Science.gov

Sample records for systemic dystrophin splice

  1. Optimization of peptide nucleic acid antisense oligonucleotides for local and systemic dystrophin splice correction in the mdx mouse.

    PubMed

    Yin, HaiFang; Betts, Corinne; Saleh, Amer F; Ivanova, Gabriela D; Lee, Hyunil; Seow, Yiqi; Kim, Dalsoo; Gait, Michael J; Wood, Matthew J A

    2010-04-01

    Antisense oligonucleotides (AOs) have the capacity to alter the processing of pre-mRNA transcripts in order to correct the function of aberrant disease-related genes. Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle degenerative disease that arises from mutations in the DMD gene leading to an absence of dystrophin protein. AOs have been shown to restore the expression of functional dystrophin via splice correction by intramuscular and systemic delivery in animal models of DMD and in DMD patients via intramuscular administration. Major challenges in developing this splice correction therapy are to optimize AO chemistry and to develop more effective systemic AO delivery. Peptide nucleic acid (PNA) AOs are an alternative AO chemistry with favorable in vivo biochemical properties and splice correcting abilities. Here, we show long-term splice correction of the DMD gene in mdx mice following intramuscular PNA delivery and effective splice correction in aged mdx mice. Further, we report detailed optimization of systemic PNA delivery dose regimens and PNA AO lengths to yield splice correction, with 25-mer PNA AOs providing the greatest splice correcting efficacy, restoring dystrophin protein in multiple peripheral muscle groups. PNA AOs therefore provide an attractive candidate AO chemistry for DMD exon skipping therapy.

  2. Modulation of splicing of the preceding intron by antisense oligonucleotide complementary to intra-exon sequence deleted in dystrophin Kobe

    SciTech Connect

    Takeshima, Y.; Matuso, M.; Sakamoto, H.; Nishio, H.

    1994-09-01

    Molecular analysis of dystrophin Kobe showed that exon 19 of the dystrophin gene bearing a 52 bp deletion was skipped during splicing, although the known consensus sequences at the 5{prime} and 3{prime} splice site of exon 19 were maintained. These data suggest that the deleted sequence of exon 19 may function as a cis-acting factor for exact splicing for the upstream intron. To investigate this potential role, an in vitro splicing system using dystrophin precursors was established. A two-exon precursor containing exon 18, truncated intron 18, and exon 19 was accurately spliced. However, splicing of intron 18 was dramatically inhibited when wild exon 19 was replaced with mutated exon 19. Even though the length of exon 19 was restored to normal by replacing the deleted sequence with other sequence, splicing of intron 18 was not fully reactivated. Characteristically, splicing of intron 18 was inactivated more markedly when the replaced sequence contained less polypurine stretches. These data suggested that modification of the exon sequence would result in a splicing abnormality. Antisense 31 mer 2`-O-methyl ribonucleotide was targeted against 5{prime} end of deleted region of exon 19 to modulate splicing of the mRNA precursor. Splicing of intron 18 was inhibited in a dose- and time-dependent manner. This is the first in vitro evidence to show splicing of dystrophin pre-mRNA can be managed by antisense oligonucleotides. These experiments represent an approach in which antisense oligonucleotides are used to restore the function of a defective dystrophin gene in Duchenne muscular dystrophy by inducing skipping of certain exons during splicing.

  3. Antisense suppression of donor splice site mutations in the dystrophin gene transcript

    PubMed Central

    Fletcher, Sue; Meloni, Penny L; Johnsen, Russell D; Wong, Brenda L; Muntoni, Francesco; Wilton, Stephen D

    2013-01-01

    We describe two donor splice site mutations, affecting dystrophin exons 16 and 45 that led to Duchenne muscular dystrophy (DMD), through catastrophic inactivation of the mRNA. These gene lesions unexpectedly resulted in the retention of the downstream introns, thereby increasing the length of the dystrophin mRNA by 20.2 and 36 kb, respectively. Splice-switching antisense oligomers targeted to exon 16 excised this in-frame exon and the following intron from the patient dystrophin transcript very efficiently in vitro, thereby restoring the reading frame and allowing synthesis of near-normal levels of a putatively functional dystrophin isoform. In contrast, targeting splice-switching oligomers to exon 45 in patient cells promoted only modest levels of an out-of-frame dystrophin transcript after transfection at high oligomer concentrations, whereas dual targeting of exons 44 and 45 or 45 and 46 resulted in more efficient exon skipping, with concomitant removal of intron 45. The splice site mutations reported here appear highly amenable to antisense oligomer intervention. We suggest that other splice site mutations may need to be evaluated for oligomer interventions on a case-by-case basis. PMID:24498612

  4. Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice.

    PubMed

    Koo, Taeyoung; Popplewell, Linda; Athanasopoulos, Takis; Dickson, George

    2014-02-01

    Recombinant adeno-associated virus (rAAV) vectors have been shown to permit very efficient widespread transgene expression in skeletal muscle after systemic delivery, making these increasingly attractive as vectors for Duchenne muscular dystrophy (DMD) gene therapy. DMD is a severe muscle-wasting disorder caused by DMD gene mutations leading to complete loss of dystrophin protein. One of the major issues associated with delivery of the DMD gene, as a therapeutic approach for DMD, is its large open reading frame (ORF; 11.1 kb). A series of truncated microdystrophin cDNAs (delivered via a single AAV) and minidystrophin cDNAs (delivered via dual-AAV trans-spliced/overlapping reconstitution) have thus been extensively tested in DMD animal models. However, critical rod and hinge domains of dystrophin required for interaction with components of the dystrophin-associated protein complex, such as neuronal nitric oxide synthase, syntrophin, and dystrobrevin, are missing; these dystrophin domains may still need to be incorporated to increase dystrophin functionality and stabilize membrane rigidity. Full-length DMD gene delivery using AAV vectors remains elusive because of the limited single-AAV packaging capacity (4.7 kb). Here we developed a novel method for the delivery of the full-length DMD coding sequence to skeletal muscles in dystrophic mdx mice using a triple-AAV trans-splicing vector system. We report for the first time that three independent AAV vectors carrying "in tandem" sequential exonic parts of the human DMD coding sequence enable the expression of the full-length protein as a result of trans-splicing events cojoining three vectors via their inverted terminal repeat sequences. This method of triple-AAV-mediated trans-splicing could be applicable to the delivery of any large therapeutic gene (≥11 kb ORF) into postmitotic tissues (muscles or neurons) for the treatment of various inherited metabolic and genetic diseases.

  5. Dystrophin rescue by trans-splicing: a strategy for DMD genotypes not eligible for exon skipping approaches.

    PubMed

    Lorain, Stéphanie; Peccate, Cécile; Le Hir, Maëva; Griffith, Graziella; Philippi, Susanne; Précigout, Guillaume; Mamchaoui, Kamel; Jollet, Arnaud; Voit, Thomas; Garcia, Luis

    2013-09-01

    RNA-based therapeutic approaches using splice-switching oligonucleotides have been successfully applied to rescue dystrophin in Duchenne muscular dystrophy (DMD) preclinical models and are currently being evaluated in DMD patients. Although the modular structure of dystrophin protein tolerates internal deletions, many mutations that affect nondispensable domains of the protein require further strategies. Among these, trans-splicing technology is particularly attractive, as it allows the replacement of any mutated exon by its normal version as well as introducing missing exons or correcting duplication mutations. We have applied such a strategy in vitro by using cotransfection of pre-trans-splicing molecule (PTM) constructs along with a reporter minigene containing part of the dystrophin gene harboring the stop-codon mutation found in the mdx mouse model of DMD. Optimization of the different functional domains of the PTMs allowed achieving accurate and efficient trans-splicing of up to 30% of the transcript encoded by the cotransfected minigene. Optimized parameters included mRNA stabilization, choice of splice site sequence, inclusion of exon splice enhancers and artificial intronic sequence. Intramuscular delivery of adeno-associated virus vectors expressing PTMs allowed detectable levels of dystrophin in mdx and mdx4Cv, illustrating that a given PTM can be suitable for a variety of mutations.

  6. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    PubMed Central

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-01-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  7. Nested introns in an intron: evidence of multi-step splicing in a large intron of the human dystrophin pre-mRNA.

    PubMed

    Suzuki, Hitoshi; Kameyama, Toshiki; Ohe, Kenji; Tsukahara, Toshifumi; Mayeda, Akila

    2013-03-18

    The mechanisms by which huge human introns are spliced out precisely are poorly understood. We analyzed large intron 7 (110199 nucleotides) generated from the human dystrophin (DMD) pre-mRNA by RT-PCR. We identified branching between the authentic 5' splice site and the branch point; however, the sequences far from the branch site were not detectable. This RT-PCR product was resistant to exoribonuclease (RNase R) digestion, suggesting that the detected lariat intron has a closed loop structure but contains gaps in its sequence. Transient and concomitant generation of at least two branched fragments from nested introns within large intron 7 suggests internal nested splicing events before the ultimate splicing at the authentic 5' and 3' splice sites. Nested splicing events, which bring the authentic 5' and 3' splice sites into close proximity, could be one of the splicing mechanisms for the extremely large introns.

  8. Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Δ48-50 DMD cells

    PubMed Central

    De Angelis, Fernanda Gabriella; Sthandier, Olga; Berarducci, Barbara; Toso, Silvia; Galluzzi, Giuliana; Ricci, Enzo; Cossu, Giulio; Bozzoni, Irene

    2002-01-01

    Deletions and point mutations in the dystrophin gene cause either the severe progressive myopathy Duchenne muscular dystrophy (DMD) or the milder Becker muscular dystrophy, depending on whether the translational reading frame is lost or maintained. Because internal in-frame deletions in the protein produce only mild myopathic symptoms, it should be possible, by preventing the inclusion of specific mutated exon(s) in the mature dystrophin mRNA, to restore a partially corrected phenotype. Such control has been previously accomplished by the use of synthetic oligonucleotides; nevertheless, a significant drawback to this approach is caused by the fact that oligonucleotides would require periodic administrations. To circumvent this problem, we have produced several constructs able to express in vivo, in a stable fashion, large amounts of chimeric RNAs containing antisense sequences. In this paper we show that antisense molecules against exon 51 splice junctions are able to direct skipping of this exon in the human DMD deletion 48–50 and to rescue dystrophin synthesis. We also show that the highest skipping activity was found when antisense constructs against the 5′ and 3′ splice sites are coexpressed in the same cell. PMID:12077324

  9. A novel point mutation (G-1 to T) in a 5' splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker muscular dystrophy.

    PubMed Central

    Hagiwara, Y.; Nishio, H.; Kitoh, Y.; Takeshima, Y.; Narita, N.; Wada, H.; Yokoyama, M.; Nakamura, H.; Matsuo, M.

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. We now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5' splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5' splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G-1-to-T mutation at the 5' splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. Images Figure 2 Figure 5 PMID:8279470

  10. A novel point mutation (G[sup [minus]1] to T) in a 5[prime] splice donor site of intron 13 of the dystrophin gene results in exon skipping and is responsible for Becker Muscular Dystrophy

    SciTech Connect

    Hagiwara, Yoko; Nishio, Hisahide; Kitoh, Yoshihiko; Takeshima, Yasuhiro; Narita, Naoko; Wada, Hiroko; Yokoyama, Mitsuhiro; Nakamura, Hajime; Matsuo, Masafumi )

    1994-01-01

    The mutations in one-third of Duchenne and Becker muscular dystrophy patients remain unknown, as they do not involve gross rearrangements of the dystrophin gene. The authors now report a defect in the splicing of precursor mRNA (pre-mRNA), resulting from a maternally inherited mutation of the dystrophin gene in a patient with Becker muscular dystrophy. This defect results from a G-to-T transversion at the terminal nucleotide of exon 13, within the 5[prime] splice site of intron 13, and causes complete skipping of exon 13 during processing of dystrophin pre-mRNA. The predicted polypeptide encoded by the aberrant mRNA is a truncated dystrophin lacking 40 amino acids from the amino-proximal end of the rod domain. This is the first report of an intraexon point mutation that completely inactivates a 5[prime] splice donor site in dystrophin pre-mRNA. Analysis of the genomic context of the G[sup [minus]1]-to-T mutation at the 5[prime] splice site supports the exon-definition model of pre-mRNA splicing and contributes to the understanding of splice-site selection. 48 refs., 5 figs.

  11. Targeted skipping of human dystrophin exons in transgenic mouse model systemically for antisense drug development.

    PubMed

    Wu, Bo; Benrashid, Ehsan; Lu, Peijuan; Cloer, Caryn; Zillmer, Allen; Shaban, Mona; Lu, Qi Long

    2011-01-01

    Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD mouse, a transgenic model carrying the full-length human dystrophin gene, and achieved for the first time more than 70% efficiency of targeted human dystrophin exon skipping in vivo systemically. We also established a GFP-reporter myoblast culture to screen AOs targeting human dystrophin exon 50. Antisense efficiency for most AOs is consistent between the reporter cells, human myoblasts and in the hDMD mice in vivo. However, variation in efficiency was also clearly observed. A combination of in vitro cell culture and a Vivo-Morpholino based evaluation in vivo systemically in the hDMD mice therefore may represent a prudent approach for selecting AO drug and to meet the regulatory requirement.

  12. Dystrophin Dp71 Isoforms Are Differentially Expressed in the Mouse Brain and Retina: Report of New Alternative Splicing and a Novel Nomenclature for Dp71 Isoforms.

    PubMed

    Aragón, Jorge; González-Reyes, Mayram; Romo-Yáñez, José; Vacca, Ophélie; Aguilar-González, Guadalupe; Rendón, Alvaro; Vaillend, Cyrille; Montañez, Cecilia

    2017-01-27

    Multiple dystrophin Dp71 isoforms have been identified in rats, mice, and humans and in several cell line models. These Dp71 isoforms are produced by the alternative splicing of exons 71 to 74 and 78 and intron 77. Three main groups of Dp71 proteins are defined based on their C-terminal specificities: Dp71d, Dp71f, and Dp71e. Dp71 is highly expressed in the brain and retina; however, the specific isoforms present in these tissues have not been determined to date. In this work, we explored the expression of Dp71 isoforms in the mouse brain and retina using RT-PCR assays followed by the cloning of PCR products into the pGEM-T Easy vector, which was used to transform DH5α cells. Dp71-positive colonies were later analyzed by PCR multiplex and DNA sequencing to determine the alternative splicing. We thus demonstrated the expression of Dp71 transcripts corresponding to Dp71, Dp71a, Dp71c, Dp71b, Dp71ab, Dp71 Δ110, and novel Dp71 isoforms spliced in exon 74; 71 and 74; 71, 73 and 74; and 74 and 78, which we named Dp71d Δ74 , Dp71d Δ71,74 , Dp71d Δ71,73-74 , and Dp71f Δ74 , respectively. Additionally, we demonstrated that the Dp71d group of isoforms is highly expressed in the brain, while the Dp71f group predominates in the retina, at both the cDNA and protein levels. These findings suggest that distinct Dp71 isoforms may play different roles in the brain and retina.

  13. The Characterizations of Different Splicing Systems

    NASA Astrophysics Data System (ADS)

    Karimi, Fariba; Sarmin, Nor Haniza; Heng, Fong Wan

    The concept of splicing system was first introduced by Head in 1987 to model the biological process of DNA recombination mathematically. This model was made on the basis of formal language theory which is a branch of applied discrete mathematics and theoretical computer science. In fact, splicing system treats DNA molecule and the recombinant behavior by restriction enzymes and ligases in the form of words and splicing rules respectively. The notion of splicing systems was taken into account from different points of view by many mathematicians. Several modified definitions have been introduced by many researchers. In this paper, some properties of different kinds of splicing systems are presented and their relationships are investigated. Furthermore, these results are illustrated by some examples.

  14. Dystrophin quantification

    PubMed Central

    Anthony, Karen; Arechavala-Gomeza, Virginia; Taylor, Laura E.; Vulin, Adeline; Kaminoh, Yuuki; Torelli, Silvia; Feng, Lucy; Janghra, Narinder; Bonne, Gisèle; Beuvin, Maud; Barresi, Rita; Henderson, Matt; Laval, Steven; Lourbakos, Afrodite; Campion, Giles; Straub, Volker; Voit, Thomas; Sewry, Caroline A.; Morgan, Jennifer E.; Flanigan, Kevin M.

    2014-01-01

    Objective: We formed a multi-institution collaboration in order to compare dystrophin quantification methods, reach a consensus on the most reliable method, and report its biological significance in the context of clinical trials. Methods: Five laboratories with expertise in dystrophin quantification performed a data-driven comparative analysis of a single reference set of normal and dystrophinopathy muscle biopsies using quantitative immunohistochemistry and Western blotting. We developed standardized protocols and assessed inter- and intralaboratory variability over a wide range of dystrophin expression levels. Results: Results from the different laboratories were highly concordant with minimal inter- and intralaboratory variability, particularly with quantitative immunohistochemistry. There was a good level of agreement between data generated by immunohistochemistry and Western blotting, although immunohistochemistry was more sensitive. Furthermore, mean dystrophin levels determined by alternative quantitative immunohistochemistry methods were highly comparable. Conclusions: Considering the biological function of dystrophin at the sarcolemma, our data indicate that the combined use of quantitative immunohistochemistry and Western blotting are reliable biochemical outcome measures for Duchenne muscular dystrophy clinical trials, and that standardized protocols can be comparable between competent laboratories. The methodology validated in our study will facilitate the development of experimental therapies focused on dystrophin production and their regulatory approval. PMID:25355828

  15. Second order limit language in variants of splicing system

    NASA Astrophysics Data System (ADS)

    Ahmad, Muhammad Azrin; Sarmin, Nor Haniza; Heng, Fong Wan; Yusof, Yuhani

    2014-07-01

    The cutting and pasting processes that occur in DNA molecules have led to the formulation of splicing system. Since then, there are few models used to model the splicing system. The splicing language, which is the product of splicing system, can be categorized into two, namely the adult and limit language. In this research, limit language is extended to the second order limit language. Few problems are approached which lead to the formation of second order limit language which is then analyzed using various types of splicing system.

  16. Modeling the Cell Muscle Membrane from Normal and Desmin- or Dystrophin-null Mice as an Elastic System

    NASA Astrophysics Data System (ADS)

    García-Pelagio, Karla P.; Santamaría-Holek, Ivan; Bloch, Robert J.; Ortega, Alicia; González-Serratos, Hugo

    2010-12-01

    Two of the most important proteins linking the contractile apparatus and costameres at the sarcolemma of skeletal muscle fibers are dystrophin and desmin. We have developed an elastic model of the proteins that link the sarcolemma to the myofibrils. This is a distributed model, with an elastic constant, k, that includes the main protein components of the costameres. The distributed spring model is composed of parallel units attached in series. To test the model, we performed experiments in which we applied negative pressure, generated by an elastimeter, to a small area of the sarcolemma from single myofiber. The negative pressure formed a bleb of variable height, dependent on the pressure applied. We normalized our measurements of k in dystrophin-null (mdx) and desmin-null (des-/-) mice to the value we obtained for wild type (WT) mice, which was set at 1.0. The relative experimental value for the stiffness of myofibers from mice lacking dystrophin or desmin was 0.5 and 0.7, respectively. The theoretical k values of the individual elements were obtained using neural networks (NN), in which the input was the k value for each parallel spring component and the output was the solution of each resulting parallel system. We compare the experimental values of k in control and mutant muscles to the theoretical values obtained by NN for each protein. Computed theoretical values were 0.4 and 0.8 for dystrophin- and desmin-null muscles, respectively, and 0.9 for WT, in reasonable agreement with our experimental results. This suggests that, although it is a simplified spring model solved by NN, it provides a good approximation of the distribution of spring elements and the elastic constants of the proteins that form the costameres. Our results show that dystrophin is the protein that contributes more than any other to the strength of the connections between the sarcolemma and the contractile apparatus, the costameres.

  17. Some characteristics of probabilistic one-sided splicing systems

    NASA Astrophysics Data System (ADS)

    Selvarajoo, Mathuri; Fong, Wan Heng; Sarmin, Nor Haniza; Turaev, Sherzod

    2013-04-01

    A theoretical model for DNA computing using the recombination behavior of DNA molecules known as asplicing system has been introduced in 1987. Splicing systems are based on the splicing operation which, informally, cuts two strings at the specific places and attaches the prefix of the first string to the suffix of the second string and the prefix of the second string to the suffix of the first string yielding the new strings. It is known that splicing systems with finite sets of axioms and splicing rules only generate regular languages. Hence, different types of restrictions for splicing systems have been considered to increase the computational power of the languages generated. Recently, probabilistic splicing systems have been introduced where the probabilities are initially associated with the axioms, and the probabilities of the generated strings are computed from the probabilities of the initial strings. In this paper, some properties of probabilistic one-sided splicing systems, which are special types of probabilistic splicing systems, are investigated. We prove that probabilistic one-sided splicing systems can also increase the computational power of the languages generated.

  18. In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse.

    PubMed

    Aoki, Yoshitsugu; Nakamura, Akinori; Yokota, Toshifumi; Saito, Takashi; Okazawa, Hitoshi; Nagata, Tetsuya; Takeda, Shin'ichi

    2010-11-01

    A promising therapeutic approach for Duchenne muscular dystrophy (DMD) is exon skipping using antisense oligonucleotides (AOs). In-frame deletions of the hinge 3 region of the dystrophin protein, which is encoded by exons 50 and 51, are predicted to cause a variety of phenotypes. Here, we performed functional analyses of muscle in the exon 52-deleted mdx (mdx52) mouse, to predict the function of in-frame dystrophin following exon 51-skipping, which leads to a protein lacking most of hinge 3. A series of AOs based on phosphorodiamidate morpholino oligomers was screened by intramuscular injection into mdx52 mice. The highest splicing efficiency was generated by a two-oligonucleotide cocktail targeting both the 5' and 3' splice sites of exon 51. After a dose-escalation study, we systemically delivered this cocktail into mdx52 mice seven times at weekly intervals. This induced 20-30% of wild-type (WT) dystrophin expression levels in all muscles, and was accompanied by amelioration of the dystrophic pathology and improvement of skeletal muscle function. Because the structure of the restored in-frame dystrophin resembles human dystrophin following exon 51-skipping, our results are encouraging for the ongoing clinical trials for DMD. Moreover, the therapeutic dose required can provide a suggestion of the theoretical equivalent dose for humans.

  19. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides.

    PubMed

    Echigoya, Yusuke; Yokota, Toshifumi

    2014-02-01

    Duchenne muscular dystrophy (DMD) is one of the most common and lethal genetic disorders, with 20,000 children per year born with DMD globally. DMD is caused by mutations in the dystrophin (DMD) gene. Antisense-mediated exon skipping therapy is a promising therapeutic approach that uses short DNA-like molecules called antisense oligonucleotides (AOs) to skip over/splice out the mutated part of the gene to produce a shortened but functional dystrophin protein. One major challenge has been its limited applicability. Multiple exon skipping has recently emerged as a potential solution. Indeed, many DMD patients need exon skipping of multiple exons in order to restore the reading frame, depending on how many base pairs the mutated exon(s) and adjacent exons have. Theoretically, multiple exon skipping could be used to treat approximately 90%, 80%, and 98% of DMD patients with deletion, duplication, and nonsense mutations, respectively. In addition, multiple exon skipping could be used to select deletions that optimize the functionality of the truncated dystrophin protein. The proof of concept of systemic multiple exon skipping using a cocktail of AOs has been demonstrated in dystrophic dog and mouse models. Remaining challenges include the insufficient efficacy of systemic treatment, especially for therapies that target the heart, and limited long-term safety data. Here we review recent preclinical developments in AO-mediated multiple exon skipping and discuss the remaining challenges.

  20. Aberrant and alternative splicing in skeletal system disease.

    PubMed

    Fan, Xin; Tang, Liling

    2013-10-01

    The main function of skeletal system is to support the body and help movement. A variety of factors can lead to skeletal system disease, including age, exercise, and of course genetic makeup and expression. Pre-mRNA splicing plays a crucial role in gene expression, by creating multiple protein variants with different biological functions. The recent studies show that several skeletal system diseases are related to pre-mRNA splicing. This review focuses on the relationship between pre-mRNA splicing and skeletal system disease. On the one hand, splice site mutation that leads to aberrant splicing often causes genetic skeletal system disease, like COL1A1, SEDL and LRP5. On the other hand, alternative splicing without genomic mutation may generate some marker protein isoforms, for example, FN, VEGF and CD44. Therefore, understanding the relationship between pre-mRNA splicing and skeletal system disease will aid in uncovering the mechanism of disease and contribute to the future development of gene therapy.

  1. Mechanism of Deletion Removing All Dystrophin Exons in a Canine Model for DMD Implicates Concerted Evolution of X Chromosome Pseudogenes.

    PubMed

    VanBelzen, D Jake; Malik, Alock S; Henthorn, Paula S; Kornegay, Joe N; Stedman, Hansell H

    2017-03-17

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked, muscle-wasting disorder caused by mutations in the large, 2.4-Mb dystrophin gene. The majority of DMD-causing mutations are sporadic, multi-exon, frameshifting deletions, with the potential for variable immunological tolerance to the dystrophin protein from patient to patient. While systemic gene therapy holds promise in the treatment of DMD, immune responses to vectors and transgenes must first be rigorously evaluated in informative preclinical models to ensure patient safety. A widely used canine model for DMD, golden retriever muscular dystrophy, expresses detectable amounts of near full-length dystrophin due to alternative splicing around an intronic point mutation, thereby confounding the interpretation of immune responses to dystrophin-derived gene therapies. Here we characterize a naturally occurring deletion in a dystrophin-null canine, the German shorthaired pointer. The deletion spans 5.6 Mb of the X chromosome and encompasses all coding exons of the DMD and TMEM47 genes. The sequences surrounding the deletion breakpoints are virtually identical, suggesting that the deletion occurred through a homologous recombination event. Interestingly, the deletion breakpoints are within loci that are syntenically conserved among mammals, yet the high homology among this subset of ferritin-like loci is unique to the canine genome, suggesting lineage-specific concerted evolution of these atypical sequence elements.

  2. Localisation and characterisation of dystrophin in the central nervous system of controls and patients with Duchenne muscular dystrophy.

    PubMed Central

    Uchino, M; Teramoto, H; Naoe, H; Yoshioka, K; Miike, T; Ando, M

    1994-01-01

    The aim was to localise and characterise dystrophin in various human tissues, especially in the CNS. Immunoblotting and immunostaining studies were carried out with eight region-specific dystrophin antibodies. In necropsy tissue from controls, dystrophin was noted as a doublet in immunoblots of striated muscle, and as a single band in those of smooth muscle and the CNS. With immunostaining, punctate immunoreactivity was seen on the cell bodies and dendrites of the cerebral cortical neurons and cerebellar Purkinje cells. By contrast, dystrophin was not detected in any tissues, including the cerebrum and cerebellum, of patients with Duchenne muscular dystrophy who had an intellectual disturbance. Images PMID:8163990

  3. Antisense-induced exon skipping restores dystrophin expression in DMD patient derived muscle cells.

    PubMed

    van Deutekom, J C; Bremmer-Bout, M; Janson, A A; Ginjaar, I B; Baas, F; den Dunnen, J T; van Ommen, G J

    2001-07-15

    Due to frame-shifting mutations in the DMD gene that cause dystrophin deficiency, Duchenne muscular dystrophy (DMD) patients suffer from lethal muscle degeneration. In contrast, mutations in the allelic Becker muscular dystrophy (BMD) do not disrupt the translational reading frame, resulting in a less severe phenotype. In this study, we explored a genetic therapy aimed at restoring the reading frame in muscle cells from DMD patients through targeted modulation of dystrophin pre-mRNA splicing. Considering that exon 45 is the single most frequently deleted exon in DMD, whereas exon (45+46) deletions cause only a mild form of BMD, we set up an antisense-based system to induce exon 46 skipping from the transcript in cultured myotubes of both mouse and human origin. In myotube cultures from two unrelated DMD patients carrying an exon 45 deletion, the induced skipping of exon 46 in only approximately 15% of the mRNA led to normal amounts of properly localized dystrophin in at least 75% of myotubes. Our results provide first evidence of highly effective restoration of dystrophin expression from the endogenous gene in DMD patient-derived muscle cells. This strategy may be applicable to not only >65% of DMD mutations, but also many other genetic diseases.

  4. Ocular and neurodevelopmental features of Duchenne muscular dystrophy: a signature of dystrophin function in the central nervous system.

    PubMed

    Ricotti, Valeria; Jägle, Herbert; Theodorou, Maria; Moore, Anthony T; Muntoni, Francesco; Thompson, Dorothy A

    2016-04-01

    Multiple isoforms of dystrophin (Dp427, Dp260, Dp140, Dp71) are expressed differentially in the central nervous system (CNS) including the retinal layers. Disruption of these protein products is responsible for cognitive dysfunction, electroretinogram (ERG) abnormalities and behavioural disorders in Duchenne muscular dystrophy (DMD). We studied the ocular characteristics and neuropsychiatric profile of 16 DMD boys. The ISCEV standard, full-field flash ERGs were assessed. Intellectual ability and behavioural disturbances were measured. All genotypes were associated with mildly abnormal photopic ERG a:b-wave amplitude ratios. In addition, we identified the following genotype/phenotype correlations: boys with mutations upstream of exon 30 (ie, isolated Dp427 altered expression) showed normal scotopic a:b ratios, abnormal photopic oscillatory potential OP2 and normal scotopic OP2. Conversely, all boys with DMD mutations downstream of exon 30 showed profoundly 'negative' scotopic ERGs (a:b ratios >1). In these patients, the involvement of Dp260 isoform resulted in the absence of slow rod pathway signalling in15 Hz scotopic flicker ERGs. These boys had abnormal scotopic OP2 and normal photopic OP2. Finally, children with mutations also affecting Dp71 were associated with more pronounced electronegative ERGs. When correlating ERGs to neurodevelopmental outcome, we found a positive correlation between negative scotopic ERGs and neurodevelopmental disturbances, and the most severe findings were in boys with Dp71 disruption. These findings suggest a strong association between DMD mutations affecting different DMD isoforms with characteristically abnormal scotopic ERGs and severe neurodevelopmental problems. The role of the ERG as a potential biomarker for dystrophin function in the CNS and response to novel genetic therapies warrants further exploration.

  5. Some characteristics on the generative power of weighted one-sided splicing systems

    NASA Astrophysics Data System (ADS)

    Gan, Yee Siang; Fong, Wan Heng; Sarmin, Nor Haniza; Turaev, Sherzod

    2015-10-01

    A splicing system is a formal model for DNA based computation using the recombinant behavior of DNA molecules in the presence of enzymes and ligase. Since it was introduced in 1987, several variants with different restrictions and extensions have been developed. In this paper, a restricted variant of splicing systems, called one-sided splicing systems have been studied. The generative capacity of one-sided splicing systems with the presence of weight is investigated. We have also shown that the use of different weighting spaces and weight operations results in weighted one-sided splicing systems with different generative capacities.

  6. Characterization of U4 and U6 interactions with the 5' splice site using a S. cerevisiae in vitro trans-splicing system.

    PubMed

    Johnson, T L; Abelson, J

    2001-08-01

    Spliceosome assembly has been characterized as the ordered association of the snRNP particles U1, U2, and U4/U6.U5 onto pre-mRNA. We have used an in vitro trans-splicing/cross-linking system in Saccharomyces cerevisiae nuclear extracts to examine the first step of this process, 5' splice site recognition. This trans-splicing reaction has ATP, Mg(2+), and splice-site sequence requirements similar to those of cis-splicing reactions. Using this system, we identified and characterized a novel U4-5' splice site interaction that is ATP-dependent, but does not require the branch point, the 3' splice site, or the 5' end of the U1 snRNA. Additionally, we identified several ATP-dependent U6 cross-links at the 5' splice site, indicating that different regions of U6 sample it before a U6-5' splice site interaction is stabilized that persists through the first step of splicing. This work provides evidence for ATP-dependent U4/U6 association with the 5' splice site independent of ATP-mediated U2 association with the branch point. Furthermore, it defines specific nucleotides in U4 and U6 that interact with the 5' splice site at this early stage, even in the absence of base-pairing with the U1 snRNA.

  7. Microarray-based mutation detection in the dystrophin gene

    PubMed Central

    Hegde, Madhuri R.; Chin, Ephrem L.H.; Mulle, Jennifer G.; Okou, David T.; Warren, Stephen T.; Zwick, Michael E.

    2008-01-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans > 2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease-causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6–10% of males with either DMD or BMD. The remaining 30–35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, MLPA, DOVAM-S, and SCAIP; however, these methods are time-consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high-resolution CGH microarray-based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost-effective approach for screening a large gene, such as dystrophin. PMID:18663755

  8. Microarray-based mutation detection in the dystrophin gene.

    PubMed

    Hegde, Madhuri R; Chin, Ephrem L H; Mulle, Jennifer G; Okou, David T; Warren, Stephen T; Zwick, Michael E

    2008-09-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are X-linked recessive neuromuscular disorders caused by mutations in the dystrophin gene affecting approximately 1 in 3,500 males. The human dystrophin gene spans>2,200 kb, or roughly 0.1% of the genome, and is composed of 79 exons. The mutational spectrum of disease-causing alleles, including exonic copy number variations (CNVs), is complex. Deletions account for approximately 65% of DMD mutations and 85% of BMD mutations. Duplications occur in approximately 6 to 10% of males with either DMD or BMD. The remaining 30 to 35% of mutations consist of small deletions, insertions, point mutations, or splicing mutations, most of which introduce a premature stop codon. Laboratory analysis of dystrophin can be used to confirm a clinical diagnosis of DMD, characterize the type of dystrophin mutation, and perform prenatal testing and carrier testing for females. Current dystrophin diagnostic assays involve a variety of methodologies, including multiplex PCR, Southern blot analysis, multiplex ligation-dependent probe amplification (MLPA), detection of virtually all mutations-SSCP (DOVAM-S), and single condition amplification/internal primer sequencing (SCAIP); however, these methods are time-consuming, laborious, and do not accurately detect duplication mutations in the dystrophin gene. Furthermore, carrier testing in females is often difficult when a related affected male is unavailable. Here we describe the development, design, validation, and implementation of a high-resolution comparative genomic hybridization (CGH) microarray-based approach capable of accurately detecting both deletions and duplications in the dystrophin gene. This assay can be readily adopted by clinical molecular testing laboratories and represents a rapid, cost-effective approach for screening a large gene, such as dystrophin.

  9. Exon skipping and translation in patients with frameshift deletions in the dystrophin gene

    SciTech Connect

    Sherratt, T.G.; Dubowitz, V.; Sewry, C.A.; Strong, P.N. ); Vulliamy, T. )

    1993-11-01

    Although many Duchenne muscular dystrophy patients have a deletion in the dystrophin gene which disrupts the translational reading frame, they express dystrophin in a small proportion of skeletal muscle fibers ([open quotes]revertant fibers[close quotes]). Antibody studies have shown, indirectly, that dystrophin synthesis in revertant fibers is facilitated by a frame-restoring mechanism; in the present study, the feasibility of mRNA splicing was investigated. Dystrophin transcripts were analyzed in skeletal muscle from individuals possessing revertant fibers and a frameshift deletion in the dystrophin gene. In each case a minor in-frame transcript was detected, in which exons adjacent to those deleted from the genome had been skipped. There appeared to be some correlation between the levels of in-frame transcripts and the predicted translation products. Low levels of alternatively spliced transcripts were also present in normal muscle. The results provide further evidence of exon skipping in the dystrophin gene and indicate that this may be involved in the synthesis of dystrophin by revertant fibers. 44 refs., 12 figs.

  10. How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse

    PubMed Central

    Godfrey, Caroline; Muses, Sofia; McClorey, Graham; Wells, Kim E.; Coursindel, Thibault; Terry, Rebecca L.; Betts, Corinne; Hammond, Suzan; O'Donovan, Liz; Hildyard, John; El Andaloussi, Samir; Gait, Michael J.; Wood, Matthew J.; Wells, Dominic J.

    2015-01-01

    Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model. PMID:25935000

  11. How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse.

    PubMed

    Godfrey, Caroline; Muses, Sofia; McClorey, Graham; Wells, Kim E; Coursindel, Thibault; Terry, Rebecca L; Betts, Corinne; Hammond, Suzan; O'Donovan, Liz; Hildyard, John; El Andaloussi, Samir; Gait, Michael J; Wood, Matthew J; Wells, Dominic J

    2015-08-01

    Splice modulation therapy has shown great clinical promise in Duchenne muscular dystrophy, resulting in the production of dystrophin protein. Despite this, the relationship between restoring dystrophin to established dystrophic muscle and its ability to induce clinically relevant changes in muscle function is poorly understood. In order to robustly evaluate functional improvement, we used in situ protocols in the mdx mouse to measure muscle strength and resistance to eccentric contraction-induced damage. Here, we modelled the treatment of muscle with pre-existing dystrophic pathology using antisense oligonucleotides conjugated to a cell-penetrating peptide. We reveal that 15% homogeneous dystrophin expression is sufficient to protect against eccentric contraction-induced injury. In addition, we demonstrate a >40% increase in specific isometric force following repeated administrations. Strikingly, we show that changes in muscle strength are proportional to dystrophin expression levels. These data define the dystrophin restoration levels required to slow down or prevent disease progression and improve overall muscle function once a dystrophic environment has been established in the mdx mouse model.

  12. Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne Muscular Dystrophy.

    PubMed

    Meng, Jinhong; Counsell, John R; Reza, Mojgan; Laval, Steven H; Danos, Olivier; Thrasher, Adrian; Lochmüller, Hanns; Muntoni, Francesco; Morgan, Jennifer E

    2016-01-27

    Autologous stem cells that have been genetically modified to express dystrophin are a possible means of treating Duchenne Muscular Dystrophy (DMD). To maximize the therapeutic effect, dystrophin construct needs to contain as many functional motifs as possible, within the packaging capacity of the viral vector. Existing dystrophin constructs used for transduction of muscle stem cells do not contain the nNOS binding site, an important functional motif within the dystrophin gene. In this proof-of-concept study, using stem cells derived from skeletal muscle of a DMD patient (mdcs) transplanted into an immunodeficient mouse model of DMD, we report that two novel dystrophin constructs, C1 (ΔR3-R13) and C2 (ΔH2-R23), can be lentivirally transduced into mdcs and produce dystrophin. These dystrophin proteins were functional in vivo, as members of the dystrophin glycoprotein complex were restored in muscle fibres containing donor-derived dystrophin. In muscle fibres derived from cells that had been transduced with construct C1, the largest dystrophin construct packaged into a lentiviral system, nNOS was restored. The combination of autologous stem cells and a lentivirus expressing a novel dystrophin construct which optimally restores proteins of the dystrophin glycoprotein complex may have therapeutic application for all DMD patients, regardless of their dystrophin mutation.

  13. Dystrophin in frameshift deletion patients with Becker Muscular Dystrophy

    SciTech Connect

    Gangopadhyay, S.B.; Ray, P.N.; Worton, R.G.; Sherratt, T.G.; Heckmatt, J.Z.; Dubowitz, V.; Strong, P.N.; Miller, G. ); Shokeir, M. )

    1992-09-01

    In a previous study the authors identified 14 cases with Duchenne muscular dystrophy (DMD) or its milder variant, Becker muscular dystrophy (BMD), with a deletion of exons 3-7, a deletion that would be expected to shift the translational reading frame of the mRNA and give a severe phenotype. They have examined dystrophin and its mRNA from muscle biopsies of seven cases with either mild or intermediate phenotypes. In all cases they detected slightly lower-molecular-weight dystrophin in 12%-15% abundance relative to the normal. By sequencing amplified mRNA they have found that exon 2 is spliced to exon 8, a splice that produces a frameshifted mRNA, and have found no evidence for alternate splicing that might be involved in restoration of dystrophin mRNA reading frame in the patients with a mild phenotype. Other transcriptional and posttranscriptional mechanisms such as cryptic promoter, ribosomal frameshifting, and reinitiation are suggested that might play some role in restoring the reading frame. 34 refs., 5 figs. 1 tab.

  14. A multi-agent system simulating human splice site recognition.

    PubMed

    Vignal, L; Lisacek, F; Quinqueton, J; d'Aubenton-Carafa, Y; Thermes, C

    1999-06-15

    The present paper describes a method detecting splice sites automatically on the basis of sequence data and models of site/signal recognition supported by experimental evidences. The method is designed to simulate splicing and while doing so, track prediction failures, missing information and possibly test correcting hypotheses. Correlations between nucleotides in the splice site regions and the various elements of the acceptor region are evaluated and combined to assess compensating interactions between elements of the splicing machinery. A scanning model of the acceptor region and a model of interaction between the splicing complexes (exon definition model) are also incorporated in the detection process. Subsets of sites presenting deficiencies of several splice site elements could be identified. Further examination of these sites helps to determine lacking elements and refine models.

  15. A family with a dystrophin gene mutation specifically affecting dystrophin expression in the heart

    SciTech Connect

    Muntoni, F.; Davies, K.; Dubowitz, V.

    1994-09-01

    We recently described a family with X-linked dilated cardiomyopathy where a large deletion in the muscle promoter region of the dystrophin gene was associated with a severe dilated cardiomyopathy in absence of clinical skeletal muscle involvement. The deletion removed the entire muscle promoter region, the first muscle exon and part of intron 1. The brain and Purkinje cell promoters were not affected by the deletion. Despite the lack of both the muscle promoter and the first muscle exon, dystrophin was detected immunocytochemically in relative high levels in the skeletal muscle of the affected males. We have now found that both the brain and Purkinje cell promoters were transcribed at high levels in the skeletal muscle of these individuals. This phenomenon, that does not occur in normal skeletal muscle, indicates that these two isoforms, physiologically expressed mainly in the central nervous system, can be transcribed and be functionally active in skeletal muscle under specific circumstances. Contrary to what is observed in skeletal muscle, dystrophin was not detected in the heart of one affected male using immunocytochemistry and an entire panel of anti-dystrophin antibodies. This was most likely the cause for the pronounced cardiac fibrosis observed and eventually responsible for the severe cardiac involvement invariably seen in seven affected males. In conclusion, the mutation of the muscle promoter, first muscle exon and part of intron 1 specifically affected expression of dystrophin in the heart. We believe that this deletion removes sequences involved in regulation of dystrophin expression in the heart and are at the moment characterizing other families with X-linked cardiomyopathy secondary to a dystrophinopathy.

  16. Correction of Dystrophin Expression in Cells From Duchenne Muscular Dystrophy Patients Through Genomic Excision of Exon 51 by Zinc Finger Nucleases

    PubMed Central

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons. PMID:25492562

  17. Correction of dystrophin expression in cells from Duchenne muscular dystrophy patients through genomic excision of exon 51 by zinc finger nucleases.

    PubMed

    Ousterout, David G; Kabadi, Ami M; Thakore, Pratiksha I; Perez-Pinera, Pablo; Brown, Matthew T; Majoros, William H; Reddy, Timothy E; Gersbach, Charles A

    2015-03-01

    Duchenne muscular dystrophy (DMD) is caused by genetic mutations that result in the absence of dystrophin protein expression. Oligonucleotide-induced exon skipping can restore the dystrophin reading frame and protein production. However, this requires continuous drug administration and may not generate complete skipping of the targeted exon. In this study, we apply genome editing with zinc finger nucleases (ZFNs) to permanently remove essential splicing sequences in exon 51 of the dystrophin gene and thereby exclude exon 51 from the resulting dystrophin transcript. This approach can restore the dystrophin reading frame in ~13% of DMD patient mutations. Transfection of two ZFNs targeted to sites flanking the exon 51 splice acceptor into DMD patient myoblasts led to deletion of this genomic sequence. A clonal population was isolated with this deletion and following differentiation we confirmed loss of exon 51 from the dystrophin mRNA transcript and restoration of dystrophin protein expression. Furthermore, transplantation of corrected cells into immunodeficient mice resulted in human dystrophin expression localized to the sarcolemmal membrane. Finally, we quantified ZFN toxicity in human cells and mutagenesis at predicted off-target sites. This study demonstrates a powerful method to restore the dystrophin reading frame and protein expression by permanently deleting exons.

  18. Dystrophin Distribution and Expression in Human and Experimental Temporal Lobe Epilepsy

    PubMed Central

    Hendriksen, Ruben G. F.; Schipper, Sandra; Hoogland, Govert; Schijns, Olaf E. M. G.; Dings, Jim T. A.; Aalbers, Marlien W.; Vles, Johan S. H.

    2016-01-01

    Objective: Dystrophin is part of a protein complex that connects the cytoskeleton to the extracellular matrix. In addition to its role in muscle tissue, it functions as an anchoring protein within the central nervous system such as in hippocampus and cerebellum. Its presence in the latter regions is illustrated by the cognitive problems seen in Duchenne Muscular Dystrophy (DMD). Since epilepsy is also supposed to constitute a comorbidity of DMD, it is hypothesized that dystrophin plays a role in neuronal excitability. Here, we aimed to study brain dystrophin distribution and expression in both, human and experimental temporal lobe epilepsy (TLE). Method: Regional and cellular dystrophin distribution was evaluated in both human and rat hippocampi and in rat cerebellar tissue by immunofluorescent colocalization with neuronal (NeuN and calbindin) and glial (GFAP) markers. In addition, hippocampal dystrophin levels were estimated by Western blot analysis in biopsies from TLE patients, post-mortem controls, amygdala kindled (AK)-, and control rats. Results: Dystrophin was expressed in all hippocampal pyramidal subfields and in the molecular-, Purkinje-, and granular cell layer of the cerebellum. In these regions it colocalized with GFAP, suggesting expression in astrocytes such as Bergmann glia (BG) and velate protoplasmic astrocytes. In rat hippocampus and cerebellum there were neither differences in dystrophin positive cell types, nor in the regional dystrophin distribution between AK and control animals. Quantitatively, hippocampal full-length dystrophin (Dp427) levels were about 60% higher in human TLE patients than in post-mortem controls (p < 0.05), whereas the level of the shorter Dp71 isoform did not differ. In contrast, AK animals showed similar dystrophin levels as controls. Conclusion: Dystrophin is ubiquitously expressed by astrocytes in the human and rat hippocampus and in the rat cerebellum. Hippocampal full-length dystrophin (Dp427) levels are upregulated

  19. Remote management for multipoint sensing systems using hetero-core spliced optical fiber sensors.

    PubMed

    Goh, Lee See; Anoda, Yuji; Kazuhiro, Watanabe; Shinomiya, Norihiko

    2013-12-27

    This paper describes the design and experimental verification of a multipoint sensing system with hetero-core spliced optical fiber sensors and its remote management using an internet-standard protocol. The study proposes two different types of design and conducts experiments to verify those systems' feasibility. In order to manage the sensing systems remotely, the management method uses a standard operation and maintenance protocol for internet: the Simple Network Management Protocol is proposed. The purpose of this study is to construct a multipoint sensing system remote management tool by which the system can also determine the status and the identity of fiber optic sensors. The constructed sensing systems are verified and the results have demonstrated that the first proposed system can distinguish the responses from different hetero-core spliced optical fiber sensors remotely. The second proposed system shows that data communications are performed successfully while identifying the status of hetero-core spliced optical fiber sensors remotely.

  20. Frameshift deletions of exons 3-7 and revertant fibers in Duchenne muscular dystrophy: mechanisms of dystrophin production.

    PubMed Central

    Winnard, A V; Mendell, J R; Prior, T W; Florence, J; Burghes, A H

    1995-01-01

    Duchenne muscular dystrophy (DMD) patients with mutations that disrupt the translational reading frame produce little or no dystrophin. Two exceptions are the deletion of exons 3-7 and the occurrence of rare dystrophin-positive fibers (revertant fibers) in muscle of DMD patients. Antibodies directed against the amino-terminus and the 5' end of exon 8 did not detect dystrophin in muscle from patients who have a deletion of exons 3-7. However, in all cases, dystrophin was detected with an antibody directed against the 3' end of exon 8. The most likely method of dystrophin production in these cases is initiation at a new start codon in exon 8. We also studied two patients who have revertant fibers: one had an inherited duplication of exons 5-7, which, on immunostaining, showed two types of revertant fibers; and the second patient had a 2-bp nonsense mutation in exon 51, which creates a cryptic splice site. An in-frame mRNA that uses this splice site in exon 51 was detected. Immunostaining demonstrated the presence of the 3' end of exon 51, which is in agreement with the use of this mRNA in revertant fibers. The most likely method of dystrophin production in these fibers is a second mutation that restores the reading frame. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7825572

  1. Dystrophin expression in a Duchenne muscular dystrophy patient with a frame shift deletion.

    PubMed

    Prior, T W; Bartolo, C; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Kissel, J T; Luquette, M H; Tsao, C Y; Mendell, J R

    1997-02-01

    The exon 45 deletion is a common dystrophin gene deletion. Although this is an out-of-frame deletion, which should not allow for protein synthesis, it has been observed in mildly affected patients. We describe a patient with an exon 45 deletion who produced protein, but still had a severe Duchenne muscular dystrophy phenotype. RT-PCR analysis and cDNA sequencing from the muscle biopsy sample revealed that the exon 45 deletion induced exon skipping of exon 44, which resulted in an in-frame deletion and the production of dystrophin. A conformational change in dystrophin induced by the deletion is proposed as being responsible for the severe phenotype in the patient. We feel that the variable clinical phenotype observed in patients with the exon 45 deletion is not due to exon splicing but may be the result of other environmental or genetic factors, or both.

  2. Tissue- and case-specific retention of intron 40 in mature dystrophin mRNA.

    PubMed

    Nishida, Atsushi; Minegishi, Maki; Takeuchi, Atsuko; Niba, Emma Tabe Eko; Awano, Hiroyuki; Lee, Tomoko; Iijima, Kazumoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2015-06-01

    The dystrophin gene, which is mutated in Duchenne muscular dystrophy (DMD), comprises 79 exons that show multiple alternative splicing events. Intron retention, a type of alternative splicing, may control gene expression. We examined intron retention in dystrophin introns by reverse-transcription PCR from skeletal muscle, focusing on the nine shortest (all <1000 bp), because these are more likely to be retained. Only one, intron 40, was retained in mRNA; sequencing revealed insertion of a complete intron 40 (851 nt) between exons 40 and 41. The intron 40 retention product accounted for 1.2% of the total product but had a premature stop codon at the fifth intronic codon. Intron 40 retention was most strongly observed in the kidney (36.6%) and was not obtained from the fetal liver, lung, spleen or placenta. This indicated that intron retention is a tissue-specific event whose level varies among tissues. In two DMD patients, intron 40 retention was observed in one patient but not in the other. Examination of splicing regulatory factors revealed that intron 40 had the highest guanine-cytosine content of all examined introns in a 30-nt segment at its 3' end. Further studies are needed to clarify the biological role of intron 40-retained dystrophin mRNA.

  3. Dystrophin-dependent and -independent AQP4 pools are expressed in the mouse brain.

    PubMed

    Nicchia, Grazia Paola; Rossi, Andrea; Nudel, Uri; Svelto, Maria; Frigeri, Antonio

    2008-06-01

    In a recent study, we demonstrated that in the plasma membrane AQP4 is organized into several distinct large multisubunit complexes. In this study, we analysed whether these pools are similarly affected in dystrophin-deficient mice and immunolocalized the sites of dystrophin-dependent and -independent AQP4 pools. Western blot performed on two-dimensional Blue Native/SDS-PAGE membranes indicated that, among the AQP4 pools, it was mainly a large multisubunit complex that was specifically affected in dystrophin-deficient mice (DP71 and mdx3cv mice). This dystrophin-dependent AQP4 pool was immunolocalized in perivascular astrocytes, since it was found to be significantly altered in both types of dystrophin-deficient mice. Dystrophin-independent pools were immunolocalized in the granular cell layer of the cerebellum and in the subpial endfoot layer and ependymal cells in the brain. These data provide a better understanding on the association between AQP4 and the dystrophin-glycoprotein complex in the central nervous system.

  4. Splicing Regulation of Pro-Inflammatory Cytokines and Chemokines: At the Interface of the Neuroendocrine and Immune Systems.

    PubMed

    Shakola, Felitsiya; Suri, Parul; Ruggiu, Matteo

    2015-09-07

    Alternative splicing plays a key role in posttranscriptional regulation of gene expression, allowing a single gene to encode multiple protein isoforms. As such, alternative splicing amplifies the coding capacity of the genome enormously, generates protein diversity, and alters protein function. More than 90% of human genes undergo alternative splicing, and alternative splicing is especially prevalent in the nervous and immune systems, tissues where cells need to react swiftly and adapt to changes in the environment through carefully regulated mechanisms of cell differentiation, migration, targeting, and activation. Given its prevalence and complexity, this highly regulated mode of gene expression is prone to be affected by disease. In the following review, we look at how alternative splicing of signaling molecules—cytokines and their receptors—changes in different pathological conditions, from chronic inflammation to neurologic disorders, providing means of functional interaction between the immune and neuroendocrine systems. Switches in alternative splicing patterns can be very dynamic and can produce signaling molecules with distinct or antagonistic functions and localization to different subcellular compartments. This newly discovered link expands our understanding of the biology of immune and neuroendocrine cells, and has the potential to open new windows of opportunity for treatment of neurodegenerative disorders.

  5. Feline Muscular Dystrophy with Dystrophin Deficiency

    PubMed Central

    Carpenter, James L.; Hoffman, Eric P.; Romanul, Flaviu C. A.; Kunkel, Louis M.; Rosales, Remedios K.; Ma, Nancy S. F.; Dasbach, James J.; Rae, John F.; Moore, Frances M.; McAfee, Mary B.; Pearce, Laurie K.

    1989-01-01

    This is the first description of a dystrophin-Deficient muscular dystrophy in domestic cats. The disorder appears to be of X-linked inheritance because it affected both males of a litter of four kittens. Immunoblotting and immunofluorescent detection of dystrophin showed dystrophin present in control cat muscle but no detectable dystrophin in either affected cat. The feline muscular dystrophy was progressive and histopathologically resembled human Duchenne/Becker muscular dystrophy except for the lack of fat infiltration and the presence of prominent hypertrophy of both muscle fibers and muscles groups in the feline disorder. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8Figure 9 PMID:2683799

  6. Impact of Ultrabithorax alternative splicing on Drosophila embryonic nervous system development.

    PubMed

    Geyer, Aenne; Koltsaki, Ioanna; Hessinger, Christian; Renner, Simone; Rogulja-Ortmann, Ana

    2015-11-01

    Hox genes control divergent segment identities along the anteroposterior body axis of bilateral animals by regulating a large number of processes in a cell context-specific manner. How Hox proteins achieve this functional diversity is a long-standing question in developmental biology. In this study we investigate the role of alternative splicing in functional specificity of the Drosophila Hox gene Ultrabithorax (Ubx). We focus specifically on the embryonic central nervous system (CNS) and provide a description of temporal expression patterns of three major Ubx isoforms during development of this tissue. These analyses imply distinct functions for individual isoforms in different stages of neural development. We also examine the set of Ubx isoforms expressed in two isoform-specific Ubx mutant strains and analyze for the first time the effects of splicing defects on regional neural stem cell (neuroblast) identity. Our findings support the notion of specific isoforms having different effects in providing individual neuroblasts with positional identity along the anteroposterior body axis, as well as being involved in regulation of progeny cell fate.

  7. Molecular dissection of step 2 catalysis of yeast pre-mRNA splicing investigated in a purified system.

    PubMed

    Ohrt, Thomas; Odenwälder, Peter; Dannenberg, Julia; Prior, Mira; Warkocki, Zbigniew; Schmitzová, Jana; Karaduman, Ramazan; Gregor, Ingo; Enderlein, Jörg; Fabrizio, Patrizia; Lührmann, Reinhard

    2013-07-01

    Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5' and 3' exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3' splice site (3'SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3'SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing.

  8. Restoration of dystrophin expression in cultured hybrid myotubes.

    PubMed

    Radojevic, V; Oppliger, C; Gaschen, F; Burgunder, J-M

    2002-10-01

    Absence of dystrophin, as found in Duchenne boys, mdx mice and HFMD cats, leads to destabilization of the sarcolemmal-associated protein complex. Gene and cell therapy strategies aim to restore the dystrophin-associated protein complex. In order to better understand the cellular events involved in such therapy in feline and human muscular dystrophy, we asked whether dystrophin-deficient myoblasts would fuse with myoblasts expressing normal dystrophin, and whether the complex would be restored after such a fusion. Cat and human myoblasts were isolated from skeletal muscle of normal subjects and of patients with dystrophin deficiency and proliferated well. After co-culture with normal myoblasts, they fused to form hybrid myotubes. These hybrid myotubes expressed dystrophin, utrophin and dystrophin- associated proteins. Expression of these proteins were restored also in the vicinity of nuclei from dystrophin-deficient donors. These results demonstrate that dystrophin can be expressed and handled normally by hybrid myotubes. They show that myoblasts with a normal dystrophin gene can restore dystrophin expression in dystrophin-deficient myoblasts.

  9. Deletion of Dystrophin In-Frame Exon 5 Leads to a Severe Phenotype: Guidance for Exon Skipping Strategies

    PubMed Central

    Toh, Zhi Yon Charles; Thandar Aung-Htut, May; Pinniger, Gavin; Adams, Abbie M.; Krishnaswarmy, Sudarsan; Wong, Brenda L.; Fletcher, Sue; Wilton, Steve D.

    2016-01-01

    Duchenne and Becker muscular dystrophy severity depends upon the nature and location of the DMD gene lesion and generally correlates with the dystrophin open reading frame. However, there are striking exceptions where an in-frame genomic deletion leads to severe pathology or protein-truncating mutations (nonsense or frame-shifting indels) manifest as mild disease. Exceptions to the dystrophin reading frame rule are usually resolved after molecular diagnosis on muscle RNA. We report a moderate/severe Becker muscular dystrophy patient with an in-frame genomic deletion of DMD exon 5. This mutation has been reported by others as resulting in Duchenne or Intermediate muscular dystrophy, and the loss of this in-frame exon in one patient led to multiple splicing events, including omission of exon 6, that disrupts the open reading frame and is consistent with a severe phenotype. The patient described has a deletion of dystrophin exon 5 that does not compromise recognition of exon 6, and although the deletion does not disrupt the reading frame, his clinical presentation is more severe than would be expected for classical Becker muscular dystrophy. We suggest that the dystrophin isoform lacking the actin-binding sequence encoded by exon 5 is compromised, reflected by the phenotype resulting from induction of this dystrophin isoform in mouse muscle in vivo. Hence, exon skipping to address DMD-causing mutations within DMD exon 5 may not yield an isoform that confers marked clinical benefit. Additional studies will be required to determine whether multi-exon skipping strategies could yield more functional dystrophin isoforms, since some BMD patients with larger in-frame deletions in this region have been reported with mild phenotypes. PMID:26745801

  10. Localization of dystrophin and dystrophin-related protein at the electromotor synapse and neuromuscular junction in Torpedo marmorata.

    PubMed

    Cartaud, A; Ludosky, M A; Tomé, F M; Collin, H; Stetzkowski-Marden, F; Khurana, T S; Kunkel, L M; Fardeau, M; Changeux, J P; Cartaud, J

    1992-06-01

    The immunological identification of dystrophin isoforms at the neuromuscular junction and Torpedo marmorata electromotor synapse was attempted using various antibodies. A polyclonal antibody raised against electrophoretically purified dystrophin from T. marmorata electrocyte has been thoroughly investigated. This antibody recognized dystrophin in the electric tissue as well as sarcolemmal and synaptic neuromuscular junction dystrophin in all studies species (T. marmorata, rat, mice and human) at serum dilutions as high as 1:10,000. At variance, no staining of either the sarcolemma or neuromuscular junction was observed in Duchenne muscular dystrophy or mdx mice skeletal muscles. In these muscles, other members of the dystrophin superfamily, in particular the dystrophin-related protein(s) encoded by autosomal genes are present. These data thus demonstrate the specificity of our antibodies for dystrophin. Anti-dystrophin-related protein antibodies [Khurana et al. (1991) Neuromusc. Disorders 1, 185-194] which gave a strong immunostaining of the neuromuscular junction in various species, including T. marmorata, cross-reacted weakly with the postsynaptic membrane of the electrocyte. Taken together, these observations are in favor of the existence of a protein very homologous to dystrophin at the electromotor synapse in T. marmorata, whereas both dystrophin and dystrophin-related protein co-localize at the neuromuscular junction as in all species studied. The electrocyte thus offers the unique opportunity to study the interaction of dystrophin with components of the postsynaptic membrane.

  11. Development of a positive genetic selection system for inhibition of protein splicing using mycobacterial inteins in Escherichia coli DNA gyrase subunit A.

    PubMed

    Adam, Eric; Perler, Francine B

    2002-09-01

    An intein-based positive genetic selection system was developed to study protein splicing and to provide a selection system with the potential for finding splicing inhibitors. Inteins can be novel antimicrobial targets when present in essential proteins since blocking splicing would kill the organism. For example, pathogenic mycobacteria encode inteins that interrupt DNA gyrase. The gyrase selection system exploits (1) splicing of inteins out of Gyrase A and (2) the dominant lethal effect of quinolone poisoning of DNA gyrase, which in turn blocks replication. The system was adapted for whole-cell high-throughput screening using green fluorescent protein as an automatable readout of viability. To demonstrate the efficacy of this system, mutations that blocked splicing of the Mycobacterium xenopi Gyrase A intein were isolated. Splicing was then assayed at a second temperature to identify inteins with a temperature-sensitive splicing phenotype. Mutations were mapped onto a structure-based sequence alignment, which led to the rational prediction of a temperature-sensitive splicing mutation. GyrA intein subdomain relationships also provided insight into intein evolution.

  12. Activation of Both the Calpain and Ubiquitin-Proteasome Systems Contributes to Septic Cardiomyopathy through Dystrophin Loss/Disruption and mTOR Inhibition

    PubMed Central

    Freitas, Ana Caroline Silva; Figueiredo, Maria Jose; Campos, Erica Carolina; Soave, Danilo Figueiredo; Ramos, Simone Gusmao; Tanowitz, Herbert B.

