification based scheme. The framework is shown to obey Fitts' Law for both control schemes, producing linear regression fittings with high coefficients of determination (R(2) > 0.936). Additional performance metrics focused on quality of control are discussed and incorporated in the evaluation. Using this framework the selective classification based scheme is shown to produce significantly higher efficiency and completion rates, and significantly lower overshoot and stopping distances, with no significant difference in throughput.
ERIC Educational Resources Information Center
Rivilis, Irina; Hay, John; Cairney, John; Klentrou, Panagiota; Liu, Jian; Faught, Brent E.
2011-01-01
Developmental coordination disorder (DCD) is a neurodevelopmental condition characterized by poor motor proficiency that interferes with a child's activities of daily living. Activities that most young children engage in such as running, walking, and jumping are important for the proper development of fitness and overall health. However, children…
Regulatory Fit and Systematic Exploration in a Dynamic Decision-Making Environment
ERIC Educational Resources Information Center
Otto, A. Ross; Markman, Arthur B.; Gureckis, Todd M.; Love, Bradley C.
2010-01-01
This work explores the influence of motivation on choice behavior in a dynamic decision-making environment, where the payoffs from each choice depend on one's recent choice history. Previous research reveals that participants in a regulatory fit exhibit increased levels of exploratory choice and flexible use of multiple strategies over the course…
Proynov, Emil; Liu, Fenglai; Gan, Zhengting; Wang, Matthew; Kong, Jing
2015-01-01
We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C9 dispersion coefficients is done in a non-empirical fashion. The obtained C9 values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C9 values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at short distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He3 and Ar3 trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters. PMID:26328836
One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.
Lhomme, J; Bouvier, C; Mignot, E; Paquier, A
2006-01-01
A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.
Evaluation of Hamaker coefficients using Diffusion Monte Carlo method
NASA Astrophysics Data System (ADS)
Maezono, Ryo; Hongo, Kenta
We evaluated the Hamaker's constant for Cyclohexasilane to investigate its wettability, which is used as an ink of 'liquid silicon' in 'printed electronics'. Taking three representative geometries of the dimer coalescence (parallel, lined, and T-shaped), we evaluated these binding curves using diffusion Monte Carlo method. The parallel geometry gave the most long-ranged exponent, ~ 1 /r6 , in its asymptotic behavior. Evaluated binding lengths are fairly consistent with the experimental density of the molecule. The fitting of the asymptotic curve gave an estimation of Hamaker's constant being around 100 [zJ]. We also performed a CCSD(T) evaluation and got almost similar result. To check its justification, we applied the same scheme to Benzene and compared the estimation with those by other established methods, Lifshitz theory and SAPT (Symmetry-adopted perturbation theory). The result by the fitting scheme turned to be twice larger than those by Lifshitz and SAPT, both of which coincide with each other. It is hence implied that the present evaluation for Cyclohexasilane would be overestimated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proynov, Emil; Wang, Matthew; Kong, Jing, E-mail: jing.kong@mtsu.edu
We implement and compute the density functional nonadditive three-body dispersion interaction using a combination of Tang-Karplus formalism and the exchange-dipole moment model of Becke and Johnson. The computation of the C{sub 9} dispersion coefficients is done in a non-empirical fashion. The obtained C{sub 9} values of a series of noble atom triplets agree well with highly accurate values in the literature. We also calculate the C{sub 9} values for a series of benzene trimers and find a good agreement with high-level ab initio values reported recently in the literature. For the question of damping of the three-body dispersion at shortmore » distances, we propose two damping schemes and optimize them based on the benzene trimers data, and the fitted analytic potentials of He{sub 3} and Ar{sub 3} trimers fitted to the results of high-level wavefunction theories available from the literature. Both damping schemes respond well to the optimization of two parameters.« less
Lisman, Peter J; de la Motte, Sarah J; Gribbin, Timothy C; Jaffin, Dianna P; Murphy, Kaitlin; Deuster, Patricia A
2017-06-01
Musculoskeletal injuries (MSK-Is) are a significant health problem for both military and athletic populations. Research indicates that MSK-I is associated with physical fitness; however, the association between specific components of physical fitness and MSK-I in military and athletic populations has not been systematically examined. Our goal was to systematically review the literature to provide a best evidence synthesis on the relationship between components of physical fitness and MSK-I risk in military and civilian athletic populations. This first of 3 manuscripts focuses on cardiorespiratory endurance (CRE). MEDLINE, EBSCO, EMBASE, and the Defense Technical Information Center were searched for original studies published from 1970 through 2015 that examined associations between physical fitness and MSK-I. Forty-nine of 4,229 citations met our inclusion criteria. Primary findings indicate that there is (a) strong evidence that poor performance on a set distance run for time is a predictor for MSK-I risk in both genders; (b) strong evidence that poor performance on timed shuttle runs is a predictor for MSK-I risk in males; (c) moderate evidence in males and limited evidence in females that poor performance on a timed step test is a predictor of MSK-I risk; and (d) limited or insufficient evidence that poor performance on the Cooper run test, maximal and submaximal aerobic graded exercise tests, and the Conconi test are predictors of MSK-I risk in males or females or both. Several measures of CRE are risk factors for training-related MSK-I in military and civilian athletic populations, indicating that CRE may be an important measure for MSK-I risk stratification.
NASA Astrophysics Data System (ADS)
Zhao, Wenjie; Peng, Yiran; Wang, Bin; Yi, Bingqi; Lin, Yanluan; Li, Jiangnan
2018-05-01
A newly implemented Baum-Yang scheme for simulating ice cloud optical properties is compared with existing schemes (Mitchell and Fu schemes) in a standalone radiative transfer model and in the global climate model (GCM) Community Atmospheric Model Version 5 (CAM5). This study systematically analyzes the effect of different ice cloud optical schemes on global radiation and climate by a series of simulations with a simplified standalone radiative transfer model, atmospheric GCM CAM5, and a comprehensive coupled climate model. Results from the standalone radiative model show that Baum-Yang scheme yields generally weaker effects of ice cloud on temperature profiles both in shortwave and longwave spectrum. CAM5 simulations indicate that Baum-Yang scheme in place of Mitchell/Fu scheme tends to cool the upper atmosphere and strengthen the thermodynamic instability in low- and mid-latitudes, which could intensify the Hadley circulation and dehydrate the subtropics. When CAM5 is coupled with a slab ocean model to include simplified air-sea interaction, reduced downward longwave flux to surface in Baum-Yang scheme mitigates ice-albedo feedback in the Arctic as well as water vapor and cloud feedbacks in low- and mid-latitudes, resulting in an overall temperature decrease by 3.0/1.4 °C globally compared with Mitchell/Fu schemes. Radiative effect and climate feedback of the three ice cloud optical schemes documented in this study can be referred for future improvements on ice cloud simulation in CAM5.
The a(3) Scheme--A Fourth-Order Space-Time Flux-Conserving and Neutrally Stable CESE Solver
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2008-01-01
The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a non-dissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To initiate a systematic CESE development of high order schemes, in this paper we provide a thorough discussion on the structure, consistency, stability, phase error, and accuracy of a new 4th-order space-time flux-conserving and neutrally stable CESE solver of an 1D scalar advection equation. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and three points at the lower time level. Because it is associated with three independent mesh variables (the numerical analogues of the dependent variable and its 1st-order and 2ndorder spatial derivatives, respectively) and three equations per mesh point, the new scheme is referred to as the a(3) scheme. Through the von Neumann analysis, it is shown that the a(3) scheme is stable if and only if the Courant number is less than 0.5. Moreover, it is established numerically that the a(3) scheme is 4th-order accurate.
NASA Astrophysics Data System (ADS)
Landry, Guillaume; Parodi, Katia; Wildberger, Joachim E.; Verhaegen, Frank
2013-08-01
Dedicated methods of in-vivo verification of ion treatment based on the detection of secondary emitted radiation, such as positron-emission-tomography and prompt gamma detection require high accuracy in the assignment of the elemental composition. This especially concerns the content in carbon and oxygen, which are the most abundant elements of human tissue. The standard single-energy computed tomography (SECT) approach to carbon and oxygen concentration determination has been shown to introduce significant discrepancies in the carbon and oxygen content of tissues. We propose a dual-energy CT (DECT)-based approach for carbon and oxygen content assignment and investigate the accuracy gains of the method. SECT and DECT Hounsfield units (HU) were calculated using the stoichiometric calibration procedure for a comprehensive set of human tissues. Fit parameters for the stoichiometric calibration were obtained from phantom scans. Gaussian distributions with standard deviations equal to those derived from phantom scans were subsequently generated for each tissue for several values of the computed tomography dose index (CTDIvol). The assignment of %weight carbon and oxygen (%wC,%wO) was performed based on SECT and DECT. The SECT scheme employed a HU versus %wC,O approach while for DECT we explored a Zeff versus %wC,O approach and a (Zeff, ρe) space approach. The accuracy of each scheme was estimated by calculating the root mean square (RMS) error on %wC,O derived from the input Gaussian distribution of HU for each tissue and also for the noiseless case as a limiting case. The (Zeff, ρe) space approach was also compared to SECT by comparing RMS error for hydrogen and nitrogen (%wH,%wN). Systematic shifts were applied to the tissue HU distributions to assess the robustness of the method against systematic uncertainties in the stoichiometric calibration procedure. In the absence of noise the (Zeff, ρe) space approach showed more accurate %wC,O assignment (largest error of 2%) than the Zeff versus %wC,O and HU versus %wC,O approaches (largest errors of 15% and 30%, respectively). When noise was present, the accuracy of the (Zeff, ρe) space (DECT approach) was decreased but the RMS error over all tissues was lower than the HU versus %wC,O (SECT approach) (5.8%wC versus 7.5%wC at CTDIvol = 20 mGy). The DECT approach showed decreasing RMS error with decreasing image noise (or increasing CTDIvol). At CTDIvol = 80 mGy the RMS error over all tissues was 3.7% for DECT and 6.2% for SECT approaches. However, systematic shifts greater than ±5HU undermined the accuracy gains afforded by DECT at any dose level. DECT provides more accurate %wC,O assignment than SECT when imaging noise and systematic uncertainties in HU values are not considered. The presence of imaging noise degrades the DECT accuracy on %wC,O assignment but it remains superior to SECT. However, DECT was found to be sensitive to systematic shifts of human tissue HU.
Toward Detection of Exoplanetary Rings via Transit Photometry: Methodology and a Possible Candidate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aizawa, Masataka; Masuda, Kento; Suto, Yasushi
The detection of a planetary ring of exoplanets remains one of the most attractive, but challenging, goals in the field of exoplanetary science. We present a methodology that implements a systematic search for exoplanetary rings via transit photometry of long-period planets. This methodology relies on a precise integration scheme that we develop to compute a transit light curve of a ringed planet. We apply the methodology to 89 long-period planet candidates from the Kepler data so as to estimate, and/or set upper limits on, the parameters of possible rings. While the majority of our samples do not have sufficient signal-to-noise ratios (S/Ns) to place meaningfulmore » constraints on ring parameters, we find that six systems with higher S/Ns are inconsistent with the presence of a ring larger than 1.5 times the planetary radius, assuming a grazing orbit and a tilted ring. Furthermore, we identify five preliminary candidate systems whose light curves exhibit ring-like features. After removing four false positives due to the contamination from nearby stars, we identify KIC 10403228 as a reasonable candidate for a ringed planet. A systematic parameter fit of its light curve with a ringed planet model indicates two possible solutions corresponding to a Saturn-like planet with a tilted ring. There also remain two other possible scenarios accounting for the data; a circumstellar disk and a hierarchical triple. Due to large uncertain factors, we cannot choose one specific model among the three.« less
Achievements and Challenges in Computational Protein Design.
Samish, Ilan
2017-01-01
Computational protein design (CPD), a yet evolving field, includes computer-aided engineering for partial or full de novo designs of proteins of interest. Designs are defined by a requested structure, function, or working environment. This chapter describes the birth and maturation of the field by presenting 101 CPD examples in a chronological order emphasizing achievements and pending challenges. Integrating these aspects presents the plethora of CPD approaches with the hope of providing a "CPD 101". These reflect on the broader structural bioinformatics and computational biophysics field and include: (1) integration of knowledge-based and energy-based methods, (2) hierarchical designated approach towards local, regional, and global motifs and the integration of high- and low-resolution design schemes that fit each such region, (3) systematic differential approaches towards different protein regions, (4) identification of key hot-spot residues and the relative effect of remote regions, (5) assessment of shape-complementarity, electrostatics and solvation effects, (6) integration of thermal plasticity and functional dynamics, (7) negative design, (8) systematic integration of experimental approaches, (9) objective cross-assessment of methods, and (10) successful ranking of potential designs. Future challenges also include dissemination of CPD software to the general use of life-sciences researchers and the emphasis of success within an in vivo milieu. CPD increases our understanding of protein structure and function and the relationships between the two along with the application of such know-how for the benefit of mankind. Applied aspects range from biological drugs, via healthier and tastier food products to nanotechnology and environmentally friendly enzymes replacing toxic chemicals utilized in the industry.
Science and football: a review of applied research in the football codes.
Reilly, Thomas; Gilbourne, David
2003-09-01
Over the last two decades there has been a growth in research directly related to football. Although most of this research is focused on soccer (association football), there has been a steady increase in publications related to the other football codes. There is evidence of more systematic training and selection influencing the anthropometric profiles of players who compete at the highest level. Fitness is being optimized to cope with match demands while accommodating the need for specific requirements of positional roles. There is evidence of work rate being higher in contemporary football games than in previous decades, with consequences for training and dietary practices. Notation analysis of actions during matches is now used regularly to provide detailed objective feedback on performance to players and coaches. Training regimens are designed for game-specific purposes where possible. Sports psychologists working in a football context have a more eclectic body of knowledge to draw from. In the professional soccer clubs, the rewards associated with a successful investment in youth academies have helped to focus attention on talent identification and development models. It is a challenge to those specializing in science and football to contribute to the success of such schemes.
Role of dimensionality in the Kondo Ce T X2 family: The case of CeCd0.7Sb2
NASA Astrophysics Data System (ADS)
Rosa, P. F. S.; Bourg, R. J.; Jesus, C. B. R.; Pagliuso, P. G.; Fisk, Z.
2015-10-01
Motivated by the presence of competing magnetic interactions in the heavy fermion family Ce T X2 (T = transitionmetal, X =pnictogen), here we study the novel parent compound CeCd0.7Sb2 by combining magnetization, electrical resistivity, and heat-capacity measurements. Contrary to the antiferromagnetic (AFM) ground state observed in most members of this family, the magnetic properties of our CeCd0.7Sb2 single crystals revealed a ferromagnetic ordering at Tc=3 K with an unusual soft behavior. By using a mean field model including anisotropic nearest-neighbor interactions and the tetragonal crystalline electric field (CEF) Hamiltonian, a systematic analysis of our macroscopic data was obtained. Our fits allowed us to extract a simple but very distinct CEF scheme, as compared to the AFM counterparts. As in the previously studied ferromagnet CeAgSb2, a pure |±1 /2 > ground state is realized, hinting at a general trend within the ferromagnetic members. More generally, we propose a scenario for the understanding of the magnetism in this family of compounds based on the subtle changes of dimensionality in the crystal structure.
Mechanisms generating kappa distributions in plasmas
NASA Astrophysics Data System (ADS)
Livadiotis, Georgios
2017-10-01
Kappa distributions have become increasingly widespread across plasma physics. Publication records reveal an exponential growth of papers relevant to kappa distributions. However, the vast majority of publications refer to statistical fits and applications of these distributions in plasmas. Up to date, there is no systematic analysis on the origin of kappa distributions, that is, the mechanisms that can generate kappa distributions in plasmas. The general scheme that characterizes these mechanisms is composed of two parts: (1) the generation of local correlations among particles, and (2) the thermalization, that is, the stabilization of the particle system into stationary states described by kappa distributions or combinations thereof. Several mechanisms are known in the literature, each characterized by a specific relationship between the plasma properties. These relationships serve as conditions that need to be fulfilled for the corresponding mechanisms to be applied in the plasma. Using these relationships, we identify three mechanisms that generate kappa distributions in the solar wind plasma: (i) Debye shielding, (ii) magnetic field binding, and (iii) thermal fluctuations, each one prevailing in different scales of the solar wind plasma and magnetic field properties. The work was supported in part by the project NNX17AB74G of NASA's HGI Program.
Using an interference spectrum as a short-range absolute rangefinder with fiber and wideband source
NASA Astrophysics Data System (ADS)
Hsieh, Tsung-Han; Han, Pin
2018-06-01
Recently, a new type of displacement instrument using spectral-interference has been found, which utilizes fiber and a wideband light source to produce an interference spectrum. In this work, we develop a method that measures the absolute air-gap distance by taking wavelengths at two interference spectra minima. The experimental results agree with the theoretical calculations. It is also utilized to produce and control the spectral switch, which is much easier than other previous methods using other control mechanisms. A scanning mode of this scheme for stepped surface measurement is suggested, which is verified by a standard thickness gauge test. Our scheme is different to one available on the market that may use a curve-fitting method, and some comparisons are made between our scheme and that one.
Trusted measurement model based on multitenant behaviors.
Ning, Zhen-Hu; Shen, Chang-Xiang; Zhao, Yong; Liang, Peng
2014-01-01
With a fast growing pervasive computing, especially cloud computing, the behaviour measurement is at the core and plays a vital role. A new behaviour measurement tailored for Multitenants in cloud computing is needed urgently to fundamentally establish trust relationship. Based on our previous research, we propose an improved trust relationship scheme which captures the world of cloud computing where multitenants share the same physical computing platform. Here, we first present the related work on multitenant behaviour; secondly, we give the scheme of behaviour measurement where decoupling of multitenants is taken into account; thirdly, we explicitly explain our decoupling algorithm for multitenants; fourthly, we introduce a new way of similarity calculation for deviation control, which fits the coupled multitenants under study well; lastly, we design the experiments to test our scheme.
An equilibrium-conserving taxation scheme for income from capital
NASA Astrophysics Data System (ADS)
Tempere, Jacques
2018-02-01
Under conditions of market equilibrium, the distribution of capital income follows a Pareto power law, with an exponent that characterizes the given equilibrium. Here, a simple taxation scheme is proposed such that the post-tax capital income distribution remains an equilibrium distribution, albeit with a different exponent. This taxation scheme is shown to be progressive, and its parameters can be simply derived from (i) the total amount of tax that will be levied, (ii) the threshold selected above which capital income will be taxed and (iii) the total amount of capital income. The latter can be obtained either by using Piketty's estimates of the capital/labor income ratio or by fitting the initial Pareto exponent. Both ways moreover provide a check on the amount of declared income from capital.
Trusted Measurement Model Based on Multitenant Behaviors
Ning, Zhen-Hu; Shen, Chang-Xiang; Zhao, Yong; Liang, Peng
2014-01-01
With a fast growing pervasive computing, especially cloud computing, the behaviour measurement is at the core and plays a vital role. A new behaviour measurement tailored for Multitenants in cloud computing is needed urgently to fundamentally establish trust relationship. Based on our previous research, we propose an improved trust relationship scheme which captures the world of cloud computing where multitenants share the same physical computing platform. Here, we first present the related work on multitenant behaviour; secondly, we give the scheme of behaviour measurement where decoupling of multitenants is taken into account; thirdly, we explicitly explain our decoupling algorithm for multitenants; fourthly, we introduce a new way of similarity calculation for deviation control, which fits the coupled multitenants under study well; lastly, we design the experiments to test our scheme. PMID:24987731
Adaptive Mesh Refinement in Curvilinear Body-Fitted Grid Systems
NASA Technical Reports Server (NTRS)
Steinthorsson, Erlendur; Modiano, David; Colella, Phillip
1995-01-01
To be truly compatible with structured grids, an AMR algorithm should employ a block structure for the refined grids to allow flow solvers to take advantage of the strengths of unstructured grid systems, such as efficient solution algorithms for implicit discretizations and multigrid schemes. One such algorithm, the AMR algorithm of Berger and Colella, has been applied to and adapted for use with body-fitted structured grid systems. Results are presented for a transonic flow over a NACA0012 airfoil (AGARD-03 test case) and a reflection of a shock over a double wedge.
Boundary fitting based segmentation of fluorescence microscopy images
NASA Astrophysics Data System (ADS)
Lee, Soonam; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.
2015-03-01
Segmentation is a fundamental step in quantifying characteristics, such as volume, shape, and orientation of cells and/or tissue. However, quantification of these characteristics still poses a challenge due to the unique properties of microscopy volumes. This paper proposes a 2D segmentation method that utilizes a combination of adaptive and global thresholding, potentials, z direction refinement, branch pruning, end point matching, and boundary fitting methods to delineate tubular objects in microscopy volumes. Experimental results demonstrate that the proposed method achieves better performance than an active contours based scheme.
A Systematic Approach for Understanding Slater-Gaussian Functions in Computational Chemistry
ERIC Educational Resources Information Center
Stewart, Brianna; Hylton, Derrick J.; Ravi, Natarajan
2013-01-01
A systematic way to understand the intricacies of quantum mechanical computations done by a software package known as "Gaussian" is undertaken via an undergraduate research project. These computations involve the evaluation of key parameters in a fitting procedure to express a Slater-type orbital (STO) function in terms of the linear…
Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special non-deteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of 'non-reflecting kernels,' nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The non-deteriorating algorithm, which is the core of the new ABCs is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals, and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimension spaces, It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the non-modified scheme. In the paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABCs' algorithm.
Global Discrete Artificial Boundary Conditions for Time-Dependent Wave Propagation
NASA Astrophysics Data System (ADS)
Ryaben'kii, V. S.; Tsynkov, S. V.; Turchaninov, V. I.
2001-12-01
We construct global artificial boundary conditions (ABCs) for the numerical simulation of wave processes on unbounded domains using a special nondeteriorating algorithm that has been developed previously for the long-term computation of wave-radiation solutions. The ABCs are obtained directly for the discrete formulation of the problem; in so doing, neither a rational approximation of “nonreflecting kernels” nor discretization of the continuous boundary conditions is required. The extent of temporal nonlocality of the new ABCs appears fixed and limited; in addition, the ABCs can handle artificial boundaries of irregular shape on regular grids with no fitting/adaptation needed and no accuracy loss induced. The nondeteriorating algorithm, which is the core of the new ABCs, is inherently three-dimensional, it guarantees temporally uniform grid convergence of the solution driven by a continuously operating source on arbitrarily long time intervals and provides unimprovable linear computational complexity with respect to the grid dimension. The algorithm is based on the presence of lacunae, i.e., aft fronts of the waves, in wave-type solutions in odd-dimensional spaces. It can, in fact, be built as a modification on top of any consistent and stable finite-difference scheme, making its grid convergence uniform in time and at the same time keeping the rate of convergence the same as that of the unmodified scheme. In this paper, we delineate the construction of the global lacunae-based ABCs in the framework of a discretized wave equation. The ABCs are obtained for the most general formulation of the problem that involves radiation of waves by moving sources (e.g., radiation of acoustic waves by a maneuvering aircraft). We also present systematic numerical results that corroborate the theoretical design properties of the ABC algorithm.
Functional Profiling Using the Saccharomyces Genome Deletion Project Collections.
Nislow, Corey; Wong, Lai Hong; Lee, Amy Huei-Yi; Giaever, Guri
2016-09-01
The ability to measure and quantify the fitness of an entire organism requires considerably more complex approaches than simply using traditional "omic" methods that examine, for example, the abundance of RNA transcripts, proteins, or metabolites. The yeast deletion collections represent the only systematic, comprehensive set of null alleles for any organism in which such fitness measurements can be assayed. Generated by the Saccharomyces Genome Deletion Project, these collections allow the systematic and parallel analysis of gene functions using any measurable phenotype. The unique 20-bp molecular barcodes engineered into the genome of each deletion strain facilitate the massively parallel analysis of individual fitness. Here, we present functional genomic protocols for use with the yeast deletion collections. We describe how to maintain, propagate, and store the deletion collections and how to perform growth fitness assays on single and parallel screening platforms. Phenotypic fitness analyses of the yeast mutants, described in brief here, provide important insights into biological functions, mechanisms of drug action, and response to environmental stresses. It is important to bear in mind that the specific assays described in this protocol represent some of the many ways in which these collections can be assayed, and in this description particular attention is paid to maximizing throughput using growth as the phenotypic measure. © 2016 Cold Spring Harbor Laboratory Press.
Pricing and reimbursement frameworks in Central Eastern Europe: a decision tool to support choices.
Kolasa, Katarzyna; Kalo, Zoltan; Hornby, Edward
2015-02-01
Given limited financial resources in the Central Eastern European (CEE) region, challenges in obtaining access to innovative medical technologies are formidable. The objective of this research was to develop a decision tree that supports decision makers and drug manufacturers from CEE region in their search for optimal innovative pricing and reimbursement scheme (IPRSs). A systematic literature review was performed to search for published IPRSs, and then ten experts from the CEE region were interviewed to ascertain their opinions on these schemes. In total, 33 articles representing 46 unique IPRSs were analyzed. Based on our literature review and subsequent expert input, key decision nodes and branches of the decision tree were developed. The results indicate that outcome-based schemes are better suited to deal with uncertainties surrounding cost effectiveness, while non-outcome-based schemes are more appropriate for pricing and budget impact challenges.
NASA Astrophysics Data System (ADS)
Maher, Penelope; Vallis, Geoffrey K.; Sherwood, Steven C.; Webb, Mark J.; Sansom, Philip G.
2018-04-01
Convective parameterizations are widely believed to be essential for realistic simulations of the atmosphere. However, their deficiencies also result in model biases. The role of convection schemes in modern atmospheric models is examined using Selected Process On/Off Klima Intercomparison Experiment simulations without parameterized convection and forced with observed sea surface temperatures. Convection schemes are not required for reasonable climatological precipitation. However, they are essential for reasonable daily precipitation and constraining extreme daily precipitation that otherwise develops. Systematic effects on lapse rate and humidity are likewise modest compared with the intermodel spread. Without parameterized convection Kelvin waves are more realistic. An unexpectedly large moist Southern Hemisphere storm track bias is identified. This storm track bias persists without convection schemes, as does the double Intertropical Convergence Zone and excessive ocean precipitation biases. This suggests that model biases originate from processes other than convection or that convection schemes are missing key processes.
Contribution of the Recent AUSM Schemes to the Overflow Code: Implementation and Validation
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Buning, Pieter G.
2000-01-01
We shall present results of a recent collaborative effort between the authors attempting to implement the numerical flux scheme, AUSM+ and its new developments, into a widely used NASA code, OVERFLOW. This paper is intended to give a thorough and systematic documentation about the solutions of default test cases using the AUSNI+ scheme. Hence we will address various aspects of numerical solutions, such as accuracy, convergence rate, and effects of turbulence models, over a variety of geometries, speed regimes. We will briefly describe the numerical schemes employed in the calculations, including the capability of solving for low-speed flows and multiphase flows by employing the concept of numerical speed of sound. As a bonus, this low Mach number formulations also enhances convergence to steady solutions for flows even at transonic speed. Calculations for complex 3D turbulent flows were performed with several turbulence models and the results display excellent agreements with measured data.
Sub-picowatt/kelvin resistive thermometry for probing nanoscale thermal transport.
Zheng, Jianlin; Wingert, Matthew C; Dechaumphai, Edward; Chen, Renkun
2013-11-01
Advanced instrumentation in thermometry holds the key for experimentally probing fundamental heat transfer physics. However, instrumentation with simultaneously high thermometry resolution and low parasitic heat conduction is still not available today. Here we report a resistive thermometry scheme with ~50 μK temperature resolution and ~0.25 pW/K thermal conductance resolution, which is achieved through schemes using both modulated heating and common mode noise rejection. The suspended devices used herein have been specifically designed to possess short thermal time constants and minimal attenuation effects associated with the modulated heating current. Furthermore, we have systematically characterized the parasitic background heat conductance, which is shown to be significantly reduced using the new device design and can be effectively eliminated using a "canceling" scheme. Our results pave the way for probing fundamental nanoscale thermal transport processes using a general scheme based on resistive thermometry.
NASA Technical Reports Server (NTRS)
Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.
1988-01-01
A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.
Linear Models for Systematics and Nuisances
NASA Astrophysics Data System (ADS)
Luger, Rodrigo; Foreman-Mackey, Daniel; Hogg, David W.
2017-12-01
The target of many astronomical studies is the recovery of tiny astrophysical signals living in a sea of uninteresting (but usually dominant) noise. In many contexts (i.e., stellar time-series, or high-contrast imaging, or stellar spectroscopy), there are structured components in this noise caused by systematic effects in the astronomical source, the atmosphere, the telescope, or the detector. More often than not, evaluation of the true physical model for these nuisances is computationally intractable and dependent on too many (unknown) parameters to allow rigorous probabilistic inference. Sometimes, housekeeping data---and often the science data themselves---can be used as predictors of the systematic noise. Linear combinations of simple functions of these predictors are often used as computationally tractable models that can capture the nuisances. These models can be used to fit and subtract systematics prior to investigation of the signals of interest, or they can be used in a simultaneous fit of the systematics and the signals. In this Note, we show that if a Gaussian prior is placed on the weights of the linear components, the weights can be marginalized out with an operation in pure linear algebra, which can (often) be made fast. We illustrate this model by demonstrating the applicability of a linear model for the non-linear systematics in K2 time-series data, where the dominant noise source for many stars is spacecraft motion and variability.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems. PMID:25811858
Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2012-01-01
The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.
NASA Astrophysics Data System (ADS)
Shan, Y.; Eric, W.; Gao, L.; Zhao, T.; Yin, Y.
2015-12-01
In this study, we have evaluated the performance of size distribution functions (SDF) with 2- and 3-moments in fitting the observed size distribution of rain droplets at three different heights. The goal is to improve the microphysics schemes in meso-scale models, such as Weather Research and Forecast (WRF). Rain droplets were observed during eight periods of different rain types at three stations on the Yellow Mountain in East China. The SDF in this study were M-P distribution with a fixed shape parameter in Gamma SDF(FSP). Where the Gamma SDFs were obtained with three diagnosis methods with the shape parameters based on Milbrandt (2010; denoted DSPM10), Milbrandt (2005; denoted DSPM05) and Seifert (2008; denoted DSPS08) for solving the shape parameter(SSP) and Lognormal SDF. Based on the preliminary experiments, three ensemble methods deciding Gamma SDF was also developed and assessed. The magnitude of average relative error caused by applying a FSP was 10-2 for fitting 0-order moment of the observed rain droplet distribution, and the magnitude of average relative error changed to 10-1 and 100 respectively for 1-4 order moments and 5-6 order moments. To different extent, DSPM10, DSPM05, DSPS08, SSP and ensemble methods could improve fitting accuracies for 0-6 order moments, especially the one coupling SSP and DSPS08 methods, which provided a average relative error 6.46% for 1-4 order moments and 11.90% for 5-6 order moments, respectively. The relative error of fitting three moments using the Lognormal SDF was much larger than that of Gamma SDF. The threshold value of shape parameter ranged from 0 to 8, because values beyond this range could cause overflow in the calculation. When average diameter of rain droplets was less than 2mm, the possibility of unavailable shape parameter value(USPV) increased with a decreasing droplet size. There was strong sensitivity of moment group in fitting accuracy. When ensemble method coupling SSP and DSPS08 was used, a better fit to 1-3-5 moments of the SDF was possible compared to fitting the 0-3-6 moment group.
Planar Cubics Through a Point in a Direction
NASA Technical Reports Server (NTRS)
Chou, J. J.; Blake, M. W.
1993-01-01
It is shown that the planar cubics through three points and the associated tangent directions can be found by solving a cubic equation and a 2 x 2 system of linear equations. The result is combined with a previous published scheme to produce a better curve-fitting method.
NASA Technical Reports Server (NTRS)
Seebass, A. R.
1974-01-01
The numerical solution of a single, mixed, nonlinear equation with prescribed boundary data is discussed. A second order numerical procedure for solving the nonlinear equation and a shock fitting scheme was developed to treat the discontinuities that appear in the solution.
Microbiological Validation of the IVGEN System
NASA Technical Reports Server (NTRS)
Porter, David A.
2013-01-01
The principal purpose of this report is to describe a validation process that can be performed in part on the ground prior to launch, and in space for the IVGEN system. The general approach taken is derived from standard pharmaceutical industry validation schemes modified to fit the special requirements of in-space usage.
NASA Astrophysics Data System (ADS)
Koçak, H.; Dahong, Z.; Yildirim, A.
2011-05-01
In this study, a range-free method is proposed in order to determine the Antoine constants for a given material (salicylic acid). The advantage of this method is mainly yielding analytical expressions which fit different temperature ranges.
NASA Technical Reports Server (NTRS)
Pinsonneault, Marc H.; Stauffer, John; Soderblom, David R.; King, Jeremy R.; Hanson, Robert B.
