Science.gov

Sample records for systemic hemodynamic derangement

  1. Deranged Exams

    ERIC Educational Resources Information Center

    Spivey, Michael Z.

    2010-01-01

    This article discusses a triangle of numbers that are related to the derangement numbers. These numbers satisfy a Pascal-like recurrence relation with subtraction instead of addition. We describe how they relate to numbers studied by other authors and use them to generalize Euler's famous recurrence relation for the derangement numbers.

  2. Hemodynamics.

    PubMed

    Secomb, Timothy W

    2016-04-01

    A review is presented of the physical principles governing the distribution of blood flow and blood pressure in the vascular system. The main factors involved are the pulsatile driving pressure generated by the heart, the flow characteristics of blood, and the geometric structure and mechanical properties of the vessels. The relationship between driving pressure and flow in a given vessel can be understood by considering the viscous and inertial forces acting on the blood. Depending on the vessel diameter and other physical parameters, a wide variety of flow phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of cells strongly influences its flow properties and leads to a nonuniform distribution of hematocrit among microvessels. The forces acting on vessel walls include shear stress resulting from blood flow and circumferential stress resulting from blood pressure. Biological responses to these forces are important in the control of blood flow and the structural remodeling of vessels, and also play a role in major disease processes including hypertension and atherosclerosis. Consideration of hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory system. PMID:27065172

  3. Multi-scale modeling of hemodynamics in the cardiovascular system

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Liang, Fuyou; Wong, Jasmin; Fujiwara, Takashi; Ye, Wenjing; Tsubota, Ken-iti; Sugawara, Michiko

    2015-08-01

    The human cardiovascular system is a closed-loop and complex vascular network with multi-scaled heterogeneous hemodynamic phenomena. Here, we give a selective review of recent progress in macro-hemodynamic modeling, with a focus on geometrical multi-scale modeling of the vascular network, micro-hemodynamic modeling of microcirculation, as well as blood cellular, subcellular, endothelial biomechanics, and their interaction with arterial vessel mechanics. We describe in detail the methodology of hemodynamic modeling and its potential applications in cardiovascular research and clinical practice. In addition, we present major topics for future study: recent progress of patient-specific hemodynamic modeling in clinical applications, micro-hemodynamic modeling in capillaries and blood cells, and the importance and potential of the multi-scale hemodynamic modeling.

  4. [Impact of aortic stiffness on central hemodynamics and cardiovascular system].

    PubMed

    Bulas, J; Potočárová, M; Filková, M; Simková, A; Murín, J

    2013-06-01

    Arterial stiffness increases as a result of degenerative processes accelerated by aging and many risk factors, namely arterial hypertension. Basic clinical examination reveals increased pulse pressure as its hemodynamic manifestation. The most serious consequence of increased vascular stiffness, which cannot be revealed by clinical examination, is a change of central hemodynamics leading to increased load of left ventricle, left ventricular hypertrophy, diastolic dysfunction and to overall increase of cardiovascular risk. This review aimed to point at some patophysiological mechanisms taking part in the development of vascular stiffness, vascular remodeling and hemodynamic consequences of these changes. This work also gives an overview of noninvasive examination methods and their characteristics enabling to evaluate the local, regional and systemic arterial stiffness and central pulse wave analysis and their meaning for central hemodynamics and heart workload. PMID:23808736

  5. Monitoring of Systemic and Hepatic Hemodynamic Parameters in Mice

    PubMed Central

    Xie, Chichi; Wei, Weiwei; Zhang, Tao; Dirsch, Olaf; Dahmen, Uta

    2014-01-01

    The use of mouse models in experimental research is of enormous importance for the study of hepatic physiology and pathophysiological disturbances. However, due to the small size of the mouse, technical details of the intraoperative monitoring procedure suitable for the mouse were rarely described. Previously we have reported a monitoring procedure to obtain hemodynamic parameters for rats. Now, we adapted the procedure to acquire systemic and hepatic hemodynamic parameters in mice, a species ten-fold smaller than rats. This film demonstrates the instrumentation of the animals as well as the data acquisition process needed to assess systemic and hepatic hemodynamics in mice. Vital parameters, including body temperature, respiratory rate and heart rate were recorded throughout the whole procedure. Systemic hemodynamic parameters consist of carotid artery pressure (CAP) and central venous pressure (CVP). Hepatic perfusion parameters include portal vein pressure (PVP), portal flow rate as well as the flow rate of the common hepatic artery (table 1). Instrumentation and data acquisition to record the normal values was completed within 1.5 h. Systemic and hepatic hemodynamic parameters remained within normal ranges during this procedure. This procedure is challenging but feasible. We have already applied this procedure to assess hepatic hemodynamics in normal mice as well as during 70% partial hepatectomy and in liver lobe clamping experiments. Mean PVP after resection (n= 20), was 11.41±2.94 cmH2O which was significantly higher (P<0.05) than before resection (6.87±2.39 cmH2O). The results of liver lobe clamping experiment indicated that this monitoring procedure is sensitive and suitable for detecting small changes in portal pressure and portal flow rate. In conclusion, this procedure is reliable in the hands of an experienced micro-surgeon but should be limited to experiments where mice are absolutely needed. PMID:25350047

  6. Measuring cerebral hemodynamics with a modified magnetoencephalography system.

    PubMed

    Burke, Broc A; Diamond, Solomon G

    2012-12-01

    Magnetoencephalography (MEG) systems are designed to noninvasively measure magnetic fields produced by neural electrical currents. This project examines the possibility of measuring hemodynamics with an MEG system that has been modified with dc electromagnets to measure magnetic susceptibility while maintaining the capability of measuring neural dynamics. A forward model is presented that simulates the interaction of an applied magnetic field with changes in magnetic susceptibility in the brain associated with hemodynamics. Model predictions are compared with an experiment where deionized water was pumped into an inverted flask under the MEG sensor array of superconducting quantum interference device (SQUID) gradiometers (R(2) = 0.98, p < 0.001). The forward model was used to simulate the SQUID readouts from hemodynamics in the scalp and brain induced by performing the Valsalva maneuver. Experimental human subject recordings (N = 10) were made from the prefrontal region during Valsalva using concurrent measurement with the modified MEG system and near-infrared spectroscopy (NIRS). The NIRS deoxyhemoglobin signal was found to correlate significantly with the SQUID readouts (R(2) = 0.84, p < 0.01). SQUID noise was found to increase with the applied field, which will need to be mitigated in future work. These results demonstrate the potential and technical challenges of measuring cerebral hemodynamics with a modified MEG system.

  7. Clinical monitoring of systemic hemodynamics in critically ill newborns.

    PubMed

    de Boode, Willem-Pieter

    2010-03-01

    Circulatory failure is a major cause of mortality and morbidity in critically ill newborn infants. Since objective measurement of systemic blood flow remains very challenging, neonatal hemodynamics is usually assessed by the interpretation of various clinical and biochemical parameters. An overview is given about the predictive value of the most used indicators of circulatory failure, which are blood pressure, heart rate, urine output, capillary refill time, serum lactate concentration, central-peripheral temperature difference, pH, standard base excess, central venous oxygen saturation and colour.

  8. Effects of Dietary Nitrates on Systemic and Cerebrovascular Hemodynamics

    PubMed Central

    Curry, Bryan H.; Adams, Richard G.; Asadi, M. Sadegh; Millis, Richard M.; Haddad, Georges E.