    2016-01-01

    Cardiac dysfunction caused by the impairment of myocardial contractility has been recognized as an important factor contributing to the high mortality in sepsis. Calpain activation in the heart takes place in response to increased intracellular calcium influx resulting in proteolysis of structural and contractile proteins with subsequent myocardial dysfunction. The purpose of the present study was to test the hypothesis that increased levels of calpain in the septic heart leads to disruption of structural and contractile proteins and that administration of calpain inhibitor-1 (N-acetyl-leucinyl-leucinyl-norleucinal (ALLN)) after sepsis induced by cecal ligation and puncture prevents cardiac protein degradation. We also tested the hypothesis that calpain plays a role in the modulation of protein synthesis/degradation through the activation of proteasome-dependent proteolysis and inhibition of the mTOR pathway. Severe sepsis significantly increased heart calpain-1 levels and promoted ubiquitin and Pa28β over-expression with a reduction in the mTOR levels. In addition, sepsis reduced the expression of structural proteins dystrophin and β-dystroglycan as well as the contractile proteins actin and myosin. ALLN administration prevented sepsis-induced increases in calpain and ubiquitin levels in the heart, which resulted in decreased of structural and contractile proteins degradation and basal mTOR expression levels were re-established. Our results support the concept that increased calpain concentrations may be part of an important mechanism of sepsis-induced cardiac muscle proteolysis. PMID:27880847

  13. Protein Trans-Splicing as a Means for Viral Vector-Mediated In Vivo Gene Therapy

    PubMed Central

    Li, Juan; Sun, Wenchang; Wang, Bing; Xiao, Xiao

    2008-01-01

    Abstract Inteins catalyze protein splicing in a fashion similar to how self-splicing introns catalyze RNA splicing. Split-inteins catalyze precise ligation of two separate polypeptides through trans-splicing in a highly specific manner. Here we report a method of using protein trans-splicing to circumvent the packaging size limit of gene therapy vectors. To demonstrate this method, we chose a large dystrophin gene and an adeno-associated viral (AAV) vector, which has a small packaging size. A highly functional 6.3-kb Becker-form dystrophin cDNA was broken into two pieces and modified by adding appropriate split-intein coding sequences, resulting in split-genes sufficiently small for packaging in AAV vectors. The two split-genes, after codelivery into target cells, produced two polypeptides that spontaneously trans-spliced to form the expected Becker-form dystrophin protein in cell culture in vitro. Delivering the split-genes by AAV1 vectors into the muscle of a mouse model of Duchenne muscular dystrophy rendered therapeutic gene expression and benefits. PMID:18788906

  14. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice

    PubMed Central

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-01-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD. PMID:25959011

  15. Adhalin, the 50 kD dystrophin associated protein, is not the locus for severe childhood autosomal recessive dystrophy (SCARMD)

    SciTech Connect

    McNally, E.M.; Selig, S.; Kunkel, L.M.

    1994-09-01

    Mutations in the carboxyl-terminus in dystrophin are normally sufficient to produce severely dystrophic muscle. This portion of dystrophin binds a complex of dystrophin-associated glycoproteins (DAGs). The genes encoding these DAGs are candidate genes for causing neuromuscular disease. Immunoreactivity for adhalin, the 50 kD DAG, is absent in muscle biopsies from patients with SCARMD, a form of dystrophy clinically similar Duchenne muscular dystrophy. Prior linkage analysis in SCARMD families revealed that the disease gene segregates with markers on chromosome 13. To determine the molecular role that adhalin may play in SCARMD, human cDNA and genomic sequences were isolated. Primers were designed based on predicted areas of conservation in rabbit adhalin and used in RT-PCR with human skeletal and cardiac muscle. RT-PCR products were confirmed by sequence as human adhalin and then used as probes for screening human cDNA and genomic libraries. Human and rabbit adhalin are 90% identical, and among the cDNAs, a novel splice form of adhalin was seen which may encode part of the 35 kD component of the dystrophin-glycoprotein complex. To our surprise, only human/rodent hybrids containing human chromosome 17 amplified adhalin sequences in a PCR analysis. FISH analysis with three overlapping genomic sequences confirmed the chromosome 17 location and further delineated the map position to 17q21. Therefore, adhalin is excluded as the gene causing SCARMD.

  16. Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double-knockout mice.

    PubMed

    van Putten, Maaike; Hulsker, Margriet; Young, Courtney; Nadarajah, Vishna D; Heemskerk, Hans; van der Weerd, Louise; 't Hoen, Peter A C; van Ommen, Gert-Jan B; Aartsma-Rus, Annemieke M

    2013-06-01

    Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by the lack of functional dystrophin. There is no cure, but several clinical trials aimed to restore the synthesis of functional dystrophin are underway. The dystrophin levels needed for improvement of muscle pathology, function, and overall vitality are not known. Here, we describe the mdx/utrn(-/-)/Xist(Δhs) mouse model, which expresses a range of low dystrophin levels, depending on the degree of skewing of X inactivation in a utrophin-negative background. Mdx/utrn(-/-) mice develop severe muscle weakness, kyphosis, respiratory and heart failure, and premature death closely resembling DMD pathology. We show that at dystrophin levels < 4%, survival and motor function in these animals are greatly improved. In mice expressing >4% dystrophin, histopathology is ameliorated, as well. These findings suggest that the dystrophin levels needed to benefit vitality and functioning of patients with DMD might be lower than those needed for full protection against muscle damage.

  17. Alternative splicing in the nervous system: an emerging source of diversity and regulation.

    PubMed

    Lee, Christopher J; Irizarry, Kris

    2003-10-15

    Alternative splicing is emerging as a major mechanism of functional regulation in the human genome. Previously considered to be an unusual event, it has been detected by many genomics studies in 40%-60% of human genes. Moreover, it appears to be of central importance for neuronal genes and other genes involved in "information processing" functions. In this review, we will summarize alternative splicing's effects on mRNA transcripts, protein products, biological function, and human disease, focusing on genes of neuropsychiatric interest. We will also describe the latest experimental methods and database resources that can help neuroscientists make use of alternative splicing in their own research.

  18. Differential expression and HIV-1 regulation of μ-opioid receptor splice variants across human central nervous system cell types.

    PubMed

    Dever, Seth M; Xu, Ruqiang; Fitting, Sylvia; Knapp, Pamela E; Hauser, Kurt F

    2012-06-01

    The μ-opioid receptor (MOR) is known to undergo extensive alternative splicing as numerous splice variants of MOR have been identified. However, the functional significance of MOR variants, as well as how splice variants other than MOR-1 might differentially regulate human immunodeficiency virus type-1 (HIV-1) pathogenesis in the central nervous system (CNS), or elsewhere, has largely been ignored. Our findings suggest that there are specific differences in the MOR variant expression profile among CNS cell types, and that the expression levels of these variants are differentially regulated by HIV-1. While MOR-1A mRNA was detected in astroglia, microglia, and neurons, MOR-1 and MOR-1X were only found in astroglia. Expression of the various forms of MOR along with the chimeric G protein qi5 in HEK-293T cells resulted in differences in calcium/NFAT signaling with morphine treatment, suggesting that MOR variant expression might underlie functional differences in MOR-effector coupling and intracellular signaling across different cell types. Furthermore, the data suggest that the expression of MOR-1 and other MOR variants may also be differentially regulated in the brains of HIV-infected subjects with varying levels of neurocognitive impairment. Overall, the results reveal an unexpected finding that MOR-1 may not be the predominant form of MOR expressed by some CNS cell types and that other splice variants of MOR-1, with possible differing functions, may contribute to the diversity of MOR-related processes in the CNS.

  19. Tissue distribution of the dystrophin-related gene product and expression in the mdx and dy mouse

    SciTech Connect

    Love, D.R.; Marsden, R.F.; Bloomfield, J.F.; Davies, K.E. ); Morris, G.E.; Ellis, J.M. ); Fairbrother, U.; Edwards, Y.H. ); Slater, C.P. ); Parry, D.J. )

    1991-04-15

    The authors have previously reported a dystrophin-related locus (DMDL for Duchenne muscular dystrophy-like) on human chromosome 6 that maps close to the dy mutation on mouse chromosome 10. Here they show that this gene is expressed in a wide range of tissues at varying levels. The transcript is particularly abundant in several human fetal tissues, including heart, placenta, and intestine. Studies with antisera raised against a DMDL fusion protein identify a 400,000 M{sub r} protein in all mouse tissues tested, including those of mdx and dy mice. Unlike the dystrophin gene, the DMDL gene transcript is not differentially spliced at the 3{prime} end in either fetal muscle or brain.

  20. Interplay between DMD Point Mutations and Splicing Signals in Dystrophinopathy Phenotypes

    PubMed Central

    Juan-Mateu, Jonàs; González-Quereda, Lidia; Rodríguez, Maria José; Verdura, Edgard; Lázaro, Kira; Jou, Cristina; Nascimento, Andrés; Jiménez-Mallebrera, Cecilia; Colomer, Jaume; Monges, Soledad; Lubieniecki, Fabiana; Foncuberta, Maria Eugenia; Pascual-Pascual, Samuel Ignacio; Molano, Jesús; Baiget, Montserrat; Gallano, Pia

    2013-01-01

    DMD nonsense and frameshift mutations lead to severe Duchenne muscular dystrophy while in-frame mutations lead to milder Becker muscular dystrophy. Exceptions are found in 10% of cases and the production of alternatively spliced transcripts is considered a key modifier of disease severity. Several exonic mutations have been shown to induce exon-skipping, while splice site mutations result in exon-skipping or activation of cryptic splice sites. However, factors determining the splicing pathway are still unclear. Point mutations provide valuable information regarding the regulation of pre-mRNA splicing and elements defining exon identity in the DMD gene. Here we provide a comprehensive analysis of 98 point mutations related to clinical phenotype and their effect on muscle mRNA and dystrophin expression. Aberrant splicing was found in 27 mutations due to alteration of splice sites or splicing regulatory elements. Bioinformatics analysis was performed to test the ability of the available algorithms to predict consequences on mRNA and to investigate the major factors that determine the splicing pathway in mutations affecting splicing signals. Our findings suggest that the splicing pathway is highly dependent on the interplay between splice site strength and density of regulatory elements. PMID:23536893

  1. Association of dystrophin and an integral membrane glycoprotein.

    PubMed

    Campbell, K P; Kahl, S D

    1989-03-16

    Duchenne muscular dystrophy (DMD) is caused by a defective gene found on the X-chromosome. Dystrophin is encoded by the DMD gene and represents about 0.002% of total muscle protein. Immunochemical studies have shown that dystrophin is localized to the sarcolemma in normal muscle but is absent in muscle from DMD patients. Many features of the predicted primary structure of dystrophin are shared with membrane cytoskeletal proteins, but the precise function of dystrophin in muscle is unknown. Here we report the first isolation of dystrophin from digitonin-solubilized skeletal muscle membranes using wheat germ agglutinin (WGA)-Sepharose. We find that dystrophin is not a glycoprotein but binds to WGA-Sepharose because of its tight association with a WGA-binding glycoprotein. The association of dystrophin with this glycoprotein is disrupted by agents that dissociate cytoskeletal proteins from membranes. We conclude that dystrophin is linked to an integral membrane glycoprotein in the sarcolemma. Our results indicate that the function of dystrophin could be to link this glycoprotein to the underlying cytoskeleton and thus help either to preserve membrane stability or to keep the glycoprotein non-uniformly distributed in the sarcolemma.

  2. Exon structure of the human dystrophin gene

    SciTech Connect

    Roberts, R.G.; Coffey, A.J.; Bobrow, M.; Bentley, D.R.

    1993-05-01

    Application of a novel vectorette PCR approach to defining intron-exon boundaries has permitted completion of analysis of the exon structure of the largest and most complex known human gene. The authors present here a summary of the exon structure of the entire human dystrophin gene, together with the sizes of genomic HindIII fragments recognized by each exon, and (where available) GenBank accession numbers for adjacent intron sequences. 20 refs., 1 tab.

  3. DMD transcript imbalance determines dystrophin levels.

    PubMed

    Spitali, Pietro; van den Bergen, Janneke C; Verhaart, Ingrid E C; Wokke, Beatrijs; Janson, Anneke A M; van den Eijnde, Rani; den Dunnen, Johan T; Laros, Jeroen F J; Verschuuren, Jan J G M; 't Hoen, Peter A C; Aartsma-Rus, Annemieke

    2013-12-01

    Duchenne and Becker muscular dystrophies are caused by out-of-frame and in-frame mutations, respectively, in the dystrophin encoding DMD gene. Molecular therapies targeting the precursor-mRNA are in clinical trials and show promising results. These approaches will depend on the stability and expression levels of dystrophin mRNA in skeletal muscles and heart. We report that the DMD gene is more highly expressed in heart than in skeletal muscles, in mice and humans. The transcript mutated in the mdx mouse model shows a 5' to 3' imbalance compared with that of its wild-type counterpart and reading frame restoration via antisense-mediated exon skipping does not correct this event. We also report significant transcript instability in 22 patients with Becker dystrophy, clarifying the fact that transcript imbalance is not caused by premature nonsense mutations. Finally, we demonstrate that transcript stability, rather than transcriptional rate, is an important determinant of dystrophin protein levels in patients with Becker dystrophy. We suggest that the availability of the complete transcript is a key factor to determine protein abundance and thus will influence the outcome of mRNA-targeting therapies.

  4. Proteomic Profiling of the Dystrophin-Deficient mdx Phenocopy of Dystrophinopathy-Associated Cardiomyopathy

    PubMed Central

    2014-01-01

    Cardiorespiratory complications are frequent symptoms of Duchenne muscular dystrophy, a neuromuscular disorder caused by primary abnormalities in the dystrophin gene. Loss of cardiac dystrophin initially leads to changes in dystrophin-associated glycoproteins and subsequently triggers secondarily sarcolemmal disintegration, fibre necrosis, fibrosis, fatty tissue replacement, and interstitial inflammation. This results in progressive cardiac disease, which is the cause of death in a considerable number of patients afflicted with X-linked muscular dystrophy. In order to better define the molecular pathogenesis of this type of cardiomyopathy, several studies have applied mass spectrometry-based proteomics to determine proteome-wide alterations in dystrophinopathy-associated cardiomyopathy. Proteomic studies included both gel-based and label-free mass spectrometric surveys of dystrophin-deficient heart muscle from the established mdx animal model of dystrophinopathy. Comparative cardiac proteomics revealed novel changes in proteins associated with mitochondrial energy metabolism, glycolysis, signaling, iron binding, antibody response, fibre contraction, basal lamina stabilisation, and cytoskeletal organisation. This review summarizes the importance of studying cardiomyopathy within the field of muscular dystrophy research, outlines key features of the mdx heart and its suitability as a model system for studying cardiac pathogenesis, and discusses the impact of recent proteomic findings for exploring molecular and cellular aspects of cardiac abnormalities in inherited muscular dystrophies. PMID:24772416

  5. Dystrophin contains multiple independent membrane-binding domains.

    PubMed

    Zhao, Junling; Kodippili, Kasun; Yue, Yongping; Hakim, Chady H; Wasala, Lakmini; Pan, Xiufang; Zhang, Keqing; Yang, Nora N; Duan, Dongsheng; Lai, Yi

    2016-09-01

    Dystrophin is a large sub-sarcolemmal protein. Its absence leads to Duchenne muscular dystrophy (DMD). Binding to the sarcolemma is essential for dystrophin to protect muscle from contraction-induced injury. It has long been thought that membrane binding of dystrophin depends on its cysteine-rich (CR) domain. Here, we provide in vivo evidence suggesting that dystrophin contains three additional membrane-binding domains including spectrin-like repeats (R)1-3, R10-12 and C-terminus (CT). To systematically study dystrophin membrane binding, we split full-length dystrophin into ten fragments and examined subcellular localizations of each fragment by adeno-associated virus-mediated gene transfer. In skeletal muscle, R1-3, CR domain and CT were exclusively localized at the sarcolemma. R10-12 showed both cytosolic and sarcolemmal localization. Importantly, the CR-independent membrane binding was conserved in murine and canine muscles. A critical function of the CR-mediated membrane interaction is the assembly of the dystrophin-associated glycoprotein complex (DGC). While R1-3 and R10-12 did not restore the DGC, surprisingly, CT alone was sufficient to establish the DGC at the sarcolemma. Additional studies suggest that R1-3 and CT also bind to the sarcolemma in the heart, though relatively weak. Taken together, our study provides the first conclusive in vivo evidence that dystrophin contains multiple independent membrane-binding domains. These structurally and functionally distinctive membrane-binding domains provide a molecular framework for dystrophin to function as a shock absorber and signaling hub. Our results not only shed critical light on dystrophin biology and DMD pathogenesis, but also provide a foundation for rationally engineering minimized dystrophins for DMD gene therapy.

  6. Laryngeal Muscles Are Spared in the Dystrophin Deficient "mdx" Mouse

    ERIC Educational Resources Information Center

    Thomas, Lisa B.; Joseph, Gayle L.; Adkins, Tracey D.; Andrade, Francisco H.; Stemple, Joseph C.

    2008-01-01

    Purpose: "Duchenne muscular dystrophy (DMD)" is caused by the loss of the cytoskeletal protein, dystrophin. The disease leads to severe and progressive skeletal muscle wasting. Interestingly, the disease spares some muscles. The purpose of the study was to determine the effects of dystrophin deficiency on 2 intrinsic laryngeal muscles, the…

  7. Dystrophin insufficiency causes selective muscle histopathology and loss of dystrophin-glycoprotein complex assembly in pig skeletal muscle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker muscular dystrophy (BMD) is caused by a dystrophin insufficiency or expression of a partially functional protein product. Both of these dystrophinopathies are most commonly studied using the mdx mouse and a golden r...

  8. Dystrophin-deficient large animal models: translational research and exon skipping

    PubMed Central

    Yu, Xinran; Bao, Bo; Echigoya, Yusuke; Yokota, Toshifumi

    2015-01-01

    Duchenne muscular dystrophy (DMD) is an X-linked recessive genetic disorder caused by mutations in the dystrophin gene. Affecting approximately 1 in 3,600-9337 boys, DMD patients exhibit progressive muscle degeneration leading to fatality as a result of heart or respiratory failure. Despite the severity and prevalence of the disease, there is no cure available. While murine models have been successfully used in illustrating the mechanisms of DMD, their utility in DMD research is limited due to their mild disease phenotypes such as lack of severe skeletal muscle and cardiac symptoms. To address the discrepancy between the severity of disease displayed by murine models and human DMD patients, dystrophin-deficient dog models with a splice site mutation in intron 6 were established. Examples of these are Golden Retriever muscular dystrophy and beagle-based Canine X-linked muscular dystrophy. These large animal models are widely employed in therapeutic DMD research due to their close resemblance to the severity of human patient symptoms. Recently, genetically tailored porcine models of DMD with deleted exon 52 were developed by our group and others, and can potentially act as a new large animal model. While therapeutic outcomes derived from these large animal models can be more reliably extrapolated to DMD patients, a comprehensive understanding of these models is still needed. This paper will discuss recent progress and future directions of DMD studies with large animal models such as canine and porcine models. PMID:26396664

  9. Understanding splicing regulation through RNA splicing maps.

    PubMed

    Witten, Joshua T; Ule, Jernej

    2011-03-01

    Alternative splicing is a highly regulated process that greatly increases the proteome diversity and plays an important role in cellular differentiation and disease. Interactions between RNA-binding proteins (RBPs) and pre-mRNA are the principle regulator of splicing decisions. Findings from recent genome-wide studies of protein-RNA interactions have been combined with assays of the global effects of RBPs on splicing to create RNA splicing maps. These maps integrate information from all pre-mRNAs regulated by single RBPs to identify the global positioning principles guiding splicing regulation. Recent studies using this approach have identified a set of positional principles that are shared between diverse RBPs. Here, we discuss how insights from RNA splicing maps of different RBPs inform the mechanistic models of splicing regulation.

  10. HOLLYWOOD: a comparative relational database of alternative splicing.

    PubMed

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B

    2006-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information about the splicing of orthologous genes in different species, we have developed the Hollywood system. This database was built upon genomic annotation of splicing patterns of known genes derived from spliced alignment of complementary DNAs (cDNAs) and expressed sequence tags, and links features such as splice site sequence and strength, exonic splicing enhancers and silencers, conserved and non-conserved patterns of splicing, and cDNA library information for inferred alternative exons. Hollywood was implemented as a relational database and currently contains comprehensive information for human and mouse. It is accompanied by a web query tool that allows searches for sets of exons with specific splicing characteristics or splicing regulatory element composition, or gives a graphical or sequence-level summary of splicing patterns for a specific gene. A streamlined graphical representation of gene splicing patterns is provided, and these patterns can alternatively be layered onto existing information in the UCSC Genome Browser. The database is accessible at http://hollywood.mit.edu.

  11. RT-PCR analysis of dystrophin mRNA in DND/BMD patients

    SciTech Connect

    Ciafaloni, E.; Silva, H.A.R. de; Roses, A.D.

    1994-09-01

    Duchenne and Becker muscular dystrophies (DMD, BMD) are X-linked recessive disorders caused by mutations in the dystrophin (dys) gene. The majority of these mutations are intragenic deletions of duplications routinely detected by Southern biots and multiplex PCR. The remainder are very likely, smaller mutations, mostly point-mutations. Detection of these mutations is very difficult due to the size and complexity of the dys gene. We applied RT-PCR to analyse the entire dys mRNA of three DMD patients with no detectable genomic defect. In two unrelated patients, a duplication of the 62 bp exon 2 was identified. This causes a frameshift sufficient to explain the DMD phenotype. In the third patient, who had congenital DMD and severe mental retardation, a complex pattern of aberrant splicing at the 3-prime exons 67-79 was observed. Sural nerve biopsy in this patient showed the complete absence of Dp116. PCR-SSCP studies are presently in progress to identify the mutations responsible for the aberrant splicing patterns.

  12. Underwater splice for submarine coaxial cable

    SciTech Connect

    Inouye, A.T.; Roe, T. Jr.; Tausing, W.R.; Wilson, J.V.

    1984-10-30

    The invention is a device for splicing submarine coaxial cable underwater on the seafloor with a simple push-on operation to restore and maintain electrical and mechanical strength integrity; the splice device is mateable directly with the severed ends of a coaxial cable to be repaired. Splicing assemblies comprise a dielectric pressure compensating fluid filled guide cavity, a gelled castor oil cap and wiping seals for exclusion of seawater, electrical contacts, a cable strength restoration mechanism, and a pressure compensation system for controlled extrusion of and depletion loss prevention of dielectric seal fluid during cable splicing. A splice is made underwater by directly inserting prepared ends of coaxial cable, having no connector attachments, into splicing assemblies.

  13. Gene therapies that restore dystrophin expression for the treatment of Duchenne muscular dystrophy.

    PubMed

    Robinson-Hamm, Jacqueline N; Gersbach, Charles A

    2016-09-01

    Duchenne muscular dystrophy is one of the most common inherited genetic diseases and is caused by mutations to the DMD gene that encodes the dystrophin protein. Recent advances in genome editing and gene therapy offer hope for the development of potential therapeutics. Truncated versions of the DMD gene can be delivered to the affected tissues with viral vectors and show promising results in a variety of animal models. Genome editing with the CRISPR/Cas9 system has recently been used to restore dystrophin expression by deleting one or more exons of the DMD gene in patient cells and in a mouse model that led to functional improvement of muscle strength. Exon skipping with oligonucleotides has been successful in several animal models and evaluated in multiple clinical trials. Next-generation oligonucleotide formulations offer significant promise to build on these results. All these approaches to restoring dystrophin expression are encouraging, but many hurdles remain. This review summarizes the current state of these technologies and summarizes considerations for their future development.

  14. Dystrophin complex functions as a scaffold for signalling proteins.

    PubMed

    Constantin, Bruno

    2014-02-01

    Dystrophin is a 427kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force transduction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaffold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins. The adaptor proteins syntrophin contribute to recruit and regulate various signalling proteins such as ion channels, into a macromolecular complex. Although dystrophin and dystroglycan can be directly involved in signalling pathways, syntrophins play a central role in organizing signalplex anchored to the dystrophin scaffold. The dystrophin associated complex, can bind up to four syntrophin through binding domains of dystrophin and dystrobrevin, allowing the scaffold of multiple signalling proteins in close proximity. Multiple interactions mediated by PH and PDZ domains of syntrophin also contribute to build a complete signalplex which may include ion channels, such as voltage-gated sodium channels or TRPC cation channels, together with, trimeric G protein, G protein-coupled receptor, plasma membrane calcium pump, and NOS, to enable efficient and regulated signal transduction and ion transport. This article is part

  15. MAASE: An alternative splicing database designed for supporting splicing microarray applications

    PubMed Central

    ZHENG, CHRISTINA L.; KWON, YOUNG-SOO; LI, HAI-RI; ZHANG, KUI; COUTINHO-MANSFIELD, GABRIELA; YANG, CANZHU; NAIR, T. MURLIDHARAN; GRIBSKOV, MICHAEL; FU, XIANG-DONG

    2005-01-01

    Alternative splicing is a prominent feature of higher eukaryotes. Understanding of the function of mRNA isoforms and the regulation of alternative splicing is a major challenge in the post-genomic era. The development of mRNA isoform sensitive microarrays, which requires precise splice-junction sequence information, is a promising approach. Despite the availability of a large number of mRNAs and ESTs in various databases and the efforts made to align transcript sequences to genomic sequences, existing alternative splicing databases do not offer adequate information in an appropriate format to aid in splicing array design. Here we describe our effort in constructing the Manually Annotated Alternatively Spliced Events (MAASE) database system, which is specifically designed to support splicing microarray applications. MAASE comprises two components: (1) a manual/computational annotation tool for the efficient extraction of critical sequence and functional information for alternative splicing events and (2) a user-friendly database of annotated events that allows convenient export of information to aid in microarray design and data analysis. We provide a detailed introduction and a step-by-step user guide to the MAASE database system to facilitate future large-scale annotation efforts, integration with other alternative splicing databases, and splicing array fabrication. PMID:16251387

  16. A new model for the interaction of dystrophin with F-actin

    PubMed Central

    1996-01-01

    The F-actin binding and cross-linking properties of skeletal muscle dystrophin-glycoprotein complex were examined using high and low speed cosedimentation assays, microcapillary falling ball viscometry, and electron microscopy. Dystrophin-glycoprotein complex binding to F-actin saturated near 0.042 +/- 0.005 mol/ mol, which corresponds to one dystrophin per 24 actin monomers. Dystrophin-glycoprotein complex bound to F-actin with an average apparent Kd for dystrophin of 0.5 microM. These results demonstrate that native, full-length dystrophin in the glycoprotein complex binds F-actin with some properties similar to those measured for several members of the actin cross-linking super- family of proteins. However, we failed to observe dystrophin- glycoprotein complex-induced cross-linking of F-actin by three different methods, each positively controlled with alpha-actinin. Furthermore, high speed cosedimentation analysis of dystrophin- glycoprotein complex digested with calpain revealed a novel F-actin binding site located near the middle of the dystrophin rod domain. Recombinant dystrophin fragments corresponding to the novel actin binding site and the first 246 amino acids of dystrophin both bound F- actin but with significantly lower affinity and higher capacity than was observed with purified dystrophin-glycoprotein complex. Finally, dystrophin-glycoprotein complex was observed to significantly slow the depolymerization of F-actin, Suggesting that dystrophin may lie along side an actin filament through interaction with multiple actin monomers. These data suggest that although dystrophin is most closely related to the actin cross-linking superfamily based on sequence homology, dystrophin binds F-actin in a manner more analogous to actin side-binding proteins. PMID:8909541

  17. Metabolic and Signaling Alterations in Dystrophin-Deficient Hearts Precede Overt Cardiomyopathy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cytoskeletal protein dystrophin has been implicated in hereditary and acquired forms of cardiomyopathy. However, much remains to be learned about the role of dystrophin in the heart. We hypothesized that the dystrophin-deficient heart displays early alterations in energy metabolism that precede ...

  18. Dystrophin insufficiency causes a Becker muscular dystrophy-like phenotype in swine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Duchenne muscular dystrophy (DMD) is caused by a dystrophin deficiency while Becker MD is caused by a dystrophin insufficiency or expression of a partially functional dystrophin protein. Deficiencies in existing mouse and dog models necessitate the development of a novel large animal model. Our pu...

  19. LAR tyrosine phosphatase receptor: alternative splicing is preferential to the nervous system, coordinated with cell growth and generates novel isoforms containing extensive CAG repeats

    PubMed Central

    1995-01-01

    Receptor-linked tyrosine phosphatases regulate cell growth by dephosphorylating proteins involved in tyrosine kinase signal transduction. The leukocyte common antigen-related (LAR) tyrosine phosphatase receptor has sequence similarity to the neural cell adhesion molecule N-CAM and is located in a chromosomal region (1p32- 33) frequently altered in neuroectodermal tumors. To understand the function of receptor-linked tyrosine phosphatases in neural development, we sought to identify LAR isoforms preferentially expressed in the nervous system and cellular processes regulating LAR alternative splicing. We report here the isolation of a series of rat LAR cDNA clones arising from complex combinatorial alternative splicing, not previously demonstrated for the tyrosine phosphatase- receptor gene family in general. Isoforms included: (a) deletions of the fourth, sixth and seventh fibronectin type III-like domains; (b) an alternatively spliced novel cassette exon in the fifth fibronectin type III-like domain; (c) two alternatively spliced novel cassette exons in the juxtamembrane region; (d) a retained intron in the extracellular region with in-frame stop codons predicting a secreted LAR isoform; and (e) an LAR transcript including an alternative 3' untranslated region containing multiple stretches of tandem CAG repeats up to 21 repeats in length. This number of repeats was in the range found in normal alleles of genes in which expansions of repeats are associated with neurodegenerative disease and the genetic phenomenon of anticipation. RT-PCR and Northern analysis demonstrated that LAR alternative splicing occurred preferentially in neuromuscular tissue in vivo and in neurons compared to astrocytes in vitro and was developmentally regulated. Alternative splicing was also regulated in PC12 cells by NGF, in 3T3 fibroblasts by cell confluence and in sciatic nerve and muscle subsequent to nerve transection. Western blot analysis demonstrated that alternatively spliced

  20. Transcriptomic analysis of dystrophin RNAi knockdown reveals a central role for dystrophin in muscle differentiation and contractile apparatus organization

    PubMed Central

    2010-01-01

    Background Duchenne muscular dystrophy (DMD) is a fatal muscle wasting disorder caused by mutations in the dystrophin gene. DMD has a complex and as yet incompletely defined molecular pathophysiology hindering development of effective ameliorative approaches. Transcriptomic studies so far conducted on dystrophic cells and tissues suffer from non-specific changes and background noise due to heterogeneous comparisons and secondary pathologies. A study design in which a perfectly matched control cell population is used as reference for transcriptomic studies will give a much more specific insight into the effects of dystrophin deficiency and DMD pathophysiology. Results Using RNA interference (RNAi) to knock down dystrophin in myotubes from C57BL10 mice, we created a homogenous model to study the transcriptome of dystrophin-deficient myotubes. We noted significant differences in the global gene expression pattern between these myotubes and their matched control cultures. In particular, categorical analyses of the dysregulated genes demonstrated significant enrichment of molecules associated with the components of muscle cell contractile unit, ion channels, metabolic pathways and kinases. Additionally, some of the dysregulated genes could potentially explain conditions and endophenotypes associated with dystrophin deficiency, such as dysregulation of calcium homeostasis (Pvalb and Casq1), or cardiomyopathy (Obscurin, Tcap). In addition to be validated by qPCR, our data gains another level of validity by affirmatively reproducing several independent studies conducted previously at genes and/or protein levels in vivo and in vitro. Conclusion Our results suggest that in striated muscles, dystrophin is involved in orchestrating proper development and organization of myofibers as contractile units, depicting a novel pathophysiology for DMD where the absence of dystrophin results in maldeveloped myofibers prone to physical stress and damage. Therefore, it becomes apparent

  1. 46 CFR 111.60-19 - Cable splices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Cable splices. 111.60-19 Section 111.60-19 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Wiring Materials and Methods § 111.60-19 Cable splices. (a) A cable must not be spliced in...

  2. Abnormal splicing switch of DMD's penultimate exon compromises muscle fibre maintenance in myotonic dystrophy

    PubMed Central

    Rau, Frédérique; Lainé, Jeanne; Ramanoudjame, Laetitita; Ferry, Arnaud; Arandel, Ludovic; Delalande, Olivier; Jollet, Arnaud; Dingli, Florent; Lee, Kuang-Yung; Peccate, Cécile; Lorain, Stéphanie; Kabashi, Edor; Athanasopoulos, Takis; Koo, Taeyoung; Loew, Damarys; Swanson, Maurice S.; Le Rumeur, Elisabeth; Dickson, George; Allamand, Valérie; Marie, Joëlle; Furling, Denis

    2015-01-01

    Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1. PMID:26018658

  3. Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro

    PubMed Central

    Shimo, Takenori; Tachibana, Keisuke; Saito, Kiwamu; Yoshida, Tokuyuki; Tomita, Erisa; Waki, Reiko; Yamamoto, Tsuyoshi; Doi, Takefumi; Inoue, Takao; Kawakami, Junji; Obika, Satoshi

    2014-01-01

    Antisense-mediated modulation of pre-mRNA splicing is an attractive therapeutic strategy for genetic diseases. Currently, there are few examples of modulation of pre-mRNA splicing using locked nucleic acid (LNA) antisense oligonucleotides, and, in particular, no systematic study has addressed the optimal design of LNA-based splice-switching oligonucleotides (LNA SSOs). Here, we designed a series of LNA SSOs complementary to the human dystrophin exon 58 sequence and evaluated their ability to induce exon skipping in vitro using reverse transcription-polymerase chain reaction. We demonstrated that the number of LNAs in the SSO sequence and the melting temperature of the SSOs play important roles in inducing exon skipping and seem to be key factors for designing efficient LNA SSOs. LNA SSO length was an important determinant of activity: a 13-mer with six LNA modifications had the highest efficacy, and a 7-mer was the minimal length required to induce exon skipping. Evaluation of exon skipping activity using mismatched LNA/DNA mixmers revealed that 9-mer LNA SSO allowed a better mismatch discrimination. LNA SSOs also induced exon skipping of endogenous human dystrophin in primary human skeletal muscle cells. Taken together, our findings indicate that LNA SSOs are powerful tools for modulating pre-mRNA splicing. PMID:24935206

  4. Disodium cromoglycate protects dystrophin-deficient muscle fibers from leakiness.

    PubMed

    Marques, Maria Julia; Ventura Machado, Rafael; Minatel, Elaine; Santo Neto, Humberto

    2008-01-01

    In dystrophin-deficient fibers of mdx mice and in Duchenne dystrophy, the lack of dystrophin leads to sarcolemma breakdown and muscle degeneration. We verified that cromolyn, a mast-cell stabilizer agent, stabilized dystrophic muscle fibers using Evans blue dye as a marker of sarcolemma leakiness. Mdx mice (n=8; 14 days of age) received daily intraperitoneal injections of cromolyn (50 mg/kg body weight) for 15 days. Untreated mdx mice (n=8) were injected with saline. Cryostat cross-sections of the sternomastoid, tibialis anterior, and diaphragm muscles were stained with hematoxylin and eosin. Cromolyn dramatically reduced Evans blue dye-positive fibers in all muscles (P<0.05; Student's t-test) and led to a significant increase in the percentage of fibers with peripheral nuclei. This study supports the protective effects of cromolyn in dystrophic muscles and further indicates its action against muscle fiber leakiness in muscles that are differently affected by the lack of dystrophin.

  5. Systematic identification and analysis of exonic splicing silencers.

    PubMed

    Wang, Zefeng; Rolish, Michael E; Yeo, Gene; Tung, Vivian; Mawson, Matthew; Burge, Christopher B

    2004-12-17

    Exonic splicing silencers (ESSs) are cis-regulatory elements that inhibit the use of adjacent splice sites, often contributing to alternative splicing (AS). To systematically identify ESSs, an in vivo splicing reporter system was developed to screen a library of random decanucleotides. The screen yielded 141 ESS decamers, 133 of which were unique. The silencer activity of over a dozen of these sequences was also confirmed in a heterologous exon/intron context and in a second cell type. Of the unique ESS decamers, most could be clustered into groups to yield seven putative ESS motifs, some resembling known motifs bound by hnRNPs H and A1. Potential roles of ESSs in constitutive splicing were explored using an algorithm, ExonScan, which simulates splicing based on known or putative splicing-related motifs. ExonScan and related bioinformatic analyses suggest that these ESS motifs play important roles in suppression of pseudoexons, in splice site definition, and in AS.

  6. Read-through compound 13 restores dystrophin expression and improves muscle function in the mdx mouse model for Duchenne muscular dystrophy

    PubMed Central

    Kayali, Refik; Ku, Jin-Mo; Khitrov, Gregory; Jung, Michael E.; Prikhodko, Olga; Bertoni, Carmen

    2012-01-01

    Molecules that induce ribosomal read-through of nonsense mutations in mRNA and allow production of a full-length functional protein hold great therapeutic potential for the treatment of many genetic disorders. Two such read-through compounds, RTC13 and RTC14, were recently identified by a luciferase-independent high-throughput screening assay and were shown to have potential therapeutic functions in the treatment of nonsense mutations in the ATM and the dystrophin genes. We have now tested the ability of RTC13 and RTC14 to restore dystrophin expression into skeletal muscles of the mdx mouse model for Duchenne muscular dystrophy (DMD). Direct intramuscular injection of compound RTC14 did not result in significant read-through activity in vivo and demonstrated the levels of dystrophin protein similar to those detected using gentamicin. In contrast, significant higher amounts of dystrophin were detected after intramuscular injection of RTC13. When administered systemically, RTC13 was shown to partially restore dystrophin protein in different muscle groups, including diaphragm and heart, and improved muscle function. An increase in muscle strength was detected in all treated animals and was accompanied by a significant decrease in creatine kinase levels. These studies establish the therapeutic potential of RTC13 in vivo and advance this newly identified compound into preclinical application for DMD. PMID:22692682

  7. Simultaneous Pathoproteomic Evaluation of the Dystrophin-Glycoprotein Complex and Secondary Changes in the mdx-4cv Mouse Model of Duchenne Muscular Dystrophy

    PubMed Central

    Murphy, Sandra; Henry, Michael; Meleady, Paula; Zweyer, Margit; Mundegar, Rustam R.; Swandulla, Dieter; Ohlendieck, Kay

    2015-01-01

    In skeletal muscle, the dystrophin-glycoprotein complex forms a membrane-associated assembly of relatively low abundance, making its detailed proteomic characterization in normal versus dystrophic tissues technically challenging. To overcome this analytical problem, we have enriched the muscle membrane fraction by a minimal differential centrifugation step followed by the comprehensive label-free mass spectrometric analysis of microsomal membrane preparations. This organelle proteomic approach successfully identified dystrophin and its binding partners in normal versus dystrophic hind limb muscles. The introduction of a simple pre-fractionation step enabled the simultaneous proteomic comparison of the reduction in the dystrophin-glycoprotein complex and secondary changes in the mdx-4cv mouse model of dystrophinopathy in a single analytical run. The proteomic screening of the microsomal fraction from dystrophic hind limb muscle identified the full-length dystrophin isoform Dp427 as the most drastically reduced protein in dystrophinopathy, demonstrating the remarkable analytical power of comparative muscle proteomics. Secondary pathoproteomic expression patterns were established for 281 proteins, including dystrophin-associated proteins and components involved in metabolism, signalling, contraction, ion-regulation, protein folding, the extracellular matrix and the cytoskeleton. Key findings were verified by immunoblotting. Increased levels of the sarcolemmal Na+/K+-ATPase in dystrophic leg muscles were also confirmed by immunofluorescence microscopy. Thus, the reduction of sample complexity in organelle-focused proteomics can be advantageous for the profiling of supramolecular protein complexes in highly intricate systems, such as skeletal muscle tissue. PMID:26067837

  8. Mitochondrial expression of a short dystrophin-like product with molecular weight of 71 kDa.

    PubMed

    Chávez, O; Harricane, M C; Alemán, V; Dorbani, L; Larroque, C; Mornet, D; Rendon, A; Martínez-Rojas, D

    2000-08-02

    In the brain, Dp71 is the most abundant protein product of the DMD gene and by alternative splicing of exon 78 two isoforms can be expressed, Dp71d and Dp71f. To explore the subcellular distribution of these Dp71 isoforms, specific monoclonal antibodies were used. Dp71d (with exon 78) was found in microsomes, while Dp71f (without exon 78) was detected in mitochondria. To determine the alterations which the absence of dystrophin proteins induces, we compared the expression of Dp71d in microsomes and Dp71f in mitochondria from mdx and mdx(3CV) mice. Dp71d in microsomes of mdx was similar to that of wild-type mice and, as expected, in mdx(3CV) this protein was undetectable. However, in mitochondria from mdx(3CV), Dp71f was overexpressed in comparison to mitochondria from mdx mice. Because in mdx(3CV) mice all the dystrophin proteins are mutated or diminished, we concluded that the protein detected in mitochondria is not a Dp71f but a novel product named Dp71f-like protein.

  9. Dystrophin, utrophin and {beta}-dystroglycan expression in skeletal muscle from patients with Becker muscular dystrophy

    SciTech Connect

    Kawajiri, Masakazu; Mitsui, Takao; Kawai, Hisaomi

    1996-08-01

    The precise localization and semiquantitative correlation of dystrophin, utrophin and {beta}-dystroglycan expression on the sarcolemma of skeletal muscle cells obtained from patients with Becker muscular dystrophy (BMD) was studied using three types of double immunofluorescence. Staining intensity was measured using a confocal laser microscope. Each of these proteins was identified at the same locus on the sarcolemma. The staining intensities of dystrophin and utrophin were approximately reciprocal at sarcolemmal sites where dystrophin expression was obviously observed. The staining intensity of {beta}-dystroglycan was strong in areas where dystrophin staining was also strong and utrophin expression was weak. Quantitative analysis revealed that the staining intensity of {beta}-dystroglycan minus that of dystrophin approximated the staining intensity of utrophin, indicating that the sum of dystrophin and utrophin expression corresponds to that of {beta}-dystroglycan. These results suggest that utrophin may compensate for dystrophin deficiency found in BMD by binding to {beta}-dystroglycan. 35 refs., 3 figs., 1 tab.

  10. Resisting sarcolemmal rupture: dystrophin repeats increase membrane-actin stiffness.

    PubMed

    Sarkis, Joe; Vié, Véronique; Winder, Steve J; Renault, Anne; Le Rumeur, Elisabeth; Hubert, Jean-François

    2013-01-01

    Dystrophin is an essential part of a membrane protein complex that provides flexible support to muscle fiber membranes. Loss of dystrophin function leads to membrane fragility and muscle-wasting disease. Given the importance of cytoskeletal interactions in strengthening the sarcolemma, we have focused on actin-binding domain 2 of human dystrophin, constituted by repeats 11 to 15 of the central domain (DYS R11-15). We previously showed that DYS R11-15 also interacts with membrane lipids. We investigated the shear elastic constant (μ) and the surface viscosity (η(s)) of Langmuir phospholipid monolayers mimicking the inner leaflet of the sarcolemma in the presence of DYS R11-15 and actin. The initial interaction of 100 nM DYS R11-15 with the monolayers slightly modifies their rheological properties. Injection of 0.125 μM filamentous actin leads to a strong increase of μ and η(s,) from 0 to 5.5 mN/m and 2.4 × 10(-4) N · s/m, respectively. These effects are specific to DYS R11-15, require filamentous actin, and depend on phospholipid nature and lateral surface pressure. These findings suggest that the central domain of dystrophin contributes significantly to the stiffness and the stability of the sarcolemma through its simultaneous interactions with the cytoskeleton and lipid membrane. This mechanical link is likely to be a major contributing factor to the shock absorber function of dystrophin and muscle sarcolemmal integrity on mechanical stress.

  11. Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially.

    PubMed

    Simpson, Craig G; Lewandowska, Dominika; Liney, Michele; Davidson, Diane; Chapman, Sean; Fuller, John; McNicol, Jim; Shaw, Paul; Brown, John W S

    2014-07-01

    This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF65 overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF65 alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence.

  12. Splicing plastic optical fibers

    NASA Astrophysics Data System (ADS)

    Carson, Susan D.; Salazar, Roberto A.

    1991-12-01

    Polymethylmethacrylate (PMMA) plastic optical fiber (500 micrometers diameter, fluoropolymer cladding) has been spliced using a fused silica sleeve and a variety of solvent/PMMA solutions as adhesives. Mechanical splicing using index matching fluid has also been investigated. To ensure good bonding and minimize scattering, fiber ends are polished prior to application of adhesive. Using an LED ((lambda) max approximately 640 nm), losses are routinely less than 1.0 dB/splice, and some adhesive formulations have exhibited losses as low as 0.2 dB/splice. Five-meter fibers with as many as ten splices/fiber have been monitored over a period of several months. No fiber has exhibited an increase in optical loss with time.

  13. Microdystrophin delivery in dystrophin-deficient (mdx) mice by genetically-corrected syngeneic MSCs transplantation.

    PubMed

    Xiong, F; Xu, Y; Zheng, H; Lu, X; Feng, S; Shang, Y; Li, Y; Zhang, Y; Jin, S; Zhang, C

    2010-09-01

    Cell transplantation and gene therapy are two promising therapeutical approaches for the treatment on Duchenne Muscular Dystrophy (DMD). However, both strategies have met many hurdles, mainly because of the absence of an efficient systemic delivery system on gene therapy and immune reactionns on cell transplantation. In this project, we investigated the strategy based on combination of these two basic ones, ie, transplantation of transgene-corrected mdx mesenchymal stem cells (MSCs) into mdx mice to cure DMD. The MSCs isolated from male mdx mice were transduced with recombinant adenovirus including human microdystrophin gene and labeled with BrdU were transplanted into female mdx mice, the Chimerism with the sex-determinant Y chromosome and human microdystrophin expression were detected. Simultaneously, the plasma creatine kinase (CK) activity, the improvement with the muscles' pathology and contractile propertie were evaluated. The results clearly demonstrated that some human dystrophin and BrdU expression collectively were detected in some muscles of transplanted mdx mice. Moreover, the CK activity and percentage of centrally nucleated fiber (CNF) decreased slightly after transplanation. Regrettably, the protective effect on contraction-induced injury in TA and diaphragm muscles wasn't significantly improvement after transplantation. Our results suggested, if enhancement on the efficiency with cell transplantation, that the transplantation of autologous MSCs corrected by dystrophin may be a form to treat DMD patients in future.

  14. Exogenous Dp71 is a dominant negative competitor of dystrophin in skeletal muscle.

    PubMed

    Leibovitz, Sigalit; Meshorer, Asher; Fridman, Yosef; Wieneke, Sascha; Jockusch, Harald; Yaffe, David; Nudel, Uri

    2002-11-01

    Dystrophin, the protein which is absent or non-functional in Duchenne muscular dystrophy, consists of four main domains: an N-terminal actin binding domain, a rod shaped domain of spectrin-like repeats, a cysteine-rich domain and a unique C-terminal domain. In muscle, dystrophin forms a linkage between the cytoskeletal actin and a group of membrane proteins (dystrophin associated proteins). The N-terminal domain binds to the cytoskeletal actin and the association with the dystrophin associated proteins is mediated mainly by the cysteine-rich and C-terminal domains of dystrophin. The dystrophin gene also encodes two isoforms of non-muscle dystrophins and a number of smaller products consisting of the two C-terminal domains with different extensions into the spectrin-like repeat domain. Dp71, which consist of the C-terminal and the cysteine-rich domains of dystrophin, is the major product of the gene in all non-muscle tissues tested so far, but it is absent in differentiated skeletal muscle. In an attempt to understand the functions of Dp71, we produced transgenic mice over-expressing this protein in several tissues. The highest levels of exogeneous Dp71 were detected in skeletal muscle, in association with the sarcolemma. This resulted in muscle damage similar to that found in mice which lack dystrophin. The data indicates that Dp71 competes with dystrophin for the binding to the dystrophin associated proteins. Since Dp71 lacks the actin binding domain, it cannot form the essential linkage between the dystrophin associated proteins complex and the cytoskeleton.

  15. Expression of dystrophin Dp71 during PC12 cell differentiation.

    PubMed

    Cisneros, B; Rendon, A; Genty, V; Aranda, G; Marquez, F; Mornet, D; Montañez, C

    1996-08-02

    The expression of dystrophin-protein 71 (Dp71) was investigated during nerve growth factor (NGF) induced differentiation of PC12 cells. A semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR) assay was designed to measure Dp71 mRNA, whereas the Dp71 protein amount was evaluated by immunoblot analysis using an anti-dystrophin monoclonal antibody. Comparison with control cultures showed that Dp71 mRNA and protein levels increased in parallel with NGF treatment peaking with increments of 60% and 1.4 times, respectively. The upregulation of Dp71 expression during PC12 cells differentiation point at PC12 cells as a suitable model for studying the function of Dp71 in neuronal cells.

  16. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy

    PubMed Central

    Bengtsson, Niclas E.; Hall, John K.; Odom, Guy L.; Phelps, Michael P.; Andrus, Colin R.; Hawkins, R. David; Hauschka, Stephen D.; Chamberlain, Joel R.; Chamberlain, Jeffrey S.

    2017-01-01

    Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx4cv mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders. PMID:28195574

  17. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy.

    PubMed

    Bengtsson, Niclas E; Hall, John K; Odom, Guy L; Phelps, Michael P; Andrus, Colin R; Hawkins, R David; Hauschka, Stephen D; Chamberlain, Joel R; Chamberlain, Jeffrey S

    2017-02-14

    Gene replacement therapies utilizing adeno-associated viral (AAV) vectors hold great promise for treating Duchenne muscular dystrophy (DMD). A related approach uses AAV vectors to edit specific regions of the DMD gene using CRISPR/Cas9. Here we develop multiple approaches for editing the mutation in dystrophic mdx(4cv) mice using single and dual AAV vector delivery of a muscle-specific Cas9 cassette together with single-guide RNA cassettes and, in one approach, a dystrophin homology region to fully correct the mutation. Muscle-restricted Cas9 expression enables direct editing of the mutation, multi-exon deletion or complete gene correction via homologous recombination in myogenic cells. Treated muscles express dystrophin in up to 70% of the myogenic area and increased force generation following intramuscular delivery. Furthermore, systemic administration of the vectors results in widespread expression of dystrophin in both skeletal and cardiac muscles. Our results demonstrate that AAV-mediated muscle-specific gene editing has significant potential for therapy of neuromuscular disorders.

  18. Lentiviral vectors can be used for full-length dystrophin gene therapy

    PubMed Central

    Counsell, John R.; Asgarian, Zeinab; Meng, Jinhong; Ferrer, Veronica; Vink, Conrad A.; Howe, Steven J.; Waddington, Simon N.; Thrasher, Adrian J.; Muntoni, Francesco; Morgan, Jennifer E.; Danos, Olivier

    2017-01-01

    Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a ‘template-switching’ lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD. PMID:28303972

  19. Evolutionary study of vertebrate and invertebrate members of the dystrophin and utrophin gene family

    SciTech Connect

    Roberts, R.G.; Nicholson, L.; Bobrow, M.

    1994-09-01

    Vertebrates express two members of the dystrophin gene family. The prototype, dystrophin, is expressed in muscle and neural tissue, and is defective in the human disorders Duchenne and Becker muscular dystrophy (DMD, BMD). The dystrophin homologue utrophin is more generally expressed but has not yet been associated with a genetic disorder. The function of neither protein is clear. A comparison of human utrophin with the known dystrophins (human, mouse, chicken, Torpedo) suggests that dystrophin and utrophin diverged before the vertebrate radiation. We have used reverse-transcript PCR (RT-PCR) directed by degenerate primers to characterize dystrophin and utrophin transcripts from a range of vertebrate and invertebrate animals. Our results suggest that the duplication leading to distinct dystrophin and utrophin genes occurred close to the point of divergence of urochordates from the cephalochordate-vertebrate lineage. This divergence may have occurred to fulfill a novel role which arose at this point, or may reflect a need for separate regulation of the neuromuscular and other functions of the ancient dystrophin. Our data include sequences of the first non-human utrophins to be characterized, and show these to be substantially more divergent than their cognate dystrophins. In addition, our results provide a large body of information regarding the tolerance of amino acid positions in the cysteine-rich and C-terminal domains to substitution. This will aid the interpretations of DMD and BMD missense mutations in these regions.

  20. Lentiviral vectors can be used for full-length dystrophin gene therapy.

    PubMed

    Counsell, John R; Asgarian, Zeinab; Meng, Jinhong; Ferrer, Veronica; Vink, Conrad A; Howe, Steven J; Waddington, Simon N; Thrasher, Adrian J; Muntoni, Francesco; Morgan, Jennifer E; Danos, Olivier

    2017-12-01

    Duchenne Muscular Dystrophy (DMD) is caused by a lack of dystrophin expression in patient muscle fibres. Current DMD gene therapy strategies rely on the expression of internally deleted forms of dystrophin, missing important functional domains. Viral gene transfer of full-length dystrophin could restore wild-type functionality, although this approach is restricted by the limited capacity of recombinant viral vectors. Lentiviral vectors can package larger transgenes than adeno-associated viruses, yet lentiviral vectors remain largely unexplored for full-length dystrophin delivery. In our work, we have demonstrated that lentiviral vectors can package and deliver inserts of a similar size to dystrophin. We report a novel approach for delivering large transgenes in lentiviruses, in which we demonstrate proof-of-concept for a 'template-switching' lentiviral vector that harnesses recombination events during reverse-transcription. During this work, we discovered that a standard, unmodified lentiviral vector was efficient in delivering full-length dystrophin to target cells, within a total genomic load of more than 15,000 base pairs. We have demonstrated gene therapy with this vector by restoring dystrophin expression in DMD myoblasts, where dystrophin was expressed at the sarcolemma of myotubes after myogenic differentiation. Ultimately, our work demonstrates proof-of-concept that lentiviruses can be used for permanent full-length dystrophin gene therapy, which presents a significant advancement in developing an effective treatment for DMD.

  1. Detection of an exon 53 polymorphism in the dystrophin gene.

    PubMed

    Prior, T W; Papp, A C; Snyder, P J; Sedra, M S

    1993-10-01

    We utilized a heteroduplex method to screen for small mutations in Duchenne muscular dystrophy patients who did not have deletions or duplications. A dystrophin exon 53 heteroduplex band was identified in 14.4% of the affected patients. Direct sequencing of the amplified product from DNA producing the heteroduplex revealed the presence of a polymorphism in the coding region. The codon for asparagine was converted from AAT to AAC.

  2. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts

    PubMed Central

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes. PMID:26682797

  3. Akt activation prevents the force drop induced by eccentric contractions in dystrophin-deficient skeletal muscle.

    PubMed

    Blaauw, Bert; Mammucari, Cristina; Toniolo, Luana; Agatea, Lisa; Abraham, Reimar; Sandri, Marco; Reggiani, Carlo; Schiaffino, Stefano

    2008-12-01

    Skeletal muscles of the mdx mouse, a model of Duchenne Muscular Dystrophy, show an excessive reduction in the maximal tetanic force following eccentric contractions. This specific sign of the susceptibility of dystrophin-deficient muscles to mechanical stress can be used as a quantitative test to measure the efficacy of therapeutic interventions. Using inducible transgenesis in mice, we show that when Akt activity is increased the force drop induced by eccentric contractions in mdx mice becomes similar to that of wild-type mice. This effect is not correlated with muscle hypertrophy and is not blocked by rapamycin treatment. The force drop induced by eccentric contractions is similar in skinned muscle fibers from mdx and Akt-mdx mice when stretch is applied directly to skinned fibers. However, skinned fibers isolated from mdx muscles exposed to eccentric contractions in vivo develop less isometric force than wild-type fibers and this force depression is completely prevented by Akt activation. These experiments indicate that the myofibrillar-cytoskeletal system of dystrophin-deficient muscle is highly susceptible to a damage caused by eccentric contraction when elongation is applied in vivo, and this damage can be prevented by Akt activation. Microarray and PCR analyses indicate that Akt activation induces up-regulation of genes coding for proteins associated with Z-disks and costameres, and for proteins with anti-oxidant or chaperone function. The protein levels of utrophin and dysferlin are also increased by Akt activation.

  4. piggyBac transposons expressing full-length human dystrophin enable genetic correction of dystrophic mesoangioblasts.

    PubMed

    Loperfido, Mariana; Jarmin, Susan; Dastidar, Sumitava; Di Matteo, Mario; Perini, Ilaria; Moore, Marc; Nair, Nisha; Samara-Kuko, Ermira; Athanasopoulos, Takis; Tedesco, Francesco Saverio; Dickson, George; Sampaolesi, Maurilio; VandenDriessche, Thierry; Chuah, Marinee K

    2016-01-29

    Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disorder caused by the absence of dystrophin. We developed a novel gene therapy approach based on the use of the piggyBac (PB) transposon system to deliver the coding DNA sequence (CDS) of either full-length human dystrophin (DYS: 11.1 kb) or truncated microdystrophins (MD1: 3.6 kb; MD2: 4 kb). PB transposons encoding microdystrophins were transfected in C2C12 myoblasts, yielding 65±2% MD1 and 66±2% MD2 expression in differentiated multinucleated myotubes. A hyperactive PB (hyPB) transposase was then deployed to enable transposition of the large-size PB transposon (17 kb) encoding the full-length DYS and green fluorescence protein (GFP). Stable GFP expression attaining 78±3% could be achieved in the C2C12 myoblasts that had undergone transposition. Western blot analysis demonstrated expression of the full-length human DYS protein in myotubes. Subsequently, dystrophic mesoangioblasts from a Golden Retriever muscular dystrophy dog were transfected with the large-size PB transposon resulting in 50±5% GFP-expressing cells after stable transposition. This was consistent with correction of the differentiated dystrophic mesoangioblasts following expression of full-length human DYS. These results pave the way toward a novel non-viral gene therapy approach for DMD using PB transposons underscoring their potential to deliver large therapeutic genes.

  5. Dystrophin and utrophin "double knockout" dystrophic mice exhibit a spectrum of degenerative musculoskeletal abnormalities.

    PubMed

    Isaac, Christian; Wright, Adam; Usas, Arvydas; Li, Hongshuai; Tang, Ying; Mu, Xiaodong; Greco, Nicholas; Dong, Qing; Vo, Nam; Kang, James; Wang, Bing; Huard, Johnny

    2013-03-01

    Duchenne muscular dystrophy (DMD) is a degenerative muscle disorder characterized by the lack of dystrophin expression at the sarcolemma of muscle fibers. In addition, DMD patients acquire osteopenia, fragility fractures, and scoliosis indicating that a deficiency in skeletal homeostasis coexists but little is known about the effects of DMD on bone and other connective tissues within the musculoskeletal system. Recent evidence has emerged implicating adult stem cell dysfunction in DMD myopathogenesis. Given the common mesenchymal origin of muscle and bone, we sought to investigate bone and other musculoskeletal tissues in a DMD mouse model. Here, we report that dystrophin-utrophin double knockout (dko) mice exhibit a spectrum of degenerative changes, outside skeletal muscle, in bone, articular cartilage, and intervertebral discs, in addition to reduced lifespan, muscle degeneration, spinal deformity, and cardiomyopathy previously reported. We also report these mice to have a reduced capacity for bone healing and exhibit spontaneous heterotopic ossification in the hind limb muscles. Therefore, we propose the dko mouse as a model for premature musculoskeletal aging and posit that a similar phenomenon may occur in patients with DMD.

  6. Coupling transcription and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2007-01-01

    Alternative splicing regulation not only depends on the interaction of splicing factors with splicing enhancers and silencers in the pre-mRNA, but also on the coupling between transcription and splicing. This coupling is possible because splicing is often cotranscriptional and promoter identity and occupation may affect alternative splicing. We discuss here the different mechanisms by which transcription regulates alternative splicing. These include the recruitment of splicing factors to the transcribing polymerase and "kinetic coupling", which involves changes in the rate of transcriptional elongation that in turn affect the timing in which splice sites are presented to the splicing machinery. The recruitment mechanism may depend on the particular features of the carboxyl terminal domain of RNA polymerase II, whereas kinetic coupling seems to be linked to how changes in chromatin structure and other factors affect transcription elongation.

  7. Spectrum of small mutations in the dystrophin coding region.

    PubMed Central

    Prior, T W; Bartolo, C; Pearl, D K; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Mendell, J R

    1995-01-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened approximately 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3' of exon 55. The extent of protein truncation caused by the 3' mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications. Images Figure 2 PMID:7611292

  8. Spectrum of small mutations in the dystrophin coding region.

    PubMed

    Prior, T W; Bartolo, C; Pearl, D K; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Mendell, J R

    1995-07-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are caused by defects in the dystrophin gene. About two-thirds of the affected patients have large deletions or duplications, which occur in the 5' and central portion of the gene. The nondeletion/duplication cases are most likely the result of smaller mutations that cannot be identified by current diagnostic screening strategies. We screened approximately 80% of the dystrophin coding sequence for small mutations in 158 patients without deletions or duplications and identified 29 mutations. The study indicates that many of the DMD and the majority of the BMD small mutations lie in noncoding regions of the gene. All of the mutations identified were unique to single patients, and most of the mutations resulted in protein truncation. We did not find a clustering of small mutations similar to the deletion distribution but found > 40% of the small mutations 3' of exon 55. The extent of protein truncation caused by the 3' mutations did not determine the phenotype, since even the exon 76 nonsense mutation resulted in the severe DMD phenotype. Our study confirms that the dystrophin gene is subject to a high rate of mutation in CpG sequences. As a consequence of not finding any hotspots or prevalent small mutations, we conclude that it is presently not possible to perform direct carrier and prenatal diagnostics for many families without deletions or duplications.

  9. Effective restoration of dystrophin-associated proteins in vivo by adenovirus-mediated transfer of truncated dystrophin cDNAs.