1998-01-01
Parallax data from the Hipparcos mission allow the direct distance to open clusters to be compared with the distance inferred from main-sequence (MS) fitting. There are surprising differences between the two distance measurements. indicating either the need for changes in the cluster compositions or reddening, underlying problems with the technique of MS fitting, or systematic errors in the Hipparcos parallaxes at the 1 mas level. We examine the different possibilities, focusing on MS fitting in both metallicity-sensitive B-V and metallicity-insensitive V-I for five well-studied systems (the Hyades, Pleiades, alpha Per, Praesepe, and Coma Ber). The Hipparcos distances to the Hyades and alpha Per are within 1 sigma of the MS-fitting distance in B-V and V-I, while the Hipparcos distances to Coma Ber and the Pleiades are in disagreement with the MS-fitting distance at more than the 3 sigma level. There are two Hipparcos measurements of the distance to Praesepe; one is in good agreement with the MS-fitting distance and the other disagrees at the 2 sigma level. The distance estimates from the different colors are in conflict with one another for Coma but in agreement for the Pleiades. Changes in the relative cluster metal abundances, age related effects, helium, and reddening are shown to be unlikely to explain the puzzling behavior of the Pleiades. We present evidence for spatially dependent systematic errors at the 1 mas level in the parallaxes of Pleiades stars. The implications of this result are discussed.
Inferring Recent Demography from Isolation by Distance of Long Shared Sequence Blocks
Ringbauer, Harald; Coop, Graham
2017-01-01
Recently it has become feasible to detect long blocks of nearly identical sequence shared between pairs of genomes. These identity-by-descent (IBD) blocks are direct traces of recent coalescence events and, as such, contain ample signal to infer recent demography. Here, we examine sharing of such blocks in two-dimensional populations with local migration. Using a diffusion approximation to trace genetic ancestry, we derive analytical formulas for patterns of isolation by distance of IBD blocks, which can also incorporate recent population density changes. We introduce an inference scheme that uses a composite-likelihood approach to fit these formulas. We then extensively evaluate our theory and inference method on a range of scenarios using simulated data. We first validate the diffusion approximation by showing that the theoretical results closely match the simulated block-sharing patterns. We then demonstrate that our inference scheme can accurately and robustly infer dispersal rate and effective density, as well as bounds on recent dynamics of population density. To demonstrate an application, we use our estimation scheme to explore the fit of a diffusion model to Eastern European samples in the Population Reference Sample data set. We show that ancestry diffusing with a rate of σ≈50−−100 km/gen during the last centuries, combined with accelerating population growth, can explain the observed exponential decay of block sharing with increasing pairwise sample distance. PMID:28108588
Systematic review of the evidence for Trails B cut-off scores in assessing fitness-to-drive.
Roy, Mononita; Molnar, Frank
2013-01-01
Fitness-to-drive guidelines recommend employing the Trail Making B Test (a.k.a. Trails B), but do not provide guidance regarding cut-off scores. There is ongoing debate regarding the optimal cut-off score on the Trails B test. The objective of this study was to address this controversy by systematically reviewing the evidence for specific Trails B cut-off scores (e.g., cut-offs in both time to completion and number of errors) with respect to fitness-to-drive. Systematic review of all prospective cohort, retrospective cohort, case-control, correlation, and cross-sectional studies reporting the ability of the Trails B to predict driving safety that were published in English-language, peer-reviewed journals. Forty-seven articles were reviewed. None of the articles justified sample sizes via formal calculations. Cut-off scores reported based on research include: 90 seconds, 133 seconds, 147 seconds, 180 seconds, and < 3 errors. There is support for the previously published Trails B cut-offs of 3 minutes or 3 errors (the '3 or 3 rule'). Major methodological limitations of this body of research were uncovered including (1) lack of justification of sample size leaving studies open to Type II error (i.e., false negative findings), and (2) excessive focus on associations rather than clinically useful cut-off scores.
Lindsay, Sally; Stoica, Andrei
2017-01-01
Although many people with an acquired brain injury (ABI) encounter difficulties with executive functioning and memory which could negatively affect driving, few people are assessed for fitness to drive after injury. The purpose of this systematic review was to synthesize the literature on factors affecting driving and public transportation among youth and young adults with ABI, post injury. Seven databases were systematically searched for articles from 1980 to 2016. Studies were screened independently by two researchers who performed the data extraction. Study quality was appraised using the Standard Quality Assessment Criteria (Kmet) for evaluating primary research from a variety of fields. Of the 6577 studies identified in the search, 25 met the inclusion criteria, which involved 1527 participants with ABI (mean age = 25.1) across eight countries. Six studies focused on driving assessment and fitness to drive, ten on driving performance or risk of accidents and nine studies explored issues related to accessing or navigating public transportation. Quality assessment of the included studies ranged from 0.60 to 0.95. Our findings highlight several gaps in clinical practice and research along with a critical need for enhanced fitness to drive assessments and transportation-related training for young people with ABI.
Pouwels, S; Willigendael, E M; van Sambeek, M R H M; Nienhuijs, S W; Cuypers, P W M; Teijink, J A W
2015-01-01
The impact of post-operative complications in abdominal aortic aneurysm (AAA) surgery is substantial, and increases with age and concomitant co-morbidities. This systematic review focuses on the possible effects of pre-operative exercise therapy (PET) in patients with AAA on post-operative complications,aerobic capacity, physical fitness, and recovery. A systematic search on PET prior to AAA surgery was conducted. The methodological quality of the included studies was rated using the Physiotherapy Evidence Database scale. The agreement between the reviewers was assessed with Cohen's kappa. Five studies were included, with a methodological quality ranging from moderate to good. Cohen's kappa was 0.79. Three studies focused on patients with an AAA (without indication for surgical repair) with physical fitness as the outcome measure. One study focused on PET in patients awaiting AAA surgery and one study focused on the effects of PET on post-operative complications, length of stay, and recovery. PET has beneficial effects on various physical fitness variables of patients with an AAA. Whether this leads to less complications or faster recovery remains unclear. In view of the large impact of post-operative complications, it is valuable to explore the possible benefits of a PET program in AAA surgery.
Flavor-dependent eigenvolume interactions in a hadron resonance gas
NASA Astrophysics Data System (ADS)
Alba, P.; Vovchenko, V.; Gorenstein, M. I.; Stoecker, H.
2018-06-01
Eigenvolume effects in the hadron resonance gas (HRG) model are studied for experimental hadronic yields in nucleus-nucleus collisions. If particle eigenvolumes are different for different hadron species, the excluded volume HRG (EV-HRG) improves fits to multiplicity data. In particular, using different mass-volume relations for strange and non-strange hadrons we observe a remarkable improvement in the quality of the fits. This effect appears to be rather insensitive to other details in the schemes employed in the EV-HRG. We show that the parameters found from fitting the data of the ALICE Collaboration in central Pb+Pb collisions at the collision energy √{sNN } = 2.76 TeV entail the same improvement for all centralities at the same collision energy, and for the RHIC and SPS data at lower collision energies. Our findings are put in the context of recent fits of lattice QCD results.
Antecedents of Employees' Involvement in Work-Related Learning: A Systematic Review
ERIC Educational Resources Information Center
Kyndt, Eva; Baert, Herman
2013-01-01
Involvement in work-related learning seems to be more complex than a simple supply-demand fit. An interplay of several factors can influence this involvement at different stages of the decision-making process of the employee. The aim of this systematic review is to examine which antecedents of work-related learning have been identified in previous…
Spectrum of Art Therapy Practice: Systematic Literature Review of "Art Therapy," 1983-2014
ERIC Educational Resources Information Center
Potash, Jordan S.; Mann, Sarah M.; Martinez, Johanna C.; Roach, Ann B.; Wallace, Nina M.
2016-01-01
The objective of this study was to determine art therapists' fit in the continuum of health delivery services defined by behavioral health. All publications in "Art Therapy: Journal of the American Art" Therapy Association from 1983 (Volume 1) to 2014 (Volume 31) were systematically reviewed to understand how art therapy has been…
Inoue, Takashi; Namiki, Shu
2013-12-02
We find that an adaptive equalizer and a phase-locked loop operating with decision-directed mode exhibit degraded performances when they are used in a digital coherent receiver to demodulate a 16QAM signal with intrinsically distorted constellation, and that the degradation is more significant for the dual-polarization case. We then propose a scheme to correctly demodulate such a distorted 16QAM signal, where the reference constellation and the threshold for the decision are adaptively adjusted such that they fit to the distorted ones. We experimentally confirm the improved performance of the proposed scheme over the conventional one for single-and dual-polarization 16QAM signals with distortion. We also investigate the applicable range of the proposed scheme for the degree of distortion of the signal.
Approximation methods for inverse problems involving the vibration of beams with tip bodies
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1984-01-01
Two cubic spline based approximation schemes for the estimation of structural parameters associated with the transverse vibration of flexible beams with tip appendages are outlined. The identification problem is formulated as a least squares fit to data subject to the system dynamics which are given by a hybrid system of coupled ordinary and partial differential equations. The first approximation scheme is based upon an abstract semigroup formulation of the state equation while a weak/variational form is the basis for the second. Cubic spline based subspaces together with a Rayleigh-Ritz-Galerkin approach were used to construct sequences of easily solved finite dimensional approximating identification problems. Convergence results are briefly discussed and a numerical example demonstrating the feasibility of the schemes and exhibiting their relative performance for purposes of comparison is provided.
Chapman-Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media
NASA Astrophysics Data System (ADS)
Chen, Chen; Li, Like; Mei, Renwei; Klausner, James F.
2018-03-01
The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ, which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman-Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in ɛ only if θ = O( ɛ ) in which ɛ is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.
Svyatsky, Daniil; Lipnikov, Konstantin
2017-03-18
Richards’s equation describes steady-state or transient flow in a variably saturated medium. For a medium having multiple layers of soils that are not aligned with coordinate axes, a mesh fitted to these layers is no longer orthogonal and the classical two-point flux approximation finite volume scheme is no longer accurate. Here, we propose new second-order accurate nonlinear finite volume (NFV) schemes for the head and pressure formulations of Richards’ equation. We prove that the discrete maximum principles hold for both formulations at steady-state which mimics similar properties of the continuum solution. The second-order accuracy is achieved using high-order upwind algorithmsmore » for the relative permeability. Numerical simulations of water infiltration into a dry soil show significant advantage of the second-order NFV schemes over the first-order NFV schemes even on coarse meshes. Since explicit calculation of the Jacobian matrix becomes prohibitively expensive for high-order schemes due to build-in reconstruction and slope limiting algorithms, we study numerically the preconditioning strategy introduced recently in Lipnikov et al. (2016) that uses a stable approximation of the continuum Jacobian. Lastly, numerical simulations show that the new preconditioner reduces computational cost up to 2–3 times in comparison with the conventional preconditioners.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svyatsky, Daniil; Lipnikov, Konstantin
Richards’s equation describes steady-state or transient flow in a variably saturated medium. For a medium having multiple layers of soils that are not aligned with coordinate axes, a mesh fitted to these layers is no longer orthogonal and the classical two-point flux approximation finite volume scheme is no longer accurate. Here, we propose new second-order accurate nonlinear finite volume (NFV) schemes for the head and pressure formulations of Richards’ equation. We prove that the discrete maximum principles hold for both formulations at steady-state which mimics similar properties of the continuum solution. The second-order accuracy is achieved using high-order upwind algorithmsmore » for the relative permeability. Numerical simulations of water infiltration into a dry soil show significant advantage of the second-order NFV schemes over the first-order NFV schemes even on coarse meshes. Since explicit calculation of the Jacobian matrix becomes prohibitively expensive for high-order schemes due to build-in reconstruction and slope limiting algorithms, we study numerically the preconditioning strategy introduced recently in Lipnikov et al. (2016) that uses a stable approximation of the continuum Jacobian. Lastly, numerical simulations show that the new preconditioner reduces computational cost up to 2–3 times in comparison with the conventional preconditioners.« less
Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben
2017-09-12
One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.
Data multiplexing in radio interferometric calibration
NASA Astrophysics Data System (ADS)
Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L. V. E.
2018-03-01
New and upcoming radio interferometers will produce unprecedented amount of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full data set using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full data set when a limited number of compute agents are available.
Driessen, Elisabeth J; Peeters, Marieke E; Bongers, Bart C; Maas, Huub A; Bootsma, Gerbern P; van Meeteren, Nico L; Janssen-Heijnen, Maryska L
2017-06-01
This systematic review aimed to examine physical fitness, adherence, treatment tolerance, and recovery for (p)rehabilitation including a home-based component for patients with non-small cell lung cancer (NSCLC). PRISMA and Cochrane guidelines were followed. Studies describing (home-based) prehabilitation or rehabilitation in patients with NSCLC were included from four databases (January 2000-April 2016, N=11). Nine of ten rehabilitation studies and one prehabilitation study (437 NSCLC patients, mean age 59-72 years) showed significantly or clinically relevant improved physical fitness. Three (27%) assessed home-based training and eight (73%) combined training at home, inhospital (intramural) and/or at the physiotherapy practice/department (extramural). Six (55%) applied supervision of home-based components, and four (36%) a personalized training program. Adherence varied strongly (9-125% for exercises, 50-100% for patients). Treatment tolerance and recovery were heterogeneously reported. Although promising results of (p)rehabilitation for improving physical fitness were found (especially in case of supervision and personalization), adequately powered studies for home-based (p)rehabilitation are needed. Copyright © 2017 Elsevier B.V. All rights reserved.
Fitting Higgs data with nonlinear effective theory.
Buchalla, G; Catà, O; Celis, A; Krause, C
2016-01-01
In a recent paper we showed that the electroweak chiral Lagrangian at leading order is equivalent to the conventional [Formula: see text] formalism used by ATLAS and CMS to test Higgs anomalous couplings. Here we apply this fact to fit the latest Higgs data. The new aspect of our analysis is a systematic interpretation of the fit parameters within an EFT. Concentrating on the processes of Higgs production and decay that have been measured so far, six parameters turn out to be relevant: [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]. A global Bayesian fit is then performed with the result [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text]. Additionally, we show how this leading-order parametrization can be generalized to next-to-leading order, thus improving the [Formula: see text] formalism systematically. The differences with a linear EFT analysis including operators of dimension six are also discussed. One of the main conclusions of our analysis is that since the conventional [Formula: see text] formalism can be properly justified within a QFT framework, it should continue to play a central role in analyzing and interpreting Higgs data.
Temporal trends in physical activity: a systematic review.
Knuth, Alan G; Hallal, Pedro C
2009-09-01
In spite of all accumulated scientific knowledge on the benefits of physical activity (PA) for health, high rates of sedentary lifestyle are still observed worldwide. The aim of this study was to systematically review articles on temporal trends of PA and fitness, with emphasis on differences between children/ adolescents and adults. An electronic search at the Medline/PubMed database was carried out using the following combination of keywords: temporal trends or trends or surveillance or monitoring and PA or exercise or physical fitness or motor activity or sedentary or fitness. By using this strategy, 23,088 manuscripts were detected. After examination, 41 articles fulfilled all inclusion criteria, and were, therefore, included. The data currently available in the literature for adults shows that leisure-time activity levels tend to be increasing over time, while occupational-related PA is decreasing over time. Youth PA seems to be decreasing over time, including a lower level of activity in physical education classes. As a consequence, fitness levels are also declining. PA surveillance must be strongly encouraged in all settings and age groups. Special attention must be paid to low and middle-income countries, where PA surveillance is virtually inexistent.
Internal robustness: systematic search for systematic bias in SN Ia data
NASA Astrophysics Data System (ADS)
Amendola, Luca; Marra, Valerio; Quartin, Miguel
2013-04-01
A great deal of effort is currently being devoted to understanding, estimating and removing systematic errors in cosmological data. In the particular case of Type Ia supernovae, systematics are starting to dominate the error budget. Here we propose a Bayesian tool for carrying out a systematic search for systematic contamination. This serves as an extension to the standard goodness-of-fit tests and allows not only to cross-check raw or processed data for the presence of systematics but also to pin-point the data that are most likely contaminated. We successfully test our tool with mock catalogues and conclude that the Union2.1 data do not possess a significant amount of systematics. Finally, we show that if one includes in Union2.1 the supernovae that originally failed the quality cuts, our tool signals the presence of systematics at over 3.8σ confidence level.
2013-01-01
Background Not only in adults but also in children and adolescents, obesity increases the risk for several health disorders. In turn, many factors including genetic variations and environmental influences (e.g. physical activity) increase the risk of obesity. For instance, 25 to 40 percent of people inherit a predisposition for a high body mass index (BMI). The purpose of this systematic review was to summarize current cross-sectional and longitudinal studies on physical activity, fitness and overweight in adolescents and to identify mediator and moderator effects by evaluating the interaction between these three parameters. Methods The electronic academic databases PubMed, SportDiscus, WEB OF KNOWLEDGE and Ovid were searched for studies on physical activity, fitness and overweight in adolescents aged 11 to 19 years (cross-sectional studies) and in adolescents up to 23 years old (longitudinal studies) published in English in or after 2000. Results Twelve cross-sectional and two longitudinal studies were included. Only four studies analyzed the interaction among physical activity, fitness and overweight in adolescents and reported inconsistent results. All other studies analyzed the relationship between either physical activity and overweight, or between fitness and overweight. Overweight—here including obesity—was inversely related to physical activity. Similarly, all studies reported inverse relations between physical fitness and overweight. Mediator and moderator effects were detected in the interrelationship of BMI, fitness and physical activity. Overall, a distinction of excessive body weight as cause or effect of low levels of physical activity and fitness is lacking. Conclusions The small number of studies on the interrelationship of BMI, fitness and physical activity emphasizes the need for longitudinal studies that would reveal 1) the causality between physical activity and overweight / fitness and overweight and 2) the causal interrelationships among overweight, physical activity and fitness. These results must be carefully interpreted given the lack of distinction between self-reported and objective physical activity and that studies analyzing the metabolic syndrome or cardiovascular disease were not considered. The importance of physical activity or fitness in predicting overweight remains unknown. PMID:23375072
The Solution to Pollution is Distribution: Design Your Own Chaotic Flow
NASA Astrophysics Data System (ADS)
Tigera, R. G.; Roth, E. J.; Neupauer, R.; Mays, D. C.
2015-12-01
Plume spreading promotes the molecular mixing that drives chemical reactions in porous media in general, and remediation reactions in groundwater aquifers in particular. Theoretical analysis suggests that engineered injection and extraction, a specific sequence of pumping through wells surrounding a contaminant plume, can improve groundwater remediation through chaotic advection. Selection of an engineered injection and extraction scheme is difficult, however, because the engineer is faced with the difficulty of recommending a pumping scheme for a contaminated site without having any previous knowledge of how the scheme will perform. To address this difficulty, this presentation describes a Graphical User Interface (GUI) designed to help engineers develop, test, and observe pumping schemes as described in previous research (Mays, D.C. and Neupauer, R.M., 2012, Plume spreading in groundwater by stretching and folding, Water Resour. Res., 48, W07501, doi:10.1029/2011WR011567). The inputs allow the user to manipulate the model conditions such as number of wells, plume size, and pumping scheme. Plume evolution is modeled, assuming no diffusion or dispersion, using analytical solutions for injection or extraction through individual wells or pairs or wells (i.e., dipoles). Using the GUI, an engineered injection and extraction scheme can be determined that best fits the remediation needs of the contaminated site. By creating multiple injection and extraction schemes, the user can learn about the plume shapes created from different schemes and, ultimately, recommend a pumping scheme based on some experience of fluid flow as shown in the GUI. The pumping schemes developed through this GUI are expected to guide more advanced modeling and laboratory studies that account for the crucial role of dispersion in groundwater remediation.
Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-02-01
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lerot, C.; Van Roozendael, M.; Spurr, R.; Loyola, D.; Coldewey-Egbers, M.; Kochenova, S.; van Gent, J.; Koukouli, M.; Balis, D.; Lambert, J.-C.; Granville, J.; Zehner, C.
2014-02-01
Within the European Space Agency's Climate Change Initiative, total ozone column records from GOME (Global Ozone Monitoring Experiment), SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY), and GOME-2 have been reprocessed with GODFIT version 3 (GOME-type Direct FITting). This algorithm is based on the direct fitting of reflectances simulated in the Huggins bands to the observations. We report on new developments in the algorithm from the version implemented in the operational GOME Data Processor v5. The a priori ozone profile database TOMSv8 is now combined with a recently compiled OMI/MLS tropospheric ozone climatology to improve the representativeness of a priori information. The Ring procedure that corrects simulated radiances for the rotational Raman inelastic scattering signature has been improved using a revised semi-empirical expression. Correction factors are also applied to the simulated spectra to account for atmospheric polarization. In addition, the computational performance has been significantly enhanced through the implementation of new radiative transfer tools based on principal component analysis of the optical properties. Furthermore, a soft-calibration scheme for measured reflectances and based on selected Brewer measurements has been developed in order to reduce the impact of level-1 errors. This soft-calibration corrects not only for possible biases in backscattered reflectances, but also for artificial spectral features interfering with the ozone signature. Intersensor comparisons and ground-based validation indicate that these ozone data sets are of unprecedented quality, with stability better than 1% per decade, a precision of 1.7%, and systematic uncertainties less than 3.6% over a wide range of atmospheric states.
Computing the multifractal spectrum from time series: an algorithmic approach.
Harikrishnan, K P; Misra, R; Ambika, G; Amritkar, R E
2009-12-01
We show that the existing methods for computing the f(alpha) spectrum from a time series can be improved by using a new algorithmic scheme. The scheme relies on the basic idea that the smooth convex profile of a typical f(alpha) spectrum can be fitted with an analytic function involving a set of four independent parameters. While the standard existing schemes [P. Grassberger et al., J. Stat. Phys. 51, 135 (1988); A. Chhabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327 (1989)] generally compute only an incomplete f(alpha) spectrum (usually the top portion), we show that this can be overcome by an algorithmic approach, which is automated to compute the D(q) and f(alpha) spectra from a time series for any embedding dimension. The scheme is first tested with the logistic attractor with known f(alpha) curve and subsequently applied to higher-dimensional cases. We also show that the scheme can be effectively adapted for analyzing practical time series involving noise, with examples from two widely different real world systems. Moreover, some preliminary results indicating that the set of four independent parameters may be used as diagnostic measures are also included.
NASA Astrophysics Data System (ADS)
Canestrelli, Alberto; Dumbser, Michael; Siviglia, Annunziato; Toro, Eleuterio F.
2010-03-01
In this paper, we study the numerical approximation of the two-dimensional morphodynamic model governed by the shallow water equations and bed-load transport following a coupled solution strategy. The resulting system of governing equations contains non-conservative products and it is solved simultaneously within each time step. The numerical solution is obtained using a new high-order accurate centered scheme of the finite volume type on unstructured meshes, which is an extension of the one-dimensional PRICE-C scheme recently proposed in Canestrelli et al. (2009) [5]. The resulting first-order accurate centered method is then extended to high order of accuracy in space via a high order WENO reconstruction technique and in time via a local continuous space-time Galerkin predictor method. The scheme is applied to the shallow water equations and the well-balanced properties of the method are investigated. Finally, we apply the new scheme to different test cases with both fixed and movable bed. An attractive future of the proposed method is that it is particularly suitable for engineering applications since it allows practitioners to adopt the most suitable sediment transport formula which better fits the field data.
ECG compression using non-recursive wavelet transform with quality control
NASA Astrophysics Data System (ADS)
Liu, Je-Hung; Hung, King-Chu; Wu, Tsung-Ching
2016-09-01
While wavelet-based electrocardiogram (ECG) data compression using scalar quantisation (SQ) yields excellent compression performance, a wavelet's SQ scheme, however, must select a set of multilevel quantisers for each quantisation process. As a result of the properties of multiple-to-one mapping, however, this scheme is not conducive for reconstruction error control. In order to address this problem, this paper presents a single-variable control SQ scheme able to guarantee the reconstruction quality of wavelet-based ECG data compression. Based on the reversible round-off non-recursive discrete periodised wavelet transform (RRO-NRDPWT), the SQ scheme is derived with a three-stage design process that first uses genetic algorithm (GA) for high compression ratio (CR), followed by a quadratic curve fitting for linear distortion control, and the third uses a fuzzy decision-making for minimising data dependency effect and selecting the optimal SQ. The two databases, Physikalisch-Technische Bundesanstalt (PTB) and Massachusetts Institute of Technology (MIT) arrhythmia, are used to evaluate quality control performance. Experimental results show that the design method guarantees a high compression performance SQ scheme with statistically linear distortion. This property can be independent of training data and can facilitate rapid error control.
Development of iterative techniques for the solution of unsteady compressible viscous flows
NASA Technical Reports Server (NTRS)
Hixon, Duane; Sankar, L. N.
1993-01-01
During the past two decades, there has been significant progress in the field of numerical simulation of unsteady compressible viscous flows. At present, a variety of solution techniques exist such as the transonic small disturbance analyses (TSD), transonic full potential equation-based methods, unsteady Euler solvers, and unsteady Navier-Stokes solvers. These advances have been made possible by developments in three areas: (1) improved numerical algorithms; (2) automation of body-fitted grid generation schemes; and (3) advanced computer architectures with vector processing and massively parallel processing features. In this work, the GMRES scheme has been considered as a candidate for acceleration of a Newton iteration time marching scheme for unsteady 2-D and 3-D compressible viscous flow calculation; from preliminary calculations, this will provide up to a 65 percent reduction in the computer time requirements over the existing class of explicit and implicit time marching schemes. The proposed method has ben tested on structured grids, but is flexible enough for extension to unstructured grids. The described scheme has been tested only on the current generation of vector processor architecture of the Cray Y/MP class, but should be suitable for adaptation to massively parallel machines.
Behavioral patterns of environmental performance evaluation programs.
Li, Wanxin; Mauerhofer, Volker
2016-11-01
During the past decades numerous environmental performance evaluation programs have been developed and implemented on different geographic scales. This paper develops a taxonomy of environmental management behavioral patterns in order to provide a practical comparison tool for environmental performance evaluation programs. Ten such programs purposively selected are mapped against the identified four behavioral patterns in the form of diagnosis, negotiation, learning, and socialization and learning. Overall, we found that schemes which serve to diagnose environmental abnormalities are mainly externally imposed and have been developed as a result of technical debates concerning data sources, methodology and ranking criteria. Learning oriented scheme is featured by processes through which free exchange of ideas, mutual and adaptive learning can occur. Scheme developed by higher authority for influencing behaviors of lower levels of government has been adopted by the evaluated to signal their excellent environmental performance. The socializing and learning classified evaluation schemes have incorporated dialogue, participation, and capacity building in program design. In conclusion we consider the 'fitness for purpose' of the various schemes, the merits of our analytical model and the future possibilities of fostering capacity building in the realm of wicked environmental challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wortmann, Franz J; Wortmann, Gabriele; Haake, Hans-Martin; Eisfeld, Wolf
2014-01-01
Through measurements of three different hair samples (virgin and treated) by the torsional pendulum method (22°C, 22% RH) a systematic decrease of the torsional storage modulus G' with increasing fiber diameter, i.e., polar moment of inertia, is observed. G' is therefore not a material constant for hair. This change of G' implies a systematic component of data variance, which significantly contributes to the limitations of the torsional method for cosmetic claim support. Fitting the data on the basis of a core/shell model for cortex and cuticle enables to separate this systematic component of variance and to greatly enhance the discriminative power of the test. The fitting procedure also provides values for the torsional storage moduli of the morphological components, confirming that the cuticle modulus is substantially higher than that of the cortex. The results give consistent insight into the changes imparted to the morphological components by the cosmetic treatments.
What Is Fitness Training? Definitions and Implications: A Systematic Review Article
PAOLI, Antonio; BIANCO, Antonino
2015-01-01
Background: This review based upon studies searched from the major scientific libraries has the objective of clarifying what is fitness training in modern days, the implications that it has on health in both youth and elderly and finally discuss fitness training practical implications. Methods: The PRISMA statement was partially adopted and a number of 92 items were selected, according to the inclusion criteria. Results were discussed in 4 main sections: 1. Children and adolescents fitness levels; 2. Fitness training in the elderly; 3. Pathology prevention through fitness training; 4. Training through Fitness activities. Results: This review pointed out the fact that nowadays there is a large variety of fitness activities available within gyms and fitness centers. Even though they significantly differ with each other, the common aim they have is the wellbeing of the people through the improvement of the physical fitness components and the psychological balance. Conclusion: Fitness instructors’ recommendations should be followed in gym context and should be contingent upon an individual’s objectives, physical capacity, physical characteristics and experience. PMID:26284201
On the use of the covariance matrix to fit correlated data
NASA Astrophysics Data System (ADS)
D'Agostini, G.
1994-07-01
Best fits to data which are affected by systematic uncertainties on the normalization factor have the tendency to produce curves lower than expected if the covariance matrix of the data points is used in the definition of the χ2. This paper shows that the effect is a direct consequence of the hypothesis used to estimate the empirical covariance matrix, namely the linearization on which the usual error propagation relies. The bias can become unacceptable if the normalization error is large, or a large number of data points are fitted.
High-Performance Sensors Based on Resistance Fluctuations of Single-Layer-Graphene Transistors.
Amin, Kazi Rafsanjani; Bid, Aveek
2015-09-09
One of the most interesting predicted applications of graphene-monolayer-based devices is as high-quality sensors. In this article, we show, through systematic experiments, a chemical vapor sensor based on the measurement of low-frequency resistance fluctuations of single-layer-graphene field-effect-transistor devices. The sensor has extremely high sensitivity, very high specificity, high fidelity, and fast response times. The performance of the device using this scheme of measurement (which uses resistance fluctuations as the detection parameter) is more than 2 orders of magnitude better than a detection scheme in which changes in the average value of the resistance is monitored. We propose a number-density-fluctuation-based model to explain the superior characteristics of a noise-measurement-based detection scheme presented in this article.
Generalization of the NpNn scheme to nonyrast levels of even-even nuclei
NASA Astrophysics Data System (ADS)
Zhao, Y. M.; Arima, A.
2003-07-01
In this Brief Report we present the systematics of excitation energies for even-even nuclei in two regions: the 50
Numerical details and SAS programs for parameter recovery of the SB distribution
Bernard R. Parresol; Teresa Fidalgo Fonseca; Carlos Pacheco Marques
2010-01-01
The four-parameter SB distribution has seen widespread use in growth-and-yield modeling because it covers a broad spectrum of shapes, fitting both positively and negatively skewed data and bimodal configurations. Two recent parameter recovery schemes, an approach whereby characteristics of a statistical distribution are equated with attributes of...
ERIC Educational Resources Information Center
Salter, Daniel W.
2013-01-01
To support the instructional process, Knefelkamp advanced the developmental instruction model (DIM) to describe the aspects of academic environments that facilitate the epistemological development of college students, consistent with the Perry scheme. No related measurement tool has been developed for the DIM, which may account for the lack of…
Grid-free density functional calculations on periodic systems.
Varga, Stefan
2007-09-21
Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xalpha exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.
Grid-free density functional calculations on periodic systems
NASA Astrophysics Data System (ADS)
Varga, Štefan
2007-09-01
Density fitting scheme is applied to the exchange part of the Kohn-Sham potential matrix in a grid-free local density approximation for infinite systems with translational periodicity. It is shown that within this approach the computational demands for the exchange part scale in the same way as for the Coulomb part. The efficiency of the scheme is demonstrated on a model infinite polymer chain. For simplicity, the implementation with Dirac-Slater Xα exchange functional is presented only. Several choices of auxiliary basis set expansion coefficients were tested with both Coulomb and overlap metric. Their effectiveness is discussed also in terms of robustness and norm preservation.
The structure of 193Au within the Interacting Boson Fermion Model
NASA Astrophysics Data System (ADS)
Thomas, T.; Bernards, C.; Régis, J.-M.; Albers, M.; Fransen, C.; Jolie, J.; Heinze, S.; Radeck, D.; Warr, N.; Zell, K.-O.
2014-02-01
A γγ angular correlation experiment investigating the nucleus 193Au is presented. In this work the level scheme of 193Au is extended by new level information on spins, multipolarities and newly observed states. The new results are compared with theoretical predictions from a general Interacting Boson Fermion Model (IBFM) calculation for the positive-parity states. The experimental data is in good agreement with an IBFM calculation using all proton orbitals between the shell closures at Z=50 and Z=126. As a dominant contribution of the d orbital to the wave function of the lowest excited states is observed, a truncated model of the IBFM using a Bose-Fermi symmetry is applied to the describe 193Au. Using the parameters of a fit performed for 193Au, the level scheme of 192Pt, the supersymmetric partner of 193Au, is predicted but shows a too small boson seniority splitting. We obtained a common fit by including states observed in 192Pt. With the new parameters a supersymmetric description of both nuclei is established.