    2013-01-01

    Cerebral blood flow dysregulation is often associated with hypertension. We hypothesized that a beetroot juice (BRJ) treatment could decrease blood pressure and cerebrovascular resistance (CVR). We subjected 12 healthy females to control and BRJ treatments. Cerebrovascular resistance index (CVRI), systolic blood pressure (SBP), total vascular resistance (TVR), and the heart rate-systolic pressure product (RPP) measured at rest and at two exercise workloads were lower after the BRJ treatment. CVRI, SBP, and RPP were lower without a lower TVR at the highest exercise level. These findings suggest improved systemic and cerebral hemodynamics that could translate into a dietary treatment for hypertension. PMID:24455404

  9. Computational Hemodynamic Simulation of Human Circulatory System under Altered Gravity

    NASA Technical Reports Server (NTRS)

    Kim. Chang Sung; Kiris, Cetin; Kwak, Dochan

    2003-01-01

    A computational hemodynamics approach is presented to simulate the blood flow through the human circulatory system under altered gravity conditions. Numerical techniques relevant to hemodynamics issues are introduced to non-Newtonian modeling for flow characteristics governed by red blood cells, distensible wall motion due to the heart pulse, and capillary bed modeling for outflow boundary conditions. Gravitational body force terms are added to the Navier-Stokes equations to study the effects of gravity on internal flows. Six-type gravity benchmark problems are originally presented to provide the fundamental understanding of gravitational effects on the human circulatory system. For code validation, computed results are compared with steady and unsteady experimental data for non-Newtonian flows in a carotid bifurcation model and a curved circular tube, respectively. This computational approach is then applied to the blood circulation in the human brain as a target problem. A three-dimensional, idealized Circle of Willis configuration is developed with minor arteries truncated based on anatomical data. Demonstrated is not only the mechanism of the collateral circulation but also the effects of gravity on the distensible wall motion and resultant flow patterns.

  10. Systemic arterial hemodynamics in the diamond python Morelia spilotes.

    PubMed

    Avolio, A P; O'Rourke, M F; Bulliman, B T; Webster, M E; Mang, K

    1982-09-01

    Studies of pulsatile systemic arterial hemodynamics were conducted in 10 diamond python snakes to test the hypothesis that body shape--through spatial dispersion of peripheral reflecting sites--is an important determinant of impedance patterns and of pulse wave contour. Findings support the hypothesis. Flow patterns in the aortic roots were similar to those in humans, sheep, dogs, rabbits, and guinea pigs, but in contrast to larger animals, little change in flow contour was seen in other arteries. Pressure wave contour was similar in all systemic arteries from which records were taken with no secondary diastolic wave under any circumstances. Impedance patterns at different sites showed none of the fluctuations that in other animals are attributable to discrete wave reflection. Discrete proximal wave reflection at the confluence of aortic arches was minimal. Data are explicable on the basis of widely distributed peripheral reflecting sites--a consequence of the snake's long and tapered body.

  11. Cerebral versus systemic hemodynamics during graded orthostatic stress in humans

    NASA Technical Reports Server (NTRS)

    Levine, B. D.; Giller, C. A.; Lane, L. D.; Buckey, J. C.; Blomqvist, C. G.

    1994-01-01

    BACKGROUND: Orthostatic syncope is usually attributed to cerebral hypoperfusion secondary to systemic hemodynamic collapse. Recent research in patients with neurocardiogenic syncope has suggested that cerebral vasoconstriction may occur during orthostatic hypotension, compromising cerebral autoregulation and possibly contributing to the loss of consciousness. However, the regulation of cerebral blood flow (CBF) in such patients may be quite different from that of healthy individuals, particularly when assessed during the rapidly changing hemodynamic conditions associated with neurocardiogenic syncope. To be able to interpret the pathophysiological significance of these observations, a clear understanding of the normal responses of the cerebral circulation to orthostatic stress must be obtained, particularly in the context of the known changes in systemic and regional distributions of blood flow and vascular resistance during orthostasis. Therefore, the specific aim of this study was to examine the changes that occur in the cerebral circulation during graded reductions in central blood volume in the absence of systemic hypotension in healthy humans. We hypothesized that cerebral vasoconstriction would occur and CBF would decrease due to activation of the sympathetic nervous system. We further hypothesized, however, that the magnitude of this change would be small compared with changes in systemic or skeletal muscle vascular resistance in healthy subjects with intact autoregulation and would be unlikely to cause syncope without concomitant hypotension. METHODS AND RESULTS: To test this hypothesis, we studied 13 healthy men (age, 27 +/- 7 years) during progressive lower body negative pressure (LBNP). We measured systemic flow (Qc is cardiac output; C2H2 rebreathing), regional forearm flow (FBF; venous occlusion plethysmography), and blood pressure (BP; Finapres) and calculated systemic (SVR) and forearm (FVR) vascular resistances. Changes in brain blood flow were

  12. [Data processing system for laboratory and hemodynamic heart catheterization measurements].

    PubMed

    Jensch, P; Meyer, J; Mattar, E; Ameling, W; Effert, S

    1976-10-01

    In cooperation with the Department of Electronic Data Processing Systems we have developed a data processing unit for the analysis of hemodynamic data at the Department of Internal Medicine I. The aim was to design a computer-system for the daily routine in heart-catheterizations as well as for the solution of scientific problems during hemodynamic studies. In the on-line-mode besides the ECG up to four pressures can be analysed simultaneously. Analog and digital tapes can also be processed off-line on demand. The concept of the whole system and the individual steps of computer-handling are adjusted to the problems of data-analysis in praxis from the viewpoint of the examining cardiologist. Since the system is interactive after each measurement and each given command the computer-results are displayed on the video-scope. Because of the modular structure of the program new medical criteria can easily be implemented at any time. Since the computer-system is not effectively used with only one cath-lab other units possibly of different hard-ware configuration can be connected simultaneously to the computer. Each cath-lab shares 16 K out of the total 32 K core-memory. The results are displayed graphically and alpha-numerically on video-scope, x-y-plotter and line printer. The sampling-rate for fluid-filled catheters is 200 Hz and for catheter-tip-manometers 400 Hz. Smothing and differentiation-procedures are adapted to the respective catheter-material. The computer-program calibrates the different pressure amplifiers automatically. After defining the catheter-position the pressure-signals are sampled for 10 s and immediately afterwards analyzed by the computer. The ECG and the corresponding pressure-curves are displayed on the video-scope. The automatically selected representative beat as well as each of the identified and numerated other beats of the sampling-phase can be displayed selectively together with its numerical results. The computer marks the positions within

  13. Augmented expression and secretion of adipose-derived pigment epithelium-derived factor does not alter local angiogenesis or contribute to the development of systemic metabolic derangements.

    PubMed

    Lakeland, Thomas V; Borg, Melissa L; Matzaris, Maria; Abdelkader, Amany; Evans, Roger G; Watt, Matthew J

    2014-06-15

    Impaired coupling of adipose tissue expansion and vascularization is proposed to lead to adipocyte hypoxia and inflammation, which in turn contributes to systemic metabolic derangements. Pigment epithelium-derived factor (PEDF) is a powerful antiangiogenic factor that is secreted by adipocytes, elevated in obesity, and implicated in the development of insulin resistance. We explored the angiogenic and metabolic role of adipose-derived PEDF through in vivo studies of mice with overexpression of PEDF in adipocytes (PEDF-aP2). PEDF expression in white adipocytes and PEDF secretion from adipose tissue was increased in transgenic mice, but circulating levels of PEDF were not increased. Overexpression of PEDF did not alter vascularization, the partial pressure of O2, cellular hypoxia, or gene expression of inflammatory markers in adipose tissue. Energy expenditure and metabolic substrate utilization, body mass, and adiposity were not altered in PEDF-aP2 mice. Whole body glycemic control was normal as assessed by glucose and insulin tolerance tests, and adipocyte-specific glucose uptake was unaffected by PEDF overexpression. Adipocyte lipolysis was increased in PEDF-aP2 mice and associated with increased adipose triglyceride lipase and decreased perilipin 1 expression. Experiments conducted in mice rendered obese by high-fat feeding showed no differences between PEDF-aP2 and wild-type mice for body mass, adiposity, whole body energy expenditure, glucose tolerance, or adipose tissue oxygenation. Together, these data indicate that adipocyte-generated PEDF enhances lipolysis but question the role of PEDF as a major antiangiogenic or proinflammatory mediator in adipose tissue in vivo.