    PubMed

    Yuasa, K; Miyagoe, Y; Yamamoto, K; Nabeshima, Y; Dickson, G; Takeda, S

    1998-03-27

    A series of truncated dystrophin cDNAs (3.1-4.2 kbp) containing only three, three, two or one rod repeats with hinge 1 and 4 (named deltaDysAX2, AX11, AH3, M3, respectively) or no rod repeat retaining either hinge 1 or 4 (named deltaDysH1, H4, respectively) were constructed. These cDNAs were introduced into skeletal muscle of adult mdx mice using the adenovirus vector with a strong CAG promoter. deltaDysAX2, AX11, AH3 and deltaDysM3 expressed themselves successfully and recovered dystrophin-associated proteins effectively. Especially 3.7 kbp cDNA for deltaDysM3 offers the possibility of an approach utilizing newly developed virus vectors, such as an adeno-associated virus vector, toward gene therapy of Duchenne muscular dystrophy.

  10. RNA helicases in splicing.

    PubMed

    Cordin, Olivier; Beggs, Jean D

    2013-01-01

    In eukaryotic cells, introns are spliced from pre-mRNAs by the spliceosome. Both the composition and the structure of the spliceosome are highly dynamic, and eight DExD/H RNA helicases play essential roles in controlling conformational rearrangements. There is evidence that the various helicases are functionally and physically connected with each other and with many other factors in the spliceosome. Understanding the dynamics of those interactions is essential to comprehend the mechanism and regulation of normal as well as of pathological splicing. This review focuses on recent advances in the characterization of the splicing helicases and their interactions, and highlights the deep integration of splicing helicases in global mRNP biogenesis pathways.

  11. Analysis of differential splicing suggests different modes of short-term splicing regulation

    PubMed Central

    Topa, Hande; Honkela, Antti

    2016-01-01

    Motivation: Alternative splicing is an important mechanism in which the regions of pre-mRNAs are differentially joined in order to form different transcript isoforms. Alternative splicing is involved in the regulation of normal physiological functions but also linked to the development of diseases such as cancer. We analyse differential expression and splicing using RNA-sequencing time series in three different settings: overall gene expression levels, absolute transcript expression levels and relative transcript expression levels. Results: Using estrogen receptor α signaling response as a model system, our Gaussian process-based test identifies genes with differential splicing and/or differentially expressed transcripts. We discover genes with consistent changes in alternative splicing independent of changes in absolute expression and genes where some transcripts change whereas others stay constant in absolute level. The results suggest classes of genes with different modes of alternative splicing regulation during the experiment. Availability and Implementation: R and Matlab codes implementing the method are available at https://github.com/PROBIC/diffsplicing. An interactive browser for viewing all model fits is available at http://users.ics.aalto.fi/hande/splicingGP/ Contact: hande.topa@helsinki.fi or antti.honkela@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307611

  12. Visualizing group II intron catalysis through the stages of splicing

    PubMed Central

    Marcia, Marco; Pyle, Anna Marie

    2012-01-01

    SUMMARY Group II introns are self-splicing ribozymes that share a reaction mechanism and a common ancestor with the eukaryotic spliceosome, thereby providing a model system for understanding the chemistry of pre-mRNA splicing. Here we report fourteen crystal structures of a group II intron at different stages of catalysis. We provide a detailed mechanism for the first step of splicing, we describe a reversible conformational change between the first and the second steps of splicing, and we present the ligand-free intron structure after splicing, in an active state that corresponds to the retrotransposable form of the intron. During each reaction, the reactants are aligned and activated by a heteronuclear four-metal-ion center that contains a metal cluster and obligate monovalent cations, adopting a structural arrangement similar to that of protein endonucleases. Based on our data, we propose a model for the splicing cycle and show that it is applicable to the eukaryotic spliceosome. PMID:23101623

  13. Insertion of the IL1RAPL1 gene into the duplication junction of the dystrophin gene.

    PubMed

    Zhang, Zhujun; Yagi, Mariko; Okizuka, Yo; Awano, Hiroyuki; Takeshima, Yasuhiro; Matsuo, Masafumi

    2009-08-01

    Duplications of one or more exons of the dystrophin gene are the second most common mutation in dystrophinopathies. Even though duplications are suggested to occur with greater complexity than thought earlier, they have been considered an intragenic event. Here, we report the insertion of a part of the IL1RAPL1 (interleukin-1 receptor accessory protein-like 1) gene into the duplication junction site. When the actual exon junction was examined in 15 duplication mutations in the dystrophin gene by analyzing dystrophin mRNA, one patient was found to have an unknown 621 bp insertion at the junction of duplication of exons from 56 to 62. Unexpectedly, the inserted sequence was found completely identical to sequences of exons 3-5 of the IL1RAPL1 gene that is nearly 100 kb distal from the dystrophin gene. Accordingly, the insertion of IL1RAPL1 exons 3-5 between dystrophin exons 62 and 56 was confirmed at the genomic sequence level. One junction between the IL1RAPL1 intron 5 and dystrophin intron 55 was localized within an Alu sequence. These results showed that a fragment of the IL1RAPL1 gene was inserted into the duplication junction of the dystrophin gene in the same direction as the dystrophin gene. This suggests the novel possibility of co-occurrence of complex genomic rearrangements in dystrophinopathy.

  14. Dystrophin colocalizes with beta-spectrin in distinct subsarcolemmal domains in mammalian skeletal muscle

    PubMed Central

    1992-01-01

    Duchenne's muscular dystrophy (DMD) is caused by the absence or drastic decrease of the structural protein, dystrophin, and is characterized by sarcolemmal lesions in skeletal muscle due to the stress of contraction. Dystrophin has been localized to the sarcolemma, but its organization there is not known. We report immunofluorescence studies which show that dystrophin is concentrated, along with the major muscle isoform of beta-spectrin, in three distinct domains at the sarcolemma: in elements overlying both I bands and M lines, and in occasional strands running along the longitudinal axis of the myofiber. Vinculin, which has previously been found at the sarcolemma overlying the I bands and in longitudinal strands, was present in the same three structures as spectrin and dystrophin. Controls demonstrated that the labeling was intracellular. Comparison to labeling of the lipid bilayer and of the extracellular matrix showed that the labeling for spectrin and dystrophin is associated with the intact sarcolemma and is not a result of processing artifacts. Dystrophin is not required for this lattice- like organization, as similar domains containing spectrin but not dystrophin are present in muscle from the mdx mouse and from humans with Duchenne's muscular dystrophy. We discuss the possibility that dystrophin and spectrin, along with vinculin, may function to link the contractile apparatus to the sarcolemma of normal skeletal muscle. PMID:1577872

  15. Colocalization of retinal dystrophin and actin in postsynaptic dendrites of rod and cone photoreceptor synapses.

    PubMed

    Schmitz, F; Holbach, M; Drenckhahn, D

    1993-12-01

    In this paper we demonstrate immunostaining specific for dystrophin in photoreceptor synapses of human, bovine and rat retinas. Cryosections of retinas incubated with dystrophin-specific monoclonal antibodies displayed a punctuate staining pattern in the outer plexiform layer. This pattern resulted from binding of the antibodies to synaptic complexes of both rods and cones, shown by double-labelling with antibodies to either synaptophysin or actin. Confocal laser fluorescence microscopy demonstrated that dystrophin staining colocalized predominantly with actin, which is concentrated in the postsynaptic portions of the synaptic complex. No significant dystrophin immunolabel was seen in the presynaptic terminals labelled with antibodies to synaptophysin, a marker of synaptic vesicles. Immunoblot analysis confirmed the presence of approximately 420 kDa and approximately 360 kDa dystrophin-like polypeptide bands associated with membranes of the bovine retina. We speculate that retinal dystrophin is involved in the linkage of actin filaments to the postsynaptic plasma membrane. Such a linkage may be important for the generation of synaptic microdomains and for certain phenomena of synaptic plasticity. The absence of dystrophin in patients suffering from Duchenne's muscular dystrophy is accompanied by visual problems and abnormalities of the electroretinogram. Therefore it is likely that retinal dystrophin plays a role in certain stages of synaptic transmission between photoreceptors and the postsynaptic dendritic complex formed by horizontal and bipolar cells.

  16. Identification of common genetic variation that modulates alternative splicing.

    PubMed

    Hull, Jeremy; Campino, Susana; Rowlands, Kate; Chan, Man-Suen; Copley, Richard R; Taylor, Martin S; Rockett, Kirk; Elvidge, Gareth; Keating, Brendan; Knight, Julian; Kwiatkowski, Dominic

    2007-06-01

    Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron-exon boundary, although the distance between these SNPs and the intron-exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function.

  17. Alternative splicing interference by xenobiotics.

    PubMed

    Zaharieva, Emanuela; Chipman, J Kevin; Soller, Matthias

    2012-06-14

    The protein coding sequence of most eukaryotic genes (exons) is interrupted by non-coding parts (introns), which are excised in a process termed splicing. To generate a mature messenger RNA (mRNA) hundreds of combinatorial protein-protein and RNA-protein interactions are required to splice out often very large introns with high fidelity and accuracy. Inherent to splicing is the use of alternative splice sites generating immense proteomic diversity from a limited number of genes. In humans, alternative splicing is a major mode of regulating gene expression, occurs in over 90% of genes and is particularly abundant in the brain. Only recently, it has been recognized that the complexity of the splicing process makes it susceptible to interference by various xenobiotics. These compounds include antineoplastic substances, commonly used drugs and food supplements and cause a spectrum of effects ranging from deleterious inhibition of general splicing to highly specific modifications of alternative splicing affecting only certain genes. Alterations in splicing have been implicated in numerous diseases such as cancer and neurodegeneration. Splicing regulation plays an important role in the execution of programmed cell death. The switch between anti- and pro-apoptotic isoforms by alternative splice site selection and misregulation of a number of splicing factors impacts on cell survival and disease. Here, our current knowledge is summarized on compounds interfering with general and alternative splicing and of the current methodology to study changes in these processes relevant to the field of toxicology and future risk assessments.

  18. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons.

    PubMed

    Rodríguez-Muñoz, Rafael; Cárdenas-Aguayo, María Del Carmen; Alemán, Víctor; Osorio, Beatriz; Chávez-González, Oscar; Rendon, Alvaro; Martínez-Rojas, Dalila; Meraz-Ríos, Marco Antonio

    2015-01-01

    The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.

  19. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons

    PubMed Central

    Alemán, Víctor; Osorio, Beatriz; Chávez-González, Oscar; Rendon, Alvaro; Martínez-Rojas, Dalila; Meraz-Ríos, Marco Antonio

    2015-01-01

    The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71’s complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures. PMID:26378780

  20. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    PubMed Central

    Meyer, Katja; Koester, Tino; Staiger, Dorothee

    2015-01-01

    Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance. PMID:26213982

  1. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process.

    PubMed

    Meyer, Katja; Koester, Tino; Staiger, Dorothee

    2015-07-24

    Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance.

  2. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations

    PubMed Central

    Maggio, Ignazio; Stefanucci, Luca; Janssen, Josephine M.; Liu, Jin; Chen, Xiaoyu; Mouly, Vincent; Gonçalves, Manuel A.F.V.

    2016-01-01

    Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles. PMID:26762977

  3. A novel splice site mutation in a Becker muscular dystrophy patient.

    PubMed

    Bartolo, C; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Hall, C D; Mendell, J R; Prior, T W

    1996-04-01

    A Becker muscular dystrophy patient was found to have a single base substitution at the 5' end of intron 54. This single base substitution disrupts the invariant GT dinucleotide within the 5' donor splice site and was shown to cause an out of frame deletion of exon 54 during mRNA processing. This is predicted to produce a truncated dystrophin protein which is more consistent with a DMD phenotype. However, small quantities of normal mRNA are also transcribed and these are sufficient to produce a reduced amount of normal molecular weight dystrophin and give rise to a milder BMD phenotype. This indicates that a single base substitution at an invariant dinucleotide of the splice site consensus sequence may still allow read through of the message and allow the production of some normal protein. This shows that there are a greater number of possible intronic mutations that can lead to a mild phenotype and it also underlines the importance of performing cDNA analysis when screening for small gene alterations in the BMD patient population.

  4. A novel splice site mutation in a Becker muscular dystrophy patient.

    PubMed Central

    Bartolo, C; Papp, A C; Snyder, P J; Sedra, M S; Burghes, A H; Hall, C D; Mendell, J R; Prior, T W

    1996-01-01

    A Becker muscular dystrophy patient was found to have a single base substitution at the 5' end of intron 54. This single base substitution disrupts the invariant GT dinucleotide within the 5' donor splice site and was shown to cause an out of frame deletion of exon 54 during mRNA processing. This is predicted to produce a truncated dystrophin protein which is more consistent with a DMD phenotype. However, small quantities of normal mRNA are also transcribed and these are sufficient to produce a reduced amount of normal molecular weight dystrophin and give rise to a milder BMD phenotype. This indicates that a single base substitution at an invariant dinucleotide of the splice site consensus sequence may still allow read through of the message and allow the production of some normal protein. This shows that there are a greater number of possible intronic mutations that can lead to a mild phenotype and it also underlines the importance of performing cDNA analysis when screening for small gene alterations in the BMD patient population. Images PMID:8730289

  5. Variation in alternative splicing across human tissues

    PubMed Central

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most pronounced differences between tissues were seen for the frequencies of alternative 3' splice site and alternative 5' splice site usage, which were about 50 to 100% higher in the liver than in any other human tissue studied. Quantifying differences in splice junction usage, the brain, pancreas, liver and the peripheral nervous system had the most distinctive patterns of AS. Analysis of available microarray expression data showed that the liver had the most divergent pattern of expression of serine-arginine protein and heterogeneous ribonucleoprotein genes compared to the other human tissues studied, possibly contributing to the unusually high frequency of alternative splice site usage seen in liver. Sequence motifs enriched in alternative exons in genes expressed in the brain, testis and liver suggest specific splicing factors that may be important in AS regulation in these tissues. Conclusions This study distinguishes the human brain, testis and liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly in different tissues, and identifies candidate cis-regulatory elements and trans-acting factors likely to have important roles in tissue-specific AS in human cells. PMID:15461793

  6. Splice assembly tool and method of splicing

    DOEpatents

    Silva, Frank A.

    1980-01-01

    A splice assembly tool for assembling component parts of an electrical conductor while producing a splice connection between electrical cables therewith, comprises a first structural member adaptable for supporting force applying means thereon, said force applying means enabling a rotary force applied manually thereto to be converted to a longitudinal force for subsequent application against a first component part of said electrical connection, a second structural member adaptable for engaging a second component part in a manner to assist said first structural member in assembling the component parts relative to one another and transmission means for conveying said longitudinal force between said first and said second structural members, said first and said second structural members being coupled to one another by said transmission means, wherein at least one of said component parts comprises a tubular elastomeric sleeve and said force applying means provides a relatively high mechanical advantage when said rotary force is applied thereto so as to facilitate assembly of said at least one tubular elastomeric sleeve about said other component part in an interference fit manner.

  7. SpliceDisease database: linking RNA splicing and disease.

    PubMed

    Wang, Juan; Zhang, Jie; Li, Kaibo; Zhao, Wei; Cui, Qinghua

    2012-01-01

    RNA splicing is an important aspect of gene regulation in many organisms. Splicing of RNA is regulated by complicated mechanisms involving numerous RNA-binding proteins and the intricate network of interactions among them. Mutations in cis-acting splicing elements or its regulatory proteins have been shown to be involved in human diseases. Defects in pre-mRNA splicing process have emerged as a common disease-causing mechanism. Therefore, a database integrating RNA splicing and disease associations would be helpful for understanding not only the RNA splicing but also its contribution to disease. In SpliceDisease database, we manually curated 2337 splicing mutation disease entries involving 303 genes and 370 diseases, which have been supported experimentally in 898 publications. The SpliceDisease database provides information including the change of the nucleotide in the sequence, the location of the mutation on the gene, the reference Pubmed ID and detailed description for the relationship among gene mutations, splicing defects and diseases. We standardized the names of the diseases and genes and provided links for these genes to NCBI and UCSC genome browser for further annotation and genomic sequences. For the location of the mutation, we give direct links of the entry to the respective position/region in the genome browser. The users can freely browse, search and download the data in SpliceDisease at http://cmbi.bjmu.edu.cn/sdisease.

  8. Dystrophin-deficient muscular dystrophy in a Norfolk terrier.

    PubMed

    Beltran, E; Shelton, G D; Guo, L T; Dennis, R; Sanchez-Masian, D; Robinson, D; De Risio, L

    2015-05-01

    A six-month-old male entire Norfolk terrier was presented with a 3-month history of poor development, reluctance to exercise and progressive and diffuse muscle atrophy. Serum creatine kinase concentration was markedly elevated. Magnetic resonance imaging of the epaxial muscles revealed asymmetrical streaky signal changes aligned within the muscle fibres (hyperintense on T2-weighted images and short-tau inversion recovery with moderate contrast enhancement on T1-weighted images). Electromyography revealed pseudomyotonic discharges and fibrillation potentials localised at the level of the supraspinatus, epaxial muscles and tibial cranialis muscles. Muscle biopsy results were consistent with dystrophin-deficient muscular dystrophy. The dog remained stable 7 months after diagnosis with coenzyme Q10 and l-carnitine; however after that time, there was a marked deterioration and the owners elected euthanasia. This case report describes the clinical presentation, magnetic resonance imaging, electrodiagnostic and histopathological findings with immunohistochemical analysis in a Norfolk terrier with confirmed dystrophin-deficient muscular dystrophy, which has not been previously described in this breed.

  9. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse.

    PubMed

    Khodor, Yevgenia L; Menet, Jerome S; Tolan, Michael; Rosbash, Michael

    2012-12-01

    Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. We recently showed that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, we analyze a recently generated, high-throughput sequencing data set of mouse liver nascent RNA, originally studied for circadian transcriptional regulation. Cotranscriptional splicing is approximately twofold less efficient in mouse liver than in Drosophila, i.e., nascent intron levels relative to exon levels are ∼0.55 in mouse versus 0.25 in the fly. An additional difference between species is that only mouse cotranscriptional splicing is optimal when 5'-exon length is between 50 and 500 bp, and intron length does not correlate with splicing efficiency, consistent with exon definition. A similar analysis of intron and exon length dependence in the fly is more consistent with intron definition. Contrasted with these differences are many similarities between the two systems: Alternatively annotated introns are less efficiently spliced cotranscriptionally than constitutive introns, and introns of single-intron genes are less efficiently spliced than introns from multi-intron genes. The most striking common feature is intron position: Cotranscriptional splicing is much more efficient when introns are far from the 3' ends of their genes. Additionally, absolute gene length correlates positively with cotranscriptional splicing efficiency independently of intron location and position, in flies as well as in mice. The gene length and distance effects indicate that more "nascent time" gives rise to greater cotranscriptional splicing efficiency in both systems.

  10. Positive control of pre-mRNA splicing in vitro.

    PubMed

    Tian, M; Maniatis, T

    1992-04-10

    Positive control of the sex-specific alternative splicing of doublesex (dsx) precursor messenger RNA (pre-mRNA) in Drosophila melanogaster involves the activation of a female-specific 3' splice site by the products of the transformer (tra) and transformer-2 (tra-2) genes. The mechanisms of this process were investigated in an in vitro system in which the female-specific 3' splice site could be activated by recombinant Tra or Tra-2 (or both). An exon sequence essential for regulation in vivo was shown to be both necessary and sufficient for activation in vitro. Nuclear proteins in addition to Tra and Tra-2 were found to bind specifically to this exon sequence. Therefore, Tra and Tra-2 may act by promoting the assembly of a multiprotein complex on the exon sequence. This complex may facilitate recognition of the adjacent 3' splice site by the splicing machinery.

  11. RNA splicing in human disease and in the clinic.

    PubMed

    Baralle, Diana; Buratti, Emanuele

    2017-03-01

    Defects at the level of the pre-mRNA splicing process represent a major cause of human disease. Approximately 15-50% of all human disease mutations have been shown to alter functioning of basic and auxiliary splicing elements. These elements are required to ensure proper processing of pre-mRNA splicing molecules, with their disruption leading to misprocessing of the pre-mRNA molecule and disease. The splicing process is a complex process, with much still to be uncovered before we are able to accurately predict whether a reported genomic sequence variant (GV) represents a splicing-associated disease mutation or a harmless polymorphism. Furthermore, even when a mutation is correctly identified as affecting the splicing process, there still remains the difficulty of providing an exact evaluation of the potential impact on disease onset, severity and duration. In this review, we provide a brief overview of splicing diagnostic methodologies, from in silico bioinformatics approaches to wet lab in vitro and in vivo systems to evaluate splicing efficiencies. In particular, we provide an overview of how the latest developments in high-throughput sequencing can be applied to the clinic, and are already changing clinical approaches.

  12. Distal mdx muscle groups exhibiting up-regulation of utrophin and rescue of dystrophin-associated glycoproteins exemplify a protected phenotype in muscular dystrophy

    NASA Astrophysics Data System (ADS)

    Dowling, Paul; Culligan, Kevin; Ohlendieck, Kay

    2002-02-01

    Unique unaffected skeletal muscle fibres, unlike necrotic torso and limb muscles, may pave the way for a more detailed understanding of the molecular pathogenesis of inherited neuromuscular disorders and help to develop new treatment strategies for muscular dystrophies. The sparing of extraocular muscle in Duchenne muscular dystrophy is mostly attributed to the special protective properties of extremely fast-twitching small-diameter fibres, but here we show that distal muscles also represent a particular phenotype that is more resistant to necrosis. Immunoblot analysis of membranes isolated from the well established dystrophic animal model mdx shows that, in contrast to dystrophic limb muscles, the toe musculature exhibits an up-regulation of the autosomal dystrophin homologue utrophin and a concomitant rescue of dystrophin-associated glycoproteins. Thus distal mdx muscle groups provide a cellular system that naturally avoids myofibre degeneration which might be useful in the search for naturally occurring compensatory mechanisms in inherited skeletal muscle diseases.

  13. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation

    PubMed Central

    Schmidt, Ute; Robert, Marie-Cécile; Yoshida, Minoru; Villemin, Jean-Philippe; Auboeuf, Didier; Aitken, Stuart

    2011-01-01

    Splicing is a key process that expands the coding capacity of genomes. Its kinetics remain poorly characterized, and the distribution of splicing time caused by the stochasticity of single splicing events is expected to affect regulation efficiency. We conducted a small-scale survey on 40 introns in human cells and observed that most were spliced cotranscriptionally. Consequently, we constructed a reporter system that splices cotranscriptionally and can be monitored in live cells and in real time through the use of MS2–GFP. All small nuclear ribonucleoproteins (snRNPs) are loaded on nascent pre-mRNAs, and spliceostatin A inhibits splicing but not snRNP recruitment. Intron removal occurs in minutes and is best described by a model where several successive steps are rate limiting. Each pre-mRNA molecule is predicted to require a similar time to splice, reducing kinetic noise and improving the regulation of alternative splicing. This model is relevant to other kinetically controlled processes acting on few molecules. PMID:21624952

  14. Transcription and splicing: when the twain meet.

    PubMed

    Brody, Yehuda; Shav-Tal, Yaron

    2011-01-01

    Splicing can occur co-transcriptionally. What happens when the splicing reaction lags after the completed transcriptional process? We found that elongation rates are independent of ongoing splicing on the examined genes and suggest that when transcription has completed but splicing has not, the splicing machinery is retained at the site of transcription, independently of the polymerase.

  15. RNA splicing: disease and therapy.

    PubMed

    Douglas, Andrew G L; Wood, Matthew J A

    2011-05-01

    The majority of human genes that encode proteins undergo alternative pre-mRNA splicing and mutations that affect splicing are more prevalent than previously thought. The mechanism of pre-mRNA splicing is highly complex, requiring multiple interactions between pre-mRNA, small nuclear ribonucleoproteins and splicing factor proteins. Regulation of this process is even more complicated, relying on loosely defined cis-acting regulatory sequence elements, trans-acting protein factors and cellular responses to varying environmental conditions. Many different human diseases can be caused by errors in RNA splicing or its regulation. Targeting aberrant RNA provides an opportunity to correct faulty splicing and potentially treat numerous genetic disorders. Antisense oligonucleotide therapies show particular promise in this area and, if coupled with improved delivery strategies, could open the door to a multitude of novel personalized therapies.

  16. Nitrosative stress elicited by nNOSµ delocalization inhibits muscle force in dystrophin-null mice.

    PubMed

    Li, Dejia; Yue, Yongping; Lai, Yi; Hakim, Chady H; Duan, Dongsheng

    2011-01-01

    The mechanism of force reduction is not completely understood in Duchenne muscular dystrophy (DMD), a dystrophin-deficient lethal disease. Nitric oxide regulates muscle force. Interestingly, neuronal nitric oxide synthase µ (nNOSµ), a major source of muscle nitric oxide, is lost from the sarcolemma in DMD muscle. We hypothesize that nNOSµ delocalization contributes to force reduction in DMD. To test this hypothesis, we generated dystrophin/nNOSµ double knockout mice. Genetic elimination of nNOSµ significantly enhanced force in dystrophin-null mice. Pharmacological inhibition of nNOS yielded similar results. To further test our hypothesis, we studied δ-sarcoglycan-null mice, a model of limb-girdle muscular dystrophy. These mice had minimal sarcolemmal nNOSµ delocalization and muscle force was less compromised. Annihilation of nNOSµ did not improve their force either. To determine whether nNOSµ delocalization itself inhibited force, we corrected muscle disease in dystrophin-null mice with micro-dystrophins that either restored or did not restore sarcolemmal nNOSµ. Similar muscle force was obtained irrespective of nNOSµ localization. Additional studies suggest that nNOSµ delocalization selectively inhibits muscle force in dystrophin-null mice via nitrosative stress. In summary, we have demonstrated for the first time that nitrosative stress elicited by nNOSµ delocalization is an important mechanism underlying force loss in DMD.

  17. TNF-α-Induced microRNAs Control Dystrophin Expression in Becker Muscular Dystrophy.

    PubMed

    Fiorillo, Alyson A; Heier, Christopher R; Novak, James S; Tully, Christopher B; Brown, Kristy J; Uaesoontrachoon, Kitipong; Vila, Maria C; Ngheim, Peter P; Bello, Luca; Kornegay, Joe N; Angelini, Corrado; Partridge, Terence A; Nagaraju, Kanneboyina; Hoffman, Eric P

    2015-09-08

    The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.

  18. Muscular dystrophy in a family of Labrador Retrievers with no muscle dystrophin and a mild phenotype.

    PubMed

    Vieira, Natassia M; Guo, Ling T; Estrela, Elicia; Kunkel, Louis M; Zatz, Mayana; Shelton, G Diane

    2015-05-01

    Animal models of dystrophin deficient muscular dystrophy, most notably canine X-linked muscular dystrophy, play an important role in developing new therapies for human Duchenne muscular dystrophy. Although the canine disease is a model of the human disease, the variable severity of clinical presentations in the canine may be problematic for pre-clinical trials, but also informative. Here we describe a family of Labrador Retrievers with three generations of male dogs having markedly increased serum creatine kinase activity, absence of membrane dystrophin, but with undetectable clinical signs of muscle weakness. Clinically normal young male Labrador Retriever puppies were evaluated prior to surgical neuter by screening laboratory blood work, including serum creatine kinase activity. Serum creatine kinase activities were markedly increased in the absence of clinical signs of muscle weakness. Evaluation of muscle biopsies confirmed a dystrophic phenotype with both degeneration and regeneration. Further evaluations by immunofluorescence and western blot analysis confirmed the absence of muscle dystrophin. Although dystrophin was not identified in the muscles, we did not find any detectable deletions or duplications in the dystrophin gene. Sequencing is now ongoing to search for point mutations. Our findings in this family of Labrador Retriever dogs lend support to the hypothesis that, in exceptional situations, muscle with no dystrophin may be functional. Unlocking the secrets that protect these dogs from a severe clinical myopathy is a great challenge which may have important implications for future treatment of human muscular dystrophies.

  19. Micro-dystrophin and follistatin co-delivery restores muscle function in aged DMD model.

    PubMed

    Rodino-Klapac, Louise R; Janssen, Paul M L; Shontz, Kimberly M; Canan, Benjamin; Montgomery, Chrystal L; Griffin, Danielle; Heller, Kristin; Schmelzer, Leah; Handy, Chalonda; Clark, K Reed; Sahenk, Zarife; Mendell, Jerry R; Kaspar, Brian K

    2013-12-15

    Pharmacologic strategies have provided modest improvement in the devastating muscle-wasting disease, Duchenne muscular dystrophy (DMD). Pre-clinical gene therapy studies have shown promise in the mdx mouse model; however, studies conducted after disease onset fall short of fully correcting muscle strength or protecting against contraction-induced injury. Here we examine the treatment effect on muscle physiology in aged dystrophic mice with significant disease pathology by combining two promising therapies: micro-dystrophin gene replacement and muscle enhancement with follistatin, a potent myostatin inhibitor. Individual treatments with micro-dystrophin and follistatin demonstrated marked improvement in mdx mice but were insufficient to fully restore muscle strength and response to injury to wild-type levels. Strikingly, when combined, micro-dystrophin/follistatin treatment restored force generation and conferred resistance to contraction-induced injury in aged mdx mice. Pre-clinical studies with miniature dystrophins have failed to demonstrate full correction of the physiological defects seen in mdx mice. Importantly, the addition of a muscle enhancement strategy with delivery of follistatin in combination with micro-dystrophin gene therapy completely restored resistance to eccentric contraction-induced injury and improved force. Eccentric contraction-induced injury is a pre-clinical parameter relevant to the exercise induced injury that occurs in DMD patients, and herein, we demonstrate compelling evidence for the therapeutic potential of micro-dystrophin/follistatin combinatorial therapy.

  20. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  1. Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells

    PubMed Central

    Maggio, Ignazio; Liu, Jin; Janssen, Josephine M.; Chen, Xiaoyu; Gonçalves, Manuel A. F. V.

    2016-01-01

    Mutations disrupting the reading frame of the ~2.4 Mb dystrophin-encoding DMD gene cause a fatal X-linked muscle-wasting disorder called Duchenne muscular dystrophy (DMD). Genome editing based on paired RNA-guided nucleases (RGNs) from CRISPR/Cas9 systems has been proposed for permanently repairing faulty DMD loci. However, such multiplexing strategies require the development and testing of delivery systems capable of introducing the various gene editing tools into target cells. Here, we investigated the suitability of adenoviral vectors (AdVs) for multiplexed DMD editing by packaging in single vector particles expression units encoding the Streptococcus pyogenes Cas9 nuclease and sequence-specific gRNA pairs. These RGN components were customized to trigger short- and long-range intragenic DMD excisions encompassing reading frame-disrupting exons in patient-derived muscle progenitor cells. By allowing synchronous and stoichiometric expression of the various RGN components, we demonstrate that dual RGN-encoding AdVs can correct over 10% of target DMD alleles, readily leading to the detection of Becker-like dystrophin proteins in unselected muscle cell populations. Moreover, we report that AdV-based gene editing can be tailored for removing mutations located within the over 500-kb major DMD mutational hotspot. Hence, this single DMD editing strategy can in principle tackle a broad spectrum of mutations present in more than 60% of patients with DMD. PMID:27845387

  2. The neurogenetics of alternative splicing

    PubMed Central

    Vuong, Celine K.; Black, Douglas L.; Zheng, Sika

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that regulate splicing, both during development and in the adult brain. PMID:27094079

  3. Alternative RNA splicing and cancer.

    PubMed

    Liu, Sali; Cheng, Chonghui

    2013-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells.

  4. KIT GNNK splice variants: Expression in systemic mastocytosis and influence on the activating potential of the D816V mutation in mast cells

    PubMed Central

    Chan, Eunice Ching; Bai, Yun; Bandara, Geethani; Simakova, Olga; Brittain, Erica; Scott, Linda; Dyer, Kimberly D.; Klion, Amy D.; Maric, Irina; Gilfillan, Alasdair M.; Metcalfe, Dean D.; Wilson, Todd M.

    2013-01-01

    Stem cell factor–dependent KIT activation is an essential process for mast cell homeostasis. The two major splice variants of KIT differ by the presence or absence of four amino acids (GNNK) at the juxta-membrane region of the extracellular domain. We hypothesized that the expression pattern of these variants differs in systemic mastocytosis and that transcripts containing the KIT D816V mutation segregate preferentially to one GNNK variant. A quantitative real-time PCR assay to assess GNNK− and GNNK+ transcripts from bone marrow mononuclear cells was developed. The GNNK−/GNNK+ copy number ratio showed a trend toward a positive correlation with the percentage of neoplastic mast cell involvement, and KIT D816V containing transcripts displayed a significantly elevated GNNK−/GNNK+ copy number ratio. Relative expression of only the GNNK− variant correlated with increasing percentage of neoplastic mast cell involvement. A mast cell transfection system revealed that the GNNK− isoform of wild type KIT was associated with increased granule formation, histamine content, and growth. When accompanying the KIT D816V mutation, the GNNK− isoform enhanced cytokine-free metabolism and moderately reduced sensitivity to the tyrosine kinase inhibitor, PKC412. These data suggest that neoplastic mast cells favor a GNNK− variant predominance, which in turn enhances the activating potential of the KIT D816V mutation and thus could influence therapeutic sensitivity in systemic mastocytosis. PMID:23743299

  5. Release of SR Proteins from CLK1 by SRPK1: A Symbiotic Kinase System for Phosphorylation Control of Pre-mRNA Splicing.

    PubMed

    Aubol, Brandon E; Wu, Guowei; Keshwani, Malik M; Movassat, Maliheh; Fattet, Laurent; Hertel, Klemens J; Fu, Xiang-Dong; Adams, Joseph A

    2016-07-21

    Phosphorylation has been generally thought to activate the SR family of splicing factors for efficient splice-site recognition, but this idea is incompatible with an early observation that overexpression of an SR protein kinase, such as the CDC2-like kinase 1 (CLK1), weakens splice-site selection. Here, we report that CLK1 binds SR proteins but lacks the mechanism to release phosphorylated SR proteins, thus functionally inactivating the splicing factors. Interestingly, CLK1 overcomes this dilemma through a symbiotic relationship with the serine-arginine protein kinase 1 (SRPK1). We show that SRPK1 interacts with an RS-like domain in the N terminus of CLK1 to facilitate the release of phosphorylated SR proteins, which then promotes efficient splice-site recognition and subsequent spliceosome assembly. These findings reveal an unprecedented signaling mechanism by which two protein kinases fulfill separate catalytic features that are normally encoded in single kinases to institute phosphorylation control of pre-mRNA splicing in the nucleus.

  6. Human α7 Integrin Gene (ITGA7) Delivered by Adeno-Associated Virus Extends Survival of Severely Affected Dystrophin/Utrophin-Deficient Mice.

    PubMed

    Heller, Kristin N; Montgomery, Chrystal L; Shontz, Kimberly M; Clark, K Reed; Mendell, Jerry R; Rodino-Klapac, Louise R

    2015-10-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene. It is the most common, severe childhood form of muscular dystrophy. We investigated an alternative to dystrophin replacement by overexpressing ITGA7 using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal muscle that, like the dystrophin-glycoprotein complex, links the extracellular matrix to the internal actin cytoskeleton. ITGA7 is expressed in DMD patients and overexpression does not elicit an immune response to the transgene. We delivered rAAVrh.74.MCK.ITGA7 systemically at 5-7 days of age to the mdx/utrn(-/-) mouse deficient for dystrophin and utrophin, a severe mouse model of DMD. At 8 weeks postinjection, widespread expression of ITGA7 was observed at the sarcolemma of multiple muscle groups following gene transfer. The increased expression of ITGA7 significantly extended longevity and reduced common features of the mdx/utrn(-/-) mouse, including kyphosis. Overexpression of α7 expression protected against loss of force following contraction-induced damage and increased specific force in the diaphragm and EDL muscles 8 weeks after gene transfer. Taken together, these results further support the use of α7 integrin as a potential therapy for DMD.

  7. Mutual interdependence of splicing and transcription elongation.

    PubMed

    Brzyżek, Grzegorz; Świeżewski, Szymon

    2015-01-01

    Transcription and splicing are intrinsically linked, as splicing needs a pre-mRNA substrate to commence. The more nuanced view is that the rate of transcription contributes to splicing regulation. On the other hand there is accumulating evidence that splicing has an active role in controlling transcription elongation by DNA-dependent RNA polymerase II (RNAP II). We briefly review those mechanisms and propose a unifying model where splicing controls transcription elongation to provide an optimal timing for successive rounds of splicing.

  8. Methods for Characterization of Alternative RNA Splicing.

    PubMed

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  9. Efficient Restoration of the Dystrophin Gene Reading Frame and Protein Structure in DMD Myoblasts Using the CinDel Method

    PubMed Central

    Iyombe-Engembe, Jean-Paul; Ouellet, Dominique L; Barbeau, Xavier; Rousseau, Joël; Chapdelaine, Pierre; Lagüe, Patrick; Tremblay, Jacques P

    2016-01-01

    The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides. PMID:26812655

  10. Restoring dystrophin expression in duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through.

    PubMed

    Hoffman, Eric P; Bronson, Abby; Levin, Arthur A; Takeda, Shin'ichi; Yokota, Toshifumi; Baudy, Andreas R; Connor, Edward M

    2011-07-01

    The identification of the Duchenne muscular dystrophy gene and protein in the late 1980s led to high hopes of rapid translation to molecular therapeutics. These hopes were fueled by early reports of delivering new functional genes to dystrophic muscle in mouse models using gene therapy and stem cell transplantation. However, significant barriers have thwarted translation of these approaches to true therapies, including insufficient therapeutic material (eg, cells and viral vectors), challenges in systemic delivery, and immunological hurdles. An alternative approach is to repair the patient's own gene. Two innovative small-molecule approaches have emerged as front-line molecular therapeutics: exon skipping and stop codon read through. Both approaches are in human clinical trials and aim to coax dystrophin protein production from otherwise inactive mutant genes. In the clinically severe dog model of Duchenne muscular dystrophy, the exon-skipping approach recently improved multiple functional outcomes. We discuss the status of these two methods aimed at inducing de novo dystrophin production from mutant genes and review implications for other disorders.

  11. RNA splicing regulated by RBFOX1 is essential for cardiac function in zebrafish.

    PubMed

    Frese, Karen S; Meder, Benjamin; Keller, Andreas; Just, Steffen; Haas, Jan; Vogel, Britta; Fischer, Simon; Backes, Christina; Matzas, Mark; Köhler, Doreen; Benes, Vladimir; Katus, Hugo A; Rottbauer, Wolfgang

    2015-08-15

    Alternative splicing is one of the major mechanisms through which the proteomic and functional diversity of eukaryotes is achieved. However, the complex nature of the splicing machinery, its associated splicing regulators and the functional implications of alternatively spliced transcripts are only poorly understood. Here, we investigated the functional role of the splicing regulator rbfox1 in vivo using the zebrafish as a model system. We found that loss of rbfox1 led to progressive cardiac contractile dysfunction and heart failure. By using deep-transcriptome sequencing and quantitative real-time PCR, we show that depletion of rbfox1 in zebrafish results in an altered isoform expression of several crucial target genes, such as actn3a and hug. This study underlines that tightly regulated splicing is necessary for unconstrained cardiac function and renders the splicing regulator rbfox1 an interesting target for investigation in human heart failure and cardiomyopathy.

  12. Abnormalities of dystrophin, the sarcoglycans, and laminin alpha2 in the muscular dystrophies.

    PubMed Central

    Jones, K J; Kim, S S; North, K N

    1998-01-01

    Abnormalities of dystrophin, the sarcoglycans, and laminin alpha2 are responsible for a subset of the muscular dystrophies. In this study we aim to characterise the nature and frequency of abnormalities of these proteins in an Australian population and to formulate an investigative algorithm to aid in approaching the diagnosis of the muscular dystrophies. To reduce ascertainment bias, biopsies with dystrophic (n=131) and non-dystrophic myopathic (n=71) changes were studied with antibodies to dystrophin, alpha, beta, and gamma sarcoglycan, beta dystroglycan, and laminin alpha2, and results were correlated with clinical phenotype. Abnormalities of dystrophin, the sarcoglycans, or laminin alpha2 were present in 61/131 (47%) dystrophic biopsies and in 0/71 myopathic biopsies, suggesting that immunocytochemical study of dystrophin, the sarcoglycans, and laminin alpha2 may, in general, be restricted to patients with dystrophic biopsies. Two patients with mutations identified in gamma sarcoglycan had abnormal dystrophin (by immunocytochemistry and immunoblot), showing that abnormalities of dystrophin may be a secondary phenomenon. Therefore, biopsies should not be excluded from sarcoglycan analysis on the basis of abnormal dystrophin alone. The diagnostic yield was highest in those with severe, rapidly progressive limb-girdle weakness (92%). Laminin alpha2 deficiency was identified in 5/131 (4%) patients; 215 patients presented after infancy, indicating that abnormalities of laminin alpha2 are not limited to the congenital muscular dystrophy phenotype. Overall patterns of immunocytochemistry and immunoblotting provided a guide to mutation analysis and, on the basis of this study, we have formulated a diagnostic algorithm to guide the investigation of patients with muscular dystrophy. Images PMID:9610800

  13. Loss of dystrophin is associated with increased myocardial stiffness in a model of left ventricular hypertrophy.

    PubMed

    Donato, Martín; Buchholz, Bruno; Morales, Celina; Valdez, Laura; Zaobornyj, Tamara; Baratta, Sergio; Paez, Diamela T; Matoso, Mirian; Vaccarino, Guillermo; Chejtman, Demian; Agüero, Oscar; Telayna, Juan; Navia, José; Hita, Alejandro; Boveris, Alberto; Gelpi, Ricardo J

    2017-03-18

    Transition from compensated to decompensated left ventricular hypertrophy (LVH) is accompanied by functional and structural changes. Here, the aim was to evaluate dystrophin expression in murine models and human subjects with LVH by transverse aortic constriction (TAC) and aortic stenosis (AS), respectively. We determined whether doxycycline (Doxy) prevented dystrophin expression and myocardial stiffness in mice. Additionally, ventricular function recovery was evaluated in patients 1 year after surgery. Mice were subjected to TAC and monitored for 3 weeks. A second group received Doxy treatment after TAC. Patients with AS were stratified by normal left ventricular end-diastolic wall stress (LVEDWS) and high LVEDWS, and groups were compared. In mice, LVH decreased inotropism and increased myocardial stiffness associated with a dystrophin breakdown and a decreased mitochondrial O2 uptake (MitoMVO2). These alterations were attenuated by Doxy. Patients with high LVEDWS showed similar results to those observed in mice. A correlation between dystrophin and myocardial stiffness was observed in both mice and humans. Systolic function at 1 year post-surgery was only recovered in the normal-LVEDWS group. In summary, mice and humans present diastolic dysfunction associated with dystrophin degradation. The recovery of ventricular function was observed only in patients with normal LVEDWS and without dystrophin degradation. In mice, Doxy improved MitoMVO2. Based on our results it is concluded that the LVH with high LVEDWS is associated to a degradation of dystrophin and increase of myocardial stiffness. At least in a murine model these alterations were attenuated after the administration of a matrix metalloprotease inhibitor.

  14. Cellular stress and RNA splicing.

    PubMed

    Biamonti, Giuseppe; Caceres, Javier F

    2009-03-01

    In response to physical and chemical stresses that affect protein folding and, thus, the execution of normal metabolic processes, cells activate gene-expression strategies aimed at increasing their chance of survival. One target of several stressing agents is pre-mRNA splicing, which is inhibited upon heat shock. Recently, the molecular basis of this splicing inhibition has begun to emerge. Interestingly, different mechanisms seem to be in place to block constitutive pre-mRNA splicing and to affect alternative splicing regulation. This could be important to modulate gene expression during recovery from stress. Thus, pre-mRNA splicing emerges as a central mechanism to integrate cellular and metabolic stresses into gene-expression profiles.

  15. Splicing of aged fibers

    NASA Astrophysics Data System (ADS)

    Volotinen, Tarja T.; Yuce, Hakan H.; Bonanno, Nicholas; Frantz, Rolf A.; Duffy, Sean

    1993-11-01

    The deployment of fiber in the subscriber loop will require that an optical fiber network maintain the highest possible level of reliability over time, despite being subjected to extremes of temperature, humidity, and other environmental and mechanical stresses imposed on the outside plant. At the same time, both the initial cost and the ongoing maintenance expenses for loop equipment must be kept low. Fiber in the Loop (FITL) applications will entail increased fiber handling. Cable lengths will be shorter, and fiber counts higher, than has been the case so far in long-distance applications. There will also be more cable sheath openings per unit length of cable and/or fiber, as well as more splicing and connectorization. It may become a common practice that a customer is connected to a cable installed many years earlier. In subscriber loops, cables and fibers will be installed in harsher and more varying environments. Fibers will be exposed to higher humidity and temperature, particularly in splice boxes mounted on building walls, in pedestal cabinets, and in other similar enclosures. Corrosive gases and/or liquids may also be present at some locations and will adversely affect the fibers. The combination of increased handling, greater exposure, and more stressful environments may give rise to a need for new, more stringent requirements for fiber mechanical reliability. These can include increaSed fiber strength, increased aging resistance, and increased fatigue resistance.

  16. Variation in sequence and organization of splicing regulatory elements in vertebrate genes

    PubMed Central

    Yeo, Gene; Hoon, Shawn; Venkatesh, Byrappa; Burge, Christopher B.

    2004-01-01

    Although core mechanisms and machinery of premRNA splicing are conserved from yeast to human, the details of intron recognition often differ, even between closely related organisms. For example, genes from the pufferfish Fugu rubripes generally contain one or more introns that are not properly spliced in mouse cells. Exploiting available genome sequence data, a battery of sequence analysis techniques was used to reach several conclusions about the organization and evolution of splicing regulatory elements in vertebrate genes. The classical splice site and putative branch site signals are completely conserved across the vertebrates studied (human, mouse, pufferfish, and zebrafish), and exonic splicing enhancers also appear broadly conserved in vertebrates. However, another class of splicing regulatory elements, the intronic splicing enhancers, appears to differ substantially between mammals and fish, with G triples (GGG) very abundant in mammalian introns but comparatively rare in fish. Conversely, short repeats of AC and GT are predicted to function as intronic splicing enhancers in fish but are not enriched in mammalian introns. Consistent with this pattern, exonic splicing enhancer-binding SR proteins are highly conserved across all vertebrates, whereas heterogeneous nuclear ribonucleoproteins, which bind many intronic sequences, vary in domain structure and even presence/absence between mammals and fish. Exploiting differences in intronic sequence composition, a statistical model was developed to predict the splicing phenotype of Fugu introns in mammalian systems and was used to engineer the spliceability of a Fugu intron in human cells by insertion of specific sequences, thereby rescuing splicing in human cells. PMID:15505203

  17. Hydrogen Peroxide Alters Splicing of Soluble Guanylyl Cyclase and Selectively Modulates Expression of Splicing Regulators in Human Cancer Cells

    PubMed Central

    Cote, Gilbert J.; Zhu, Wen; Thomas, Anthony; Martin, Emil; Murad, Ferid; Sharina, Iraida G.

    2012-01-01

    Background Soluble guanylyl cyclase (sGC) plays a central role in nitric oxide (NO)-mediated signal transduction in the cardiovascular, nervous and gastrointestinal systems. Alternative RNA splicing has emerged as a potential mechanism to modulate sGC expression and activity. C-α1 sGC is an alternative splice form that is resistant to oxidation-induced protein degradation and demonstrates preferential subcellular distribution to the oxidized environment of endoplasmic reticulum (ER). Methodology/Principal Findings Here we report that splicing of C-α1 sGC can be modulated by H2O2 treatment in BE2 neuroblastoma and MDA-MD-468 adenocarcinoma human cells. In addition, we show that the H2O2 treatment of MDA-MD-468 cells selectively decreases protein levels of PTBP1 and hnRNP A2/B1 splice factors identified as potential α1 gene splicing regulators by in silico analysis. We further demonstrate that down-regulation of PTBP1 by H2O2 occurs at the protein level with variable regulation observed in different breast cancer cells. Conclusions/Significance Our data demonstrate that H2O2 regulates RNA splicing to induce expression of the oxidation-resistant C-α1 sGC subunit. We also report that H2O2 treatment selectively alters the expression of key splicing regulators. This process might play an important role in regulation of cellular adaptation to conditions of oxidative stress. PMID:22911749

  18. Monoclonal antibodies against the muscle-specific N-terminus of dystrophin: Characterization of dystrophin in a muscular dystrophy patient with a frameshift deletion of Exons 3-7

    SciTech Connect

    Thanh, L. T.; Man, N. thi; Morris, G.E. ); Love, D.R.; Davies, K.E. ); Helliwell, T.R. )

    1993-07-01

    The first three exons of the human muscle dystrophin gene were expressed as a [beta]-galactosidase fusion protein. 1-his protein was then used to prepare two monoclonal antibodies (mAbs) which react with native dystrophin on frozen muscle sections and with denatured dystrophin on western blots but which do not cross-react with the distrophin-related protein, utrophin. Both mAbs recognized dystrophin in muscular dystrophy (MD) patients with deletions of exon 3, and further mapping with 11 overlapping synthetic peptides showed that they both recognize an epitope encoded by the muscle-specific exon 1. Neither mAb recognizes the brain dystrophin isoform, confirming the prediction from mRNA data that this has a different N-terminus. One Becker MD patient with a frameshift deletion of exons 3-7 is shown to produce dystrophin which reacts with the N-terminal mAbs, as well as with mAbs which bind on the C-terminal side of the deletion. The data suggest that transcription begins at the normal muscle dystrophin promoter and that the normal reading frame is restored after the deletion. A number of mechanisms have been proposed for restoration of the reading frame after deletion of exons 3-7, but those which predict dystrophin with an abnormal N-terminus do not appear to be major mechanisms in this patient. 27 refs., 6 figs.

  19. Ex vivo gene editing of the dystrophin gene in muscle stem cells mediated by peptide nucleic acid single stranded oligodeoxynucleotides induces stable expression of dystrophin in a mouse model for Duchenne muscular dystrophy.

    PubMed

    Nik-Ahd, Farnoosh; Bertoni, Carmen

    2014-07-01

    Duchenne muscular dystrophy (DMD) is a fatal disease caused by mutations in the dystrophin gene, which result in the complete absence of dystrophin protein throughout the body. Gene correction strategies hold promise to treating DMD. Our laboratory has previously demonstrated the ability of peptide nucleic acid single-stranded oligodeoxynucleotides (PNA-ssODNs) to permanently correct single-point mutations at the genomic level. In this study, we show that PNA-ssODNs can target and correct muscle satellite cells (SCs), a population of stem cells capable of self-renewing and differentiating into muscle fibers. When transplanted into skeletal muscles, SCs transfected with correcting PNA-ssODNs were able to engraft and to restore dystrophin expression. The number of dystrophin-positive fibers was shown to significantly increase over time. Expression was confirmed to be the result of the activation of a subpopulation of SCs that had undergone repair as demonstrated by immunofluorescence analyses of engrafted muscles using antibodies specific to full-length dystrophin transcripts and by genomic DNA analysis of dystrophin-positive fibers. Furthermore, the increase in dystrophin expression detected over time resulted in a significant improvement in muscle morphology. The ability of transplanted cells to return into quiescence and to activate upon demand was confirmed in all engrafted muscles following injury. These results demonstrate the feasibility of using gene editing strategies to target and correct SCs and further establish the therapeutic potential of this approach to permanently restore dystrophin expression into muscle of DMD patients.

  20. The subcellular distribution of chromosome 6-encoded dystrophin-related protein in the brain

    PubMed Central

    1992-01-01

    Chromosome 6-encoded dystrophin-related-protein (DRP) shows significant structural similarities to dystrophin at the carboxyl terminus, though the two proteins are encoded on different chromosomes. Both DRP and dystrophin are expressed in muscle and brain and show some similarity in their subcellular localization. For example, in skeletal muscle both are expressed at neuromuscular and myotendinous junctions. However, while dystrophin is absent or severely reduced in Duchenne/Becker muscular dystrophy, DRP continues to be expressed. Within the brain, dystrophin is enriched at the postsynaptic regions of specific subsets of neurons, while the distribution of DRP is yet to be described. In this study we demonstrate a distinct though highly specific pattern of distribution of DRP in the brain. DRP is enriched in the choroid plexus, pia mater, intracerebral vasculature, and ependymal lining. Within the parenchyma proper, DRP is located at the inner plasma face of astrocytic foot processes at the abluminal aspect of the blood-brain barrier. The distribution of DRP is conserved across a large evolutionary distance, from mammals to elasmobranchs, suggesting that DRP may play a role in the maintenance of regional specializations in the brain. PMID:1400579

  1. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division

    PubMed Central

    Dumont, Nicolas A.; Wang, Yu Xin; von Maltzahn, Julia; Pasut, Alessandra; Bentzinger, C. Florian; Brun, Caroline E.; Rudnicki, Michael A.

    2016-01-01

    Dystrophin is expressed in differentiated myofibers where it is required for sarcolemmal integrity, and loss-of-function mutations in its gene result in Duchenne Muscular Dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells) where it associates with the Ser/Thr kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to polarize Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, while also displaying a loss of polarity, abnormal division patterns including centrosome amplification, impaired mitotic spindle orientation, and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD is not only caused by myofiber fragility, but is also exacerbated by impaired regeneration due to intrinsic satellite cell dysfunction. PMID:26569381

  2. Characterization and localization of a 77 kDa protein related to the dystrophin gene family.

    PubMed

    Fabbrizio, E; Nudel, U; Hugon, G; Robert, A; Pons, F; Mornet, D

    1994-04-15

    The Duchenne muscular dystrophy gene gives rise to transcripts of several lengths. These mRNAs differ in their coding content and tissue distribution. The 14 kb mRNA encodes dystrophin, a 427 kDa protein found in muscle and brain, and the short transcripts described encode DP71, a 77 kDa protein found in various organs. These short transcripts have many features common to the deduced primary structure of dystrophin, especially in the cysteine-rich specific C-terminal domains. The dystrophin C-terminal domain could be involved in membrane anchorage via the glycoprotein complex, but such a functional role for these short transcript products has yet to be demonstrated. Here we report the first isolation of a short transcript product from saponin-solubilized cardiac muscle membranes using alkaline buffer and affinity chromatography procedures. This molecule was found to be glycosylated and could be easily dissociated from cardiac muscle and other non-muscle tissues such as brain and liver. DP71-specific monoclonal antibody helped to identify this molecule as being related to the dystrophin gene family. Immunofluorescence analysis of bovine or chicken cardiac muscle showed a periodic distribution of DP71 in transverse T tubules and this protein was co-localized with the dystrophin glycoprotein complex in the Z-disk area.

  3. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division.

    PubMed

    Dumont, Nicolas A; Wang, Yu Xin; von Maltzahn, Julia; Pasut, Alessandra; Bentzinger, C Florian; Brun, Caroline E; Rudnicki, Michael A

    2015-12-01

    Dystrophin is expressed in differentiated myofibers, in which it is required for sarcolemmal integrity, and loss-of-function mutations in the gene that encodes it result in Duchenne muscular dystrophy (DMD), a disease characterized by progressive and severe skeletal muscle degeneration. Here we found that dystrophin is also highly expressed in activated muscle stem cells (also known as satellite cells), in which it associates with the serine-threonine kinase Mark2 (also known as Par1b), an important regulator of cell polarity. In the absence of dystrophin, expression of Mark2 protein is downregulated, resulting in the inability to localize the cell polarity regulator Pard3 to the opposite side of the cell. Consequently, the number of asymmetric divisions is strikingly reduced in dystrophin-deficient satellite cells, which also display a loss of polarity, abnormal division patterns (including centrosome amplification), impaired mitotic spindle orientation and prolonged cell divisions. Altogether, these intrinsic defects strongly reduce the generation of myogenic progenitors that are needed for proper muscle regeneration. Therefore, we conclude that dystrophin has an essential role in the regulation of satellite cell polarity and asymmetric division. Our findings indicate that muscle wasting in DMD not only is caused by myofiber fragility, but also is exacerbated by impaired regeneration owing to intrinsic satellite cell dysfunction.

  4. Parental source effect of inherited mutations in the dystrophin gene of mice and men

    SciTech Connect

    Kress, W.; Grimm, T.; Mueller, C.R.; Bittner, R.

    1994-09-01

    Skewed X-inactivation has been suspected the genetic cause for some manifesting female carriers of BMD and DMD. To test whether a parental source effect on the protein expression of the dystrophin gene exists, we have set up backcrosses of mdx mice to wild type strains, enabling us to study the effect of the well-defined origin of the mutation on the dystrophin expression. In skeletal muscle sections the immunohistological staining patterns of dystrophin antibodies were showing a significant difference in the proportion of dystrophin positive versus negative fibers, suggesting a lower expression of paternally inherited mdx mutations. These data are in concordance with the pyruvate kinase (PK) levels in the serum: PK levels were much higher when the mutation was of maternal origin as compared to PK levels in paternally derived mutations. In order to test this {open_quotes}paternal source effect{close_quotes} in humans, we checked obligatory carriers of Becker muscular dystrophy (BMD) for the origin of their mutations. Creatin kinase (CK) levels in 21 carriers with maternally derived mutations were compared to CK values from 8 heterozygotes with mutations of paternal origin: CK (mat) = 140.3 IU/1 versus CK (pat) = 48.6 IU/I. The difference is statistically significant at the 5% level. These observations suggest either a differential X-inactivation or an imprinting of the dystrophin gene in mice and men.

  5. Normal and mutant human beta-globin pre-mRNAs are faithfully and efficiently spliced in vitro.

    PubMed

    Krainer, A R; Maniatis, T; Ruskin, B; Green, M R

    1984-04-01

    Human beta-globin mRNA precursors (pre-mRNAs) synthesized in vitro from a bacteriophage SP6 promoter/beta-globin gene fusion are accurately and efficiently spliced when added to a HeLa cell nuclear extract. Under optimal conditions, the first intervening sequence (IVS 1) is removed by splicing in up to 90% of the input pre-mRNA. Splicing requires ATP and in its absence the pre-mRNA is neither spliced nor cleaved at splice junctions. Splicing does not require that the pre-mRNA contain a correct 5' or 3' end, a 3' poly A tail, or a 5'-terminal cap structure. However, capping of the pre-mRNA significantly affects the specificity of in vitro processing. In the absence of a cap approximately 30%-40% of the pre-mRNA is accurately spliced, and a number of aberrantly cleaved RNAs are also detected. In contrast, capped pre-mRNAs are spliced more efficiently and produce fewer aberrant RNA species. The specificity of splice-site selection in vitro was tested by analyzing pre-mRNAs that contain beta-thalassemia splicing mutations in IVS 1. Remarkably, these mutations cause the same abnormal splicing events in vitro and in vivo. The ability to synthesize mutant pre-mRNAs and study their splicing in a faithful in vitro system provides a powerful approach to determine the mechanisms of RNA splice-site selection.

  6. Our trails and trials in the subsarcolemmal cytoskeleton network and muscular dystrophy researches in the dystrophin era.

    PubMed

    Ozawa, Eijiro

    2010-01-01

    In 1987, about 150 years after the discovery of Duchenne muscular dystrophy (DMD), its responsible gene, the dystrophin gene, was cloned by Kunkel. This was a new substance. During these 20 odd years after the cloning, our understanding on dystrophin as a component of the subsarcolemmal cytoskeleton networks and on the pathomechanisms of and experimental therapeutics for DMD has been greatly enhanced. During this paradigm change, I was fortunately able to work as an active researcher on its frontiers for 12 years. After we discovered that dystrophin is located on the cell membrane in 1988, we studied the architecture of dystrophin and dystrophin-associated proteins (DAPs) complex in order to investigate the function of dystrophin and pathomechanism of DMD. During the conduct of these studies, we came to consider that the dystrophin-DAP complex serves to transmembranously connect the subsarcolemmal cytoskeleton networks and basal lamina to protect the lipid bilayer. It then became our working hypothesis that injury of the lipid bilayer upon muscle contraction is the cause of DMD. During this process, we predicted that subunits of the sarcoglycan (SG) complex are responsible for respective types of DMD-like muscular dystrophy with autosomal recessive inheritance. Our prediction was confirmed to be true by many researchers including ourselves. In this review, I will try to explain what we observed and how we considered concerning the architecture and function of the dystrophin-DAP complex, and the pathomechanisms of DMD and related muscular dystrophies.

  7. Genomic integration of the full-length dystrophin coding sequence in Duchenne muscular dystrophy induced pluripotent stem cells.

    PubMed

    Farruggio, Alfonso P; Bhakta, Mital S; du Bois, Haley; Ma, Julia; P Calos, Michele

    2017-04-01

    The plasmid vectors that express the full-length human dystrophin coding sequence in human cells was developed. Dystrophin, the protein mutated in Duchenne muscular dystrophy, is extraordinarily large, providing challenges for cloning and plasmid production in Escherichia coli. The authors expressed dystrophin from the strong, widely expressed CAG promoter, along with co-transcribed luciferase and mCherry marker genes useful for tracking plasmid expression. Introns were added at the 3' and 5' ends of the dystrophin sequence to prevent translation in E. coli, resulting in improved plasmid yield. Stability and yield were further improved by employing a lower-copy number plasmid origin of replication. The dystrophin plasmids also carried an attB site recognized by phage phiC31 integrase, enabling the plasmids to be integrated into the human genome at preferred locations by phiC31 integrase. The authors demonstrated single-copy integration of plasmid DNA into the genome and production of human dystrophin in the human 293 cell line, as well as in induced pluripotent stem cells derived from a patient with Duchenne muscular dystrophy. Plasmid-mediated dystrophin expression was also demonstrated in mouse muscle. The dystrophin expression plasmids described here will be useful in cell and gene therapy studies aimed at ameliorating Duchenne muscular dystrophy.

  8. 5'-UTR mediated translational control of splicing assembly factor RNP-4F expression during development of the Drosophila central nervous system.