NASA Astrophysics Data System (ADS)
Jaafar, Hazriq Izzuan; Latif, Norfaneysa Abd; Kassim, Anuar Mohamed; Abidin, Amar Faiz Zainal; Hussien, Sharifah Yuslinda Syed; Aras, Mohd Shahrieel Mohd
2015-05-01
Advanced manufacturing technology made Gantry Crane System (GCS) is one of the suitable heavy machinery transporters and frequently employed in handling with huge materials. The interconnection of trolley movement and payload oscillation has a technical impact which needs to be considered. Once the trolley moves to the desired position with high speed, this will induce undesirable's payload oscillation. This frequent unavoidable load swing causes an efficiency drop, load damages and even accidents. In this paper, a new control strategy of Firefly Algorithm (FA) will be developed to obtain five optimal controller parameters (PID and PD) via Priority-based Fitness Scheme (PFS). Combinations of these five parameters are utilized for controlling trolley movement and minimizing the angle of payload oscillation. This PFS is prioritized based on steady-state error (SSE), overshoot (OS) and settling time (Ts) according to the needs and circumstances. Lagrange equation will be chosen for modeling and simulation will be conducted by using related software. Simulation results show that the proposed control strategy is efficient to control the trolley movement to the desired position and minimize the angle of payload oscillation.
Supercritical flow past a symmetrical bicircular arc airfoil
NASA Technical Reports Server (NTRS)
Holt, Maurice; Yew, Khoy Chuah
1989-01-01
A numerical scheme is developed for computing steady supercritical flow about symmetrical airfoils, applying it to an ellipse for zero angle of attack. An algorithmic description of this new scheme is presented. Application to a symmetrical bicircular arc airfoil is also proposed. The flow field before the shock is region 1. For transonic flow, singularity can be avoided by integrating the resulting ordinary differential equations away from the body. Region 2 contains the shock which will be located by shock fitting techniques. The shock divides region 2 into supersonic and subsonic regions and there is no singularity problem in this case. The Method of Lines is used in this region and it is advantageous to integrate the resulting ordinary differential equation along the body for shock fitting. Coaxial coordinates have to be used for the bicircular arc airfoil so that boundary values on the airfoil body can be taken with one direction of the coaxial coordinates fixed. To avoid taking boundary values at + or - infinity in the coaxial co-ordinary system, approximate analytical representation of the flow field near the tips of the airfoil is proposed.
Nieuwenburg, Stella A V; Vuik, Fanny E R; Kruip, Marieke J H A; Kuipers, Ernst J; Spaander, Manon C W
2018-06-05
Most colorectal cancer (CRC) screening programmes are nowadays based on faecal immunochemical testing (FIT). Eligible subjects often use oral anticoagulants (OACs) or non-steroidal anti-inflammatory drugs (NSAIDs), which could possibly stimulate bleeding from both benign and premalignant lesions in the colon. The aim of this meta-analysis was to study the effect of OACs and NSAIDs use on FIT performance. A systematic search was conducted until June 2017 to retrieve studies from PubMed, Embase, MEDLINE, Web of science, Cochrane Central and Google Scholar. Studies were included when reporting on FIT results in users versus non-users of OACs and/or NSAIDs in average risk CRC screening populations. Primary outcome was positive predictive value for advanced neoplasia (PPV AN ) of FIT in relation to OACs/NSAIDs use. Values were obtained by conducting random-effect forest plots. Our literature search identified 2022 records, of which 8 studies were included. A total of 3563 participants with a positive FIT were included. Use of OACs was associated with a PPV AN of 37.6% (95% CI 33.9 to 41.4) compared with 40.3% (95% CI 38.5 to 42.1) for non-users (p=0.75). Pooled PPV AN in aspirin/NSAID users was 38.2% (95% CI 33.8 to 42.9) compared with 39.4% (95% CI 37.5 to 41.3) for non-users (p=0.59). FIT accuracy is not affected by OACs and aspirin/NSAIDs use. Based on the current literature, withdrawal of OACs or NSAIDs before FIT screening is not recommended. Future studies should focus on duration of use, dosage and classes of drugs in association with accuracy of FIT to conduct more specific guideline recommendations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The Hierarchical Structure of Formal Operational Tasks.
ERIC Educational Resources Information Center
Bart, William M.; Mertens, Donna M.
1979-01-01
The hierarchical structure of the formal operational period of Piaget's theory of cognitive development was explored through the application of ordering theoretical methods to a set of data that systematically utilized the various formal operational schemes. Results suggested a common structure underlying task performance. (Author/BH)
Sidey, Vasyl
2009-06-01
Systematic variations of the bond-valence sums calculated from the poorly determined bond-valence parameters [Sidey (2008), Acta Cryst. B64, 515-518] have been illustrated using a simple graphical scheme.
Analytic Methods for Adjusting Subjective Rating Schemes.
ERIC Educational Resources Information Center
Cooper, Richard V. L.; Nelson, Gary R.
Statistical and econometric techniques of correcting for supervisor bias in models of individual performance appraisal were developed, using a variant of the classical linear regression model. Location bias occurs when individual performance is systematically overestimated or underestimated, while scale bias results when raters either exaggerate…
Multilocus sequence analysis of phytopathogenic species of the genus Streptomyces
USDA-ARS?s Scientific Manuscript database
The identification and classification of species within the genus Streptomyces is difficult because there are presently 576 validly described species and this number increases every year. The value of the application of multilocus sequence analysis scheme to the systematics of Streptomyces species h...
Marsden, Dianne L; Dunn, Ashlee; Callister, Robin; Levi, Christopher R; Spratt, Neil J
2013-01-01
Cardiorespiratory fitness is low after stroke. Improving fitness has the potential to improve function and reduce secondary cardiovascular events. . This review with meta-analysis aims to identify characteristics and determine the effectiveness of interventions to improve cardiorespiratory fitness after stroke. A systematic search and review with meta-analysis was undertaken. Key inclusion criteria were the following: peer-reviewed articles published in English, adult stroke survivors, an intervention with the potential to improve cardiorespiratory fitness, and peak oxygen consumption (VO2peak) assessed preintervention and postintervention via a progressive aerobic exercise test. From 3209 citations identified, 28 studies were included, reporting results for 920 participants. Studies typically included chronic, ambulant participants with mild to moderate deficits; used an aerobic or mixed (with an aerobic component) intervention; and prescribed 3 sessions per week for 30 to 60 minutes per session at a given intensity. Baseline VO2peak values were low (8-23 mL/kg/min). Meta-analysis of the 12 randomized controlled trials demonstrated overall improvements in VO2peak of 2.27 (95% confidence interval = 1.58, 2.95) mL/kg/min postintervention. A similar 10% to 15% improvement occurred with both aerobic and mixed interventions and in shorter (≤ 3 months) and longer (>3 months) length programs. Only 1 study calculated total dose received and only 1 included long-term follow-up. The results demonstrate that interventions with an aerobic component can improve cardiorespiratory fitness poststroke. Further investigation is required to determine effectiveness in those with greater impairment and comorbidities, optimal timing and dose of intervention, whether improvements can be maintained in the longer term, and whether improved fitness results in better function and reduced risk of subsequent cardiovascular events.
Mazonakis, Michalis; Sahin, Bunyamin; Pagonidis, Konstantin; Damilakis, John
2011-06-01
The aim of this study was to combine the stereological technique with magnetic resonance (MR) imaging data for the volumetric and functional analysis of the left ventricle (LV). Cardiac MR examinations were performed in 13 consecutive subjects with known or suspected coronary artery disease. The end-diastolic volume (EDV), end-systolic volume, ejection fraction (EF), and mass were estimated by stereology using the entire slice set depicting LV and systematic sampling intensities of 1/2 and 1/3 that provided samples with every second and third slice, respectively. The repeatability of stereology was evaluated. Stereological assessments were compared with the reference values derived by manually tracing the endocardial and epicardial contours on MR images. Stereological EDV and EF estimations obtained by the 1/3 systematic sampling scheme were significantly different from those by manual delineation (P < .05). No difference was observed between the reference values and the LV parameters estimated by the entire slice set or a sampling intensity of 1/2 (P > .05). For these stereological approaches, a high correlation (r(2) = 0.80-0.93) and clinically acceptable limits of agreement were found with the reference method. Stereological estimations obtained by both sample sizes presented comparable coefficient of variation values of 2.9-5.8%. The mean time for stereological measurements on the entire slice set was 3.4 ± 0.6 minutes and it was reduced to 2.5 ± 0.5 minutes with the 1/2 systematic sampling scheme. Stereological analysis on systematic samples of MR slices generated by the 1/2 sampling intensity provided efficient and quick assessment of LV volumes, function, and mass. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Impact of electronic medical record on physician practice in office settings: a systematic review
2012-01-01
Background Increased investments are being made for electronic medical records (EMRs) in Canada. There is a need to learn from earlier EMR studies on their impact on physician practice in office settings. To address this need, we conducted a systematic review to examine the impact of EMRs in the physician office, factors that influenced their success, and the lessons learned. Results For this review we included publications cited in Medline and CINAHL between 2000 and 2009 on physician office EMRs. Studies were included if they evaluated the impact of EMR on physician practice in office settings. The Clinical Adoption Framework provided a conceptual scheme to make sense of the findings and allow for future comparison/alignment to other Canadian eHealth initiatives. In the final selection, we included 27 controlled and 16 descriptive studies. We examined six areas: prescribing support, disease management, clinical documentation, work practice, preventive care, and patient-physician interaction. Overall, 22/43 studies (51.2%) and 50/109 individual measures (45.9%) showed positive impacts, 18.6% studies and 18.3% measures had negative impacts, while the remaining had no effect. Forty-eight distinct factors were identified that influenced EMR success. Several lessons learned were repeated across studies: (a) having robust EMR features that support clinical use; (b) redesigning EMR-supported work practices for optimal fit; (c) demonstrating value for money; (d) having realistic expectations on implementation; and (e) engaging patients in the process. Conclusions Currently there is limited positive EMR impact in the physician office. To improve EMR success one needs to draw on the lessons from previous studies such as those in this review. PMID:22364529
Thrust at N{sup 3}LL with power corrections and a precision global fit for {alpha}{sub s}(m{sub Z})
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbate, Riccardo; Stewart, Iain W.; Fickinger, Michael
2011-04-01
We give a factorization formula for the e{sup +}e{sup -} thrust distribution d{sigma}/d{tau} with {tau}=1-T based on the soft-collinear effective theory. The result is applicable for all {tau}, i.e. in the peak, tail, and far-tail regions. The formula includes O({alpha}{sub s}{sup 3}) fixed-order QCD results, resummation of singular partonic {alpha}{sub s}{sup j}ln{sup k}({tau})/{tau} terms with N{sup 3}LL accuracy, hadronization effects from fitting a universal nonperturbative soft function defined with field theory, bottom quark mass effects, QED corrections, and the dominant top mass dependent terms from the axial anomaly. We do not rely on Monte Carlo generators to determine nonperturbative effectsmore » since they are not compatible with higher order perturbative analyses. Instead our treatment is based on fitting nonperturbative matrix elements in field theory, which are moments {Omega}{sub i} of a nonperturbative soft function. We present a global analysis of all available thrust data measured at center-of-mass energies Q=35-207 GeV in the tail region, where a two-parameter fit to {alpha}{sub s}(m{sub Z}) and the first moment {Omega}{sub 1} suffices. We use a short-distance scheme to define {Omega}{sub 1}, called the R-gap scheme, thus ensuring that the perturbative d{sigma}/d{tau} does not suffer from an O({Lambda}{sub QCD}) renormalon ambiguity. We find {alpha}{sub s}(m{sub Z})=0.1135{+-}(0.0002){sub expt{+-}}(0.0005){sub hadr{+-}}(0.0009){sub pert}, with {chi}{sup 2}/dof=0.91, where the displayed 1-sigma errors are the total experimental error, the hadronization uncertainty, and the perturbative theory uncertainty, respectively. The hadronization uncertainty in {alpha}{sub s} is significantly decreased compared to earlier analyses by our two-parameter fit, which determines {Omega}{sub 1}=0.323 GeV with 16% uncertainty.« less
ρ resonance from the I = 1 ππ potential in lattice QCD
NASA Astrophysics Data System (ADS)
Kawai, Daisuke
2018-03-01
We calculate the phase shift for the I = 1 ππ scattering in 2+1 flavor lattice QCD at mπ = 410 MeV, using all-to-all propagators with the LapH smearing. We first investigate the sink operator independence of the I = 2 ππ scattering phase shift to estimate the systematics in the LapH smearing scheme in the HAL QCD method at mπ = 870 MeV. The difference in the scattering phase shift in this channel between the conventional point sink scheme and the smeared sink scheme is reasonably small as long as the next-toleading analysis is employed in the smeared sink scheme with larger smearing levels. We then extract the I = 1 ππ potential with the smeared sink operator, whose scattering phase shift shows a resonant behavior (ρ resonance). We also examine the pole of the S-matrix corresponding to the ρ resonance in the complex energy plane.
Zhang, Senlin; Chen, Huayan; Liu, Meiqin; Zhang, Qunfei
2017-11-07
Target tracking is one of the broad applications of underwater wireless sensor networks (UWSNs). However, as a result of the temporal and spatial variability of acoustic channels, underwater acoustic communications suffer from an extremely limited bandwidth. In order to reduce network congestion, it is important to shorten the length of the data transmitted from local sensors to the fusion center by quantization. Although quantization can reduce bandwidth cost, it also brings about bad tracking performance as a result of information loss after quantization. To solve this problem, this paper proposes an optimal quantization-based target tracking scheme. It improves the tracking performance of low-bit quantized measurements by minimizing the additional covariance caused by quantization. The simulation demonstrates that our scheme performs much better than the conventional uniform quantization-based target tracking scheme and the increment of the data length affects our scheme only a little. Its tracking performance improves by only 4.4% from 2- to 3-bit, which means our scheme weakly depends on the number of data bits. Moreover, our scheme also weakly depends on the number of participate sensors, and it can work well in sparse sensor networks. In a 6 × 6 × 6 sensor network, compared with 4 × 4 × 4 sensor networks, the number of participant sensors increases by 334.92%, while the tracking accuracy using 1-bit quantized measurements improves by only 50.77%. Overall, our optimal quantization-based target tracking scheme can achieve the pursuit of data-efficiency, which fits the requirements of low-bandwidth UWSNs.
Machine learning prediction for classification of outcomes in local minimisation
NASA Astrophysics Data System (ADS)
Das, Ritankar; Wales, David J.
2017-01-01
Machine learning schemes are employed to predict which local minimum will result from local energy minimisation of random starting configurations for a triatomic cluster. The input data consists of structural information at one or more of the configurations in optimisation sequences that converge to one of four distinct local minima. The ability to make reliable predictions, in terms of the energy or other properties of interest, could save significant computational resources in sampling procedures that involve systematic geometry optimisation. Results are compared for two energy minimisation schemes, and for neural network and quadratic functions of the inputs.
NASA Astrophysics Data System (ADS)
Ness, P. H.; Jacobson, H.
1984-10-01
The thrust of 'group technology' is toward the exploitation of similarities in component design and manufacturing process plans to achieve assembly line flow cost efficiencies for small batch production. The systematic method devised for the identification of similarities in component geometry and processing steps is a coding and classification scheme implemented by interactive CAD/CAM systems. This coding and classification scheme has led to significant increases in computer processing power, allowing rapid searches and retrievals on the basis of a 30-digit code together with user-friendly computer graphics.
Evaluating Payments for Environmental Services: Methodological Challenges
2016-01-01
Over the last fifteen years, Payments for Environmental Services (PES) schemes have become very popular environmental policy instruments, but the academic literature has begun to question their additionality. The literature attempts to estimate the causal effect of these programs by applying impact evaluation (IE) techniques. However, PES programs are complex instruments and IE methods cannot be directly applied without adjustments. Based on a systematic review of the literature, this article proposes a framework for the methodological process of designing an IE for PES schemes. It revises and discusses the methodological choices at each step of the process and proposes guidelines for practitioners. PMID:26910850
Systematic review of the evidence for Trails B cut-off scores in assessing fitness-to-drive
Roy, Mononita; Molnar, Frank
2013-01-01
Background Fitness-to-drive guidelines recommend employing the Trail Making B Test (a.k.a. Trails B), but do not provide guidance regarding cut-off scores. There is ongoing debate regarding the optimal cut-off score on the Trails B test. The objective of this study was to address this controversy by systematically reviewing the evidence for specific Trails B cut-off scores (e.g., cut-offs in both time to completion and number of errors) with respect to fitness-to-drive. Methods Systematic review of all prospective cohort, retrospective cohort, case-control, correlation, and cross-sectional studies reporting the ability of the Trails B to predict driving safety that were published in English-language, peer-reviewed journals. Results Forty-seven articles were reviewed. None of the articles justified sample sizes via formal calculations. Cut-off scores reported based on research include: 90 seconds, 133 seconds, 147 seconds, 180 seconds, and < 3 errors. Conclusions There is support for the previously published Trails B cut-offs of 3 minutes or 3 errors (the ‘3 or 3 rule’). Major methodological limitations of this body of research were uncovered including (1) lack of justification of sample size leaving studies open to Type II error (i.e., false negative findings), and (2) excessive focus on associations rather than clinically useful cut-off scores. PMID:23983828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jennings, Elise; Wolf, Rachel; Sako, Masao
2016-11-09
Cosmological parameter estimation techniques that robustly account for systematic measurement uncertainties will be crucial for the next generation of cosmological surveys. We present a new analysis method, superABC, for obtaining cosmological constraints from Type Ia supernova (SN Ia) light curves using Approximate Bayesian Computation (ABC) without any likelihood assumptions. The ABC method works by using a forward model simulation of the data where systematic uncertainties can be simulated and marginalized over. A key feature of the method presented here is the use of two distinct metrics, the `Tripp' and `Light Curve' metrics, which allow us to compare the simulated data to the observed data set. The Tripp metric takes as input the parameters of models fit to each light curve with the SALT-II method, whereas the Light Curve metric uses the measured fluxes directly without model fitting. We apply the superABC sampler to a simulated data set ofmore » $$\\sim$$1000 SNe corresponding to the first season of the Dark Energy Survey Supernova Program. Varying $$\\Omega_m, w_0, \\alpha$$ and $$\\beta$$ and a magnitude offset parameter, with no systematics we obtain $$\\Delta(w_0) = w_0^{\\rm true} - w_0^{\\rm best \\, fit} = -0.036\\pm0.109$$ (a $$\\sim11$$% 1$$\\sigma$$ uncertainty) using the Tripp metric and $$\\Delta(w_0) = -0.055\\pm0.068$$ (a $$\\sim7$$% 1$$\\sigma$$ uncertainty) using the Light Curve metric. Including 1% calibration uncertainties in four passbands, adding 4 more parameters, we obtain $$\\Delta(w_0) = -0.062\\pm0.132$$ (a $$\\sim14$$% 1$$\\sigma$$ uncertainty) using the Tripp metric. Overall we find a $17$% increase in the uncertainty on $$w_0$$ with systematics compared to without. We contrast this with a MCMC approach where systematic effects are approximately included. We find that the MCMC method slightly underestimates the impact of calibration uncertainties for this simulated data set.« less
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
The, Yu-Kai; Fernandes, Jacqueline; Popa, M. Oana; Alekov, Alexi K.; Timmer, Jens; Lerche, Holger
2006-01-01
Voltage-gated Na+ channels play a fundamental role in the excitability of nerve and muscle cells. Defects in fast Na+ channel inactivation can cause hereditary muscle diseases with hyper- or hypoexcitability of the sarcolemma. To explore the kinetics and gating mechanisms of noninactivating muscle Na+ channels on a molecular level, we analyzed single channel currents from wild-type and five mutant Na+ channels. The mutations were localized in different protein regions which have been previously shown to be important for fast inactivation (D3-D4-linker, D3/S4-S5, D4/S4-S5, D4/S6) and exhibited distinct grades of defective fast inactivation with varying levels of persistent Na+ currents caused by late channel reopenings. Different gating schemes were fitted to the data using hidden Markov models with a correction for time interval omission and compared statistically. For all investigated channels including the wild-type, two open states were necessary to describe our data. Whereas one inactivated state was sufficient to fit the single channel behavior of wild-type channels, modeling the mutants with impaired fast inactivation revealed evidence for several inactivated states. We propose a single gating scheme with two open and three inactivated states to describe the behavior of all five examined mutants. This scheme provides a biological interpretation of the collected data, based on previous investigations in voltage-gated Na+ and K+ channels. PMID:16513781
Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective.
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke
2015-12-01
We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model-based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. © 2015, Human Factors and Ergonomics Society.
Sarmiento, Kelly; Eckstein, Daniel; Zambon, Allison
2013-03-01
In an effort to encourage appropriate field triage procedures, the Centers for Disease Control and Prevention (CDC), in collaboration with the National Highway Traffic Safety Administration and the American College of Surgeons-Committee on Trauma, convened the National Expert Panel on Field Triage to update the Field Triage Decision Scheme: The National Trauma Triage Protocol (Decision Scheme). In support of the Decision Scheme, CDC developed educational resources for emergency medical service (EMS) professionals, one of CDC's first efforts to develop and broadly disseminate educational information for the EMS community. CDC wanted to systematically collect information from the EMS community on what worked and what did not with respect to these educational materials and which materials were of most use. An evaluation was conducted to obtain feedback from EMS professionals about the Decision Scheme and use of Decision Scheme educational materials. The evaluation included a survey and a series of focus groups. Findings indicate that a segment of the Decision Scheme's intended audience is using the materials and learning from them, and they have had a positive influence on their triage practices. However, many of the individuals who participated in this research are not using the Decision Scheme and indicated that the materials have not affected their triage practices. Findings presented in this article can be used to inform development and distribution of additional Decision Scheme educational resources to ensure they reach a greater proportion of EMS professionals and to inform other education and dissemination efforts with the EMS community.
Eating Disorders, Physical Fitness and Sport Performance: A Systematic Review
El Ghoch, Marwan; Soave, Fabio; Calugi, Simona; Dalle Grave, Riccardo
2013-01-01
Background: Eating disorders are health problems that are particularly prevalent in adolescents and young adults. They are associated with considerable physical health and psychosocial morbidity, and increased risk of mortality. We set out to conduct a systematic review to determine their effect on physical fitness in the general population and on sport performance in athletes. Methods/Design: A systematic review of the relevant peer-reviewed literature was performed. For inclusion, articles retrieved from PubMed had to be published in English between 1977 and 2013. Wherever possible, methods and reporting adhere to the guidelines outlined in the PRISMA statement. Some additional studies were retrieved from among those cited in the reference lists of included studies and from non-electronic databases. Literature searches, study selection, method and quality appraisal were performed independently by two authors, and data was synthesized using a narrative approach. Results: Of the 1183 articles retrieved, twenty-nine studies met the inclusion criteria and were consequently analysed. The available data indicate that eating disorders have a negative effect on physical fitness and sport performance by causing low energy availability, excessive loss of fat and lean mass, dehydration, and electrolyte disturbance. Discussion: Although the paucity of the available data mean that findings to date should be interpreted with caution, the information collated in this review has several practical implications. First, eating disorders have a negative effect on both physical fitness and sport performance. Second athletics coaches should be targeted for education about the risk factors of eating disorders, as deterioration in sport performance in athletes, particularly if they are underweight or show other signs of an eating disorder, may indicate the need for medical intervention. However, future studies are needed, especially to assess the direct effect of eating disorders on sport performance. PMID:24352092
Yan, Yibo; Chen, Jie; Li, Nan; Tian, Jingqi; Li, Kaixin; Jiang, Jizhou; Liu, Jiyang; Tian, Qinghua; Chen, Peng
2018-04-24
Graphene quantum dots (GQDs), which is the latest addition to the nanocarbon material family, promise a wide spectrum of applications. Herein, we demonstrate two different functionalization strategies to systematically tailor the bandgap structures of GQDs whereby making them snugly suitable for particular applications. Furthermore, the functionalized GQDs with a narrow bandgap and intramolecular Z-scheme structure are employed as the efficient photocatalysts for water splitting and carbon dioxide reduction under visible light. The underlying mechanisms of our observations are studied and discussed.
PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks.
Kaleem, Zeeshan; Khaliq, Muhammad Zubair; Khan, Ajmal; Ahmad, Ishtiaq; Duong, Trung Q
2018-05-08
The fifth-generation (5G) communications systems are expecting to support users with diverse quality-of-service (QoS) requirements. Beside these requirements, the task with utmost importance is to support the emergency communication services during natural or man-made disasters. Most of the conventional base stations are not properly functional during a disaster situation, so deployment of emergency base stations such as mobile personal cell (mPC) is crucial. An mPC having moving capability can move in the disaster area to provide emergency communication services. However, mPC deployment causes severe co-channel interference to the users in its vicinity. The problem in the existing resource allocation schemes is its support for static environment, that does not fit well for mPC. So, a resource allocation scheme for mPC users is desired that can dynamically allocate resources based on users’ location and its connection establishment priority. In this paper, we propose a public safety users priority-based context-aware resource allocation (PS-CARA) scheme for users sum-rate maximization in disaster environment. Simulations results demonstrate that the proposed PS-CARA scheme can increase the user average and edge rate around 10.3% and 32.8% , respectively because of context information availability and by prioritizing the public safety users. The simulation results ensure that call blocking probability is also reduced considerably under the PS-CARA scheme.
Advanced Computational Aeroacoustics Methods for Fan Noise Prediction
NASA Technical Reports Server (NTRS)
Envia, Edmane (Technical Monitor); Tam, Christopher
2003-01-01
Direct computation of fan noise is presently not possible. One of the major difficulties is the geometrical complexity of the problem. In the case of fan noise, the blade geometry is critical to the loading on the blade and hence the intensity of the radiated noise. The precise geometry must be incorporated into the computation. In computational fluid dynamics (CFD), there are two general ways to handle problems with complex geometry. One way is to use unstructured grids. The other is to use body fitted overset grids. In the overset grid method, accurate data transfer is of utmost importance. For acoustic computation, it is not clear that the currently used data transfer methods are sufficiently accurate as not to contaminate the very small amplitude acoustic disturbances. In CFD, low order schemes are, invariably, used in conjunction with unstructured grids. However, low order schemes are known to be numerically dispersive and dissipative. dissipative errors are extremely undesirable for acoustic wave problems. The objective of this project is to develop a high order unstructured grid Dispersion-Relation-Preserving (DRP) scheme. would minimize numerical dispersion and dissipation errors. contains the results of the funded portion of the project. scheme on an unstructured grid has been developed. constructed in the wave number space. The characteristics of the scheme can be improved by the inclusion of additional constraints. Stability of the scheme has been investigated. Stability can be improved by adopting the upwinding strategy.
PS-CARA: Context-Aware Resource Allocation Scheme for Mobile Public Safety Networks
Khaliq, Muhammad Zubair; Khan, Ajmal; Ahmad, Ishtiaq
2018-01-01
The fifth-generation (5G) communications systems are expecting to support users with diverse quality-of-service (QoS) requirements. Beside these requirements, the task with utmost importance is to support the emergency communication services during natural or man-made disasters. Most of the conventional base stations are not properly functional during a disaster situation, so deployment of emergency base stations such as mobile personal cell (mPC) is crucial. An mPC having moving capability can move in the disaster area to provide emergency communication services. However, mPC deployment causes severe co-channel interference to the users in its vicinity. The problem in the existing resource allocation schemes is its support for static environment, that does not fit well for mPC. So, a resource allocation scheme for mPC users is desired that can dynamically allocate resources based on users’ location and its connection establishment priority. In this paper, we propose a public safety users priority-based context-aware resource allocation (PS-CARA) scheme for users sum-rate maximization in disaster environment. Simulations results demonstrate that the proposed PS-CARA scheme can increase the user average and edge rate around 10.3% and 32.8% , respectively because of context information availability and by prioritizing the public safety users. The simulation results ensure that call blocking probability is also reduced considerably under the PS-CARA scheme. PMID:29738499
NASA Astrophysics Data System (ADS)
Kim, Jae Wook
2013-05-01
This paper proposes a novel systematic approach for the parallelization of pentadiagonal compact finite-difference schemes and filters based on domain decomposition. The proposed approach allows a pentadiagonal banded matrix system to be split into quasi-disjoint subsystems by using a linear-algebraic transformation technique. As a result the inversion of pentadiagonal matrices can be implemented within each subdomain in an independent manner subject to a conventional halo-exchange process. The proposed matrix transformation leads to new subdomain boundary (SB) compact schemes and filters that require three halo terms to exchange with neighboring subdomains. The internode communication overhead in the present approach is equivalent to that of standard explicit schemes and filters based on seven-point discretization stencils. The new SB compact schemes and filters demand additional arithmetic operations compared to the original serial ones. However, it is shown that the additional cost becomes sufficiently low by choosing optimal sizes of their discretization stencils. Compared to earlier published results, the proposed SB compact schemes and filters successfully reduce parallelization artifacts arising from subdomain boundaries to a level sufficiently negligible for sophisticated aeroacoustic simulations without degrading parallel efficiency. The overall performance and parallel efficiency of the proposed approach are demonstrated by stringent benchmark tests.
Clament Sagaya Selvam, N; Kim, Yeong Gyeong; Kim, Dong Jin; Hong, Won-Hwa; Kim, Woong; Park, Sung Hyuk; Jo, Wan-Kuen
2018-09-01
The efficient photocatalytic degradation of harmful organic pollutants (isoniazid (ISN) and 1,4-dioxane (DX)) via the Z-scheme electron transfer mechanism was accomplished using a photostable composite photocatalyst consisting of BiVO 4 , CdS, and reduced graphene oxide (RGO). Compared to their pristine counterparts, the RGO-mediated Z-scheme CdS/BiVO 4 (CdS/RGO-BiVO 4 ) nanocomposites exhibited superior degradation activities, mainly attributed to the prolonged charge separation. RGO was found to be involved in visible-light harvesting and acted as a solid-state electron mediator at the CdS/BiVO 4 interface to realize an effective Z-scheme electron transfer pathway, avoid photocatalyst self-oxidation, and lengthen the life span of charge carriers. The results of reactive species scavenging experiments, photoluminescence measurements, and transient photocurrent measurements, as well as the calculated band potentials of the synthesized photocatalysts, supported the Z-scheme electron/hole pair separation mechanism. Additionally, the intermediates formed during the degradation of ISN and DX were identified, and a possible fragmentation pattern was proposed. This systematic work aims to develop photostable Z-scheme composites as unique photocatalytic systems for the efficient removal of harmful organic pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
Plana-Ruiz, S; Portillo, J; Estradé, S; Peiró, F; Kolb, Ute; Nicolopoulos, S
2018-06-06
A general method to set illuminating conditions for selectable beam convergence and probe size is presented in this work for Transmission Electron Microscopes (TEM) fitted with µs/pixel fast beam scanning control, (S)TEM, and an annular dark field detector. The case of interest of beam convergence and probe size, which enables diffraction pattern indexation, is then used as a starting point in this work to add 100 Hz precession to the beam while imaging the specimen at a fast rate and keeping the projector system in diffraction mode. The described systematic alignment method for the adjustment of beam precession on the specimen plane while scanning at fast rates is mainly based on the sharpness of the precessed STEM image. The complete alignment method for parallel condition and precession, Quasi-Parallel PED-STEM, is presented in block diagram scheme, as it has been tested on a variety of instruments. The immediate application of this methodology is that it renders the TEM column ready for the acquisition of Precessed Electron Diffraction Tomographies (EDT) as well as for the acquisition of slow Precessed Scanning Nanometer Electron Diffraction (SNED). Examples of the quality of the Precessed Electron Diffraction (PED) patterns and PED-STEM alignment images are presented with corresponding probe sizes and convergence angles. Copyright © 2018. Published by Elsevier B.V.
2009-01-01
Background Discrete choice experiments (DCEs) allow systematic assessment of preferences by asking respondents to choose between scenarios. We conducted a labelled discrete choice experiment with realistic choices to investigate patients' trade-offs between the expected health gains and the burden of testing in surveillance of Barrett esophagus (BE). Methods Fifteen choice scenarios were selected based on 2 attributes: 1) type of test (endoscopy and two less burdensome fictitious tests), 2) frequency of surveillance. Each test-frequency combination was associated with its own realistic decrease in risk of dying from esophageal adenocarcinoma. A conditional logit model was fitted. Results Of 297 eligible patients (155 BE and 142 with non-specific upper GI symptoms), 247 completed the questionnaire (84%). Patients preferred surveillance to no surveillance. Current surveillance schemes of once every 1–2 years were amongst the most preferred alternatives. Higher health gains were preferred over those with lower health gains, except when test frequencies exceeded once a year. For similar health gains, patients preferred video-capsule over saliva swab and least preferred endoscopy. Conclusion This first example of a labelled DCE using realistic scenarios in a healthcare context shows that such experiments are feasible. A comparison of labelled and unlabelled designs taking into account setting and research question is recommended. PMID:19454022
On event-based optical flow detection
Brosch, Tobias; Tschechne, Stephan; Neumann, Heiko
2015-01-01
Event-based sensing, i.e., the asynchronous detection of luminance changes, promises low-energy, high dynamic range, and sparse sensing. This stands in contrast to whole image frame-wise acquisition by standard cameras. Here, we systematically investigate the implications of event-based sensing in the context of visual motion, or flow, estimation. Starting from a common theoretical foundation, we discuss different principal approaches for optical flow detection ranging from gradient-based methods over plane-fitting to filter based methods and identify strengths and weaknesses of each class. Gradient-based methods for local motion integration are shown to suffer from the sparse encoding in address-event representations (AER). Approaches exploiting the local plane like structure of the event cloud, on the other hand, are shown to be well suited. Within this class, filter based approaches are shown to define a proper detection scheme which can also deal with the problem of representing multiple motions at a single location (motion transparency). A novel biologically inspired efficient motion detector is proposed, analyzed and experimentally validated. Furthermore, a stage of surround normalization is incorporated. Together with the filtering this defines a canonical circuit for motion feature detection. The theoretical analysis shows that such an integrated circuit reduces motion ambiguity in addition to decorrelating the representation of motion related activations. PMID:25941470
NASA Astrophysics Data System (ADS)
Collins, John; Rogers, Ted
2015-04-01
There is considerable controversy about the size and importance of nonperturbative contributions to the evolution of transverse-momentum-dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that nonperturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and nonperturbative. We make a motivated proposal for the parametrization of the nonperturbative part of the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical nonperturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A (bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A (bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell-Yan experiments to measure the Sivers function.