  14. Systemic hemodynamics in advanced cirrhosis: Concerns during perioperative period of liver transplantation.

    PubMed

    Hori, Tomohide; Ogura, Yasuhiro; Onishi, Yasuharu; Kamei, Hideya; Kurata, Nobuhiko; Kainuma, Motoshi; Takahashi, Hideo; Suzuki, Shogo; Ichikawa, Takashi; Mizuno, Shoko; Aoyama, Tadashi; Ishida, Yuki; Hirai, Takahiro; Hayashi, Tomoko; Hasegawa, Kazuko; Takeichi, Hiromu; Ota, Atsunobu; Kodera, Yasuhiro; Sugimoto, Hiroyuki; Iida, Taku; Yagi, Shintaro; Taniguchi, Kentaro; Uemoto, Shinji

    2016-09-01

    Advanced liver cirrhosis is usually accompanied by portal hypertension. Long-term portal hypertension results in various vascular alterations. The systemic hemodynamic state in patients with cirrhosis is termed a hyperdynamic state. This peculiar hemodynamic state is characterized by an expanded blood volume, high cardiac output, and low total peripheral resistance. Vascular alterations do not disappear even long after liver transplantation (LT), and recipients with cirrhosis exhibit a persistent systemic hyperdynamic state even after LT. Stability of optimal systemic hemodynamics is indispensable for adequate portal venous flow (PVF) and successful LT, and reliable parameters for optimal systemic hemodynamics and adequate PVF are required. Even a subtle disorder in systemic hemodynamics is precisely indicated by the balance between cardiac output and blood volume. The indocyanine green (ICG) kinetics reflect the patient's functional hepatocytes and effective PVF, and PVF is a major determinant of the ICG elimination constant (kICG) in the well-preserved allograft. The kICG value is useful to set the optimal PVF during living-donor LT and to evaluate adequate PVF after LT. Perioperative management has a large influence on the postoperative course and outcome; therefore, key points and unexpected pitfalls for intensive management are herein summarized. Transplant physicians should fully understand the peculiar systemic hemodynamic behavior in LT recipients with cirrhosis and recognize the critical importance of PVF after LT. PMID:27660671

  15. Systemic hemodynamics in advanced cirrhosis: Concerns during perioperative period of liver transplantation

    PubMed Central

    Hori, Tomohide; Ogura, Yasuhiro; Onishi, Yasuharu; Kamei, Hideya; Kurata, Nobuhiko; Kainuma, Motoshi; Takahashi, Hideo; Suzuki, Shogo; Ichikawa, Takashi; Mizuno, Shoko; Aoyama, Tadashi; Ishida, Yuki; Hirai, Takahiro; Hayashi, Tomoko; Hasegawa, Kazuko; Takeichi, Hiromu; Ota, Atsunobu; Kodera, Yasuhiro; Sugimoto, Hiroyuki; Iida, Taku; Yagi, Shintaro; Taniguchi, Kentaro; Uemoto, Shinji

    2016-01-01

    Advanced liver cirrhosis is usually accompanied by portal hypertension. Long-term portal hypertension results in various vascular alterations. The systemic hemodynamic state in patients with cirrhosis is termed a hyperdynamic state. This peculiar hemodynamic state is characterized by an expanded blood volume, high cardiac output, and low total peripheral resistance. Vascular alterations do not disappear even long after liver transplantation (LT), and recipients with cirrhosis exhibit a persistent systemic hyperdynamic state even after LT. Stability of optimal systemic hemodynamics is indispensable for adequate portal venous flow (PVF) and successful LT, and reliable parameters for optimal systemic hemodynamics and adequate PVF are required. Even a subtle disorder in systemic hemodynamics is precisely indicated by the balance between cardiac output and blood volume. The indocyanine green (ICG) kinetics reflect the patient’s functional hepatocytes and effective PVF, and PVF is a major determinant of the ICG elimination constant (kICG) in the well-preserved allograft. The kICG value is useful to set the optimal PVF during living-donor LT and to evaluate adequate PVF after LT. Perioperative management has a large influence on the postoperative course and outcome; therefore, key points and unexpected pitfalls for intensive management are herein summarized. Transplant physicians should fully understand the peculiar systemic hemodynamic behavior in LT recipients with cirrhosis and recognize the critical importance of PVF after LT.

  16. Systemic hemodynamics in advanced cirrhosis: Concerns during perioperative period of liver transplantation

    PubMed Central

    Hori, Tomohide; Ogura, Yasuhiro; Onishi, Yasuharu; Kamei, Hideya; Kurata, Nobuhiko; Kainuma, Motoshi; Takahashi, Hideo; Suzuki, Shogo; Ichikawa, Takashi; Mizuno, Shoko; Aoyama, Tadashi; Ishida, Yuki; Hirai, Takahiro; Hayashi, Tomoko; Hasegawa, Kazuko; Takeichi, Hiromu; Ota, Atsunobu; Kodera, Yasuhiro; Sugimoto, Hiroyuki; Iida, Taku; Yagi, Shintaro; Taniguchi, Kentaro; Uemoto, Shinji

    2016-01-01

    Advanced liver cirrhosis is usually accompanied by portal hypertension. Long-term portal hypertension results in various vascular alterations. The systemic hemodynamic state in patients with cirrhosis is termed a hyperdynamic state. This peculiar hemodynamic state is characterized by an expanded blood volume, high cardiac output, and low total peripheral resistance. Vascular alterations do not disappear even long after liver transplantation (LT), and recipients with cirrhosis exhibit a persistent systemic hyperdynamic state even after LT. Stability of optimal systemic hemodynamics is indispensable for adequate portal venous flow (PVF) and successful LT, and reliable parameters for optimal systemic hemodynamics and adequate PVF are required. Even a subtle disorder in systemic hemodynamics is precisely indicated by the balance between cardiac output and blood volume. The indocyanine green (ICG) kinetics reflect the patient’s functional hepatocytes and effective PVF, and PVF is a major determinant of the ICG elimination constant (kICG) in the well-preserved allograft. The kICG value is useful to set the optimal PVF during living-donor LT and to evaluate adequate PVF after LT. Perioperative management has a large influence on the postoperative course and outcome; therefore, key points and unexpected pitfalls for intensive management are herein summarized. Transplant physicians should fully understand the peculiar systemic hemodynamic behavior in LT recipients with cirrhosis and recognize the critical importance of PVF after LT. PMID:27660671

  17. Deranged sodium to sudden death

    PubMed Central

    Clancy, Colleen E; Chen-Izu, Ye; Bers, Donald M; Belardinelli, Luiz; Boyden, Penelope A; Csernoch, Laszlo; Despa, Sanda; Fermini, Bernard; Hool, Livia C; Izu, Leighton; Kass, Robert S; Lederer, W Jonathan; Louch, William E; Maack, Christoph; Matiazzi, Alicia; Qu, Zhilin; Rajamani, Sridharan; Rippinger, Crystal M; Sejersted, Ole M; O'Rourke, Brian; Weiss, James N; Varró, András; Zaza, Antonio

    2015-01-01

    In February 2014, a group of scientists convened as part of the University of California Davis Cardiovascular Symposium to bring together experimental and mathematical modelling perspectives and discuss points of consensus and controversy on the topic of sodium in the heart. This paper summarizes the topics of presentation and discussion from the symposium, with a focus on the role of aberrant sodium channels and abnormal sodium homeostasis in cardiac arrhythmias and pharmacotherapy from the subcellular scale to the whole heart. Two following papers focus on Na+ channel structure, function and regulation, and Na+/Ca2+ exchange and Na+/K+ ATPase. The UC Davis Cardiovascular Symposium is a biannual event that aims to bring together leading experts in subfields of cardiovascular biomedicine to focus on topics of importance to the field. The focus on Na+ in the 2014 symposium stemmed from the multitude of recent studies that point to the importance of maintaining Na+ homeostasis in the heart, as disruption of homeostatic processes are increasingly identified in cardiac disease states. Understanding how disruption in cardiac Na+-based processes leads to derangement in multiple cardiac components at the level of the cell and to then connect these perturbations to emergent behaviour in the heart to cause disease is a critical area of research. The ubiquity of disruption of Na+ channels and Na+ homeostasis in cardiac disorders of excitability and mechanics emphasizes the importance of a fundamental understanding of the associated mechanisms and disease processes to ultimately reveal new targets for human therapy. PMID:25772289

  18. Oral contraceptive use, muscle sympathetic nerve activity, and systemic hemodynamics in young women

    PubMed Central

    Harvey, Ronee E.; Hart, Emma C.; Charkoudian, Nisha; Curry, Timothy B.; Carter, Jason R.; Fu, Qi; Minson, Christopher T.; Joyner, Michael J.; Barnes, Jill N.