    PubMed

    Chen, Jing; Yang, Julianne T; Doctor, Dana L; Rawlins, Bridgette A; Shields, B Colleen; Vaughn, Jack C

    2013-10-10

    Drosophila RNP-4F is a highly conserved protein from yeast to human and functions as a spliceosome assembly factor during pre-mRNA splicing. Two major developmentally regulated rnp-4f mRNA isoforms have been described during fly development, designated "long" and "short," differing by a 177-nt tract in the 5'-UTR. This region potentially folds into a single long stable stem-loop by pairing of intron 0 and part of exon 2. Since the coding potential for the two isoforms is identical, the interesting question arises as to the functional significance of this evolutionarily-conserved 5'-UTR feature. Here we describe the effects of wild-type and mutated stem-loop on modulation of rnp-4f gene expression in embryos using a GFP reporter assay. In this work, a new GFP expression vector designated pUAS-Neostinger was constructed. The UAS-GAL4 system was utilized to trigger GFP expression using tissue-specific promoter driver fly lines. Fluorescence microscopy visualization, Western blotting and real-time qRT-PÇR were used to study and quantify GFP reporter protein and mRNA levels. A significant increase in GFP reporter protein expression due to presence of the wild-type stem-loop sequence/structure was unexpectedly observed with no concomitant increase in GFP reporter mRNA levels, showing that the 177-nt region enhancement acts posttranscriptionally. The effects of potential cis-acting elements within the stem-loop were evaluated using the reporter assay in two mutant constructs. Results of GFP reporter over-expression show that RNP-4F translational regulation is highly sensitive in the developing fly central nervous system. The potential molecular mechanism behind the observed translational enhancement is discussed.

  9. Designing oligo libraries taking alternative splicing into account

    NASA Astrophysics Data System (ADS)

    Shoshan, Avi; Grebinskiy, Vladimir; Magen, Avner; Scolnicov, Ariel; Fink, Eyal; Lehavi, David; Wasserman, Alon

    2001-06-01

    We have designed sequences for DNA microarrays and oligo libraries, taking alternative splicing into account. Alternative splicing is a common phenomenon, occurring in more than 25% of the human genes. In many cases, different splice variants have different functions, are expressed in different tissues or may indicate different stages of disease. When designing sequences for DNA microarrays or oligo libraries, it is very important to take into account the sequence information of all the mRNA transcripts. Therefore, when a gene has more than one transcript (as a result of alternative splicing, alternative promoter sites or alternative poly-adenylation sites), it is very important to take all of them into account in the design. We have used the LEADS transcriptome prediction system to cluster and assemble the human sequences in GenBank and design optimal oligonucleotides for all the human genes with a known mRNA sequence based on the LEADS predictions.

  10. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    NASA Astrophysics Data System (ADS)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  11. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing.

    PubMed

    Nguyen, Anh H; Lee, Jong Uk; Sim, Sang Jun

    2016-02-28

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ∼29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  12. Adeno-Associated Virus (AAV) Mediated Dystrophin Gene Transfer Studies and Exon Skipping Strategies for Duchenne Muscular Dystrophy (DMD).

    PubMed

    Kawecka, Klaudia; Theodoulides, Michael; Hasoglu, Yalin; Jarmin, Susan; Kymalainen, Hanna; Le-Heron, Anita; Popplewell, Linda; Malerba, Alberto; Dickson, George; Athanasopoulos, Takis

    2015-01-01

    Duchenne muscular dystrophy (DMD), an X-linked inherited musclewasting disease primarily affecting young boys with prevalence of between1:3,500- 1:5,000, is a rare genetic disease caused by defects in the gene for dystrophin. Dystrophin protein is critical to the stability of myofibers in skeletal and cardiac muscle. There is currently no cure available to ameliorate DMD and/or its patho-physiology. A number of therapeutic strategies including molecular-based therapeutics that replace or correct the missing or nonfunctional dystrophin protein have been devised to correct the patho-physiological consequences induced by dystrophin absence. We will review the current in vivo experimentation status (including preclinical models and clinical trials) for two of these approaches, namely: 1) Adeno-associated virus (AAV) mediated (micro) dystrophin gene augmentation/ supplementation and 2) Antisense oligonucleotide (AON)-mediated exon skipping strategies.

  13. Heteroduplex analysis of the dystrophin gene: application to point mutation and carrier detection.

    PubMed

    Prior, T W; Papp, A C; Snyder, P J; Sedra, M S; Western, L M; Bartolo, C; Moxley, R T; Mendell, J R

    1994-03-01

    Approximately one-third of the Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, we identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. We conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing.

  14. Personalized exon skipping strategies to address clustered non-deletion dystrophin mutations.

    PubMed

    Forrest, Sarah; Meloni, Penny L; Muntoni, Francesco; Kim, Jihee; Fletcher, Sue; Wilton, Steve D

    2010-12-01

    Antisense oligomer induced exon skipping is showing promise as a therapy to reduce the severity of Duchenne muscular dystrophy. To date, the focus has been on excluding single exons flanking frame-shifting deletions in the dystrophin gene. However, a third of all Duchenne muscular dystrophy causing mutations are more subtle DNA changes. Thirty nine dystrophin exons are potentially frame-shifting and mutations in these will require the targeted removal of exon blocks to generate in-frame transcripts. We report that clustered non-deletion mutations in the dystrophin gene respond differently to different antisense oligomer preparations targeting the same dual exon block, the removal of which bypasses the mutation and restores the open reading-frame. The personalized nature of the responses to antisense oligomer application presents additional challenges to the induction of multi-exon skipping with a single oligomer preparation.

  15. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  16. The sarcoglycan-sarcospan complex localization in mouse retina is independent from dystrophins

    PubMed Central

    Fort, Patrice; Estrada, Francisco-Javier; Bordais, Agnès; Mornet, Dominique; Sahel, José-Alain; Picaud, Serge; Vargas, Haydeé Rosas; Coral-Vázquez, Ramón M.; Rendon, Alvaro

    2005-01-01

    The sarcoglycan–sarcospan (SG–SSPN) complex is part of the dystrophin-glycoprotein complex that has been extensively characterized in muscle. To establish the framework for functional studies of sarcoglycans in retina here, we quantified sarcoglycans mRNA levels with real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and performed immunohistochemistry to determine their cellular and subcellular distribution. We showed that the β-, δ-, γ-, ε-sarcoglycans and sarcospan are expressed in mouse retina. They are localized predominantly in the outer and the inner limiting membranes, probably in the Müller cells and also in the ganglion cells axons where the expression of dystrophins have never been reported. We also investigated the status of the sarcoglycans in the retina of mdx3cv mutant mice for all Duchene Muscular Dystrophy (DMD) gene products. The absence of dystrophin did not produce any change in the sarcoglycan–sarcospan components expression and distribution. PMID:15993965

  17. Use of epitope libraries to identify exon-specific monoclonal antibodies for characterization of altered dystrophins in muscular dystrophy

    SciTech Connect

    Nguyen thi Man; Morris, G.E. )

    1993-06-01

    The majority of mutations in Xp21-linked muscular dystrophy (MD) can be identified by PCR or Southern blotting, as deletions or duplications of groups of exons in the dystrophin gene, but it is not always possible to predict how much altered dystrophin, if any, will be produced. Use of exon-specific monoclonal antibodies (mAbs) on muscle biopsies from MD patients can, in principle, provide information on both the amount of altered dystrophin produced and, when dystrophin is present, the nature of the genetic deletion or point mutation. For this purpose, mAbs which recognize regions of dystrophin encoded by known exons and whose binding is unaffected by the absence of adjacent exons are required. To map mAbs to specific exons, random [open quotes]libraries[close quotes] of expressed dystrophin fragments were created by cloning DNAseI digestion fragments of a 4.3-kb dystrophin cDNA into a pTEX expression vector. The libraries were then used to locate the epitopes recognized by 48 mAbs to fragments of 25--60 amino acids within the 1,434-amino-acid dystrophin fragment used to produce the antibodies. This is sufficiently detailed to allow further refinement by using synthetic peptides and, in many cases, to identify the exon in the DMD (Duchenne MD) gene which encodes the epitope. To illustrate their use in dystrophin analysis, a Duchenne patient with a frameshift deletion of exons 42 and 43 makes a truncated dystrophin encoded by exons 1--41, and the authors now show that this can be detected in the sarcolemma by mAbs up to and including those specific for exon 41 epitopes but not by mAbs specific for exon 43 or later epitopes. 38 refs., 2 figs., 4 tabs.

  18. Detection of new paternal dystrophin gene mutations in isolated cases of dystrophinopathy in females

    SciTech Connect

    Pegoraro, E.; Wessel, H.B.; Schwartz, L.; Hoffman, E.P. ); Schimke, R.N. ); Arahata, Kiichi; Hayashi, Yukiko ); Stern, H. ); Marks, H. ); Glasberg, M.R. )

    1994-06-01

    Duchenne muscular dystrophy is one of the most common lethal monogenic disorders and is caused by dystrophin deficiency. The disease is transmitted as an X-linked recessive trait; however, recent biochemical and clinical studies have shown that many girls and women with a primary myopathy have an underlying dystrophinopathy, despite a negative family history for Duchenne dystrophy. These isolated female dystrophinopathy patients carried ambiguous diagnoses with presumed autosomal recessive inheritance (limb-girdle muscular dystrophy) prior to biochemical detection of dystrophin abnormalities in their muscle biopsy. It has been assumed that these female dystrophinopathy patients are heterozygous carries who show preferential inactivation of the X chromosome harboring the normal dystrophin gene, although this has been shown for only a few X:autosome translocations and for two cases of discordant monozygotic twin female carriers. Here the authors study X-inactivation patterns of 13 female dystrophinopathy patients - 10 isolated cases and 3 cases with a positive family history for Duchenne dystrophy in males. They show that all cases have skewed X-inactivation patterns in peripheral blood DNA. Of the nine isolated cases informative in the assay, eight showed inheritance of the dystrophin gene mutation from the paternal germ line. Only a single case showed maternal inheritance. The 10-fold higher incidence of paternal transmission of dystrophin gene mutations in these cases is at 30-fold variance with Bayesian predictions and gene mutation rates. Thus, the results suggest some mechanistic interaction between new dystrophin gene mutations, paternal inheritance, and skewed X inactivation. The results provide both empirical risk data and a molecular diagnostic test method, which permit genetic counseling and prenatal diagnosis of this new category of patients. 58 refs., 7 figs., 2 tabs.

  19. Splice form-dependent regulation of axonal arbor complexity by FMRP.

    PubMed

    Zimmer, Stephanie E; Doll, Steven G; Garcia, A Denise R; Akins, Michael R

    2016-09-19

    The autism-related protein Fragile X mental retardation protein (FMRP) is an RNA binding protein that plays important roles during both nervous system development and experience dependent plasticity. Alternative splicing of the Fmr1 locus gives rise to 12 different FMRP splice forms that differ in the functional and regulatory domains they contain as well as in their expression profile among brain regions and across development. Complete loss of FMRP leads to morphological and functional changes in neurons, including an increase in the size and complexity of the axonal arbor. To investigate the relative contribution of the FMRP splice forms to the regulation of axon morphology, we overexpressed individual splice forms in cultured wild type rat cortical neurons. FMRP overexpression led to a decrease in axonal arbor complexity that suggests that FMRP regulates axon branching. This reduction in complexity was specific to three splice forms-the full-length splice form 1, the most highly expressed splice form 7, and splice form 9. A focused analysis of splice form 7 revealed that this regulation is independent of RNA binding. Instead this regulation is disrupted by mutations affecting phosphorylation of a conserved serine as well as by mutating the nuclear export sequence. Surprisingly, this mutation in the nuclear export sequence also led to increased localization to the distal axonal arbor. Together, these findings reveal domain-specific functions of FMRP in the regulation of axonal complexity that may be controlled by differential expression of FMRP splice forms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol, 2016.

  20. Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing.

    PubMed

    Selvanathan, Saravana P; Graham, Garrett T; Erkizan, Hayriye V; Dirksen, Uta; Natarajan, Thanemozhi G; Dakic, Aleksandra; Yu, Songtao; Liu, Xuefeng; Paulsen, Michelle T; Ljungman, Mats E; Wu, Cathy H; Lawlor, Elizabeth R; Üren, Aykut; Toretsky, Jeffrey A

    2015-03-17

    The synthesis and processing of mRNA, from transcription to translation initiation, often requires splicing of intragenic material. The final mRNA composition varies based on proteins that modulate splice site selection. EWS-FLI1 is an Ewing sarcoma (ES) oncoprotein with an interactome that we demonstrate to have multiple partners in spliceosomal complexes. We evaluate the effect of EWS-FLI1 on posttranscriptional gene regulation using both exon array and RNA-seq. Genes that potentially regulate oncogenesis, including CLK1, CASP3, PPFIBP1, and TERT, validate as alternatively spliced by EWS-FLI1. In a CLIP-seq experiment, we find that EWS-FLI1 RNA-binding motifs most frequently occur adjacent to intron-exon boundaries. EWS-FLI1 also alters splicing by directly binding to known splicing factors including DDX5, hnRNP K, and PRPF6. Reduction of EWS-FLI1 produces an isoform of γ-TERT that has increased telomerase activity compared with wild-type (WT) TERT. The small molecule YK-4-279 is an inhibitor of EWS-FLI1 oncogenic function that disrupts specific protein interactions, including helicases DDX5 and RNA helicase A (RHA) that alters RNA-splicing ratios. As such, YK-4-279 validates the splicing mechanism of EWS-FLI1, showing alternatively spliced gene patterns that significantly overlap with EWS-FLI1 reduction and WT human mesenchymal stem cells (hMSC). Exon array analysis of 75 ES patient samples shows similar isoform expression patterns to cell line models expressing EWS-FLI1, supporting the clinical relevance of our findings. These experiments establish systemic alternative splicing as an oncogenic process modulated by EWS-FLI1. EWS-FLI1 modulation of mRNA splicing may provide insight into the contribution of splicing toward oncogenesis, and, reciprocally, EWS-FLI1 interactions with splicing proteins may inform the splicing code.

  1. RNA splicing and splicing regulator changes in prostate cancer pathology.

    PubMed

    Munkley, Jennifer; Livermore, Karen; Rajan, Prabhakar; Elliott, David J

    2017-04-05

    Changes in mRNA splice patterns have been associated with key pathological mechanisms in prostate cancer progression. The androgen receptor (abbreviated AR) transcription factor is a major driver of prostate cancer pathology and activated by androgen steroid hormones. Selection of alternative promoters by the activated AR can critically alter gene function by switching mRNA isoform production, including creating a pro-oncogenic isoform of the normally tumour suppressor gene TSC2. A number of androgen-regulated genes generate alternatively spliced mRNA isoforms, including a prostate-specific splice isoform of ST6GALNAC1 mRNA. ST6GALNAC1 encodes a sialyltransferase that catalyses the synthesis of the cancer-associated sTn antigen important for cell mobility. Genetic rearrangements occurring early in prostate cancer development place ERG oncogene expression under the control of the androgen-regulated TMPRSS2 promoter to hijack cell behaviour. This TMPRSS2-ERG fusion gene shows different patterns of alternative splicing in invasive versus localised prostate cancer. Alternative AR mRNA isoforms play a key role in the generation of prostate cancer drug resistance, by providing a mechanism through which prostate cancer cells can grow in limited serum androgen concentrations. A number of splicing regulator proteins change expression patterns in prostate cancer and may help drive key stages of disease progression. Up-regulation of SRRM4 establishes neuronal splicing patterns in neuroendocrine prostate cancer. The splicing regulators Sam68 and Tra2β increase expression in prostate cancer. The SR protein kinase SRPK1 that modulates the activity of SR proteins is up-regulated in prostate cancer and has already given encouraging results as a potential therapeutic target in mouse models.

  2. Targeting RNA Splicing for Disease Therapy

    PubMed Central

    Havens, Mallory A.; Duelli, Dominik M.

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics. PMID:23512601

  3. Targeting RNA splicing for disease therapy.

    PubMed

    Havens, Mallory A; Duelli, Dominik M; Hastings, Michelle L

    2013-01-01

    Splicing of pre-messenger RNA into mature messenger RNA is an essential step for the expression of most genes in higher eukaryotes. Defects in this process typically affect cellular function and can have pathological consequences. Many human genetic diseases are caused by mutations that cause splicing defects. Furthermore, a number of diseases are associated with splicing defects that are not attributed to overt mutations. Targeting splicing directly to correct disease-associated aberrant splicing is a logical approach to therapy. Splicing is a favorable intervention point for disease therapeutics, because it is an early step in gene expression and does not alter the genome. Significant advances have been made in the development of approaches to manipulate splicing for therapy. Splicing can be manipulated with a number of tools including antisense oligonucleotides, modified small nuclear RNAs (snRNAs), trans-splicing, and small molecule compounds, all of which have been used to increase specific alternatively spliced isoforms or to correct aberrant gene expression resulting from gene mutations that alter splicing. Here we describe clinically relevant splicing defects in disease states, the current tools used to target and alter splicing, specific mutations and diseases that are being targeted using splice-modulating approaches, and emerging therapeutics.

  4. The alternative splicing program of differentiated smooth muscle cells involves concerted non-productive splicing of post-transcriptional regulators

    PubMed Central

    Llorian, Miriam; Gooding, Clare; Bellora, Nicolas; Hallegger, Martina; Buckroyd, Adrian; Wang, Xiao; Rajgor, Dipen; Kayikci, Melis; Feltham, Jack; Ule, Jernej; Eyras, Eduardo; Smith, Christopher W.J.

    2016-01-01

    Alternative splicing (AS) is a key component of gene expression programs that drive cellular differentiation. Smooth muscle cells (SMCs) are important in the function of a number of physiological systems; however, investigation of SMC AS has been restricted to a handful of events. We profiled transcriptome changes in mouse de-differentiating SMCs and observed changes in hundreds of AS events. Exons included in differentiated cells were characterized by particularly weak splice sites and by upstream binding sites for Polypyrimidine Tract Binding protein (PTBP1). Consistent with this, knockdown experiments showed that that PTBP1 represses many smooth muscle specific exons. We also observed coordinated splicing changes predicted to downregulate the expression of core components of U1 and U2 snRNPs, splicing regulators and other post-transcriptional factors in differentiated cells. The levels of cognate proteins were lower or similar in differentiated compared to undifferentiated cells. However, levels of snRNAs did not follow the expression of splicing proteins, and in the case of U1 snRNP we saw reciprocal changes in the levels of U1 snRNA and U1 snRNP proteins. Our results suggest that the AS program in differentiated SMCs is orchestrated by the combined influence of auxiliary RNA binding proteins, such as PTBP1, along with altered activity and stoichiometry of the core splicing machinery. PMID:27317697

  5. Spliced-leader trans-splicing in freshwater planarians.

    PubMed

    Zayas, Ricardo M; Bold, Tyler D; Newmark, Phillip A

    2005-10-01

    trans-Splicing, in which a spliced-leader (SL) RNA is appended to the most 5' exon of independently transcribed pre-mRNAs, has been described in a wide range of eukaryotes, from protozoans to chordates. Here we describe trans-splicing in the freshwater planarian Schmidtea mediterranea, a free-living member of the phylum Platyhelminthes. Analysis of an expressed sequence tag (EST) collection from this organism showed that over 300 transcripts shared one of two approximately 35-base sequences (Smed SL-1 and SL-2) at their 5' ends. Examination of genomic sequences encoding representatives of these transcripts revealed that these shared sequences were transcribed elsewhere in the genome. RNA blot analysis, 5' and 3' rapid amplification of cDNA ends, as well as genomic sequence data showed that 42-nt SL sequences were derived from small RNAs of approximately 110 nt. Similar sequences were also found at the 5' ends of ESTs from the planarian Dugesia japonica. trans-Splicing has already been described in numerous representatives of the phylum Platyhelminthes (trematodes, cestodes, and polyclads); its presence in two representatives of the triclads supports the hypothesis that this mode of RNA processing is ancestral within this group. The upcoming complete genome sequence of S. mediterranea, combined with this animal's experimental accessibility and susceptibility to RNAi, provide another model organism in which to study the function of the still-enigmatic trans-splicing.

  6. 2′-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping

    PubMed Central

    Lee, Tomoko; Awano, Hiroyuki; Yagi, Mariko; Matsumoto, Masaaki; Watanabe, Nobuaki; Goda, Ryoya; Koizumi, Makoto; Takeshima, Yasuhiro; Matsuo, Masafumi

    2017-01-01

    Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO)-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After accelerated US approval of eteplirsen (Exondys 51), which targets dystrophin exon 51 for skipping, efforts are now focused on targeting other exons. For improved clinical benefits, this strategy requires more studies of the delivery method and modification of nucleic acids. We studied a nucleotide with a 2′-O,4′-C-ethylene-bridged nucleic acid (ENA), which shows high nuclease resistance and high affinity for complementary RNA strands. Here, we describe the process of developing a 2′-O-methyl RNA(2′-OMeRNA)/ENA chimera AO to induce dystrophin exon 45 skipping. One 18-mer 2′-OMeRNA/ENA chimera (AO85) had the most potent activity for inducing exon 45 skipping in cultured myotubes. AO85 was administered to mdx mice without significant side effects. AO85 transfection into cultured myotubes from 13 DMD patients induced exon 45 skipping in all samples at different levels and dystrophin expression in 11 patients. These results suggest the possible efficacy of AO-mediated exon skipping changes in individual patients and highlight the 2′-OMeRNA/ENA chimera AO as a potential fundamental treatment for DMD. PMID:28208626

  7. Exon deletion patterns of the dystrophin gene in 82 Vietnamese Duchenne/Becker muscular dystrophy patients.

    PubMed

    Tran, Van Khanh; Ta, Van Thanh; Vu, Dung Chi; Nguyen, Suong Thi-Bang; Do, Hai Ngoc; Ta, Minh Hieu; Tran, Thinh Huy; Matsuo, Masafumi

    2013-12-01

    Duchenne and Becker muscular dystrophies (DMD/BMD) are the most common inherited muscle diseases caused by mutations in the dystrophin gene. The reading frame rule explains the genotype-phenotype relationship in DMD/BMD. In Vietnam, extensive mutation analysis has never been conducted in DMD/BMD. Here, 152 Vietnamese muscular dystrophy patients were examined for dystrophin exon deletion by amplifying 19 deletion-prone exons and deletion ends were confirmed by dystrophin cDNA analysis if necessary. The result was that 82 (54%) patients were found to have exon deletions, thus confirming exact deletion ends. A further result was that 37 patterns of deletion were classified. Deletions of exons 45-50 and 49-52 were the most common patterns identified, numbering six cases each (7.3%). The reading frame rule explained the genotype-phenotype relationship, but not five (6.1%) DMD cases. Each of five patients had deletions of exons 11-27 in common. The applicability of the therapy producing semifunctional in frame mRNA in DMD by inducing skipping of a single exon was examined. Induction of exon 51 skipping was ranked at top priority, since 16 (27%) patients were predicted to have semifunctional mRNA skipping. Exons 45 and 53 were the next ranked, with 12 (20%) and 11 (18%) patients, respectively. The largest deletion database of the dystrophin gene, established in Vietnamese DMD/BMD patients, disclosed a strong indication for exon-skipping therapy.

  8. Studying the role of dystrophin-associated proteins in influencing Becker muscular dystrophy disease severity.

    PubMed

    van den Bergen, J C; Wokke, B H A; Hulsker, M A; Verschuuren, J J G M; Aartsma-Rus, A M

    2015-03-01

    Becker muscular dystrophy is characterized by a variable disease course. Many factors have been implicated to contribute to this diversity, among which the expression of several components of the dystrophin associated glycoprotein complex. Together with dystrophin, most of these proteins anchor the muscle fiber cytoskeleton to the extracellular matrix, thus protecting the muscle from contraction induced injury, while nNOS is primarily involved in inducing vasodilation during muscle contraction, enabling adequate muscle oxygenation. In the current study, we investigated the role of three components of the dystrophin associated glycoprotein complex (beta-dystroglycan, gamma-sarcoglycan and nNOS) and the dystrophin homologue utrophin on disease severity in Becker patients. Strength measurements, data about disease course and fresh muscle biopsies of the anterior tibial muscle were obtained from 24 Becker patients aged 19 to 66. The designation of Becker muscular dystrophy in this study was based on the mutation and not on the clinical severity. Contrary to previous studies, we were unable to find a relationship between expression of nNOS, beta-dystroglycan and gamma-sarcoglycan at the sarcolemma and disease severity, as measured by muscle strength in five muscle groups and age at reaching several disease milestones. Unexpectedly, we found an inverse correlation between utrophin expression at the sarcolemma and age at reaching disease milestones.

  9. Dystrophin and dysferlin double mutant mice: a novel model for rhabdomyosarcoma.

    PubMed

    Hosur, Vishnu; Kavirayani, Anoop; Riefler, Jennifer; Carney, Lisa M B; Lyons, Bonnie; Gott, Bruce; Cox, Gregory A; Shultz, Leonard D

    2012-05-01

    Although researchers have yet to establish a link between muscular dystrophy (MD) and sarcomas in human patients, literature suggests that the MD genes dystrophin and dysferlin act as tumor suppressor genes in mouse models of MD. For instance, dystrophin-deficient mdx and dysferlin-deficient A/J mice, models of human Duchenne MD and limb-girdle MD type 2B, respectively, develop mixed sarcomas with variable penetrance and latency. To further establish the correlation between MD and sarcoma development, and to test whether a combined deletion of dystrophin and dysferlin exacerbates MD and augments the incidence of sarcomas, we generated dystrophin and dysferlin double mutant mice (STOCK-Dysf(prmd)Dmd(mdx-5Cv)). Not surprisingly, the double mutant mice develop severe MD symptoms and, moreover, develop rhabdomyosarcoma (RMS) at an average age of 12 months, with an incidence of >90%. Histological and immunohistochemical analyses, using a panel of antibodies against skeletal muscle cell proteins, electron microscopy, cytogenetics, and molecular analysis reveal that the double mutant mice develop RMS. The present finding bolsters the correlation between MD and sarcomas, and provides a model not only to examine the cellular origins but also to identify mechanisms and signal transduction pathways triggering development of RMS.

  10. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation.

  11. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  12. Long-time dynamics through parallel trajectory splicing

    DOE PAGES

    Perez, Danny; Cubuk, Ekin D.; Waterland, Amos; ...

    2015-11-24

    Simulating the atomistic evolution of materials over long time scales is a longstanding challenge, especially for complex systems where the distribution of barrier heights is very heterogeneous. Such systems are difficult to investigate using conventional long-time scale techniques, and the fact that they tend to remain trapped in small regions of configuration space for extended periods of time strongly limits the physical insights gained from short simulations. We introduce a novel simulation technique, Parallel Trajectory Splicing (ParSplice), that aims at addressing this problem through the timewise parallelization of long trajectories. The computational efficiency of ParSplice stems from a speculation strategymore » whereby predictions of the future evolution of the system are leveraged to increase the amount of work that can be concurrently performed at any one time, hence improving the scalability of the method. ParSplice is also able to accurately account for, and potentially reuse, a substantial fraction of the computational work invested in the simulation. We validate the method on a simple Ag surface system and demonstrate substantial increases in efficiency compared to previous methods. As a result, we then demonstrate the power of ParSplice through the study of topology changes in Ag42Cu13 core–shell nanoparticles.« less

  13. Long-time dynamics through parallel trajectory splicing

    SciTech Connect

    Perez, Danny; Cubuk, Ekin D.; Waterland, Amos; Kaxiras, Efthimios; Voter, Arthur F.

    2015-11-24

    Simulating the atomistic evolution of materials over long time scales is a longstanding challenge, especially for complex systems where the distribution of barrier heights is very heterogeneous. Such systems are difficult to investigate using conventional long-time scale techniques, and the fact that they tend to remain trapped in small regions of configuration space for extended periods of time strongly limits the physical insights gained from short simulations. We introduce a novel simulation technique, Parallel Trajectory Splicing (ParSplice), that aims at addressing this problem through the timewise parallelization of long trajectories. The computational efficiency of ParSplice stems from a speculation strategy whereby predictions of the future evolution of the system are leveraged to increase the amount of work that can be concurrently performed at any one time, hence improving the scalability of the method. ParSplice is also able to accurately account for, and potentially reuse, a substantial fraction of the computational work invested in the simulation. We validate the method on a simple Ag surface system and demonstrate substantial increases in efficiency compared to previous methods. As a result, we then demonstrate the power of ParSplice through the study of topology changes in Ag42Cu13 core–shell nanoparticles.

  14. Trans-splicing improvement by the combined application of antisense strategies.

    PubMed

    Koller, Ulrich; Hainzl, Stefan; Kocher, Thomas; Hüttner, Clemens; Klausegger, Alfred; Gruber, Christina; Mayr, Elisabeth; Wally, Verena; Bauer, Johann W; Murauer, Eva M

    2015-01-06

    Spliceosome-mediated RNA trans-splicing has become an emergent tool for the repair of mutated pre-mRNAs in the treatment of genetic diseases. RNA trans-splicing molecules (RTMs) are designed to induce a specific trans-splicing reaction via a binding domain for a respective target pre-mRNA region. A previously established reporter-based screening system allows us to analyze the impact of various factors on the RTM trans-splicing efficiency in vitro. Using this system, we are further able to investigate the potential of antisense RNAs (AS RNAs), presuming to improve the trans-splicing efficiency of a selected RTM, specific for intron 102 of COL7A1. Mutations in the COL7A1 gene underlie the dystrophic subtype of the skin blistering disease epidermolysis bullosa (DEB). We have shown that co-transfections of the RTM and a selected AS RNA, interfering with competitive splicing elements on a COL7A1-minigene (COL7A1-MG), lead to a significant increase of the RNA trans-splicing efficiency. Thereby, accurate trans-splicing between the RTM and the COL7A1-MG is represented by the restoration of full-length green fluorescent protein GFP on mRNA and protein level. This mechanism can be crucial for the improvement of an RTM-mediated correction, especially in cases where a high trans-splicing efficiency is required.

  15. Study about locomotory ability of dystrophin-defected C.elegans after spaceflight

    NASA Astrophysics Data System (ADS)

    Gao, Ying; Sun, Yeqing; Lei, Huang; Xu, Dan

    2012-07-01

    Space microgravity could induce a variety of biological changes such as muscular atrophy. Recent studies show that gravisensing is a key point in muscular atrophy process, but the molecular mechanism is still unknown. Dystrophin, a muscle-related protein, plays an important role in muscle development. It is reported that mutation of human dystrophin gene could cause muscular atrophy. In this study, we focus on whether dystrophin gene acts as a gravisensing factor and observe locomotory ability of dystrophin-defected Caenorhabditis elegans (C.elegans) after spaceflight. We used wild-type (WT) and dystrophin-defected (dys-1) mutant of C.elegans, which were cultured to dauer stage and sent to space by Shenzhou 8 spacecraft (from Nov 1st to 17th, 2011). These worms were divided into three groups: space group (space radiation and microgravity conditions), space control group (space radiation and chmetcnvTCSC0NumberType1NegativeFalseHasSpaceFalseSourceValue1UnitNameg1g centrifuge force conditions) and ground control group.We already observed the progeny (generation F1 and F2) of worms which were sent to space, the movement of C. elegans is restricted to a two-dimensional sinusoidal pattern, and evaluated locomotory ability by the ratio (length/width) in crawl trace wave of C. elegans. The increased value of ratio indicates the decrease in locomotory ability of C. elegans. Our results from generation F1 showed that WT worms in space group(7.7±1.8) demonstrated the significant decrease in locomotory ability about 15%, compared with those in space control group(6.7±1.2). This finding indicates that locomotory ability of C. elegans progeny could be affected by microgravity in space environment. In comparison to the obvious difference in ratio between space group and space control group for WT worms, there is no significant difference between two space groups of generation F2 .For dys-1 mutant of C.elegans (generation F1 and F2), the results show that dystrophin deficiency

  16. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila.

    PubMed

    Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang; Xu, Yong-Zhen

    2015-04-01

    Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5' intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5' intron finds the 3' introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5' intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing.

  17. Promoter usage and alternative splicing.

    PubMed

    Kornblihtt, Alberto R

    2005-06-01

    Recent findings justify a renewed interest in alternative splicing (AS): the process is more a rule than an exception as it affects the expression of 60% of human genes; it explains how a vast mammalian proteomic complexity is achieved with a limited number of genes; and mutations in AS regulatory sequences are a widespread source of human disease. AS regulation not only depends on the interaction of splicing factors with their target sequences in the pre-mRNA but is coupled to transcription. A clearer picture is emerging of the mechanisms by which transcription affects AS through promoter identity and occupation. These mechanisms involve the recruitment of factors with dual functions in transcription and splicing (i.e. that contain both functional domains and hence link the two processes) and the control of RNA polymerase II elongation.

  18. Early-progressive dilated cardiomyopathy in a family with Becker muscular dystrophy related to a novel frameshift mutation in the dystrophin gene exon 27.

    PubMed

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O; Marks, Harold; Flanigan, Kevin M; Moore, Steven A

    2015-03-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11 years; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAinsGG), in which seven base pairs are deleted and two are inserted. Although this predicts an amino-acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both the siblings developed progressive HF secondary to early-onset DCM. In addition, their 7-year-old nephew with delayed gross motor development, mild proximal muscle weakness and markedly elevated serum creatine kinase level (>13 000 IU l(-1)) at 16 months was recently demonstrated to have the familial DMD mutation. Here, we report a novel genotype of BMD with early-onset DCM and progressive lethal HF during early adolescence.

  19. Early Progressive Dilated Cardiomyopathy in a Family with Becker Muscular Dystrophy Related to a Novel Frameshift Mutation in the Dystrophin Gene Exon 27

    PubMed Central

    Tsuda, Takeshi; Fitzgerald, Kristi; Scavena, Mena; Gidding, Samuel; Cox, Mary O.; Marks, Harold; Flanigan, Kevin M.; Moore, Steven A.

    2014-01-01

    We report a family in which two male siblings with Becker muscular dystrophy (BMD) developed severe dilated cardiomyopathy (DCM) and progressive heart failure (HF) at age 11; one died at age 14 years while awaiting heart transplant and the other underwent left ventricular assist device (LVAD) implantation at the same age. Genetic analysis of one sibling showed a novel frameshift mutation in exon 27 of Duchenne muscular dystrophy (DMD) gene (c.3779_3785delCTTTGGAins GG), in which 7 base pairs are deleted and two are inserted. While this predicts an amino acid substitution and premature termination (p.Thr1260Argfs*8), muscle biopsy dystrophin immunostaining instead indicates that the mutation is more likely to alter splicing. Despite relatively preserved skeletal muscular performance, both siblings developed progressive heart failure secondary to early onset DCM. In addition, their 7 year old nephew with delayed gross motor development, mild proximal muscle weakness, and markedly elevated serum creatine kinase (CK) level (> 13,000 IU/L) at 16 months was recently demonstrated to have the familial DMD mutation. Here we report a novel genotype of BMD with early onset DCM and progressive lethal heart failure during early adolescence. PMID:25537791

  20. Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos

    SciTech Connect

    Morcos, Paul A. . E-mail: pmorcos@gene-tools.com

    2007-06-29

    This work represents the first guide for using steric-block antisense oligos as tools for effective and targeted modification of RNA splicing. Comparison of several steric-block oligo types shows the properties of Morpholinos provide significant advantages over other potential splice-blocking oligos. The procedures and complications of designing effective splice-blocking Morpholino oligos are described. The design process requires complete pre-mRNA sequence for defining suitable targets, which usually generate specific predictable messengers. To validate the targeting procedure, the level and nature of transcript alteration is characterized by RT-PCR analysis of splice modification in a {beta}-globin splice model system. An oligo-walking study reveals that while U1 and U2 small nuclear RiboNucleoProtein (snRNP) binding sites are the most effective targets for blocking splicing, inclusion of these sites is not required to achieve effective splice modifications. The most effective targeting strategy employs simultaneously blocking snRNP binding sites and splice-junctions. The work presented here continues to be the basis for most of the successful Morpholino oligos designed for the worldwide research community to block RNA splicing.

  1. Biological Applications of Protein Splicing

    PubMed Central

    Vila-Perelló, Miquel; Muir, Tom W.

    2010-01-01

    Protein splicing is a naturally-occurring process in which a protein editor, called an intein, performs a molecular disappearing act by cutting itself out of a host protein in a traceless manner. In the two decades since its discovery, protein splicing has been harnessed for the development of several protein-engineering methods. Collectively, these technologies help bridge the fields of chemistry and biology, allowing hitherto impossible manipulations of protein covalent structure. These tools and their application are the subject of this Primer. PMID:20946979

  2. Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors.

    PubMed

    Han, Hong; Braunschweig, Ulrich; Gonatopoulos-Pournatzis, Thomas; Weatheritt, Robert J; Hirsch, Calley L; Ha, Kevin C H; Radovani, Ernest; Nabeel-Shah, Syed; Sterne-Weiler, Tim; Wang, Juli; O'Hanlon, Dave; Pan, Qun; Ray, Debashish; Zheng, Hong; Vizeacoumar, Frederick; Datti, Alessandro; Magomedova, Lilia; Cummins, Carolyn L; Hughes, Timothy R; Greenblatt, Jack F; Wrana, Jeffrey L; Moffat, Jason; Blencowe, Benjamin J

    2017-02-02

    Networks of coordinated alternative splicing (AS) events play critical roles in development and disease. However, a comprehensive knowledge of the factors that regulate these networks is lacking. We describe a high-throughput system for systematically linking trans-acting factors to endogenous RNA regulatory events. Using this system, we identify hundreds of factors associated with diverse regulatory layers that positively or negatively control AS events linked to cell fate. Remarkably, more than one-third of the regulators are transcription factors. Further analyses of the zinc finger protein Zfp871 and BTB/POZ domain transcription factor Nacc1, which regulate neural and stem cell AS programs, respectively, reveal roles in controlling the expression of specific splicing regulators. Surprisingly, these proteins also appear to regulate target AS programs via binding RNA. Our results thus uncover a large "missing cache" of splicing regulators among annotated transcription factors, some of which dually regulate AS through direct and indirect mechanisms.

  3. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    PubMed

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2015-12-22

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.

  4. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation

    PubMed Central

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F.

    2015-01-01

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system. PMID:26703587

  5. A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin Vector

    DTIC Science & Technology

    2015-09-01

    1 AWARD NUMBER: W81XWH-14-1-0302 TITLE: A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin...COVERED 1 Sep 2014 - 31 Aug 2015 4. TITLE AND SUBTITLE A Translational Pathway Toward a Clinical Trial Using the Second-Generation AAV Micro-Dystrophin...phophotase) or are not clinically meaningful (Table 2). 4   In our previous study, we demonstrated bodywide skeletal muscle transduction after

  6. A model to estimate the expression of the dystrophin gene in muscle from female Becker muscular dystrophy carriers.

    PubMed Central

    Vainzof, M; Passos-Bueno, M R; Pavanello, R C; Schreiber, R; Zatz, M

    1992-01-01

    The purpose of the present investigation was to assess the possibility of building a model to estimate, through dystrophin western blotting analysis, the expression of the DMD/BMD gene in muscle from heterozygotes. Dystrophin was analysed by mixing in increasing proportions (from 0% to 100%) aliquots of solubilised muscle from BMD patients with a qualitatively abnormal dystrophin and a normal male control. The intensity of the abnormal bands, which could be detected starting with 20% of muscle from the BMD patient, increased progressively according to the affected muscle concentration. In five obligate BMD carriers, two dystrophin bands were observed (corresponding to the products from the X bearing the normal and the BMD alleles), even among those with normal serum enzyme activities. Surprisingly, in the four obligate BMD carriers related to patients in whom an additional dystrophin fragment of 250 kd was present (two of them with raised serum enzymes), this band could not be seen, suggesting that the stability or the mechanism responsible for the synthesis of abnormal dystrophin products differs in heterozygotes compared to affected patients. Images PMID:1640426

  7. Localization of dystrophin and beta-dystroglycan in bovine retinal photoreceptor processes extending into the postsynaptic dendritic complex.

    PubMed

    Schmitz, F; Drenckhahn, D

    1997-09-01

    Dystrophin is an actin-binding protein of the membrane cytoskeleton that binds to dystroglycan, an integral membrane protein of the plasma membrane that is posttranslationally cleaved into a transmembrane dystrophin-binding beta-moiety and an extracellular laminin- and agrin-binding alpha-moiety. Mutations of dystrophin may not only cause Duchenne muscular dystrophy but may also be associated with abnormal electroretinograms assumed to result from disturbed neurotransmission between retinal photoreceptors and bipolar cells. Here we show by confocal laser microscopy and immunogold electron microscopy that dystrophin and beta-dystroglycan are colocalized in bovine rod photoreceptor synaptic complexes distal from the ribbon-containing active synaptic zones. Both proteins are restricted to a microdomain of the photoreceptor plasma membrane that forms the lateral wall of the synaptic cavity and projects with finger-like extensions into the postsynaptic dendritic complex. Within the cavity these processes eventually come into close contact with bipolar cell dendritic endings. We speculate that the dystrophin-dystroglycan complex of the cavital plasma membrane stabilizes the elaborate synaptic morphology or plays a role in the immobilization of still unknown transporters and receptors involved in certain aspects of neurotransmission to bipolar cells. A further outcome of this study is that dystrophin and dystroglycan are located along the vitread membrane surface of Müller cell endfeet where this protein complex may be important for the attachment of the retina to the basal lamina and the vitreous.

  8. Chromatin, DNA structure and alternative splicing.

    PubMed

    Nieto Moreno, Nicolás; Giono, Luciana E; Cambindo Botto, Adrián E; Muñoz, Manuel J; Kornblihtt, Alberto R

    2015-11-14

    Coupling of transcription and alternative splicing via regulation of the transcriptional elongation rate is a well-studied phenomenon. Template features that act as roadblocks for the progression of RNA polymerase II comprise histone modifications and variants, DNA-interacting proteins and chromatin compaction. These may affect alternative splicing decisions by inducing pauses or decreasing elongation rate that change the time-window for splicing regulatory sequences to be recognized. Herein we discuss the evidence supporting the influence of template structural modifications on transcription and splicing, and provide insights about possible roles of non-B DNA conformations on the regulation of alternative splicing.

  9. Evolutionary conservation of alternative splicing in chicken

    PubMed Central

    Katyal, S.; Gao, Z.; Liu, R.-Z.; Godbout, R.

    2013-01-01

    Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternatively-spliced genes and 50 frequently accessed genes. Our results support a high frequency of splicing events in chicken, similar to that observed in mammals. PMID:17675855

  10. Alcoholism and alternative splicing of candidate genes.

    PubMed

    Sasabe, Toshikazu; Ishiura, Shoichi

    2010-04-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports suggest that aberrant expression of splice variants affects alcohol sensitivities, and alcohol consumption also regulates alternative splicing. Thus, investigations of alternative splicing are essential for understanding the molecular events underlying the development of alcoholism.

  11. Exploitation of a thermosensitive splicing event to study pre-mRNA splicing in vivo

    SciTech Connect

    Cizdziel, P.E.; De Mars, M.; Murphy, E.C. Jr.

    1988-04-01

    The spliced form of MuSVts110 viral RNA is approximately 20-fold more abundant at growth temperatures of 33/sup 0/C or lower than at 37 to 41/sup 0/C. This difference is due to changes in the efficiency of MuSVts110 RNA splicing rather than selective thermolability of the spliced species at 37 to 41/sup 0/C or general thermosensitivity of RNA splicing in MuSVts110-infected cells. Moreover, RNA transcribed from MuSVts110 DNA introduced into a variety of cell lines is spliced in a temperature-sensitive fashion, suggesting that the structure of the viral RNA controls the efficiency of the event. The authors exploited this novel splicing event to study the cleavage and ligation events during splicing in vivo. No spliced viral mRNA or splicing intermediates were observed in MuSVts110-infected cells (6m2 cells) at 39/sup 0/C. However, after a short (about 30-min) lag following a shift to 33/sup 0/C, viral pre-mRNA cleaved at the 5' splice site began to accumulate. Ligated exons were not detected until about 60 min following the initial detection of cleavage at the 5' splice site, suggesting that these two splicing reactions did not occur concurrently. Splicing of viral RNA in the MuSVts110 revertant 54-5A4, which lacks the sequence -AG/TGT- at the usual 3' splice site, was studied. Cleavage at the 5' splice site in the revertant viral RNA proceeded in a temperature-sensitive fashion. No novel cryptic 3' splice sites were activated; however, splicing at an alternate upstream 3' splice site used at low efficiency in normal MuSVts110 RNA was increased to a level close to that of 5'-splice-site cleavage in the revertant viral RNA.

  12. High-throughput sequence analysis of Ciona intestinalis SL trans-spliced mRNAs: alternative expression modes and gene function correlates.

    PubMed

    Matsumoto, Jun; Dewar, Ken; Wasserscheid, Jessica; Wiley, Graham B; Macmil, Simone L; Roe, Bruce A; Zeller, Robert W; Satou, Yutaka; Hastings, Kenneth E M

    2010-05-01

    Pre-mRNA 5' spliced-leader (SL) trans-splicing occurs in some metazoan groups but not in others. Genome-wide characterization of the trans-spliced mRNA subpopulation has not yet been reported for any metazoan. We carried out a high-throughput analysis of the SL trans-spliced mRNA population of the ascidian tunicate Ciona intestinalis by 454 Life Sciences (Roche) pyrosequencing of SL-PCR-amplified random-primed reverse transcripts of tailbud embryo RNA. We obtained approximately 250,000 high-quality reads corresponding to 8790 genes, approximately 58% of the Ciona total gene number. The great depth of this data revealed new aspects of trans-splicing, including the existence of a significant class of "infrequently trans-spliced" genes, accounting for approximately 28% of represented genes, that generate largely non-trans-spliced mRNAs, but also produce trans-spliced mRNAs, in part through alternative promoter use. Thus, the conventional qualitative dichotomy of trans-spliced versus non-trans-spliced genes should be supplanted by a more accurate quantitative view recognizing frequently and infrequently trans-spliced gene categories. Our data include reads representing approximately 80% of Ciona frequently trans-spliced genes. Our analysis also revealed significant use of closely spaced alternative trans-splice acceptor sites which further underscores the mechanistic similarity of cis- and trans-splicing and indicates that the prevalence of +/-3-nt alternative splicing events at tandem acceptor sites, NAGNAG, is driven by spliceosomal mechanisms, and not nonsense-mediated decay, or selection at the protein level. The breadth of gene representation data enabled us to find new correlations between trans-splicing status and gene function, namely the overrepresentation in the frequently trans-spliced gene class of genes associated with plasma/endomembrane system, Ca(2+) homeostasis, and actin cytoskeleton.

  13. Conserved RNA secondary structures promote alternative splicing.

    PubMed

    Shepard, Peter J; Hertel, Klemens J

    2008-08-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site strength, splicing regulators, the exon/intron architecture, and the process of pre-mRNA synthesis itself. RNA secondary structures have also been proposed to influence alternative splicing as stable RNA secondary structures that mask splice sites are expected to interfere with splice-site recognition. Using structural and functional conservation, we identified RNA structure elements within the human genome that associate with alternative splice-site selection. Their frequent involvement with alternative splicing demonstrates that RNA structure formation is an important mechanism regulating gene expression and disease.

  14. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-10-29

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging.

  15. A missense mutation in the dystrophin gene in a Duchenne muscular dystrophy patient.

    PubMed

    Prior, T W; Papp, A C; Snyder, P J; Burghes, A H; Bartolo, C; Sedra, M S; Western, L M; Mendell, J R

    1993-08-01

    About two thirds of Duchenne muscular dystrophy (DMD) patients have either gene deletions or duplications. The other DMD cases are most likely the result of point mutations that cannot be easily identified by current strategies. Utilizing a heteroduplex technique and direct sequencing of amplified products, we screened our nondeletion/duplication DMD population for point mutations. We now describe what we believe to be the first dystrophin missense mutation in a DMD patient. The mutation results in the substitution of an evolutionarily conserved leucine to arginine in the actin-binding domain. The patient makes a dystrophin protein which is properly localized and is present at a higher level than is observed in DMD patients. This suggests that an intact actin-binding domain is necessary for protein stability and essential for function.

  16. Inefficient dystrophin expression after cord blood transplantation in Duchenne muscular dystrophy.

    PubMed

    Kang, Peter B; Lidov, Hart G W; White, Alexander J; Mitchell, Matthew; Balasubramanian, Anuradha; Estrella, Elicia; Bennett, Richard R; Darras, Basil T; Shapiro, Frederic D; Bambach, Barbara J; Kurtzberg, Joanne; Gussoni, Emanuela; Kunkel, Louis M

    2010-06-01

    We report a boy who received two allogeneic stem cell transplantations from umbilical cord donors to treat chronic granulomatous disease (CGD). The CGD was cured after the second transplantation, but 2.5 years later he was diagnosed with Duchenne muscular dystrophy (DMD). Examinations of his DNA, muscle tissue, and myoblast cultures derived from muscle tissue were performed to determine whether any donor dystrophin was being expressed. The boy was found to have a large-scale deletion on the X chromosome that spanned the loci for CYBB and DMD. The absence of dystrophin led to muscle histology characteristic of DMD. Analysis of myofibers demonstrated no definite donor cell engraftment. This case suggests that umbilical cord-derived hematopoietic stem cell transplantation will not be efficacious in the therapy of DMD without additional interventions that induce engraftment of donor cells in skeletal muscle.

  17. Dystrophin gene replacement and gene repair therapy for Duchenne muscular dystrophy in 2016.

    PubMed

    Duan, Dongsheng

    2016-03-04

    After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repair the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy. Here I summarized the interview with PPMD.

  18. Dystrophin Gene Replacement and Gene Repair Therapy for Duchenne Muscular Dystrophy in 2016: An Interview.

    PubMed

    Duan, Dongsheng

    2016-03-01

    After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repairing the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy and readiness for clinical trials. Here I summarized the interview with PPMD.

  19. Relatively low proportion of dystrophin gene deletions in Israeili Duchenne and Becker muscular dystrophy patients

    SciTech Connect

    Shomrat, R.; Gluck, E.; Legum, C.; Shiloh, Y.

    1994-02-15

    Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are allelic disorders caused by mutations in the X-linked dystrophin gene. The most common mutations in western populations are deletions that are spread non-randomly throughout the gene. Molecular analysis of the dystrophin gene structure by hybridization of the full length cDNA to Southern blots and by PCR in 62 unrelated Israeli male DMD/BMD patients showed deletions in 23 (37%). This proportion is significantly lower than that found in European and North American populations (55-65%). Seventy-eight percent of the deletions were confined to exons 44-52, half of these exons 44-45, and the remaining 22% to exons 1 and 19. There was no correlation between the size of the deletion and the severity of the disease. All the deletions causing frameshift resulted in the DMD phenotypes. 43 refs., 1 fig., 1 tab.

  20. Restoration of half the normal dystrophin sequence in a double-deletion Duchenne muscular dystrophy family

    SciTech Connect

    Hoop, R.C.; Schwartz, L.S.; Hoffman, E.P.; Russo, L.S.; Riconda, D.L.

    1994-02-01

    Two male cousins with Duchenne muscular dystrophy were found to have different maternal dystrophin gene haplotypes and different deletion mutations. One propositus showed two noncontiguous deletions-one in the 5{prime}, proximal deletional hotspot region, and the other in the 3{prime}, more distal deletional hotspot region. The second propositus showed only the 5{prime} deletion. Using multiple fluorescent exon dosage and fluorescent multiplex CA repeat linkage analyses, the authors show that the mother of each propositus carries both deletions on the same grandmaternal X chromosome. This paradox is explained by a single recombinational event between the 2 deleted regions of one of the carrier`s dystrophin genes, giving rise to a son with a partially {open_quotes}repaired{close_quotes} gene retaining only the 5{prime} deletion. 20 refs., 4 figs.

  1. Dystrophin Gene Replacement and Gene Repair Therapy for Duchenne Muscular Dystrophy in 2016: An Interview

    PubMed Central

    Duan, Dongsheng

    2016-01-01

    After years of relentless efforts, gene therapy has now begun to deliver its therapeutic promise in several diseases. A number of gene therapy products have received regulatory approval in Europe and Asia. Duchenne muscular dystrophy (DMD) is an X-linked inherited lethal muscle disease. It is caused by mutations in the dystrophin gene. Replacing and/or repairing the mutated dystrophin gene holds great promises to treated DMD at the genetic level. Last several years have evidenced significant developments in preclinical experimentations in murine and canine models of DMD. There has been a strong interest in moving these promising findings to clinical trials. In light of rapid progress in this field, the Parent Project Muscular Dystrophy (PPMD) recently interviewed me on the current status of DMD gene therapy and readiness for clinical trials. Here I summarized the interview with PPMD. PMID:27003751

  2. Aberrant Alternative Splicing Is Another Hallmark of Cancer

    PubMed Central

    Ladomery, Michael

    2013-01-01

    The vast majority of human genes are alternatively spliced. Not surprisingly, aberrant alternative splicing is increasingly linked to cancer. Splice isoforms often encode proteins that have distinct and even antagonistic properties. The abnormal expression of splice factors and splice factor kinases in cancer changes the alternative splicing of critically important pre-mRNAs. Aberrant alternative splicing should be added to the growing list of cancer hallmarks. PMID:24101931

  3. Becker muscular dystrophy severity is linked to the structure of dystrophin.

    PubMed

    Nicolas, Aurélie; Raguénès-Nicol, Céline; Ben Yaou, Rabah; Ameziane-Le Hir, Sarah; Chéron, Angélique; Vié, Véronique; Claustres, Mireille; Leturcq, France; Delalande, Olivier; Hubert, Jean-François; Tuffery-Giraud, Sylvie; Giudice, Emmanuel; Le Rumeur, Elisabeth

    2015-03-01

    In-frame exon deletions of the Duchenne muscular dystrophy (DMD) gene produce internally truncated proteins that typically lead to Becker muscular dystrophy (BMD), a milder allelic disorder of DMD. We hypothesized that differences in the structure of mutant dystrophin may be responsible for the clinical heterogeneity observed in Becker patients and we studied four prevalent in-frame exon deletions, i.e. Δ45-47, Δ45-48, Δ45-49 and Δ45-51. Molecular homology modelling revealed that the proteins corresponding to deletions Δ45-48 and Δ45-51 displayed a similar structure (hybrid repeat) than the wild-type dystrophin, whereas deletions Δ45-47 and Δ45-49 lead to proteins with an unrelated structure (fractional repeat). All four proteins in vitro expressed in a fragment encoding repeats 16-21 were folded in α-helices and remained highly stable. Refolding dynamics were slowed and molecular surface hydrophobicity were higher in fractional repeat containing Δ45-47 and Δ45-49 deletions compared with hybrid repeat containing Δ45-48 and Δ45-51 deletions. By retrospectively collecting data for a series of French BMD patients, we showed that the age of dilated cardiomyopathy (DCM) onset was delayed by 11 and 14 years in Δ45-48 and Δ45-49 compared with Δ45-47 patients, respectively. A clear trend toward earlier wheelchair dependency (minimum of 11 years) was also observed in Δ45-47 and Δ45-49 patients compared with Δ45-48 patients. Muscle dystrophin levels were moderately reduced in most patients without clear correlation with the deletion type. Disease progression in BMD patients appears to be dependent on the deletion itself and associated with a specific structure of dystrophin at the deletion site.

  4. Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse.

    PubMed

    Rayavarapu, Sree; Coley, William; Cakir, Erdinc; Jahnke, Vanessa; Takeda, Shin'ichi; Aoki, Yoshitsugu; Grodish-Dressman, Heather; Jaiswal, Jyoti K; Hoffman, Eric P; Brown, Kristy J; Hathout, Yetrib; Nagaraju, Kanneboyina

    2013-05-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with (13)C6-lysine or stable isotope labeling in mammals (SILAM) with (15)N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of

  5. Spliced leader RNA trans-splicing discovered in copepods

    PubMed Central

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-01-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3′-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods. PMID:26621068

  6. Spliced leader RNA trans-splicing discovered in copepods

    NASA Astrophysics Data System (ADS)

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  7. Loss of dystrophin staining in cardiomyocytes: a novel method for detection early myocardial infarction

    PubMed Central

    Hashmi, Satwat; Al-Salam, Suhail

    2013-01-01

    Myocardial infarction (MI) is the most frequent diagnosis made in majority of sudden death cases subjected to clinical and medicolegal autopsies. When sudden death occurs at a very early stage of MI, traditional macroscopic examination, or histological stains cannot easily detect the myocardial changes. For this reason we propose a new method for detecting MI at an early stage. Murine model of MI was used to induce MI through permanent ligation of left anterior descending branch of left coronary artery. Five groups of C57B6/J mice were used for inducing MI, which includes 20 minutes, 30 minutes, one hour, four hours and 24 hours post MI groups. One naïve group and sham-operated groups were used as controls. There is loss of dystrophin membranous staining in cardiac myocytes occurs as early as 20 minutes post myocardial infarction. This can be used as a novel method to diagnose early myocardial infarction in post mortem cases where diagnosis is unclear. In conclusion, evaluation of immunohistochemical expression of dystrophin represents a highly sensitive method for detecting early myocardial infarction due to the loss of staining in the infarcted areas. Dystrophin immunostaining can also be used to assess myocardial architecture. PMID:23330010

  8. Truncated dystrophins reduce muscle stiffness in the extensor digitorum longus muscle of mdx mice

    PubMed Central

    Hakim, Chady H.

    2013-01-01

    Muscle stiffness is a major clinical feature in Duchenne muscular dystrophy (DMD). DMD is the most common lethal inherited muscle-wasting disease in boys, and it is caused by the lack of the dystrophin protein. We recently showed that the extensor digitorum longus (EDL) muscle of mdx mice (a DMD mouse model) exhibits disease-associated muscle stiffness. Truncated micro- and mini-dystrophins are the leading candidates for DMD gene therapy. Unfortunately, it has never been clear whether these truncated genes can mitigate muscle stiffness. To address this question, we examined the passive properties of the EDL muscle in transgenic mdx mice that expressed a representative mini- or micro-gene (ΔH2-R15, ΔR2-15/ΔR18-23/ΔC, or ΔR4-23/ΔC). The passive properties were measured at the ages of 6 and 20 mo and compared with those of age-matched wild-type and mdx mice. Despite significant truncation of the gene, surprisingly, the elastic and viscous properties were completely restored to the wild-type level in every transgenic strain we examined. Our results demonstrated for the first time that truncated dystrophin genes may effectively treat muscle stiffness in DMD. PMID:23221959

  9. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9.

    PubMed

    Chen, Yongchang; Zheng, Yinghui; Kang, Yu; Yang, Weili; Niu, Yuyu; Guo, Xiangyu; Tu, Zhuchi; Si, Chenyang; Wang, Hong; Xing, Ruxiao; Pu, Xiuqiong; Yang, Shang-Hsun; Li, Shihua; Ji, Weizhi; Li, Xiao-Jiang

    2015-07-01

    CRISPR/Cas9 has been used to genetically modify genomes in a variety of species, including non-human primates. Unfortunately, this new technology does cause mosaic mutations, and we do not yet know whether such mutations can functionally disrupt the targeted gene or cause the pathology seen in human disease. Addressing these issues is necessary if we are to generate large animal models of human diseases using CRISPR/Cas9. Here we used CRISPR/Cas9 to target the monkey dystrophin gene to create mutations that lead to Duchenne muscular dystrophy (DMD), a recessive X-linked form of muscular dystrophy. Examination of the relative targeting rate revealed that Crispr/Cas9 targeting could lead to mosaic mutations in up to 87% of the dystrophin alleles in monkey muscle. Moreover, CRISPR/Cas9 induced mutations in both male and female monkeys, with the markedly depleted dystrophin and muscle degeneration seen in early DMD. Our findings indicate that CRISPR/Cas9 can efficiently generate monkey models of human diseases, regardless of inheritance patterns. The presence of degenerated muscle cells in newborn Cas9-targeted monkeys suggests that therapeutic interventions at the early disease stage may be effective at alleviating the myopathy.

  10. CRISPR-mediated Genome Editing Restores Dystrophin Expression and Function in mdx Mice.

    PubMed

    Xu, Li; Park, Ki Ho; Zhao, Lixia; Xu, Jing; El Refaey, Mona; Gao, Yandi; Zhu, Hua; Ma, Jianjie; Han, Renzhi

    2016-03-01

    Duchenne muscular dystrophy (DMD) is a degenerative muscle disease caused by genetic mutations that lead to the disruption of dystrophin in muscle fibers. There is no curative treatment for this devastating disease. Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) has emerged as a powerful tool for genetic manipulation and potential therapy. Here we demonstrate that CRIPSR-mediated genome editing efficiently excised a 23-kb genomic region on the X-chromosome covering the mutant exon 23 in a mouse model of DMD, and restored dystrophin expression and the dystrophin-glycoprotein complex at the sarcolemma of skeletal muscles in live mdx mice. Electroporation-mediated transfection of the Cas9/gRNA constructs in the skeletal muscles of mdx mice normalized the calcium sparks in response to osmotic shock. Adenovirus-mediated transduction of Cas9/gRNA greatly reduced the Evans blue dye uptake of skeletal muscles at rest and after downhill treadmill running. This study provides proof evidence for permanent gene correction in DMD.

  11. Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly.

    PubMed

    Molza, A-E; Férey, N; Czjzek, M; Le Rumeur, E; Hubert, J-F; Tek, A; Laurent, B; Baaden, M; Delalande, O

    2014-01-01

    At present, our molecular knowledge of dystrophin, the protein encoded by the DMD gene and mutated in myopathy patients, remains limited. To get around the absence of its atomic structure, we have developed an innovative interactive docking method based on the BioSpring software in combination with Small-angle X-ray Scattering (SAXS) data. BioSpring allows interactive handling of biological macromolecules thanks to an augmented Elastic Network Model (aENM) that combines the spring network with non-bonded terms between atoms or pseudo-atoms. This approach can be used for building molecular assemblies even on a desktop or a laptop computer thanks to code optimizations including parallel computing and GPU programming. By combining atomistic and coarse-grained models, the approach significantly simplifies the set-up of multi-scale scenarios. BioSpring is remarkably efficient for the preparation of numeric simulations or for the design of biomolecular models integrating qualitative experimental data restraints. The combination of this program and SAXS allowed us to propose the first high-resolution models of the filamentous central domain of dystrophin, covering repeats 11 to 17. Low-resolution interactive docking experiments driven by a potential grid enabled us to propose how dystrophin may associate with F-actin and nNOS. This information provides an insight into medically relevant discoveries to come.