Apparent cosmic acceleration from Type Ia supernovae
NASA Astrophysics Data System (ADS)
Dam, Lawrence H.; Heinesen, Asta; Wiltshire, David L.
2017-11-01
Parameters that quantify the acceleration of cosmic expansion are conventionally determined within the standard Friedmann-Lemaître-Robertson-Walker (FLRW) model, which fixes spatial curvature to be homogeneous. Generic averages of Einstein's equations in inhomogeneous cosmology lead to models with non-rigidly evolving average spatial curvature, and different parametrizations of apparent cosmic acceleration. The timescape cosmology is a viable example of such a model without dark energy. Using the largest available supernova data set, the JLA catalogue, we find that the timescape model fits the luminosity distance-redshift data with a likelihood that is statistically indistinguishable from the standard spatially flat Λ cold dark matter cosmology by Bayesian comparison. In the timescape case cosmic acceleration is non-zero but has a marginal amplitude, with best-fitting apparent deceleration parameter, q_{0}=-0.043^{+0.004}_{-0.000}. Systematic issues regarding standardization of supernova light curves are analysed. Cuts of data at the statistical homogeneity scale affect light-curve parameter fits independent of cosmology. A cosmological model dependence of empirical changes to the mean colour parameter is also found. Irrespective of which model ultimately fits better, we argue that as a competitive model with a non-FLRW expansion history, the timescape model may prove a useful diagnostic tool for disentangling selection effects and astrophysical systematics from the underlying expansion history.
ACCOUNTING FOR CALIBRATION UNCERTAINTIES IN X-RAY ANALYSIS: EFFECTIVE AREAS IN SPECTRAL FITTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyunsook; Kashyap, Vinay L.; Drake, Jeremy J.
2011-04-20
While considerable advance has been made to account for statistical uncertainties in astronomical analyses, systematic instrumental uncertainties have been generally ignored. This can be crucial to a proper interpretation of analysis results because instrumental calibration uncertainty is a form of systematic uncertainty. Ignoring it can underestimate error bars and introduce bias into the fitted values of model parameters. Accounting for such uncertainties currently requires extensive case-specific simulations if using existing analysis packages. Here, we present general statistical methods that incorporate calibration uncertainties into spectral analysis of high-energy data. We first present a method based on multiple imputation that can bemore » applied with any fitting method, but is necessarily approximate. We then describe a more exact Bayesian approach that works in conjunction with a Markov chain Monte Carlo based fitting. We explore methods for improving computational efficiency, and in particular detail a method of summarizing calibration uncertainties with a principal component analysis of samples of plausible calibration files. This method is implemented using recently codified Chandra effective area uncertainties for low-resolution spectral analysis and is verified using both simulated and actual Chandra data. Our procedure for incorporating effective area uncertainty is easily generalized to other types of calibration uncertainties.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conley, A.; Goldhaber, G.; Wang, L.
We present measurements of {Omega}{sub m} and {Omega}{sub {Lambda}} from a blind analysis of 21 high redshift supernovae using a new technique (CMAGIC) for fitting the multicolor lightcurves of Type Ia supernovae, first introduced in Wang et al. (2003). CMAGIC takes advantage of the remarkably simple behavior of Type Ia supernovae on color-magnitude diagrams, and has several advantages over current techniques based on maximum magnitudes. Among these are a reduced sensitivity to host galaxy dust extinction, a shallower luminosity-width relation, and the relative simplicity of the fitting procedure. This allows us to provide a cross check of previous supernova cosmologymore » results, despite the fact that current data sets were not observed in a manner optimized for CMAGIC. We describe the details of our novel blindness procedure, which is designed to prevent experimenter bias. The data are broadly consistent with the picture of an accelerating Universe, and agree with a at Universe within 1.7{sigma}, including systematics. We also compare the CMAGIC results directly with those of a maximum magnitude fit to the same SNe, finding that CMAGIC favors more acceleration at the 1.6{sigma} level, including systematics and the correlation between the two measurements. A fit for w assuming a at Universe yields a value which is consistent with a cosmological constant within 1.2{sigma}.« less
Systematic comparison of jet energy-loss schemes in a realistic hydrodynamic medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bass, Steffen A.; Majumder, Abhijit; Gale, Charles
2009-02-15
We perform a systematic comparison of three different jet energy-loss approaches. These include the Armesto-Salgado-Wiedemann scheme based on the approach of Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov (BDMPS-Z/ASW), the higher twist (HT) approach and a scheme based on the Arnold-Moore-Yaffe (AMY) approach. In this comparison, an identical medium evolution will be utilized for all three approaches: this entails not only the use of the same realistic three-dimensional relativistic fluid dynamics (RFD) simulation, but also the use of identical initial parton-distribution functions and final fragmentation functions. We are, thus, in a unique position to not only isolate fundamental differences between the various approaches butmore » also make rigorous calculations for different experimental measurements using state of the art components. All three approaches are reduced to versions containing only one free tunable parameter, this is then related to the well-known transport parameter q. We find that the parameters of all three calculations can be adjusted to provide a good description of inclusive data on R{sub AA} vs transverse momentum. However, we do observe slight differences in their predictions for the centrality and azimuthal angular dependence of R{sub AA} vs p{sub T}. We also note that the values of the transport coefficient q in the three approaches to describe the data differ significantly.« less
SYSTEMATIZATION OF MASS LEVELS OF PARTICLES AND RESONANCES ON HEURISTIC BASIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takabayasi, T.
1963-12-16
Once more a scheme of simple mass rules and formulas for particles and resonant levels is investigated and organized, based on some general hypotheses. The essential ingredients in the scheme are, on one hand, the equalinterval rule governing the isosinglet meson series, associated with particularly simple mass ratio between the 2/sup ++/ level f and 0/sup ++/ level ABC, and on the other a new basic mass formula that unifies some of the meson and baryon levels. The whole baryon levels are arranged in a table analogous to the periodic table, and then correspondences between different series and equivalence betweenmore » spin and hypercharge, when properly applied, just fix the whole baryon mass spectrum in good agreement with observations. Connections with the scheme of mass formulas formerly given are also shown. (auth)« less
Stellar lyman alpha emission and the local interstellar medium
NASA Technical Reports Server (NTRS)
Simon, Theodore
1992-01-01
Under the auspices of this ADP program, a systematic study was made of IUE archival images in order to extract spectra of the Lyman alpha region and to measure the stellar Lyman alpha flux for as many late-type stars as possible. The Lyman alpha resonance line is a powerful cooling channel for the hot chromospheres of solar-type stars, but has not been studied before in any systematic fashion across the H-R diagram. A major deterrent which has limited the use of Lyman alpha in the study of stellar chromospheres is the contamination of this spectral feature caused by the scattering of solar Lyman alpha photons in the Earth's exosphere. This scattered light is monochromatically imaged through the entrance slot of the IUE telescope and is superposed onto the stellar spectrum. In all but the shortest exposures with IUE, this 'geocoronal emission' overwhelms the stellar flux and makes it impossible to directly measure the strength of the stellar chromospheric feature. The IUESIPS processing contains no provision for correcting standard G.O. output products for this contamination. The first task was to develop a scheme for removing the geocoronal flux, specifically from low-dispersion spectra taken with the Short-Wavelength Camera of IUE. The strategy adopted was to fit a 'sky model' to the spatially-resolved geocoronal emission observed through the large science aperture of the telescope, using the spectral orders on either side of the central ones where the stellar emission is concentrated. The model emission was then subtracted from the observed image, leaving behind the corrected stellar Lyman alpha emission. The details of this fitting procedure are described. Having devised a successful method for removing the unwanted geocoronal emission, the correction procedure was applied to 366 archival images which, from inspection of the photowrites in the IUE browse file, seemed especially promising. In this survey, Lyman alpha emission were eventually detected in the spectra of 227 stars representing a wide range in age, temperature, and luminosity throughout the cool half of the H-R diagram. Previously fewer than 30 such stars had been measured, and an order of magnitude increase in the numbers of stars having Lyman alpha flux measurements is provided. Multiple measurements were made for 52 stars and upper limits on chromospheric flux were derived for another 48 stars.
Sfakiotakis, Stelios; Vamvuka, Despina
2015-12-01
The pyrolysis of six waste biomass samples was studied and the fuels were kinetically evaluated. A modified independent parallel reactions scheme (IPR) and a distributed activation energy model (DAEM) were developed and their validity was assessed and compared by checking their accuracy of fitting the experimental results, as well as their prediction capability in different experimental conditions. The pyrolysis experiments were carried out in a thermogravimetric analyzer and a fitting procedure, based on least squares minimization, was performed simultaneously at different experimental conditions. A modification of the IPR model, considering dependence of the pre-exponential factor on heating rate, was proved to give better fit results for the same number of tuned kinetic parameters, comparing to the known IPR model and very good prediction results for stepwise experiments. Fit of calculated data to the experimental ones using the developed DAEM model was also proved to be very good. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Meredith, Patrick
The main objective of this book is to explain the thinking that is involved in working out a systematic scheme of the variables related to dyslexia. The contents of the book include "Origins of the Approach,""Some Principles of Instruction"; "Verbal Behavior"; "Our Ideas about Language"; "Left and Right"; "The Biology of the Book"; "Exploring…
Guiding New Product Idea Generation
ERIC Educational Resources Information Center
Park, Y.
2003-01-01
The creation of innovative ideas is the initial step in entrepreneurial practice and venture management. As the management of technology is now on the priority agenda of higher education institutions, there is a need to develop pedagogic schemes for idea generation. Despite its importance, the idea generation process is hard to systematize or to…
Gizzo, Salvatore; Noventa, Marco; Fagherazzi, Simone; Lamparelli, Laura; Ancona, Emanuele; Di Gangi, Stefania; Saccardi, Carlo; D'Antona, Donato; Nardelli, Giovanni Battista
2014-07-01
In modern obstetrics, different pharmacological and non-pharmacological options allow to obtain pain relief during labour, one of the most important goals in women satisfaction about medical care. The aim of this review is to compare all the analgesia administration schemes in terms of effectiveness in pain relief, length of labour, mode of delivery, side effects and neonatal outcomes. A systematic literature search was conducted in electronic databases in the interval time between January 1999 and March 2013. Key search terms included: “labour analgesia”, “epidural anaesthesia during labour” (excluding anaesthesia for Caesarean section), “epidural analgesia and labour outcome” and “intra-thecal analgesia”. 10,331 patients were analysed: 5,578 patients underwent Epidural-Analgesia, 259 patients spinal analgesia, 2,724 combined spinal epidural analgesia, 322 continuous epidural infusion (CEI), 168 intermittent epidural bolus, 684 patient-controlled infusion epidural analgesia and 152 intra-venous patient-controlled epidural analgesia. We also considered 341 women who underwent patient-controlled infusion epidural analgesia in association with CEI and 103 patients who underwent patient-controlled infusion epidural analgesia in association with automatic mandatory bolus. No significant differences occurred among all the available administration schemes of neuraxial analgesia. In absence of obstetrical contraindication, neuraxial analgesia has to be considered as the gold standard in obtaining maternal pain relief during labour. The options available in the administration of analgesia should be known and evaluated together by both gynaecologists and anaesthesiologists to choose the best personalized scheme and obtain the best women satisfaction. Since it is difficult to identify comparable circumstances during labour, it is complicate to standardize drugs schemes and their combinations.
NASA Astrophysics Data System (ADS)
Adam, A. M. A.; Bashier, E. B. M.; Hashim, M. H. A.; Patidar, K. C.
2017-07-01
In this work, we design and analyze a fitted numerical method to solve a reaction-diffusion model with time delay, namely, a delayed version of a population model which is an extension of the logistic growth (LG) equation for a food-limited population proposed by Smith [F.E. Smith, Population dynamics in Daphnia magna and a new model for population growth, Ecology 44 (1963) 651-663]. Seeing that the analytical solution (in closed form) is hard to obtain, we seek for a robust numerical method. The method consists of a Fourier-pseudospectral semi-discretization in space and a fitted operator implicit-explicit scheme in temporal direction. The proposed method is analyzed for convergence and we found that it is unconditionally stable. Illustrative numerical results will be presented at the conference.
A Systematic Review of Electric-Acoustic Stimulation
Ching, Teresa Y. C.; Cowan, Robert
2013-01-01
Cochlear implant systems that combine electric and acoustic stimulation in the same ear are now commercially available and the number of patients using these devices is steadily increasing. In particular, electric-acoustic stimulation is an option for patients with severe, high frequency sensorineural hearing impairment. There have been a range of approaches to combining electric stimulation and acoustic hearing in the same ear. To develop a better understanding of fitting practices for devices that combine electric and acoustic stimulation, we conducted a systematic review addressing three clinical questions: what is the range of acoustic hearing in the implanted ear that can be effectively preserved for an electric-acoustic fitting?; what benefits are provided by combining acoustic stimulation with electric stimulation?; and what clinical fitting practices have been developed for devices that combine electric and acoustic stimulation? A search of the literature was conducted and 27 articles that met the strict evaluation criteria adopted for the review were identified for detailed analysis. The range of auditory thresholds in the implanted ear that can be successfully used for an electric-acoustic application is quite broad. The effectiveness of combined electric and acoustic stimulation as compared with electric stimulation alone was consistently demonstrated, highlighting the potential value of preservation and utilization of low frequency hearing in the implanted ear. However, clinical procedures for best fitting of electric-acoustic devices were varied. This clearly identified a need for further investigation of fitting procedures aimed at maximizing outcomes for recipients of electric-acoustic devices. PMID:23539259
Progress in Grid Generation: From Chimera to DRAGON Grids
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing; Kao, Kai-Hsiung
1994-01-01
Hybrid grids, composed of structured and unstructured grids, combines the best features of both. The chimera method is a major stepstone toward a hybrid grid from which the present approach is evolved. The chimera grid composes a set of overlapped structured grids which are independently generated and body-fitted, yielding a high quality grid readily accessible for efficient solution schemes. The chimera method has been shown to be efficient to generate a grid about complex geometries and has been demonstrated to deliver accurate aerodynamic prediction of complex flows. While its geometrical flexibility is attractive, interpolation of data in the overlapped regions - which in today's practice in 3D is done in a nonconservative fashion, is not. In the present paper we propose a hybrid grid scheme that maximizes the advantages of the chimera scheme and adapts the strengths of the unstructured grid while at the same time keeps its weaknesses minimal. Like the chimera method, we first divide up the physical domain by a set of structured body-fitted grids which are separately generated and overlaid throughout a complex configuration. To eliminate any pure data manipulation which does not necessarily follow governing equations, we use non-structured grids only to directly replace the region of the arbitrarily overlapped grids. This new adaptation to the chimera thinking is coined the DRAGON grid. The nonstructured grid region sandwiched between the structured grids is limited in size, resulting in only a small increase in memory and computational effort. The DRAGON method has three important advantages: (1) preserving strengths of the chimera grid; (2) eliminating difficulties sometimes encountered in the chimera scheme, such as the orphan points and bad quality of interpolation stencils; and (3) making grid communication in a fully conservative and consistent manner insofar as the governing equations are concerned. To demonstrate its use, the governing equations are discretized using the newly proposed flux scheme, AUSM+, which will be briefly described herein. Numerical tests on representative 2D inviscid flows are given for demonstration. Finally, extension to 3D is underway, only paced by the availability of the 3D unstructured grid generator.
A Systematic Scheme for Multiple Access in Ethernet Passive Optical Access Networks
NASA Astrophysics Data System (ADS)
Ma, Maode; Zhu, Yongqing; Hiang Cheng, Tee
2005-11-01
While backbone networks have experienced substantial changes in the last decade, access networks have not changed much. Recently, passive optical networks (PONs) seem to be ready for commercial deployment as access networks, due to the maturity of a number of enabling technologies. Among the PON technologies, Ethernet PON (EPON) standardized by the IEEE 802.3ah Ethernet in the First Mile (EFM) Task Force is the most attractive one because of its high speed, low cost, familiarity, interoperability, and low overhead. In this paper, we consider the issue of upstream channel sharing in the EPONs. We propose a novel multiple-access control scheme to provide bandwidth-guaranteed service for high-demand customers, while providing best effort service to low-demand customers according to the service level agreement (SLA). The analytical and simulation results prove that the proposed scheme performs best in what it is designed to do compared to another well-known scheme that has not considered providing differentiated services. With business customers preferring premium services with guaranteed bandwidth and residential users preferring low-cost best effort services, our scheme could benefit both groups of subscribers, as well as the operators.
Incentives, health promotion and equality.
Voigt, Kristin
2012-07-01
The use of incentives to encourage individuals to adopt 'healthier' behaviours is an increasingly popular instrument in health policy. Much of the literature has been critical of 'negative' incentives, often due to concerns about equality; 'positive' incentives, however, have largely been welcomed as an instrument for the improvement of population health and possibly the reduction of health inequalities. The aim of this paper is to provide a more systematic assessment of the use of incentives from the perspective of equality. The paper begins with an overview of existing and proposed incentive schemes. I then suggest that the distinction between 'positive' and 'negative' incentives - or 'carrots' and 'sticks' - is of limited use in distinguishing those incentive schemes that raise concerns of equality from those that do not. The paper assesses incentive schemes with respect to two important considerations of equality: equality of access and equality of outcomes. While our assessment of incentive schemes will, ultimately, depend on various empirical facts, the paper aims to advance the debate by identifying some of the empirical questions we need to ask. The paper concludes by considering a number of trade-offs and caveats relevant to the assessment of incentive schemes.
Ayán, C; de Pedro-Múñez, A; Martínez-Lemos, I
2018-04-01
This systematic review was aimed at analysing the existing scientific evidence regarding the effects of physical exercise on the symptomatology, disease activity, and fitness level in a population with systemic lupus erythematosus. Following the PRISMA checklist, a search was carried out on PubMed, PEDro, and Sportdiscus databases. The PEDro and MINORS checklists were used in order to identify the methodological quality of the studies selected. A total of 14 studies were found, of which 10 were randomised controlled trials, and 4 were comparative studies. The performance of physical exercise led to significant improvements in fitness and fatigue. No adverse effects were registered. None of the studies found reported positive effects on the disease activity. The obtained results imply that the performance of physical exercise is safe for people with systemic lupus erythematosus, although its benefits are reduced mainly to improvements in their fitness and perceived level of fatigue. Copyright © 2018 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.
NASA Astrophysics Data System (ADS)
Tauscher, Keith; Rapetti, David; Burns, Jack O.; Switzer, Eric
2018-02-01
The sky-averaged (global) highly redshifted 21 cm spectrum from neutral hydrogen is expected to appear in the VHF range of ∼20–200 MHz and its spectral shape and strength are determined by the heating properties of the first stars and black holes, by the nature and duration of reionization, and by the presence or absence of exotic physics. Measurements of the global signal would therefore provide us with a wealth of astrophysical and cosmological knowledge. However, the signal has not yet been detected because it must be seen through strong foregrounds weighted by a large beam, instrumental calibration errors, and ionospheric, ground, and radio-frequency-interference effects, which we collectively refer to as “systematics.” Here, we present a signal extraction method for global signal experiments which uses Singular Value Decomposition of “training sets” to produce systematics basis functions specifically suited to each observation. Instead of requiring precise absolute knowledge of the systematics, our method effectively requires precise knowledge of how the systematics can vary. After calculating eigenmodes for the signal and systematics, we perform a weighted least square fit of the corresponding coefficients and select the number of modes to include by minimizing an information criterion. We compare the performance of the signal extraction when minimizing various information criteria and find that minimizing the Deviance Information Criterion most consistently yields unbiased fits. The methods used here are built into our widely applicable, publicly available Python package, pylinex, which analytically calculates constraints on signals and systematics from given data, errors, and training sets.
An Efficient Means of Adaptive Refinement Within Systems of Overset Grids
NASA Technical Reports Server (NTRS)
Meakin, Robert L.
1996-01-01
An efficient means of adaptive refinement within systems of overset grids is presented. Problem domains are segregated into near-body and off-body fields. Near-body fields are discretized via overlapping body-fitted grids that extend only a short distance from body surfaces. Off-body fields are discretized via systems of overlapping uniform Cartesian grids of varying levels of refinement. a novel off-body grid generation and management scheme provides the mechanism for carrying out adaptive refinement of off-body flow dynamics and solid body motion. The scheme allows for very efficient use of memory resources, and flow solvers and domain connectivity routines that can exploit the structure inherent to uniform Cartesian grids.
Video-based noncooperative iris image segmentation.
Du, Yingzi; Arslanturk, Emrah; Zhou, Zhi; Belcher, Craig
2011-02-01
In this paper, we propose a video-based noncooperative iris image segmentation scheme that incorporates a quality filter to quickly eliminate images without an eye, employs a coarse-to-fine segmentation scheme to improve the overall efficiency, uses a direct least squares fitting of ellipses method to model the deformed pupil and limbic boundaries, and develops a window gradient-based method to remove noise in the iris region. A remote iris acquisition system is set up to collect noncooperative iris video images. An objective method is used to quantitatively evaluate the accuracy of the segmentation results. The experimental results demonstrate the effectiveness of this method. The proposed method would make noncooperative iris recognition or iris surveillance possible.
Aircraft interior noise reduction by alternate resonance tuning
NASA Technical Reports Server (NTRS)
Bliss, Donald B.; Gottwald, James A.; Gustaveson, Mark B.; Burton, James R., III
1988-01-01
Model problem development and analysis continues with the Alternate Resonance Tuning (ART) concept. The various topics described are presently at different stages of completion: investigation of the effectiveness of the ART concept under an external propagating pressure field associated with propeller passage by the fuselage; analysis of ART performance with a double panel wall mounted in a flexible frame model; development of a data fitting scheme using a branch analysis with a Newton-Raphson scheme in multiple dimensions to determine values of critical parameters in the actual experimental apparatus; and investigation of the ART effect with real panels as opposed to the spring-mass-damper systems currently used in much of the theory.
The species-area relationship, self-similarity, and the true meaning of the z-value.
Tjørve, Even; Tjørve, Kathleen M Calf
2008-12-01
The power model, S= cA(z) (where S is number of species, A is area, and c and z are fitted constants), is the model most commonly fitted to species-area data assessing species diversity. We use the self-similarity properties of this model to reveal patterns implicated by the z parameter. We present the basic arithmetic leading both to the fraction of new species added when two areas are combined and to species overlap between two areas of the same size, given a continuous sampling scheme. The fraction of new species resulting from expansion of an area can be expressed as alpha(z)-1, where alpha is the expansion factor. Consequently, z-values can be converted to a scale-invariant species overlap between two equally sized areas, since the proportion of species in common between the two areas is 2-2(z). Calculating overlap when adding areas of the same size reveals the intrinsic effect of distance assumed by the bisectional scheme. We use overlap area relationships from empirical data sets to illustrate how answers to the single large or several small reserves (SLOSS) question vary between data sets and with scale. We conclude that species overlap and the effect of distance between sample areas or isolates should be addressed when discussing species area relationships, and lack of fit to the power model can be caused by its assumption of a scale-invariant overlap relationship.
Khalid-de Bakker, C; Jonkers, D; Smits, K; Mesters, I; Masclee, A; Stockbrügger, R
2011-12-01
Colorectal cancer (CRC) screening is implemented by an increasing number of countries. Participation rates of screening programs influence the health benefit and cost-effectiveness of the applied method. The aim was to systematically review participation rate after first-time invitation for CRC screening with fecal occult blood test (FOBT), sigmoidoscopy, colonoscopy, and/or computed tomography (CT) colonography. A systematic literature search was performed prior to October 1 2009. Prospective CRC screening studies of unselected populations reporting participation rates were included. After meta-analyses, overall participation rates were found to be 47 % for FOBT, 42 % for fecal immunologic tests (FITs), 35 % for sigmoidoscopy, 41 % for sigmoidoscopy combined with FIT/FOBT, 28 % for colonoscopy, and 22 % for CT colonography. Studies comparing screening methods showed higher participation rates for less invasive methods. Studies comparing invitation methods showed higher participation rates with general practitioner involvement, a more personalized recruitment approach, and reduction of barriers that discourage participation. Knowledge of identified factors affecting CRC screening participation can be used to improve screening programs. © Georg Thieme Verlag KG Stuttgart · New York.
Shifting fitness landscapes in response to altered environments
Jensen, Jeffrey D.; Bolon, Daniel N. A.
2013-01-01
The role of adaptation in molecular evolution has been contentious for decades. Here, we shed light on the adaptive potential in Saccharomyces cerevisiae by presenting systematic fitness measurements for all possible point mutations in a region of Hsp90 under four environmental conditions. Under elevated salinity, we observe numerous beneficial mutations with growth advantages up to 7% relative to the wild type. All of these beneficial mutations were observed to be associated with high costs of adaptation. We thus demonstrate that an essential protein can harbor adaptive potential upon an environmental challenge, and report a remarkable fit of the data to a version of Fisher's geometric model that focuses on the fitness trade-offs between mutations in different environments. PMID:24299404
Cannell, P J
2012-09-01
A mandatory scheme for clinical audit in the general dental services (GDS) was launched in April 2001. No evaluation of this mandatory scheme exists in the literature. This study provides an evaluation of this scheme. More recently a new dental contract was introduced in the general dental services (GDS) in April 2006. Responsibility for clinical audit activities was devolved to primary care trusts (PCTs) as part of their clinical governance remit. All GDPs within Essex were contacted by letter and invited to participate in the research. A qualitative research method was selected for this evaluation, utilising audio-taped semi-structured research interviews with eight general dental practitioners (GDPs) who had taken part in the GDS clinical audit scheme and who fitted the sampling criteria and strategy. The evaluation focused on dentists' experiences of the scheme. The main findings from the analysis of the GDS scheme data suggest that there is clear evidence of change following audit activities occurring within practices and for the benefit of patients. However, often it is the dentist only that undertakes a clinical audit project rather than the dental team, there is a lack of dissemination of project findings beyond the individual participating practices, very little useful feedback provided to participants who have completed a project and very limited use of formal re-auditing of a particular topic. This study provides evaluation of the GDS clinical audit scheme. Organisations who propose to undertake clinical audit activities in conjunction with dentistry in the future may benefit from incorporating and/or developing some findings from this evaluation into their project design and avoiding others.
Uncertainty quantification for optical model parameters
Lovell, A. E.; Nunes, F. M.; Sarich, J.; ...
2017-02-21
Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical potential can result in different cross sections, but these differences have not been systematically studied and quantified. The purpose of our work is to investigate the uncertainties in nuclear reactions that result from fitting a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels. We use statistical methods to determine a best fitmore » and create corresponding 95% confidence bands. A simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters. Here, we study a number of reactions involving neutron and deuteron projectiles with energies in the range of 5–25 MeV/u, on targets with mass A=12–208. We investigate the correlations between the parameters in the fit. The case of deuterons on 12C is discussed in detail: the elastic-scattering fit and the prediction of 12C(d,p) 13C transfer angular distributions, using both uncorrelated and correlated χ 2 minimization functions. The general features for all cases are compiled in a systematic manner to identify trends. This work shows that, in many cases, the correlated χ 2 functions (in comparison to the uncorrelated χ 2 functions) provide a more natural parameterization of the process. These correlated functions do, however, produce broader confidence bands. Further optimization may require improvement in the models themselves and/or more information included in the fit.« less
Qarri, Flora; Lazo, Pranvera; Bekteshi, Lirim; Stafilov, Trajce; Frontasyeva, Marina; Harmens, Harry
2015-02-01
The atmospheric deposition of heavy metals in Albania was investigated by using a carpet-forming moss species (Hypnum cupressiforme) as bioindicator. Sampling was done in the dry seasons of autumn 2010 and summer 2011. Two different sampling schemes are discussed in this paper: a random sampling scheme with 62 sampling sites distributed over the whole territory of Albania and systematic sampling scheme with 44 sampling sites distributed over the same territory. Unwashed, dried samples were totally digested by using microwave digestion, and the concentrations of metal elements were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and AAS (Cd and As). Twelve elements, such as conservative and trace elements (Al and Fe and As, Cd, Cr, Cu, Ni, Mn, Pb, V, Zn, and Li), were measured in moss samples. Li as typical lithogenic element is also included. The results reflect local emission points. The median concentrations and statistical parameters of elements were discussed by comparing two sampling schemes. The results of both sampling schemes are compared with the results of other European countries. Different levels of the contamination valuated by the respective contamination factor (CF) of each element are obtained for both sampling schemes, while the local emitters identified like iron-chromium metallurgy and cement industry, oil refinery, mining industry, and transport have been the same for both sampling schemes. In addition, the natural sources, from the accumulation of these metals in mosses caused by metal-enriched soil, associated with wind blowing soils were pointed as another possibility of local emitting factors.
Simulation of the West African Monsoon using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
Im, Eun-Soon; Gianotti, Rebecca L.; Eltahir, Elfatih A. B.
2013-04-01
We test the performance of the MIT Regional Climate Model (MRCM) in simulating the West African Monsoon. MRCM introduces several improvements over Regional Climate Model version 3 (RegCM3) including coupling of Integrated Biosphere Simulator (IBIS) land surface scheme, a new albedo assignment method, a new convective cloud and rainfall auto-conversion scheme, and a modified boundary layer height and cloud scheme. Using MRCM, we carried out a series of experiments implementing two different land surface schemes (IBIS and BATS) and three convection schemes (Grell with the Fritsch-Chappell closure, standard Emanuel, and modified Emanuel that includes the new convective cloud scheme). Our analysis primarily focused on comparing the precipitation characteristics, surface energy balance and large scale circulations against various observations. We document a significant sensitivity of the West African monsoon simulation to the choices of the land surface and convection schemes. In spite of several deficiencies, the simulation with the combination of IBIS and modified Emanuel schemes shows the best performance reflected in a marked improvement of precipitation in terms of spatial distribution and monsoon features. In particular, the coupling of IBIS leads to representations of the surface energy balance and partitioning that are consistent with observations. Therefore, the major components of the surface energy budget (including radiation fluxes) in the IBIS simulations are in better agreement with observation than those from our BATS simulation, or from previous similar studies (e.g Steiner et al., 2009), both qualitatively and quantitatively. The IBIS simulations also reasonably reproduce the dynamical structure of vertically stratified behavior of the atmospheric circulation with three major components: westerly monsoon flow, African Easterly Jet (AEJ), and Tropical Easterly Jet (TEJ). In addition, since the modified Emanuel scheme tends to reduce the precipitation amount, it improves the precipitation over regions suffering from systematic wet bias.
The a(4) Scheme-A High Order Neutrally Stable CESE Solver
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung
2009-01-01
The CESE development is driven by a belief that a solver should (i) enforce conservation laws in both space and time, and (ii) be built from a nondissipative (i.e., neutrally stable) core scheme so that the numerical dissipation can be controlled effectively. To provide a solid foundation for a systematic CESE development of high order schemes, in this paper we describe a new high order (4-5th order) and neutrally stable CESE solver of a 1D advection equation with a constant advection speed a. The space-time stencil of this two-level explicit scheme is formed by one point at the upper time level and two points at the lower time level. Because it is associated with four independent mesh variables (the numerical analogues of the dependent variable and its first, second, and third-order spatial derivatives) and four equations per mesh point, the new scheme is referred to as the a(4) scheme. As in the case of other similar CESE neutrally stable solvers, the a(4) scheme enforces conservation laws in space-time locally and globally, and it has the basic, forward marching, and backward marching forms. Except for a singular case, these forms are equivalent and satisfy a space-time inversion (STI) invariant property which is shared by the advection equation. Based on the concept of STI invariance, a set of algebraic relations is developed and used to prove the a(4) scheme must be neutrally stable when it is stable. Numerically, it has been established that the scheme is stable if the value of the Courant number is less than 1/3
Lesson Plans for Dynamic Physical Education for Elementary School Children. Second Edition.
ERIC Educational Resources Information Center
Pangrazi, Robert P.; Dauer, Victor P.
These lesson plans are designed to be used with the textbook of the same title. Each lesson plan is broken into four activity parts. The four parts and their major purposes in the scheme of the lesson are as follows: (1) introductory activity; (2) fitness development activity; (3) lesson focus activities; and (4) game activity. The material and…
NASA Technical Reports Server (NTRS)
Steger, J. L.; Rizk, Y. M.