    2015-01-01

    Endogenous female sex hormones influence muscle sympathetic nerve activity (MSNA), a regulator of arterial blood pressure and important factor in hypertension development. While nearly 80% of American women report using hormonal contraceptives sometime during their life, the influence of combined oral contraceptives (OCs) on MSNA and systemic hemodynamics remains equivocal. The goal of this study was to determine if women taking OCs have altered MSNA and hemodynamics (cardiac output and total peripheral resistance) at rest during the placebo phase of OC use compared to women with natural menstrual cycles during the early follicular phase. We retrospectively analyzed data from studies in which healthy, premenopausal women (ages 18–35 years old) participated. We collected MSNA values at rest and hemodynamic measurements in women taking OCs (n=53, 25±4 yr) and women with natural menstrual cycles (n=74, 25±4 yr). Blood pressure was higher in women taking OCs versus those with natural menstrual cycles (mean arterial pressure: 89±1 vs. 85±1 mmHg, respectively; p=0.01), although MSNA was similar in both groups (MSNA burst incidence: 16±1 vs. 18±1 bursts/100 heartbeats, respectively, p=0.19). In a subset of women in which detailed hemodynamic data were available, those taking OCs (n=33) had similar cardiac output (4.9±0.2 vs. 4.7±0.2 L/min, respectively; p=0.47) and total peripheral resistance (19.2±0.8 vs. 20.0±0.9 units, respectively; p=0.51) as women with natural menstrual cycles (n=22). In conclusion, women taking OCs have higher resting blood pressure and similar MSNA and hemodynamics during the placebo phase of OC use compared to naturally menstruating women in the early follicular phase. PMID:26101348

  19. Oral Contraceptive Use, Muscle Sympathetic Nerve Activity, and Systemic Hemodynamics in Young Women.

    PubMed

    Harvey, Ronee E; Hart, Emma C; Charkoudian, Nisha; Curry, Timothy B; Carter, Jason R; Fu, Qi; Minson, Christopher T; Joyner, Michael J; Barnes, Jill N

    2015-09-01

    Endogenous female sex hormones influence muscle sympathetic nerve activity (MSNA), a regulator of arterial blood pressure and important factor in hypertension development. Although ≈80% of American women report using hormonal contraceptives sometime during their life, the influence of combined oral contraceptives (OCs) on MSNA and systemic hemodynamics remains equivocal. The goal of this study was to determine whether women taking OCs have altered MSNA and hemodynamics (cardiac output and total peripheral resistance) at rest during the placebo phase of OC use compared with women with natural menstrual cycles during the early follicular phase. We retrospectively analyzed data from studies in which healthy, premenopausal women (aged 18-35 years) participated. We collected MSNA values at rest and hemodynamic measurements in women taking OCs (n=53; 25±4 years) and women with natural menstrual cycles (n=74; 25±4 years). Blood pressure was higher in women taking OCs versus those with natural menstrual cycles (mean arterial pressure, 89±1 versus 85±1 mm Hg, respectively; P=0.01), although MSNA was similar in both groups (MSNA burst incidence, 16±1 versus 18±1 bursts/100 heartbeats, respectively; P=0.19). In a subset of women in which detailed hemodynamic data were available, those taking OCs (n=33) had similar cardiac output (4.9±0.2 versus 4.7±0.2 L/min, respectively; P=0.47) and total peripheral resistance (19.2±0.8 versus 20.0±0.9 U, respectively; P=0.51) as women with natural menstrual cycles (n=22). In conclusion, women taking OCs have higher resting blood pressure and similar MSNA and hemodynamics during the placebo phase of OC use when compared with naturally menstruating women in the early follicular phase. PMID:26101348

  20. A practical introduction to the hemodynamic analysis of the cardiovascular system with 4D Flow MRI.

    PubMed

    Pineda Zapata, J A; Delgado de Bedout, J A; Rascovsky Ramírez, S; Bustamante, C; Mesa, S; Calvo Betancur, V D

    2014-01-01

    The 4D Flow MRI technique provides a three-dimensional representation of blood flow over time, making it possible to evaluate the hemodynamics of the cardiovascular system both qualitatively and quantitatively. In this article, we describe the application of the 4D Flow technique in a 3T scanner; in addition to the technical parameters, we discuss the advantages and limitations of the technique and its possible clinical applications. We used 4D Flow MRI to study different body areas (chest, abdomen, neck, and head) in 10 volunteers. We obtained 3D representations of the patterns of flow and quantitative hemodynamic measurements. The technique makes it possible to evaluate the pattern of blood flow in large and midsize vessels without the need for exogenous contrast agents.

  1. An integrative model of the cardiovascular system coupling heart cellular mechanics with arterial network hemodynamics.

    PubMed

    Kim, Young-Tae; Lee, Jeong Sang; Youn, Chan-Hyun; Choi, Jae-Sung; Shim, Eun Bo

    2013-08-01

    The current study proposes a model of the cardiovascular system that couples heart cell mechanics with arterial hemodynamics to examine the physiological role of arterial blood pressure (BP) in left ventricular hypertrophy (LVH). We developed a comprehensive multiphysics and multiscale cardiovascular model of the cardiovascular system that simulates physiological events, from membrane excitation and the contraction of a cardiac cell to heart mechanics and arterial blood hemodynamics. Using this model, we delineated the relationship between arterial BP or pulse wave velocity and LVH. Computed results were compared with existing clinical and experimental observations. To investigate the relationship between arterial hemodynamics and LVH, we performed a parametric study based on arterial wall stiffness, which was obtained in the model. Peak cellular stress of the left ventricle and systolic blood pressure (SBP) in the brachial and central arteries also increased; however, further increases were limited for higher arterial stiffness values. Interestingly, when we doubled the value of arterial stiffness from the baseline value, the percentage increase of SBP in the central artery was about 6.7% whereas that of the brachial artery was about 3.4%. It is suggested that SBP in the central artery is more critical for predicting LVH as compared with other blood pressure measurements.

  2. Topology and hemodynamics of the cortical cerebrovascular system

    PubMed Central

    Hirsch, Sven; Reichold, Johannes; Schneider, Matthias; Székely, Gábor; Weber, Bruno

    2012-01-01

    The cerebrovascular system continuously delivers oxygen and energy substrates to the brain, which is one of the organs with the highest basal energy requirement in mammals. Discontinuities in the delivery lead to fatal consequences for the brain tissue. A detailed understanding of the structure of the cerebrovascular system is important for a multitude of (patho-)physiological cerebral processes and many noninvasive functional imaging methods rely on a signal that originates from the vasculature. Furthermore, neurodegenerative diseases often involve the cerebrovascular system and could contribute to neuronal loss. In this review, we focus on the cortical vascular system. In the first part, we present the current knowledge of the vascular anatomy. This is followed by a theory of topology and its application to vascular biology. We then discuss possible interactions between cerebral blood flow and vascular topology, before summarizing the existing body of the literature on quantitative cerebrovascular topology. PMID:22472613

  3. Modeling ventricular interaction: a multiscale approach from sarcomere mechanics to cardiovascular system hemodynamics.