  12. Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9

    PubMed Central

    Chen, Yongchang; Zheng, Yinghui; Kang, Yu; Yang, Weili; Niu, Yuyu; Guo, Xiangyu; Tu, Zhuchi; Si, Chenyang; Wang, Hong; Xing, Ruxiao; Pu, Xiuqiong; Yang, Shang-Hsun; Li, Shihua; Ji, Weizhi; Li, Xiao-Jiang

    2015-01-01

    CRISPR/Cas9 has been used to genetically modify genomes in a variety of species, including non-human primates. Unfortunately, this new technology does cause mosaic mutations, and we do not yet know whether such mutations can functionally disrupt the targeted gene or cause the pathology seen in human disease. Addressing these issues is necessary if we are to generate large animal models of human diseases using CRISPR/Cas9. Here we used CRISPR/Cas9 to target the monkey dystrophin gene to create mutations that lead to Duchenne muscular dystrophy (DMD), a recessive X-linked form of muscular dystrophy. Examination of the relative targeting rate revealed that Crispr/Cas9 targeting could lead to mosaic mutations in up to 87% of the dystrophin alleles in monkey muscle. Moreover, CRISPR/Cas9 induced mutations in both male and female monkeys, with the markedly depleted dystrophin and muscle degeneration seen in early DMD. Our findings indicate that CRISPR/Cas9 can efficiently generate monkey models of human diseases, regardless of inheritance patterns. The presence of degenerated muscle cells in newborn Cas9-targeted monkeys suggests that therapeutic interventions at the early disease stage may be effective at alleviating the myopathy. PMID:25859012

  13. Obscurin is required for ankyrinB-dependent dystrophin localization and sarcolemma integrity

    PubMed Central

    Randazzo, Davide; Giacomello, Emiliana; Lorenzini, Stefania; Rossi, Daniela; Pierantozzi, Enrico; Blaauw, Bert; Reggiani, Carlo; Lange, Stephan; Peter, Angela K.; Chen, Ju

    2013-01-01

    Obscurin is a large myofibrillar protein that contains several interacting modules, one of which mediates binding to muscle-specific ankyrins. Interaction between obscurin and the muscle-specific ankyrin sAnk1.5 regulates the organization of the sarcoplasmic reticulum in striated muscles. Additional muscle-specific ankyrin isoforms, ankB and ankG, are localized at the subsarcolemma level, at which they contribute to the organization of dystrophin and β-dystroglycan at costameres. In this paper, we report that in mice deficient for obscurin, ankB was displaced from its localization at the M band, whereas localization of ankG at the Z disk was not affected. In obscurin KO mice, localization at costameres of dystrophin, but not of β-dystroglycan, was altered, and the subsarcolemma microtubule cytoskeleton was disrupted. In addition, these mutant mice displayed marked sarcolemmal fragility and reduced muscle exercise tolerance. Altogether, the results support a model in which obscurin, by targeting ankB at the M band, contributes to the organization of subsarcolemma microtubules, localization of dystrophin at costameres, and maintenance of sarcolemmal integrity. PMID:23420875

  14. In silico analyses of dystrophin Dp40 cellular distribution, nuclear export signals and structure modeling.

    PubMed

    Martínez-Herrera, Alejandro; Aragón, Jorge; Bermúdez-Cruz, Rosa Ma; Bazán, Ma Luisa; Soid-Raggi, Gabriela; Ceja, Víctor; Santos Coy-Arechavaleta, Andrea; Alemán, Víctor; Depardón, Francisco; Montañez, Cecilia

    2015-09-01

    Dystrophin Dp40 is the shortest protein encoded by the DMD (Duchenne muscular dystrophy) gene. This protein is unique since it lacks the C-terminal end of dystrophins. In this data article, we describe the subcellular localization, nuclear export signals and the three-dimensional structure modeling of putative Dp40 proteins using bioinformatics tools. The Dp40 wild type protein was predicted as a cytoplasmic protein while the Dp40n4 was predicted to be nuclear. Changes L93P and L170P are involved in the nuclear localization of Dp40n4 protein. A close analysis of Dp40 protein scored that amino acids (93)LEQEHNNLV(101) and (168)LLLHDSIQI(176) could function as NES sequences and the scores are lost in Dp40n4. In addition, the changes L93/170P modify the tertiary structure of putative Dp40 mutants. The analysis showed that changes of residues 93 and 170 from leucine to proline allow the nuclear localization of Dp40 proteins. The data described here are related to the research article entitled "EF-hand domains are involved in the differential cellular distribution of dystrophin Dp40" (J. Aragón et al. Neurosci. Lett. 600 (2015) 115-120) [1].

  15. In silico analyses of dystrophin Dp40 cellular distribution, nuclear export signals and structure modeling

    PubMed Central

    Martínez-Herrera, Alejandro; Aragón, Jorge; Bermúdez-Cruz, Rosa Ma.; Bazán, Ma. Luisa; Soid-Raggi, Gabriela; Ceja, Víctor; Santos Coy-Arechavaleta, Andrea; Alemán, Víctor; Depardón, Francisco; Montañez, Cecilia

    2015-01-01

    Dystrophin Dp40 is the shortest protein encoded by the DMD (Duchenne muscular dystrophy) gene. This protein is unique since it lacks the C-terminal end of dystrophins. In this data article, we describe the subcellular localization, nuclear export signals and the three-dimensional structure modeling of putative Dp40 proteins using bioinformatics tools. The Dp40 wild type protein was predicted as a cytoplasmic protein while the Dp40n4 was predicted to be nuclear. Changes L93P and L170P are involved in the nuclear localization of Dp40n4 protein. A close analysis of Dp40 protein scored that amino acids 93LEQEHNNLV101 and 168LLLHDSIQI176 could function as NES sequences and the scores are lost in Dp40n4. In addition, the changes L93/170P modify the tertiary structure of putative Dp40 mutants. The analysis showed that changes of residues 93 and 170 from leucine to proline allow the nuclear localization of Dp40 proteins. The data described here are related to the research article entitled “EF-hand domains are involved in the differential cellular distribution of dystrophin Dp40” (J. Aragón et al. Neurosci. Lett. 600 (2015) 115–120) [1]. PMID:26217814

  16. Splice loss requirements in multi-mode fiber mode-division-multiplex transmission links.

    PubMed

    Warm, Stefan; Petermann, Klaus

    2013-01-14

    We investigate numerically the influence of fiber splices and fiber connectors to the statistics of mode dependent loss (MDL) and multiple-input multiple-output (MIMO) outage capacity in mode multiplexed multi-mode fiber links. Our results indicate required splice losses much lower than currently feasible to achieve a reasonable outage capacity in long-haul transmission systems. Splice losses as low as 0.03dB may effectively lead to an outage of MIMO channels after only a few hundred kilometers transmission length. In a first approximation, the relative capacity solely depends on the accumulated splice loss and should be less than ≈ 2dB to ensure a relative capacity of 90%. We also show that discrete mode permutation (mixing) within the transmission line may effectively increase the maximum transmission distance by a factor of 5 for conventional splice losses.

  17. Applying genetic programming to the prediction of alternative mRNA splice variants.

    PubMed

    Vukusic, Ivana; Grellscheid, Sushma Nagaraja; Wiehe, Thomas

    2007-04-01

    Genetic programming (GP) can be used to classify a given gene sequence as either constitutively or alternatively spliced. We describe the principles of GP and apply it to a well-defined data set of alternatively spliced genes. A feature matrix of sequence properties, such as nucleotide composition or exon length, was passed to the GP system "Discipulus." To test its performance we concentrated on cassette exons (SCE) and retained introns (SIR). We analyzed 27,519 constitutively spliced and 9641 cassette exons including their neighboring introns; in addition we analyzed 33,316 constitutively spliced introns compared to 2712 retained introns. We find that the classifier yields highly accurate predictions on the SIR data with a sensitivity of 92.1% and a specificity of 79.2%. Prediction accuracies on the SCE data are lower, 47.3% (sensitivity) and 70.9% (specificity), indicating that alternative splicing of introns can be better captured by sequence properties than that of exons.

  18. Structure of the human myelin/oligodendrocyte glycoprotein gene and multiple alternative spliced isoforms

    SciTech Connect

    Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.

    1995-09-20

    Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknown alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.

  19. Hallmarks of alternative splicing in cancer.

    PubMed

    Oltean, S; Bates, D O

    2014-11-13

    The immense majority of genes are alternatively spliced and there are many isoforms specifically associated with cancer progression and metastasis. The splicing pattern of specific isoforms of numerous genes is altered as cells move through the oncogenic process of gaining proliferative capacity, acquiring angiogenic, invasive, antiapoptotic and survival properties, becoming free from growth factor dependence and growth suppression, altering their metabolism to cope with hypoxia, enabling them to acquire mechanisms of immune escape, and as they move through the epithelial-mesenchymal and mesenchymal-epithelial transitions and metastasis. Each of the 'hallmarks of cancer' is associated with a switch in splicing, towards a more aggressive invasive cancer phenotype. The choice of isoforms is regulated by several factors (signaling molecules, kinases, splicing factors) currently being identified systematically by a number of high-throughput, independent and unbiased methodologies. Splicing factors are de-regulated in cancer, and in some cases are themselves oncogenes or pseudo-oncogenes and can contribute to positive feedback loops driving cancer progression. Tumour progression may therefore be associated with a coordinated splicing control, meaning that there is the potential for a relatively small number of splice factors or their regulators to drive multiple oncogenic processes. The understanding of how splicing contributes to the various phenotypic traits acquired by tumours as they progress and metastasise, and in particular how alternative splicing is coordinated, can and is leading to the development of a new class of anticancer therapeutics-the alternative-splicing inhibitors.

  20. A Combinatorial Code for Splicing Silencing: UAGG and GGGG Motifs

    PubMed Central

    An, Ping; Burge, Christopher B

    2005-01-01

    Alternative pre-mRNA splicing is widely used to regulate gene expression by tuning the levels of tissue-specific mRNA isoforms. Few regulatory mechanisms are understood at the level of combinatorial control despite numerous sequences, distinct from splice sites, that have been shown to play roles in splicing enhancement or silencing. Here we use molecular approaches to identify a ternary combination of exonic UAGG and 5′-splice-site-proximal GGGG motifs that functions cooperatively to silence the brain-region-specific CI cassette exon (exon 19) of the glutamate NMDA R1 receptor (GRIN1) transcript. Disruption of three components of the motif pattern converted the CI cassette into a constitutive exon, while predominant skipping was conferred when the same components were introduced, de novo, into a heterologous constitutive exon. Predominant exon silencing was directed by the motif pattern in the presence of six competing exonic splicing enhancers, and this effect was retained after systematically repositioning the two exonic UAGGs within the CI cassette. In this system, hnRNP A1 was shown to mediate silencing while hnRNP H antagonized silencing. Genome-wide computational analysis combined with RT-PCR testing showed that a class of skipped human and mouse exons can be identified by searches that preserve the sequence and spatial configuration of the UAGG and GGGG motifs. This analysis suggests that the multi-component silencing code may play an important role in the tissue-specific regulation of the CI cassette exon, and that it may serve more generally as a molecular language to allow for intricate adjustments and the coordination of splicing patterns from different genes. PMID:15828859

  1. Splicing-related genes are alternatively spliced upon changes in ambient temperatures in plants

    PubMed Central

    Bucher, Johan; Lammers, Michiel; Busscher-Lange, Jacqueline; Bonnema, Guusje; Rodenburg, Nicole; Proveniers, Marcel C. G.; Angenent, Gerco C.

    2017-01-01

    Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species exposed to temperature alterations, we showed that alternative splicing is an important mechanism in ambient temperature sensing and adaptation. We found that amongst the differentially alternatively spliced genes, splicing related genes are enriched, suggesting that the splicing machinery itself is targeted for alternative splicing when temperature changes. Moreover, we showed that many different components of the splicing machinery are targeted for ambient temperature regulated alternative splicing. Mutant analysis of a splicing related gene that was differentially spliced in two of the genotypes showed an altered flowering time response to different temperatures. We propose a two-step mechanism where temperature directly influences alternative splicing of the splicing machinery genes, followed by a second step where the altered splicing machinery affects splicing of downstream genes involved in the adaptation to altered temperatures. PMID:28257507

  2. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle

    PubMed Central

    Cação-Benedini, L.O.; Ribeiro, P.G.; Prado, C.M.; Chesca, D.L.; Mattiello-Sverzut, A.C.

    2014-01-01

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres. PMID:24820070

  3. Immobilization and therapeutic passive stretching generate thickening and increase the expression of laminin and dystrophin in skeletal muscle.

    PubMed

    Cação-Benedini, L O; Ribeiro, P G; Prado, C M; Chesca, D L; Mattiello-Sverzut, A C

    2014-06-01

    Extracellular matrix and costamere proteins transmit the concentric, isometric, and eccentric forces produced by active muscle contraction. The expression of these proteins after application of passive tension stimuli to muscle remains unknown. This study investigated the expression of laminin and dystrophin in the soleus muscle of rats immobilized with the right ankle in plantar flexion for 10 days and subsequent remobilization, either by isolated free movement in a cage or associated with passive stretching for up to 10 days. The intensity of the macrophage response was also evaluated. One hundred and twenty-eight female Wistar rats were divided into 8 groups: free for 10 days; immobilized for 10 days; immobilized/free for 1, 3, or 10 days; or immobilized/stretched/free for 1, 3, or 10 days. After the experimental procedures, muscle tissue was processed for immunofluorescence (dystrophin/laminin/CD68) and Western blot analysis (dystrophin/laminin). Immobilization increased the expression of dystrophin and laminin but did not alter the number of macrophages in the muscle. In the stretched muscle groups, there was an increase in dystrophin and the number of macrophages after 3 days compared with the other groups; dystrophin showed a discontinuous labeling pattern, and laminin was found in the intracellular space. The amount of laminin was increased in the muscles treated by immobilization followed by free movement for 10 days. In the initial stages of postimmobilization (1 and 3 days), an exacerbated macrophage response and an increase of dystrophin suggested that the therapeutic stretching technique induced additional stress in the muscle fibers and costameres.

  4. Disruption of sarcolemmal dystrophin and beta-dystroglycan may be a potential mechanism for myocardial dysfunction in severe sepsis.

    PubMed

    Celes, Mara Rúbia N; Torres-Dueñas, Diego; Malvestio, Lygia M; Blefari, Valdecir; Campos, Erica C; Ramos, Simone G; Prado, Cibele M; Cunha, Fernando Q; Rossi, Marcos A

    2010-04-01

    Evidence from our laboratory has shown alterations in myocardial structure in severe sepsis/septic shock. The morphological alterations are heralded by sarcolemmal damage, characterized by increased plasma membrane permeability caused by oxidative damage to lipids and proteins. The critical importance of the dystrophin-glycoprotein complex (DGC) in maintaining sarcolemmal stability led us to hypothesize that loss of dystrophin and associated glycoproteins could be involved in early increased sarcolemmal permeability in experimentally induced septic cardiomyopathy. Male C57Bl/6 mice were subjected to sham operation and moderate (MSI) or severe (SSI) septic injury induced by cecal ligation and puncture (CLP). Using western blot and immunofluorescence, a downregulation of dystrophin and beta-dystroglycan expression in both severe and moderate injury could be observed in septic hearts. The immunofluorescent and protein amount expressions of laminin-alpha2 were similar in SSI and sham-operated hearts. Consonantly, the evaluation of plasma membrane permeability by intracellular albumin staining provided evidence of severe injury of the sarcolemma in SSI hearts, whereas antioxidant treatment significantly attenuated the loss of sarcolemmal dystrophin expression and the increased membrane permeability. This study offers novel and mechanistic data to clarify subcellular events in the pathogenesis of cardiac dysfunction in severe sepsis. The main finding was that severe sepsis leads to a marked reduction in membrane localization of dystrophin and beta-dystroglycan in septic cardiomyocytes, a process that may constitute a structural basis of sepsis-induced cardiac depression. In addition, increased sarcolemmal permeability suggests functional impairment of the DGC complex in cardiac myofibers. In vivo observation that antioxidant treatment significantly abrogated the loss of dystrophin expression and plasma membrane increased permeability supports the hypothesis that

  5. Safely splicing glass optical fibers

    NASA Technical Reports Server (NTRS)

    Korbelak, K.

    1980-01-01

    Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.

  6. Cryptic splice sites and split genes.

    PubMed

    Kapustin, Yuri; Chan, Elcie; Sarkar, Rupa; Wong, Frederick; Vorechovsky, Igor; Winston, Robert M; Tatusova, Tatiana; Dibb, Nick J

    2011-08-01

    We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes.

  7. Cryptic splice sites and split genes

    PubMed Central

    Kapustin, Yuri; Chan, Elcie; Sarkar, Rupa; Wong, Frederick; Vorechovsky, Igor; Winston, Robert M.; Tatusova, Tatiana; Dibb, Nick J.

    2011-01-01

    We describe a new program called cryptic splice finder (CSF) that can reliably identify cryptic splice sites (css), so providing a useful tool to help investigate splicing mutations in genetic disease. We report that many css are not entirely dormant and are often already active at low levels in normal genes prior to their enhancement in genetic disease. We also report a fascinating correlation between the positions of css and introns, whereby css within the exons of one species frequently match the exact position of introns in equivalent genes from another species. These results strongly indicate that many introns were inserted into css during evolution and they also imply that the splicing information that lies outside some introns can be independently recognized by the splicing machinery and was in place prior to intron insertion. This indicates that non-intronic splicing information had a key role in shaping the split structure of eukaryote genes. PMID:21470962

  8. Pharmacology of Modulators of Alternative Splicing

    PubMed Central

    Morris, Jonathan C.; Oltean, Sebastian; Donaldson, Lucy F.

    2017-01-01

    More than 95% of genes in the human genome are alternatively spliced to form multiple transcripts, often encoding proteins with differing or opposing function. The control of alternative splicing is now being elucidated, and with this comes the opportunity to develop modulators of alternative splicing that can control cellular function. A number of approaches have been taken to develop compounds that can experimentally, and sometimes clinically, affect splicing control, resulting in potential novel therapeutics. Here we develop the concepts that targeting alternative splicing can result in relatively specific pathway inhibitors/activators that result in dampening down of physiologic or pathologic processes, from changes in muscle physiology to altering angiogenesis or pain. The targets and pharmacology of some of the current inhibitors/activators of alternative splicing are demonstrated and future directions discussed. PMID:28034912

  9. Investigating alternative RNA splicing in Xenopus.

    PubMed

    Mereau, Agnès; Hardy, Serge

    2012-01-01

    Alternative splicing, the process by which distinct mature mRNAs can be produced from a single primary transcript, is a key mechanism to increase the organism complexity. The generation of alternative splicing pattern is a means to expand the proteome diversity and also to control gene expression through the regulation of mRNA abundance. Alternative splicing is therefore particularly prevalent during development and accordingly numerous splicing events are regulated in a tissue or temporal manner. To study the roles of alternative splicing during developmental processes and decipher the molecular mechanisms that underlie temporal and spatial regulation, it is important to develop in vivo whole animal studies. In this chapter, we present the advantages of using the amphibian Xenopus as a fully in vivo model to study alternative splicing and we describe the experimental procedures that can be used with Xenopus laevis embryos and oocytes to define the cis-regulatory elements and identify the associated trans-acting factors.

  10. Cable-splice detector

    NASA Technical Reports Server (NTRS)

    Lee, R. D.; Iufer, E. J.; Giovannetti, A.

    1980-01-01

    Detector has possible uses in aerial cable-car systems, equipment handling in mines, boreholes, and undersea operations, and other applications where moving steel cable must be measured, monitored, or controlled. Detector consists of Hall-effect magnetic sensor located close to cable. Magnetic markings on cable are converted to electrical signals. Signals are filtered, amplified, and can actuate alarm.

  11. Recursive splicing in long vertebrate genes.

    PubMed

    Sibley, Christopher R; Emmett, Warren; Blazquez, Lorea; Faro, Ana; Haberman, Nejc; Briese, Michael; Trabzuni, Daniah; Ryten, Mina; Weale, Michael E; Hardy, John; Modic, Miha; Curk, Tomaž; Wilson, Stephen W; Plagnol, Vincent; Ule, Jernej

    2015-05-21

    It is generally believed that splicing removes introns as single units from precursor messenger RNA transcripts. However, some long Drosophila melanogaster introns contain a cryptic site, known as a recursive splice site (RS-site), that enables a multi-step process of intron removal termed recursive splicing. The extent to which recursive splicing occurs in other species and its mechanistic basis have not been examined. Here we identify highly conserved RS-sites in genes expressed in the mammalian brain that encode proteins functioning in neuronal development. Moreover, the RS-sites are found in some of the longest introns across vertebrates. We find that vertebrate recursive splicing requires initial definition of an 'RS-exon' that follows the RS-site. The RS-exon is then excluded from the dominant mRNA isoform owing to competition with a reconstituted 5' splice site formed at the RS-site after the first splicing step. Conversely, the RS-exon is included when preceded by cryptic promoters or exons that fail to reconstitute an efficient 5' splice site. Most RS-exons contain a premature stop codon such that their inclusion can decrease mRNA stability. Thus, by establishing a binary splicing switch, RS-sites demarcate different mRNA isoforms emerging from long genes by coupling cryptic elements with inclusion of RS-exons.

  12. Becker Muscular Dystrophy (BMD) caused by duplication of exons 3-6 of the dystrophin gene presenting as dilated cardiomyopathy

    SciTech Connect

    Tsai, A.C.; Allingham-Hawkins, D.J.; Becker, L.

    1994-09-01

    X-linked dilated cardiomyopathy (XLCM) is a progressive myocardial disease presenting with congestive heart failure in teenage males without clinical signs of skeletal myopathy. Tight linkage of XLCM to the DMD locus has been demonstrated; it has been suggested that, at least in some families, XLCM is a {open_quotes}dystrophinopathy.{close_quotes} We report a 14-year-old boy who presented with acute heart failure due to dilated cardiomyopathy. He had no history of muscle weakness, but physical examination revealed pseudohypertrophy of the calf muscles. He subsequently received a heart transplantation. Family history was negative. Serum CK level at the time of diagnosis was 10,416. Myocardial biopsy showed no evidence of carditis. Dystrophin staining of cardiac and skeletal muscle with anti-sera to COOH and NH{sub 2}termini showed a patchy distribution of positivity suggestive of Becker muscular dystrophy. Analysis of 18 of the 79 dystrophin exons detected a duplication that included exons 3-6. The proband`s mother has an elevated serum CK and was confirmed to be a carrier of the same duplication. A mutation in the muscle promotor region of the dystrophin gene has been implicated in the etiology of SLCM. However, Towbin et al. (1991) argued that other 5{prime} mutations in the dystrophin gene could cause selective cardiomyopathy. The findings in our patient support the latter hypothesis. This suggests that there are multiple regions in the dystrophin gene which, when disrupted, can cause isolated dilated cardiomyopathy.

  13. Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin

    SciTech Connect

    Thanh, L.T.; Man, Nguyen Thi; Morris, G.E.

    1995-08-28

    We have produced a new panel of 20 monoclonal antibodies (mAbs) against a region of the dystrophin protein corresponding to a deletion-prone region of the Duchenne muscular dystrophy gene (exons 45-50). We show that immunohistochemistry or Western blotting with these {open_quotes}exon-specific{close_quotes} mAbs can provide a valuable addition to Southern blotting or PCR methods for the accurate identification of genetic deletions in Becker muscular dystrophy patients. The antibodies were mapped to the following exons: exon 45 (2 mAbs), exon 46 (6), exon 47 (1), exons 47/48 (4), exons 48-50 (6), and exon 50 (1). PCR amplification of single exons or groups of exons was used both to produce specific dystrophin immunogens and to map the mAbs obtained. PCR-mediated mutagenesis was also used to identify regions of dystrophin important for mAb binding. Because the mAbs can be used to characterize the dystrophin produced by individual muscle fibres, they will also be useful for studying {open_quotes}revertant{close_quotes} fibres in Duchenne muscle and for monitoring the results of myoblast therapy trials in MD patients with deletions in this region of the dystrophin gene. 27 refs., 7 figs., 3 tabs.

  14. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes.

    PubMed

    Chaussenot, Rémi; Edeline, Jean-Marc; Le Bec, Benoit; El Massioui, Nicole; Laroche, Serge; Vaillend, Cyrille

    2015-10-01

    Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks.

  15. The low information content of Neurospora splicing signals: implications for RNA splicing and intron origin.

    PubMed

    Collins, Richard A; Stajich, Jason E; Field, Deborah J; Olive, Joan E; DeAbreu, Diane M

    2015-05-01

    When we expressed a small (0.9 kb) nonprotein-coding transcript derived from the mitochondrial VS plasmid in the nucleus of Neurospora we found that it was efficiently spliced at one or more of eight 5' splice sites and ten 3' splice sites, which are present apparently by chance in the sequence. Further experimental and bioinformatic analyses of other mitochondrial plasmids, random sequences, and natural nuclear genes in Neurospora and other fungi indicate that fungal spliceosomes recognize a wide range of 5' splice site and branchpoint sequences and predict introns to be present at high frequency in random sequence. In contrast, analysis of intronless fungal nuclear genes indicates that branchpoint, 5' splice site and 3' splice site consensus sequences are underrepresented compared with random sequences. This underrepresentation of splicing signals is sufficient to deplete the nuclear genome of splice sites at locations that do not comprise biologically relevant introns. Thus, the splicing machinery can recognize a wide range of splicing signal sequences, but splicing still occurs with great accuracy, not because the splicing machinery distinguishes correct from incorrect introns, but because incorrect introns are substantially depleted from the genome.

  16. [Deregulation of pre-messenger RNA splicing and rare diseases].

    PubMed

    de la Grange, Pierre

    2016-12-01

    Most of protein-coding human genes are subjected to alternative pre-mRNA splicing. This mechanism is highly regulated to precisely modulate detection of specific splice sites. This regulation is under control of the spliceosome and several splicing factors are also required to modulate the alternative usage of splice sites. Splicing factors and spliceosome components recognize splicing signals and regulatory sequences of the pre-mRNAs. These splicing sequences make splicing susceptible to polymorphisms and mutations. Examples of associations between human rare diseases and defects in pre-messenger RNA splicing are accumulating. Although many alterations are caused by mutations in splicing sequence (i.e., cis acting mutations), recent studies described the disruptive impact of mutations within spliceosome components or splicing factors (i.e., trans acting mutations). Following growing of knowledge regarding splicing regulation, several approaches have been developed to compensate for the effect of deleterious mutations and to restore sufficient amounts of functional protein.

  17. Fluorescence-based alternative splicing reporters for the study of epithelial plasticity in vivo.

    PubMed

    Somarelli, Jason A; Schaeffer, Daneen; Bosma, Reggie; Bonano, Vivian I; Sohn, Jang Wook; Kemeny, Gabor; Ettyreddy, Abhinav; Garcia-Blanco, Mariano A

    2013-01-01

    Alternative splicing generates a vast diversity of protein isoforms from a limited number of protein-coding genes, with many of the isoforms possessing unique, and even contrasting, functions. Fluorescence-based splicing reporters have the potential to facilitate studies of alternative splicing at the single-cell level and can provide valuable information on phenotypic transitions in almost real time. Fibroblast growth factor receptor 2 (FGFR2) pre-mRNA is alternatively spliced to form the epithelial-specific and mesenchymal-specific IIIb and IIIc isoforms, respectively, which are useful markers of epithelial-mesenchymal transitions (EMT). We have used our knowledge of FGFR2 splicing regulation to develop a fluorescence-based reporter system to visualize exon IIIc regulation in vitro and in vivo. Here we show the application of this reporter system to the study of EMT in vitro in cell culture and in vivo in transgenic mice harboring these splicing constructs. In explant studies, the reporters revealed that FGFR2 isoform switching is not required for keratinocyte migration during cutaneous wound closure. Our results demonstrate the value of the splicing reporters as tools to study phenotypic transitions and cell fates at single cell resolution. Moreover, our data suggest that keratinocytes migrate efficiently in the absence of a complete EMT.

  18. Spatio-temporal regulations and functions of neuronal alternative RNA splicing in developing and adult brains.

    PubMed

    Iijima, Takatoshi; Hidaka, Chiharu; Iijima, Yoko

    2016-08-01

    Alternative pre-mRNA splicing is a fundamental mechanism that generates molecular diversity from a single gene. In the central nervous system (CNS), key neural developmental steps are thought to be controlled by alternative splicing decisions, including the molecular diversity underlying synaptic wiring, plasticity, and remodeling. Significant progress has been made in understanding the molecular mechanisms and functions of alternative pre-mRNA splicing in neurons through studies in invertebrate systems; however, recent studies have begun to uncover the potential role of neuronal alternative splicing in the mammalian CNS. This article provides an overview of recent findings regarding the regulation and function of neuronal alternative splicing. In particular, we focus on the spatio-temporal regulation of neurexin, a synaptic adhesion molecule, by neuronal cell type-specific factors and neuronal activity, which are thought to be especially important for characterizing neural development and function within the mammalian CNS. Notably, there is increasing evidence that implicates the dysregulation of neuronal splicing events in several neurological disorders. Therefore, understanding the detailed mechanisms of neuronal alternative splicing in the mammalian CNS may provide plausible treatment strategies for these diseases.

  19. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html.

  20. Splicing regulator SLU7 is essential for maintaining liver homeostasis

    PubMed Central

    Elizalde, María; Urtasun, Raquel; Azkona, María; Latasa, María U.; Goñi, Saioa; García-Irigoyen, Oihane; Uriarte, Iker; Segura, Victor; Collantes, María; Di Scala, Mariana; Lujambio, Amaia; Prieto, Jesús; Ávila, Matías A.; Berasain, Carmen

    2014-01-01

    A precise equilibrium between cellular differentiation and proliferation is fundamental for tissue homeostasis. Maintaining this balance is particularly important for the liver, a highly differentiated organ with systemic metabolic functions that is endowed with unparalleled regenerative potential. Carcinogenesis in the liver develops as the result of hepatocellular de-differentiation and uncontrolled proliferation. Here, we identified SLU7, which encodes a pre-mRNA splicing regulator that is inhibited in hepatocarcinoma, as a pivotal gene for hepatocellular homeostasis. SLU7 knockdown in human liver cells and mouse liver resulted in profound changes in pre-mRNA splicing and gene expression, leading to impaired glucose and lipid metabolism, refractoriness to key metabolic hormones, and reversion to a fetal-like gene expression pattern. Additionally, loss of SLU7 also increased hepatocellular proliferation and induced a switch to a tumor-like glycolytic phenotype. Slu7 governed the splicing and/or expression of multiple genes essential for hepatocellular differentiation, including serine/arginine-rich splicing factor 3 (Srsf3) and hepatocyte nuclear factor 4α (Hnf4α), and was critical for cAMP-regulated gene transcription. Together, out data indicate that SLU7 is central regulator of hepatocyte identity and quiescence. PMID:24865429

  1. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing.

    PubMed

    Wu, J Y; Maniatis, T

    1993-12-17

    Specific recognition and pairing of the 5' and 3' splice sites are critical steps in pre-mRNA splicing. We report that the splicing factors SC35 and SF2/ASF specifically interact with both the integral U1 small nuclear ribonucleoprotein (snRNP U1-70K) and with the 35 kd subunit of the splicing factor U2AF (U2AF35). Previous studies indicated that the U1 snRNP binds specifically to the 5' splice site, while U2AF35-U2AF65 heterodimer binds to the 3' splice site. Together, these observations suggest that SC35 and other members of the SR family of splicing factors may function in splice site selection by acting as a bridge between components bound to the 5' and 3' splice sites. Interestingly, SC35, SF2/ASF, and U2AF35 also interact with the Drosophila splicing regulators Transformer (Tra) and Transformer-2 (Tra2), suggesting that protein-protein interactions mediated by SR proteins may also play an important role in regulating alternative splicing.

  2. Dystrophin/α1-syntrophin scaffold regulated PLC/PKC-dependent store-operated calcium entry in myotubes.

    PubMed

    Sabourin, Jessica; Harisseh, Rania; Harnois, Thomas; Magaud, Christophe; Bourmeyster, Nicolas; Déliot, Nadine; Constantin, Bruno

    2012-12-01

    In skeletal muscles from patient suffering of Duchenne Muscular Dystrophy and from mdx mice, the absence of the cytoskeleton protein dystrophin has been shown to be essential for maintaining a normal calcium influx. We showed that a TRPC store-dependent cation influx is increased by loss of dystrophin or a scaffolding protein α1-syntrophin, however the mechanisms of this calcium mishandling are incompletely understood. First of all, we confirmed that TRPC1 but also STIM1 and Orai1 are supporting the store-operated cation entry which is enhanced in dystrophin-deficient myotubes. Next, we demonstrated that inhibition of PLC or PKC in dystrophin-deficient myotubes restores elevated cation entry to normal levels similarly to enforced minidystrophin expression. In addition, silencing α1-syntrophin also increased cation influx in a PLC/PKC dependent pathway. We also showed that α1-syntrophin and PLCβ are part of a same protein complex reinforcing the idea of their inter-relation in calcium influx regulation. This elevated cation entry was decreased to normal levels by chelating intracellular free calcium with BAPTA-AM. Double treatments with BAPTA-AM and PLC or PKC inhibitors suggested that the elevation of cation influx by PLC/PKC pathway is dependent on cytosolic calcium. All these results demonstrate an involvement in dystrophin-deficient myotubes of a specific calcium/PKC/PLC pathway in elevation of store-operated cation influx supported by the STIM1/Orai1/TRPC1 proteins, which is normally regulated by the α1-syntrophin/dystrophin scaffold.

  3. RBFOX1 Cooperates with MBNL1 to Control Splicing in Muscle, Including Events Altered in Myotonic Dystrophy Type 1

    PubMed Central

    Klinck, Roscoe; Fourrier, Angélique; Thibault, Philippe; Toutant, Johanne; Durand, Mathieu; Lapointe, Elvy; Caillet-Boudin, Marie-Laure; Sergeant, Nicolas; Gourdon, Geneviève; Meola, Giovanni; Furling, Denis; Puymirat, Jack; Chabot, Benoit

    2014-01-01

    With the goal of identifying splicing alterations in myotonic dystrophy 1 (DM1) tissues that may yield insights into targets or mechanisms, we have surveyed mis-splicing events in three systems using a RT-PCR screening and validation platform. First, a transgenic mouse model expressing CUG-repeats identified splicing alterations shared with other mouse models of DM1. Second, using cell cultures from human embryonic muscle, we noted that DM1-associated splicing alterations were significantly enriched in cytoskeleton (e.g. SORBS1, TACC2, TTN, ACTN1 and DMD) and channel (e.g. KCND3 and TRPM4) genes. Third, of the splicing alterations occurring in adult DM1 tissues, one produced a dominant negative variant of the splicing regulator RBFOX1. Notably, half of the splicing events controlled by MBNL1 were co-regulated by RBFOX1, and several events in this category were mis-spliced in DM1 tissues. Our results suggest that reduced RBFOX1 activity in DM1 tissues may amplify several of the splicing alterations caused by the deficiency in MBNL1. PMID:25211016

  4. [Perspectives of RNA interference application in the therapy of diseases associated with defects in alternative RNA splicing].

    PubMed

    Wysokiński, Daniel; Błasiak, Janusz

    2012-09-18

    The primary transcript of an eukaryotic gene (pre-mRNA) is composed of coding regions--exons intervened by non-coding introns--which are removed in the RNA splicing process, leading to the formation of mature, intron-free mRNA. Alternative splicing of pre-mRNA is responsible for high complexity of the cellular proteome and expresses effective use of genetic information contained in genomic DNA. Alternative splicing plays important roles in the organism, including apoptosis regulation or development and plasticity of the nervous system. The main role of alternative splicing is differential, dependent on conditions and the cell type, splicing of mRNA, generating diverse transcripts from one gene, and, after the translation, different isoforms of a particular protein. Because of the high complexity of this mechanism, alternative splicing is particularly prone to errors. The perturbations resulting from mutations in the key sequences for splicing regulations are especially harmful. The pathogenesis of numerous diseases results from disturbed alternative RNA splicing, and those include cancers and neurodegenerative disorders. The treatment of these conditions is problematic due to their genetic background and currently RNA interference, which is a common mechanism of eukaryotic gene regulation, is being studied. Initial successes in the attempts of silencing the expression of faulty protein isoforms support the idea of using RNA interference in targeting disease related to disturbances in alternative splicing of RNA.

  5. Screening of point mutations by multiple SSCP analysis in the dystrophin gene

    SciTech Connect

    Lasa, A.; Baiget, M.; Gallano, P.

    1994-09-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked neuromuscular disorder. The population frequency of DMD is one in approximately 3500 boys, of which one third is thought to be a new mutant. The DMD gene is the largest known to date, spanning over 2,3 Mb in band Xp21.2; 79 exons are transcribed into a 14 Kb mRNA coding for a protein of 427 kD which has been named dystrophin. It has been shown that about 65% of affected boys have a gene deletion with a wide variation in localization and size. The remaining affected individuals who have no detectable deletions or duplications would probably carry more subtle mutations that are difficult to detect. These mutations occur in several different exons and seem to be unique to single patients. Their identification represents a formidable goal because of the large size and complexity of the dystrophin gene. SSCP is a very efficient method for the detection of point mutations if the parameters that affect the separation of the strands are optimized for a particular DNA fragment. The multiple SSCP allows the simultaneous study of several exons, and implies the use of different conditions because no single set of conditions will be optimal for all fragments. Seventy-eight DMD patients with no deletion or duplication in the dystrophin gene were selected for the multiple SSCP analysis. Genomic DNA from these patients was amplified using the primers described for the diagnosis procedure (muscle promoter and exons 3, 8, 12, 16, 17, 19, 32, 45, 48 and 51). We have observed different mobility shifts in bands corresponding to exons 8, 12, 43 and 51. In exons 17 and 45, altered electrophoretic patterns were found in different samples identifying polymorphisms already described.

  6. The role of reactive oxygen species in the hearts of dystrophin-deficient mdx mice.

    PubMed

    Williams, Iwan A; Allen, David G

    2007-09-01

    Duchenne muscular dystrophy (DMD) is caused by deficiency of the cytoskeletal protein dystrophin. Oxidative stress is thought to contribute to the skeletal muscle damage in DMD; however, little is known about the role of oxidative damage in the pathogenesis of the heart failure that occurs in DMD patients. The dystrophin-deficient (mdx) mouse is an animal model of DMD that also lacks dystrophin. The current study investigates the role of the antioxidant N-acetylcysteine (NAC) on mdx cardiomyocyte function, Ca(2+) handling, and the cardiac inflammatory response. Treated mice received 1% NAC in their drinking water for 6 wk. NAC had no effect on wild-type (WT) mice. Immunohistochemistry experiments revealed that mdx mice had increased dihydroethidine (DHE) staining, an indicator of superoxide production; NAC-treatment reduced DHE staining in mdx hearts. NAC treatment attenuated abnormalities in mdx cardiomyocyte Ca(2+) handling. Mdx cardiomyocytes had decreased fractional shortening and decreased Ca(2+) sensitivity; NAC treatment returned mdx fractional shortening to WT values but did not affect the Ca(2+) sensitivity. Immunohistochemistry experiments revealed that mdx hearts had increased levels of collagen type III and the macrophage-specific protein, CD68; NAC-treatment returned collagen type III and CD68 expression close to WT values. Finally, mdx hearts had increased NADPH oxidase activity, suggesting it could be a possible source of increased reactive oxygen species in mdx mice. This study is the first to demonstrate that oxidative damage may be involved in the pathogenesis of the heart failure that occurs in mdx mice. Therapies designed to reduce oxidative damage might be beneficial to DMD patients with heart failure.

  7. The incredible complexity of RNA splicing.

    PubMed

    Robert, Christelle; Watson, Mick

    2016-12-30

    Alternative splice isoforms are common and important and have been shown to impact many human diseases. A new study by Nellore et al. offers a comprehensive study of splice junctions in humans by re-analyzing over 21,500 public human RNA sequencing datasets.

  8. Multiple links between transcription and splicing.

    PubMed

    Kornblihtt, Alberto R; de la Mata, Manuel; Fededa, Juan Pablo; Munoz, Manuel J; Nogues, Guadalupe

    2004-10-01

    Transcription and pre-mRNA splicing are extremely complex multimolecular processes that involve protein-DNA, protein-RNA, and protein-protein interactions. Splicing occurs in the close vicinity of genes and is frequently cotranscriptional. This is consistent with evidence that both processes are coordinated and, in some cases, functionally coupled. This review focuses on the roles of cis- and trans-acting factors that regulate transcription, on constitutive and alternative splicing. We also discuss possible functions in splicing of the C-terminal domain (CTD) of the RNA polymerase II (pol II) largest subunit, whose participation in other key pre-mRNA processing reactions (capping and cleavage/polyadenylation) is well documented. Recent evidence indicates that transcriptional elongation and splicing can be influenced reciprocally: Elongation rates control alternative splicing and splicing factors can, in turn, modulate pol II elongation. The presence of transcription factors in the spliceosome and the existence of proteins, such as the coactivator PGC-1, with dual activities in splicing and transcription can explain the links between both processes and add a new level of complexity to the regulation of gene expression in eukaryotes.

  9. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.).

    PubMed

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef; Hehl, Reinhard

    2010-09-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain.

  10. Alternative Splicing Mediates Responses of the Arabidopsis Circadian Clock to Temperature Changes[W

    PubMed Central

    James, Allan B.; Syed, Naeem Hasan; Bordage, Simon; Marshall, Jacqueline; Nimmo, Gillian A.; Jenkins, Gareth I.; Herzyk, Pawel; Brown, John W.S.; Nimmo, Hugh G.

    2012-01-01

    Alternative splicing plays crucial roles by influencing the diversity of the transcriptome and proteome and regulating protein structure/function and gene expression. It is widespread in plants, and alteration of the levels of splicing factors leads to a wide variety of growth and developmental phenotypes. The circadian clock is a complex piece of cellular machinery that can regulate physiology and behavior to anticipate predictable environmental changes on a revolving planet. We have performed a system-wide analysis of alternative splicing in clock components in Arabidopsis thaliana plants acclimated to different steady state temperatures or undergoing temperature transitions. This revealed extensive alternative splicing in clock genes and dynamic changes in alternatively spliced transcripts. Several of these changes, notably those affecting the circadian clock genes LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO RESPONSE REGULATOR7, are temperature-dependent and contribute markedly to functionally important changes in clock gene expression in temperature transitions by producing nonfunctional transcripts and/or inducing nonsense-mediated decay. Temperature effects on alternative splicing contribute to a decline in LHY transcript abundance on cooling, but LHY promoter strength is not affected. We propose that temperature-associated alternative splicing is an additional mechanism involved in the operation and regulation of the plant circadian clock. PMID:22408072

  11. The evolutionary fate of alternatively spliced homologous exons after gene duplication.

    PubMed

    Abascal, Federico; Tress, Michael L; Valencia, Alfonso

    2015-04-29

    Alternative splicing and gene duplication are the two main processes responsible for expanding protein functional diversity. Although gene duplication can generate new genes and alternative splicing can introduce variation through alternative gene products, the interplay between the two processes is complex and poorly understood. Here, we have carried out a study of the evolution of alternatively spliced exons after gene duplication to better understand the interaction between the two processes. We created a manually curated set of 97 human genes with mutually exclusively spliced homologous exons and analyzed the evolution of these exons across five distantly related vertebrates (lamprey, spotted gar, zebrafish, fugu, and coelacanth). Most of these exons had an ancient origin (more than 400 Ma). We found examples supporting two extreme evolutionary models for the behaviour of homologous axons after gene duplication. We observed 11 events in which gene duplication was accompanied by splice isoform separation, that is, each paralog specifically conserved just one distinct ancestral homologous exon. At other extreme, we identified genes in which the homologous exons were always conserved within paralogs, suggesting that the alternative splicing event cannot easily be separated from the function in these genes. That many homologous exons fall in between these two extremes highlights the diversity of biological systems and suggests that the subtle balance between alternative splicing and gene duplication is adjusted to the specific cellular context of each gene.

  12. Tumor microenvironment-associated modifications of alternative splicing.

    PubMed

    Brosseau, Jean-Philippe; Lucier, Jean-François; Nwilati, Hanad; Thibault, Philippe; Garneau, Daniel; Gendron, Daniel; Durand, Mathieu; Couture, Sonia; Lapointe, Elvy; Prinos, Panagiotis; Klinck, Roscoe; Perreault, Jean-Pierre; Chabot, Benoit; Abou-Elela, Sherif

    2014-02-01

    Pre-mRNA alternative splicing is modified in cancer, but the origin and specificity of these changes remain unclear. Here, we probed ovarian tumors to identify cancer-associated splicing isoforms and define the mechanism by which splicing is modified in cancer cells. Using high-throughput quantitative PCR, we monitored the expression of splice variants in laser-dissected tissues from ovarian tumors. Surprisingly, changes in alternative splicing were not limited to the tumor tissues but were also found in the tumor microenvironment. Changes in the tumor-associated splicing events were found to be regulated by splicing factors that are differentially expressed in cancer tissues. Overall, ∼20% of the alternative splicing events affected by the down-regulation of the splicing factors QKI and RBFOX2 were altered in the microenvironment of ovarian tumors. Together, our results indicate that the tumor microenvironment undergoes specific changes in alternative splicing orchestrated by a limited number of splicing factors.

  13. Splicing of arabidopsis tRNA(Met) precursors in tobacco cell and wheat germ extracts.

    PubMed

    Akama, K; Junker, V; Yukawa, Y; Sugiura, M; Beier, H

    2000-09-01

    Intron-containing tRNA genes are exceptional within nuclear plant genomes. It appears that merely two tRNA gene families coding for tRNA(GpsiA(Tyr)) and elongator tRNA(CmAU(Met)) contain intervening sequences. We have previously investigated the features required by wheat germ splicing endonuclease for efficient and accurate intron excision from Arabidopsis pre-tRNA(Tyr). Here we have studied the expression of an Arabidopsis elongator tRNA(Met) gene in two plant extracts of different origin. This gene was first transcribed either in HeLa or in tobacco cell nuclear extract and splicing of intron-containing tRNA(Met) precursors was then examined in wheat germ S23 extract and in the tobacco system. The results show that conversion of pre-tRNA(Met) to mature tRNA proceeds very efficiently in both plant extracts. In order to elucidate the potential role of specific nucleotides at the 3' and 5' splice sites and of a structured intron for pre-tRNA(Met) splicing in either extract, we have performed a systematic survey by mutational analyses. The results show that cytidine residues at intron-exon boundaries impair pre-tRNA(Met) splicing and that a highly structured intron is indispensable for pre-tRNA(Met) splicing. tRNA precursors with an extended anticodon stem of three to four base pairs are readily accepted as substrates by wheat and tobacco splicing endonuclease, whereas pre-tRNA molecules that can form an extended anticodon stem of only two putative base pairs are not spliced at all. An amber suppressor, generated from the intron-containing elongator tRNA(Met) gene, is efficiently processed and spliced in both plant extracts.

  14. Isolation and characterization of alternatively spliced variants of the mouse sigma1 receptor gene, Sigmar1

    PubMed Central

    Pan, Ling; Pasternak, David A.; Xu, Jin; Xu, Mingming; Lu, Zhigang; Pasternak, Gavril W.

    2017-01-01

    The sigma1 receptor acts as a chaperone at the endoplasmic reticulum, associates with multiple proteins in various cellular systems, and involves in a number of diseases, such as addiction, pain, cancer and psychiatric disorders. The sigma1 receptor is encoded by the single copy SIGMAR1 gene. The current study identifies five alternatively spliced variants of the mouse sigma1 receptor gene using a polymerase chain reaction cloning approach. All the splice variants are generated by exon skipping or alternative 3’ or 5’ splicing, producing the truncated sigma1 receptor. Similar alternative splicing has been observed in the human SIGMAR1 gene based on the molecular cloning or genome sequence prediction, suggesting conservation of alternative splicing of SIGMAR1 gene. Using quantitative polymerase chain reactions, we demonstrate differential expression of several splice variants in mouse tissues and brain regions. When expressed in HEK293 cells, all the splice variants fail to bind sigma ligands, implicating that each truncated region in these splice variants is important for ligand binding. However, co-immunoprecipitation (Co-IP) study in HEK293 cells co-transfected with tagged constructs reveals that all the splice variants maintain their ability to physically associate with a mu opioid receptor (mMOR-1), providing useful information to correlate the motifs/sequences necessary for their physical association. Furthermore, a competition Co-IP study showed that all the variants can disrupt in a dose-dependent manner the dimerization of the original sigma1 receptor with mMOR-1, suggesting a potential dominant negative function and providing significant insights into their function. PMID:28350844

  15. An interspecific plant hybrid shows novel changes in parental splice forms of genes for splicing factors.

    PubMed

    Scascitelli, Moira; Cognet, Marie; Adams, Keith L

    2010-04-01

    Interspecific hybridization plays an important role in plant adaptive evolution and speciation, and the process often results in phenotypic novelty. Hybrids can show changes in genome structure and gene expression compared with their parents including chromosomal rearrangments, changes in cytosine methylation, up- and downregulation of gene expression, and gene silencing. Alternative splicing (AS) is a fundamental aspect of the expression of many genes. However alternative splicing patterns have not been examined in multiple genes in an interspecific plant hybrid compared with its parents. Here we studied alternative splicing patterns in an interspecific Populus hybrid and its parents by assaying 40 genes using reverse transcription PCR. Most of the genes showed identical alternative splicing patterns between the parents and the hybrid. We found new alternative splicing variants present in the hybrid in two SR genes involved in the regulation of splicing and alternative splicing. The novel alternative splicing patterns included changes in donor and acceptor sites to create a new exon in one allele of PtRSZ22 in the hybrid and retention of an intron in both alleles of PtSR34a.1 in the hybrid, with effects on the function of the corresponding truncated proteins, if present. Our results suggest that novel alternative splicing patterns are present in a small percentage of genes in hybrids, but they could make a considerable impact on the expression of some genes. Changes in alternative splicing are likely to be an important component of the genetic changes that occur upon interspecific hybridization.

  16. Aberrant Splicing in Cancer: Mediators of Malignant Progression through an Imperfect Splice Program Shift.

    PubMed

    Luz, Felipe Andrés Cordero; Brígido, Paula Cristina; Moraes, Alberto Silva; Silva, Marcelo José Barbosa

    2017-01-01

    Although the efforts to understand the genetic basis of cancer allowed advances in diagnosis and therapy, little is known about other molecular bases. Splicing is a key event in gene expression, controlling the excision of introns decoded inside genes and being responsible for 80% of the proteome amplification through events of alternative splicing. Growing data from the last decade point to deregulation of splicing events as crucial in carcinogenesis and tumor progression. Several alterations in splicing events were observed in cancer, caused by either missexpression of or detrimental mutations in some splicing factors, and appear to be critical in carcinogenesis and key events during tumor progression. Notwithstanding, it is difficult to determine whether it is a cause or consequence of cancer and/or tumorigenesis. Most reviews focus on the generated isoforms of deregulated splicing pattern, while others mainly summarize deregulated splicing factors observed in cancer. In this review, events associated with carcinogenesis and tumor progression mainly, and epithelial-to-mesenchymal transition, which is also implicated in alternative splicing regulation, will be progressively discussed in the light of a new perspective, suggesting that splicing deregulation mediates cell reprogramming in tumor progression by an imperfect shift of the splice program.

  17. Splicing in Caenorhabditis elegans does not require an AG at the 3' splice acceptor site.

    PubMed Central

    Aroian, R V; Levy, A D; Koga, M; Ohshima, Y; Kramer, J M; Sternberg, P W

    1993-01-01

    The dinucleotide AG, found at the 3' end of virtually all eukaryotic pre-mRNA introns, is thought to be essential for splicing. Reduction-of-function mutations in two Caenorhabditis elegans genes, the receptor tyrosine kinase gene let-23 and the collagen gene dpy-10, both alter the AG at the end of a short (ca. 50-nucleotide) intron to AA. The in vivo effects of these mutations were studied by sequencing polymerase chain reaction-amplified reverse-transcribed RNA isolated from the two mutants. As expected, we find transcripts that splice to a cryptic AG, skip an exon, and retain an unspliced intron. However, we also find significant levels of splicing at the mutated 3' splice site (AA) and at nearby non-AG dinucleotides. Our results indicate that for short C. elegans introns an AG is not required for splicing at either the correct 3' splice site or incorrect sites. Analysis of a splice site mutant involving a longer, 316-nucleotide C. elegans intron indicates that an AG is also not required there for splicing. We hypothesize that elements besides the invariant AG, e.g., an A-U-rich region, a UUUC motif, and/or a potential branch point sequence, are directing the selection of the 3' splice site and that in wild-type genes these elements cooperate so that proper splicing occurs. Images PMID:8417357

  18. SAW: A Method to Identify Splicing Events from RNA-Seq Data Based on Splicing Fingerprints

    PubMed Central

    Ning, Kang; Fermin, Damian

    2010-01-01

    Splicing event identification is one of the most important issues in the comprehensive analysis of transcription profile. Recent development of next-generation sequencing technology has generated an extensive profile of alternative splicing. However, while many of these splicing events are between exons that are relatively close on genome sequences, reads generated by RNA-Seq are not limited to alternative splicing between close exons but occur in virtually all splicing events. In this work, a novel method, SAW, was proposed for the identification of all splicing events based on short reads from RNA-Seq. It was observed that short reads not in known gene models are actually absent words from known gene sequences. An efficient method to filter and cluster these short reads by fingerprint fragments of splicing events without aligning short reads to genome sequences was developed. Additionally, the possible splicing sites were also determined without alignment against genome sequences. A consensus sequence was then generated for each short read cluster, which was then aligned to the genome sequences. Results demonstrated that this method could identify more than 90% of the known splicing events with a very low false discovery rate, as well as accurately identify, a number of novel splicing events between distant exons. PMID:20706591

  19. Control of alternative splicing by signal-dependent degradation of splicing-regulatory proteins.

    PubMed

    Katzenberger, Rebeccah J; Marengo, Matthew S; Wassarman, David A

    2009-04-17

    Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation of the ATR (ATM-RAD3-related) signaling pathway by the chemotherapeutic drug camptothecin (CPT). The screen identified 15 proteins that, when knocked down, caused the same change in TAF1 alternative splicing as CPT treatment. However, combined RNA interference and CPT treatment experiments indicated that only a subset of the identified proteins are targets of the CPT-induced signal, suggesting that multiple independent pathways regulate TAF1 alternative splicing. To understand how signals modulate the function of splicing factors, we characterized one of the CPT targets, Tra2 (Transformer-2). CPT was found to down-regulate Tra2 protein levels. CPT-induced Tra2 down-regulation was ATR-dependent and temporally paralleled the change in TAF1 alternative splicing, supporting the conclusion that Tra2 directly regulates TAF1 alternative splicing. Additionally, CPT-induced Tra2 down-regulation occurred independently of new protein synthesis, suggesting a post-translational mechanism. The proteasome inhibitor MG132 reduced CPT-induced Tra2 degradation and TAF1 alternative splicing, and mutation of evolutionarily conserved Tra2 lysine 81, a potential ubiquitin conjugation site, to arginine inhibited CPT-induced Tra2 degradation, supporting a proteasome-dependent alternative splicing mechanism. We conclude that CPT-induced TAF1 alternative splicing occurs through ATR-signaled degradation of a subset of splicing-regulatory proteins.

  20. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments.

    PubMed

    Haas, Brian J; Salzberg, Steven L; Zhu, Wei; Pertea, Mihaela; Allen, Jonathan E; Orvis, Joshua; White, Owen; Buell, C Robin; Wortman, Jennifer R

    2008-01-11

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  1. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    SciTech Connect

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  2. Characterization of dystrophin deficient rats: a new model for Duchenne muscular dystrophy.

    PubMed

    Larcher, Thibaut; Lafoux, Aude; Tesson, Laurent; Remy, Séverine; Thepenier, Virginie; François, Virginie; Le Guiner, Caroline; Goubin, Helicia; Dutilleul, Maéva; Guigand, Lydie; Toumaniantz, Gilles; De Cian, Anne; Boix, Charlotte; Renaud, Jean-Baptiste; Cherel, Yan; Giovannangeli, Carine; Concordet, Jean-Paul; Anegon, Ignacio; Huchet, Corinne

    2014-01-01

    A few animal models of Duchenne muscular dystrophy (DMD) are available, large ones such as pigs or dogs being expensive and difficult to handle. Mdx (X-linked muscular dystrophy) mice only partially mimic the human disease, with limited chronic muscular lesions and muscle weakness. Their small size also imposes limitations on analyses. A rat model could represent a useful alternative since rats are small animals but 10 times bigger than mice and could better reflect the lesions and functional abnormalities observed in DMD patients. Two lines of Dmd mutated-rats (Dmdmdx) were generated using TALENs targeting exon 23. Muscles of animals of both lines showed undetectable levels of dystrophin by western blot and less than 5% of dystrophin positive fibers by immunohistochemistry. At 3 months, limb and diaphragm muscles from Dmdmdx rats displayed severe necrosis and regeneration. At 7 months, these muscles also showed severe fibrosis and some adipose tissue infiltration. Dmdmdx rats showed significant reduction in muscle strength and a decrease in spontaneous motor activity. Furthermore, heart morphology was indicative of dilated cardiomyopathy associated histologically with necrotic and fibrotic changes. Echocardiography showed significant concentric remodeling and alteration of diastolic function. In conclusion, Dmdmdx rats represent a new faithful small animal model of DMD.

  3. Fiber type composition of the sternomastoid and diaphragm muscles of dystrophin-deficient mdx mice.

    PubMed

    Guido, Anderson Neri; Campos, Gerson Eduardo Rocha; Neto, Humberto Santo; Marques, Maria Julia; Minatel, Elaine

    2010-10-01

    The muscle fiber phenotype is mainly determined by motoneuron innervation and changes in neuromuscular interaction alter the muscle fiber type. In dystrophin-deficient mdx mice, changes in the molecular assembly of the neuromuscular junction and in nerve terminal sprouting occur in the sternomastoid (STN) muscle during early stages of the disease. In this study, we were interested to see whether early changes in neuromuscular assembly are correlated with alterations in fiber type in dystrophic STN at 2 months of age. A predominance of hybrid fast myofibers (about 52% type IIDB) was observed in control (C57Bl/10) STN. In mdx muscle, the lack of dystrophin did not change this profile (about 54% hybrid type IIDB). Pure fast type IID fibers predominated in normal and dystrophic diaphragm (DIA; about 39% in control and 30% in mdx muscle) and a population of slow Type I fibers was also present (about 10% in control and 13% in mdx muscle). In conclusion, early changes in neuromuscular assembly do not affect the fiber type composition of dystrophic STN. In contrast to the pure fast fibers of the more affected DIA, the hybrid phenotype of the STN may permit dynamic adaptations during progression of the disease.

  4. Impaired regenerative capacity and lower revertant fibre expansion in dystrophin-deficient mdx muscles on DBA/2 background

    PubMed Central

    Rodrigues, Merryl; Echigoya, Yusuke; Maruyama, Rika; Lim, Kenji Rowel Q.; Fukada, So-ichiro; Yokota, Toshifumi

    2016-01-01

    Duchenne muscular dystrophy, one of the most common lethal genetic disorders, is caused by mutations in the DMD gene and a lack of dystrophin protein. In most DMD patients and animal models, sporadic dystrophin-positive muscle fibres, called revertant fibres (RFs), are observed in otherwise dystrophin-negative backgrounds. RFs are thought to arise from skeletal muscle precursor cells and clonally expand with age due to the frequent regeneration of necrotic fibres. Here we examined the effects of genetic background on muscle regeneration and RF expansion by comparing dystrophin-deficient mdx mice on the C57BL/6 background (mdx-B6) with those on the DBA/2 background (mdx-DBA), which have a more severe phenotype. Interestingly, mdx-DBA muscles had significantly lower RF expansion than mdx-B6 in all age groups, including 2, 6, 12, and 18 months. The percentage of centrally nucleated fibres was also significantly lower in mdx-DBA mice compared to mdx-B6, indicating that less muscle regeneration occurs in mdx-DBA. Our study aligns with the model that RF expansion reflects the activity of precursor cells in skeletal muscles, and it serves as an index of muscle regeneration capacity. PMID:27924830

  5. Alternative splicing in cancer: implications for biology and therapy.

    PubMed

    Chen, J; Weiss, W A

    2015-01-02

    Alternative splicing has critical roles in normal development and can promote growth and survival in cancer. Aberrant splicing, the production of noncanonical and cancer-specific mRNA transcripts, can lead to loss-of-function in tumor suppressors or activation of oncogenes and cancer pathways. Emerging data suggest that aberrant splicing products and loss of canonically spliced variants correlate with stage and progression in malignancy. Here, we review the splicing landscape of TP53, BARD1 and AR to illuminate roles for alternative splicing in cancer. We also examine the intersection between alternative splicing pathways and novel therapeutic approaches.

  6. Manumycin A corrects aberrant splicing of Clcn1 in myotonic dystrophy type 1 (DM1) mice.

    PubMed

    Oana, Kosuke; Oma, Yoko; Suo, Satoshi; Takahashi, Masanori P; Nishino, Ichizo; Takeda, Shin'ichi; Ishiura, Shoichi

    2013-01-01

    Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy in adults and as yet no cure for DM1. Here, we report the potential of manumycin A for a novel DM1 therapeutic reagent. DM1 is caused by expansion of CTG repeat. Mutant transcripts containing expanded CUG repeats lead to aberrant regulation of alternative splicing. Myotonia (delayed muscle relaxation) is the most commonly observed symptom in DM1 patients and is caused by aberrant splicing of the skeletal muscle chloride channel (CLCN1) gene. Identification of small-molecule compounds that correct aberrant splicing in DM1 is attracting much attention as a way of improving understanding of the mechanism of DM1 pathology and improving treatment of DM1 patients. In this study, we generated a reporter screening system and searched for small-molecule compounds. We found that manumycin A corrects aberrant splicing of Clcn1 in cell and mouse models of DM1.

  7. DORT and TORT workshop -- Outline for presentation for splicing with TORSED and TORSET

    SciTech Connect

    Barnett, A.

    1998-04-01

    This paper addresses the problem of solving a problem which is larger than can be accommodated by the computer system at your disposal. This can result from two constrains: (1) The available memory of the machine is too small to contain the problem. (2) Individual files may be too large to store on-line. It also addresses the problem of what to do when you want to alter only a subset of a solution space of a larger problem and don`t want to rerun the entire problem. These problems can be solved by splicing with TORSED AND TORSET. If the basic shape of your problem is cylindrical and azimuthally uniform, with only a small region of three-dimensionality, then the best splicing method is the TORSED -- DORT to TORT splice. However, if there is no part of the problem which is azimuthally constant, then one might want to consider a TORT to TORT splice. Both methods are discussed here.