1985-01-01
An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.
ERIC Educational Resources Information Center
Hyman, Irwin A.
A search of the literature was made on the effectiveness of recruitment and selection procedures for identifying and retaining administrators and school staff who are effective in managing student conflict and alienation. A classification scheme devised to fit approaches to school discipline within a theoretical framework includes (1) the…
Ramírez-Vélez, Robinson; Rodrigues-Bezerra, Diogo; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Lobelo, Felipe
2015-01-01
Substantial evidence indicates that youth physical fitness levels are an important marker of lifestyle and cardio-metabolic health profiles and predict future risk of chronic diseases. The reliability physical fitness tests have not been explored in Latino-American youth population. This study’s aim was to examine the reliability of health-related physical fitness tests that were used in the Colombian health promotion “Fuprecol study”. Participants were 229 Colombian youth (boys n = 124 and girls n = 105) aged 9 to 17.9 years old. Five components of health-related physical fitness were measured: 1) morphological component: height, weight, body mass index (BMI), waist circumference, triceps skinfold, subscapular skinfold, and body fat (%) via impedance; 2) musculoskeletal component: handgrip and standing long jump test; 3) motor component: speed/agility test (4x10 m shuttle run); 4) flexibility component (hamstring and lumbar extensibility, sit-and-reach test); 5) cardiorespiratory component: 20-meter shuttle-run test (SRT) to estimate maximal oxygen consumption. The tests were performed two times, 1 week apart on the same day of the week, except for the SRT which was performed only once. Intra-observer technical errors of measurement (TEMs) and inter-rater (reliability) were assessed in the morphological component. Reliability for the Musculoskeletal, motor and cardiorespiratory fitness components was examined using Bland–Altman tests. For the morphological component, TEMs were small and reliability was greater than 95% of all cases. For the musculoskeletal, motor, flexibility and cardiorespiratory components, we found adequate reliability patterns in terms of systematic errors (bias) and random error (95% limits of agreement). When the fitness assessments were performed twice, the systematic error was nearly 0 for all tests, except for the sit and reach (mean difference: -1.03% [95% CI = -4.35% to -2.28%]. The results from this study indicate that the “Fuprecol study” health-related physical fitness battery, administered by physical education teachers, was reliable for measuring health-related components of fitness in children and adolescents aged 9–17.9 years old in a school setting in Colombia. PMID:26474474
Ramírez-Vélez, Robinson; Rodrigues-Bezerra, Diogo; Correa-Bautista, Jorge Enrique; Izquierdo, Mikel; Lobelo, Felipe
2015-01-01
Substantial evidence indicates that youth physical fitness levels are an important marker of lifestyle and cardio-metabolic health profiles and predict future risk of chronic diseases. The reliability physical fitness tests have not been explored in Latino-American youth population. This study's aim was to examine the reliability of health-related physical fitness tests that were used in the Colombian health promotion "Fuprecol study". Participants were 229 Colombian youth (boys n = 124 and girls n = 105) aged 9 to 17.9 years old. Five components of health-related physical fitness were measured: 1) morphological component: height, weight, body mass index (BMI), waist circumference, triceps skinfold, subscapular skinfold, and body fat (%) via impedance; 2) musculoskeletal component: handgrip and standing long jump test; 3) motor component: speed/agility test (4x10 m shuttle run); 4) flexibility component (hamstring and lumbar extensibility, sit-and-reach test); 5) cardiorespiratory component: 20-meter shuttle-run test (SRT) to estimate maximal oxygen consumption. The tests were performed two times, 1 week apart on the same day of the week, except for the SRT which was performed only once. Intra-observer technical errors of measurement (TEMs) and inter-rater (reliability) were assessed in the morphological component. Reliability for the Musculoskeletal, motor and cardiorespiratory fitness components was examined using Bland-Altman tests. For the morphological component, TEMs were small and reliability was greater than 95% of all cases. For the musculoskeletal, motor, flexibility and cardiorespiratory components, we found adequate reliability patterns in terms of systematic errors (bias) and random error (95% limits of agreement). When the fitness assessments were performed twice, the systematic error was nearly 0 for all tests, except for the sit and reach (mean difference: -1.03% [95% CI = -4.35% to -2.28%]. The results from this study indicate that the "Fuprecol study" health-related physical fitness battery, administered by physical education teachers, was reliable for measuring health-related components of fitness in children and adolescents aged 9-17.9 years old in a school setting in Colombia.
A hybrid intelligent controller for a twin rotor MIMO system and its hardware implementation.
Juang, Jih-Gau; Liu, Wen-Kai; Lin, Ren-Wei
2011-10-01
This paper presents a fuzzy PID control scheme with a real-valued genetic algorithm (RGA) to a setpoint control problem. The objective of this paper is to control a twin rotor MIMO system (TRMS) to move quickly and accurately to the desired attitudes, both the pitch angle and the azimuth angle in a cross-coupled condition. A fuzzy compensator is applied to the PID controller. The proposed control structure includes four PID controllers with independent inputs in 2-DOF. In order to reduce total error and control energy, all parameters of the controller are obtained by a RGA with the system performance index as a fitness function. The system performance index utilized the integral of time multiplied by the square error criterion (ITSE) to build a suitable fitness function in the RGA. A new method for RGA to solve more than 10 parameters in the control scheme is investigated. For real-time control, Xilinx Spartan II SP200 FPGA (Field Programmable Gate Array) is employed to construct a hardware-in-the-loop system through writing VHDL on this FPGA. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
Geoacoustic inversion with two source-receiver arrays in shallow water.
Sukhovich, Alexey; Roux, Philippe; Wathelet, Marc
2010-08-01
A geoacoustic inversion scheme based on a double beamforming algorithm in shallow water is proposed and tested. Double beamforming allows identification of multi-reverberated eigenrays propagating between two vertical transducer arrays according to their emission and reception angles and arrival times. Analysis of eigenray intensities yields the bottom reflection coefficient as a function of angle of incidence. By fitting the experimental reflection coefficient with a theoretical prediction, values of the acoustic parameters of the waveguide bottom can be extracted. The procedure was initially tested in a small-scale tank experiment for a waveguide with a Plexiglas bottom. Inversion results for the speed of shear waves in Plexiglas are in good agreement with the table values. A similar analysis was applied to data collected during an at-sea experiment in shallow coastal waters of the Mediterranean. Bottom reflection coefficient was fitted with the theory in which bottom sediments are modeled as a multi-layered system. Retrieved bottom parameters are in quantitative agreement with those determined from a prior inversion scheme performed in the same area. The present study confirms the interest in processing source-receiver array data through the double beamforming algorithm, and indicates the potential for application of eigenray intensity analysis to geoacoustic inversion problems.
NASA Astrophysics Data System (ADS)
Gvozdkova, T.; Tyulenev, M.; Zhironkin, S.; Trifonov, V. A.; Osipov, Yu M.
2017-01-01
Surface mining and open pits engineering affect the environment in a very negative way. Among other pollutions that open pits make during mineral deposits exploiting, particular problem is the landscape changing. Along with converting the land into pits, surface mining is connected with pilling dumps that occupy large ground. The article describes an analysis of transportless methods of several coal seams strata surface mining, applied for open pits of South Kuzbass coal enterprises (Western Siberia, Russia). To improve land-use management of open pit mining enterprises, the characteristics of transportless technological schemes for several coal seams strata surface mining are highlighted and observed. These characteristics help to systematize transportless open mining technologies using common criteria that characterize structure of the bottom part of a strata and internal dumping schemes. The schemes of transportless systems of coal strata surface mining implemented in South Kuzbass are given.
NASA Astrophysics Data System (ADS)
Tillasman, N. S.; Saragih, R. H.; Umar, N.
2018-03-01
Sepsis is a severe bacterial infection whose treatment still varies in preference. However, for more than 60 years, antibiotics have been regarded as the panacea, as long as they are used wisely and timely. Antibiotic resistance has escalated in recent years, resulting in an accelerating global health security emergency, that is rapidly outpacing available treatment options. In January 2014, the new mandatory health insurance scheme (JKN) was introduced, whose treatments must comply with National Formulary (FORNAS) policy. We aimed to systematically review the prevalence of antibiotic resistance to FORNAS policy’s preferential treatments in adult septic patients who had been in the non-surgical wards. Based on an overall view, 76 out of 90 kinds of antibiotics which had undergone antibiotic susceptibility test (AST) had alarming resistance rate and preferential antibiotics in the current JKN scheme may have become ineffective.
NASA Astrophysics Data System (ADS)
Qu, Feng; Sun, Di; Zuo, Guang
2018-06-01
With the rapid development of the Computational Fluid Dynamics (CFD), Accurate computing hypersonic heating is in a high demand for the design of the new generation reusable space vehicle to conduct deep space exploration. In the past years, most researchers try to solve this problem by concentrating on the choice of the upwind schemes or the definition of the cell Reynolds number. However, the cell Reynolds number dependencies and limiter dependencies of the upwind schemes, which are of great importance to their performances in hypersonic heating computations, are concerned by few people. In this paper, we conduct a systematic study on these properties respectively. Results in our test cases show that SLAU (Simple Low-dissipation AUSM-family) is with a much higher level of accuracy and robustness in hypersonic heating predictions. Also, it performs much better in terms of the limiter dependency and the cell Reynolds number dependency.
Global Patterns in the Implementation of Payments for Environmental Services
Ezzine-de-Blas, Driss; Wunder, Sven; Ruiz-Pérez, Manuel; Moreno-Sanchez, Rocio del Pilar
2016-01-01
Assessing global tendencies and impacts of conditional payments for environmental services (PES) programs is challenging because of their heterogeneity, and scarcity of comparative studies. This meta-study systematizes 55 PES schemes worldwide in a quantitative database. Using categorical principal component analysis to highlight clustering patterns, we reconfirm frequently hypothesized differences between public and private PES schemes, but also identify diverging patterns between commercial and non-commercial private PES vis-à-vis their service focus, area size, and market orientation. When do these PES schemes likely achieve significant environmental additionality? Using binary logistical regression, we find additionality to be positively influenced by three theoretically recommended PES ‘best design’ features: spatial targeting, payment differentiation, and strong conditionality, alongside some contextual controls (activity paid for and implementation time elapsed). Our results thus stress the preeminence of customized design over operational characteristics when assessing what determines the outcomes of PES implementation. PMID:26938065
Domains of Civic Engagement in a Constitutional Democracy.
ERIC Educational Resources Information Center
Harris, Will
This paper suggests that a well-composed scheme of civic education does not merely predispose the citizen to political engagement, but more fundamentally, the considered systematic design of civic education parallels the essentials of both the constitutionalism and the democracy to which it gives access and control. This paper aims to draw out…
Quantization Distortion in Block Transform-Compressed Data
NASA Technical Reports Server (NTRS)
Boden, A. F.
1995-01-01
The popular JPEG image compression standard is an example of a block transform-based compression scheme; the image is systematically subdivided into block that are individually transformed, quantized, and encoded. The compression is achieved by quantizing the transformed data, reducing the data entropy and thus facilitating efficient encoding. A generic block transform model is introduced.
Sampling methods for titica vine (Heteropsis spp.) inventory in a tropical forest
Carine Klauberg; Edson Vidal; Carlos Alberto Silva; Michelliny de M. Bentes; Andrew Thomas Hudak
2016-01-01
Titica vine provides useful raw fiber material. Using sampling schemes that reduce sampling error can provide direction for sustainable forest management of this vine. Sampling systematically with rectangular plots (10Ã 25 m) promoted lower error and greater accuracy in the inventory of titica vines in tropical rainforest.
NASA Astrophysics Data System (ADS)
Hu, Peigang; Jin, Yaohui; Zhang, Chunlei; He, Hao; Hu, WeiSheng
2005-02-01
The increasing switching capacity brings the optical node with considerable complexity. Due to the limitation in cost and technology, an optical node is often designed with partial switching capability and partial resource sharing. It means that the node is of blocking to some extent, for example multi-granularity switching node, which in fact is a structure using pass wavelength to reduce the dimension of OXC, and partial sharing wavelength converter (WC) OXC. It is conceivable that these blocking nodes will have great effects on the problem of routing and wavelength assignment. Some previous works studied the blocking case, partial WC OXC, using complicated wavelength assignment algorithm. But the complexities of these schemes decide them to be not in practice in real networks. In this paper, we propose a new scheme based on the node blocking state advertisement to reduce the retry or rerouting probability and improve the efficiency of routing in the networks with blocking nodes. In the scheme, node blocking state are advertised to the other nodes in networks, which will be used for subsequent route calculation to find a path with lowest blocking probability. The performance of the scheme is evaluated using discrete event model in 14-node NSFNET, all the nodes of which employ a kind of partial sharing WC OXC structure. In the simulation, a simple First-Fit wavelength assignment algorithm is used. The simulation results demonstrate that the new scheme considerably reduces the retry or rerouting probability in routing process.
Firefighter Hand Anthropometry and Structural Glove Sizing: A New Perspective
Hsiao, Hongwei; Whitestone, Jennifer; Kau, Tsui-Ying; Hildreth, Brooke
2015-01-01
Objective We evaluated the current use and fit of structural firefighting gloves and developed an improved sizing scheme that better accommodates the U.S. firefighter population. Background Among surveys, 24% to 30% of men and 31% to 62% of women reported experiencing problems with the fit or bulkiness of their structural firefighting gloves. Method An age-, race/ethnicity-, and gender-stratified sample of 863 male and 88 female firefighters across the United States participated in the study. Fourteen hand dimensions relevant to glove design were measured. A cluster analysis of the hand dimensions was performed to explore options for an improved sizing scheme. Results The current national standard structural firefighting glove-sizing scheme underrepresents firefighter hand size range and shape variation. In addition, mismatch between existing sizing specifications and hand characteristics, such as hand dimensions, user selection of glove size, and the existing glove sizing specifications, is significant. An improved glove-sizing plan based on clusters of overall hand size and hand/finger breadth-to-length contrast has been developed. Conclusion This study presents the most up-to-date firefighter hand anthropometry and a new perspective on glove accommodation. The new seven-size system contains narrower variations (standard deviations) for almost all dimensions for each glove size than the current sizing practices. Application The proposed science-based sizing plan for structural firefighting gloves provides a step-forward perspective (i.e., including two women hand model–based sizes and two wide-palm sizes for men) for glove manufacturers to advance firefighter hand protection. PMID:26169309
NASA Astrophysics Data System (ADS)
Ugon, B.; Nandong, J.; Zang, Z.
2017-06-01
The presence of unstable dead-time systems in process plants often leads to a daunting challenge in the design of standard PID controllers, which are not only intended to provide close-loop stability but also to give good performance-robustness overall. In this paper, we conduct stability analysis on a double-loop control scheme based on the Routh-Hurwitz stability criteria. We propose to use this unstable double-loop control scheme which employs two P/PID controllers to control first-order or second-order unstable dead-time processes typically found in process industries. Based on the Routh-Hurwitz stability necessary and sufficient criteria, we establish several stability regions which enclose within them the P/PID parameter values that guarantee close-loop stability of the double-loop control scheme. A systematic tuning rule is developed for the purpose of obtaining the optimal P/PID parameter values within the established regions. The effectiveness of the proposed tuning rule is demonstrated using several numerical examples and the result are compared with some well-established tuning methods reported in the literature.
NASA Technical Reports Server (NTRS)
Murphy, K. A.
1988-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
Recognition of coarse-grained protein tertiary structure.
Lezon, Timothy; Banavar, Jayanth R; Maritan, Amos
2004-05-15
A model of the protein backbone is considered in which each residue is characterized by the location of its C(alpha) atom and one of a discrete set of conformal (phi, psi) states. We investigate the key differences between a description that offers a locally precise fit to known backbone structures and one that provides a globally accurate fit to protein structures. Using a statistical scoring scheme and threading, a protein's local best-fit conformation is highly recognizable, but its global structure cannot be directly determined from an amino acid sequence. The incorporation of information about the conformal states of neighboring residues along the chain allows one to accurately translate the local structure into a global structure. We present a two-step algorithm, which recognizes up to 95% of the tested protein native-state structures to within a 2.5 A root mean square deviation. Copyright 2004 Wiley-Liss, Inc.
Extraction of t slopes from experimental γ p → K + Λ and γ p → K + Σ 0 cross section data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freese, Adam; Puentes, Daniel; Adhikari, Shankar
We analyze recent K + meson photoproduction data from the CLAS collaboration for the reactions γp → K +Λ and γp → K +Σ 0 , fitting measured forward-angle differential cross sections to the form AeBt. We develop a quantitative scheme for determining the kinematic region where the fit is to be done, and, from the extracted t-slope B, determine whether single-Reggeon exchange can explain the production mechanism. We find that, in the region 5 < s < 8.1 GeV2 , production of the K +Λ channel can be explained by single K + Reggeon exchange, but the K +Σmore » 0 production channel cannot. We verify these conclusions by fitting the data to a differential cross section produced by the interfering sum of two exponential amplitudes.« less
Extraction of t slopes from experimental γ p →K+Λ and γ p →K+Σ0 cross section data
NASA Astrophysics Data System (ADS)
Freese, Adam; Puentes, Daniel; Adhikari, Shankar; Badui, Rafael; Guo, Lei; Raue, Brian
2017-10-01
We analyze recent K+ meson photoproduction data from the CLAS collaboration for the reactions γ p →K+Λ and γ p →K+Σ0 , fitting measured forward-angle differential cross sections to the form A eB t . We develop a quantitative scheme for determining the kinematic region where the fit is to be done, and, from the extracted t -slope B , determine whether single-Reggeon exchange can explain the production mechanism. We find that, in the region 5
Diffraction of a shock wave by a compression corner; regular and single Mach reflection
NASA Technical Reports Server (NTRS)
Vijayashankar, V. S.; Kutler, P.; Anderson, D.
1976-01-01
The two dimensional, time dependent Euler equations which govern the flow field resulting from the injection of a planar shock with a compression corner are solved with initial conditions that result in either regular reflection or single Mach reflection of the incident planar shock. The Euler equations which are hyperbolic are transformed to include the self similarity of the problem. A normalization procedure is employed to align the reflected shock and the Mach stem as computational boundaries to implement the shock fitting procedure. A special floating fitting scheme is developed in conjunction with the method of characteristics to fit the slip surface. The reflected shock, the Mach stem, and the slip surface are all treated as harp discontinuities, thus, resulting in a more accurate description of the inviscid flow field. The resulting numerical solutions are compared with available experimental data and existing first-order, shock-capturing numerical solutions.
NASA Technical Reports Server (NTRS)
Murphy, K. A.
1990-01-01
A parameter estimation algorithm is developed which can be used to estimate unknown time- or state-dependent delays and other parameters (e.g., initial condition) appearing within a nonlinear nonautonomous functional differential equation. The original infinite dimensional differential equation is approximated using linear splines, which are allowed to move with the variable delay. The variable delays are approximated using linear splines as well. The approximation scheme produces a system of ordinary differential equations with nice computational properties. The unknown parameters are estimated within the approximating systems by minimizing a least-squares fit-to-data criterion. Convergence theorems are proved for time-dependent delays and state-dependent delays within two classes, which say essentially that fitting the data by using approximations will, in the limit, provide a fit to the data using the original system. Numerical test examples are presented which illustrate the method for all types of delay.
Broadband distortion modeling in Lyman-α forest BAO fitting
Blomqvist, Michael; Kirkby, David; Bautista, Julian E.; ...
2015-11-23
Recently, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≃ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. Here, we describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. In implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b F and the redshift-space distortion parameter β F for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on βF and the combination b F(1+β F) by more than a factor of seven. The measured values at redshift z=2.3 are βF=1.39 +0.11 +0.24 +0.38 -0.10 -0.19 -0.28 and bF(1+βF)=-0.374 +0.007 +0.013 +0.020 -0.007 -0.014 -0.022 (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less
Broadband distortion modeling in Lyman-α forest BAO fitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomqvist, Michael; Kirkby, David; Margala, Daniel, E-mail: cblomqvi@uci.edu, E-mail: dkirkby@uci.edu, E-mail: dmargala@uci.edu
2015-11-01
In recent years, the Lyman-α absorption observed in the spectra of high-redshift quasars has been used as a tracer of large-scale structure by means of the three-dimensional Lyman-α forest auto-correlation function at redshift z≅ 2.3, but the need to fit the quasar continuum in every absorption spectrum introduces a broadband distortion that is difficult to correct and causes a systematic error for measuring any broadband properties. We describe a k-space model for this broadband distortion based on a multiplicative correction to the power spectrum of the transmitted flux fraction that suppresses power on scales corresponding to the typical length of amore » Lyman-α forest spectrum. Implementing the distortion model in fits for the baryon acoustic oscillation (BAO) peak position in the Lyman-α forest auto-correlation, we find that the fitting method recovers the input values of the linear bias parameter b{sub F} and the redshift-space distortion parameter β{sub F} for mock data sets with a systematic error of less than 0.5%. Applied to the auto-correlation measured for BOSS Data Release 11, our method improves on the previous treatment of broadband distortions in BAO fitting by providing a better fit to the data using fewer parameters and reducing the statistical errors on β{sub F} and the combination b{sub F}(1+β{sub F}) by more than a factor of seven. The measured values at redshift z=2.3 are β{sub F}=1.39{sup +0.11 +0.24 +0.38}{sub −0.10 −0.19 −0.28} and b{sub F}(1+β{sub F})=−0.374{sup +0.007 +0.013 +0.020}{sub −0.007 −0.014 −0.022} (1σ, 2σ and 3σ statistical errors). Our fitting software and the input files needed to reproduce our main results are publicly available.« less
On the Structure of a Best Possible Crossover Selection Strategy in Genetic Algorithms
NASA Astrophysics Data System (ADS)
Lässig, Jörg; Hoffmann, Karl Heinz
The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover to find a solution with high fitness for a given optimization problem. Many different schemes have been described in the literature as possible strategies for this task but so far comparisons have been predominantly empirical. It is shown that if one wishes to maximize any linear function of the final state probabilities, e.g. the fitness of the best individual in the final population of the algorithm, then a best probability distribution for selecting an individual in each generation is a rectangular distribution over the individuals sorted in descending sequence by their fitness values. This means uniform probabilities have to be assigned to a group of the best individuals of the population but probabilities equal to zero to individuals with lower fitness, assuming that the probability distribution to choose individuals from the current population can be chosen independently for each iteration and each individual. This result is then generalized also to typical practically applied performance measures, such as maximizing the expected fitness value of the best individual seen in any generation.
Dark matter and pulsar model constraints from Galactic center Fermi/LAT γ-ray observations
NASA Astrophysics Data System (ADS)
Gordon, Chris; Macias, Oscar
2014-05-01
Employing Fermi/LAT γ-ray observations, several independent groups have found excess extended γ-ray emission at the Galactic center (GC). Both, annihilating dark matter (DM) or a population of ~ 103 unresolved millisecond pulsars (MSPs) are regarded as well motivated possible explanations. However, there is significant uncertainties in the diffuse Galactic background at the GC. We have performed a revaluation of these two models for the extended γ-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We found that a population of several thousand MSPs with parameters consistent with the average spectral shape of Fermi/LAT measured MSPs was able to fit the GC excess emission. For DM, we found that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and b
Dark matter and pulsar model constraints from Galactic Center Fermi-LAT gamma-ray observations
NASA Astrophysics Data System (ADS)
Gordon, Chris; Macías, Oscar
2013-10-01
Employing Fermi-LAT gamma-ray observations, several independent groups have found excess extended gamma-ray emission at the Galactic Center (GC). Both annihilating dark matter (DM) or a population of ˜103 unresolved millisecond pulsars (MSPs) are regarded as well-motivated possible explanations. However, there are significant uncertainties in the diffuse galactic background at the GC. We have performed a revaluation of these two models for the extended gamma-ray source at the GC by accounting for the systematic uncertainties of the Galactic diffuse emission model. We also marginalize over point-source and diffuse background parameters in the region of interest. We show that the excess emission is significantly more extended than a point source. We find that the DM (or pulsar-population) signal is larger than the systematic errors and therefore proceed to determine the sectors of parameter space that provide an acceptable fit to the data. We find that a population of 1000-2000 MSPs with parameters consistent with the average spectral shape of Fermi-LAT measured MSPs is able to fit the GC excess emission. For DM, we find that a pure τ+τ- annihilation channel is not a good fit to the data. But a mixture of τ+τ- and bb¯ with a ⟨σv⟩ of order the thermal relic value and a DM mass of around 20 to 60 GeV provides an adequate fit.
NASA Astrophysics Data System (ADS)
Conley, A.; Goldhaber, G.; Wang, L.; Aldering, G.; Amanullah, R.; Commins, E. D.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kim, A. G.; Knop, R. A.; Kowalski, M.; Kuznetsova, N.; Lidman, C.; Nobili, S.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Strovink, M.; Thomas, R. C.; Wood-Vasey, W. M.; Supernova Cosmology Project
2006-06-01
We present measurements of Ωm and ΩΛ from a blind analysis of 21 high-redshift supernovae using a new technique (CMAGIC) for fitting the multicolor light curves of Type Ia supernovae, first introduced by Wang and coworkers. CMAGIC takes advantage of the remarkably simple behavior of Type Ia supernovae on color-magnitude diagrams and has several advantages over current techniques based on maximum magnitudes. Among these are a reduced sensitivity to host galaxy dust extinction, a shallower luminosity-width relation, and the relative simplicity of the fitting procedure. This allows us to provide a cross-check of previous supernova cosmology results, despite the fact that current data sets were not observed in a manner optimized for CMAGIC. We describe the details of our novel blindness procedure, which is designed to prevent experimenter bias. The data are broadly consistent with the picture of an accelerating universe and agree with a flat universe within 1.7 σ, including systematics. We also compare the CMAGIC results directly with those of a maximum magnitude fit to the same supernovae, finding that CMAGIC favors more acceleration at the 1.6 σ level, including systematics and the correlation between the two measurements. A fit for w assuming a flat universe yields a value that is consistent with a cosmological constant within 1.2 σ.
Robust Spacecraft Component Detection in Point Clouds.
Wei, Quanmao; Jiang, Zhiguo; Zhang, Haopeng
2018-03-21
Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density.
Robust Spacecraft Component Detection in Point Clouds
Wei, Quanmao; Jiang, Zhiguo
2018-01-01
Automatic component detection of spacecraft can assist in on-orbit operation and space situational awareness. Spacecraft are generally composed of solar panels and cuboidal or cylindrical modules. These components can be simply represented by geometric primitives like plane, cuboid and cylinder. Based on this prior, we propose a robust automatic detection scheme to automatically detect such basic components of spacecraft in three-dimensional (3D) point clouds. In the proposed scheme, cylinders are first detected in the iteration of the energy-based geometric model fitting and cylinder parameter estimation. Then, planes are detected by Hough transform and further described as bounded patches with their minimum bounding rectangles. Finally, the cuboids are detected with pair-wise geometry relations from the detected patches. After successive detection of cylinders, planar patches and cuboids, a mid-level geometry representation of the spacecraft can be delivered. We tested the proposed component detection scheme on spacecraft 3D point clouds synthesized by computer-aided design (CAD) models and those recovered by image-based reconstruction, respectively. Experimental results illustrate that the proposed scheme can detect the basic geometric components effectively and has fine robustness against noise and point distribution density. PMID:29561828
On the Effective Mass of the Electron Neutrino in Beta Decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farzan, Yasaman
2002-12-20
In the presence of mixing between massive neutrino states, the distortion of the electron spectrum in beta decay is, in general, a function of several masses and mixing angles. For 3{nu}-schemes which describe the solar and atmospheric neutrino data, this distortion can be described by a single effective mass, under certain conditions. In the literature, two different definitions for the effective mass have been suggested. We show that for quasi-degenerate mass schemes (with an overall mass scale m and splitting {Delta}m{sup 2}) the two definitions coincide up to ({Delta}m{sup 2}){sup 2}/m{sup 4} corrections. We consider the impact of different effectivemore » masses on the integral energy spectrum. We show that the spectrum with a single mass can be used also to fit the data in the case of 4{nu}-schemes motivated, in particular, by the LSND results. In this case the accuracy of the mass determination turns out to be better than (10-15)%.« less
Viscous compressible flow direct and inverse computation and illustrations
NASA Technical Reports Server (NTRS)
Yang, T. T.; Ntone, F.
1986-01-01
An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of tne Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, the time step size and the choice of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kearney, Sean Patrick
A hybrid fs/ps pure-rotational coherent anti-Stokes Raman scattering (CARS) scheme is systematically evaluated over a wide range of flame conditions in the product gases of two canonical flat-flame burners. Near-transform-limited, broadband femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is later probed using a high-energy, frequency-narrow picosecond beam generated by the second-harmonic bandwidth compression scheme that has recently been demonstrated for rotational CARS generation in H 2/air flat flames. The measured spectra are free of collision effects and nonresonant background and can be obtained on a single-shot basis at 1 kHz. The technique is evaluated formore » temperature/oxygen measurements in near-adiabatic H 2/air flames stabilized on the Hencken burner for equivalence ratios of φ = 0.20–1.20. Thermometry is demonstrated in hydrocarbon/air products for φ = 0.75–3.14 in premixed C 2H 4/air flat flames on the McKenna burner. Reliable spectral fitting is demonstrated for both shot-averaged and single-laser-shot data using a simple phenomenological model. Measurement accuracy is benchmarked by comparison to adiabatic-equilibrium calculations for the H 2/air flames, and by comparison with nanosecond CARS measurements for the C 2H 4/air flames. Quantitative accuracy comparable to nanosecond rotational CARS measurements is observed, while the observed precision in both the temperature and oxygen data is extraordinarily high, exceeding nanosecond CARS, and on par with the best published thermometric precision by femtosecond vibrational CARS in flames, and rotational femtosecond CARS at low temperature. Threshold levels of signal-to-noise ratio to achieve 1–2% precision in temperature and O 2/N 2 ratio are identified. Our results show that pure-rotational fs/ps CARS is a robust and quantitative tool when applied across a wide range of flame conditions spanning lean H 2/air combustion to fuel-rich sooting hydrocarbon flames.« less
Comparative Study of Advanced Turbulence Models for Turbomachinery
NASA Technical Reports Server (NTRS)
Hadid, Ali H.; Sindir, Munir M.
1996-01-01
A computational study has been undertaken to study the performance of advanced phenomenological turbulence models coded in a modular form to describe incompressible turbulent flow behavior in two dimensional/axisymmetric and three dimensional complex geometry. The models include a variety of two equation models (single and multi-scale k-epsilon models with different near wall treatments) and second moment algebraic and full Reynolds stress closure models. These models were systematically assessed to evaluate their performance in complex flows with rotation, curvature and separation. The models are coded as self contained modules that can be interfaced with a number of flow solvers. These modules are stand alone satellite programs that come with their own formulation, finite-volume discretization scheme, solver and boundary condition implementation. They will take as input (from any generic Navier-Stokes solver) the velocity field, grid (structured H-type grid) and computational domain specification (boundary conditions), and will deliver, depending on the model used, turbulent viscosity, or the components of the Reynolds stress tensor. There are separate 2D/axisymmetric and/or 3D decks for each module considered. The modules are tested using Rocketdyn's proprietary code REACT. The code utilizes an efficient solution procedure to solve Navier-Stokes equations in a non-orthogonal body-fitted coordinate system. The differential equations are discretized over a finite-volume grid using a non-staggered variable arrangement and an efficient solution procedure based on the SIMPLE algorithm for the velocity-pressure coupling is used. The modules developed have been interfaced and tested using finite-volume, pressure-correction CFD solvers which are widely used in the CFD community. Other solvers can also be used to test these modules since they are independently structured with their own discretization scheme and solver methodology. Many of these modules have been independently tested by Professor C.P. Chen and his group at the University of Alabama at Huntsville (UAH) by interfacing them with own flow solver (MAST).
Riedl, Janet; Esslinger, Susanne; Fauhl-Hassek, Carsten
2015-07-23
Food fingerprinting approaches are expected to become a very potent tool in authentication processes aiming at a comprehensive characterization of complex food matrices. By non-targeted spectrometric or spectroscopic chemical analysis with a subsequent (multivariate) statistical evaluation of acquired data, food matrices can be investigated in terms of their geographical origin, species variety or possible adulterations. Although many successful research projects have already demonstrated the feasibility of non-targeted fingerprinting approaches, their uptake and implementation into routine analysis and food surveillance is still limited. In many proof-of-principle studies, the prediction ability of only one data set was explored, measured within a limited period of time using one instrument within one laboratory. Thorough validation strategies that guarantee reliability of the respective data basis and that allow conclusion on the applicability of the respective approaches for its fit-for-purpose have not yet been proposed. Within this review, critical steps of the fingerprinting workflow were explored to develop a generic scheme for multivariate model validation. As a result, a proposed scheme for "good practice" shall guide users through validation and reporting of non-targeted fingerprinting results. Furthermore, food fingerprinting studies were selected by a systematic search approach and reviewed with regard to (a) transparency of data processing and (b) validity of study results. Subsequently, the studies were inspected for measures of statistical model validation, analytical method validation and quality assurance measures. In this context, issues and recommendations were found that might be considered as an actual starting point for developing validation standards of non-targeted metabolomics approaches for food authentication in the future. Hence, this review intends to contribute to the harmonization and standardization of food fingerprinting, both required as a prior condition for the authentication of food in routine analysis and official control. Copyright © 2015 Elsevier B.V. All rights reserved.