    PubMed

    Lumens, Joost; Delhaas, Tammo; Kirn, Borut; Arts, Theo

    2008-01-01

    Direct ventricular interaction via the interventricular septum plays an important role in ventricular hemodynamics and mechanics. A large amount of experimental data demonstrates that left and right ventricular pump mechanics influence each other and that septal geometry and motion depend on transmural pressure. We present a lumped model of ventricular mechanics consisting of three wall segments that are coupled on the basis of balance laws stating mechanical equilibrium at the intersection of the three walls. The input consists of left and right ventricular volumes and an estimate of septal wall geometry. Wall segment geometry is expressed as area and curvature and is related to sarcomere extension. With constitutive equations of the sarcomere, myofiber stress is calculated. The force exerted by each wall segment on the intersection, as a result of wall tension, is derived from myofiber stress. Finally, septal geometry and ventricular pressures are solved by achieving balance of forces. We implemented this ventricular module in a lumped model of the closed-loop cardiovascular system (CircAdapt model) The resulting multiscale model enables dynamic simulation of myofiber mechanics, ventricular cavity mechanics, and cardiovascular system hemodynamics. The model was tested by performing simulations with synchronous and asynchronous mechanical activation of the wall segments. The simulated results of ventricular mechanics and hemodynamics were compared with experimental data obtained before and after acute induction of left bundle branch block (LBBB) in dogs. The changes in simulated ventricular mechanics and septal motion as a result of the introduction of mechanical asynchrony were very similar to those measured in the animal experiments. In conclusion, the module presented describes ventricular mechanics including direct ventricular interaction realistically and thereby extends the physiological application range of the CircAdapt model.

  4. Measurement system for an in-vitro characterization of the biomechanics and hemodynamics of arterial bifurcations

    NASA Astrophysics Data System (ADS)

    Suárez-Bagnasco, D.; Balay, G.; Cymberknop, L.; Armentano, R. L.; Negreira, C. A.

    2013-03-01

    Arterial behaviour in-vivo is influenced, amongst other factors, by the interaction between blood flow and the arterial wall endothelium, and the biomechanical properties of the arterial wall. This interaction plays an important role in pathogenic mechanisms of cardiovascular diseases such as atherosclerosis and arteriosclerosis. To quantify these interactions both from biomechanical and hemodynamical standpoints, a complete characterization and modelling of the arterial wall, blood flow, shear wall and circumferential wall stresses are needed. The development of a new multi-parameter measurement system (distances, pressures, flows, velocity profiles, temperature, viscosity) for an in-vitro characterization of the biomechanics and hemodynamics in arterial bifurcations (specially in carotid bifurcations) is described. This set-up represents an improvement relative to previous set-ups developed by the group FCIEN-FMED and is presently under development. Main subsystems interactions and environment-system interactions were identified and compensated to improve system's performance. Several interesting problems related with signal acquisition using a variety of sensors and some experimental results are shown and briefly discussed. Experimental data allow construction of meshes and parameter estimation of the biomechanical properties of the arterial wall, as well as boundary conditions, all suitable to be employed in CFD and FSI numerical simulation.

  5. Systemic and splanchnic hemodynamic changes after liver transplantation for cirrhosis: a long-term prospective study.

    PubMed

    Piscaglia, F; Zironi, G; Gaiani, S; Mazziotti, A; Cavallari, A; Gramantieri, L; Valgimigli, M; Bolondi, L

    1999-07-01

    The effect of orthotopic liver transplantation (OLT) on the systemic and splanchnic hemodynamic alterations of cirrhosis is still largely unknown. The aim of this study was to prospectively investigate the long-term changes induced by OLT on several hemodynamic parameters. In 28 patients undergoing OLT for cirrhosis, the following parameters were measured before surgery and subsequently at 6-month intervals (mean follow-up period, 17 months): cardiac index, mean arterial pressure (MAP), heart rate, total peripheral resistance (TPR), portal vein flow velocity and flow volume, spleen size, and Doppler ultrasound resistance or pulsatility indexes (RI or PI) in the: 1) interlobular renal, 2) superior mesenteric, 3) splenic, and 4) hepatic arteries. The same parameters were measured in 10 healthy controls. After OLT, cardiac index and heart rate significantly decreased (P <.01), while MAP and TPR increased (P <.001), so that any significant difference from controls disappeared. Renal RI progressively decreased, achieving a significant reduction (P <.05) to normal values at the 12th month of follow-up. Portal flow velocity and hepatic and splenic RI returned to values not significantly different from controls. Portal flow volume increased over normal values after OLT (P <.001), and SMA PI, lower than normal before OLT, did not show any statistically significant increase thereafter. Spleen size decreased significantly, but persisted to be larger than in controls. In conclusion, systemic, renal, and most, but interestingly not all, splanchnic circulatory alterations of cirrhosis are restored to normal after OLT.

  6. Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation

    NASA Technical Reports Server (NTRS)

    Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th; Zile, M. R.

    1999-01-01

    Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the

  7. Systemic Hemodynamic Atherothrombotic Syndrome and Resonance Hypothesis of Blood Pressure Variability: Triggering Cardiovascular Events.

    PubMed

    Kario, Kazuomi

    2016-07-01

    Blood pressure (BP) exhibits different variabilities and surges with different time phases, from the shortest beat-by-beat to longest yearly changes. We hypothesized that the synergistic resonance of these BP variabilites generates an extraordinarily large dynamic surge in BP and triggers cardiovascular events (the resonance hypothesis). The power of pulses is transmitted to the peripheral sites without attenuation by the large arteries, in individuals with stiffened arteries. Thus, the effect of a BP surge on cardiovascular risk would be especially exaggerated in high-risk patients with vascular disease. Based on this concept, our group recently proposed a new theory of systemic hemodynamic atherothromboltic syndrome (SHATS), a vicious cycle of hemodynamic stress and vascular disease that advances organ damage and triggers cardiovascular disease. Clinical phenotypes of SHATS are large-artery atherothombotic diseases such as stroke, coronary artery disease, and aortic and pheripheral artery disease; small-artery diseases, and microcirculation-related disease such as vascular cognitive dysfunction, heart failure, and chronic kidney disease. The careful consideration of BP variability and vascular diseases such as SHATS, and the early detection and management of SHATS, will achieve more effective individualized cardiovascular protection. In the near future, information and communication technology-based 'anticipation medicine' predicted by the changes of individual BP values could be a promising approach to achieving zero cardiovascular events. PMID:27482253

  8. Systemic Hemodynamic Atherothrombotic Syndrome and Resonance Hypothesis of Blood Pressure Variability: Triggering Cardiovascular Events

    PubMed Central

    2016-01-01

    Blood pressure (BP) exhibits different variabilities and surges with different time phases, from the shortest beat-by-beat to longest yearly changes. We hypothesized that the synergistic resonance of these BP variabilites generates an extraordinarily large dynamic surge in BP and triggers cardiovascular events (the resonance hypothesis). The power of pulses is transmitted to the peripheral sites without attenuation by the large arteries, in individuals with stiffened arteries. Thus, the effect of a BP surge on cardiovascular risk would be especially exaggerated in high-risk patients with vascular disease. Based on this concept, our group recently proposed a new theory of systemic hemodynamic atherothromboltic syndrome (SHATS), a vicious cycle of hemodynamic stress and vascular disease that advances organ damage and triggers cardiovascular disease. Clinical phenotypes of SHATS are large-artery atherothombotic diseases such as stroke, coronary artery disease, and aortic and pheripheral artery disease; small-artery diseases, and microcirculation-related disease such as vascular cognitive dysfunction, heart failure, and chronic kidney disease. The careful consideration of BP variability and vascular diseases such as SHATS, and the early detection and management of SHATS, will achieve more effective individualized cardiovascular protection. In the near future, information and communication technology-based 'anticipation medicine' predicted by the changes of individual BP values could be a promising approach to achieving zero cardiovascular events. PMID:27482253