  8. An allosteric self-splicing ribozyme triggered by a bacterial second messenger.

    PubMed

    Lee, Elaine R; Baker, Jenny L; Weinberg, Zasha; Sudarsan, Narasimhan; Breaker, Ronald R

    2010-08-13

    Group I self-splicing ribozymes commonly function as components of selfish mobile genetic elements. We identified an allosteric group I ribozyme, wherein self-splicing is regulated by a distinct riboswitch class that senses the bacterial second messenger c-di-GMP. The tandem RNA sensory system resides in the 5' untranslated region of the messenger RNA for a putative virulence gene in the pathogenic bacterium Clostridium difficile. c-di-GMP binding by the riboswitch induces folding changes at atypical splice site junctions to modulate alternative RNA processing. Our findings indicate that some self-splicing ribozymes are not selfish elements but are harnessed by cells as metabolite sensors and genetic regulators.

  9. RNA-Binding Proteins: Splicing Factors and Disease

    PubMed Central

    Fredericks, Alger M.; Cygan, Kamil J.; Brown, Brian A.; Fairbrother, William G.

    2015-01-01

    Pre-mRNA splicing is mediated by interactions of the Core Spliceosome and an array of accessory RNA binding proteins with cis-sequence elements. Splicing is a major regulatory component in higher eukaryotes. Disruptions in splicing are a major contributor to human disease. One in three hereditary disease alleles are believed to cause aberrant splicing. Hereditary disease alleles can alter splicing by disrupting a splicing element, creating a toxic RNA, or affecting splicing factors. One of the challenges of medical genetics is identifying causal variants from the thousands of possibilities discovered in a clinical sequencing experiment. Here we review the basic biochemistry of splicing, the mechanisms of splicing mutations, the methods for identifying splicing mutants, and the potential of therapeutic interventions. PMID:25985083

  10. Expression of multiple AQP4 pools in the plasma membrane and their association with the dystrophin complex.

    PubMed

    Nicchia, Grazia Paola; Cogotzi, Laura; Rossi, Andrea; Basco, Davide; Brancaccio, Andrea; Svelto, Maria; Frigeri, Antonio

    2008-06-01

    Altered aquaporin-4 (AQP4) expression has been reported in brain edema, tumors, muscular dystrophy, and neuromyelitis optica. However, the plasma membrane organization of AQP4 and its interaction with proteins such as the dystrophin-associated protein complex are not well understood. In this study, we used sucrose density gradient ultracentrifugation and 2D blue native/sodium dodecyl sulfate-polyacrylamide gel electrophoresis and showed the expression of several AQP4 multi-subunit complexes (pools) of different sizes, ranging from > 1 MDa to approximately 500 kDa and containing different ratios of the 30/32 kDa AQP4 isoforms, indicative of orthogonal arrays of particles of various sizes. A high molecular weight pool co-purified with dystrophin and beta-dystroglycan and was drastically reduced in the skeletal muscle of mdx3cv mice, which have no dystrophin. The number and size of the AQP4 pools were the same in the kidney where dystrophin is not expressed, suggesting the presence of dystrophin-like proteins for their expression. We found that AQP2 is expressed only in one major pool of approximately 500 kDa, indicating that the presence of different pools is a peculiarity of AQP4 rather than a widespread feature in the AQP family. Finally, in skeletal muscle caveolin-3 did not co-purify with any AQP4 pool, indicating the absence of interaction of the two proteins and confirming that caveolae and orthogonal arrays of particles are two independent plasma membrane microdomains. These results contribute to a better understanding of AQP4 membrane organization and raise the possibility that abnormal expression of specific AQP4 pools may be found in pathological states.

  11. Matrix metalloproteinase-2 ablation in dystrophin-deficient mdx muscles reduces angiogenesis resulting in impaired growth of regenerated muscle fibers.

    PubMed

    Miyazaki, Daigo; Nakamura, Akinori; Fukushima, Kazuhiro; Yoshida, Kunihiro; Takeda, Shin'ichi; Ikeda, Shu-ichi

    2011-05-01

    Matrix metalloproteases (MMPs) are a family of endopeptidases classified into subgroups based on substrate preference in normal physiological processes such as embryonic development and tissue remodeling, as well as in various disease processes via degradation of extracellular matrix components. Among the MMPs, MMP-9 and MMP-2 have been reported to be up-regulated in skeletal muscles in the lethal X-linked muscle disorder Duchenne muscular dystrophy (DMD), which is caused by loss of dystrophin. A recent study showed that deletion of the MMP9 gene in mdx, a mouse model for DMD, improved skeletal muscle pathology and function; however, the role of MMP-2 in the dystrophin-deficient muscle is not well known. In this study, we aimed at verifying the role of MMP-2 in the dystrophin-deficient muscle by using mdx mice with genetic ablation of MMP-2 (mdx/MMP-2(-/-)). We found impairment of regenerated muscle fiber growth with reduction of angiogenesis in mdx/MMP-2(-/-) mice at 3 months of age. Expression of vascular endothelial growth factor-A (VEGF-A), an important angiogenesis-related factor, decreased in mdx/MMP-2(-/-) mice at 3 months of age. MMP-2 had not a critical role in the degradation of dystrophin-glycoprotein complex (DGC) components such as β-dystroglycan and β-sarcoglycan in the regeneration process of the dystrophic muscle. Accordingly, MMP-2 may be essential for growth of regenerated muscle fibers through VEGF-associated angiogenesis in the dystrophin-deficient skeletal muscle.

  12. Lessons from non-canonical splicing

    PubMed Central

    Ule, Jernej

    2016-01-01

    Recent improvements in experimental and computational techniques used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons, and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimises their potential to disrupt gene expression. While non-canonical splicing can lead to aberrant transcripts that cause many diseases, we also explain how it can be exploited for new therapeutic strategies. PMID:27240813

  13. RNA-splicing endonuclease structure and function.

    PubMed

    Calvin, K; Li, H

    2008-04-01

    The RNA-splicing endonuclease is an evolutionarily conserved enzyme responsible for the excision of introns from nuclear transfer RNA (tRNA) and all archaeal RNAs. Since its first identification from yeast in the late 1970s, significant progress has been made toward understanding the biochemical mechanisms of this enzyme. Four families of the splicing endonucleases possessing the same active sites and overall architecture but with different subunit compositions have been identified. Two related consensus structures of the precursor RNA splice sites and the critical elements required for intron excision have been established. More recently, a glimpse was obtained of the structural mechanism by which the endonuclease recognizes the consensus RNA structures and cleaves at the splice sites. This review summarizes these findings and discusses their implications in the evolution of intron removal processes.

  14. Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans.

    PubMed

    Awan, Ali R; Manfredo, Amanda; Pleiss, Jeffrey A

    2013-07-30

    Alternative splicing is a potent regulator of gene expression that vastly increases proteomic diversity in multicellular eukaryotes and is associated with organismal complexity. Although alternative splicing is widespread in vertebrates, little is known about the evolutionary origins of this process, in part because of the absence of phylogenetically conserved events that cross major eukaryotic clades. Here we describe a lariat-sequencing approach, which offers high sensitivity for detecting splicing events, and its application to the unicellular fungus, Schizosaccharomyces pombe, an organism that shares many of the hallmarks of alternative splicing in mammalian systems but for which no previous examples of exon-skipping had been demonstrated. Over 200 previously unannotated splicing events were identified, including examples of regulated alternative splicing. Remarkably, an evolutionary analysis of four of the exons identified here as subject to skipping in S. pombe reveals high sequence conservation and perfect length conservation with their homologs in scores of plants, animals, and fungi. Moreover, alternative splicing of two of these exons have been documented in multiple vertebrate organisms, making these the first demonstrations of identical alternative-splicing patterns in species that are separated by over 1 billion y of evolution.

  15. Regulation of Alternative Splicing in Tumor Metastasis

    DTIC Science & Technology

    2001-10-01

    2001. Multiple interactions between SRm160 and SR family proteins in enhancer-dependent splicing and development of Caenorhabditis elegans . 11... Caenorhabditis 36 Lorson, C.L. et al. (1999) A single nucleotide in the Biol. 77, 277-291 elegans . Nature 402, 835-838 SMN gene regulates splicing and is...terminate (Birse et al., 1998; Proudfoot, 2000), mutation of the poly(A) signal resulted in the accumulation to high levels in the nuclear fraction of

  16. Targeting RNA-splicing for SMA treatment.

    PubMed

    Zhou, Jianhua; Zheng, Xuexiu; Shen, Haihong

    2012-03-01

    The central dogma of DNA-RNA-protein was established more than 40 years ago. However, important biological processes have been identified since the central dogma was developed. For example, methylation is important in the regulation of transcription. In contrast, proteins, are more complex due to modifications such as phosphorylation, glycosylation, ubiquitination, or cleavage. RNA is the mediator between DNA and protein, but it can also be modulated at several levels. Among the most profound discoveries of RNA regulation is RNA splicing. It has been estimated that 80% of pre-mRNA undergo alternative splicing, which exponentially increases biological information flow in cellular processes. However, an increased number of regulated steps inevitably accompanies an increased number of errors. Abnormal splicing is often found in cells, resulting in protein dysfunction that causes disease. Splicing of the survival motor neuron (SMN) gene has been extensively studied during the last two decades. Accumulating knowledge on SMN splicing has led to speculation and search for spinal muscular atrophy (SMA) treatment by stimulating the inclusion of exon 7 into SMN mRNA. This mini-review summaries the latest progress on SMN splicing research as a potential treatment for SMA disease.

  17. The evolutionary landscape of intergenic trans-splicing events in insects

    PubMed Central

    Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan

    2015-01-01

    To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696

  18. Competing RNA secondary structures are required for mutually exclusive splicing of the Dscam exon 6 cluster.

    PubMed

    May, Gemma E; Olson, Sara; McManus, C Joel; Graveley, Brenton R

    2011-02-01

    Alternative splicing of eukaryotic pre-mRNAs is an important mechanism for generating proteome diversity and regulating gene expression. The Drosophila melanogaster Down Syndrome Cell Adhesion Molecule (Dscam) gene is an extreme example of mutually exclusive splicing. Dscam contains 95 alternatively spliced exons that potentially encode 38,016 distinct mRNA and protein isoforms. We previously identified two sets of conserved sequence elements, the docking site and selector sequences in the Dscam exon 6 cluster, which contains 48 mutually exclusive exons. These elements were proposed to engage in competing RNA secondary structures required for mutually exclusive splicing, though this model has not yet been experimentally tested. Here we describe a new system that allowed us to demonstrate that the docking site and selector sequences are indeed required for exon 6 mutually exclusive splicing and that the strength of these RNA structures determines the frequency of exon 6 inclusion. We also show that the function of the docking site has been conserved for ~500 million years of evolution. This work demonstrates that conserved intronic sequences play a functional role in mutually exclusive splicing of the Dscam exon 6 cluster.

  19. Proteasome inhibitor (MG132) rescues Nav1.5 protein content and the cardiac sodium current in dystrophin-deficient mdx (5cv) mice.

    PubMed

    Rougier, Jean-Sébastien; Gavillet, Bruno; Abriel, Hugues

    2013-01-01

    The cardiac voltage-gated sodium channel, Nav1.5, plays a central role in cardiac excitability and impulse propagation and associates with the dystrophin multiprotein complex at the lateral membrane of cardiomyocytes. It was previously shown that Nav1.5 protein content and the sodium current (l Na) were both decreased in cardiomyocytes of dystrophin-deficient mdx (5cv) mice. In this study, wild-type and mdx (5cv) mice were treated for 7 days with the proteasome inhibitor MG132 (10 μg/Kg/24 h) using implanted osmotic mini pumps. MG132 rescued both the total amount of Nav1.5 protein and l Na but, unlike in previous studies, de novo expression of dystrophin was not observed in skeletal or cardiac muscle. This study suggests that the reduced expression of Nav1.5 in dystrophin-deficient cells is dependent on proteasomal degradation.

  20. Hexose enhances oligonucleotide delivery and exon skipping in dystrophin-deficient mdx mice

    PubMed Central

    Han, Gang; Gu, Ben; Cao, Limin; Gao, Xianjun; Wang, Qingsong; Seow, Yiqi; Zhang, Ning; Wood, Matthew J. A.; Yin, HaiFang

    2016-01-01

    Carbohydrate-based infusion solutions are widely used in the clinic. Here we show that co-administration of phosphorodiamidate morpholino oligomers (PMOs) with glucose enhances exon-skipping activity in Duchenne muscular dystrophy (DMD) mdx mice. We identify a glucose–fructose (GF) formulation that potentiates PMO activity, completely corrects aberrant Dmd transcripts, restores dystrophin levels in skeletal muscles and achieves functional rescue without detectable toxicity. This activity is attributed to enhancement of GF-mediated PMO uptake in the muscle. We demonstrate that PMO cellular uptake is energy dependent, and that ATP from GF metabolism contributes to enhanced cellular uptake of PMO in the muscle. Collectively, we show that GF potentiates PMO activity by replenishing cellular energy stores under energy-deficient conditions in mdx mice. Our findings provide mechanistic insight into hexose-mediated oligonucleotide delivery and have important implications for the development of DMD exon-skipping therapy. PMID:26964641

  1. Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix

    SciTech Connect

    Rodriguez-Munoz, Rafael; Villarreal-Silva, Marcela; Gonzalez-Ramirez, Ricardo; Garcia-Sierra, Francisco; Mondragon, Monica; Mondragon, Ricardo; Cerna, Joel; Cisneros, Bulmaro

    2008-10-24

    The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation.

  2. Splicing in action: assessing disease causing sequence changes

    PubMed Central

    Baralle, D; Baralle, M

    2005-01-01

    Variations in new splicing regulatory elements are difficult to identify exclusively by sequence inspection and may result in deleterious effects on precursor (pre) mRNA splicing. These mutations can result in either complete skipping of the exon, retention of the intron, or the introduction of a new splice site within an exon or intron. Sometimes mutations that do not disrupt or create a splice site activate pre-existing pseudo splice sites, consistent with the proposal that introns contain splicing inhibitory sequences. These variants can also affect the fine balance of isoforms produced by alternatively spliced exons and in consequence cause disease. Available genomic pathology data reveal that we are still partly ignorant of the basic mechanisms that underlie the pre-mRNA splicing process. The fact that human pathology can provide pointers to new modulatory elements of splicing should be exploited. PMID:16199547

  3. Design of a Split Intein with Exceptional Protein Splicing Activity

    PubMed Central

    2016-01-01

    Protein trans-splicing (PTS) by split inteins has found widespread use in chemical biology and biotechnology. Herein, we describe the use of a consensus design approach to engineer a split intein with enhanced stability and activity that make it more robust than any known PTS system. Using batch mutagenesis, we first conduct a detailed analysis of the difference in splicing rates between the Npu (fast) and Ssp (slow) split inteins of the DnaE family and find that most impactful residues lie on the second shell of the protein, directly adjacent to the active site. These residues are then used to generate an alignment of 73 naturally occurring DnaE inteins that are predicted to be fast. The consensus sequence from this alignment (Cfa) demonstrates both rapid protein splicing and unprecedented thermal and chaotropic stability. Moreover, when fused to various proteins including antibody heavy chains, the N-terminal fragment of Cfa exhibits increased expression levels relative to other N-intein fusions. The durability and efficiency of Cfa should improve current intein based technologies and may provide a platform for the development of new protein chemistry techniques. PMID:26854538

  4. Membrane Sealant Poloxamer P188 Protects Against Isoproterenol Induced Cardiomyopathy in Dystrophin Deficient Mice

    PubMed Central

    2011-01-01

    Background Cardiomyopathy in Duchenne muscular dystrophy (DMD) is an increasing cause of death in patients. The absence of dystrophin leads to loss of membrane integrity, cell death and fibrosis in cardiac muscle. Treatment of cardiomyocyte membrane instability could help prevent cardiomyopathy. Methods Three month old female mdx mice were exposed to the β1 receptor agonist isoproterenol subcutaneously and treated with the non-ionic tri-block copolymer Poloxamer P188 (P188) (460 mg/kg/dose i.p. daily). Cardiac function was assessed using high frequency echocardiography. Tissue was evaluated with Evans Blue Dye (EBD) and picrosirius red staining. Results BL10 control mice tolerated 30 mg/kg/day of isoproterenol for 4 weeks while death occurred in mdx mice at 30, 15, 10, 5 and 1 mg/kg/day within 24 hours. Mdx mice tolerated a low dose of 0.5 mg/kg/day. Isoproterenol exposed mdx mice showed significantly increased heart rates (p < 0.02) and cardiac fibrosis (p < 0.01) over 4 weeks compared to unexposed controls. P188 treatment of mdx mice significantly increased heart rate (median 593 vs. 667 bpm; p < 0.001) after 2 weeks and prevented a decrease in cardiac function in isoproterenol exposed mice (Shortening Fraction = 46 ± 6% vs. 35 ± 6%; p = 0.007) after 4 weeks. P188 treated mdx mice did not show significant differences in cardiac fibrosis, but demonstrated significantly increased EBD positive fibers. Conclusions This model suggests that chronic intermittent intraperitoneal P188 treatment can prevent isoproterenol induced cardiomyopathy in dystrophin deficient mdx mice. PMID:21575230

  5. The Proton Pump Inhibitor Lansoprazole Improves the Skeletal Phenotype in Dystrophin Deficient mdx Mice

    PubMed Central

    Sali, Arpana; Many, Gina M.; Gordish-Dressman, Heather; van der Meulen, Jack H.; Phadke, Aditi; Spurney, Christopher F.; Cnaan, Avital; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2013-01-01

    Background In Duchenne muscular dystrophy (DMD), loss of the membrane stabilizing protein dystrophin results in myofiber damage. Microinjury to dystrophic myofibers also causes secondary imbalances in sarcolemmic ion permeability and resting membrane potential, which modifies excitation-contraction coupling and increases proinflammatory/apoptotic signaling cascades. Although glucocorticoids remain the standard of care for the treatment of DMD, there is a need to investigate the efficacy of other pharmacological agents targeting the involvement of imbalances in ion flux on dystrophic pathology. Methodology/Principal Findings We designed a preclinical trial to investigate the effects of lansoprazole (LANZO) administration, a proton pump inhibitor, on the dystrophic muscle phenotype in dystrophin deficient (mdx) mice. Eight to ten week-old female mice were assigned to one of four treatment groups (n = 12 per group): (1) vehicle control; (2) 5 mg/kg/day LANZO; (3) 5 mg/kg/day prednisolone; and (4) combined treatment of 5 mg/kg/day prednisolone (PRED) and 5 mg/kg/day LANZO. Treatment was administered orally 5 d/wk for 3 months. At the end of the study, behavioral (Digiscan) and functional outcomes (grip strength and Rotarod) were assessed prior to sacrifice. After sacrifice, body, tissue and organ masses, muscle histology, in vitro muscle force, and creatine kinase levels were measured. Mice in the combined treatment groups displayed significant reductions in the number of degenerating muscle fibers and number of inflammatory foci per muscle field relative to vehicle control. Additionally, mice in the combined treatment group displayed less of a decline in normalized forelimb and hindlimb grip strength and declines in in vitro EDL force after repeated eccentric contractions. Conclusions/Significance Together our findings suggest that combined treatment of LANZO and prednisolone attenuates some components of dystrophic pathology in mdx mice. Our findings warrant

  6. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons

    SciTech Connect

    Fujimoto, Takahiro; Itoh, Kyoko Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    Highlights: • Identification of dystrophin (Dp) shortest isoform, Dp40, is a neuron-type Dp. • Dp40 expression is temporally and differentially regulated in comparison to Dp71. • Somatodendritic and nuclear localization of Dp40. • Dp40 is localized to excitatory postsynapses. • Dp40 might play roles in dendritic and synaptic functions. - Abstract: The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH{sub 2}-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  7. Talin, vinculin and nestin expression in orofacial muscles of dystrophin deficient mdx mice.

    PubMed

    Spassov, Alexander; Gredes, Tomasz; Pavlovic, Dragan; Gedrange, Tomasz; Lehmann, Christian; Lucke, Silke; Kunert-Keil, Christiane

    2012-04-01

    The activity of cytoskeletal proteins like talin, vinculin and nestin increases in muscle that regenerates. Little is known about their role or at least their expression in the process of regeneration in masticatory muscles of mdx mice, a model of Duchenne muscular dystrophy. To determine a potential role of cytoskeletal proteins in the regeneration process of mdx masticatory muscles, we examined the expression of talin 1, talin 2, vinculin and nestin in 100-day-old control and mdx mice using quantitative RT-PCR, Western blot analyses and histochemistry. The protein expression of talin 1, talin 2, nestin and vinculin in mdx muscles remained unchanged as compared with normal mice. However, in mdx masseter it was found a relative increase of nestin compared to controls. The protein expression of talin 1 and vinculin tended to be increased in mdx tongue and talin 2 to diminish in mdx masseter and temporal muscle. In mdx mice, we found significantly lower percentage of transcripts coding for nestin, talin 1, talin 2 and vinculin in masseter (p < 0.05) and temporal muscle (p < 0.001). In contrast, the mRNA expression of nestin was found to be increased in mdx tongue. Activated satellite cells, myoblasts and immature regenerated muscle fibres in mdx masseter and temporal revealed positive staining for nestin. The findings of the presented work suggest dystrophin-lack-associated changes in the expression of cytoskeletal proteins in mdx masticatory muscles could be compensatory for dystrophin absence. The expression of nestin may serve as an indicator for the regeneration in the orofacial muscles.

  8. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM.

    PubMed

    Pastor, Tibor; Talotti, Gabriele; Lewandowska, Marzena Anna; Pagani, Franco

    2009-11-01

    We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations.

  9. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection.

    PubMed

    Hoffmann, Steve; Otto, Christian; Doose, Gero; Tanzer, Andrea; Langenberger, David; Christ, Sabina; Kunz, Manfred; Holdt, Lesca M; Teupser, Daniel; Hackermüller, Jörg; Stadler, Peter F

    2014-02-10

    Numerous high-throughput sequencing studies have focused on detecting conventionally spliced mRNAs in RNA-seq data. However, non-standard RNAs arising through gene fusion, circularization or trans-splicing are often neglected. We introduce a novel, unbiased algorithm to detect splice junctions from single-end cDNA sequences. In contrast to other methods, our approach accommodates multi-junction structures. Our method compares favorably with competing tools for conventionally spliced mRNAs and, with a gain of up to 40% of recall, systematically outperforms them on reads with multiple splits, trans-splicing and circular products. The algorithm is integrated into our mapping tool segemehl (http://www.bioinf.uni-leipzig.de/Software/segemehl/).

  10. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

    PubMed

    Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J

    2015-01-09

    To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine.

  11. Vitamin D and alternative splicing of RNA.

    PubMed

    Zhou, Rui; Chun, Rene F; Lisse, Thomas S; Garcia, Alejandro J; Xu, Jianzhong; Adams, John S; Hewison, Martin

    2015-04-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.

  12. Purification of RNA-Protein Splicing Complexes Using a Tagged Protein from In Vitro Splicing Reaction Mixture.

    PubMed

    Kataoka, Naoyuki

    2016-01-01

    In eukaryotes, pre-mRNA splicing is an essential step for gene expression. Splicing reactions have been well investigated by using in vitro splicing reactions with extracts prepared from cultured cells. Here, we describe protocols for the preparation of splicing-competent extracts from cells expressing a tagged spliceosomal protein. The whole-cell extracts are able to splice exogenously added pre-mRNA and the RNA-protein complex formed in the in vitro splicing reaction can be purified by immunoprecipitation using antibodies against the peptide tag on the splicing protein. The method described here to prepare splicing-active extracts from whole cells is particularly useful when studying pre-mRNA splicing in various cell types, and the expression of a tagged spliceosomal protein allows one to purify and analyze the RNA-protein complexes by simple immunoprecipitation.

  13. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  14. Possible influences on the expression of X chromosome-linked dystrophin abnormalities by heterozygosity for autosomal recessive Fukuyama congenital muscular dystrophy

    SciTech Connect

    Beggs, A.H.; Neumann, P.E.; Anderson, M.S.; Kunkel, L.M. ); Arahata, Kiichi; Arikawa, Eri; Nonaka, Ikuya )

    1992-01-15

    Abnormalities of dystrophin, a cytoskeletal protein of muscle and nerve, are generally considered specific for Duchenne and Becker muscular dystrophy. However, several patients have recently been identified with dystrophin deficiency who, before dystrophin testing, were considered to have Fukuyama congenital muscular dystrophy (FCMD) on the basis of clinical findings. Epidemiologic data suggest that only 1/3,500 males with autosomal recessive FCMD should have abnormal dystrophin. To explain the observation of 3/23 FCMD males with abnormal dystrophin, the authors propose that dystrophin and the FCMD gene product interact and that the earlier onset and greater severity of these patients' phenotype (relative to Duchenne muscular dystrophy) are due to their being heterozygous for the FCMD mutation in addition to being hemizygous for Duchenne muscular dystrophy, a genotype that is predicted to occur in 1/175,000 Japanese males. This model may help explain the genetic basis for some of the clinical and pathological variability seen among patients with FCMD, and it has potential implications for understanding the inheritance of other autosomal recessive disorders in general. For example, sex ratios for rare autosomal recessive disorders caused by mutations in proteins that interact with X chromosome-linked gene products may display predictable deviation from 1:1.

  15. Gene and alternative splicing annotation with AIR

    PubMed Central

    Florea, Liliana; Di Francesco, Valentina; Miller, Jason; Turner, Russell; Yao, Alison; Harris, Michael; Walenz, Brian; Mobarry, Clark; Merkulov, Gennady V.; Charlab, Rosane; Dew, Ian; Deng, Zuoming; Istrail, Sorin; Li, Peter; Sutton, Granger

    2005-01-01

    Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and protein sequence evidence from the same species or projected from a related species using syntenic mapping information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns, and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining 98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and systematic way, thus considerably aiding in the ensuing manual curation efforts. PMID:15632090

  16. Alternative splicing modulates stem cell differentiation.

    PubMed

    Fu, Ru-Huei; Liu, Shih-Ping; Ou, Chen-Wei; Yu, Hsiu-Hui; Li, Kuo-Wei; Tsai, Chang-Hai; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2009-01-01

    Stem cells have the surprising potential to develop into many different cell types. Therefore, major research efforts have focused on transplantation of stem cells and/or derived progenitors for restoring depleted diseased cells in degenerative disorders. Understanding the molecular controls, including alternative splicing, that arise during lineage differentiation of stem cells is crucial for developing stem cell therapeutic approaches in regeneration medicine. Alternative splicing to allow a single gene to encode multiple transcripts with different protein coding sequences and RNA regulatory elements increases genomic complexities. Utilizing differences in alternative splicing as a molecular marker may be more sensitive than simply gene expression in various degrees of stem cell differentiation. Moreover, alternative splicing maybe provide a new concept to acquire induced pluripotent stem cells or promote cell-cell transdifferentiation for restorative therapies and basic medicine researches. In this review, we highlight the recent advances of alternative splicing regulation in stem cells and their progenitors. It will hopefully provide much needed knowledge into realizing stem cell biology and related applications.

  17. Phosphoregulation of Ire1 RNase splicing activity

    PubMed Central

    Prischi, Filippo; Nowak, Piotr R.; Carrara, Marta; Ali, Maruf M. U.

    2014-01-01

    Ire1 is activated in response to accumulation of misfolded proteins within the endoplasmic reticulum as part of the unfolded protein response (UPR). It is a unique enzyme, possessing both kinase and RNase activity that is required for specific splicing of Xbp1 mRNA leading to UPR activation. How phosphorylation impacts on the Ire1 splicing activity is unclear. In this study, we isolate distinct phosphorylated species of Ire1 and assess their effects on RNase splicing both in vitro and in vivo. We find that phosphorylation within the kinase activation loop significantly increases RNase splicing in vitro. Correspondingly, mutants of Ire1 that cannot be phosphorylated on the activation loop show decreased specific Xbp1 and promiscuous RNase splicing activity relative to wild-type Ire1 in cells. These data couple the kinase phosphorylation reaction to the activation state of the RNase, suggesting that phosphorylation of the activation loop is an important step in Ire1-mediated UPR activation. PMID:24704861

  18. Identification of two point mutations and a one base deletion in exon 19 of the dystrophin gene by heteroduplex formation.

    PubMed

    Prior, T W; Papp, A C; Snyder, P J; Burghes, A H; Sedra, M S; Western, L M; Bartello, C; Mendell, J R

    1993-03-01

    Two thirds of the Duchenne muscular dystrophy population have either gene deletions or duplications. The nondeletion/duplication cases are most likely the result of point mutations or small deletions and duplications that cannot be easily identified by current strategies. The major obstacle in identifying small mutations is due to the large size of the dystrophin gene. We selectively screened 5 DMD exons containing CpG dinucleotides in 110 DMD patients without detectable deletions or duplications. Nonsenses mutations are frequently due to a C- to -T transition within a CG dinucleotide pair. To screen for the nonsense mutations, we used the heteroduplex method. Utilizing this approach, we identified 2 different nonsense mutations and a single base deletion all occurring in exon 19. This is the first report of a clustering of small mutations in the dystrophin gene.

  19. In vivo translation and stability of trans-spliced mRNAs in nematode embryos.

    PubMed

    Cheng, Guofeng; Cohen, Leah; Mikhli, Claudette; Jankowska-Anyszka, Marzena; Stepinski, Janusz; Darzynkiewicz, Edward; Davis, Richard E

    2007-06-01

    Spliced leader trans-splicing adds a short exon, the spliced leader (SL), to pre-mRNAs to generate 5' ends of mRNAs. Addition of the SL in metazoa also adds a new cap to the mRNA, a trimethylguanosine (m(3)(2,2,7)GpppN) (TMG) that replaces the typical eukaryotic monomethylguanosine (m7GpppN)(m7G) cap. Both trans-spliced (m3(2,2,7)GpppN-SL-RNA) and not trans-spliced (m7GpppN-RNA) mRNAs are present in the same cells. Previous studies using cell-free systems to compare the overall translation of trans-spliced versus non-trans-spliced RNAs led to different conclusions. Here, we examine the contribution of m3(2,2,7)GpppG-cap and SL sequence and other RNA elements to in vivo mRNA translation and stability in nematode embryos. Although 70-90% of all nematode mRNAs have a TMG-cap, the TMG cap does not support translation as well as an m7G-cap. However, when the TMG cap and SL are present together, they synergistically interact and translation is enhanced, indicating both trans-spliced elements are necessary to promote efficient translation. The SL by itself does not act as a cap-independent enhancer of translation. The poly(A)-tail synergistically interacts with the mRNA cap enhancing translation and plays a greater role in facilitating translation of TMG-SL mRNAs. In general, recipient mRNA sequences between the SL and AUG and the 3' UTR do not significantly contribute to the translation of trans-spliced mRNAs. Overall, the combination of TMG cap and SL contribute to mRNA translation and stability in a manner typical of a eukaryotic m7G-cap and 5' UTRs, but they do not differentially enhance mRNA translation or stability compared to RNAs without the trans-spliced elements.

  20. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  1. The 20S Proteasome Splicing Activity Discovered by SpliceMet

    PubMed Central

    Textoris-Taube, Kathrin; Janek, Katharina; Keller, Christin; Henklein, Petra; Kloetzel, Peter Michael; Zaikin, Alexey

    2010-01-01

    The identification of proteasome-generated spliced peptides (PSP) revealed a new unpredicted activity of the major cellular protease. However, so far characterization of PSP was entirely dependent on the availability of patient-derived cytotoxic CD8+ T lymphocytes (CTL) thus preventing a systematic investigation of proteasome-catalyzed peptide splicing (PCPS). For an unrestricted PSP identification we here developed SpliceMet, combining the computer-based algorithm ProteaJ with in vitro proteasomal degradation assays and mass spectrometry. By applying SpliceMet for the analysis of proteasomal processing products of four different substrate polypeptides, derived from human tumor as well as viral antigens, we identified fifteen new spliced peptides generated by PCPS either by cis or from two separate substrate molecules, i.e., by trans splicing. Our data suggest that 20S proteasomes represent a molecular machine that, due to its catalytic and structural properties, facilitates the generation of spliced peptides, thereby providing a pool of qualitatively new peptides from which functionally relevant products may be selected. PMID:20613855

  2. Nuclearly encoded splicing factors implicated in RNA splicing in higher plant organelles.

    PubMed

    de Longevialle, Andéol Falcon; Small, Ian D; Lurin, Claire

    2010-07-01

    Plant organelles arose from two independent endosymbiosis events. Throughout evolutionary history, tight control of chloroplasts and mitochondria has been gained by the nucleus, which regulates most steps of organelle genome expression and metabolism. In particular, RNA maturation, including RNA splicing, is highly dependent on nuclearly encoded splicing factors. Most introns in organelles are group II introns, whose catalytic mechanism closely resembles that of the nuclear spliceosome. Plant group II introns have lost the ability to self-splice in vivo and require nuclearly encoded proteins as cofactors. Since the first splicing factor was identified in chloroplasts more than 10 years ago, many other proteins have been shown to be involved in splicing of one or more introns in chloroplasts or mitochondria. These new proteins belong to a variety of different families of RNA binding proteins and provide new insights into ribonucleo-protein complexes and RNA splicing machineries in organelles. In this review, we describe how splicing factors, encoded by the nucleus and targeted to the organelles, take part in post-transcriptional steps in higher plant organelle gene expression. We go on to discuss the potential for these factors to regulate organelle gene expression.

  3. Targeting MDM4 Splicing in Cancers

    PubMed Central

    Bardot, Boris; Toledo, Franck

    2017-01-01

    MDM4, an essential negative regulator of the P53 tumor suppressor, is frequently overexpressed in cancer cells that harbor a wild-type P53. By a mechanism based on alternative splicing, the MDM4 gene generates two mutually exclusive isoforms: MDM4-FL, which encodes the full-length MDM4 protein, and a shorter splice variant called MDM4-S. Previous results suggested that the MDM4-S isoform could be an important driver of tumor development. In this short review, we discuss a recent set of data indicating that MDM4-S is more likely a passenger isoform during tumorigenesis and that targeting MDM4 splicing to prevent MDM4-FL protein expression appears as a promising strategy to reactivate p53 in cancer cells. The benefits and risks associated with this strategy are also discussed. PMID:28230750

  4. Protein splicing: selfish genes invade cellular proteins.

    PubMed

    Neff, N F

    1993-12-01

    Protein splicing is a series of enzymatic events involving intramolecular protein breakage, rejoining and intron homing, in which introns are able to promote the recombinative transposition of their own coding sequences. Eukaryotic and prokaryotic spliced proteins have conserved similar gene structure, but little amino acid identity. The genes coding for these spliced proteins contain internal in-frame introns that encode polypeptides that apparently self-excise from the resulting host protein sequences. Excision of the 'protein intron' is coupled with joining of the two flanking protein regions encoded by exons of the host gene. Some introns of this type encode DNA endonucleases, related to Group I RNA intron gene products, that stimulate gene conversion and self-transmission.

  5. Modeling of DNA single stage splicing language via Yusof-Goode approach: One string with two rules

    NASA Astrophysics Data System (ADS)

    Lim, Wen Li; Yusof, Yuhani; Mudaber, Mohammad Hassan

    2015-02-01

    Splicing system plays a pivotal role in attempts to recombine sets of double-stranded DNA molecules when acted by restriction enzymes and ligase. Traditional method of finding the result of DNA recombination through experiment is both time and money consuming. Hence, finding the number of patterns of DNA single stage splicing language through formalism of splicing system is a way to optimize the searching process. From the biological perspective, it predicts the number of types of molecules that will exist in the system under existence of restriction enzymes and ligase. In this paper, some theorems, corollaries and examples that lead to the predictions of single stage splicing languages involving one pattern string and two rules are presented via Yusof-Goode approach.

  6. Combination of Myostatin Pathway Interference and Dystrophin Rescue Enhances Tetanic and Specific Force in Dystrophic mdx Mice

    PubMed Central

    Dumonceaux, Julie; Marie, Solenne; Beley, Cyriaque; Trollet, Capucine; Vignaud, Alban; Ferry, Arnaud; Butler-Browne, Gillian; Garcia, Luis

    2010-01-01

    Duchenne muscular dystrophy is characterized by muscular atrophy, fibrosis, and fat accumulation. Several groups have demonstrated that in the mdx mouse, the exon-skipping strategy can restore a quasi-dystrophin in almost 100% of the muscle fibers. On the other hand, inhibition of the myostatin pathway in adult mice has been described to enhance muscle growth and improve muscle force. Our aim was to combine these two strategies to evaluate a possible additive effect. We have chosen to inhibit the myostatin pathway using the technique of RNA interference directed against the myostatin receptor AcvRIIb mRNA (sh-AcvRIIb). The restoration of a quasi-dystrophin was mediated by the vectorized U7 exon-skipping technique (U7-DYS). Adeno-associated vectors carrying either the sh-AcvrIIb construct alone, the U7-DYS construct alone, or a combination of both constructs were injected in the tibialis anterior (TA) muscle of dystrophic mdx mice. We show that even if each separate approach has some effects on muscle physiology, the combination of the dystrophin rescue and the downregulation of the myostatin receptor is required to massively improve both the tetanic force and the specific force. This study provides a novel pharmacogenetic strategy for treatment of certain neuromuscular diseases associated with muscle wasting. PMID:20104211

  7. Dystrophin Deficiency Compromises Force Production of the Extensor Carpi Ulnaris Muscle in the Canine Model of Duchenne Muscular Dystrophy

    PubMed Central

    Hakim, Chady H.; Pan, Xiufang; Terjung, Ronald L.; Duan, Dongsheng

    2012-01-01

    Loss of muscle force is a salient feature of Duchenne muscular dystrophy (DMD), a fatal disease caused by dystrophin deficiency. Assessment of force production from a single intact muscle has been considered as the gold standard for studying physiological consequences in murine models of DMD. Unfortunately, equivalent assays have not been established in dystrophic dogs. To fill the gap, we developed a novel in situ protocol to measure force generated by the extensor carpi ulnaris (ECU) muscle of a dog. We also determined the muscle length to fiber length ratio and the pennation angle of the ECU muscle. Muscle pathology and contractility were compared between normal and affected dogs. Absence of dystrophin resulted in marked histological damage in the ECU muscle of affected dogs. Central nucleation was significantly increased and myofiber size distribution was altered in the dystrophic ECU muscle. Muscle weight and physiological cross sectional area (PCSA) showed a trend of reduction in affected dogs although the difference did not reach statistical significance. Force measurement revealed a significant decrease of absolute force, and the PCSA or muscle weight normalized specific forces. To further characterize the physiological defect in affected dog muscle, we conducted eccentric contraction. Dystrophin-null dogs showed a significantly greater force loss following eccentric contraction damage. To our knowledge, this is the first convincing demonstration of force deficit in a single intact muscle in the canine DMD model. The method described here will be of great value to study physiological outcomes following innovative gene and/or cell therapies. PMID:22973449

  8. Exon Skipping and Gene Transfer Restore Dystrophin Expression in Human Induced Pluripotent Stem Cells-Cardiomyocytes Harboring DMD Mutations

    PubMed Central

    Dick, Emily; Kalra, Spandan; Anderson, David; George, Vinoj; Ritso, Morten; Laval, Steven H.; Barresi, Rita; Aartsma-Rus, Annemieke; Lochmüller, Hanns

    2013-01-01

    With an incidence of ∼1:3,500 to 5,000 in male children, Duchenne muscular dystrophy (DMD) is an X-linked disorder in which progressive muscle degeneration occurs and affected boys usually die in their twenties or thirties. Cardiac involvement occurs in 90% of patients and heart failure accounts for up to 40% of deaths. To enable new therapeutics such as gene therapy and exon skipping to be tested in human cardiomyocytes, we produced human induced pluripotent stem cells (hiPSC) from seven patients harboring mutations across the DMD gene. Mutations were retained during differentiation and analysis indicated the cardiomyocytes showed a dystrophic gene expression profile. Antisense oligonucleotide-mediated skipping of exon 51 restored dystrophin expression to ∼30% of normal levels in hiPSC-cardiomyocytes carrying exon 47–50 or 48–50 deletions. Alternatively, delivery of a dystrophin minigene to cardiomyocytes with a deletion in exon 35 or a point mutation in exon 70 allowed expression levels similar to those seen in healthy cells. This demonstrates that DMD hiPSC-cardiomyocytes provide a novel tool to evaluate whether new therapeutics can restore dystrophin expression in the heart. PMID:23829870

  9. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    PubMed

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  10. Experimental study of lap splice bolted connection

    NASA Astrophysics Data System (ADS)

    Zhao, Dehui; Tian, Lishan; Jiang, Wenqiang; An, Liqiang; Zhang, Ziyang

    2017-01-01

    The bolted connection is prone to slip under external load in the lattice transmission tower, which will affect the internal forces and deformation of tower. In order to better simulate the effect of bolt connection slippage on transmission tower, the load deformation relationship should be established. In this paper, the single lap splice bolt connection under tension load is tested and the load displacement curve is obtained. Furthermore, the existing model of single lap splice bolted connection is modified, which will plays an important role in the influence of the bolt slippage of the transmission lines towers more accurately and reasonably.

  11. Alternate splicing of transcripts shape macrophage response to Mycobacterium tuberculosis infection

    PubMed Central

    Kalam, Haroon; Fontana, Mary F.

    2017-01-01

    Transcriptional reprogramming of macrophages upon Mycobacterium tuberculosis (Mtb) infection is widely studied; however, the significance of alternate splicing (AS) in shaping cellular responses to mycobacterial infections is not yet appreciated. Alternate splicing can influence transcript stability or structure, function and localization of corresponding proteins thereby altering protein stoichiometry and physiological consequences. Using comprehensive analysis of a time-series RNA-seq data obtained from human macrophages infected with virulent or avirulent strains of Mtb, we show extensive remodeling of alternate splicing in macrophage transcriptome. The global nature of this regulation was evident since genes belonging to functional classes like trafficking, immune response, autophagy, redox and metabolism showed marked departure in the pattern of splicing in the infected macrophages. The systemic perturbation of splicing machinery in the infected macrophages was apparent as genes involved at different stages of spliceosome assembly were also regulated at the splicing level. Curiously there was a considerable increase in the expression of truncated/non-translatable variants of several genes, specifically upon virulent infections. Increased expression of truncated transcripts correlated with a decline in the corresponding protein levels. We verified the physiological relevance for one such candidate gene RAB8B; whose truncated variant gets enriched in H37Rv infected cells. Upon tweaking relative abundance of longer or shorter variants of RAB8B transcripts by specialized transduction, mycobacterial targeting to lysosomes could be promoted or blocked respectively, which also resulted in corresponding changes in the bacterial survival. Our results show RAB8B recruitment to the mycobacterial phagosomes is required for phagosome maturation. Thus the abundance of truncated RAB8B variant helps virulent Mtb survival by limiting the RAB8B levels in the cells, a mechanism

  12. SRRM4-dependent neuron-specific alternative splicing of protrudin transcripts regulates neurite outgrowth

    PubMed Central

    Ohnishi, Takafumi; Shirane, Michiko; Nakayama, Keiichi I.

    2017-01-01

    Alternative splicing gives rise to diversity of the proteome, and it is especially prevalent in the mammalian nervous system. Indeed, many factors that control the splicing process govern nervous system development. Among such factors, SRRM4 is an important regulator of aspects of neural differentiation including neurite outgrowth. The mechanism by which SRRM4 regulates neurite outgrowth has remained poorly understood, however. We now show that SRRM4 regulates the splicing of protrudin gene (Zfyve27) transcripts in neuronal cells. SRRM4 was found to promote splicing of protrudin pre-mRNA so as to include a microexon (exon L) encoding seven amino acids in a neuron-specific manner. The resulting protein (protrudin-L) promotes neurite outgrowth during neurogenesis. Depletion of SRRM4 in Neuro2A cells impaired inclusion of exon L in protrudin mRNA, resulting in the generation of a shorter protein isoform (protrudin-S) that is less effective at promoting neurite extension. SRRM4 was found to recognize a UGC motif that is located immediately upstream of exon L and is necessary for inclusion of exon L in the mature transcript. Deletion of exon L in Neuro2A or embryonic stem cells inhibited neurite outgrowth. Our results suggest that SRRM4 controls neurite outgrowth through regulation of alternative splicing of protrudin transcripts. PMID:28106138

  13. Pathological impact of SMN2 mis-splicing in adult SMA mice.

    PubMed

    Sahashi, Kentaro; Ling, Karen K Y; Hua, Yimin; Wilkinson, John Erby; Nomakuchi, Tomoki; Rigo, Frank; Hung, Gene; Xu, David; Jiang, Ya-Ping; Lin, Richard Z; Ko, Chien-Ping; Bennett, C Frank; Krainer, Adrian R

    2013-10-01

    Loss-of-function mutations in SMN1 cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. The related SMN2 gene expresses suboptimal levels of functional SMN protein, due to a splicing defect. Many SMA patients reach adulthood, and there is also adult-onset (type IV) SMA. There is currently no animal model for adult-onset SMA, and the tissue-specific pathogenesis of post-developmental SMN deficiency remains elusive. Here, we use an antisense oligonucleotide (ASO) to exacerbate SMN2 mis-splicing. Intracerebroventricular ASO injection in adult SMN2-transgenic mice phenocopies key aspects of adult-onset SMA, including delayed-onset motor dysfunction and relevant histopathological features. SMN2 mis-splicing increases during late-stage disease, likely accelerating disease progression. Systemic ASO injection in adult mice causes peripheral SMN2 mis-splicing and affects prognosis, eliciting marked liver and heart pathologies, with decreased IGF1 levels. ASO dose-response and time-course studies suggest that only moderate SMN levels are required in the adult central nervous system, and treatment with a splicing-correcting ASO shows a broad therapeutic time window. We describe distinctive pathological features of adult-onset and early-onset SMA.

  14. 30 CFR 18.43 - Explosion-proof splice boxes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion-proof splice boxes. 18.43 Section 18... Design Requirements § 18.43 Explosion-proof splice boxes. Internal connections shall be rigidly held and adequately insulated. Strain clamps shall be provided for all cables entering a splice box....

  15. 30 CFR 77.504 - Electrical connections or splices; suitability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical connections or splices; suitability... UNDERGROUND COAL MINES Electrical Equipment-General § 77.504 Electrical connections or splices; suitability. Electrical connections or splices in electric conductors shall be mechanically and electrically...

  16. 30 CFR 75.514 - Electrical connections or splices; suitability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical connections or splices; suitability... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Electrical Equipment-General § 75.514 Electrical connections or splices; suitability. All electrical connections or splices...

  17. 30 CFR 77.504 - Electrical connections or splices; suitability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical connections or splices; suitability... UNDERGROUND COAL MINES Electrical Equipment-General § 77.504 Electrical connections or splices; suitability. Electrical connections or splices in electric conductors shall be mechanically and electrically...

  18. Schizophyllum commune has an extensive and functional alternative splicing repertoire

    PubMed Central

    Gehrmann, Thies; Pelkmans, Jordi F.; Lugones, Luis G.; Wösten, Han A. B.; Abeel, Thomas; Reinders, Marcel J. T.

    2016-01-01

    Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically. PMID:27659065

  19. The Effective Lifetime of ACSR Full Tension Splice Connector Operated at Higher Temperature

    SciTech Connect

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J; Graziano, Joe; Chan, John; Goodwin, Tip

    2009-01-01

    This paper is to address the issues related to integrity of ACSR full tension splice connectors operated at high temperatures. A protocol of integrating analytical and experimental approaches to evaluate the integrity of a full tension single-stage splice connector (SSC) assembly during service at high operating temperature was developed. Based on the developed protocol the effective lifetime evaluation was demonstrated with ACSR Drake conductor SSC systems. The investigation indicates that thermal cycling temperature and frequency, conductor cable tension loading, and the compressive residual stress field within a SSC system have significant impact on the SSC integrity and the associated effective lifetime.

  20. Aberrant Location of Inhibitory Synaptic Marker Proteins in the Hippocampus of Dystrophin-Deficient Mice: Implications for Cognitive Impairment in Duchenne Muscular Dystrophy

    PubMed Central

    Krasowska, Elżbieta; Zabłocki, Krzysztof; Górecki, Dariusz C.; Swinny, Jerome D.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT) mice, immunoreactivity of neuroligin2 (NL2), an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT), a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus. PMID:25260053

  1. Human 5–HT4 and 5–HT7 Receptor Splice Variants: Are they Important?

    PubMed Central

    Coupar, Ian M; Desmond, Paul V; Irving, Helen R

    2007-01-01

    G-protein-coupled receptors (GPCRs), which are encoded by >300 genes in the human genome, are by far the largest class of targets for modern drugs. These macromolecules display inherent adaptability of function, which is partly due to the production of different forms of the receptor protein. These are commonly called ‘isoforms’ or ‘splice variants’ denoting the molecular process of their production/assembly. Not all GPCRs are expressed as splice variants, but certain subclasses of 5–HT receptors are for example, the 5–HT4 and 5–HT7 receptors. There are at least 11 human 5–HT4 and three h5–HT7 receptor splice variants. This review describestheir discoveries, nomenclature and structures. The discovery that particular splice variants are tissue specific (or prominent) has highlighted their potential as future drug targets. In particular, this review examines the functional relevance of different 5–HT4 and 5–HT7 receptor splice variants. Examples are given to illustrate that splice variants have differential modulatory influences on signalling processes. Differences in agonist potency and efficacies and also differences in desensitisation rates to 5–HT occur with both 5–HT4 and 5–HT7 receptor splice variants. The known and candidate signalling systems that allow for splice variant specific responses include GPCR interacting proteins (GIPs) and GPCR receptor kinases (GRKs) which are examined.Finally, the relevance of 5–HT receptor splice variants to clinical medicine and to the pharmaceutical industry is discussed. PMID:19305739

  2. Inhibition of Splicing but not Cleavage at the 5' Splice Site by Truncating Human β -globin Pre-mRNA

    NASA Astrophysics Data System (ADS)

    Furdon, Paul J.; Kole, Ryszard

    1986-02-01

    Human β -globin mRNAs truncated in the second exon or in the first intron have been processed in vitro in a HeLa cell nuclear extract. Transcripts containing a fragment of the second exon as short as 53 nucleotides are efficiently spliced, whereas transcripts truncated 24 or 14 nucleotides downstream from the 3' splice site are spliced inefficiently, if at all. All of these transcripts, however, are efficiently and accurately cleaved at the 5' splice site. In contrast, RNA truncated in the first intron, 54 nucleotides upstream from the 3' splice site, is not processed at all. These findings suggest that cleavage at the 5' splice site and subsequent splicing steps--i.e., cleavage at the 3' splice site and exon ligation--need not be coupled. Anti-Sm serum inhibits the complete splicing reaction and cleavage at the 5' splice site, suggesting involvement of certain ribonucleoprotein particles in the cleavage reaction. ATP and Mg2+ are required for cleavage at the 5' splice site at concentrations similar to those for the complete splicing reaction.

  3. Regulation of Alternative Splicing in Tumor Metastasis

    DTIC Science & Technology

    2000-10-01

    erythematosus and sarcoidosis . Arthritis Rheum. 41: 1505-15 10. Eldridge A.G., Y. Li, P.A. Sharp, and B.J. Blencowe. 1999. The SRml60/300 splicing coactivator...J. Hum. Genet. 59:279-286. erythematosus and sarcoidosis . Arthritis Rheum. 41:1505-1510. Matsumoto, K., K.M. Wassarman, and A.P. Wolffe. 1998. Nuclear

  4. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  5. Emerging roles of BRCA1 alternative splicing.

    PubMed

    Orban, T I; Olah, E

    2003-08-01

    Germline mutations of the BRCA1 gene predispose individuals mainly to the development of breast and/or ovarian cancer. However, the exact function of the gene is still unclear, although the encoded proteins are involved in various cellular processes, including transcriptional regulation and DNA repair pathways. Several BRCA1 splice variants are found in different tissues, but in spite of intense investigations, their regulation and possible functions are poorly understood at the moment. This review summarises current knowledge on the roles of these splice variants and the mechanisms responsible for their formation. Because alternative splicing is now widely accepted as an important source of genetic diversity, elucidating the functions of the BRCA1 splice variants would help in the understanding of the exact role(s) of this tumour suppressor. This should help to resolve the current paradox that, despite its seemingly vital cellular functions, mutations of this gene are associated with tissue specific tumour formation predominantly in the breast and the ovary.

  6. A new type of mutation causes a splicing defect in ATM.

    PubMed

    Pagani, Franco; Buratti, Emanuele; Stuani, Cristiana; Bendix, Regina; Dörk, Thilo; Baralle, Francisco E

    2002-04-01

    Disease-causing splicing mutations described in the literature primarily produce changes in splice sites and, to a lesser extent, variations in exon-regulatory sequences such as the enhancer elements. The gene ATM is mutated in individuals with ataxia-telangiectasia; we have identified the aberrant inclusion of a cryptic exon of 65 bp in one affected individual with a deletion of four nucleotides (GTAA) in intron 20. The deletion is located 12 bp downstream and 53 bp upstream from the 5' and 3' ends of the cryptic exon, respectively. Through analysis of the splicing defect using a hybrid minigene system, we identified a new intron-splicing processing element (ISPE) complementary to U1 snRNA, the RNA component of the U1 small nuclear ribonucleoprotein (snRNP). This element mediates accurate intron processing and interacts specifically with U1 snRNP particles. The 4-nt deletion completely abolished this interaction, causing activation of the cryptic exon. On the basis of this analysis, we describe a new type of U1 snRNP binding site in an intron that is essential for accurate intron removal. Deletion of this sequence is directly involved in the splicing processing defect.

  7. Production of the 2400 kb Duchenne muscular dystrophy (DMD) gene transcript; transcription time and cotranscriptional splicing

    SciTech Connect

    Tennyson, C.N.; Worton, R.G.

    1994-09-01

    The largest known gene in any organism is the human DMD gene which has 79 exons that span 2400 kb. The extreme nature of the DMD gene raises questions concerning the time required for transcription and whether splicing begins before transcription is complete. DMD gene transcription is induced as cultured human myoblasts differentiate to form multinucleated myotubes, providing a system for studying the kinetics of transcription and splicing. Using quantitative RT-PCR, transcript accumulation was monitored from four different regions within the gene following induction of expression. By comparing the accumulation of transcripts from the 5{prime} and 3{prime} ends of the gene we have shown that approximately 12 hours are required to transcribe 1770 kb of the gene, extrapolating to a time of 16 hours for the transcription unit expressed in muscle. Comparison of accumulation profiles for spliced and total transcript demonstrated that transcripts are spliced at the 5{prime} end before transcription is complete, providing strong evidence for cotranscriptional splicing of DMD gene transcripts. Finally, the rate of transcript accumulation was reduced at the 3{prime} end of the gene relative to the 5{prime} end, perhaps due to premature termination of transcription complexes as they traverse this enormous transcription unit. The lag between transcription initiation and the appearance of complete transcripts could be important in limiting transcript production in dividing cells and to the timing of mRNA appearance in differentiating muscle.

  8. Alternative splicing: a pivotal step between eukaryotic transcription and translation.

    PubMed

    Kornblihtt, Alberto R; Schor, Ignacio E; Alló, Mariano; Dujardin, Gwendal; Petrillo, Ezequiel; Muñoz, Manuel J

    2013-03-01

    Alternative splicing was discovered simultaneously with splicing over three decades ago. Since then, an enormous body of evidence has demonstrated the prevalence of alternative splicing in multicellular eukaryotes, its key roles in determining tissue- and species-specific differentiation patterns, the multiple post- and co-transcriptional regulatory mechanisms that control it, and its causal role in hereditary disease and cancer. The emerging evidence places alternative splicing in a central position in the flow of eukaryotic genetic information, between transcription and translation, in that it can respond not only to various signalling pathways that target the splicing machinery but also to transcription factors and chromatin structure.

  9. Cotranscriptional coupling of splicing factor recruitment and precursor messenger RNA splicing in mammalian cells.

    PubMed

    Listerman, Imke; Sapra, Aparna K; Neugebauer, Karla M

    2006-09-01

    Coupling between transcription and RNA processing is a key gene regulatory mechanism. Here we use chromatin immunoprecipitation to detect transcription-dependent accumulation of the precursor mRNA (pre-mRNA) splicing factors hnRNP A1, U2AF65 and U1 and U5 snRNPs on the intron-containing human FOS gene. These factors were poorly detected on intronless heat-shock and histone genes, a result that opposes direct recruitment by RNA polymerase II (Pol II) or the cap-binding complex in vivo. However, an observed RNA-dependent interaction between U2AF65 and active forms of Pol II may stabilize U2AF65 binding to intron-containing nascent RNA. We establish chromatin-RNA immunoprecipitation and show that FOS pre-mRNA is cotranscriptionally spliced. Notably, the topoisomerase I inhibitor camptothecin, which stalls elongating Pol II, increased cotranscriptional splicing factor accumulation and splicing in parallel. This provides direct evidence for a kinetic link between transcription, splicing factor recruitment and splicing catalysis.

  10. Somatodendritic and excitatory postsynaptic distribution of neuron-type dystrophin isoform, Dp40, in hippocampal neurons.

    PubMed

    Fujimoto, Takahiro; Itoh, Kyoko; Yaoi, Takeshi; Fushiki, Shinji

    2014-09-12

    The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.

  11. Genetic Modifier Screens Reveal New Components that Interact with the Drosophila Dystroglycan-Dystrophin Complex

    PubMed Central

    Yatsenko, Andriy S.; Shcherbata, Halyna R.; Fischer, Karin A.; Maksymiv, Dariya V.; Chernyk, Yaroslava I.; Ruohola-Baker, Hannele

    2008-01-01

    The Dystroglycan-Dystrophin (Dg-Dys) complex has a capacity to transmit information from the extracellular matrix to the cytoskeleton inside the cell. It is proposed that this interaction is under tight regulation; however the signaling/regulatory components of Dg-Dys complex remain elusive. Understanding the regulation of the complex is critical since defects in this complex cause muscular dystrophy in humans. To reveal new regulators of the Dg-Dys complex, we used a model organism Drosophila melanogaster and performed genetic interaction screens to identify modifiers of Dg and Dys mutants in Drosophila wing veins. These mutant screens revealed that the Dg-Dys complex interacts with genes involved in muscle function and components of Notch, TGF-β and EGFR signaling pathways. In addition, components of pathways that are required for cellular and/or axonal migration through cytoskeletal regulation, such as Semaphorin-Plexin, Frazzled-Netrin and Slit-Robo pathways show interactions with Dys and/or Dg. These data suggest that the Dg-Dys complex and the other pathways regulating extracellular information transfer to the cytoskeletal dynamics are more intercalated than previously thought. PMID:18545683

  12. Sequence characterisation of deletion breakpoints in the dystrophin gene by PCR

    SciTech Connect

    Abbs, S.; Sandhu, S.; Bobrow, M.

    1994-09-01

    Partial deletions of the dystrophin gene account for 65% of cases of Duchenne muscular dystrophy. A high proportion of these structural changes are generated by new mutational events, and lie predominantly within two `hotspot` regions, yet the underlying reasons for this are not known. We are characterizing and sequencing the regions surrounding deletion breakpoints in order to: (i) investigate the mechanisms of deletion mutation, and (ii) enable the design of PCR assays to specifically amplify mutant and normal sequences, allowing us to search for the presence of somatic mosaicism in appropriate family members. Using this approach we have been able to demonstrate the presence of somatic mosaicism in a maternal grandfather of a DMD-affected male, deleted for exons 49-50. Three deletions, namely of exons 48-49, 49-50, and 50, have been characterized using a PCR approach that avoids any cloning procedures. Breakpoints were initially localized to within regions of a few kilobases using Southern blot restriction analyses with exon-specific probes and PCR amplification of exonic and intronic loci. Sequencing was performed directly on PCR products: (i) mutant sequences were obtained from long-range or inverse-PCR across the deletion junction fragments, and (ii) normal sequences were obtained from the products of standard PCR, vectorette PCR, or inverse-PCR performed on YACs. Further characterization of intronic sequences will allow us to amplify and sequence across other deletion breakpoints and increase our knowledge of the mechanisms of mutation in the dystophin gene.

  13. Metabolic remodeling agents show beneficial effects in the dystrophin-deficient mdx mouse model

    PubMed Central

    2012-01-01

    Background Duchenne muscular dystrophy is a genetic disease involving a severe muscle wasting that is characterized by cycles of muscle degeneration/regeneration and culminates in early death in affected boys. Mitochondria are presumed to be involved in the regulation of myoblast proliferation/differentiation; enhancing mitochondrial activity with exercise mimetics (AMPK and PPAR-delta agonists) increases muscle function and inhibits muscle wasting in healthy mice. We therefore asked whether metabolic remodeling agents that increase mitochondrial activity would improve muscle function in mdx mice. Methods Twelve-week-old mdx mice were treated with two different metabolic remodeling agents (GW501516 and AICAR), separately or in combination, for 4 weeks. Extensive systematic behavioral, functional, histological, biochemical, and molecular tests were conducted to assess the drug(s)' effects. Results We found a gain in body and muscle weight in all treated mice. Histologic examination showed a decrease in muscle inflammation and in the number of fibers with central nuclei and an increase in fibers with peripheral nuclei, with significantly fewer activated satellite cells and regenerating fibers. Together with an inhibition of FoXO1 signaling, these results indicated that the treatments reduced ongoing muscle damage. Conclusions The three treatments produced significant improvements in disease phenotype, including an increase in overall behavioral activity and significant gains in forelimb and hind limb strength. Our findings suggest that triggering mitochondrial activity with exercise mimetics improves muscle function in dystrophin-deficient mdx mice. PMID:22908954

  14. Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of a Group I Intron from Structured RNAs

    PubMed Central

    Furukawa, Airi; Tanaka, Takahiro; Furuta, Hiroyuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-01-01

    Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D) structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA) as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure. PMID:27869660

  15. Use of a Fluorescent Aptamer RNA as an Exonic Sequence to Analyze Self-Splicing Ability of aGroup I Intron from Structured RNAs.