Artificial intelligent techniques for optimizing water allocation in a reservoir watershed
NASA Astrophysics Data System (ADS)
Chang, Fi-John; Chang, Li-Chiu; Wang, Yu-Chung
2014-05-01
This study proposes a systematical water allocation scheme that integrates system analysis with artificial intelligence techniques for reservoir operation in consideration of the great uncertainty upon hydrometeorology for mitigating droughts impacts on public and irrigation sectors. The AI techniques mainly include a genetic algorithm and adaptive-network based fuzzy inference system (ANFIS). We first derive evaluation diagrams through systematic interactive evaluations on long-term hydrological data to provide a clear simulation perspective of all possible drought conditions tagged with their corresponding water shortages; then search the optimal reservoir operating histogram using genetic algorithm (GA) based on given demands and hydrological conditions that can be recognized as the optimal base of input-output training patterns for modelling; and finally build a suitable water allocation scheme through constructing an adaptive neuro-fuzzy inference system (ANFIS) model with a learning of the mechanism between designed inputs (water discount rates and hydrological conditions) and outputs (two scenarios: simulated and optimized water deficiency levels). The effectiveness of the proposed approach is tested on the operation of the Shihmen Reservoir in northern Taiwan for the first paddy crop in the study area to assess the water allocation mechanism during drought periods. We demonstrate that the proposed water allocation scheme significantly and substantially avails water managers of reliably determining a suitable discount rate on water supply for both irrigation and public sectors, and thus can reduce the drought risk and the compensation amount induced by making restrictions on agricultural use water.
Isbarn, Hendrik; Briganti, Alberto; De Visschere, Pieter J L; Fütterer, Jurgen J; Ghadjar, Pirus; Giannarini, Gianluca; Ost, Piet; Ploussard, Guillaume; Sooriakumaran, Prasanna; Surcel, Christian I; van Oort, Inge M; Yossepowitch, Ofer; van den Bergh, Roderick C N
2015-04-01
Prostate biopsy (PB) is the gold standard for the diagnosis of prostate cancer (PCa). However, the optimal number of biopsy cores remains debatable. We sought to compare contemporary standard (10-12 cores) vs. saturation (=18 cores) schemes on initial as well as repeat PB. A non-systematic review of the literature was performed from 2000 through 2013. Studies of highest evidence (randomized controlled trials, prospective non-randomized studies, and retrospective reports of high quality) comparing standard vs saturation schemes on initial and repeat PB were evaluated. Outcome measures were overall PCa detection rate, detection rate of insignificant PCa, and procedure-associated morbidity. On initial PB, there is growing evidence that a saturation scheme is associated with a higher PCa detection rate compared to a standard one in men with lower PSA levels (<10 ng/ml), larger prostates (>40 cc), or lower PSA density values (<0.25 ng/ml/cc). However, these cut-offs are not uniform and differ among studies. Detection rates of insignificant PCa do not differ in a significant fashion between standard and saturation biopsies. On repeat PB, PCa detection rate is likewise higher with saturation protocols. Estimates of insignificant PCa vary widely due to differing definitions of insignificant disease. However, the rates of insignificant PCa appear to be comparable for the schemes in patients with only one prior negative biopsy, while saturation biopsy seems to detect more cases of insignificant PCa compared to standard biopsy in men with two or more prior negative biopsies. Very extensive sampling is associated with a high rate of acute urinary retention, whereas other severe adverse events, such as sepsis, appear not to occur more frequently with saturation schemes. Current evidence suggests that saturation schemes are associated with a higher PCa detection rate compared to standard ones on initial PB in men with lower PSA levels or larger prostates, and on repeat PB. Since most data are derived from retrospective studies, other endpoints such as detection rate of insignificant disease - especially on repeat PB - show broad variations throughout the literature and must, thus, be interpreted with caution. Future prospective controlled trials should be conducted to compare extended templates with newer techniques, such as image-guided sampling, in order to optimize PCa diagnostic strategy.
Hybrid and Constrained Resolution-of-Identity Techniques for Coulomb Integrals.
Duchemin, Ivan; Li, Jing; Blase, Xavier
2017-03-14
The introduction of auxiliary bases to approximate molecular orbital products has paved the way to significant savings in the evaluation of four-center two-electron Coulomb integrals. We present a generalized dual space strategy that sheds a new light on variants over the standard density and Coulomb-fitting schemes, including the possibility of introducing minimization constraints. We improve in particular the charge- or multipole-preserving strategies introduced respectively by Baerends and Van Alsenoy that we compare to a simple scheme where the Coulomb metric is used for lowest angular momentum auxiliary orbitals only. We explore the merits of these approaches on the basis of extensive Hartree-Fock and MP2 calculations over a standard set of medium size molecules.
Li, Chunxiao; Khoo, Selina; Adnan, Athirah
2017-03-01
The aim of this review is to synthesize the evidence on the effects of aquatic exercise interventions on physical function and fitness among people with spinal cord injury. Six major databases were searched from inception till June 2015: MEDLINE, CINAHL, EMBASE, PsychInfo, SPORTDiscus, and Cochrane Center Register of Controlled Trials. Two reviewers independently rated methodological quality using the modified Downs and Black Scale and extracted and synthesized key findings (i.e., participant characteristics, study design, physical function and fitness outcomes, and adverse events). Eight of 276 studies met the inclusion criteria, of which none showed high research quality. Four studies assessed physical function outcomes and 4 studies evaluated aerobic fitness as outcome measures. Significant improvements on these 2 outcomes were generally found. Other physical or fitness outcomes including body composition, muscular strength, and balance were rarely reported. There is weak evidence supporting aquatic exercise training to improve physical function and aerobic fitness among adults with spinal cord injury. Suggestions for future research include reporting details of exercise interventions, evaluating other physical or fitness outcomes, and improving methodological quality.
He, Alex Jingwei; Wu, Shaolong
2017-12-01
China's remarkable progress in building a comprehensive social health insurance (SHI) system was swift and impressive. Yet the country's decentralized and incremental approach towards universal coverage has created a fragmented SHI system under which a series of structural deficiencies have emerged with negative impacts. First, contingent on local conditions and financing capacity, benefit packages vary considerably across schemes, leading to systematic inequity. Second, the existence of multiple schemes, complicated by massive migration, has resulted in weak portability of SHI, creating further barriers to access. Third, many individuals are enrolled on multiple schemes, which causes inefficient use of government subsidies. Moral hazard and adverse selection are not effectively managed. The Chinese government announced its blueprint for integrating the urban and rural resident schemes in early 2016, paving the way for the ultimate consolidation of all SHI schemes and equal benefits for all. This article proposes three policy alternatives to inform the consolidation: (1) a single-pool system at the prefectural level with significant government subsidies, (2) a dual-pool system at the prefectural level with risk-equalization mechanisms, and (3) a household approach without merging existing pools. Vertical integration to the provincial level is unlikely to happen in the near future. Two caveats are raised to inform this transition towards universal health coverage.
Multicomponent-flow analyses by multimode method of characteristics
Lai, Chintu
1994-01-01
For unsteady open-channel flows having N interacting unknown variables, a system of N mutually independent, partial differential equations can be used to describe the flow-field. The system generally belongs to marching-type problems and permits transformation into characteristic equations that are associated with N distinct characteristics directions. Because characteristics can be considered 'wave' or 'disturbance' propagation, a fluvial system so described can be viewed as adequately definable using these N component waves. A numerical algorithm to solve the N families of characteristics can then be introduced for formulation of an N-component flow-simulation model. The multimode method of characteristics (MMOC), a new numerical scheme that has a combined capacity of several specified-time-interval (STI) schemes of the method of characteristics, makes numerical modeling of such N-component riverine flows feasible and attainable. Merging different STI schemes yields different kinds of MMOC schemes, for which two kinds are displayed herein. With the MMOC, each characteristics is dynamically treated by an appropriate numerical mode, which should lead to an effective and suitable global simulation, covering various types of unsteady flow. The scheme is always linearly stable and its numerical accuracy can be systematically analyzed. By increasing the N value, one can develop a progressively sophisticated model that addresses increasingly complex river-mechanics problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swindle, R.; Gal, R. R.; La Barbera, F.
2011-10-15
We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less
Brian J. Clough; Matthew B. Russell; Grant M. Domke; Christopher W. Woodall; Philip J. Radtke
2016-01-01
tEstimation of live tree biomass is an important task for both forest carbon accounting and studies of nutri-ent dynamics in forest ecosystems. In this study, we took advantage of an extensive felled-tree database(with 2885 foliage biomass observations) to compare different models and grouping schemes based onphylogenetic and geographic variation for predicting foliage...
Daniel C. Laughlin; Jessica J. Leppert; Margaret M. Moore; Carolyn Hull Sieg
2010-01-01
Plants are multifaceted organisms that have evolved ecological strategies for sustaining populations in resource-limited environments (Grime 1979; Craine 2009). Plant strategies can be quantified by measuring functional traits (Grime et al. 1997; Reich et al. 2003), which are the properties of plants that impact plant fitness (Violle et al. 2008) and ecosystem...
NASA Technical Reports Server (NTRS)
Swayze, Gregg A.; Clark, Roger N.
1995-01-01
The rapid development of sophisticated imaging spectrometers and resulting flood of imaging spectrometry data has prompted a rapid parallel development of spectral-information extraction technology. Even though these extraction techniques have evolved along different lines (band-shape fitting, endmember unmixing, near-infrared analysis, neural-network fitting, and expert systems to name a few), all are limited by the spectrometer's signal to noise (S/N) and spectral resolution in producing useful information. This study grew from a need to quantitatively determine what effects these parameters have on our ability to differentiate between mineral absorption features using a band-shape fitting algorithm. We chose to evaluate the AVIRIS, HYDICE, MIVIS, GERIS, VIMS, NIMS, and ASTER instruments because they collect data over wide S/N and spectral-resolution ranges. The study evaluates the performance of the Tricorder algorithm, in differentiating between mineral spectra in the 0.4-2.5 micrometer spectral region. The strength of the Tricorder algorithm is in its ability to produce an easily understood comparison of band shape that can concentrate on small relevant portions of the spectra, giving it an advantage over most unmixing schemes, and in that it need not spend large amounts of time reoptimizing each time a new mineral component is added to its reference library, as is the case with neural-network schemes. We believe the flexibility of the Tricorder algorithm is unparalleled among spectral-extraction techniques and that the results from this study, although dealing with minerals, will have direct applications to spectral identification in other disciplines.
NASA Technical Reports Server (NTRS)
Reese, E. D.; Mohr, J. J.; Carlstrom, J. E.; Grego, L.; Holder, G. P.; Holzapfel, W. L.; Hughes, J. P.; Patel, S. K.
2000-01-01
We determine the distances to the z approximately equal to 0.55 galaxy clusters MS 0451.6-0305 and CL 0016+16 from a maximum likelihood joint fit to interferometric Sunyaev-Zel'dovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta-model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an OmegaM = 0.3, OmegaL = 0.7 cosmology, these distances imply a Hubble constant of 63(exp 12)(sub -9)(exp +21)(sub -21) km/s/Mpc, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best fit H(sub o) is 57 km/sec/Mpc for an open OmegaM = 0.3 universe and 52 km/s/Mpc for a flat Omega = 1 universe.
Sunyaev-Zeldovich Effect-Derived Distances to the High-Redshift Clusters
NASA Technical Reports Server (NTRS)
Reese, Erik D.; Mohr, Joseph J.; Carlstrom, John E.; Joy, Marshall; Grego, Laura; Holder, Gilbert P.; Holzapfel, William L.; Hughes, John P.; Patel, Sandeep K.; Donahue, Megan
2000-01-01
We determine the distances to the z approximately equals 0.55 galaxy clusters MS 0451.6 - 0305 and Cl 0016 + 16 from a maximum-likelihood joint fit to interferometric Sunyaev-Zeldovich effect (SZE) and X-ray observations. We model the intracluster medium (ICM) using a spherical isothermal beta model. We quantify the statistical and systematic uncertainties inherent to these direct distance measurements, and we determine constraints on the Hubble parameter for three different cosmologies. For an Omega(sub M) = 0.3, Omega(sub lambda) = 0.7 cosmology, these distances imply a Hubble constant of 63(sup +12) (sub -9) (sup + 21) (sub -21) km/s Mp/c, where the uncertainties correspond to statistical followed by systematic at 68% confidence. The best-fit H(sub 0) is 57 km/s Mp/c for an open (Omega(sub M) = 0.3) universe and 52 km/s Mp/c for a flat (Omega(sub M) = 1) universe.
Konstantakopoulou, E; Harper, R A; Edgar, D F; Lawrenson, J G
2014-05-29
To explore the views of optometrists, general practitioners (GPs) and ophthalmologists regarding the development and organisation of community-based enhanced optometric services. Qualitative study using free-text questionnaires and telephone interviews. A minor eye conditions scheme (MECS) and a glaucoma referral refinement scheme (GRRS) are based on accredited community optometry practices. 41 optometrists, 6 ophthalmologists and 25 GPs. The most common reason given by optometrists for participation in enhanced schemes was to further their professional development; however, as providers of 'for-profit' healthcare, it was clear that participants had also considered the impact of the schemes on their business. Lack of fit with the 'retail' business model of optometry was a frequently given reason for non-participation. The methods used for training and accreditation were generally thought to be appropriate, and participating optometrists welcomed the opportunities for ongoing training. The ophthalmologists involved in the MECS and GRRS expressed very positive views regarding the schemes and widely acknowledged that the new care pathways would reduce unnecessary referrals and shorten patient waiting times. GPs involved in the MECS were also very supportive. They felt that the scheme provided an 'expert' local opinion that could potentially reduce the number of secondary care referrals. The results of this study demonstrated strong stakeholder support for the development of community-based enhanced optometric services. Although optometrists welcomed the opportunity to develop their professional skills and knowledge, enhanced schemes must also provide a sufficient financial incentive so as not to compromise the profitability of their business. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Mechanics of Cutting and Boring. Part 7. Dynamics and Energetics of Axial Rotation Machines,
1981-12-01
systematic analytical scheme that can be used to facilitate future work on the mechanics of cutting and boring machines. In the industrial sector, rock...Proceedings. Chapter 66, p. 1149-1158. Mellor, M. and I. Hawkes (1972) How to rate a hard-rock borer. World Construction, Sept, p. 21-23. (Also in Ingenieria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baeßler, S.; Nesvizhevsky, V. V.; Pignol, G.
Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts-which we call the Stern-Gerlach shift, interference shift, and spectator-state shift-appear in conceivable measurement schemes and have general importance. Lastly, these shifts have to be taken into account in precision experiments.
Investigation of empirical damping laws for the space shuttle
NASA Technical Reports Server (NTRS)
Bernstein, E. L.
1973-01-01
An analysis of dynamic test data from vibration testing of a number of aerospace vehicles was made to develop an empirical structural damping law. A systematic attempt was made to fit dissipated energy/cycle to combinations of all dynamic variables. The best-fit laws for bending, torsion, and longitudinal motion are given, with error bounds. A discussion and estimate are made of error sources. Programs are developed for predicting equivalent linear structural damping coefficients and finding the response of nonlinearly damped structures.
Impact of systematic uncertainties for the CP violation measurement in superbeam experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meloni, Davide
We present a three-flavour fit to the recent ν{sub µ} → ν{sub e} T2K oscillation data with different models for the neutrino-nucleus cross section. We show that, even for a limited statistics, the allowed regions and best fit points in the (θ{sub 13}, δ{sub CP}) plane are affected if, instead of using the Fermi Gas model to describe the quasielastic cross section, we employ a model including the multinucleon emission channel [1].
Performance of the Goddard Multiscale Modeling Framework with Goddard Ice Microphysical Schemes
NASA Technical Reports Server (NTRS)
Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Matsui, Toshihisa; Li, J.-L.; Mohr, Karen I.; Skofronick-Jackson, Gail M.; Peters-Lidard, Christa D.
2016-01-01
The multiscale modeling framework (MMF), which replaces traditional cloud parameterizations with cloud-resolving models (CRMs) within a host atmospheric general circulation model (GCM), has become a new approach for climate modeling. The embedded CRMs make it possible to apply CRM-based cloud microphysics directly within a GCM. However, most such schemes have never been tested in a global environment for long-term climate simulation. The benefits of using an MMF to evaluate rigorously and improve microphysics schemes are here demonstrated. Four one-moment microphysical schemes are implemented into the Goddard MMF and their results validated against three CloudSat/CALIPSO cloud ice products and other satellite data. The new four-class (cloud ice, snow, graupel, and frozen drops/hail) ice scheme produces a better overall spatial distribution of cloud ice amount, total cloud fractions, net radiation, and total cloud radiative forcing than earlier three-class ice schemes, with biases within the observational uncertainties. Sensitivity experiments are conducted to examine the impact of recently upgraded microphysical processes on global hydrometeor distributions. Five processes dominate the global distributions of cloud ice and snow amount in long-term simulations: (1) allowing for ice supersaturation in the saturation adjustment, (2) three additional correction terms in the depositional growth of cloud ice to snow, (3) accounting for cloud ice fall speeds, (4) limiting cloud ice particle size, and (5) new size-mapping schemes for snow and graupel. Despite the cloud microphysics improvements, systematic errors associated with subgrid processes, cyclic lateral boundaries in the embedded CRMs, and momentum transport remain and will require future improvement.
NASA Astrophysics Data System (ADS)
Gundreddy, Rohith Reddy; Tan, Maxine; Qui, Yuchen; Zheng, Bin
2015-03-01
The purpose of this study is to develop and test a new content-based image retrieval (CBIR) scheme that enables to achieve higher reproducibility when it is implemented in an interactive computer-aided diagnosis (CAD) system without significantly reducing lesion classification performance. This is a new Fourier transform based CBIR algorithm that determines image similarity of two regions of interest (ROI) based on the difference of average regional image pixel value distribution in two Fourier transform mapped images under comparison. A reference image database involving 227 ROIs depicting the verified soft-tissue breast lesions was used. For each testing ROI, the queried lesion center was systematically shifted from 10 to 50 pixels to simulate inter-user variation of querying suspicious lesion center when using an interactive CAD system. The lesion classification performance and reproducibility as the queried lesion center shift were assessed and compared among the three CBIR schemes based on Fourier transform, mutual information and Pearson correlation. Each CBIR scheme retrieved 10 most similar reference ROIs and computed a likelihood score of the queried ROI depicting a malignant lesion. The experimental results shown that three CBIR schemes yielded very comparable lesion classification performance as measured by the areas under ROC curves with the p-value greater than 0.498. However, the CBIR scheme using Fourier transform yielded the highest invariance to both queried lesion center shift and lesion size change. This study demonstrated the feasibility of improving robustness of the interactive CAD systems by adding a new Fourier transform based image feature to CBIR schemes.
A curricula-based comparison of biomedical and health informatics programs in the USA
Hemminger, Bradley M
2011-01-01
Objective The field of Biomedical and Health Informatics (BMHI) continues to define itself, and there are many educational programs offering ‘informatics’ degrees with varied foci. The goal of this study was to develop a scheme for systematic comparison of programs across the entire BMHI spectrum and to identify commonalities among informatics curricula. Design Guided by several published competency sets, a grounded theory approach was used to develop a program/curricula categorization scheme based on the descriptions of 636 courses offered by 73 public health, nursing, health, medical, and bioinformatics programs in the USA. The scheme was then used to compare the programs in the aforementioned five informatics disciplines. Results The authors developed a Course-Based Informatics Program Categorization (CBIPC) scheme that can be used both to classify coursework for any BMHI educational program and to compare programs from the same or related disciplines. The application of CBIPC scheme to the analysis of public health, nursing, health, medical, and bioinformatics programs reveals distinct intradisciplinary curricular patterns and a common core of courses across the entire BMHI education domain. Limitations The study is based on descriptions of courses from the university's webpages. Thus, it is limited to sampling courses at one moment in time, and classification for the coding scheme is based primarily on course titles and course descriptions. Conclusion The CBIPC scheme combines empirical data about educational curricula from diverse informatics programs and several published competency sets. It also provides a foundation for discussion of BMHI education as a whole and can help define subdisciplinary competencies. PMID:21292707
Enhancing the Area of a Raman Atom Interferometer Using a Versatile Double-Diffraction Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leveque, T.; Gauguet, A.; Michaud, F.
2009-08-21
In this Letter, we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4(Planck constant/2pi)k, deflecting the atomic wave packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labeled an interferometer, intrinsically insensitive to the main systematics and applicable to all kinds of atomic sources. This splitting scheme can be extended to 4N(Planck constant/2pi)k momentum transfer by a multipulse sequence and is implemented on a 8(Planck constant/2pi)k interferometer. We demonstrate the area enhancement by measuring inertial forces.
Multi-quasiparticle excitations in145Tb
NASA Astrophysics Data System (ADS)
Zheng, Yong; Zhou, Xiaohong; Zhang, Yuhu; Liu, Minliang; Guo, Yingxiang; Lei, Xiangguo; Hayakawa, T.; Oshima, M.; Toh, T.; Shizuma, T.; Katakura, J.; Hatsukawa, Y.; Matsuda, M.; Kusakari, H.; Sugawara, M.
2004-09-01
High-spin states in145Tb have been populated using the118Sn (32S, 1p4n) reaction at beam energy of 165 MeV. The level scheme of145Tb has been established up to Ex≈7.4 MeV. The level scheme shows characteristics of a spherical or slightly oblate nucleus. Based on the systematic trends of the level structure in the neighboring N=80 isotones, the level structure in145Tb below 2 MeV excitation is well eplained by coupling an h 11/2 valence proton to the even-even144Gd core. Above 2 MeV excitation, most of the yrast levels are interpreted with multi-quasiparticle shell-model configurations.
James, Michaela; Christian, Danielle; Scott, Samantha; Todd, Charlotte; Stratton, Gareth; McCoubrey, Sarah; Halcox, Julian; Audrey, Suzanne; Ellins, Elizabeth; Brophy, Sinead
2017-07-11
Many teenagers are insufficiently active despite the health benefits of physical activity (PA). There is strong evidence to show that inactivity and low fitness levels increase the risk of non-communicable diseases such as coronary heart disease (CHD), type 2 diabetes and breast and colon cancers (Lee et al. Lancet 380:219-29, 2012). A major barrier facing adolescents is accessibility (e.g. cost and lack of local facilities). The ACTIVE project aims to tackle this barrier through a multi-faceted intervention, giving teenagers vouchers to spend on activities of their choice and empowering young people to improve their fitness and PA levels. ACTIVE is a mixed methods randomised control trial in 7 secondary schools in Swansea, South Wales. Quantitative and qualitative measures including PA (cooper run test (CRT), accelerometery over 7 days), cardiovascular (CV) measures (blood pressure, pulse wave analysis) and focus groups will be undertaken at 4 separate time points (baseline, 6 months,12 months and follow-up at 18 months). Intervention schools will receive a multi-component intervention involving 12 months of £20 vouchers to spend on physical activities of their choice, a peer mentor scheme and opportunities to attend advocacy meetings. Control schools are encouraged to continue usual practice. The primary aim is to examine the effect of the intervention in improving cardiovascular fitness. This paper describes the protocol for the ACTIVE randomised control trial, which aims to increase fitness, physical activity and socialisation of teenagers in Swansea, UK via a voucher scheme combined with peer mentoring. Results can contribute to the evidence base on teenage physical activity and, if effective, the intervention has the potential to inform future physical activity interventions and policy. ISRCTN75594310 (Assigned 06/03/2017).
Thivel, David; Masurier, Julie; Baquet, Georges; Timmons, Brian W; Pereira, Bruno; Berthoin, Serge; Duclos, Martine; Aucouturier, Julien
2018-03-27
While High Intensity Interval Training is praised in many populations for its beneficial effects on body composition and cardiometabolic health, its use among obese youth remain uncertain. This study aimed at determining whether HIIT is effective to improve aerobic fitness and reduce cardiometabolic risk factors in overweight and obese youth. A systematic search was conducted and articles reporting studies that investigated the effects of HIIT in 6 to 18-year-old youth were eligible. Meta-analyses were performed when appropriate. 15 studies were included for the systematic review and meta-analyses. HIIT significantly improves maximal oxygen uptake [1.117 (95% CI=0.528 to 1.706), p<0.001], and reduces body mass [-0.295 (95%CI =-0.525 to -0.066), p<0.05], body fat [-0.786 (95%CI =-1.452 to - 0.120), p<0.05], systolic and diastolic blood pressure [-1.026 (95% CI = -1.370 to -0.683), p<0.001; - 0.966 (95% CI =-1.628 to -0.304), p<0.01 respectively], and the HOMA-IR [-1.589 (95%CI =-2.528 to -0.650), p<0.01]. However, there is significant heterogeneity, and low to high inconsistency for most cardiometabolic risk factors and aerobic fitness. Although few studies have reported cardiometabolic risks, HIIT may also be as effective as traditional endurance continuous training to decrease blood pressure and insulin resistance. HIIT is effective to improve aerobic fitness, body composition, and cardiometabolic risk factors in obese youth, but data are insufficient to determine whether it is more effective than traditional continuous submaximal intensity exercise training.
Physical activity and physical self-concept in youth: systematic review and meta-analysis.
Babic, Mark J; Morgan, Philip J; Plotnikoff, Ronald C; Lonsdale, Chris; White, Rhiannon L; Lubans, David R
2014-11-01
Evidence suggests that physical self-concept is associated with physical activity in children and adolescents, but no systematic review of this literature has been conducted. The primary aim of this systematic review and meta-analysis was to determine the strength of associations between physical activity and physical self-concept (general and sub-domains) in children and adolescents. The secondary aim was to examine potential moderators of the association between physical activity and physical self-concept. A systematic search of six electronic databases (MEDLINE, CINAHL, SPORTDiscus, ERIC, Web of Science and Scopus) with no date restrictions was conducted. Random effects meta-analyses with correction for measurement were employed. The associations between physical activity and general physical self-concept and sub-domains were explored. A risk of bias assessment was conducted by two reviewers. The search identified 64 studies to be included in the meta-analysis. Thirty-three studies addressed multiple outcomes of general physical self-concept: 28 studies examined general physical self-concept, 59 examined perceived competence, 25 examined perceived fitness, and 55 examined perceived appearance. Perceived competence was most strongly associated with physical activity (r = 0.30, 95% CI 0.24-0.35, p < 0.001), followed by perceived fitness (r = 0.26, 95% CI 0.20-0.32, p < 0.001), general physical self-concept (r = 0.25, 95% CI 0.16-0.34, p < 0.001) and perceived physical appearance (r = 0.12, 95% CI 0.08-0.16, p < 0.001). Sex was a significant moderator for general physical self-concept (p < 0.05), and age was a significant moderator for perceived appearance (p ≤ 0.01) and perceived competence (p < 0.05). No significant moderators were found for perceived fitness. Overall, a significant association has been consistently demonstrated between physical activity and physical self-concept and its various sub-domains in children and adolescents. Age and sex are key moderators of the association between physical activity and physical self-concept.
Computer-Aided Evaluation of Blood Vessel Geometry From Acoustic Images.
Lindström, Stefan B; Uhlin, Fredrik; Bjarnegård, Niclas; Gylling, Micael; Nilsson, Kamilla; Svensson, Christina; Yngman-Uhlin, Pia; Länne, Toste
2018-04-01
A method for computer-aided assessment of blood vessel geometries based on shape-fitting algorithms from metric vision was evaluated. Acoustic images of cross sections of the radial artery and cephalic vein were acquired, and medical practitioners used a computer application to measure the wall thickness and nominal diameter of these blood vessels with a caliper method and the shape-fitting method. The methods performed equally well for wall thickness measurements. The shape-fitting method was preferable for measuring the diameter, since it reduced systematic errors by up to 63% in the case of the cephalic vein because of its eccentricity. © 2017 by the American Institute of Ultrasound in Medicine.
Guo, Junqi; Zhou, Xi; Sun, Yunchuan; Ping, Gong; Zhao, Guoxing; Li, Zhuorong
2016-06-01
Smartphone based activity recognition has recently received remarkable attention in various applications of mobile health such as safety monitoring, fitness tracking, and disease prediction. To achieve more accurate and simplified medical monitoring, this paper proposes a self-learning scheme for patients' activity recognition, in which a patient only needs to carry an ordinary smartphone that contains common motion sensors. After the real-time data collection though this smartphone, we preprocess the data using coordinate system transformation to eliminate phone orientation influence. A set of robust and effective features are then extracted from the preprocessed data. Because a patient may inevitably perform various unpredictable activities that have no apriori knowledge in the training dataset, we propose a self-learning activity recognition scheme. The scheme determines whether there are apriori training samples and labeled categories in training pools that well match with unpredictable activity data. If not, it automatically assembles these unpredictable samples into different clusters and gives them new category labels. These clustered samples combined with the acquired new category labels are then merged into the training dataset to reinforce recognition ability of the self-learning model. In experiments, we evaluate our scheme using the data collected from two postoperative patient volunteers, including six labeled daily activities as the initial apriori categories in the training pool. Experimental results demonstrate that the proposed self-learning scheme for activity recognition works very well for most cases. When there exist several types of unseen activities without any apriori information, the accuracy reaches above 80 % after the self-learning process converges.
Systematic errors in transport calculations of shear viscosity using the Green-Kubo formalism
NASA Astrophysics Data System (ADS)
Rose, J. B.; Torres-Rincon, J. M.; Oliinychenko, D.; Schäfer, A.; Petersen, H.
2018-05-01
The purpose of this study is to provide a reproducible framework in the use of the Green-Kubo formalism to extract transport coefficients. More specifically, in the case of shear viscosity, we investigate the limitations and technical details of fitting the auto-correlation function to a decaying exponential. This fitting procedure is found to be applicable for systems interacting both through constant and energy-dependent cross-sections, although this is only true for sufficiently dilute systems in the latter case. We find that the optimal fit technique consists in simultaneously fixing the intercept of the correlation function and use a fitting interval constrained by the relative error on the correlation function. The formalism is then applied to the full hadron gas, for which we obtain the shear viscosity to entropy ratio.
Gridding Cloud and Irradiance to Quantify Variability at the ARM Southern Great Plains Site
NASA Astrophysics Data System (ADS)
Riihimaki, L.; Long, C. N.; Gaustad, K.
2017-12-01
Ground-based radiometers provide the most accurate measurements of surface irradiance. However, geometry differences between surface point measurements and large area climate model grid boxes or satellite-based footprints can cause systematic differences in surface irradiance comparisons. In this work, irradiance measurements from a network of ground stations around Kansas and Oklahoma at the US Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains facility are examined. Upwelling and downwelling broadband shortwave and longwave radiometer measurements are available at each site as well as surface meteorological measurements. In addition to the measured irradiances, clear sky irradiance and cloud fraction estimates are analyzed using well established methods based on empirical fits to measured clear sky irradiances. Measurements are interpolated onto a 0.25 degree latitude and longitude grid using a Gaussian weight scheme in order to provide a more accurate statistical comparison between ground measurements and a larger area such as that used in climate models, plane parallel radiative transfer calculations, and other statistical and climatological research. Validation of the gridded product will be shown, as well as analysis that quantifies the impact of site location, cloud type, and other factors on the resulting surface irradiance estimates. The results of this work are being incorporated into the Surface Cloud Grid operational data product produced by ARM, and will be made publicly available for use by others.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakane, Akihiro; Tamakoshi, Masato; Fujimoto, Shohei
2016-08-14
In developing photovoltaic devices with high efficiencies, quantitative determination of the carrier loss is crucial. In conventional solar-cell characterization techniques, however, photocurrent reduction originating from parasitic light absorption and carrier recombination within the light absorber cannot be assessed easily. Here, we develop a general analysis scheme in which the optical and recombination losses in submicron-textured solar cells are evaluated systematically from external quantum efficiency (EQE) spectra. In this method, the optical absorption in solar cells is first deduced by imposing the anti-reflection condition in the calculation of the absorptance spectrum, and the carrier extraction from the light absorber layer ismore » then modeled by considering a carrier collection length from the absorber interface. Our analysis method is appropriate for a wide variety of photovoltaic devices, including kesterite solar cells [Cu{sub 2}ZnSnSe{sub 4}, Cu{sub 2}ZnSnS{sub 4}, and Cu{sub 2}ZnSn(S,Se){sub 4}], zincblende CdTe solar cells, and hybrid perovskite (CH{sub 3}NH{sub 3}PbI{sub 3}) solar cells, and provides excellent fitting to numerous EQE spectra reported earlier. Based on the results obtained from our EQE analyses, we discuss the effects of parasitic absorption and carrier recombination in different types of solar cells.« less
Collins, John; Rogers, Ted
2015-04-01
There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part ofmore » the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, John; Rogers, Ted
There is considerable controversy about the size and importance of non-perturbative contributions to the evolution of transverse momentum dependent (TMD) parton distribution functions. Standard fits to relatively high-energy Drell-Yan data give evolution that when taken to lower Q is too rapid to be consistent with recent data in semi-inclusive deeply inelastic scattering. Some authors provide very different forms for TMD evolution, even arguing that non-perturbative contributions at large transverse distance bT are not needed or are irrelevant. Here, we systematically analyze the issues, both perturbative and non-perturbative. We make a motivated proposal for the parameterization of the non-perturbative part ofmore » the TMD evolution kernel that could give consistency: with the variety of apparently conflicting data, with theoretical perturbative calculations where they are applicable, and with general theoretical non-perturbative constraints on correlation functions at large distances. We propose and use a scheme- and scale-independent function A(bT) that gives a tool to compare and diagnose different proposals for TMD evolution. We also advocate for phenomenological studies of A(bT) as a probe of TMD evolution. The results are important generally for applications of TMD factorization. In particular, they are important to making predictions for proposed polarized Drell- Yan experiments to measure the Sivers function.« less
Establishment of Systematical Education Program of Engineering Ethics for a Technical College
NASA Astrophysics Data System (ADS)
Kobayashi, Yukito
Engineering ethics education deals with a wide range of matters. Therefore it should not be treated within a single subject, but in a whole curriculum of a college. In Yatsushiro National College of Technology, we have designed a systematic education program of engineering ethics on the basis of “Yatsushiro National College Synthetic Education Program” , which was established in 2002. This education program, including education for formation of character and morality as well, has two distinctive features : five or seven-year successive course of study and cooperation among the departments and teaching staffs. This interactive scheme has produced highly educational effects.