  9. A method for discriminating systemic and cortical hemodynamic changes by time domain fNIRS

    NASA Astrophysics Data System (ADS)

    Zucchelli, Lucia; Spinelli, Lorenzo; Contini, Davide; Re, Rebecca; Torricelli, Alessandro

    2013-06-01

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive optical technique able to measure hemodynamic response in the brain cortex. Among the different approaches the fNIRS can be based on, the time resolved one allows a straightforward relationship between the photon detection time and its path within the medium, improving the discrimination of the information content relative to the different layers the tissues are composed of. Thus absorption and scattering properties of the probed tissue can be estimated, and from them the oxy- and deoxy-hemoglobin concentration. However, an open issue in the optical imaging studies is still the accuracy in separating the superficial hemodynamic changes from those happening in deeper regions of the head and more likely involving the cerebral cortex. In fact a crucial point is the precise estimate of the time dependent pathlength spent by photons within the perturbed medium. A novel method for the calculus of the absorption properties in time domain fNIRS, based on a refined computation of photon pathlength in multilayered media, is proposed. The method takes into account the non-ideality of the measurement system (its instrument response function) and the heterogeneous structure of the head. The better accuracy in computing the optical pathlength can improve the NIRS data analysis, especially for the deeper layer. Simulations and preliminary analysis on in vivo data have been performed to validate the method and are here presented.

  10. Systemic and coronary hemodynamic actions and left ventricular functional effects of levosimendan in conscious dogs.

    PubMed

    Harkin, C P; Pagel, P S; Tessmer, J P; Warltier, D C

    1995-08-01

    We examined the effects of levosimendan, a new myofilament Ca2+ sensitizer with phosphodiesterase (PDE)-inhibiting properties, on systemic and coronary hemodynamics and left ventricular (LV) systolic and diastolic function in conscious dogs with intact and blocked autonomic nervous system (ANS) reflexes. Twenty experiments were conducted in 10 dogs chronically instrumented for measurement of aortic and LV pressure, the peak rate of increase and decrease in LV pressure (+dP/dtmax and -dP/dtmin), subendocardial segment length, diastolic coronary blood flow (CBF) velocity, and cardiac output (CO). The slope (Mw) of the regional preload recruitable stroke work relation was used to assess myocardial contractility. Diastolic function was evaluated by -dP/dtmin, a time constant of isovolumic relaxation (tau), maximum segment lengthening velocity during rapid ventricular filling (dL/dtmax), and a regional chamber stiffness constant (Kp). Dogs were randomly assigned to receive levosimendan (0.5, 1.0, 2.0, and 4.0 micrograms.kg-1.min-1) with or without ANS blockade. On separate experimental days, systemic and coronary hemodynamics and LV pressure-segment length diagrams and waveforms were recorded after 10-min equilibration at each dose in the conscious ANS-intact or ANS-blocked state. Levosimendan increased heart rate (HR), CO, mean and diastolic CBF velocity, and pressure-work index (PWI, an estimate of myocardial oxygen consumption) and decreased LV end-diastolic pressure (EDP), systemic vascular resistance (SVR), end-systolic and end-diastolic segment length, and mean and diastolic coronary vascular resistance (CVR) in dogs with intact ANS function. Levosimendan-induced increases in HR and PWI and decreases in SVR were attenuated by ANS blockade. Levosimendan caused equivalent dose-dependent increases in Mw in ANS-intact and ANS-blocked dogs, consistent with a positive inotropic effect independent of ANS activity. Levosimendan decreased tau (e.g., 35 +/- 1 ms during

  11. Systemic and coronary hemodynamic actions and left ventricular functional effects of levosimendan in conscious dogs.

    PubMed

    Harkin, C P; Pagel, P S; Tessmer, J P; Warltier, D C

    1995-08-01

    We examined the effects of levosimendan, a new myofilament Ca2+ sensitizer with phosphodiesterase (PDE)-inhibiting properties, on systemic and coronary hemodynamics and left ventricular (LV) systolic and diastolic function in conscious dogs with intact and blocked autonomic nervous system (ANS) reflexes. Twenty experiments were conducted in 10 dogs chronically instrumented for measurement of aortic and LV pressure, the peak rate of increase and decrease in LV pressure (+dP/dtmax and -dP/dtmin), subendocardial segment length, diastolic coronary blood flow (CBF) velocity, and cardiac output (CO). The slope (Mw) of the regional preload recruitable stroke work relation was used to assess myocardial contractility. Diastolic function was evaluated by -dP/dtmin, a time constant of isovolumic relaxation (tau), maximum segment lengthening velocity during rapid ventricular filling (dL/dtmax), and a regional chamber stiffness constant (Kp). Dogs were randomly assigned to receive levosimendan (0.5, 1.0, 2.0, and 4.0 micrograms.kg-1.min-1) with or without ANS blockade. On separate experimental days, systemic and coronary hemodynamics and LV pressure-segment length diagrams and waveforms were recorded after 10-min equilibration at each dose in the conscious ANS-intact or ANS-blocked state. Levosimendan increased heart rate (HR), CO, mean and diastolic CBF velocity, and pressure-work index (PWI, an estimate of myocardial oxygen consumption) and decreased LV end-diastolic pressure (EDP), systemic vascular resistance (SVR), end-systolic and end-diastolic segment length, and mean and diastolic coronary vascular resistance (CVR) in dogs with intact ANS function. Levosimendan-induced increases in HR and PWI and decreases in SVR were attenuated by ANS blockade. Levosimendan caused equivalent dose-dependent increases in Mw in ANS-intact and ANS-blocked dogs, consistent with a positive inotropic effect independent of ANS activity. Levosimendan decreased tau (e.g., 35 +/- 1 ms during

  12. HeMoLab--Hemodynamics Modelling Laboratory: an application for modelling the human cardiovascular system.

    PubMed

    Larrabide, I; Blanco, P J; Urquiza, S A; Dari, E A; Vénere, M J; de Souza e Silva, N A; Feijóo, R A

    2012-10-01

    In this work we present HeMoLab (Hemodynamics Modeling Laboratory), a computational environment for modeling the Human Cardiovascular System. Its integrates novel computational tools, running from medical image processing to numerical simulation and visualization. As a simulation tool, it allows to accommodate complex physiological and/or pathophysiological (virtual) scenarios aimed to retrieve detailed information from the numerical computations. Such application makes possible to speed up research in the study and analysis of the cardiovascular system and, to provide a virtual laboratory for medical training and education, and specialized Human Resources development. In order to demonstrate the modeling and simulation capabilities of HeMoLab some cases of use are presented.

  13. Consistency and derangements in brane tilings

    NASA Astrophysics Data System (ADS)

    Hanany, Amihay; Jejjala, Vishnu; Ramgoolam, Sanjaye; Seong, Rak-Kyeong

    2016-09-01

    Brane tilings describe Lagrangians (vector multiplets, chiral multiplets, and the superpotential) of four-dimensional { N }=1 supersymmetric gauge theories. These theories, written in terms of a bipartite graph on a torus, correspond to worldvolume theories on N D3-branes probing a toric Calabi–Yau threefold singularity. A pair of permutations compactly encapsulates the data necessary to specify a brane tiling. We show that geometric consistency for brane tilings, which ensures that the corresponding quantum field theories are well behaved, imposes constraints on the pair of permutations, restricting certain products constructed from the pair to have no one-cycles. Permutations without one-cycles are known as derangements. We illustrate this formulation of consistency with known brane tilings. Counting formulas for consistent brane tilings with an arbitrary number of chiral bifundamental fields are written down in terms of delta functions over symmetric groups.