    PubMed

    Furukawa, Airi; Tanaka, Takahiro; Furuta, Hiroyuki; Matsumura, Shigeyoshi; Ikawa, Yoshiya

    2016-11-17

    Group I self-splicing intron constitutes an important class of functional RNA molecules that can promote chemical transformation. Although the fundamental mechanism of the auto-excision from its precursor RNA has been established, convenient assay systems for its splicing activity are still useful for a further understanding of its detailed mechanism and of its application. Because some host RNA sequences, to which group I introns inserted form stable three-dimensional (3D) structures, the effects of the 3D structures of exonic elements on the splicing efficiency of group I introns are important but not a fully investigated issue. We developed an assay system for group I intron self-splicing by employing a fluorescent aptamer RNA (spinach RNA) as a model exonic sequence inserted by the Tetrahymena group I intron. We investigated self-splicing of the intron from spinach RNA, serving as a model exonic sequence with a 3D structure.

  16. SplicePie: a novel analytical approach for the detection of alternative, non-sequential and recursive splicing.

    PubMed

    Pulyakhina, Irina; Gazzoli, Isabella; 't Hoen, Peter A C; Verwey, Nisha; den Dunnen, Johan T; den Dunnen, Johan; Aartsma-Rus, Annemieke; Laros, Jeroen F J

    2015-07-13

    Alternative splicing is a powerful mechanism present in eukaryotic cells to obtain a wide range of transcripts and protein isoforms from a relatively small number of genes. The mechanisms regulating (alternative) splicing and the paradigm of consecutive splicing have recently been challenged, especially for genes with a large number of introns. RNA-Seq, a powerful technology using deep sequencing in order to determine transcript structure and expression levels, is usually performed on mature mRNA, therefore not allowing detailed analysis of splicing progression. Sequencing pre-mRNA at different stages of splicing potentially provides insight into mRNA maturation. Although the number of tools that analyze total and cytoplasmic RNA in order to elucidate the transcriptome composition is rapidly growing, there are no tools specifically designed for the analysis of nuclear RNA (which contains mixtures of pre- and mature mRNA). We developed dedicated algorithms to investigate the splicing process. In this paper, we present a new classification of RNA-Seq reads based on three major stages of splicing: pre-, intermediate- and post-splicing. Applying this novel classification we demonstrate the possibility to analyze the order of splicing. Furthermore, we uncover the potential to investigate the multi-step nature of splicing, assessing various types of recursive splicing events. We provide the data that gives biological insight into the order of splicing, show that non-sequential splicing of certain introns is reproducible and coinciding in multiple cell lines. We validated our observations with independent experimental technologies and showed the reliability of our method. The pipeline, named SplicePie, is freely available at: https://github.com/pulyakhina/splicing_analysis_pipeline. The example data can be found at: https://barmsijs.lumc.nl/HG/irina/example_data.tar.gz.

  17. Functional association between promoter structure and transcript alternative splicing.

    PubMed

    Cramer, P; Pesce, C G; Baralle, F E; Kornblihtt, A R

    1997-10-14

    It has been assumed that constitutive and regulated splicing of RNA polymerase II transcripts depends exclusively on signals present in the RNA molecule. Here we show that changes in promoter structure strongly affect splice site selection. We investigated the splicing of the ED I exon, which encodes a facultative type III repeat of fibronectin, whose inclusion is regulated during development and in proliferative processes. We used an alternative splicing assay combined with promoter swapping to demonstrate that the extent of ED I splicing is dependent on the promoter structure from which the transcript originated and that this regulation is independent of the promoter strength. Thus, these results provide the first evidence for coupling between alternative splicing and promoter-specific transcription, which agrees with recent cytological and biochemical evidence of coordination between splicing and transcription.

  18. Simplified Loss Estimation of Splice to Photonic Crystal Fiber using New Model

    NASA Astrophysics Data System (ADS)

    Karak, Anup; Kundu, Dipankar; Sarkar, Somenath

    2016-06-01

    For a range of fiber parameters and wavelengths, the splice losses between photonic crystal fiber and a single mode fiber are calculated using our simplified and effective model of photonic crystal fiber following a recently developed elaborate method. Again, since the transverse offset and angular mismatch are the serious factors which contribute crucially to splice losses between two optical fibers, these losses between the same couple of fibers are also studied, using our formulation. The concerned results are seen to match fairly excellently with rigorous ones and consistently in comparison with earlier empirical results. Moreover, our formulation can be developed from theoretical framework over entire optogeometrical parameters of photonic crystal fiber within single mode region instead of using deeply involved full vectorial methods. This user-friendly simple approach of computing splice loss should find wide use by experimentalists and system users.

  19. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges

    PubMed Central

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2014-01-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins. PMID:24213538

  20. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges.

    PubMed

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2013-12-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins.

  1. AGE AND GENDER-DEPENDENT ALTERNATIVE SPLICING OF P/Q-TYPE CALCIUM CHANNEL EF-HAND

    PubMed Central

    Chang, Siao Yun; Yong, Tan Fong; Yu, Chye Yun; Liang, Mui Cheng; Pletnikova, Olga; Troncoso, Juan C.; Burgunder, Jean-Marc; Soong, Tuck Wah

    2007-01-01

    Cav2.1 Ca2+ channels (P/Q-type), which participate in various key roles in the central nervous systems by mediating calcium influx, are extensively spliced. One of its alternatively-spliced exon is 37, which forms part of the EF hand. The expression of exon 37a (EFa form), but not exon 37b (EFb form), confers the channel an activity-dependent enhancement of channel opening known as Ca2+-dependent facilitation (CDF). In this study, we analyzed the trend of EF hand splice variant distributions in mouse, rat and human brain tissues. We observed a developmental switch in rodents, as well as an age and gender bias in human brain tissues, suggestive of a possible role of these EF hand splice variants in neurophysiological specialization. A parallel study performed on rodent brains showed that the data drawn from human and rodent tissues may not necessarily correlate in the process of aging. PMID:17291689

  2. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans

    PubMed Central

    Ahn, Jeong H.; Rechsteiner, Andreas; Strome, Susan; Kelly, William G.

    2016-01-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3’ end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  3. Multiple splicing defects in an intronic false exon.

    PubMed

    Sun, H; Chasin, L A

    2000-09-01

    Splice site consensus sequences alone are insufficient to dictate the recognition of real constitutive splice sites within the typically large transcripts of higher eukaryotes, and large numbers of pseudoexons flanked by pseudosplice sites with good matches to the consensus sequences can be easily designated. In an attempt to identify elements that prevent pseudoexon splicing, we have systematically altered known splicing signals, as well as immediately adjacent flanking sequences, of an arbitrarily chosen pseudoexon from intron 1 of the human hprt gene. The substitution of a 5' splice site that perfectly matches the 5' consensus combined with mutation to match the CAG/G sequence of the 3' consensus failed to get this model pseudoexon included as the central exon in a dhfr minigene context. Provision of a real 3' splice site and a consensus 5' splice site and removal of an upstream inhibitory sequence were necessary and sufficient to confer splicing on the pseudoexon. This activated context also supported the splicing of a second pseudoexon sequence containing no apparent enhancer. Thus, both the 5' splice site sequence and the polypyrimidine tract of the pseudoexon are defective despite their good agreement with the consensus. On the other hand, the pseudoexon body did not exert a negative influence on splicing. The introduction into the pseudoexon of a sequence selected for binding to ASF/SF2 or its replacement with beta-globin exon 2 only partially reversed the effect of the upstream negative element and the defective polypyrimidine tract. These results support the idea that exon-bridging enhancers are not a prerequisite for constitutive exon definition and suggest that intrinsically defective splice sites and negative elements play important roles in distinguishing the real splicing signal from the vast number of false splicing signals.

  4. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern

    PubMed Central

    Bouton, Clément; Geldreich, Angèle; Ramel, Laëtitia; Ryabova, Lyubov A.; Dimitrova, Maria; Keller, Mario

    2015-01-01

    The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splic-ing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5’ region and sug-gested that the main role of CaMV splicing is to downregulate expression of open read-ing frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA. PMID:26162084

  5. Multiple Distinct Splicing Enhancers in the Protein-Coding Sequences of a Constitutively Spliced Pre-mRNA

    PubMed Central

    Schaal, Thomas D.; Maniatis, Tom

    1999-01-01

    We have identified multiple distinct splicing enhancer elements within protein-coding sequences of the constitutively spliced human β-globin pre-mRNA. Each of these highly conserved sequences is sufficient to activate the splicing of a heterologous enhancer-dependent pre-mRNA. One of these enhancers is activated by and binds to the SR protein SC35, whereas at least two others are activated by the SR protein SF2/ASF. A single base mutation within another enhancer element inactivates the enhancer but does not change the encoded amino acid. Thus, overlapping protein coding and RNA recognition elements may be coselected during evolution. These studies provide the first direct evidence that SR protein-specific splicing enhancers are located within the coding regions of constitutively spliced pre-mRNAs. We propose that these enhancers function as multisite splicing enhancers to specify 3′ splice-site selection. PMID:9858550

  6. The Human Splicing Factor ASF/SF2 can Specifically Recognize Pre-mRNA 5' Splice Sites

    NASA Astrophysics Data System (ADS)

    Zuo, Ping; Manley, James L.

    1994-04-01

    ASF/SF2 is a human protein previously shown to function in in vitro pre-mRNA splicing as an essential factor necessary for all splices and also as an alternative splicing factor, capable of switching selection of 5' splice sites. To begin to study the protein's mechanism of action, we have investigated the RNA binding properties of purified recombinant ASF/SF2. Using UV crosslinking and gel shift assays, we demonstrate that the RNA binding region of ASF/SF2 can interact with RNA in a sequence-specific manner, recognizing the 5' splice site in each of two different pre-mRNAs. Point mutations in the 5' splice site consensus can reduce binding by as much as a factor of 100, with the largest effects observed in competition assays. These findings support a model in which ASF/SF2 aids in the recognition of pre-mRNA 5' splice sites.

  7. Screening Duchenne and Becker muscular dystrophy patients for deletions in 30 exons of the dystrophin gene by three-multiplex PCR

    SciTech Connect

    Risch, N. )

    1992-09-01

    Deletion mutations of the dystrophin gene may cause either the severe Duchenne muscular dystrophy (DMD) or the milder, allelic Becker muscular dystrophy (BMD) and are clustered in two high-frequency-deletion regions (HFDRs) located, respectively, 500 kb and 1,200 kb downstream from the 5[prime] end of the gene. Three PCR reactions described allowed the analysis of a total of 30 exons and led, to the identification of three additional deletions involving the following exons: (a) 42 only, (b) 28-42, and (c) 16 only, none of which were detected with the two original multiplex reactions. Therefore, the three modified multiplexes detected 95 of the 96 deletions identified among the 152 patients studied so far by using Southern analysis and cDNA probes. The only deletion that remained undetected with this system involves exons 22-25 and generates the junction fragment described elsewhere. The percentage of deletion mutations among DMS/BMD patients amounts to 63%, which is in agreement with similar estimates from other laboratories. When field-inversion gel electrophoresis is coupled to Southern analysis, the detection rate of deletion and duplication mutations reaches 65%.

  8. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  9. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  10. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  11. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  12. 49 CFR 236.74 - Protection of insulated wire; splice in underground wire.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Protection of insulated wire; splice in underground wire. 236.74 Section 236.74 Transportation Other Regulations Relating to Transportation (Continued..., AND APPLIANCES Rules and Instructions: All Systems Wires and Cables § 236.74 Protection of...

  13. Alternative Splicing Variants and DNA Methylation Status of BDNF in Inbred Chicken Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain derived neurotrophic factor (BDNF) plays essential roles in neuronal survival and differentiation, synaptic plasticity, central regulation of energy homeostasis, and neuronal development of the central and peripheral nerve system. Here, we report two new splicing variants of the chicken BDNF g...

  14. Evolution of Nova-Dependent Splicing Regulation in the Brain

    PubMed Central

    Živin, Marko; Darnell, Robert B

    2007-01-01

    A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. PMID:17937501

  15. Heritability of alternative splicing in the human genome

    PubMed Central

    Kwan, Tony; Benovoy, David; Dias, Christel; Gurd, Scott; Serre, David; Zuzan, Harry; Clark, Tyson A.; Schweitzer, Anthony; Staples, Michelle K.; Wang, Hui; Blume, John E.; Hudson, Thomas J.; Sladek, Rob; Majewski, Jacek

    2007-01-01

    Alternative pre-mRNA splicing increases proteomic diversity and provides a potential mechanism underlying both phenotypic diversity and susceptibility to genetic disorders in human populations. To investigate the variation in splicing among humans on a genome-wide scale, we use a comprehensive exon-targeted microarray to examine alternative splicing in lymphoblastoid cell lines (LCLs) derived from the CEPH HapMap population. We show the identification of transcripts containing sequence verified exon skipping, intron retention, and cryptic splice site usage that are specific between individuals. A number of novel alternative splicing events with no previous annotations in either the RefSeq and EST databases were identified, indicating that we are able to discover de novo splicing events. Using family-based linkage analysis, we demonstrate Mendelian inheritance and segregation of specific splice isoforms with regulatory haplotypes for three genes: OAS1, CAST, and CRTAP. Allelic association was further used to identify individual SNPs or regulatory haplotype blocks linked to the alternative splicing event, taking advantage of the high-resolution genotype information from the CEPH HapMap population. In one candidate, we identified a regulatory polymorphism that disrupts a 5′ splice site of an exon in the CAST gene, resulting in its exclusion in the mutant allele. This report illustrates that our approach can detect both annotated and novel alternatively spliced variants, and that such variation among individuals is heritable and genetically controlled. PMID:17671095

  16. The influence of Argonaute proteins on alternative RNA splicing.

    PubMed

    Batsché, Eric; Ameyar-Zazoua, Maya

    2015-01-01

    Alternative splicing of precursor RNAs is an important process in multicellular species because it impacts several aspects of gene expression: from the increase of protein repertoire to the level of expression. A large body of evidences demonstrates that factors regulating chromatin and transcription impact the outcomes of alternative splicing. Argonaute (AGO) proteins were known to play key roles in the regulation of gene expression at the post-transcriptional level. More recently, their role in the nucleus of human somatic cells has emerged. Here, we will discuss some of the nuclear functions of AGO, with special emphasis on alternative splicing. The AGO-mediated modulation of alternative splicing is based on several properties of these proteins: their binding to transcripts on chromatin and their interactions with many proteins, especially histone tail-modifying enzymes, HP1γ and splicing factors. AGO proteins may favor a decrease in the RNA-polymerase II kinetics at actively transcribed genes leading to the modulation of alternative splicing decisions. They could also influence alternative splicing through their interaction with core components of the splicing machinery and several splicing factors. We will discuss the modes of AGO recruitment on chromatin at active genes. We suggest that long intragenic antisense transcripts (lincRNA) might be an important feature of genes containing splicing events regulated by AGO.

  17. Interchangeable SF3B1 inhibitors interfere with pre-mRNA splicing at multiple stages.

    PubMed

    Effenberger, Kerstin A; Urabe, Veronica K; Prichard, Beth E; Ghosh, Arun K; Jurica, Melissa S

    2016-03-01

    The protein SF3B1 is a core component of the spliceosome, the large ribonucleoprotein complex responsible for pre-mRNA splicing. Interest in SF3B1 intensified when tumor exome sequencing revealed frequent specific SF3B1 mutations in a variety of neoplasia and when SF3B1 was identified as the target of three different cancer cell growth inhibitors. A better mechanistic understanding of SF3B1's role in splicing is required to capitalize on these discoveries. Using the inhibitor compounds, we probed SF3B1 function in the spliceosome in an in vitro splicing system. Formerly, the inhibitors were shown to block early steps of spliceosome assembly, consistent with a previously determined role of SF3B1 in intron recognition. We now report that SF3B1 inhibitors also interfere with later events in the spliceosome cycle, including exon ligation. These observations are consistent with a requirement for SF3B1 throughout the splicing process. Additional experiments aimed at understanding how three structurally distinct molecules produce nearly identical effects on splicing revealed that inactive analogs of each compound interchangeably compete with the active inhibitors to restore splicing. The competition indicates that all three types of compounds interact with the same site on SF3B1 and likely interfere with its function by the same mechanism, supporting a shared pharmacophore model. It also suggests that SF3B1 inhibition does not result from binding alone, but is consistent with a model in which the compounds affect a conformational change in the protein. Together, our studies reveal new mechanistic insight into SF3B1 as a principal player in the spliceosome and as a target of inhibitor compounds.

  18. Extraocular muscle satellite cells are high performance myo-engines retaining efficient regenerative capacity in dystrophin deficiency.

    PubMed

    Stuelsatz, Pascal; Shearer, Andrew; Li, Yunfei; Muir, Lindsey A; Ieronimakis, Nicholas; Shen, Qingwu W; Kirillova, Irina; Yablonka-Reuveni, Zipora

    2015-01-01

    Extraocular muscles (EOMs) are highly specialized skeletal muscles that originate from the head mesoderm and control eye movements. EOMs are uniquely spared in Duchenne muscular dystrophy and animal models of dystrophin deficiency. Specific traits of myogenic progenitors may be determinants of this preferential sparing, but very little is known about the myogenic cells in this muscle group. While satellite cells (SCs) have long been recognized as the main source of myogenic cells in adult muscle, most of the knowledge about these cells comes from the prototypic limb muscles. In this study, we show that EOMs, regardless of their distinctive Pax3-negative lineage origin, harbor SCs that share a common signature (Pax7(+), Ki67(-), Nestin-GFP(+), Myf5(nLacZ+), MyoD-positive lineage origin) with their limb and diaphragm somite-derived counterparts, but are remarkably endowed with a high proliferative potential as revealed in cell culture assays. Specifically, we demonstrate that in adult as well as in aging mice, EOM SCs possess a superior expansion capacity, contributing significantly more proliferating, differentiating and renewal progeny than their limb and diaphragm counterparts. These robust growth and renewal properties are maintained by EOM SCs isolated from dystrophin-null (mdx) mice, while SCs from muscles affected by dystrophin deficiency (i.e., limb and diaphragm) expand poorly in vitro. EOM SCs also retain higher performance in cell transplantation assays in which donor cells were engrafted into host mdx limb muscle. Collectively, our study provides a comprehensive picture of EOM myogenic progenitors, showing that while these cells share common hallmarks with the prototypic SCs in somite-derived muscles, they distinctively feature robust growth and renewal capacities that warrant the title of high performance myo-engines and promote consideration of their properties for developing new approaches in cell-based therapy to combat skeletal muscle wasting.

  19. iNOS expression in dystrophinopathies can be reduced by somatic gene transfer of dystrophin or utrophin.

    PubMed Central

    Louboutin, J. P.; Rouger, K.; Tinsley, J. M.; Halldorson, J.; Wilson, J. M.

    2001-01-01

    BACKGROUND: Nitric oxide (NO) is an inorganic gas produced by a family of NO synthase (NOS) proteins. The presence and the distribution of inducible-NOS (NOS II or iNOS), and NADPH-diaphorase (NADPH-d), a marker for NOS catalytic activity, were determined in muscle sections from control, DMD, and BMD patients. MATERIALS AND METHODS: NADPH-d reactivity, iNOS- and nNOS (NOS I)-immunolocalization were studied in muscles from mdx mice before and after somatic gene transfer of dystrophin or utrophin. RESULTS: In control patients, few fibers (<2%) demonstrated focal accumulation of iNOS in sarcolemma. In DMD patients, a strong iNOS immunoreactivity was observed in some necrotic muscle fibers as well as in some mononuclear cells, and regenerating muscle fibers had diffusely positive iNOS immunoreactivity. In DMD patients, NADPH-d reactivity was increased and mainly localized in regenerating muscle fibers. In mdx mice quadriceps, iNOS expression was mainly observed in regenerating muscle fibers, but not prior to 4 weeks postnatal, and was still present 8 weeks after birth. The expression of dystrophin and the overexpression of utrophin using adenovirus-mediated constructs reduced the number of iNOS-positive fibers in mdx quadriceps muscles. The correction of some pathology in mdx by dystrophin expression or utrophin overexpression was independent of the presence of nNOS. CONCLUSIONS: These results suggest that iNOS could play a role in the physiopathology of DMD and that the abnormal expression of iNOS could be corrected by gene therapy. PMID:11474581

  20. Entropic contributions to the splicing process

    NASA Astrophysics Data System (ADS)

    Osella, Matteo; Caselle, Michele

    2009-12-01

    It has been recently argued that depletion attraction may play an important role in different aspects of cellular organization, ranging from the organization of transcriptional activity in transcription factories to the formation of nuclear bodies. In this paper, we suggest a new application of these ideas in the context of the splicing process, a crucial step of messenger RNA maturation in eukaryotes. We shall show that entropy effects and the resulting depletion attraction may explain the relevance of the aspecific intron length variable in the choice of splice-site recognition modality. On top of that, some qualitative features of the genome architecture of higher eukaryotes can find evolutionary realistic motivation in the light of our model.

  1. Intravitreal Injection of Splice-switching Oligonucleotides to Manipulate Splicing in Retinal Cells.

    PubMed

    Gérard, Xavier; Perrault, Isabelle; Munnich, Arnold; Kaplan, Josseline; Rozet, Jean-Michel

    2015-09-01

    Leber congenital amaurosis is a severe hereditary retinal dystrophy responsible for neonatal blindness. The most common disease-causing mutation (c.2991+1655A>G; 10-15%) creates a strong splice donor site that leads to insertion of a cryptic exon encoding a premature stop codon. Recently, we reported that splice-switching oligonucleotides (SSO) allow skipping of the mutant cryptic exon and the restoration of ciliation in fibroblasts of affected patients, supporting the feasibility of a SSO-mediated exon skipping strategy to correct the aberrant splicing. Here, we present data in the wild-type mouse, which demonstrate that intravitreal administration of 2'-OMePS-SSO allows selective alteration of Cep290 splicing in retinal cells, including photoreceptors as shown by successful alteration of Abca4 splicing using the same approach. We show that both SSOs and Cep290 skipped mRNA were detectable for at least 1 month and that intravitreal administration of oligonucleotides did not provoke any serious adverse event. These data suggest that intravitreal injections of SSO should be considered to bypass protein truncation resulting from the c.2991+1655A>G mutation as well as other truncating mutations in genes which like CEP290 or ABCA4 have a mRNA size that exceed cargo capacities of US Food and Drug Administration (FDA)-approved adeno-associated virus (AAV)-vectors, thus hampering gene augmentation therapy.

  2. [EDAS, databases of alternatively spliced human genes].

    PubMed

    Nurtdinov, R N; Neverov, A D; Mal'ko, D B; Kosmodem'ianskiĭ, I A; Ermakova, E O; Ramenskiĭ, V E; Mironov, A A; Gel'fand, M S

    2006-01-01

    EDAS, a database of alternatively spliced human genes, contains data on the alignment of proteins, mRNAs, and EST. It contains information on all exons and introns observed, as well as elementary alternatives formed from them. The database makes it possible to filter the output data by changing the cut-off threshold by the significance level. The database is accessible at http://www.gene-bee.msu.ru/edas/.

  3. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools

    PubMed Central

    Soukarieh, Omar; Gaildrat, Pascaline; Hamieh, Mohamad; Drouet, Aurélie; Baert-Desurmont, Stéphanie; Frébourg, Thierry; Tosi, Mario; Martins, Alexandra

    2016-01-01

    The identification of a causal mutation is essential for molecular diagnosis and clinical management of many genetic disorders. However, even if next-generation exome sequencing has greatly improved the detection of nucleotide changes, the biological interpretation of most exonic variants remains challenging. Moreover, particular attention is typically given to protein-coding changes often neglecting the potential impact of exonic variants on RNA splicing. Here, we used the exon 10 of MLH1, a gene implicated in hereditary cancer, as a model system to assess the prevalence of RNA splicing mutations among all single-nucleotide variants identified in a given exon. We performed comprehensive minigene assays and analyzed patient’s RNA when available. Our study revealed a staggering number of splicing mutations in MLH1 exon 10 (77% of the 22 analyzed variants), including mutations directly affecting splice sites and, particularly, mutations altering potential splicing regulatory elements (ESRs). We then used this thoroughly characterized dataset, together with experimental data derived from previous studies on BRCA1, BRCA2, CFTR and NF1, to evaluate the predictive power of 3 in silico approaches recently described as promising tools for pinpointing ESR-mutations. Our results indicate that ΔtESRseq and ΔHZEI-based approaches not only discriminate which variants affect splicing, but also predict the direction and severity of the induced splicing defects. In contrast, the ΔΨ-based approach did not show a compelling predictive power. Our data indicates that exonic splicing mutations are more prevalent than currently appreciated and that they can now be predicted by using bioinformatics methods. These findings have implications for all genetically-caused diseases. PMID:26761715

  4. Screening the dystrophin gene suggests a high rate of polymorphism in general but no exonic deletions in schizophrenics

    SciTech Connect

    Lindor, N.M.; Sobell, J.L.; Thibodeau, S.N.

    1994-03-15

    The dystrophin gene, located at chromosome Xp21, was evaluated as a candidate gene in chronic schizophrenia in response to the report of a large family in which schizophrenia cosegregated with Becker muscular dystrophy. Genomic DNA from 94 men with chronic schizophrenia was evaluated by Southern blot analysis using cDNA probes that span exons 1-59. No exonic deletions were identified. An unexpectedly high rate of polymorphism was calculated in this study and two novel polymorphisms were found, demonstrating the usefulness of the candidate gene approach even when results of the original study are negative. 41 refs., 1 fig., 4 tabs.

  5. Altered astrocyte morphology and vascular development in dystrophin-Dp71-null mice.

    PubMed

    Giocanti-Auregan, Audrey; Vacca, Ophélie; Bénard, Romain; Cao, Sijia; Siqueiros, Lourdes; Montañez, Cecilia; Paques, Michel; Sahel, José-Alain; Sennlaub, Florian; Guillonneau, Xavier; Rendon, Alvaro; Tadayoni, Ramin

    2016-05-01

    Understanding retinal vascular development is crucial because many retinal vascular diseases such as diabetic retinopathy (in adults) or retinopathy of prematurity (in children) are among the leading causes of blindness. Given the localization of the protein Dp71 around the retinal vessels in adult mice and its role in maintaining retinal homeostasis, the aim of this study was to determine if Dp71 was involved in astrocyte and vascular development regulation. An experimental study in mouse retinas was conducted. Using a dual immunolabeling with antibodies to Dp71 and anti-GFAP for astrocytes on retinal sections and isolated astrocytes, it was found that Dp71 was expressed in wild-type (WT) mouse astrocytes from early developmental stages to adult stage. In Dp71-null mice, a reduction in GFAP-immunopositive astrocytes was observed as early as postnatal day 6 (P6) compared with WT mice. Using real-time PCR, it was showed that Dp71 mRNA was stable between P1 and P6, in parallel with post-natal vascular development. Regarding morphology in Dp71-null and WT mice, a significant decrease in overall astrocyte process number in Dp71-null retinas at P6 to adult age was found. Using fluorescence-conjugated isolectin Griffonia simplicifolia on whole mount retinas, subsequent delay of developing vascular network at the same age in Dp71-null mice was found. An evidence that the Dystrophin Dp71, a membrane-associated cytoskeletal protein and one of the smaller Duchenne muscular dystrophy gene products, regulates astrocyte morphology and density and is associated with subsequent normal blood vessel development was provided.

  6. Disruption of action potential and calcium signaling properties in malformed myofibers from dystrophin-deficient mice

    PubMed Central

    Hernández-Ochoa, Erick O; Pratt, Stephen J P; Garcia-Pelagio, Karla P; Schneider, Martin F; Lovering, Richard M

    2015-01-01

    Duchenne muscular dystrophy (DMD), the most common and severe muscular dystrophy, is caused by the absence of dystrophin. Muscle weakness and fragility (i.e., increased susceptibility to damage) are presumably due to structural instability of the myofiber cytoskeleton, but recent studies suggest that the increased presence of malformed/branched myofibers in dystrophic muscle may also play a role. We have previously studied myofiber morphology in healthy wild-type (WT) and dystrophic (MDX) skeletal muscle. Here, we examined myofiber excitability using high-speed confocal microscopy and the voltage-sensitive indicator di-8-butyl-amino-naphthyl-ethylene-pyridinium-propyl-sulfonate (di-8-ANEPPS) to assess the action potential (AP) properties. We also examined AP-induced Ca2+ transients using high-speed confocal microscopy with rhod-2, and assessed sarcolemma fragility using elastimetry. AP recordings showed an increased width and time to peak in malformed MDX myofibers compared to normal myofibers from both WT and MDX, but no significant change in AP amplitude. Malformed MDX myofibers also exhibited reduced AP-induced Ca2+ transients, with a further Ca2+ transient reduction in the branches of malformed MDX myofibers. Mechanical studies indicated an increased sarcolemma deformability and instability in malformed MDX myofibers. The data suggest that malformed myofibers are functionally different from myofibers with normal morphology. The differences seen in AP properties and Ca2+ signals suggest changes in excitability and remodeling of the global Ca2+ signal, both of which could underlie reported weakness in dystrophic muscle. The biomechanical changes in the sarcolemma support the notion that malformed myofibers are more susceptible to damage. The high prevalence of malformed myofibers in dystrophic muscle may contribute to the progressive strength loss and fragility seen in dystrophic muscles. PMID:25907787

  7. Differential expression of myosin heavy chain isoforms in the masticatory muscles of dystrophin-deficient mice.

    PubMed

    Spassov, Alexander; Gredes, Tomasz; Gedrange, Tomasz; Lucke, Silke; Morgenstern, Sven; Pavlovic, Dragan; Kunert-Keil, Christiane

    2011-12-01

    The dystrophin-deficient mouse (mdx) is a homologue animal model of Duchenne muscular dystrophy (DMD) and is characterized by slowly progressive muscle weakness accompanied by changes in myosin heavy chain (MyHC) composition. It is likely that the masticatory muscles undergo similar changes. The aim of this study was to examine the masticatory muscles (masseter, temporal, tongue, and soleus) of 100-day-old mdx and control mice (n = 8-10), and the fibre type distribution (by immunohistochemistry) as well as the expression of the corresponding MyHC messenger RNA (mRNA) (protein and mRNA expression, using Western blot or quantitative real-time polymerase chain reaction (RT-PCR)). Immunohistochemistry and western blot analysis revealed that the masticatory muscles in the control and mdx mice consisted mainly of type 2 fibres, whereas soleus muscle consisted of both type 1 and 2 fibres. In the masseter muscle, the mRNA in mdx mice was not different from that found in the controls. However, the mRNA content of the MyHC-2b isoform in mdx mice was lower in comparison with the controls in the temporal muscle [11.9 versus 36.9 per cent; P < 0.01; mean ± standard error of the mean (SEM), Student's unpaired t-test], as well as in the tongue muscle (65.7 versus 73.8 per cent; P < 0.05). Similarly, the content of MyHC-2x isoforms in mdx tongue muscle was lower than in the controls (25.9 versus 30.8 per cent; P < 0.05). The observed down-regulation of the MyHC-2x and MyHC-2b mRNA in the masticatory muscles of mdx mice may lead to changed fibre type composition. The different MyHC gene expression in mdx mice masticatory muscles may be seen as an adaptive mechanism to muscular dystrophy.

  8. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    PubMed

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  9. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    PubMed Central

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  10. Vials: Visualizing Alternative Splicing of Genes

    PubMed Central

    Strobelt, Hendrik; Alsallakh, Bilal; Botros, Joseph; Peterson, Brant; Borowsky, Mark; Pfister, Hanspeter; Lex, Alexander

    2016-01-01

    Alternative splicing is a process by which the same DNA sequence is used to assemble different proteins, called protein isoforms. Alternative splicing works by selectively omitting some of the coding regions (exons) typically associated with a gene. Detection of alternative splicing is difficult and uses a combination of advanced data acquisition methods and statistical inference. Knowledge about the abundance of isoforms is important for understanding both normal processes and diseases and to eventually improve treatment through targeted therapies. The data, however, is complex and current visualizations for isoforms are neither perceptually efficient nor scalable. To remedy this, we developed Vials, a novel visual analysis tool that enables analysts to explore the various datasets that scientists use to make judgments about isoforms: the abundance of reads associated with the coding regions of the gene, evidence for junctions, i.e., edges connecting the coding regions, and predictions of isoform frequencies. Vials is scalable as it allows for the simultaneous analysis of many samples in multiple groups. Our tool thus enables experts to (a) identify patterns of isoform abundance in groups of samples and (b) evaluate the quality of the data. We demonstrate the value of our tool in case studies using publicly available datasets. PMID:26529712

  11. Integrating alternative splicing detection into gene prediction

    PubMed Central

    Foissac, Sylvain; Schiex, Thomas

    2005-01-01

    Background Alternative splicing (AS) is now considered as a major actor in transcriptome/proteome diversity and it cannot be neglected in the annotation process of a new genome. Despite considerable progresses in term of accuracy in computational gene prediction, the ability to reliably predict AS variants when there is local experimental evidence of it remains an open challenge for gene finders. Results We have used a new integrative approach that allows to incorporate AS detection into ab initio gene prediction. This method relies on the analysis of genomically aligned transcript sequences (ESTs and/or cDNAs), and has been implemented in the dynamic programming algorithm of the graph-based gene finder EuGÈNE. Given a genomic sequence and a set of aligned transcripts, this new version identifies the set of transcripts carrying evidence of alternative splicing events, and provides, in addition to the classical optimal gene prediction, alternative optimal predictions (among those which are consistent with the AS events detected). This allows for multiple annotations of a single gene in a way such that each predicted variant is supported by a transcript evidence (but not necessarily with a full-length coverage). Conclusions This automatic combination of experimental data analysis and ab initio gene finding offers an ideal integration of alternatively spliced gene prediction inside a single annotation pipeline. PMID:15705189

  12. ASF/SF2-like maize pre-mRNA splicing factors affect splice site utilization and their transcripts are alternatively spliced.

    PubMed

    Gao, Huirong; Gordon-Kamm, William J; Lyznik, L Alexander

    2004-09-15

    Three ASF/SF2-like alternative splicing genes from maize were identified, cloned, and analyzed. Each of these genes (zmSRp30, zmSRp31, and zmSRp32) contains two RNA binding domains, a signature sequence SWQDLKD, and a characteristic serine/ariginine-rich domain. There is a strong structural similarity to the human ASF/SF2 splicing factor and to the Arabidopsis atSRp34/p30 proteins. Similar to ASF/SF2-like genes in other organisms, the maize pre-mRNA messages are alternatively spliced. They are differentially expressed in maize tissues with relatively uniform levels of zmSRp30 and zmSRp31 messages being observed throughout the plant, while zmSRp32 messages preferentially accumulated in the meristematic regions. Overexpression of zmSRp32 in maize cells leads to the enhanced selection of weak 5' intron splice sites during the processing of pre-mRNA molecules. Overexpression of the zmSRp31 or zmSRp32 gene affects regulation of wheat dwarf virus rep gene pre-mRNA splicing, presumably by interacting with the weak 5' splice site, CCGU. Our results suggest that the described genes are functional homologues of the human ASF/SF2 alternative splicing factor and they indicate a diversity of the ASF/SF2-like alternative splicing factors in monocot plant cells.

  13. Antisense Mediated Splicing Modulation For Inherited Metabolic Diseases: Challenges for Delivery

    PubMed Central

    Pérez, Belen; Vilageliu, Lluisa; Grinberg, Daniel

    2014-01-01

    In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with success in patients' cells to force pseudoexon skipping or to block cryptic splice sites, in both cases recovering normal transcript and protein and correcting the enzyme deficiency. However, future in vivo studies require individual approaches for delivery depending on the gene defect involved, given the different patterns of tissue and organ expression. Herein we review the state of the art of antisense therapy targeting RNA splicing in metabolic diseases, grouped according to their expression patterns—multisystemic, hepatic, or in central nervous system (CNS)—and summarize the recent progress achieved in the field of in vivo delivery of oligonucleotides to each organ or system. Successful body-wide distribution of SSOs and preferential distribution in the liver after systemic administration have been reported in murine models for different diseases, while for CNS limited data are available, although promising results with intratechal injections have been achieved. PMID:24506780

  14. Designing Efficient Double RNA trans-Splicing Molecules for Targeted RNA Repair

    PubMed Central

    Hüttner, Clemens; Murauer, Eva M.; Hainzl, Stefan; Kocher, Thomas; Neumayer, Anna; Reichelt, Julia; Bauer, Johann W.; Koller, Ulrich

    2016-01-01

    RNA trans-splicing is a promising tool for mRNA modification in a diversity of genetic disorders. In particular, the substitution of internal exons of a gene by combining 3′ and 5′ RNA trans-splicing seems to be an elegant way to modify especially large pre-mRNAs. Here we discuss a robust method for designing double RNA trans-splicing molecules (dRTM). We demonstrate how the technique can be implemented in an endogenous setting, using COL7A1, the gene encoding type VII collagen, as a target. An RTM screening system was developed with the aim of testing the replacement of two internal COL7A1 exons, harbouring a homozygous mutation, with the wild-type version. The most efficient RTMs from a pool of randomly generated variants were selected via our fluorescence-based screening system and adapted for use in an in vitro disease model system. Transduction of type VII collagen-deficient keratinocytes with the selected dRTM led to accurate replacement of two internal COL7A1 exons resulting in a restored wild-type RNA sequence. This is the first study demonstrating specific exon replacement by double RNA trans-splicing within an endogenous transcript in cultured cells, corroborating the utility of this technology for mRNA repair in a variety of genetic disorders. PMID:27669223

  15. The doublesex splicing enhancer components Tra2 and Rbp1 also repress splicing through an intronic silencer.

    PubMed

    Qi, Junlin; Su, Shihuang; Mattox, William

    2007-01-01

    The activation of sex-specific alternative splice sites in the Drosophila melanogaster doublesex and fruitless pre-mRNAs has been well studied and depends on the serine-arginine-rich (SR) splicing factors Tra, Tra2, and Rbp1. Little is known, however, about how SR factors negatively regulate splice sites in other RNAs. Here we examine how Tra2 blocks splicing of the M1 intron from its own transcript. We identify an intronic splicing silencer (ISS) adjacent to the M1 branch point that is sufficient to confer Tra2-dependent repression on another RNA. The ISS was found to function independently of its position within the intron, arguing against the idea that bound repressors function by simply interfering with branch point accessibility to general splicing factors. Conserved subelements of the silencer include five short repeated sequences that are required for Tra2 binding but differ from repeated binding sites found in Tra2-dependent splicing enhancers. The ISS also contains a consensus binding site for Rbp1, and this protein was found to facilitate repression of M1 splicing both in vitro and in Drosophila larvae. In contrast to the cooperative binding of SR proteins observed on the doublesex splicing enhancer, we found that Rbp1 and Tra2 bind to the ISS independently through distinct sequences. Our results suggest that functionally synergistic interactions of these SR factors can cause either splicing activation or repression.

  16. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay

    PubMed Central

    Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel

    2007-01-01

    Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additional examples identified >50 such exons in genes with a variety of functions. These exons are unusually frequent in genes that encode splicing activators and are unexpectedly enriched in the so-called “ultraconserved” elements in the mammalian lineage. Further analysis show that NMD of mRNAs for splicing activators such as SR proteins is triggered by splicing activation events, whereas NMD of the mRNAs for negatively acting hnRNP proteins is triggered by splicing repression, a polarity consistent with widespread homeostatic control of splicing regulator gene expression. We suggest that the extreme genomic conservation surrounding these regulatory splicing events within splicing factor genes demonstrates the evolutionary importance of maintaining tightly tuned homeostasis of RNA-binding protein levels in the vertebrate cell. PMID:17369403

  17. Half pint/Puf68 is required for negative regulation of splicing by the SR splicing factor Transformer2.

    PubMed

    Wang, Shanzhi; Wagner, Eric J; Mattox, William

    2013-08-01

    The SR family of proteins plays important regulatory roles in the control of alternative splicing in a wide range of organisms. These factors affect splicing through both positive and negative controls of splice site recognition by pre-spliceosomal factors. Recent studies indicate that the Drosophila SR factor Transformer 2 (Tra2) activates and represses splicing through distinct and separable effector regions of the protein. While the interactions of its Arg-Ser-rich activator region have been well studied, cofactors involved in splicing repression have yet to be found. Here we use a luciferase-based splicing reporter assay to screen for novel proteins necessary for Tra2-dependent repression of splicing. This approach identified Half pint, also known as Puf68, as a co-repressor required for Tra2-mediated autoregulation of the M1 intron. In vivo, Half pint is required for Tra2-dependent repression of M1 splicing but is not necessary for Tra2-dependent activation of doublesex splicing. Further experiments indicate that the effect of Hfp is sequence-specific and that it associates with these target transcripts in cells. Importantly, known M1 splicing regulatory elements are sufficient to sensitize a heterologous intron to Hfp regulation. Two alternative proteins deriving from Hfp transcripts, Hfp68, and Hfp58, were found to be expressed in vivo but differed dramatically in their effect on M1 splicing. Comparison of the cellular localization of these forms in S2 cells revealed that Hfp68 is predominantly localized to the nucleus while Hfp58 is distributed across both the nucleus and cytoplasm. This accords with their observed effects on splicing and suggests that differential compartmentalization may contribute to the specificity of these isoforms. Together, these studies reveal a function for Half pint in splicing repression and demonstrate it to be specifically required for Tra2-dependent intron inclusion.

  18. Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition.

    PubMed

    Královicová, Jana; Vorechovsky, Igor

    2007-01-01

    Auxiliary splicing signals play a major role in the regulation of constitutive and alternative pre-mRNA splicing, but their relative importance in selection of mutation-induced cryptic or de novo splice sites is poorly understood. Here, we show that exonic sequences between authentic and aberrant splice sites that were activated by splice-site mutations in human disease genes have lower frequencies of splicing enhancers and higher frequencies of splicing silencers than average exons. Conversely, sequences between authentic and intronic aberrant splice sites have more enhancers and less silencers than average introns. Exons that were skipped as a result of splice-site mutations were smaller, had lower SF2/ASF motif scores, a decreased availability of decoy splice sites and a higher density of silencers than exons in which splice-site mutation activated cryptic splice sites. These four variables were the strongest predictors of the two aberrant splicing events in a logistic regression model. Elimination or weakening of predicted silencers in two reporters consistently promoted use of intron-proximal splice sites if these elements were maintained at their original positions, with their modular combinations producing expected modification of splicing. Together, these results show the existence of a gradient in exon and intron definition at the level of pre-mRNA splicing and provide a basis for the development of computational tools that predict aberrant splicing outcomes.

  19. Mutations in the Caenorhabditis elegans U2AF Large Subunit UAF-1 Alter the Choice of a 3′ Splice Site In Vivo

    PubMed Central

    Ma, Long; Horvitz, H. Robert

    2009-01-01

    The removal of introns from eukaryotic RNA transcripts requires the activities of five multi-component ribonucleoprotein complexes and numerous associated proteins. The lack of mutations affecting splicing factors essential for animal survival has limited the study of the in vivo regulation of splicing. From a screen for suppressors of the Caenorhabditis elegans unc-93(e1500) rubberband Unc phenotype, we identified mutations in genes that encode the C. elegans orthologs of two splicing factors, the U2AF large subunit (UAF-1) and SF1/BBP (SFA-1). The uaf-1(n4588) mutation resulted in temperature-sensitive lethality and caused the unc-93 RNA transcript to be spliced using a cryptic 3′ splice site generated by the unc-93(e1500) missense mutation. The sfa-1(n4562) mutation did not cause the utilization of this cryptic 3′ splice site. We isolated four uaf-1(n4588) intragenic suppressors that restored the viability of uaf-1 mutants at 25°C. These suppressors differentially affected the recognition of the cryptic 3′ splice site and implicated a small region of UAF-1 between the U2AF small subunit-interaction domain and the first RNA recognition motif in affecting the choice of 3′ splice site. We constructed a reporter for unc-93 splicing and using site-directed mutagenesis found that the position of the cryptic splice site affects its recognition. We also identified nucleotides of the endogenous 3′ splice site important for recognition by wild-type UAF-1. Our genetic and molecular analyses suggested that the phenotypic suppression of the unc-93(e1500) Unc phenotype by uaf-1(n4588) and sfa-1(n4562) was likely caused by altered splicing of an unknown gene. Our observations provide in vivo evidence that UAF-1 can act in regulating 3′ splice-site choice and establish a system that can be used to investigate the in vivo regulation of RNA splicing in C. elegans. PMID:19893607

  20. Splicing of many human genes involves sites embedded within introns

    PubMed Central

    Kelly, Steven; Georgomanolis, Theodore; Zirkel, Anne; Diermeier, Sarah; O'Reilly, Dawn; Murphy, Shona; Längst, Gernot; Cook, Peter R.; Papantonis, Argyris

    2015-01-01

    The conventional model for splicing involves excision of each intron in one piece; we demonstrate this inaccurately describes splicing in many human genes. First, after switching on transcription of SAMD4A, a gene with a 134 kb-long first intron, splicing joins the 3′ end of exon 1 to successive points within intron 1 well before the acceptor site at exon 2 is made. Second, genome-wide analysis shows that >60% of active genes yield products generated by such intermediate intron splicing. These products are present at ∼15% the levels of primary transcripts, are encoded by conserved sequences similar to those found at canonical acceptors, and marked by distinctive structural and epigenetic features. Finally, using targeted genome editing, we demonstrate that inhibiting the formation of these splicing intermediates affects efficient exon–exon splicing. These findings greatly expand the functional and regulatory complexity of the human transcriptome. PMID:25897131

  1. Targeting Splicing in the Treatment of Human Disease

    PubMed Central

    Suñé-Pou, Marc; Prieto-Sánchez, Silvia; Boyero-Corral, Sofía; Moreno-Castro, Cristina; El Yousfi, Younes; Suñé-Negre, Josep Mª; Hernández-Munain, Cristina; Suñé, Carlos

    2017-01-01

    The tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is a key mechanism in the regulation of gene expression. Defects in this regulatory process affect cellular functions and are the cause of many human diseases. Recent advances in our understanding of splicing regulation have led to the development of new tools for manipulating splicing for therapeutic purposes. Several tools, including antisense oligonucleotides and trans-splicing, have been developed to target and alter splicing to correct misregulated gene expression or to modulate transcript isoform levels. At present, deregulated AS is recognized as an important area for therapeutic intervention. Here, we summarize the major hallmarks of the splicing process, the clinical implications that arise from alterations in this process, and the current tools that can be used to deliver, target, and correct deficiencies of this key pre-mRNA processing event. PMID:28245575

  2. Test and Analysis of Spliced DI-BSCCO HTS Tapes

    NASA Astrophysics Data System (ADS)

    Fetisov, S. S.; Sotnikov, D. V.; Radchenko, I. P.; Vysotsky, V. S.; Osabe, G.; Kinoshita, K.; Fujikami, J.; Kobayashi, S.; Yamazaki, K.

    For some applications, short unit lengths of HTS wires should be spliced if longer lengths are necessary and short unit lengths of HTS wires should be utilize by applying the splice technology to reduce the total wire cost in the application. The splice technology has been developed for DI-BSCCO Type HT-CA tapes by Sumitomo Electric and spliced tapes were tested in Russian Cable Institute. The test program included: measurements of splice's resistance, critical current anisotropy, thermo cycling tolerance, mechanical properties, overload tests and magnetization measurements. In the paper the results of tests are presented and discussed. The test results demonstrated that splices can be used for cable production if twisting and bending limitations are taken into account.

  3. HEXEvent: a database of Human EXon splicing Events.

    PubMed

    Busch, Anke; Hertel, Klemens J

    2013-01-01

    HEXEvent (http://hexevent.mmg.uci.edu) is a new database that permits the user to compile genome-wide exon data sets of human internal exons showing selected splicing events. User queries can be customized based on the type and the frequency of alternative splicing events. For each splicing version of an exon, an ESTs count is given, specifying the frequency of the event. A user-specific definition of constitutive exons can be entered to designate an exon exclusion level still acceptable for an exon to be considered as constitutive. Similarly, the user has the option to define a maximum inclusion level for an exon to be called an alternatively spliced exon. Unlike other existing splicing databases, HEXEvent permits the user to easily extract alternative splicing information for individual, multiple or genome-wide human internal exons. Importantly, the generated data sets are downloadable for further analysis.

  4. Two forms of Drosophila melanogaster Gs alpha are produced by alternate splicing involving an unusual splice site.

    PubMed

    Quan, F; Forte, M A

    1990-03-01

    G proteins are responsible for modulating the activity of intracellular effector systems in response to receptor activation. The stimulatory G protein Gs is responsible for activation of adenylate cyclase in response to a variety of hormonal signals. In this report, we describe the structure of the gene for the alpha subunit of Drosophila melanogaster Gs. The gene is approximately 4.5 kilobases long and is divided into nine exons. The exon-intron structure of the Drosophila gene shows substantial similarity to that of the human gene for Gs alpha. Alternate splicing of intron 7, involving either use of an unusual TG or consensus AG 3' splice site, results in transcripts which code for either a long (DGs alpha L) or short (DGs alpha S) form of Gs alpha. These subunits differ by inclusion or deletion of three amino acids and substitution of a Ser for a Gly. The two forms of Drosophila Gs alpha differ in a region where no variation in the primary sequence of vertebrate Gs alpha subunits has been observed. In vitro translation experiments demonstrated that the Drosophila subunits migrate anomalously on sodium dodecyl sulfate-polyacrylamide gels with apparent molecular weights of 51,000 and 48,000. Additional Gs alpha transcript heterogeneity reflects the use of multiple polyadenylation sites.

  5. Superconducting cable-in-conduit low resistance splice

    DOEpatents

    Artman, Thomas A.

    2003-06-24

    A low resistance splice connects two cable-in-conduit superconductors to each other. Dividing collars for arranging sub-cable units from each conduit are provided, along with clamping collars for mating each sub-cable wire assembly to form mated assemblies. The mated assemblies ideally can be accomplished by way of splicing collar. The mated assemblies are cooled by way of a flow of coolant, preferably helium. A method for implementing such a splicing is also described.

  6. Mis-Spliced Lr34 Transcript Events in Winter Wheat

    PubMed Central

    Fang, Tilin; Carver, Brett F.; Hunger, Robert M.; Yan, Liuling

    2017-01-01

    Lr34 in wheat is a non-race-specific gene that confers resistance against multiple fungal pathogens. The resistant allele Lr34 and the susceptible allele Lr34s can be distinguished by three polymorphisms that cause alternation of deduced amino acid sequences of Lr34 at the protein level. In seedlings of a cultivar carrying the resistant Lr34r allele, only a portion (35%) of its transcripts was correctly spliced and the majority (65%) of its transcripts were incorrectly spliced due to multiple mis-splicing events. Lr34 mis-splicing events were also observed at adult plant age when this gene exerts its function. All of the mis-spliced Lr34r cDNA transcripts observed in this study resulted in a premature stop codon due to a shift of the open reading frame; hence, the mis-spliced Lr34r cDNAs were deduced to encode incomplete proteins. Even if a cultivar has a functional Lr34 gene, its transcripts might not completely splice in a correct pattern. These findings suggested that the partial resistance conferred by a quantitative gene might be due to mis-splicing events in its transcripts; hence, the resistance of the gene could be increased by eliminating or mutating regulators that cause mis-splicing events in wheat. PMID:28135317

  7. Evolutionary Insights into RNA trans-Splicing in Vertebrates

    PubMed Central

    Lei, Quan; Li, Cong; Zuo, Zhixiang; Huang, Chunhua; Cheng, Hanhua; Zhou, Rongjia

    2016-01-01

    Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint. PMID:26966239

  8. Splice-switching antisense oligonucleotides as therapeutic drugs

    PubMed Central

    Havens, Mallory A.; Hastings, Michelle L.

    2016-01-01

    Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA–RNA base-pairing or protein–RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials. PMID:27288447

  9. Evolutionary Insights into RNA trans-Splicing in Vertebrates.

    PubMed

    Lei, Quan; Li, Cong; Zuo, Zhixiang; Huang, Chunhua; Cheng, Hanhua; Zhou, Rongjia

    2016-03-10

    Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint.

  10. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes

    PubMed Central

    Lin, Jung-Chun

    2015-01-01

    Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed. PMID:26389882

  11. RNA Splicing: Regulation and Dysregulation in the Heart.

    PubMed

    van den Hoogenhof, Maarten M G; Pinto, Yigal M; Creemers, Esther E

    2016-02-05

    RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease.

  12. Nanopatterned muscle cell patches for enhanced myogenesis and dystrophin expression in a mouse model of muscular dystrophy.

    PubMed

    Yang, Hee Seok; Ieronimakis, Nicholas; Tsui, Jonathan H; Kim, Hong Nam; Suh, Kahp-Yang; Reyes, Morayma; Kim, Deok-Ho

    2014-02-01

    Skeletal muscle is a highly organized tissue in which the extracellular matrix (ECM) is composed of highly-aligned cables of collagen with nanoscale feature sizes, and provides structural and functional support to muscle fibers. As such, the transplantation of disorganized tissues or the direct injection of cells into muscles for regenerative therapy often results in suboptimal functional improvement due to a failure to integrate with native tissue properly. Here, we present a simple method in which biodegradable, biomimetic substrates with precisely controlled nanotopography were fabricated using solvent-assisted capillary force lithography (CFL) and were able to induce the proper development and differentiation of primary mononucleated cells to form mature muscle patches. Cells cultured on these nanopatterned substrates were highly-aligned and elongated, and formed more mature myotubes as evidenced by up-regulated expression of the myogenic regulatory factors Myf5, MyoD and myogenin (MyoG). When transplanted into mdx mice models for Duchenne muscular dystrophy (DMD), the proposed muscle patches led to the formation of a significantly greater number of dystrophin-positive muscle fibers, indicating that dystrophin replacement and myogenesis is achievable in vivo with this approach. These results demonstrate the feasibility of utilizing biomimetic substrates not only as platforms for studying the influences of the ECM on skeletal muscle function and maturation, but also to create transplantable muscle cell patches for the treatment of chronic and acute muscle diseases or injuries.

  13. In vivo single-molecule imaging identifies altered dynamics of calcium channels in dystrophin-mutant C. elegans

    PubMed Central

    Zhan, Hong; Stanciauskas, Ramunas; Stigloher, Christian; Dizon, Kevin K.; Jospin, Maelle; Bessereau, Jean-Louis; Pinaud, Fabien

    2014-01-01

    Single-molecule (SM) fluorescence microscopy allows the imaging of biomolecules in cultured cells with a precision of a few nanometres but has yet to be implemented in living adult animals. Here we used split-GFP (green fluorescent protein) fusions and complementation-activated light microscopy (CALM) for subresolution imaging of individual membrane proteins in live Caenorhabditis elegans (C. elegans). In vivo tissue-specific SM tracking of transmembrane CD4 and voltage-dependent Ca2+ channels (VDCC) was achieved with a precision of 30 nm within neuromuscular synapses and at the surface of muscle cells in normal and dystrophin-mutant worms. Through diffusion analyses, we reveal that dystrophin is involved in modulating the confinement of VDCC within sarcolemmal membrane nanodomains in response to varying tonus of C. elegans body-wall muscles. CALM expands the applications of SM imaging techniques beyond the petri dish and opens the possibility to explore the molecular basis of homeostatic and pathological cellular processes with subresolution precision, directly in live animals. PMID:25232639

  14. 100-fold but not 50-fold dystrophin overexpression aggravates electrocardiographic defects in the mdx model of Duchenne muscular dystrophy

    PubMed Central

    Yue, Yongping; Wasala, Nalinda B; Bostick, Brian; Duan, Dongsheng

    2016-01-01

    Dystrophin gene replacement holds the promise of treating Duchenne muscular dystrophy. Supraphysiological expression is a concern for all gene therapy studies. In the case of Duchenne muscular dystrophy, Chamberlain and colleagues found that 50-fold overexpression did not cause deleterious side effect in skeletal muscle. To determine whether excessive dystrophin expression in the heart is safe, we studied two lines of transgenic mdx mice that selectively expressed a therapeutic minidystrophin gene in the heart at 50-fold and 100-fold of the normal levels. In the line with 50-fold overexpression, minidystrophin showed sarcolemmal localization and electrocardiogram abnormalities were corrected. However, in the line with 100-fold overexpression, we not only detected sarcolemmal minidystrophin expression but also observed accumulation of minidystrophin vesicles in the sarcoplasm. Excessive minidystrophin expression did not correct tachycardia, a characteristic feature of Duchenne muscular dystrophy. Importantly, several electrocardiogram parameters (QT interval, QRS duration and the cardiomyopathy index) became worse than that of mdx mice. Our data suggests that the mouse heart can tolerate 50-fold minidystrophin overexpression, but 100-fold overexpression leads to cardiac toxicity. PMID:27419194

  15. Immobilization of Dystrophin and Laminin α2-Chain Deficient Zebrafish Larvae In Vivo Prevents the Development of Muscular Dystrophy.

    PubMed

    Li, Mei; Arner, Anders

    2015-01-01

    Muscular dystrophies are often caused by genetic alterations in the dystrophin-dystroglycan complex or its extracellular ligands. These structures are associated with the cell membrane and provide mechanical links between the cytoskeleton and the matrix. Mechanical stress is considered a pathological mechanism and muscle immobilization has been shown to be beneficial in some mouse models of muscular dystrophy. The zebrafish enables novel and less complex models to examine the effects of extended immobilization or muscle relaxation in vivo in different dystrophy models. We have examined effects of immobilization in larvae from two zebrafish strains with muscular dystrophy, the Sapje dystrophin-deficient and the Candyfloss laminin α2-chain-deficient strains. Larvae (4 days post fertilization, dpf) of both mutants have significantly lower active force in vitro, alterations in the muscle structure with gaps between muscle fibers and altered birefringence patterns compared to their normal siblings. Complete immobilization (18 hrs to 4 dpf) was achieved using a small molecular inhibitor of actin-myosin interaction (BTS, 50 μM). This treatment resulted in a significantly weaker active contraction at 4 dpf in both mutated larvae and normal siblings, most likely reflecting a general effect of immobilization on myofibrillogenesis. The immobilization also significantly reduced the structural damage in the mutated strains, showing that muscle activity is an important pathological mechanism. Following one-day washout of BTS, muscle tension partly recovered in the Candyfloss siblings and caused structural damage in these mutants, indicating activity-induced muscle recovery and damage, respectively.

  16. Myogenic Akt signaling attenuates muscular degeneration, promotes myofiber regeneration and improves muscle function in dystrophin-deficient mdx mice

    PubMed Central

    Kim, Michelle H.; Kay, Danielle I.; Rudra, Renuka T.; Chen, Bo Ming; Hsu, Nigel; Izumiya, Yasuhiro; Martinez, Leonel; Spencer, Melissa J.; Walsh, Kenneth; Grinnell, Alan D.; Crosbie, Rachelle H.

    2011-01-01

    Duchenne muscular dystrophy, the most common form of childhood muscular dystrophy, is caused by X-linked inherited mutations in the dystrophin gene. Dystrophin deficiencies result in the loss of the dystrophin–glycoprotein complex at the plasma membrane, which leads to structural instability and muscle degeneration. Previously, we induced muscle-specific overexpression of Akt, a regulator of cellular metabolism and survival, in mdx mice at pre-necrotic (<3.5 weeks) ages and demonstrated upregulation of the utrophin–glycoprotein complex and protection against contractile-induced stress. Here, we found that delaying exogenous Akt treatment of mdx mice after the onset of peak pathology (>6 weeks) similarly increased the abundance of compensatory adhesion complexes at the extrasynaptic sarcolemma. Akt introduction after onset of pathology reverses the mdx histopathological measures, including decreases in blood serum albumin infiltration. Akt also improves muscle function in mdx mice as demonstrated through in vivo grip strength tests and in vitro contraction measurements of the extensor digitorum longus muscle. To further explore the significance of Akt in myofiber regeneration, we injured wild-type muscle with cardiotoxin and found that Akt induced a faster regenerative response relative to controls at equivalent time points. We demonstrate that Akt signaling pathways counteract mdx pathogenesis by enhancing endogenous compensatory mechanisms. These findings provide a rationale for investigating the therapeutic activation of the Akt pathway to counteract muscle wasting. PMID:21245083

  17. Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors

    NASA Technical Reports Server (NTRS)

    Cai, B.; Spencer, M. J.; Nakamura, G.; Tseng-Ong, L.; Tidball, J. G.

    2000-01-01

    Previous investigations have shown that cytotoxic T lymphocytes (CTLs) contribute to muscle pathology in the dystrophin-null mutant mouse (mdx) model of Duchenne muscular dystrophy through perforin-dependent and perforin-independent mechanisms. We have assessed whether the CTL-mediated pathology includes the promotion of eosinophilia in dystrophic muscle, and thereby provides a secondary mechanism through which CTLs contribute to muscular dystrophy. Quantitative immunohistochemistry confirmed that eosinophilia is a component of the mdx dystrophy. In addition, electron microscopic observations show that eosinophils traverse the basement membrane of mdx muscle fibers and display sites of close apposition of eosinophil and muscle membranes. The close membrane apposition is characterized by impingement of eosinophilic rods of major basic protein into the muscle cell membrane. Transfer of mdx splenocytes and mdx muscle extracts to irradiated C57 mice by intraperitoneal injection resulted in muscle eosinophilia in the recipient mice. Double-mutant mice lacking dystrophin and perforin showed less eosinophilia than was displayed by mdx mice that expressed perforin. Finally, administration of prednisolone, which has been shown previously to reduce the concentration of CTLs in dystrophic muscle, produced a significant reduction in eosinophilia. These findings indicate that eosinophilia is a component of the mdx pathology that is promoted by perforin-dependent cytotoxicity of effector T cells. However, some eosinophilia of mdx muscle is independent of perforin-mediated processes.

  18. Sparing of the dystrophin-deficient cranial sartorius muscle is associated with classical and novel hypertrophy pathways in GRMD dogs.