A Cross-Layer, Anomaly-Based IDS for WSN and MANET
Amouri, Amar; Manthena, Raju
2018-01-01
Intrusion detection system (IDS) design for mobile adhoc networks (MANET) is a crucial component for maintaining the integrity of the network. The need for rapid deployment of IDS capability with minimal data availability for training and testing is an important requirement of such systems, especially for MANETs deployed in highly dynamic scenarios, such as battlefields. This work proposes a two-level detection scheme for detecting malicious nodes in MANETs. The first level deploys dedicated sniffers working in promiscuous mode. Each sniffer utilizes a decision-tree-based classifier that generates quantities which we refer to as correctly classified instances (CCIs) every reporting time. In the second level, the CCIs are sent to an algorithmically run supernode that calculates quantities, which we refer to as the accumulated measure of fluctuation (AMoF) of the received CCIs for each node under test (NUT). A key concept that is used in this work is that the variability of the smaller size population which represents the number of malicious nodes in the network is greater than the variance of the larger size population which represents the number of normal nodes in the network. A linear regression process is then performed in parallel with the calculation of the AMoF for fitting purposes and to set a proper threshold based on the slope of the fitted lines. As a result, the malicious nodes are efficiently and effectively separated from the normal nodes. The proposed scheme is tested for various node velocities and power levels and shows promising detection performance even at low-power levels. The results presented also apply to wireless sensor networks (WSN) and represent a novel IDS scheme for such networks. PMID:29470446
A Cross-Layer, Anomaly-Based IDS for WSN and MANET.
Amouri, Amar; Morgera, Salvatore D; Bencherif, Mohamed A; Manthena, Raju
2018-02-22
Intrusion detection system (IDS) design for mobile adhoc networks (MANET) is a crucial component for maintaining the integrity of the network. The need for rapid deployment of IDS capability with minimal data availability for training and testing is an important requirement of such systems, especially for MANETs deployed in highly dynamic scenarios, such as battlefields. This work proposes a two-level detection scheme for detecting malicious nodes in MANETs. The first level deploys dedicated sniffers working in promiscuous mode. Each sniffer utilizes a decision-tree-based classifier that generates quantities which we refer to as correctly classified instances (CCIs) every reporting time. In the second level, the CCIs are sent to an algorithmically run supernode that calculates quantities, which we refer to as the accumulated measure of fluctuation (AMoF) of the received CCIs for each node under test (NUT). A key concept that is used in this work is that the variability of the smaller size population which represents the number of malicious nodes in the network is greater than the variance of the larger size population which represents the number of normal nodes in the network. A linear regression process is then performed in parallel with the calculation of the AMoF for fitting purposes and to set a proper threshold based on the slope of the fitted lines. As a result, the malicious nodes are efficiently and effectively separated from the normal nodes. The proposed scheme is tested for various node velocities and power levels and shows promising detection performance even at low-power levels. The results presented also apply to wireless sensor networks (WSN) and represent a novel IDS scheme for such networks.
Rico-Olarte, Carolina; López, Diego M; Blobel, Bernd; Kepplinger, Sara
2017-01-01
In recent years, the interest in user experience (UX) evaluation methods for assessing technology solutions, especially in health systems for children with special needs like cognitive disabilities, has increased. Conduct a systematic mapping study to provide an overview in the field of UX evaluations in rehabilitation video games for children. The definition of research questions, the search for primary studies and the extraction of those studies by inclusion and exclusion criteria lead to the mapping of primary papers according to a classification scheme. Main findings from this study include the detection of the target population of the selected studies, the recognition of two different ways of evaluating UX: (i) user evaluation and (ii) system evaluation, and UX measurements and devices used. This systematic mapping specifies the research gaps identified for future research works in the area.
Mulkern, Robert V; Balasubramanian, Mukund; Mitsouras, Dimitrios
2014-07-30
To determine whether Lorentzian or Gaussian intra-voxel frequency distributions are better suited for modeling data acquired with gradient-echo sampling of single spin-echoes for the simultaneous characterization of irreversible and reversible relaxation rates. Clinical studies (e.g., of brain iron deposition) using such acquisition schemes have typically assumed Lorentzian distributions. Theoretical expressions of the time-domain spin-echo signal for intra-voxel Lorentzian and Gaussian distributions were used to fit data from a human brain scanned at both 1.5 Tesla (T) and 3T, resulting in maps of irreversible and reversible relaxation rates for each model. The relative merits of the Lorentzian versus Gaussian model were compared by means of quality of fit considerations. Lorentzian fits were equivalent to Gaussian fits primarily in regions of the brain where irreversible relaxation dominated. In the multiple brain regions where reversible relaxation effects become prominent, however, Gaussian fits were clearly superior. The widespread assumption that a Lorentzian distribution is suitable for quantitative transverse relaxation studies of the brain should be reconsidered, particularly at 3T and higher field strengths as reversible relaxation effects become more prominent. Gaussian distributions offer alternate fits of experimental data that should prove quite useful in general. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.
A Detection of the Baryon Acoustic Oscillation Features in the SDSS BOSS DR12 Galaxy Bispectrum
NASA Astrophysics Data System (ADS)
Pearson, David W.; Samushia, Lado
2018-05-01
We present the first high significance detection (4.1σ) of the Baryon Acoustic Oscillations (BAO) feature in the galaxy bispectrum of the twelfth data release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS) CMASS sample (0.43 ≤ z ≤ 0.7). We measured the scale dilation parameter, α, using the power spectrum, bispectrum, and both simultaneously for DR12, plus 2048 MultiDark-PATCHY mocks in the North and South Galactic Caps (NGC and SGC, respectively), and the volume weighted averages of those two samples (N+SGC). The fitting to the mocks validated our analysis pipeline, yielding values consistent with the mock cosmology. By fitting to the power spectrum and bispectrum separately, we tested the robustness of our results, finding consistent values from the NGC, SGC and N+SGC in all cases. We found DV = 2032 ± 24(stat.) ± 15(sys.) Mpc, DV = 2038 ± 55(stat.) ± 15(sys.) Mpc, and DV = 2031 ± 22(stat.) ± 10(sys.) Mpc from the N+SGC power spectrum, bispectrum and simultaneous fitting, respectively. Our bispectrum measurement precision was mainly limited by the size of the covariance matrix. Based on the fits to the mocks, we showed that if a less noisy estimator of the covariance were available, from either a theoretical computation or a larger suite of mocks, the constraints from the bispectrum and simultaneous fits would improve to 1.1 per cent (1.3 per cent with systematics) and 0.7 per cent (0.9 per cent with systematics), respectively, with the latter being slightly more precise than the power spectrum only constraints from the reconstructed field.
Echouffo-Tcheugui, Justin B; Butler, Javed; Yancy, Clyde W; Fonarow, Gregg C
2015-09-01
Previous studies have shown that high levels of physical activity are associated with lower risk of risk factors for heart failure (HF), such as coronary heart disease, hypertension, and diabetes mellitus. However, the effects of physical activity or fitness on the incidence of HF remain unclear. MEDLINE and EMBASE were systematically searched until November 30, 2014. Prospective cohort studies reporting measures of the association of physical activity (n=10) or fitness (n=2) with incident HF were included. Extracted effect estimates from the eligible studies were pooled using a random-effects model meta-analysis, with heterogeneity assessed with the I(2) statistic. Ten cohort studies on physical activity eligible for meta-analysis included a total of 282 889 participants followed for 7 to 30 years. For the physical activity studies, maximum versus minimal amount of physical activity groups were used for analyses; with a total number of participants (n=165 695). The pooled relative risk (95% confidence interval [CI]) for HF among those with a regular exercise pattern was 0.72 (95% CI, 0.67-0.79). Findings were similar for men (0.71 [95% CI, 0.61-0.83]) and women (0.72 [95% CI, 0.67-0.77]) and by type of exercise. There was no evidence of publication bias (P value for Egger test=0.34). The pooled associated effect of physical fitness on incident HF was 0.79 (95% CI, 0.75-0.83) for each unit increase in metabolic equivalent of oxygen consumption. Published literature support a significant association between increased physical activity or fitness and decreased incidence of HF. © 2015 American Heart Association, Inc.
Wilkinson Microwave Anisotropy Probe (WMAP) First Year Observations: TE Polarization
NASA Technical Reports Server (NTRS)
Kogut, A.; Spergel, D. N.; Barnes, C.; Bennett, C. L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Limon, M.; Meyer, S. S.; Page, L.;
2001-01-01
The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WAMP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (theta less than 5 deg), the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l greater than 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta greater than 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 is less than z(sub r) is less than 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit ACDM model, with best fit value t = 0.17 +/- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.
Oliveira, Ana; Monteiro, Ângela; Jácome, Cristina; Afreixo, Vera; Marques, Alda
2017-06-01
Group sports interventions have been developed to improve health-related physical fitness of overweight/obese youth. However, its benefits are not systematically documented. This study synthesizes the evidence about the effects of group sports on health-related physical fitness of overweight/obese youth. Pubmed, Web of Knowledge, Scopus, Medline, CINAHL, SportDiscus, and Academic Search Complete were searched in February 2016. Studies assessing the effects of group sports on body composition, cardiorespiratory endurance, muscle strength, flexibility, and neuromotor fitness of overweight/obese youth (aged <18 years) were included. Effect sizes (ES) were calculated with Cohen's d and its 95% confidence intervals (CI). Improvements were found in (i) body composition - percentage of fat body mass (pooled ES = 0.67; 95% CI = 0.24-1.10) and waist circumference (ES = 0.69; P = 0.004); (ii) cardiorespiratory endurance - peak oxygen consumption (pooled ES = 0.53; 95% CI = 0.13-0.92) and (iii) muscle strength - hand grip strength (ES = 0.72; P = 0.003). No significant effects were found for body mass index (pooled ES = 0.27; 95% CI = -0.14 to 0.69), percentage of lean body mass (ES = 0.01; P > 0.05), maximal power output (ES from 0 to 0.06; P > 0.05), sit-and-reach test (pooled ES = 0.26; 95% CI = -0.16 to 0.68) and agility test (ES = 0; P = 0.48). Group sports improve body composition, cardiorespiratory endurance, and hand grip strength of overweight/obese youth. Flexibility and neuromotor fitness do not seem to change following group sports. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lin, Xiaochen; Zhang, Xi; Guo, Jianjun; Roberts, Christian K; McKenzie, Steve; Wu, Wen-Chih; Liu, Simin; Song, Yiqing
2015-06-26
Guidelines recommend exercise for cardiovascular health, although evidence from trials linking exercise to cardiovascular health through intermediate biomarkers remains inconsistent. We performed a meta-analysis of randomized controlled trials to quantify the impact of exercise on cardiorespiratory fitness and a variety of conventional and novel cardiometabolic biomarkers in adults without cardiovascular disease. Two researchers selected 160 randomized controlled trials (7487 participants) based on literature searches of Medline, Embase, and Cochrane Central (January 1965 to March 2014). Data were extracted using a standardized protocol. A random-effects meta-analysis and systematic review was conducted to evaluate the effects of exercise interventions on cardiorespiratory fitness and circulating biomarkers. Exercise significantly raised absolute and relative cardiorespiratory fitness. Lipid profiles were improved in exercise groups, with lower levels of triglycerides and higher levels of high-density lipoprotein cholesterol and apolipoprotein A1. Lower levels of fasting insulin, homeostatic model assessment-insulin resistance, and glycosylated hemoglobin A1c were found in exercise groups. Compared with controls, exercise groups had higher levels of interleukin-18 and lower levels of leptin, fibrinogen, and angiotensin II. In addition, we found that the exercise effects were modified by age, sex, and health status such that people aged <50 years, men, and people with type 2 diabetes, hypertension, dyslipidemia, or metabolic syndrome appeared to benefit more. This meta-analysis showed that exercise significantly improved cardiorespiratory fitness and some cardiometabolic biomarkers. The effects of exercise were modified by age, sex, and health status. Findings from this study have significant implications for future design of targeted lifestyle interventions. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
Lin, Xiaochen; Zhang, Xi; Guo, Jianjun; Roberts, Christian K; McKenzie, Steve; Wu, Wen-Chih; Liu, Simin; Song, Yiqing
2015-01-01
Background Guidelines recommend exercise for cardiovascular health, although evidence from trials linking exercise to cardiovascular health through intermediate biomarkers remains inconsistent. We performed a meta-analysis of randomized controlled trials to quantify the impact of exercise on cardiorespiratory fitness and a variety of conventional and novel cardiometabolic biomarkers in adults without cardiovascular disease. Methods and Results Two researchers selected 160 randomized controlled trials (7487 participants) based on literature searches of Medline, Embase, and Cochrane Central (January 1965 to March 2014). Data were extracted using a standardized protocol. A random-effects meta-analysis and systematic review was conducted to evaluate the effects of exercise interventions on cardiorespiratory fitness and circulating biomarkers. Exercise significantly raised absolute and relative cardiorespiratory fitness. Lipid profiles were improved in exercise groups, with lower levels of triglycerides and higher levels of high-density lipoprotein cholesterol and apolipoprotein A1. Lower levels of fasting insulin, homeostatic model assessment–insulin resistance, and glycosylated hemoglobin A1c were found in exercise groups. Compared with controls, exercise groups had higher levels of interleukin-18 and lower levels of leptin, fibrinogen, and angiotensin II. In addition, we found that the exercise effects were modified by age, sex, and health status such that people aged <50 years, men, and people with type 2 diabetes, hypertension, dyslipidemia, or metabolic syndrome appeared to benefit more. Conclusions This meta-analysis showed that exercise significantly improved cardiorespiratory fitness and some cardiometabolic biomarkers. The effects of exercise were modified by age, sex, and health status. Findings from this study have significant implications for future design of targeted lifestyle interventions. PMID:26116691
Okoroh, Juliet; Essoun, Samuel; Seddoh, Anthony; Harris, Hobart; Weissman, Joel S; Dsane-Selby, Lydia; Riviello, Robert
2018-06-07
Approximately 150 million people suffer from financial catastrophe annually because of out-of-pocket expenditures (OOPEs) on health. Although the National Health Insurance Scheme (NHIS) of Ghana was designed to promote universal health coverage, OOPEs as a proportion of total health expenditures remains elevated at 26%, exceeding the WHO's recommendations of less than 15-20%. To determine whether enrollment in the NHIS reduces the likelihood of OOPEs and catastrophic health expenditures (CHEs) in Ghana, we undertook a systematic review of the published literature. We searched for quantitative articles published in English between January 1, 2003 and August 22, 2017 in PubMed, Google Scholar, Economic Literature, Global Health, PAIS International, and African Index Medicus. Two independent authors (J.S.O. & S.E.) reviewed the articles for inclusion, extracted the data, and conducted a quality assessment of the studies. We accepted the World Health Organization definition of catastrophic health expenditures which is out of pocket payments for health care which exceeds 20% of annual house hold income, 10% of household expenditures, or 40% of subsistence expenditures (total household expenditures net food expenditures). Of the 1094 articles initially identified, 7 were eligible for inclusion. These were cross-sectional household studies published between 2008 and 2016 in Ghana. They demonstrated that the uninsured paid 1.4 to 10 times more in out-of-pocket payments (OOPs) and were more likely to incur CHEs than the insured. Yet, 6 to 18% of insured households made catastrophic payments for healthcare and all studies reported insured members making OOPs for medicines. Evidence suggests that the national health insurance scheme of Ghana over the last 14 years has made some impact on reducing OOPEs, and yet healthcare costs remain catastrophic for a large proportion of insured households in Ghana. Future studies need to explore reasons for the persistence of OOPs for medicines and services that are covered under the scheme.
Surface Fitting for Quasi Scattered Data from Coordinate Measuring Systems.
Mao, Qing; Liu, Shugui; Wang, Sen; Ma, Xinhui
2018-01-13
Non-uniform rational B-spline (NURBS) surface fitting from data points is wildly used in the fields of computer aided design (CAD), medical imaging, cultural relic representation and object-shape detection. Usually, the measured data acquired from coordinate measuring systems is neither gridded nor completely scattered. The distribution of this kind of data is scattered in physical space, but the data points are stored in a way consistent with the order of measurement, so it is named quasi scattered data in this paper. Therefore they can be organized into rows easily but the number of points in each row is random. In order to overcome the difficulty of surface fitting from this kind of data, a new method based on resampling is proposed. It consists of three major steps: (1) NURBS curve fitting for each row, (2) resampling on the fitted curve and (3) surface fitting from the resampled data. Iterative projection optimization scheme is applied in the first and third step to yield advisable parameterization and reduce the time cost of projection. A resampling approach based on parameters, local peaks and contour curvature is proposed to overcome the problems of nodes redundancy and high time consumption in the fitting of this kind of scattered data. Numerical experiments are conducted with both simulation and practical data, and the results show that the proposed method is fast, effective and robust. What's more, by analyzing the fitting results acquired form data with different degrees of scatterness it can be demonstrated that the error introduced by resampling is negligible and therefore it is feasible.
Efficacy of Sameodes albiguttalis as a Biocontrol of Waterhyacinth.
1984-01-01
plant’s ability to recover from serious injury. Data indicate that S. albiguttalis will, under certain conditions, be an effective biological control of...environmental factors affect the yound leaves, injure the apical buds of the shoots, cause leaf production to cease, and effectively kill the shoots. Most...other two waterhyacinth insects (Neochetina eichhorneae and N. bruchi), should fit comfortably into a management scheme. Its effectiveness may be
Warm-ups for military fitness testing: rapid evidence assessment of the literature.
Zeno, Stacey A; Purvis, Dianna; Crawford, Cindy; Lee, Courtney; Lisman, Peter; Deuster, Patricia A
2013-07-01
Warm-up exercises are commonly used before exercise as a method to physiologically prepare for strenuous physical activity. Various warm-up exercises are often implemented but without scientific merit and, at times, may be detrimental to performance. To date, no systematic reviews have examined the effectiveness of warm-up exercises for military physical fitness test (PFT) or combat fitness test (CFT). The purpose of this rapid evidence assessment of the literature was to examine the quantity, quality, and effectiveness of warm-up exercises for PFT and identify those that might increase PFT and/or CFT scores, as reported in the literature. Literature searches of randomized controlled trials were performed across various databases from database inception to May 2011. Methodological quality of included studies was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) 50 criteria for randomized controlled trial designs, and studies were individually described. Subject matter experts summarized the results applicable or generalizable to military testing. The search yielded a total of 1177 citations, with 37 fitting our inclusion criteria. Cardiovascular warm-ups increased sprint/running time, but dynamic stretching and dynamic warm-ups had the most positive outcome for the various exercise tests examined. Systematically, static stretching had no beneficial or detrimental effect on exercise performance but did improve range of movement exercises. Selected warm-up exercise may increase PFT and possibly CFT scores. Further research is needed to investigate the efficacy of dynamic stretching and dynamic warm-ups.
GNSS Clock Error Impacts on Radio Occultation Retrievals
NASA Astrophysics Data System (ADS)
Weiss, Jan; Sokolovskiy, Sergey; Schreiner, Bill; Yoon, Yoke
2017-04-01
We assess the impacts of GPS and GLONASS clock errors on radio occultation retrieval of bending angle, refractivity, and temperature from low Earth orbit. The major contributing factor is the interpretation of GNSS clock offsets sampled at 30 sec or longer intervals. Using 1 Hz GNSS clock estimates as truth we apply several interpolation and fitting schemes to evaluate how they affect the accuracy of atmospheric retrieval products. The results are organized by GPS and GLONASS space vehicle and the GNSS clock interpolation/fitting scheme. We find that bending angle error is roughly similar for all current GPS transmitters (about 0.7 mcrad) but note some differences related to the type of atomic oscillator onboard the transmitter satellite. GLONASS bending angle errors show more variation over the constellation and are approximately two times larger than GPS. An investigation of the transmitter clock spectra reveals this is due to more power in periods between 2-10 sec. Retrieved refractivity and temperature products show clear differences between GNSS satellite generations, and indicate that GNSS clocks sampled at intervals smaller than 5 sec significantly improve accuracy, particularly for GLONASS. We conclude by summarizing the tested GNSS clock estimation and application strategies in the context of current and future radio occultation missions.
Lithospheric bending at subduction zones based on depth soundings and satellite gravity
NASA Technical Reports Server (NTRS)
Levitt, Daniel A.; Sandwell, David T.
1995-01-01
A global study of trench flexure was performed by simultaneously modeling 117 bathymetric profiles (original depth soundings) and satellite-derived gravity profiles. A thin, elastic plate flexure model was fit to each bathymetry/gravity profile by minimization of the L(sub 1) norm. The six model parameters were regional depth, regional gravity, trench axis location, flexural wavelength, flexural amplitude, and lithospheric density. A regional tilt parameter was not required after correcting for age-related trend using a new high-resolution age map. Estimates of the density parameter confirm that most outer rises are uncompensated. We find that flexural wavelength is not an accurate estimate of plate thickness because of the high curvatures observed at a majority of trenches. As in previous studies, we find that the gravity data favor a longer-wavelength flexure than the bathymetry data. A joint topography-gravity modeling scheme and fit criteria are used to limit acceptable parameter values to models for which topography and gravity yield consistent results. Even after the elastic thicknesses are converted to mechanical thicknesses using the yield strength envelope model, residual scatter obscures the systematic increase of mechanical thickness with age; perhaps this reflects the combination of uncertainties inherent in estimating flexural wavelength, such as extreme inelastic bending and accumulated thermoelastic stress. The bending moment needed to support the trench and outer rise topography increases by a factor of 10 as lithospheric age increases from 20 to 150 Ma; this reflects the increase in saturation bending moment that the lithosphere can maintain. Using a stiff, dry-olivine rheology, we find that the lithosphere of the GDH1 thermal model (Stein and Stein, 1992) is too hot and thin to maintain the observed bending moments. Moreover, the regional depth seaward of the oldest trenches (approximately 150 Ma) exceeds the GDH1 model depths by about 400 m.
Adjusting particle-size distributions to account for aggregation in tephra-deposit model forecasts
Mastin, Larry G.; Van Eaton, Alexa; Durant, A.J.
2016-01-01
Volcanic ash transport and dispersion (VATD) models are used to forecast tephra deposition during volcanic eruptions. Model accuracy is limited by the fact that fine-ash aggregates (clumps into clusters), thus altering patterns of deposition. In most models this is accounted for by ad hoc changes to model input, representing fine ash as aggregates with density ρagg, and a log-normal size distribution with median μagg and standard deviation σagg. Optimal values may vary between eruptions. To test the variance, we used the Ash3d tephra model to simulate four deposits: 18 May 1980 Mount St. Helens; 16–17 September 1992 Crater Peak (Mount Spurr); 17 June 1996 Ruapehu; and 23 March 2009 Mount Redoubt. In 192 simulations, we systematically varied μagg and σagg, holding ρagg constant at 600 kg m−3. We evaluated the fit using three indices that compare modeled versus measured (1) mass load at sample locations; (2) mass load versus distance along the dispersal axis; and (3) isomass area. For all deposits, under these inputs, the best-fit value of μagg ranged narrowly between ∼ 2.3 and 2.7φ (0.20–0.15 mm), despite large variations in erupted mass (0.25–50 Tg), plume height (8.5–25 km), mass fraction of fine ( < 0.063 mm) ash (3–59 %), atmospheric temperature, and water content between these eruptions. This close agreement suggests that aggregation may be treated as a discrete process that is insensitive to eruptive style or magnitude. This result offers the potential for a simple, computationally efficient parameterization scheme for use in operational model forecasts. Further research may indicate whether this narrow range also reflects physical constraints on processes in the evolving cloud.
Cloud computing task scheduling strategy based on improved differential evolution algorithm
NASA Astrophysics Data System (ADS)
Ge, Junwei; He, Qian; Fang, Yiqiu
2017-04-01
In order to optimize the cloud computing task scheduling scheme, an improved differential evolution algorithm for cloud computing task scheduling is proposed. Firstly, the cloud computing task scheduling model, according to the model of the fitness function, and then used improved optimization calculation of the fitness function of the evolutionary algorithm, according to the evolution of generation of dynamic selection strategy through dynamic mutation strategy to ensure the global and local search ability. The performance test experiment was carried out in the CloudSim simulation platform, the experimental results show that the improved differential evolution algorithm can reduce the cloud computing task execution time and user cost saving, good implementation of the optimal scheduling of cloud computing tasks.
Perfect X-ray focusing via fitting corrective glasses to aberrated optics.
Seiboth, Frank; Schropp, Andreas; Scholz, Maria; Wittwer, Felix; Rödel, Christian; Wünsche, Martin; Ullsperger, Tobias; Nolte, Stefan; Rahomäki, Jussi; Parfeniukas, Karolis; Giakoumidis, Stylianos; Vogt, Ulrich; Wagner, Ulrich; Rau, Christoph; Boesenberg, Ulrike; Garrevoet, Jan; Falkenberg, Gerald; Galtier, Eric C; Ja Lee, Hae; Nagler, Bob; Schroer, Christian G
2017-03-01
Due to their short wavelength, X-rays can in principle be focused down to a few nanometres and below. At the same time, it is this short wavelength that puts stringent requirements on X-ray optics and their metrology. Both are limited by today's technology. In this work, we present accurate at wavelength measurements of residual aberrations of a refractive X-ray lens using ptychography to manufacture a corrective phase plate. Together with the fitted phase plate the optics shows diffraction-limited performance, generating a nearly Gaussian beam profile with a Strehl ratio above 0.8. This scheme can be applied to any other focusing optics, thus solving the X-ray optical problem at synchrotron radiation sources and X-ray free-electron lasers.
2D automatic body-fitted structured mesh generation using advancing extraction method
NASA Astrophysics Data System (ADS)
Zhang, Yaoxin; Jia, Yafei
2018-01-01
This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like topography with extrusion-like structures (i.e., branches or tributaries) and intrusion-like structures (i.e., peninsula or dikes). With the AEM, the hierarchical levels of sub-domains can be identified, and the block boundary of each sub-domain in convex polygon shape in each level can be extracted in an advancing scheme. In this paper, several examples were used to illustrate the effectiveness and applicability of the proposed algorithm for automatic structured mesh generation, and the implementation of the method.
CFD Analysis and Design Optimization Using Parallel Computers
NASA Technical Reports Server (NTRS)
Martinelli, Luigi; Alonso, Juan Jose; Jameson, Antony; Reuther, James
1997-01-01
A versatile and efficient multi-block method is presented for the simulation of both steady and unsteady flow, as well as aerodynamic design optimization of complete aircraft configurations. The compressible Euler and Reynolds Averaged Navier-Stokes (RANS) equations are discretized using a high resolution scheme on body-fitted structured meshes. An efficient multigrid implicit scheme is implemented for time-accurate flow calculations. Optimum aerodynamic shape design is achieved at very low cost using an adjoint formulation. The method is implemented on parallel computing systems using the MPI message passing interface standard to ensure portability. The results demonstrate that, by combining highly efficient algorithms with parallel computing, it is possible to perform detailed steady and unsteady analysis as well as automatic design for complex configurations using the present generation of parallel computers.
The 3D Elevation Program national indexing scheme
Thatcher, Cindy A.; Heidemann, Hans Karl; Stoker, Jason M.; Eldridge, Diane F.
2017-11-02
The 3D Elevation Program (3DEP) of the U.S. Geological Survey (USGS) acquires high-resolution elevation data for the Nation. This program has been operating under an opportunity-oriented approach, acquiring light detection and ranging (lidar) projects of varying sizes scattered across the United States. As a result, the national 3DEP elevation layer is subject to data gaps or unnecessary overlap between adjacent collections. To mitigate this problem, 3DEP is adopting a strategic, systematic approach to national data acquisition that will create efficiencies in efforts to achieve nationwide elevation data coverage and help capture additional Federal and non-Federal investments resulting from advance awareness of proposed acquisitions and partnership opportunities. The 3DEP Working Group, an interagency group managed by the USGS, has agreed that all future 3DEP collections within the lower 48 States should be coordinated by using a 1-kilometer by 1-kilometer tiling scheme for the conterminous United States. Fiscal Year 2018 is being considered a transition year, and in Fiscal Year 2019 the national indexing scheme will be fully implemented, so that all 3DEP-supported projects will be acquired and delivered in the national indexing scheme and projected into the Albers Equal Area projection.
NASA Astrophysics Data System (ADS)
Lipson, Mathew J.; Hart, Melissa A.; Thatcher, Marcus
2017-03-01
Intercomparison studies of models simulating the partitioning of energy over urban land surfaces have shown that the heat storage term is often poorly represented. In this study, two implicit discrete schemes representing heat conduction through urban materials are compared. We show that a well-established method of representing conduction systematically underestimates the magnitude of heat storage compared with exact solutions of one-dimensional heat transfer. We propose an alternative method of similar complexity that is better able to match exact solutions at typically employed resolutions. The proposed interface conduction scheme is implemented in an urban land surface model and its impact assessed over a 15-month observation period for a site in Melbourne, Australia, resulting in improved overall model performance for a variety of common material parameter choices and aerodynamic heat transfer parameterisations. The proposed scheme has the potential to benefit land surface models where computational constraints require a high level of discretisation in time and space, for example at neighbourhood/city scales, and where realistic material properties are preferred, for example in studies investigating impacts of urban planning changes.
Sandroff, Brian M; Motl, Robert W; Scudder, Mark R; DeLuca, John
2016-09-01
Cognitive dysfunction is highly prevalent, disabling, and poorly-managed in persons with multiple sclerosis (MS). Recent evidence suggests that exercise might have beneficial effects on cognition in this population. The current systematic, evidence-based review examined the existing literature on exercise, physical activity, and physical fitness effects on cognition in MS to accurately describe the current status of the field, offer recommendations for clinicians, and identify study-specific and participant-specific characteristics for providing future direction for ongoing MS research. We performed an open-dated search of Medline, PsychInfo, and CINAHL in December 2015. The search strategy involved using the terms 'exercise' OR 'physical activity' OR 'physical fitness' OR 'aerobic' OR 'resistance' OR 'balance' OR 'walking' OR 'yoga' OR 'training' OR 'rehabilitation' AND 'multiple sclerosis'. Articles were eliminated from the systematic review if it was a review article, theoretical paper, or textbook chapter; did not involve persons with MS; involved only persons with pediatric-onset MS; did not involve neuropsychological outcomes; did not include empirical data to evaluate outcomes; involved pharmacological interventions; or was not available in English. The selected articles were first classified as examining exercise, physical activity, or physical fitness, and were then randomly assigned to 2 independent reviewers who rated each article for level of evidence based on American Academy of Neurology criteria. Reviewers further completed a table to characterize important elements of each study (i.e., intervention characteristics), the cognitive domain(s) that were targeted, participant-specific characteristics, outcome measures, and study results. The present review resulted in 26 studies on the effects of exercise, physical activity, and physical fitness on cognition in persons with MS. This included 1 Class I study, 3 Class II studies, 8 Class III studies, and 14 Class IV studies. Of the 26 total studies, 6 were randomized controlled trials. Overall, there is conflicting evidence for the effects of exercise on cognition in MS, and overall positive, but not definitive evidence for the effects of physical activity and physical fitness, respectively, on cognition in this population. Collectively, there is insufficient well-designed research to definitively conclude that exercise, physical activity, and physical fitness are effective for improving cognition in MS. This is based, in part, on methodological issues of Class I and II studies, such as inclusion of cognition as a secondary outcome (35 % of reviewed studies), poorly-developed exercise interventions, and paucity of research that included cognitively-impaired MS samples. However, promising evidence from Class III and Class IV studies may be useful for informing the development of better intervention research.