  14. Consistency and derangements in brane tilings

    NASA Astrophysics Data System (ADS)

    Hanany, Amihay; Jejjala, Vishnu; Ramgoolam, Sanjaye; Seong, Rak-Kyeong

    2016-09-01

    Brane tilings describe Lagrangians (vector multiplets, chiral multiplets, and the superpotential) of four-dimensional { N }=1 supersymmetric gauge theories. These theories, written in terms of a bipartite graph on a torus, correspond to worldvolume theories on N D3-branes probing a toric Calabi-Yau threefold singularity. A pair of permutations compactly encapsulates the data necessary to specify a brane tiling. We show that geometric consistency for brane tilings, which ensures that the corresponding quantum field theories are well behaved, imposes constraints on the pair of permutations, restricting certain products constructed from the pair to have no one-cycles. Permutations without one-cycles are known as derangements. We illustrate this formulation of consistency with known brane tilings. Counting formulas for consistent brane tilings with an arbitrary number of chiral bifundamental fields are written down in terms of delta functions over symmetric groups.

  15. [Derangements of mineral metabolism associated with tumors].

    PubMed

    Fukumoto, Seiji

    2014-08-01

    Bone as a hard tissue has several functions such as supporting our body and protecting internal organs. In addition, bone has a pivotal role in the regulation of circulatory mineral concentrations. Therefore, abnormal bone metabolism is sometimes accompanied by deranged serum calcium or phosphate levels as shown in patients with malignancy-associated hypercalcemia (MAH) or tumor-induced osteomalacia (TIO) . Parathyroid hormone-related protein, PTHrP, was cloned as a major humoral factor causing MAH. Similarly, fibroblast growth factor 23, FGF23, was identified as a causative factor for TIO. Therefore, MAH and TIO are not only important in clinical practice but also gave us deep insights into the mechanisms of mineral homeostasis, and bone and cartilage metabolism. PMID:25065866

  16. Hemodynamic actions of systemically injected pituitary adenylate cyclase activating polypeptide-27 in the rat

    NASA Technical Reports Server (NTRS)

    Whalen, E. J.; Johnson, A. K.; Lewis, S. J.

    1999-01-01

    The aims of this study were (1) to characterize the hemodynamic mechanisms underlying the hypotensive effects of pituitary adenylate cyclase activating polypeptide-27 (PACAP-27 0.1-2.0 nmol/kg, i.v.) in pentobarbital-anesthetized rats, and (2) to determine the roles of the autonomic nervous system, adrenal catecholamines and endothelium-derived nitric oxide (NO) in the expression of PACAP-27-mediated effects on hemodynamic function. PACAP-27 produced dose-dependent decreases in mean arterial blood pressure and hindquarter and mesenteric vascular resistances in saline-treated rats. PACAP-27 also produced pronounced falls in mean arterial blood pressure in rats treated with the ganglion blocker, chlorisondamine (5 mg/kg, i.v.). The hypotensive and vasodilator actions of PACAP-27 were not attenuated by the beta-adrenoceptor antagonist, propranolol (1 mg/kg, i.v.), or the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME 50 micromol/kg, i.v.). PACAP-27 produced dose-dependent increases in heart rate whereas the hypotensive response produced by the nitrovasodilator, sodium nitroprusside (10 microg/kg, i.v.), was associated with a minimal tachycardia. The PACAP-27-induced tachycardia was unaffected by chlorisondamine, but was virtually abolished by propranolol. These results suggest that the vasodilator effects of PACAP-27 are due to actions in the microcirculation rather than to the release of adrenal catecholamines and that this vasodilation may not involve the release of endothelium-derived NO. These results also suggest that PACAP-27 produces tachycardia by directly releasing norepinephrine from cardiac sympathetic nerve terminals rather than by direct or baroreceptor reflex-mediated increases in sympathetic nerve activity.

  17. Hybrid System for Ex Vivo Hemorheological and Hemodynamic Analysis: A Feasibility Study

    PubMed Central

    Yeom, Eunseop; Jun Kang, Yang; Joon Lee, Sang

    2015-01-01

    Precise measurement of biophysical properties is important to understand the relation between these properties and the outbreak of cardiovascular diseases (CVDs). However, a systematic measurement for these biophysical parameters under in vivo conditions is nearly impossible because of complex vessel shape and limited practicality. In vitro measurements can provide more biophysical information, but in vitro exposure changes hemorheological properties. In this study, a hybrid system composed of an ultrasound system and microfluidic device is proposed for monitoring hemorheological and hemodynamic properties under more reasonable experimental conditions. Biophysical properties including RBC aggregation, viscosity, velocity, and pressure of blood flows are simultaneously measured under various conditions to demonstrate the feasibility and performance of this measurement system. The proposed technique is applied to a rat extracorporeal loop which connects the aorta and jugular vein directly. As a result, the proposed system is found to measure biophysical parameters reasonably without blood collection from the rat and provided more detailed information. This hybrid system, combining ultrasound imaging and microfluidic techniques to ex vivo animal models, would be useful for monitoring the variations of biophysical properties induced by chemical agents. It can be used to understand the relation between biophysical parameters and CVDs. PMID:26090816

  18. Effect of Prometheus liver assist system on systemic hemodynamics in patients with cirrhosis: A randomized controlled study

    PubMed Central

    Dethloff, Thomas; Tofteng, Flemming; Frederiksen, Hans-Jorgen; Hojskov, Michael; Hansen, Bent Adel; Larsen, Fin Stolze

    2008-01-01

    AIM: To evaluate treatment safety and hemodynamic changes during a single 6-h treatment with the Prometheus™ liver assist system in a randomized, controlled study. METHODS: Twenty-four patients were randomized to either the study group or to one of two control groups: Fractionated Plasma Separation Adsorption and Dialysis, Prometheus™ system (Study group; n = 8); Molecular Adsorbent Recirculation System (MARS)™ (Control group 1, n = 8); or hemodialysis (Control group 2; n = 8). All patients included in the study had decompensated cirrhosis at the time of the inclusion into the study. Circulatory changes were monitored with a Swan-Ganz catheter and bilirubin and creatinine were monitored as measures of protein-bound and water-soluble toxins. RESULTS: Systemic hemodynamics did not differ between treatment and control groups apart from an increase in arterial pressure in the MARS group (P = 0.008). No adverse effects were observed in any of the groups. Creatinine levels significantly decreased in the MARS group (P = 0.03) and hemodialysis group (P = 0.04). Platelet count deceased in the Prometheus group (P = 0.04). CONCLUSION: Extra-corporal liver support with Prometheus is proven to be safe in patients with end-stage liver disease but does not exert the beneficial effects on arterial pressure as seen in the MARS group. PMID:18395908

  19. Hemodynamic evaluation of a chronically implanted, electrically powered left ventricular assist system: responses to acute circulatory stress.