    PubMed

    Nghiem, Peter P; Hoffman, Eric P; Mittal, Priya; Brown, Kristy J; Schatzberg, Scott J; Ghimbovschi, Svetlana; Wang, Zuyi; Kornegay, Joe N

    2013-11-01

    Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be detrimental. Serial biopsies from the hypertrophied CS and other atrophied muscles were studied in a subset of these dogs. Myostatin showed an age-dependent decrease and an inverse correlation with the degree of GRMD CS hypertrophy. Regulators of myostatin at the protein (AKT1) and miRNA (miR-539 and miR-208b targeting myostatin mRNA) levels were altered in GRMD CS, consistent with down-regulation of myostatin signaling, CS hypertrophy, and functional rescue of this muscle. mRNA and proteomic profiling was used to identify additional candidate genes associated with CS hypertrophy. The top-ranked network included α-dystroglycan and like-acetylglucosaminyltransferase. Proteomics demonstrated increases in myotrophin and spectrin that could promote hypertrophy and cytoskeletal stability, respectively. Our results suggest that multiple pathways, including decreased myostatin and up-regulated miRNAs, α-dystroglycan/like-acetylglucosaminyltransferase, spectrin, and myotrophin, contribute to hypertrophy and functional sparing of the CS. These data also underscore the muscle-specific responses to dystrophin deficiency and the potential deleterious effects of differential muscle involvement.

  19. Translation from a DMD exon 5 IRES results in a functional dystrophin isoform that attenuates dystrophinopathy in humans and mice.

    PubMed

    Wein, Nicolas; Vulin, Adeline; Falzarano, Maria S; Szigyarto, Christina Al-Khalili; Maiti, Baijayanta; Findlay, Andrew; Heller, Kristin N; Uhlén, Mathias; Bakthavachalu, Baskar; Messina, Sonia; Vita, Giuseppe; Passarelli, Chiara; Brioschi, Simona; Bovolenta, Matteo; Neri, Marcella; Gualandi, Francesca; Wilton, Steve D; Rodino-Klapac, Louise R; Yang, Lin; Dunn, Diane M; Schoenberg, Daniel R; Weiss, Robert B; Howard, Michael T; Ferlini, Alessandra; Flanigan, Kevin M

    2014-09-01

    Most mutations that truncate the reading frame of the DMD gene cause loss of dystrophin expression and lead to Duchenne muscular dystrophy. However, amelioration of disease severity has been shown to result from alternative translation initiation beginning in DMD exon 6 that leads to expression of a highly functional N-truncated dystrophin. Here we demonstrate that this isoform results from usage of an internal ribosome entry site (IRES) within exon 5 that is glucocorticoid inducible. We confirmed IRES activity by both peptide sequencing and ribosome profiling in muscle from individuals with minimal symptoms despite the presence of truncating mutations. We generated a truncated reading frame upstream of the IRES by exon skipping, which led to synthesis of a functional N-truncated isoform in both human subject-derived cell lines and in a new DMD mouse model, where expression of the truncated isoform protected muscle from contraction-induced injury and corrected muscle force to the same level as that observed in control mice. These results support a potential therapeutic approach for patients with mutations within the 5' exons of DMD.

  20. Three-Dimensional Regulation of Radial Glial Functions by Lis1-Nde1 and Dystrophin Glycoprotein Complexes

    PubMed Central

    Pawlisz, Ashley S.; Feng, Yuanyi

    2011-01-01

    Radial glial cells (RGCs) are distinctive neural stem cells with an extraordinary slender bipolar morphology and dual functions as precursors and migration scaffolds for cortical neurons. Here we show a novel mechanism by which the Lis1-Nde1 complex maintains RGC functions through stabilizing the dystrophin/dystroglycan glycoprotein complex (DGC). A direct interaction between Nde1 and utrophin/dystrophin allows for the assembly of a multi-protein complex that links the cytoskeleton to the extracellular matrix of RGCs to stabilize their lateral membrane, cell-cell adhesion, and radial morphology. Lis1-Nde1 mutations destabilized the DGC and resulted in deformed, disjointed RGCs and disrupted basal lamina. Besides impaired RGC self-renewal and neuronal migration arrests, Lis1-Nde1 deficiencies also led to neuronal over-migration. Additional to phenotypic resemblances of Lis1-Nde1 with DGC, strong synergistic interactions were found between Nde1 and dystroglycan in RGCs. As functional insufficiencies of LIS1, NDE1, and dystroglycan all cause lissencephaly syndromes, our data demonstrated that a three-dimensional regulation of RGC's cytoarchitecture by the Lis1-Nde1-DGC complex determines the number and spatial organization of cortical neurons as well as the size and shape of the cerebral cortex. PMID:22028625

  1. Identification of cis-acting elements and splicing factors involved in the regulation of BIM Pre-mRNA splicing.

    PubMed

    Juan, Wen Chun; Roca, Xavier; Ong, S Tiong

    2014-01-01

    Aberrant changes in the expression of the pro-apoptotic protein, BCL-2-like 11 (BIM), can result in either impaired or excessive apoptosis, which can contribute to tumorigenesis and degenerative disorders, respectively. Altering BIM pre-mRNA splicing is an attractive approach to modulate apoptosis because BIM activity is partly determined by the alternative splicing of exons 3 or 4, whereby exon 3-containing transcripts are not apoptotic. Here we identified several cis-acting elements and splicing factors involved in BIM alternative splicing, as a step to better understand the regulation of BIM expression. We analyzed a recently discovered 2,903-bp deletion polymorphism within BIM intron 2 that biased splicing towards exon 3, and which also impaired BIM-dependent apoptosis. We found that this region harbors multiple redundant cis-acting elements that repress exon 3 inclusion. Furthermore, we have isolated a 23-nt intronic splicing silencer at the 3' end of the deletion that is important for excluding exon 3. We also show that PTBP1 and hnRNP C repress exon 3 inclusion, and that downregulation of PTBP1 inhibited BIM-mediated apoptosis. Collectively, these findings start building our understanding of the cis-acting elements and splicing factors that regulate BIM alternative splicing, and also suggest potential approaches to alter BIM splicing for therapeutic purposes.

  2. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules.

    PubMed

    Berkers, Celia R; de Jong, Annemieke; Schuurman, Karianne G; Linnemann, Carsten; Meiring, Hugo D; Janssen, Lennert; Neefjes, Jacques J; Schumacher, Ton N M; Rodenko, Boris; Ovaa, Huib

    2015-11-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I-restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags.

  3. Evaluation of a 5-tier scheme proposed for classification of sequence variants using bioinformatic and splicing assay data: inter-reviewer variability and promotion of minimum reporting guidelines.

    PubMed

    Walker, Logan C; Whiley, Phillip J; Houdayer, Claude; Hansen, Thomas V O; Vega, Ana; Santamarina, Marta; Blanco, Ana; Fachal, Laura; Southey, Melissa C; Lafferty, Alan; Colombo, Mara; De Vecchi, Giovanna; Radice, Paolo; Spurdle, Amanda B

    2013-10-01

    Splicing assays are commonly undertaken in the clinical setting to assess the clinical relevance of sequence variants in disease predisposition genes. A 5-tier classification system incorporating both bioinformatic and splicing assay information was previously proposed as a method to provide consistent clinical classification of such variants. Members of the ENIGMA Consortium Splicing Working Group undertook a study to assess the applicability of the scheme to published assay results, and the consistency of classifications across multiple reviewers. Splicing assay data were identified for 235 BRCA1 and 176 BRCA2 unique variants, from 77 publications. At least six independent reviewers from research and/or clinical settings comprehensively examined splicing assay methods and data reported for 22 variant assays of 21 variants in four publications, and classified the variants using the 5-tier classification scheme. Inconsistencies in variant classification occurred between reviewers for 17 of the variant assays. These could be attributed to a combination of ambiguity in presentation of the classification criteria, differences in interpretation of the data provided, nonstandardized reporting of results, and the lack of quantitative data for the aberrant transcripts. We propose suggestions for minimum reporting guidelines for splicing assays, and improvements to the 5-tier splicing classification system to allow future evaluation of its performance as a clinical tool.

  4. Exon-skipped dystrophins for treatment of Duchenne muscular dystrophy: mass spectrometry mapping of most exons and cooperative domain designs based on single molecule mechanics.

    PubMed

    Krieger, Christine Carag; Bhasin, Nishant; Tewari, Manorama; Brown, Andre E X; Safer, Daniel; Sweeney, H Lee; Discher, Dennis E

    2010-12-01

    Force-bearing linkages between the cytoskeleton and extracellular matrix are clearly important to normal cell viability-as is evident in a disease such as Duchenne muscular dystrophy (DMD) which arises in the absence of the linkage protein dystrophin. Therapeutic approaches to DMD include antisense-mediated skipping of exons to delete nonsense mutations while maintaining reading frame, but the structure and stability of the resulting proteins are generally unclear. Here we use mass spectrometry to detect most dystrophin exons, and we express and physically characterize dystrophin "nano"-constructs based on multiexon deletions that might find use in a large percentage of DMD patients. The primary structure challenge is addressed first with liquid chromatography tandem mass spectrometry (LC-MS/MS) which can detect tryptic peptides from 53 of dystrophin's 79 exons; equivalent information from immunodetection would require 53 different high-specificity antibodies. Folding predictions for the nano-constructs reveal novel helical bundle domains that arise out of exon-deleted "linkers," while secondary structure studies confirm high helicity and also melting temperatures well above physiological. Extensional forces with an atomic force microscope nonetheless unfold the constructs, and the ensemble of unfolding trajectories reveal the number of folded domains, proving consistent with structure predictions. A mechanical cooperativity parameter for unfolding of tandem domains is also introduced as the best predictor of a multiexon deletion that is asymptomatic in humans. The results thereby provide insight and confidence in exon-skipped designs.

  5. Gentamicin treatment in exercised mdx mice: Identification of dystrophin-sensitive pathways and evaluation of efficacy in work-loaded dystrophic muscle.

    PubMed

    De Luca, Annamaria; Nico, Beatrice; Rolland, Jean-François; Cozzoli, Anna; Burdi, Rosa; Mangieri, Domenica; Giannuzzi, Viviana; Liantonio, Antonella; Cippone, Valentina; De Bellis, Michela; Nicchia, Grazia Paola; Camerino, Giulia Maria; Frigeri, Antonio; Svelto, Maria; Camerino, Diana Conte

    2008-11-01

    Aminoglycosides force read through of premature stop codon mutations and introduce new mutation-specific gene-corrective strategies in Duchenne muscular dystrophy. A chronic treatment with gentamicin (32 mg/kg/daily i.p., 8-12 weeks) was performed in exercised mdx mice with the dual aim to clarify the dependence on dystrophin of the functional, biochemical and histological alterations present in dystrophic muscle and to verify the long term efficiency of small molecule gene-corrective strategies in work-loaded dystrophic muscle. The treatment counteracted the exercise-induced impairment of in vivo forelimb strength after 6-8 weeks. We observed an increase in dystrophin expression level in all the fibers, although lower than that observed in normal fibers, and found a concomitant recovery of aquaporin-4 at sarcolemma. A significant reduction in centronucleated fibers, in the area of necrosis and in the percentage of nuclear factor-kB-positive nuclei was observed in gastrocnemious muscle of treated animals. Plasma creatine kinase was reduced by 70%. Ex vivo, gentamicin restored membrane ionic conductance in mdx diaphragm and limb muscle fibers. No effects were observed on the altered calcium homeostasis and sarcolemmal calcium permeability, detected by electrophysiological and microspectrofluorimetric approaches. Thus, the maintenance of a partial level of dystrophin is sufficient to reinforce sarcolemmal stability, reducing leakiness, inflammation and fiber damage, while correction of altered calcium homeostasis needs greater expression of dystrophin or direct interventions on the channels involved.

  6. Fetal microchimeric cells in a fetus-treats-its-mother paradigm do not contribute to dystrophin production in serially parous mdx females.

    PubMed

    Seppanen, Elke Jane; Hodgson, Samantha Susan; Khosrotehrani, Kiarash; Bou-Gharios, George; Fisk, Nicholas M

    2012-10-10

    Throughout every pregnancy, genetically distinct fetal microchimeric stem/progenitor cells (FMCs) engraft in the mother, persist long after delivery, and may home to damaged maternal tissues. Phenotypically normal fetal lymphoid progenitors have been described to develop in immunodeficient mothers in a fetus-treats-its-mother paradigm. Since stem cells contribute to muscle repair, we assessed this paradigm in the mdx mouse model of Duchenne muscular dystrophy. mdx females were bred serially to either ROSAeGFP males or mdx males to obtain postpartum microchimeras that received either wild-type FMCs or dystrophin-deficient FMCs through serial gestations. To enhance regeneration, notexin was injected into the tibialis anterior of postpartum mice. FMCs were detected by qPCR at a higher frequency in injected compared to noninjected side muscle (P=0.02). However, the number of dystrophin-positive fibers was similar in mothers delivering wild-type compared to mdx pups. In addition, there was no correlation between FMC detection and percentage dystrophin, and no GFP+ve FMCs were identified that expressed dystrophin. In 10/11 animals, GFP+ve FMCs were detected by immunohistochemistry, of which 60% expressed CD45 with 96% outside the basal lamina defining myofiber contours. Finally we confirmed lack of FMC contribution to statellite cells in postpartum mdx females mated with Myf5-LacZ males. We conclude that the FMC contribution to regenerating muscles is insufficient to have a functional impact.

  7. Concurrent Label-Free Mass Spectrometric Analysis of Dystrophin Isoform Dp427 and the Myofibrosis Marker Collagen in Crude Extracts from mdx-4cv Skeletal Muscles

    PubMed Central

    Murphy, Sandra; Zweyer, Margit; Mundegar, Rustam R.; Henry, Michael; Meleady, Paula; Swandulla, Dieter; Ohlendieck, Kay

    2015-01-01

    The full-length dystrophin protein isoform of 427 kDa (Dp427), the absence of which represents the principal abnormality in X-linked muscular dystrophy, is difficult to identify and characterize by routine proteomic screening approaches of crude tissue extracts. This is probably related to its large molecular size, its close association with the sarcolemmal membrane, and its existence within a heterogeneous glycoprotein complex. Here, we used a careful extraction procedure to isolate the total protein repertoire from normal versus dystrophic mdx-4cv skeletal muscles, in conjunction with label-free mass spectrometry, and successfully identified Dp427 by proteomic means. In contrast to a considerable number of previous comparative studies of the total skeletal muscle proteome, using whole tissue proteomics we show here for the first time that the reduced expression of this membrane cytoskeletal protein is the most significant alteration in dystrophinopathy. This agrees with the pathobiochemical concept that the almost complete absence of dystrophin is the main defect in Duchenne muscular dystrophy and that the mdx-4cv mouse model of dystrophinopathy exhibits only very few revertant fibers. Significant increases in collagens and associated fibrotic marker proteins, such as fibronectin, biglycan, asporin, decorin, prolargin, mimecan, and lumican were identified in dystrophin-deficient muscles. The up-regulation of collagen in mdx-4cv muscles was confirmed by immunofluorescence microscopy and immunoblotting. Thus, this is the first mass spectrometric study of crude tissue extracts that puts the proteomic identification of dystrophin in its proper pathophysiological context. PMID:28248273

  8. Absence of Dystrophin Disrupts Skeletal Muscle Signaling: Roles of Ca2+, Reactive Oxygen Species, and Nitric Oxide in the Development of Muscular Dystrophy

    PubMed Central

    Allen, David G.; Whitehead, Nicholas P.; Froehner, Stanley C.

    2015-01-01

    Dystrophin is a long rod-shaped protein that connects the subsarcolemmal cytoskeleton to a complex of proteins in the surface membrane (dystrophin protein complex, DPC), with further connections via laminin to other extracellular matrix proteins. Initially considered a structural complex that protected the sarcolemma from mechanical damage, the DPC is now known to serve as a scaffold for numerous signaling proteins. Absence or reduced expression of dystrophin or many of the DPC components cause the muscular dystrophies, a group of inherited diseases in which repeated bouts of muscle damage lead to atrophy and fibrosis, and eventually muscle degeneration. The normal function of dystrophin is poorly defined. In its absence a complex series of changes occur with multiple muscle proteins showing reduced or increased expression or being modified in various ways. In this review, we will consider the various proteins whose expression and function is changed in muscular dystrophies, focusing on Ca2+-permeable channels, nitric oxide synthase, NADPH oxidase, and caveolins. Excessive Ca2+ entry, increased membrane permeability, disordered caveolar function, and increased levels of reactive oxygen species are early changes in the disease, and the hypotheses for these phenomena will be critically considered. The aim of the review is to define the early damage pathways in muscular dystrophy which might be appropriate targets for therapy designed to minimize the muscle degeneration and slow the progression of the disease. PMID:26676145

  9. More deletions in the 5{prime} region than in the central region of the dystrophin gene were identified among Filipino Duchenne and Becker muscular dystrophy patients

    SciTech Connect

    1995-11-06

    This report describes mutations in the dystrophin gene and the frequency of these mutations in Filipino pedigrees with Duchenne and Becker muscular dystrophy (DMD/BMD). The findings suggest the presence of genetic variability among DMD/BMD patients in different populations. 13 refs., 1 tab.

  10. Biomedical Impact of Splicing Mutations Revealed through Exome Sequencing

    PubMed Central

    Taneri, Bahar; Asilmaz, Esra; Gaasterland, Terry

    2012-01-01

    Splicing is a cellular mechanism, which dictates eukaryotic gene expression by removing the noncoding introns and ligating the coding exons in the form of a messenger RNA molecule. Alternative splicing (AS) adds a major level of complexity to this mechanism and thus to the regulation of gene expression. This widespread cellular phenomenon generates multiple messenger RNA isoforms from a single gene, by utilizing alternative splice sites and promoting different exon–intron inclusions and exclusions. AS greatly increases the coding potential of eukaryotic genomes and hence contributes to the diversity of eukaryotic proteomes. Mutations that lead to disruptions of either constitutive splicing or AS cause several diseases, among which are myotonic dystrophy and cystic fibrosis. Aberrant splicing is also well established in cancer states. Identification of rare novel mutations associated with splice-site recognition, and splicing regulation in general, could provide further insight into genetic mechanisms of rare diseases. Here, disease relevance of aberrant splicing is reviewed, and the new methodological approach of starting from disease phenotype, employing exome sequencing and identifying rare mutations affecting splicing regulation is described. Exome sequencing has emerged as a reliable method for finding sequence variations associated with various disease states. To date, genetic studies using exome sequencing to find disease-causing mutations have focused on the discovery of nonsynonymous single nucleotide polymorphisms that alter amino acids or introduce early stop codons, or on the use of exome sequencing as a means to genotype known single nucleotide polymorphisms. The involvement of splicing mutations in inherited diseases has received little attention and thus likely occurs more frequently than currently estimated. Studies of exome sequencing followed by molecular and bioinformatic analyses have great potential to reveal the high impact of splicing

  11. Modulation of RNA splicing as a potential treatment for cancer.

    PubMed

    Bauman, John A; Kole, Ryszard

    2011-01-01

    Close to 90% of human genes are transcribed into pre-mRNA that undergoes alternative splicing, producing multiple mRNAs and proteins from single genes. This process is largely responsible for human proteome diversity, and about half of genetic disease-causing mutations affect splicing. Splice-switching oligonucleotides (SSOs) comprise an emerging class of antisense therapeutics that modify gene expression by directing pre-mRNA splice site usage. Bauman et al. investigated an SSO that up-regulated the expression of an anti-cancer splice variant while simultaneously eliminating an over-expressed cancer-causing splice variant.  This was accomplished by targeting pre-mRNA of the apoptotic regulator Bcl-x, which is alternatively spliced to express anti- and pro-apoptotic splice variants Bcl-xL and Bcl-xS, respectively. High expression of Bcl-xL is a hallmark of many cancers and is considered a general mechanism used by cancer cells to evade apoptosis. Redirection of Bcl-x pre-mRNA splicing from Bcl-xL to -xS by SSO induced apoptotic and chemosensitizing effects in various cancer cell lines. Importantly, the paper shows that delivery of Bcl-x SSO using a lipid nanoparticle redirected Bcl-x splicing and reduced tumor burden in melanoma lung metastases. This was the first demonstration of SSO efficacy in tumors in vivo. SSOs are not limited to be solely potential anti-cancer drugs. SSOs were first applied to repair aberrant splicing in thalassemia, a genetic disease, they have been used to create novel proteins (e.g., ∆7TNFR1), and they have recently progressed to clinical trials for patients with Duchenne muscular dystrophy. 

  12. Splicing factor TRA2B is required for neural progenitor survival

    PubMed Central

    Roberts, Jacqueline M; Ennajdaoui, Hanane; Edmondson, Carina; Wirth, Brunhilde; Sanford, Jeremy; Chen, Bin

    2013-01-01

    Alternative splicing of pre-mRNAs can rapidly regulate the expression of large groups of proteins. The RNA binding protein TRA2B (SFRS10) plays well-established roles in developmentally regulated alternative splicing during Drosophila sexual differentiation. TRA2B is also essential for mammalian embryogenesis and is implicated in numerous human diseases. Precise regulation of alternative splicing is critical to the development and function of the central nervous system; however the requirements for specific splicing factors in neurogenesis are poorly understood. In this study we focus on the role of TRA2B in mammalian brain development. We show that, during murine cortical neurogenesis, TRA2B is expressed in both neural progenitors and cortical projection neurons. Using cortex-specific Tra2b mutant mice, we find that TRA2B depletion results in apoptosis of the neural progenitor cells as well as disorganization of the cortical plate. Thus, TRA2B is essential for proper development of the cerebral cortex. PMID:23818142

  13. Fusion splicing: a novel approach to fiber connections for the Dark Energy Spectroscopic Instrument

    NASA Astrophysics Data System (ADS)

    Fagrelius, Parker; Poppett, Claire; Edelstein, Jerry

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the Baryon Acoustic Oscillation (BAO) technique and the growth of structure using redshift-space distortions (RSD). The spectra of 40 million galaxies over 14,000 square degrees will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers will run 50 meters from the focal plane to the coudé room where they feed ten broadband spectrographs. The focal plane assembly will be integrated separately from the spectrograph slits and long fiber cables in order to ease integration flow, and the two subsystems will be connected before final integration on the telescope. In order to retain maximum throughput and minimize the focal ratio degradation (FRD) when connecting the fiber system, we are employing fusion splicing as opposed to mechanical connectorization. For the best splice performance, the optical fibers are stripped of their polyimide coating, precision cleaved, and then fused with a heating filament. We report results from the splicing process, measuring a collimated FRD increase of less than 0.5 degrees for a f/3.9 input beam compared to >1 degree increase for mechanical connectors. We also show that the near field performance is minimally degraded after splicing. These results represent the first of their kind for a fiber-fed astronomical instrument.

  14. Single-molecule RNA observation in vivo reveals dynamics of co-transcriptional splicing

    NASA Astrophysics Data System (ADS)

    Ferguson, M. L.; Coulon, A.; de Turris, V.; Palangat, M.; Chow, C. C.; Singer, R. H.; Larson, D. R.

    2013-03-01

    The synthesis of pre-mRNA and the splicing of that pre-mRNA to form completed transcripts requires coordination between two large multi-subunit complexes (the transcription elongation complex and the spliceosome). How this coordination occurs in vivo is unknown. Here we report the first experimental observation of transcription and splicing occurring at the same gene in living cells. By utilizing the PP7/MS2 fluorescent RNA reporter system, we can directly observe two distinct regions of the nascent RNA, allowing us to measure the rise and fall time of the intron and exon of a reporter gene stably integrated into a human cell line. The reporter gene consists of a beta globin gene where we have inserted a 24 RNA hairpin cassette into the intron/exon. Upon synthesis, the RNA hairpins are tightly bound by fluorescently-labeled PP7/MS2 bacteriophage coat proteins. After gene induction, a single locus of active transcription in the nucleus shows fluorescence intensity changes characteristic of the synthesis and excision of the intron/exon. Using fluctuation analysis, we determine the elongation rate to be 1.5 kb/min. From the temporal cross correlation function, we determine that splicing of this gene must be co-transcriptional with a splicing time of ~100 seconds before termination and a ~200 second pause at termination. We propose that dual-color RNA imaging may be extended to investigate other mechanisms of transcription, gene regulation, and RNA processing.

  15. Splice connector with internal heat transfer jacket

    DOEpatents

    Silva, Frank A.; Mayer, Robert W.

    1977-01-01

    A heat transfer jacket is placed over the terminal portions of the conductors of a pair of high voltage cables which are connected in a splice connection wherein a housing surrounds the connected conductor portions, the heat transfer jacket extending longitudinally between the confronting ends of a pair of adaptor sleeves placed upon the insulation of the cables to engage and locate the adaptor sleeves relative to one another, and laterally between the conductors and the housing to provide a path of relatively high thermal conductivity between the connected conductor portions and the housing.

  16. Low frequency ultrasonic nondestructive inspection of aluminum/adhesive fuselage lap splices

    SciTech Connect

    Patton, Thadd

    1994-01-04

    This thesis is a collection of research efforts in ultrasonics, conducted at the Center for Aviation Systems Reliability located at Iowa State University, as part of the Federal Aviation Administration`s ``Aging Aircraft Program.`` The research was directed toward the development of an ultrasonic prototype to inspect the aluminum/adhesive fuselage lap splices found on 1970`s vintage Boeing passenger aircraft. The ultrasonic prototype consists of a normal incidence, low frequency inspection technique, and a scanning adapter that allows focused immersion transducers to be operated in a direct contact manner in any inspection orientation, including upside-down. The inspection technique uses a computer-controlled data acquisition system to produce a C-scan image of a radio frequency (RF) waveform created by a low frequency, broadband, focused beam transducer, driven with a spike voltage pulser. C-scans produced by this technique are color representations of the received signal`s peak-to-peak amplitude (voltage) taken over an (x, y) grid. Low frequency, in this context, refers to a wavelength that is greater than the lap splice`s layer thicknesses. With the low frequency technique, interface echoes of the lap splice are not resolved and gating of the signal is unnecessary; this in itself makes the technique simple to implement and saves considerable time in data acquisition. Along with the advantages in data acquisition, the low frequency technique is relatively insensitive to minor surface curvature and to ultrasonic interference effects caused by adhesive bondline thickness variations in the lap splice.

  17. The N- and C-Terminal Domains Differentially Contribute to the Structure and Function of Dystrophin and Utrophin Tandem Calponin-Homology Domains.

    PubMed

    Singh, Surinder M; Bandi, Swati; Mallela, Krishna M G

    2015-11-24

    Dystrophin and utrophin are two muscle proteins involved in Duchenne/Becker muscular dystrophy. Both proteins use tandem calponin-homology (CH) domains to bind to F-actin. We probed the role of N-terminal CH1 and C-terminal CH2 domains in the structure and function of dystrophin tandem CH domain and compared with our earlier results on utrophin to understand the unifying principles of how tandem CH domains work. Actin cosedimentation assays indicate that the isolated CH2 domain of dystrophin weakly binds to F-actin compared to the full-length tandem CH domain. In contrast, the isolated CH1 domain binds to F-actin with an affinity similar to that of the full-length tandem CH domain. Thus, the obvious question is why the dystrophin tandem CH domain requires CH2, when its actin binding is determined primarily by CH1. To answer, we probed the structural stabilities of CH domains. The isolated CH1 domain is very unstable and is prone to serious aggregation. The isolated CH2 domain is very stable, similar to the full-length tandem CH domain. These results indicate that the main role of CH2 is to stabilize the tandem CH domain structure. These conclusions from dystrophin agree with our earlier results on utrophin, indicating that this phenomenon of differential contribution of CH domains to the structure and function of tandem CH domains may be quite general. The N-terminal CH1 domains primarily determine the actin binding function whereas the C-terminal CH2 domains primarily determine the structural stability of tandem CH domains, and the extent of stabilization depends on the strength of inter-CH domain interactions.

  18. Distribution of components of basal lamina and dystrophin-dystroglycan complex in the rat pineal gland: differences from the brain tissue and between the subdivisions of the gland.

    PubMed

    Bagyura, Zsolt; Pócsai, Károly; Kálmán, Mihály

    2010-01-01

    The pineal gland is an evagination of the brain tissue, a circumventricular neuroendocrine organ. Our immunohistochemical study investigates basal lamina components (laminin, agrin, perlecan, fibronectin), their receptor, the dystrophin-dystroglycan complex (beta-dystroglycan, dystrophin utrophin), aquaporins (-4,-9) and cellular markers (S100, neurofilament, GFAP, glutamine synthetase) in the adult rat corpus pineale. The aim was to compare the immunohistochemical features of the cerebral and pineal vessels and their environment, and to compare their features in the distal and proximal subdivisions of the so-called 'superficial pineal gland'. In contrast to the cerebral vessels, pineal vessels proved to be immunonegative to alpha1-dystrobrevin, but immunoreactive to laminin. An inner, dense, and an outer, loose layer of laminin as two basal laminae were present. The gap between them contained agrin and perlecan. Basal lamina components enmeshed the pinealocytes, too. Components of dystrophin-dystroglycan complex were also distributed along the vessels. Dystrophin, utrophin and agrin gave a 'patchy' distribution rather than a continuous one. The vessels were interconnected by wing-like structures, composed of basal lamina-components: a delicate network forming nests for cells. Cells immunostained with glutamine synthetase, S100-protein or neurofilament protein contacted the vessels, as well as GFAP- or aquaporin-immunostained astrocytes. Within the body a smaller, proximal, GFAP-and aquaporin-containing subdivision, and a larger, distal, GFAP-and aquaporin-free subdivision could be distinguished. The vascular localization of agrin and utrophin, as well as dystrophin, delineated vessels unequally, preferring the proximal or distal end of the body, respectively.

  19. Identification of a novel first exon in the human dystrophin gene and of a new promoter located more than 500 kb upstream of the nearest known promoter

    SciTech Connect

    Yanagawa, H.; Nishio, H.; Takeshima, Y.

    1994-09-01

    The dystrophin gene, which is muted in patients with Duchenne and Becker muscular dystrophies, is the largest known human gene. Five alternative promoters have been characterized until now. Here we show that a novel dystrophin isoform with a different first exon can be produced through transcription initiation at a previously-unidentified alternative promoter. The case study presented is that of patient with Duchenne muscular dystrophy who had a deletion extending from 5{prime} end of the dystrophin gene to exon 2, including all promoters previously mapped in the 5{prime} part of the gene. Transcripts from lymphoblastoid cells were found to contain sequences corresponding to exon 3, indicating the presence of new promoter upstream of this exon. The nucleotide sequence of amplified cDNA corresponding to the 5{prime} end of the new transcript indicated that the 5{prime} end of exon 3 was extended by 9 codons, only the last (most 3{prime}) of which codes for methionine. The genomic nucleotide sequence upstream from the new exon, as determined using inverse polymerase chain reaction, revealed the presence of sequences similar to a TATA box, an octamer motif and an MEF-2 element. The identified promoter/exon did not map to intron 2, as might have been expected, but to a position more than 500 kb upstream of the most 5{prime} of the previously-identified promoters, thereby adding 500 kb to the dystrophin gene. The sequence of part of the new promoter region is very similar to that of certain medium reiteration frequency repetitive sequences. These findings may help us understand the molecular evolution of the dystrophin gene.

  20. Arabidopsis orthologs of maize chloroplast splicing factors promote splicing of orthologous and species-specific group II introns.

    PubMed

    Asakura, Yukari; Barkan, Alice

    2006-12-01

    Chloroplast genomes in plants and green algae contain numerous group II introns, large ribozymes that splice via the same chemical steps as spliceosome-mediated splicing in the nucleus. Most chloroplast group II introns are degenerate, requiring interaction with nucleus-encoded proteins to splice in vivo. Genetic approaches in maize (Zea mays) and Chlamydomonas reinhardtii have elucidated distinct sets of proteins that assemble with chloroplast group II introns and facilitate splicing. Little information is available, however, concerning these processes in Arabidopsis (Arabidopsis thaliana). To determine whether the paucity of data concerning chloroplast splicing factors in Arabidopsis reflects a fundamental difference between protein-facilitated group II splicing in monocot and dicot plants, we examined the mutant phenotypes associated with T-DNA insertions in Arabidopsis genes encoding orthologs of the maize chloroplast splicing factors CRS1, CAF1, and CAF2 (AtCRS1, AtCAF1, and AtCAF2). We show that the splicing functions and intron specificities of these proteins are largely conserved between maize and Arabidopsis, indicating that these proteins were recruited to promote the splicing of plastid group II introns prior to the divergence of monocot and dicot plants. We show further that AtCAF1 promotes the splicing of two group II introns, rpoC1 and clpP-intron 1, that are found in Arabidopsis but not in maize; AtCAF1 is the first splicing factor described for these introns. Finally, we show that a strong AtCAF2 allele conditions an embryo-lethal phenotype, adding to the body of data suggesting that cell viability is more sensitive to the loss of plastid translation in Arabidopsis than in maize.

  1. Splicing enhancement in the yeast rp51b intron.

    PubMed Central

    Libri, D; Lescure, A; Rosbash, M

    2000-01-01

    Splicing enhancement in higher eukaryotes has been linked to SR proteins, to U1 snRNP, and to communication between splice sites across introns or exons mediated by protein-protein interactions. It has been previously shown that, in yeast, communication mediated by RNA-RNA interactions between the two ends of introns is a basis for splicing enhancement. We designed experiments of randomization-selection to isolate splicing enhancers that would work independently from RNA secondary structures. Surprisingly, one of the two families of sequences selected was essentially composed of 5' splice site variants. We show that this sequence enhances splicing independently of secondary structure, is exportable to heterologous contexts, and works in multiple copies with additive effects. The data argue in favor of an early role for splicing enhancement, possibly coincident with commitment complex formation. Genetic compensation experiments with U1 snRNA mutants suggest that U1 snRNP binding to noncanonical locations is required for splicing enhancement. PMID:10744020

  2. A Broad Set of Chromatin Factors Influences Splicing

    PubMed Central

    Allemand, Eric; Myers, Michael P.; Garcia-Bernardo, Jose; Harel-Bellan, Annick; Krainer, Adrian R.; Muchardt, Christian

    2016-01-01

    Several studies propose an influence of chromatin on pre-mRNA splicing, but it is still unclear how widespread and how direct this phenomenon is. We find here that when assembled in vivo, the U2 snRNP co-purifies with a subset of chromatin-proteins, including histones and remodeling complexes like SWI/SNF. Yet, an unbiased RNAi screen revealed that the outcome of splicing is influenced by a much larger variety of chromatin factors not all associating with the spliceosome. The availability of this broad range of chromatin factors impacting splicing further unveiled their very context specific effect, resulting in either inclusion or skipping, depending on the exon under scrutiny. Finally, a direct assessment of the impact of chromatin on splicing using an in vitro co-transcriptional splicing assay with pre-mRNAs transcribed from a nucleosomal template, demonstrated that chromatin impacts nascent pre-mRNP in their competence for splicing. Altogether, our data show that numerous chromatin factors associated or not with the spliceosome can affect the outcome of splicing, possibly as a function of the local chromatin environment that by default interferes with the efficiency of splicing. PMID:27662573

  3. Scattering of acoustic duct modes by axial liner splices

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Ju, Hongbin; Chien, Eugene W.

    2008-03-01

    Recent engine test data and results of computational analysis show that the engine inlet acoustic liner splices have a significant impact on aircraft flight noise certification and cabin noise levels. The phenomenon of scattering of acoustic duct modes by axial liner splices is investigated. Previous studies, invariably, follow the frequency-domain approach. The present study, however, uses the time-domain approach. It is demonstrated that time-domain computation yields results that are in close agreement with frequency-domain results. The scattering phenomenon under consideration is very complex. This study concentrates on the effects of four parameters. They are the width of the splices, the frequency of the incident duct mode, the number of splices and the length of splices. Based on the computed results, the conditions under which scattered wave modes would significantly increase the intensity of transmitted waves are identified. It is also found that surface scattering by liner splices has the tendency to distribute energy equally to all the cut-on scattered azimuthal modes. On the other hand, for each scattered azimuthal mode, the high-order cut-on radial mode, generally, has the highest intensity. Moreover, scattering by liner splices is a local phenomenon. It is confined primarily to an area of the duct adjacent to the junction between the hard wall near the fan face and the spliced liner.

  4. Connecting the dots: chromatin and alternative splicing in EMT

    PubMed Central

    Warns, Jessica A.; Davie, James R.; Dhasarathy, Archana

    2015-01-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process. PMID:26291837

  5. Connecting the dots: chromatin and alternative splicing in EMT.

    PubMed

    Warns, Jessica A; Davie, James R; Dhasarathy, Archana

    2016-02-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases, and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process.

  6. Alternative Splicing of STAT3 Is Affected by RNA Editing.

    PubMed

    Goldberg, Lior; Abutbul-Amitai, Mor; Paret, Gideon; Nevo-Caspi, Yael

    2017-03-09

    A-to-I RNA editing, carried out by adenosine deaminase acting on RNA (ADAR) enzymes, is an epigenetic phenomenon of posttranscriptional modifications on pre-mRNA. RNA editing in intronic sequences may influence alternative splicing of flanking exons. We have previously shown that conditions that induce editing result in elevated expression of signal transducer and activator of transcription 3 (STAT3), preferentially the alternatively-spliced STAT3β isoform. Mechanisms regulating alternative splicing of STAT3 have not been elucidated. STAT3 undergoes A-to-I RNA editing in an intron residing in proximity to the alternatively spliced exon. We hypothesized that RNA editing plays a role in regulating alternative splicing toward STAT3β. In this study we extend our observation connecting RNA editing to the preferential induction of STAT3β expression. We study the involvement of ADAR1 in STAT3 editing and reveal the connection between editing and alternative splicing of STAT3. Deferoaxamine treatment caused the induction in STAT3 RNA editing and STAT3β expression. Silencing ADAR1 caused a decrease in STAT3 editing and expression with a preferential decrease in STAT3β. Cells transfected with a mutated minigene showed preferential splicing toward the STAT3β transcript. Editing in the STAT3 intron is performed by ADAR1 and affects STAT3 alternative splicing. These results suggest that RNA editing is one of the molecular mechanisms regulating the expression of STAT3β.

  7. Cell-autonomous regulation of fast troponin T pre-mRNA alternative splicing in response to mechanical stretch.

    PubMed

    Schilder, Rudolf J; Kimball, Scot R; Jefferson, Leonard S

    2012-08-01

    How mechanochemical signals induced by the amount of weight borne by the skeletal musculature are translated into modifications to muscle sarcomeres is poorly understood. Our laboratory recently demonstrated that, in response to experimentally induced increases in the weight load borne by a rat, alternative splicing of the fast skeletal muscle troponin T (Tnnt3) pre-mRNA in gastrocnemius was adjusted in a correlated fashion with the amount of added weight. (Schilder RJ, Kimball SR, Marden JH, Jefferson LS. J Exp Biol 214: 1523-1532, 2011). Thus muscle load is perceived quantitatively by the body, and mechanisms that sense it appear to control processes that generate muscle sarcomere composition plasticity, such as alternative pre-mRNA splicing. Here we demonstrate how mechanical stretch (see earlier comment) of C2C12 muscle cells in culture results in changes to Tnnt3 pre-mRNA alternative splicing that are qualitatively similar to those observed in response to added weight in rats. Moreover, inhibition of Akt signaling, but not that of ERK1/2, prevents the stretch-induced effect on Tnnt3 pre-mRNA alternative splicing. These findings suggest that effects of muscle load on Tnnt3 pre-mRNA alternative splicing are controlled by a cell-autonomous mechanism, rather than systemically. They also indicate that, in addition to its regulatory role in protein synthesis and muscle mass plasticity, Akt signaling may regulate muscle sarcomere composition by modulating alternative splicing events in response to load. Manipulation of Tnnt3 pre-mRNA alternative splicing by mechanical stretch of cells in culture provides a model to investigate the biology of weight sensing by skeletal muscles and facilitates identification of mechanisms through which skeletal muscles match their performance and experienced load.

  8. Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain.

    PubMed

    Cheng, Tian-Lin; Chen, Jingqi; Wan, Huida; Tang, Bin; Tian, Weidong; Liao, Lujian; Qiu, Zilong

    2017-02-17

    Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system.

  9. Regulation of mRNA splicing by MeCP2 via epigenetic modifications in the brain

    PubMed Central

    Cheng, Tian-Lin; Chen, Jingqi; Wan, Huida; Tang, Bin; Tian, Weidong; Liao, Lujian; Qiu, Zilong

    2017-01-01

    Mutations of X-linked gene Methyl CpG binding protein 2 (MECP2) are the major causes of Rett syndrome (RTT), a severe neurodevelopmental disorder. Duplications of MECP2-containing genomic segments lead to severe autistic symptoms in human. MECP2-coding protein methyl-CpG-binding protein 2 (MeCP2) is involved in transcription regulation, microRNA processing and mRNA splicing. However, molecular mechanisms underlying the involvement of MeCP2 in mRNA splicing in neurons remain largely elusive. In this work we found that the majority of MeCP2-associated proteins are involved in mRNA splicing using mass spectrometry analysis with multiple samples from Mecp2-null rat brain, mouse primary neuron and human cell lines. We further showed that Mecp2 knockdown in cultured cortical neurons led to widespread alternations of mRNA alternative splicing. Analysis of ChIP-seq datasets indicated that MeCP2-regulated exons display specific epigenetic signatures, with DNA modification 5-hydroxymethylcytosine (5hmC) and histone modification H3K4me3 are enriched in down-regulated exons, while the H3K36me3 signature is enriched in exons up-regulated in Mecp2-knockdown neurons comparing to un-affected neurons. Functional analysis reveals that genes containing MeCP2-regulated exons are mainly involved in synaptic functions and mRNA splicing. These results suggested that MeCP2 regulated mRNA splicing through interacting with 5hmC and epigenetic changes in histone markers, and provide functional insights of MeCP2-mediated mRNA splicing in the nervous system. PMID:28211484

  10. Functional impact of splice isoform diversity in individual cells

    PubMed Central

    Yap, Karen; Makeyev, Eugene V.

    2016-01-01

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a ‘splicing noise’, co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. PMID:27528755

  11. [Alternative splicing regulation: implications in cancer diagnosis and treatment].

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora; Martínez-Contreras, Rebeca

    2015-04-08

    The accurate expression of the genetic information is regulated by processes like mRNA splicing, proposed after the discoveries of Phil Sharp and Richard Roberts, who demonstrated the existence of intronic sequences, present in almost every structural eukaryotic gene, which should be precisely removed. This intron removal is called "splicing", which generates different proteins from a single mRNA, with different or even antagonistic functions. We currently know that alternative splicing is the most important source of protein diversity, given that 70% of the human genes undergo splicing and that mutations causing defects in this process could originate up to 50% of genetic diseases, including cancer. When these defects occur in genes involved in cell adhesion, proliferation and cell cycle regulation, there is an impact on cancer progression, rising the opportunity to diagnose and treat some types of cancer according to a particular splicing profile.

  12. Differential Impacts of Alternative Splicing Networks on Apoptosis

    PubMed Central

    Lin, Jung-Chun; Tsao, Mei-Fen; Lin, Ying-Ju

    2016-01-01

    Apoptosis functions as a common mechanism to eliminate unnecessary or damaged cells during cell renewal and tissue development in multicellular organisms. More than 200 proteins constitute complex networks involved in apoptotic regulation. Imbalanced expressions of apoptosis-related factors frequently lead to malignant diseases. The biological functions of several apoptotic factors are manipulated through alternative splicing mechanisms which expand gene diversity by generating discrete variants from one messenger RNA precursor. It is widely observed that alternatively-spliced variants encoded from apoptosis-related genes exhibit differential effects on apoptotic regulation. Alternative splicing events are meticulously regulated by the interplay between trans-splicing factors and cis-responsive elements surrounding the regulated exons. The major focus of this review is to highlight recent studies that illustrate the influences of alternative splicing networks on apoptotic regulation which participates in diverse cellular processes and diseases. PMID:27983653

  13. RNA splicing factors as oncoproteins and tumor suppressors

    PubMed Central

    Dvinge, Heidi; Kim, Eunhee; Abdel-Wahab, Omar; Bradley, Robert K.

    2016-01-01

    Preface The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these ‘spliceosomal mutations’ suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic, and biological effects of spliceosomal mutations are critical for the development of cancer therapies targeted to these mutations. PMID:27282250

  14. Detecting Image Splicing Using Merged Features in Chroma Space

    PubMed Central

    Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature. PMID:24574877

  15. Detecting image splicing using merged features in chroma space.

    PubMed

    Xu, Bo; Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature.

  16. Functional impact of splice isoform diversity in individual cells.

    PubMed

    Yap, Karen; Makeyev, Eugene V

    2016-08-15

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a 'splicing noise', co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities.

  17. Temporal regulation of adenovirus major late alternative RNA splicing.

    PubMed

    Akusjarvi, Goran

    2008-05-01

    Adenovirus makes extensive use of alternative RNA splicing to produce a complex set of spliced mRNAs during replication. The accumulation of viral mRNAs is subjected to a temporal regulation, a mechanism that ensures that proteins that are needed at certain stages of the virus life cycle are produced in a timely fashion. The complex interactions between the virus and the host cell RNA splicing machinery has been studied in detail during the last decade. These studies have resulted in the characterization of two viral proteins, E4-ORF4 and L4-33K, that adenovirus uses to remodel the host cell RNA splicing machinery. Here I will review the current knowledge of how mRNA expression from the adenovirus major late transcription unit is controlled with a particular emphasis on how cis-acting sequence element, trans-acting factors and mechanisms regulating adenovirus major late L1 alternative RNA splicing is controlled.

  18. Structural analysis of Aircraft fuselage splice joint

    NASA Astrophysics Data System (ADS)

    Udaya Prakash, R.; Kumar, G. Raj; Vijayanandh, R.; Senthil Kumar, M.; Ramganesh, T.

    2016-09-01

    In Aviation sector, composite materials and its application to each component are one of the prime factors of consideration due to the high strength to weight ratio, design flexibility and non-corrosive so that the composite materials are widely used in the low weight constructions and also it can be treated as a suitable alternative to metals. The objective of this paper is to estimate and compare the suitability of a composite skin joint in an aircraft fuselage with different joints by simulating the displacement, normal stress, vonmises stress and shear stress with the help of numerical solution methods. The reference Z-stringer component of this paper is modeled by CATIA and numerical simulation is carried out by ANSYS has been used for splice joint presents in the aircraft fuselage with three combinations of joints such as riveted joint, bonded joint and hybrid joint. Nowadays the stringers are using to avoid buckling of fuselage skin, it has joined together by rivets and they are connected end to end by splice joint. Design and static analysis of three-dimensional models of joints such as bonded, riveted and hybrid are carried out and results are compared.

  19. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    PubMed

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species.

  20. Mechanisms and Regulation of Alternative Pre-mRNA Splicing

    PubMed Central

    Lee, Yeon

    2015-01-01

    Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052

  1. Influence of weather conditions on splicing process and parameters of splicing single-mode telecommunication fibers of different types

    NASA Astrophysics Data System (ADS)

    Ratuszek, Marek; Zakrzewski, Zbigniew; Majewski, Jacek; Strozecki, Stefan; Zalewski, Jozef; Konefal, Tadeusz; Kula, Witold

    1999-05-01

    Results of research on the influence of weather conditions (t equals 10 divided by 27 degree(s)C; H equals 30 divided by 90%) on the process of splicing of standard single mode fibers SM (G.652) and fibers with dispersion shifted DS (G.653) have been presented as well as the results of optimization of splicing SM and DS fibers.

  2. WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo

    SciTech Connect

    Markus, M. Andrea; Heinrich, Bettina; Raitskin, Oleg; Adams, David J.; Mangs, Helena; Goy, Christine; Ladomery, Michael; Sperling, Ruth; Stamm, Stefan; Morris, Brian J. . E-mail: brianm@medsci.usyd.edu.au

    2006-10-15

    Wilm's tumor protein 1 (WT1), a protein implicated in various cancers and developmental disorders, consists of two major isoforms: WT1(-KTS), a transcription factor, and WT1(+KTS), a post-transcriptional regulator that binds to RNA and can interact with splicing components. Here we show that WT1 interacts with the novel splicing regulator RBM4. Each protein was found to colocalize in nuclear speckles and to cosediment with supraspliceosomes in glycerol gradients. RBM4 conferred dose-dependent and cell-specific regulation of alternative splicing of pre-mRNAs transcribed from several reporter genes. We found that overexpressed WT1(+KTS) abrogated this effect of RBM4 on splice-site selection, whereas WT1(-KTS) did not. We conclude that the (+KTS) form of WT1 is able to inhibit the effect of RBM4 on alternative splicing.

  3. The High Level of Aberrant Splicing of ISCU in Slow-Twitch Muscle May Involve the Splicing Factor SRSF3

    PubMed Central

    Österman, Lennart; Lindsten, Hans; Holmberg, Monica

    2016-01-01

    Hereditary myopathy with lactic acidosis (HML) is an autosomal recessive disease caused by an intronic one-base mutation in the iron-sulfur cluster assembly (ISCU) gene, resulting in aberrant splicing. The incorrectly spliced transcripts contain a 100 or 86 bp intron sequence encoding a non-functional ISCU protein, which leads to defects in several Fe-S containing proteins in the respiratory chain and the TCA cycle. The symptoms in HML are restricted to skeletal muscle, and it has been proposed that this effect is due to higher levels of incorrectly spliced ISCU in skeletal muscle compared with other energy-demanding tissues. In this study, we confirm that skeletal muscle contains the highest levels of incorrect ISCU splice variants compared with heart, brain, liver and kidney using a transgenic mouse model expressing human HML mutated ISCU. We also show that incorrect splicing occurs to a significantly higher extent in the slow-twitch soleus muscle compared with the gastrocnemius and quadriceps. The splicing factor serine/arginine-rich splicing factor 3 (SRSF3) was identified as a potential candidate for the slow fiber specific regulation of ISCU splicing since this factor was expressed at higher levels in the soleus compared to the gastrocnemius and quadriceps. We identified an interaction between SRSF3 and the ISCU transcript, and by overexpressing SRSF3 in human myoblasts we observed increased levels of incorrectly spliced ISCU, while knockdown of SRSF3 resulted in decreased levels. We therefore suggest that SRSF3 may participate in the regulation of the incorrect splicing of mutant ISCU and may, at least partially, explain the muscle-specific symptoms of HML. PMID:27783661

  4. Identification of a Bidirectional Splicing Enhancer: Differential Involvement of SR Proteins in 5′ or 3′ Splice Site Activation

    PubMed Central

    Bourgeois, Cyril F.; Popielarz, Michel; Hildwein, Georges; Stevenin, James

    1999-01-01

    The adenovirus E1A pre-mRNA undergoes alternative splicing whose modulation occurs during infection, through the use of three different 5′ splice sites and of one major or one minor 3′ splice site. Although this pre-mRNA has been extensively used as a model to compare the transactivation properties of SR proteins, no cis-acting element has been identified in the transcript sequence. Here we describe the identification and the characterization of a purine-rich splicing enhancer, located just upstream of the 12S 5′ splice site, which is formed from two contiguous 9-nucleotide (nt) purine motifs (Pu1 and Pu2). We demonstrate that this sequence is a bidirectional splicing enhancer (BSE) in vivo and in vitro, because it activates both the downstream 12S 5′ splice site through the Pu1 motif and the upstream 216-nt intervening sequence (IVS) 3′ splice site through both motifs. UV cross-linking and immunoprecipitation experiments indicate that the BSE interacts with several SR proteins specifically, among them 9G8 and ASF/SF2, which bind preferentially to the Pu1 and Pu2 motifs, respectively. Interestingly, we show by in vitro complementation assays that SR proteins have distinct transactivatory properties. In particular, 9G8, but not ASF/SF2 or SC35, is able to strongly activate the recognition of the 12S 5′ splice site in a BSE-dependent manner in wild-type E1A or in a heterologous context, whereas ASF/SF2 or SC35, but not 9G8, activates the upstream 216-nt IVS splicing. Thus, our results identify a novel exonic BSE and the SR proteins which are involved in its differential activity. PMID:10523623

  5. Structure and function of splice variants of the cardiac voltage-gated sodium channel Na(v)1.5.

    PubMed

    Schroeter, Annett; Walzik, Stefan; Blechschmidt, Steve; Haufe, Volker; Benndorf, Klaus; Zimmer, Thomas

    2010-07-01

    Voltage-gated sodium channels mediate the rapid upstroke of the action potential in excitable tissues. The tetrodotoxin (TTX) resistant isoform Na(v)1.5, encoded by the SCN5A gene, is the predominant isoform in the heart. This channel plays a key role for excitability of atrial and ventricular cardiomyocytes and for rapid impulse propagation through the specific conduction system. During recent years, strong evidence has been accumulated in support of the expression of several Na(v)1.5 splice variants in the heart, and in various other tissues and cell lines including brain, dorsal root ganglia, breast cancer cells and neuronal stem cell lines. This review summarizes our knowledge on the structure and putative function of nine Na(v)1.5 splice variants detected so far. Attention will be paid to the distinct biophysical properties of the four functional splice variants, to the pronounced tissue- and species-specific expression, and to the developmental regulation of Na(v)1.5 splicing. The implications of alternative splicing for SCN5A channelopathies, and for a better understanding of genotype-phenotype correlations, are discussed.

  6. Evaluation of Skeletal and Cardiac Muscle Function after Chronic Administration of Thymosin β-4 in the Dystrophin Deficient Mouse

    PubMed Central

    Spurney, Christopher F.; Cha, Hee-Jae; Sali, Arpana; Pandey, Gouri S.; Pistilli, Emidio; Guerron, Alfredo D.; Gordish-Dressman, Heather; Hoffman, Eric P.; Nagaraju, Kanneboyina

    2010-01-01

    Thymosin beta-4 (Tβ4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. We studied the effects of chronic administration of Tβ4 on the skeletal and cardiac muscle of dystrophin deficient mdx mice, the mouse model of Duchenne muscular dystrophy. Female wild type (C57BL10/ScSnJ) and mdx mice, 8–10 weeks old, were treated with 150 µg of Tβ4 twice a week for 6 months. To promote muscle pathology, mice were exercised for 30 minutes twice a week. Skeletal and cardiac muscle function were assessed via grip strength and high frequency echocardiography. Localization of Tβ4 and amount of fibrosis were quantified using immunohistochemistry and Gomori's tri-chrome staining, respectively. Mdx mice treated with Tβ4 showed a significant increase in skeletal muscle regenerating fibers compared to untreated mdx mice. Tβ4 stained exclusively in the regenerating fibers of mdx mice. Although untreated mdx mice had significantly decreased skeletal muscle strength compared to untreated wild type, there were no significant improvements in mdx mice after treatment. Systolic cardiac function, measured as percent shortening fraction, was decreased in untreated mdx mice compared to untreated wild type and there was no significant difference after treatment in mdx mice. Skeletal and cardiac muscle fibrosis were also significantly increased in untreated mdx mice compared to wild type, but there was no significant improvement in treated mdx mice. In exercised dystrophin deficient mice, chronic administration of Tβ4 increased the number of regenerating fibers in skeletal muscle and could have a potential role in treatment of skeletal muscle disease in Duchenne muscular dystrophy. PMID:20126456

  7. Motor Physical Therapy Affects Muscle Collagen Type I and Decreases Gait Speed in Dystrophin-Deficient Dogs

    PubMed Central

    Gaiad, Thaís P.; Araujo, Karla P. C.; Serrão, Júlio C.; Miglino, Maria A.; Ambrósio, Carlos Eduardo

    2014-01-01

    Golden Retriever Muscular Dystrophy (GRMD) is a dystrophin-deficient canine model genetically homologous to Duchenne Muscular Dystrophy (DMD) in humans. Muscular fibrosis secondary to cycles of degeneration/regeneration of dystrophic muscle tissue and muscular weakness leads to biomechanical adaptation that impairs the quality of gait. Physical therapy (PT) is one of the supportive therapies available for DMD, however, motor PT approaches have controversial recommendations and there is no consensus regarding the type and intensity of physical therapy. In this study we investigated the effect of physical therapy on gait biomechanics and muscular collagen deposition types I and III in dystrophin-deficient dogs. Two dystrophic dogs (treated dogs-TD) underwent a PT protocol of active walking exercise, 3×/week, 40 minutes/day, 12 weeks. Two dystrophic control dogs (CD) maintained their routine of activities of daily living. At t0 (pre) and t1 (post-physical therapy), collagen type I and III were assessed by immunohistochemistry and gait biomechanics were analyzed. Angular displacement of shoulder, elbow, carpal, hip, stifle and tarsal joint and vertical (Fy), mediolateral (Fz) and craniocaudal (Fx) ground reaction forces (GRF) were assessed. Wilcoxon test was used to verify the difference of biomechanical variables between t0 and t1, considering p<.05. Type I collagen of endomysium suffered the influence of PT, as well as gait speed that had decreased from t0 to t1 (p<.000). The PT protocol employed accelerates morphological alterations on dystrophic muscle and promotes a slower velocity of gait. Control dogs which maintained their routine of activities of daily living seem to have found a better balance between movement and preservation of motor function. PMID:24713872

  8. In vitro Splicing of Influenza Viral NS1 mRNA and NS1-β -globin Chimeras: Possible Mechanisms for the Control of Viral mRNA Splicing

    NASA Astrophysics Data System (ADS)

    Plotch, Stephen J.; Krug, Robert M.

    1986-08-01

    In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human β -globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and β -globin sequences, we show that the NS1 5' splice site was effectively utilized by the β -globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the β -globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from β -globin With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.

  9. AAV micro-dystrophin gene therapy alleviates stress-induced cardiac death but not myocardial fibrosis in >21-m-old mdx mice, an end-stage model of Duchenne muscular dystrophy cardiomyopathy.

    PubMed

    Bostick, Brian; Shin, Jin-Hong; Yue, Yongping; Wasala, Nalinda B; Lai, Yi; Duan, Dongsheng

    2012-08-01

    Duchenne muscular dystrophy (DMD) is a fatal genetic disease caused by the absence of the sarcolemmal protein dystrophin. Dilated cardiomyopathy leading to heart failure is a significant source of morbidity and mortality in DMD. We recently demonstrated amelioration of DMD heart disease in 16 to 20-m-old dystrophin-null mdx mice using adeno-associated virus (AAV) mediated micro-dystrophin gene therapy. DMD patients show severe heart disease near the end of their life expectancy. Similarly, mdx mice exhibit profoundly worsening heart disease when they reach beyond 21 months of age. To more rigorously test micro-dystrophin therapy, we treated mdx mice that were between 21.2 and 22.7-m-old (average, 22.1 ± 0.2 months; N=8). The ∆R4-23/∆C micro-dystrophin gene was packaged in the cardiotropic AAV-9 virus. 5×10(12) viral genome particles/mouse were delivered to mdx mice via the tail vein. AAV transduction, myocardial fibrosis and heart function were examined 1.7 ± 0.2 months after gene therapy. Efficient micro-dystrophin expression was observed in the myocardium of treated mice. Despite the robust dystrophin expression, myocardial fibrosis was not mitigated. Most hemodynamic parameters were not improved either. However, ECG abnormalities were partially corrected. Importantly, treated mice became more resistant to dobutamine-induced cardiac death. In summary, we have revealed for the first time the potential benefits and limitations of AAV micro-dystrophin therapy in end-stage Duchenne dilated cardiomyopathy. Our findings have important implications for the use of AAV gene therapy in dilated cardiomyopathy and heart failure.

  10. Dystrophin Threshold Level Necessary for Normalization of Neuronal Nitric Oxide Synthase, Inducible Nitric Oxide Synthase, and Ryanodine Receptor-Calcium Release Channel Type 1 Nitrosylation in Golden Retriever Muscular Dystrophy Dystrophinopathy.

    PubMed

    Gentil, Christel; Le Guiner, Caroline; Falcone, Sestina; Hogrel, Jean-Yves; Peccate, Cécile; Lorain, Stéphanie; Benkhelifa-Ziyyat, Sofia; Guigand, Lydie; Montus, Marie; Servais, Laurent; Voit, Thomas; Piétri-Rouxel, France

    2016-09-01

    At present, the clinically most advanced strategy to treat Duchenne muscular dystrophy (DMD) is the exon-skipping strategy. Whereas antisense oligonucleotide-based clinical trials are underway for DMD, it is essential to determine the dystrophin restoration threshold needed to ensure improvement of muscle physiology at the molecular level. A preclinical trial has been conducted in golden retriever muscular dystrophy (GRMD) dogs treated in a forelimb by locoregional delivery of rAAV8-U7snRNA to promote exon skipping on the canine dystrophin messenger. Here, we exploited rAAV8-U7snRNA-transduced GRMD muscle samples, well characterized for their percentage of dystrophin-positive fibers, with the aim of defining the threshold of dystrophin rescue necessary for normalization of the status of neuronal nitric oxide synthase mu (nNOSμ), inducible nitric oxide synthase (iNOS), and ryanodine receptor-calcium release channel type 1 (RyR1), crucial actors for efficient contractile function. Results showed that restoration of dystrophin in 40% of muscle fibers is needed to decrease abnormal cytosolic nNOSμ expression and to reduce overexpression of iNOS, these two parameters leading to a reduction in the NO level in the muscle fibers. Furthermore, the same percentage of dystrophin-positive fibers of 40% was associated with the normalization of RyR1 nitrosylation status and with stabilization of the RyR1-calstabin1 complex that is required to facilitate coupled gating. We concluded that a minimal threshold of 40% of dystrophin-positive fibers is necessary for the reinstatement of central proteins needed for proper muscle contractile function, and thus identified a rate of dystrophin expression significantly improving, at the molecular level, the dystrophic muscle physiology.

  11. Tau mis-splicing in the pathogenesis of neurodegenerative disorders

    PubMed Central

    Park, Sun Ah; Ahn, Sang Il; Gallo, Jean-Marc

    2016-01-01

    Tau proteins, which stabilize the structure and regulate the dynamics of microtubules, also play important roles in axonal transport and signal transduction. Tau proteins are missorted, aggregated, and found as tau inclusions under many pathological conditions associated with neurodegenerative disorders, which are collectively known as tauopathies. In the adult human brain, tau protein can be expressed in six isoforms due to alternative splicing. The aberrant splicing of tau pre-mRNA has been consistently identified in a variety of tauopathies but is not restricted to these types of disorders as it is also present in patients with non-ta