Soft X-ray spectral fits of Geminga with model neutron star atmospheres
NASA Technical Reports Server (NTRS)
Meyer, R. D.; Pavlov, G. G.; Meszaros, P.
1994-01-01
The spectrum of the soft X-ray pulsar Geminga consists of two components, a softer one which can be interpreted as thermal-like radiation from the surface of the neutron star, and a harder one interpreted as radiation from a polar cap heated by relativistic particles. We have fitted the soft spectrum using a detailed magnetized hydrogen atmosphere model. The fitting parameters are the hydrogen column density, the effective temperature T(sub eff), the gravitational redshift z, and the distance to radius ratio, for different values of the magnetic field B. The best fits for this model are obtained when B less than or approximately 1 x 10(exp 12) G and z lies on the upper boundary of the explored range (z = 0.45). The values of T(sub eff) approximately = (2-3) x 10(exp 5) K are a factor of 2-3 times lower than the value of T(sub eff) obtained for blackbody fits with the same z. The lower T(sub eff) increases the compatibility with some proposed schemes for fast neutrino cooling of neutron stars (NSs) by the direct Urca process or by exotic matter, but conventional cooling cannot be excluded. The hydrogen atmosphere fits also imply a smaller distance to Geminga than that inferred from a blackbody fit. An accurate evaluation of the distance would require a better knowledge of the ROSAT Position Sensitive Proportional Counter (PSPC) response to the low-energy region of the incident spectrum. Our modeling of the soft component with a cooler magnetized atmosphere also implies that the hard-component fit requires a characteristic temperature which is higher (by a factor of approximately 2-3) and a surface area which is smaller (by a factor of 10(exp 3), compared to previous blackbody fits.
Dai, Cong; Jiang, Min; Sun, Ming-Jun; Cao, Qin
2018-05-01
Fecal immunochemical test (FIT) is a promising marker for assessment of inflammatory bowel disease activity. However, the utility of FIT for predicting mucosal healing (MH) of ulcerative colitis (UC) patients has yet to be clearly demonstrated. The objective of our study was to perform a diagnostic test accuracy test meta-analysis evaluating the diagnostic accuracy of FIT in predicting MH of UC patients. We systematically searched the databases from inception to November 2017 that evaluated MH in UC. The methodological quality of each study was assessed according to the Quality Assessment of Diagnostic Accuracy Studies checklist. The extracted data were pooled using a summary receiver operating characteristic curve model. Random-effects model was used to summarize the diagnostic odds ratio, sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio. Six studies comprising 625 UC patients were included in the meta-analysis. The pooled sensitivity and specificity values for predicting MH in UC were 0.77 (95% confidence interval [CI], 0.72-0.81) and 0.81 (95% CI, 0.76-0.85), respectively. The FIT level had a high rule-in value (positive likelihood ratio, 3.79; 95% CI, 2.85-5.03) and a moderate rule-out value (negative likelihood ratio, 0.26; 95% CI, 0.16-0.43) for predicting MH in UC. The results of the receiver operating characteristic curve analysis (area under the curve, 0.88; standard error of the mean, 0.02) and diagnostic odds ratio (18.08; 95% CI, 9.57-34.13) also revealed improved discrimination for identifying MH in UC with FIT concentration. Our meta-analysis has found that FIT is a simple, reliable non-invasive marker for predicting MH in UC patients. © 2018 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
ERIC Educational Resources Information Center
Kyslenko, Dmytro
2017-01-01
The paper discusses the use of information technologies in professional training of future security specialists in the United States, Great Britain, Poland and Israel. The probable use of computer-based techniques being available within the integrated Web-sites have been systematized. It has been suggested that the presented scheme may be of great…
Frequency shifts in gravitational resonance spectroscopy
Baeßler, S.; Nesvizhevsky, V. V.; Pignol, G.; ...
2015-02-25
Quantum states of ultracold neutrons in a gravitational field are characterized through gravitational resonance spectroscopy. This paper discusses systematic effects that appear in the spectroscopic measurements. The discussed frequency shifts-which we call the Stern-Gerlach shift, interference shift, and spectator-state shift-appear in conceivable measurement schemes and have general importance. Lastly, these shifts have to be taken into account in precision experiments.
Towards apparent convergence in asymptotically safe quantum gravity
NASA Astrophysics Data System (ADS)
Denz, T.; Pawlowski, J. M.; Reichert, M.
2018-04-01
The asymptotic safety scenario in gravity is accessed within the systematic vertex expansion scheme for functional renormalisation group flows put forward in Christiansen et al. (Phys Lett B 728:114, 2014), Christiansen et al. (Phy Rev D 93:044036, 2016), and implemented in Christiansen et al. (Phys Rev D 92:121501, 2015) for propagators and three-point functions. In the present work this expansion scheme is extended to the dynamical graviton four-point function. For the first time, this provides us with a closed flow equation for the graviton propagator: all vertices and propagators involved are computed from their own flows. In terms of a covariant operator expansion the current approximation gives access to Λ , R, R^2 as well as R_{μ ν }^2 and higher derivative operators. We find a UV fixed point with three attractive and two repulsive directions, thus confirming previous studies on the relevance of the first three operators. In the infrared we find trajectories that correspond to classical general relativity and further show non-classical behaviour in some fluctuation couplings. We also find signatures for the apparent convergence of the systematic vertex expansion. This opens a promising path towards establishing asymptotically safe gravity in terms of apparent convergence.
Kovacs, Eva; Strobl, Ralf; Phillips, Amanda; Stephan, Anna-Janina; Müller, Martin; Gensichen, Jochen; Grill, Eva
2018-05-04
As clinical practice guidelines represent the most important evidence-based decision support tool, several strategies have been applied to improve their implementation into the primary health care system. This study aimed to evaluate the effect of intervention methods on the guideline adherence of primary care providers (PCPs). The studies selected through a systematic search in Medline and Embase were categorised according to intervention schemes and outcome indicator categories. Harvest plots and forest plots were applied to integrate results. The 36 studies covered six intervention schemes, with single interventions being the most effective and distribution of materials the least. The harvest plot displayed 27 groups having no effect, 14 a moderate and 21 a strong effect on the outcome indicators in the categories of knowledge transfer, diagnostic behaviour, prescription, counselling and patient-level results. The forest plot revealed a moderate overall effect size of 0.22 [0.15, 0.29] where single interventions were more effective (0.27 [0.17, 0.38]) than multifaceted interventions (0.13 [0.06, 0.19]). Guideline implementation strategies are heterogeneous. Reducing the complexity of strategies and tailoring to the local conditions and PCPs' needs may improve implementation and clinical practice.
Raja, Muhammad Asif Zahoor; Zameer, Aneela; Khan, Aziz Ullah; Wazwaz, Abdul Majid
2016-01-01
In this study, a novel bio-inspired computing approach is developed to analyze the dynamics of nonlinear singular Thomas-Fermi equation (TFE) arising in potential and charge density models of an atom by exploiting the strength of finite difference scheme (FDS) for discretization and optimization through genetic algorithms (GAs) hybrid with sequential quadratic programming. The FDS procedures are used to transform the TFE differential equations into a system of nonlinear equations. A fitness function is constructed based on the residual error of constituent equations in the mean square sense and is formulated as the minimization problem. Optimization of parameters for the system is carried out with GAs, used as a tool for viable global search integrated with SQP algorithm for rapid refinement of the results. The design scheme is applied to solve TFE for five different scenarios by taking various step sizes and different input intervals. Comparison of the proposed results with the state of the art numerical and analytical solutions reveals that the worth of our scheme in terms of accuracy and convergence. The reliability and effectiveness of the proposed scheme are validated through consistently getting optimal values of statistical performance indices calculated for a sufficiently large number of independent runs to establish its significance.
R&D incentives for neglected diseases.
Dimitri, Nicola
2012-01-01
Neglected diseases are typically characterized as those for which adequate drug treatment is lacking, and the potential return on effort in research and development (R&D), to produce new therapies, is too small for companies to invest significant resources in the field. In recent years various incentives schemes to stimulate R&D by pharmaceutical firms have been considered. Broadly speaking, these can be classified either as 'push' or 'pull' programs. Hybrid options, that include push and pull incentives, have also become increasingly popular. Supporters and critics of these various incentive schemes have argued in favor of their relative merits and limitations, although the view that no mechanism is a perfect fit for all situations appears to be widely held. For this reason, the debate on the advantages and disadvantages of different approaches has been important for policy decisions, but is dispersed in a variety of sources. With this in mind, the aim of this paper is to contribute to the understanding of the economic determinants behind R&D investments for neglected diseases by comparing the relative strength of different incentive schemes within a simple economic model, based on the assumption of profit maximizing firms. The analysis suggests that co-funded push programs are generally more efficient than pure pull programs. However, by setting appropriate intermediate goals hybrid incentive schemes could further improve efficiency.
The experience of Ghana in implementing a user fee exemption policy to provide free delivery care.
Witter, Sophie; Arhinful, Daniel Kojo; Kusi, Anthony; Zakariah-Akoto, Sawudatu
2007-11-01
In resource-poor countries, the high cost of user fees for deliveries limits access to skilled attendance, and contributes to maternal and neonatal mortality and the impoverishment of vulnerable households. A growing number of countries are experimenting with different approaches to tackling financial barriers to maternal health care. This paper describes an innovative scheme introduced in Ghana in 2003 to exempt all pregnant women from payments for delivery, in which public, mission and private providers could claim back lost user fee revenues, according to an agreed tariff. The paper presents part of the findings of an evaluation of the policy based on interviews with 65 key informants in the health system at national, regional, district and facility level, including policymakers, managers and providers. The exemption mechanism was well accepted and appropriate, but there were important problems with disbursing and sustaining the funding, and with budgeting and management. Staff workloads increased as more women attended, and levels of compensation for services and staff were important to the scheme's acceptance. At the end of 2005, a national health insurance scheme, intended to include full maternal health care cover, was starting up in Ghana, and it was not yet clear how the exemptions scheme would fit into it.
Development of Three-Dimensional DRAGON Grid Technology
NASA Technical Reports Server (NTRS)
Zheng, Yao; Kiou, Meng-Sing; Civinskas, Kestutis C.
1999-01-01
For a typical three dimensional flow in a practical engineering device, the time spent in grid generation can take 70 percent of the total analysis effort, resulting in a serious bottleneck in the design/analysis cycle. The present research attempts to develop a procedure that can considerably reduce the grid generation effort. The DRAGON grid, as a hybrid grid, is created by means of a Direct Replacement of Arbitrary Grid Overlapping by Nonstructured grid. The DRAGON grid scheme is an adaptation to the Chimera thinking. The Chimera grid is a composite structured grid, composing a set of overlapped structured grids, which are independently generated and body-fitted. The grid is of high quality and amenable for efficient solution schemes. However, the interpolation used in the overlapped region between grids introduces error, especially when a sharp-gradient region is encountered. The DRAGON grid scheme is capable of completely eliminating the interpolation and preserving the conservation property. It maximizes the advantages of the Chimera scheme and adapts the strengths of the unstructured and while at the same time keeping its weaknesses minimal. In the present paper, we describe the progress towards extending the DRAGON grid technology into three dimensions. Essential and programming aspects of the extension, and new challenges for the three-dimensional cases, are addressed.
Chromatic effect in a novel THz generation scheme
NASA Astrophysics Data System (ADS)
Li, Bin; Zhang, Wenyan; Liu, Xiaoqing; Deng, Haixiao; Lan, Taihe; Liu, Bo; Liu, Jia; Wang, Xingtao; Zeng, Zhinan; Zhang, Lijian
2017-11-01
Deriving single or few cycle terahertz (THz) pulse by an intense femtosecond laser through cascaded optical rectification is a crucial technique in cutting-edge time-resolved spectroscopy to characterize micro-scale structures and ultrafast dynamics. Due to the broadband nature of the ultrafast driving laser, the chromatic effect limits the THz conversion efficiency in optical rectification crystals, especially for those implementing the pulse-front tilt scheme, e.g. lithium niobate (LN) crystal, has been prevalently used in the past decade. In this research we developed a brand new type of LN crystal utilizing Brewster coupling, and conducted systematically experimental and simulative investigation for the chromatic effect and multi-dimensionally entangled parameters in THz generation, predicting that an extreme conversion efficiency of ˜10% would be potentially achievable at the THz absorption coefficient of ˜0.5 cm-1. Moreover, we first discovered that the chirp of the driving laser plays a decisive role in the pulse-front tilt scheme, and the THz generation efficiency could be enhanced tremendously by applying an appropriate chirp.
An Investigation of Wave Propagations in Discontinuous Galerkin Method
NASA Technical Reports Server (NTRS)
Hu, Fang Q.
2004-01-01
Analysis of the discontinuous Galerkin method has been carried out for one- and two-dimensional system of hyperbolic equations. Analytical, as well as numerical, properties of wave propagation in a DGM scheme are derived and verified with direct numerical simulations. In addition to a systematic examination of the dissipation and dispersion errors, behaviours of a DG scheme at an interface of two different grid topologies are also studied. Under the same framework, a quantitative discrete analysis of various artificial boundary conditions is also conducted. Progress has been made in numerical boundary condition treatment that is closely related to the application of DGM in aeroacoustics problems. Finally, Fourier analysis of DGM for the Convective diffusion equation has also be studied in connection with the application of DG schemes for the Navier-Stokes equations. This research has resulted in five(5) publications, plus one additional manuscript in preparation, four(4) conference presentations, and three(3) departmental seminars, as summarized in part II. Abstracts of papers are given in part 111 of this report.
Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten
2016-08-09
The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.
A class of high resolution explicit and implicit shock-capturing methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1989-01-01
An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.
Quantum gates by inverse engineering of a Hamiltonian
NASA Astrophysics Data System (ADS)
Santos, Alan C.
2018-01-01
Inverse engineering of a Hamiltonian (IEH) from an evolution operator is a useful technique for the protocol of quantum control with potential applications in quantum information processing. In this paper we introduce a particular protocol to perform IEH and we show how this scheme can be used to implement a set of quantum gates by using minimal quantum resources (such as entanglement, interactions between more than two qubits or auxiliary qubits). Remarkably, while previous protocols request three-qubit interactions and/or auxiliary qubits to implement such gates, our protocol requires just two-qubit interactions and no auxiliary qubits. By using this approach we can obtain a large class of Hamiltonians that allow us to implement single and two-qubit gates necessary for quantum computation. To conclude this article we analyze the performance of our scheme against systematic errors related to amplitude noise, where we show that the free parameters introduced in our scheme can be useful for enhancing the robustness of the protocol against such errors.
Data quality enhancement and knowledge discovery from relevant signals in acoustic emission
NASA Astrophysics Data System (ADS)
Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio
2015-10-01
The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.
NASA Technical Reports Server (NTRS)
Koch, Steven E.; Mcqueen, Jeffery T.
1987-01-01
A survey of various one- and two-way interactive nested grid techniques used in hydrostatic numerical weather prediction models is presented and the advantages and disadvantages of each method are discussed. The techniques for specifying the lateral boundary conditions for each nested grid scheme are described in detail. Averaging and interpolation techniques used when applying the coarse mesh grid (CMG) and fine mesh grid (FMG) interface conditions during two-way nesting are discussed separately. The survey shows that errors are commonly generated at the boundary between the CMG and FMG due to boundary formulation or specification discrepancies. Methods used to control this noise include application of smoothers, enhanced diffusion, or damping-type time integration schemes to model variables. The results from this survey provide the information needed to decide which one-way and two-way nested grid schemes merit future testing with the Mesoscale Atmospheric Simulation System (MASS) model. An analytically specified baroclinic wave will be used to conduct systematic tests of the chosen schemes since this will allow for objective determination of the interfacial noise in the kind of meteorological setting for which MASS is designed. Sample diagnostic plots from initial tests using the analytic wave are presented to illustrate how the model-generated noise is ascertained. These plots will be used to compare the accuracy of the various nesting schemes when incorporated into the MASS model.
Similar and yet so different: cash-for-care in six European countries' long-term care policies.
Da Roit, Barbara; Le Bihan, Blanche
2010-09-01
In response to increasing care needs, the reform or development of long-term care (LTC) systems has become a prominent policy issue in all European countries. Cash-for-care schemes-allowances instead of services provided to dependents-represent a key policy aimed at ensuring choice, fostering family care, developing care markets, and containing costs. A detailed analysis of policy documents and regulations, together with a systematic review of existing studies, was used to investigate the differences among six European countries (Austria, France, Germany, Italy, the Netherlands, and Sweden). The rationale and evolution of their various cash-for-care schemes within the framework of their LTC systems also were explored. While most of the literature present cash-for-care schemes as a common trend in the reforms that began in the 1990s and often treat them separately from the overarching LTC policies, this article argues that the policy context, timing, and specific regulation of the new schemes have created different visions of care and care work that in turn have given rise to distinct LTC configurations. A new typology of long-term care configurations is proposed based on the inclusiveness of the system, the role of cash-for-care schemes and their specific regulations, as well as the views of informal care and the care work that they require. © 2010 Milbank Memorial Fund. Published by Wiley Periodicals Inc.
NASA Astrophysics Data System (ADS)
Peishu, Zong; Jianping, Tang; Shuyu, Wang; Lingyun, Xie; Jianwei, Yu; Yunqian, Zhu; Xiaorui, Niu; Chao, Li
2017-08-01
The parameterization of physical processes is one of the critical elements to properly simulate the regional climate over eastern China. It is essential to conduct detailed analyses on the effect of physical parameterization schemes on regional climate simulation, to provide more reliable regional climate change information. In this paper, we evaluate the 25-year (1983-2007) summer monsoon climate characteristics of precipitation and surface air temperature by using the regional spectral model (RSM) with different physical schemes. The ensemble results using the reliability ensemble averaging (REA) method are also assessed. The result shows that the RSM model has the capacity to reproduce the spatial patterns, the variations, and the temporal tendency of surface air temperature and precipitation over eastern China. And it tends to predict better climatology characteristics over the Yangtze River basin and the South China. The impact of different physical schemes on RSM simulations is also investigated. Generally, the CLD3 cloud water prediction scheme tends to produce larger precipitation because of its overestimation of the low-level moisture. The systematic biases derived from the KF2 cumulus scheme are larger than those from the RAS scheme. The scale-selective bias correction (SSBC) method improves the simulation of the temporal and spatial characteristics of surface air temperature and precipitation and advances the circulation simulation capacity. The REA ensemble results show significant improvement in simulating temperature and precipitation distribution, which have much higher correlation coefficient and lower root mean square error. The REA result of selected experiments is better than that of nonselected experiments, indicating the necessity of choosing better ensemble samples for ensemble.
Secure Obfuscation for Encrypted Group Signatures
Fan, Hongfei; Liu, Qin
2015-01-01
In recent years, group signature techniques are widely used in constructing privacy-preserving security schemes for various information systems. However, conventional techniques keep the schemes secure only in normal black-box attack contexts. In other words, these schemes suppose that (the implementation of) the group signature generation algorithm is running in a platform that is perfectly protected from various intrusions and attacks. As a complementary to existing studies, how to generate group signatures securely in a more austere security context, such as a white-box attack context, is studied in this paper. We use obfuscation as an approach to acquire a higher level of security. Concretely, we introduce a special group signature functionality-an encrypted group signature, and then provide an obfuscator for the proposed functionality. A series of new security notions for both the functionality and its obfuscator has been introduced. The most important one is the average-case secure virtual black-box property w.r.t. dependent oracles and restricted dependent oracles which captures the requirement of protecting the output of the proposed obfuscator against collision attacks from group members. The security notions fit for many other specialized obfuscators, such as obfuscators for identity-based signatures, threshold signatures and key-insulated signatures. Finally, the correctness and security of the proposed obfuscator have been proven. Thereby, the obfuscated encrypted group signature functionality can be applied to variants of privacy-preserving security schemes and enhance the security level of these schemes. PMID:26167686
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Arnold, S. M.
1991-01-01
The issue of developing effective and robust schemes to implement a class of the Ogden-type hyperelastic constitutive models is addressed. To this end, explicit forms for the corresponding material tangent stiffness tensors are developed, and these are valid for the entire deformation range; i.e., with both distinct as well as repeated principal-stretch values. Throughout the analysis the various implications of the underlying property of separability of the strain-energy functions are exploited, thus leading to compact final forms of the tensor expressions. In particular, this facilitated the treatment of complex cases of uncoupled volumetric/deviatoric formulations for incompressible materials. The forms derived are also amenable for use with symbolic-manipulation packages for systematic code generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childs, Andrew M.; Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Leung, Debbie W.
We present unified, systematic derivations of schemes in the two known measurement-based models of quantum computation. The first model (introduced by Raussendorf and Briegel, [Phys. Rev. Lett. 86, 5188 (2001)]) uses a fixed entangled state, adaptive measurements on single qubits, and feedforward of the measurement results. The second model (proposed by Nielsen, [Phys. Lett. A 308, 96 (2003)] and further simplified by Leung, [Int. J. Quant. Inf. 2, 33 (2004)]) uses adaptive two-qubit measurements that can be applied to arbitrary pairs of qubits, and feedforward of the measurement results. The underlying principle of our derivations is a variant of teleportationmore » introduced by Zhou, Leung, and Chuang, [Phys. Rev. A 62, 052316 (2000)]. Our derivations unify these two measurement-based models of quantum computation and provide significantly simpler schemes.« less
Hadron physics through asymptotic SU(3) and the chiral SU(3) x SU(3) algebra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oneda, S.; Matsuda, S.; Perlmutter, A.
From Coral Gables conference on fundamental interactions for theoretical studies; Coral Gables, Florida, USA (22 Jan 1973). See CONF-730124-. The inter- SU(3)-multiplet regularities and clues to a possible level scheme of hadrons are studied in a systematic way. The hypothesis of asymptotic SU(3) is made in the presence of GMO mass splittings with mixing, which allows information to be extracted from the chiral SU(3) x SU(3) charge algebras and from the exotic commutation relations. For the ground states the schemes obtained are compatible with those of the SU(6) x O(3) classification. Sum rules are obtained which recover most of themore » good results of SU(6). (LBS)« less
Memory Effects and Nonequilibrium Correlations in the Dynamics of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Morozov, V. G.
2018-01-01
We propose a systematic approach to the dynamics of open quantum systems in the framework of Zubarev's nonequilibrium statistical operator method. The approach is based on the relation between ensemble means of the Hubbard operators and the matrix elements of the reduced statistical operator of an open quantum system. This key relation allows deriving master equations for open systems following a scheme conceptually identical to the scheme used to derive kinetic equations for distribution functions. The advantage of the proposed formalism is that some relevant dynamical correlations between an open system and its environment can be taken into account. To illustrate the method, we derive a non-Markovian master equation containing the contribution of nonequilibrium correlations associated with energy conservation.
HERAFitter: Open source QCD fit project
Alekhin, S.; Behnke, O.; Belov, P.; ...
2015-07-01
HERAFitter is an open-source package that provides a framework for the determination of the parton distribution functions (PDFs) of the proton and for many different kinds of analyses in Quantum Chromodynamics (QCD). It encodes results from a wide range of experimental measurements in lepton-proton deep inelastic scattering and proton-proton (proton-antiproton) collisions at hadron colliders. These are complemented with a variety of theoretical options for calculating PDF-dependent cross section predictions corresponding to the measurements. The framework covers a large number of the existing methods and schemes used for PDF determination. The data and theoretical predictions are brought together through numerous methodologicalmore » options for carrying out PDF fits and plotting tools to help visualise the results. While primarily based on the approach of collinear factorisation, HERAFitter also provides facilities for fits of dipole models and transverse-momentum dependent PDFs. The package can be used to study the impact of new precise measurements from hadron colliders. This paper describes the general structure of HERAFitter and its wide choice of options.« less
NASA Technical Reports Server (NTRS)
Daywitt, J.; Kutler, P.; Anderson, D.
1977-01-01
The technique of floating shock fitting is adapted to the computation of the inviscid flowfield about circular cones in a supersonic free stream at angles of attack that exceed the cone half-angle. The resulting equations are applicable over the complete range of free-stream Mach numbers, angles of attack and cone half-angles for which the bow shock is attached. A finite difference algorithm is used to obtain the solution by an unsteady relaxation approach. The bow shock, embedded cross-flow shock, and vortical singularity in the leeward symmetry plane are treated as floating discontinuities in a fixed computational mesh. Where possible, the flowfield is partitioned into windward, shoulder, and leeward regions with each region computed separately to achieve maximum computational efficiency. An alternative shock fitting technique which treats the bow shock as a computational boundary is developed and compared with the floating-fitting approach. Several surface boundary condition schemes are also analyzed.
Novoderezhkin, Vladimir I.; Dekker, Jan P.; van Grondelle, Rienk
2007-01-01
We propose an exciton model for the Photosystem II reaction center (RC) based on a quantitative simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, triplet-minus-singlet, and Stark spectra together with the spectra of pheophytin-modified RCs, and so-called RC5 complexes that lack one of the peripheral chlorophylls. In this model, the excited state manifold includes a primary charge-transfer (CT) state that is supposed to be strongly mixed with the pure exciton states. We generalize the exciton theory of Stark spectra by 1), taking into account the coupling to a CT state (whose static dipole cannot be treated as a small parameter in contrast to usual excited states); and 2), expressing the line shape functions in terms of the modified Redfield approach (the same as used for modeling of the linear responses). This allows a consistent modeling of the whole set of experimental data using a unified physical picture. We show that the fluorescence and Stark spectra are extremely sensitive to the assignment of the primary CT state, its energy, and coupling to the excited states. The best fit of the data is obtained supposing that the initial charge separation occurs within the special-pair PD1PD2. Additionally, the scheme with primary electron transfer from the accessory chlorophyll to pheophytin gave a reasonable quantitative fit. We show that the effectiveness of these two pathways is strongly dependent on the realization of the energetic disorder. Supposing a mixed scheme of primary charge separation with a disorder-controlled competition of the two channels, we can explain the coexistence of fast sub-ps and slow ps components of the Phe-anion formation as revealed by different ultrafast spectroscopic techniques. PMID:17526589
VizieR Online Data Catalog: EBHIS spectra and HI column density maps (Winkel+, 2016)
NASA Astrophysics Data System (ADS)
Winkel, B.; Kerp, J.; Floeer, L.; Kalberla, P. M. W.; Ben Bekhti, N.; Keller, R.; Lenz, D.
2015-11-01
The EBHIS 1st data release comprises 21-cm neutral atomic hydrogen data of the Milky Way (-600km/s
Invertebrate iridoviruses: A glance over the last decade
USDA-ARS?s Scientific Manuscript database
Iridovirus is a genus of large dsDNA viruses that predominantly infects both invertebrate and vertebrate ectotherms and whose symptoms range in severity from minor reductions in fitness to systematic disease and large-scale mortality. Several characteristics have been useful for taxonomically classi...
Tsirogiannis, Panagiotis; Reissmann, Daniel R; Heydecke, Guido
2016-09-01
In existing published reports, some studies indicate the superiority of digital impression systems in terms of the marginal accuracy of ceramic restorations, whereas others show that the conventional method provides restorations with better marginal fit than fully digital fabrication. Which impression method provides the lowest mean values for marginal adaptation is inconclusive. The findings from those studies cannot be easily generalized, and in vivo studies that could provide valid and meaningful information are limited in the existing publications. The purpose of this study was to systematically review existing reports and evaluate the marginal fit of ceramic single-tooth restorations after either digital or conventional impression methods by combining the available evidence in a meta-analysis. The search strategy for this systematic review of the publications was based on a Population, Intervention, Comparison, and Outcome (PICO) framework. For the statistical analysis, the mean marginal fit values of each study were extracted and categorized according to the impression method to calculate the mean value, together with the 95% confidence intervals (CI) of each category, and to evaluate the impact of each impression method on the marginal adaptation by comparing digital and conventional techniques separately for in vitro and in vivo studies. Twelve studies were included in the meta-analysis from the 63 identified records after database searching. For the in vitro studies, where ceramic restorations were fabricated after conventional impressions, the mean value of the marginal fit was 58.9 μm (95% CI: 41.1-76.7 μm), whereas after digital impressions, it was 63.3 μm (95% CI: 50.5-76.0 μm). In the in vivo studies, the mean marginal discrepancy of the restorations after digital impressions was 56.1 μm (95% CI: 46.3-65.8 μm), whereas after conventional impressions, it was 79.2 μm (95% CI: 59.6-98.9 μm) No significant difference was observed regarding the marginal discrepancy of single-unit ceramic restorations fabricated after digital or conventional impressions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Shengling; Cui, Yong; Koodli, Rajeev; Hou, Yibin; Huang, Zhangqin
Due to the dynamics of topology and resources, Call Admission Control (CAC) plays a significant role for increasing resource utilization ratio and guaranteeing users' QoS requirements in wireless/mobile networks. In this paper, a dynamic multi-threshold CAC scheme is proposed to serve multi-class service in a wireless/mobile network. The thresholds are renewed at the beginning of each time interval to react to the changing mobility rate and network load. To find suitable thresholds, a reward-penalty model is designed, which provides different priorities between different service classes and call types through different reward/penalty policies according to network load and average call arrival rate. To speed up the running time of CAC, an Optimized Genetic Algorithm (OGA) is presented, whose components such as encoding, population initialization, fitness function and mutation etc., are all optimized in terms of the traits of the CAC problem. The simulation demonstrates that the proposed CAC scheme outperforms the similar schemes, which means the optimization is realized. Finally, the simulation shows the efficiency of OGA.
NASA Astrophysics Data System (ADS)
Omar, M. A.; Parvataneni, R.; Zhou, Y.
2010-09-01
Proposed manuscript describes the implementation of a two step processing procedure, composed of the self-referencing and the Principle Component Thermography (PCT). The combined approach enables the processing of thermograms from transient (flash), steady (halogen) and selective (induction) thermal perturbations. Firstly, the research discusses the three basic processing schemes typically applied for thermography; namely mathematical transformation based processing, curve-fitting processing, and direct contrast based calculations. Proposed algorithm utilizes the self-referencing scheme to create a sub-sequence that contains the maximum contrast information and also compute the anomalies' depth values. While, the Principle Component Thermography operates on the sub-sequence frames by re-arranging its data content (pixel values) spatially and temporally then it highlights the data variance. The PCT is mainly used as a mathematical mean to enhance the defects' contrast thus enabling its shape and size retrieval. The results show that the proposed combined scheme is effective in processing multiple size defects in sandwich steel structure in real-time (<30 Hz) and with full spatial coverage, without the need for a priori defect-free area.
NASA Astrophysics Data System (ADS)
Miller, V. M.; Semiatin, S. L.; Szczepanski, C.; Pilchak, A. L.
2018-06-01
The ability to predict the evolution of crystallographic texture during hot work of titanium alloys in the α + β temperature regime is greatly significant to numerous engineering disciplines; however, research efforts are complicated by the rapid changes in phase volume fractions and flow stresses with temperature in addition to topological considerations. The viscoplastic self-consistent (VPSC) polycrystal plasticity model is employed to simulate deformation in the two phase field. Newly developed parameter selection schemes utilizing automated optimization based on two different error metrics are considered. In the first optimization scheme, which is commonly used in the literature, the VPSC parameters are selected based on the quality of fit between experiment and simulated flow curves at six hot-working temperatures. Under the second newly developed scheme, parameters are selected to minimize the difference between the simulated and experimentally measured α textures after accounting for the β → α transformation upon cooling. It is demonstrated that both methods result in good qualitative matches for the experimental α phase texture, but texture-based optimization results in a substantially better quantitative orientation distribution function match.
Aesthetic issues in spatial composition: representational fit and the role of semantic context.
Sammartino, Jonathan; Palmer, Stephen E
2012-01-01
Previous research on aesthetic preference for spatial compositions has shown robust, systematic preferences for object locations within frames and for object perspectives. In the present experiment, we show that these preferences can be dramatically altered by changing the contextual meaning of an image through pairing it with different titles, as predicted by a theoretical account in terms of "representational fit". People prefer standard (default) compositions with a neutral title that merely describes the content of the picture (eg side-view of a plane with the title "Flying") but nonstandard compositions when they "fit" a title with compatible spatial implications (eg rear-view of a plane with the title "Departing"). The results are discussed in terms of their implications for theories based on representational fit versus perceptual and conceptual fluency and with their implications for classic aesthetic accounts in terms of preference for novelty through violating expectations.
He I lines in B stars - Comparison of non-local thermodynamic equilibrium models with observations
NASA Technical Reports Server (NTRS)
Heasley, J. N.; Timothy, J. G.; Wolff, S. C.
1982-01-01
Profiles of He gamma-gamma 4026, 4387, 4471, 4713, 5876, and 6678 have been obtained in 17 stars of spectral type B0-B5. Parameters of the nonlocal thermodynamic equilibrium models appropriate to each star are determined from the Stromgren index and fits to H-alpha line profiles. These parameters yield generally good fits to the observed He I line profiles, with the best fits being found for the blue He I lines where departures from local thermodynamic equilibrium are relatively small. For the two red lines it is found that, in the early B stars and in stars with log g less than 3.5, both lines are systematically stronger than predicted by the nonlocal thermodynamic equilibrium models.