    PubMed

    McKay, R G; Penny, W F; Wyman, R M; Clay, W; Carr, J G; Bernhard, W F; Grossman, W

    1991-12-01

    Hemodynamic stress testing was performed in four calves with a chronically implanted left ventricular assist device consisting of a double-valved pump interposed between the left ventricular apex and the descending thoracic aorta. The device was powered either pneumatically (n = 1) or with a transcutaneous energy transmission system (n = 3). Hemodynamic evaluation (cardiac output and right and left ventricular and pulmonary and carotid artery pressures) was carried out at baseline and during all hemodynamically stressed states. Atrial pacing and ventricular pacing to a heart rate of 140 beats/min resulted in no significant change in right or left heart filling pressures or cardiac output. Preload reduction with nitroprusside or transient inferior vena cava balloon occlusion resulted in a marked decrease in left ventricular pressure with preservation of mean arterial pressure. Phenylephrine administration resulted in a marked rise in mean arterial pressure with no change in cardiac output or filling pressure. Induction of ventricular fibrillation resulted in a decrease of mean left ventricular pressure to 11 +/- 8 mm Hg, but mean arterial pressure was maintained at greater than or equal to 50 mm Hg. It is concluded that a multicomponent, implantable, electrically powered assist system is capable of maintaining a normal cardiac output under a wide range of loading conditions and chronotropic states. Although this device is clearly preload dependent, it is capable of maintaining normal systemic pressures during conditions of severe left ventricular dysfunction and circulatory collapse. PMID:1960330

  20. Immunological Derangement in Hypocellular Myelodysplastic Syndromes

    PubMed Central

    Serio, B; Risitano, AM; Giudice, V; Montuori, N; Selleri, C

    2014-01-01

    Hypocellular or hypoplastic myelodysplastic syndromes (HMDS) are a distinct subgroup accounting for 10–15% of all MDS patients, that are characterized by the presence of bone marrow (BM) hypocellularity, various degree of dysmyelopoiesis and sometimes abnormal karyotype. Laboratory and clinical evidence suggest that HMDS share several immune-mediated pathogenic mechanisms with acquired idiopathic aplastic anemia (AA). Different immune-mediated mechanisms have been documented in the damage of marrow hematopoietic progenitors occurring in HMDS; they include oligoclonal expansion of cytotoxic T lymphocytes (CTLs), polyclonal expansion of various subtypes of T helper lymphocytes, overexpression of FAS-L and of the TNF–related apoptosis-inducing ligand (TRAIL), underexpression of Flice-like inhibitory protein long isoform (FLIPL) in marrow cells as well as higher release of Th1 cytokines, such as interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). It has also been documented that some HMDS patients have higher frequency of polymorphisms linked both to high production of proinflammatory cytokines such as TNF-α and transforming growth factor-β and to the inhibition of T-cell mediated immune responses such as interleukin-10, further suggesting that immune-mediated mechanisms similar to those seen in AA patients may also operate in HMDS. Clinically, the strongest evidence for immune–mediated hematopoietic suppression in some HMDS is the response to immunosuppression including mainly cyclosporine, anti-thymocyte globulin and/or cyclosporine, or alemtuzumab. Here we review all these immune mechanisms as well as the influence of this deranged cellular and humoral immunologic mileau on the initiation and possible progression of MDS. All these observations are pivotal not only for a better understanding of MDS pathophysiology, but also for their immediate clinical implications, eventually leading to the identification of MDS patients who may benefit from

  1. [Characteristic features of systemic hemodynamics during cesarean section under general anesthesia with ketamine].

    PubMed

    Moiseev, V N

    1983-02-01

    On the basis of a comparative investigation of the central hemodynamics by the method of integrative rheography of the body in two groups of women during the operation of cesarean section under general anesthesia with ether or ketamin the author makes a conclusion that ketamin is a good drug for anesthesia in urgent surgical situations.

  2. Systemic and renal hemodynamic changes in the luteal phase of the menstrual cycle mimic early pregnancy.

    PubMed

    Chapman, A B; Zamudio, S; Woodmansee, W; Merouani, A; Osorio, F; Johnson, A; Moore, L G; Dahms, T; Coffin, C; Abraham, W T; Schrier, R W

    1997-11-01

    Blood pressure decreases during early pregnancy in association with a decrease in peripheral vascular resistance and increases in renal plasma flow and glomerular filtration rate. These early changes suggest a potential association with corpora lutea function. To determine whether peripheral vasodilation occurs following ovulation, we studied 16 healthy women in the midfollicular and midluteal phases of the menstrual cycle. A significant decrease in mean arterial pressure in the midluteal phase of the cycle (midfollicular of 81.7 +/- 2.0 vs. midluteal of 75.4 +/- 2.3 mmHg, P < 0.005) was found in association with a decrease in systemic vascular resistance and an increase in cardiac output. Renal plasma flow and glomerular filtration rate increased. Plasma renin activity and aldosterone concentration increased significantly in the luteal phase accompanied by a decrease in atrial natriuretic peptide concentration. Serum sodium, chloride, and bicarbonate concentrations and osmolarity also declined significantly in the midluteal phase of the menstrual cycle. Urinary adenosine 3',5'-cyclic monophosphate (cAMP) excretion increased in the luteal compared with the follicular phase, whereas no changes in urinary cGMP or NO2/NO3 excretion were found. Thus peripheral vasodilation occurs in the luteal phase of the normal menstrual cycle in association with an increase in renal plasma flow and filtration. Activation of the renin-angiotensin-aldosterone axis is found in the luteal phase of the menstrual cycle. These changes are accompanied by an increase in urinary cAMP excretion indicating potential vasodilating mediators responsible for the observed hemodynamic changes. PMID:9374841

  3. Corrected near infrared spectroscopy, C-NIRS: An optical system for extracting hemodynamic signatures unique to the brain

    NASA Astrophysics Data System (ADS)

    Saager, Rolf B.

    We propose a method, dubbed Corrected Near Infrared Spectroscopy (C-NIRS), to isolate absorption trends confined to the lower layer of a two-layer turbid medium, as is desired in near-infrared spectroscopy (NIRS) of cerebral hemodynamics. The theory behind the operation of this method has been developed and discussed. Several two-layer Monte-Carlo simulations of NIRS time series were generated using a physiologically relevant range of optical properties. Initial results show that by measuring absorption trends at two source-detector separations and performing a least-squares fit of one to the other, processed signals strongly resemble the simulated absorption properties unique to the bottom-layer. Through this approach, it has been demonstrated that fitting coefficients can be estimated without any a priori knowledge of the optical properties present in the model. An analytical approximation for the least squares coefficient provides physical insight into the nature of errors and suggests ways to reduce them. Next, a multi-detector, continuous wave, near infrared spectroscopy system has been developed to examine whether the hemodynamics of the scalp and brain in adults contain significant layer-like hemodynamic trends. NIRS measurements were made using contrasting geometries, one with four detectors equidistant from a source 33 mm away, and one with detectors collinear with the source (5-33 mm away). When NIRS time series were acquired over the prefrontal cortex from resting adults using both geometries, variations among the time series were consistent with a substantially homogeneous two-layer model ( p < 0.001) and inconsistent with one dominated by heterogeneities. Additionally, when time series measured 5 mm from the source were subtracted from corresponding 33 mm signals via a least-squares algorithm, 60% of the hemoglobin changes were on average removed. These results suggest that hemodynamic trends present in the scalp can contribute significantly to NIRS

  4. [Metabolic and hemodynamic effects of the growth hormone system - insulin-like growth factor].

    PubMed

    Manhylova, T A; Gafarova, N H

    2015-01-01

    Significant congenital deficiency of growth factor (GF) results in pituitary nanism (dwarfism) and its substantial excess is accompanied by the development of gigantism or acromegaly. Its impact on the growth of the whole body or its individual parts is impossible without affecting metabolic processes and hemodynamic parameters. A number of investigations have proven that GF has a direct lipolytic effect: adequate replacement therapy for pituitary nanism gives rise to a reduction in fat depots. Since the concentration of GF is lower in obesity, Whether it may be used to treat this abnormality is considered. PMID:27035002

  5. Flexibly combined optical microangiography and dual-wavelength laser speckle system for comprehensive imaging of hemodynamic and metabolic responses

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Qin, Jia; An, Lin; Wang, Ruikang K.

    2014-03-01

    We have proposed and developed a multi-modal non-invasive biomedical optical imager. It was combined from the subsystems of optical microangiography and dual-wavelength laser speckle contrast imaging. The system was designed to maintain the performances of both subsystems. It was capable of simultaneously imaging the hemodynamic and metabolic responses in tissue environment in vivo. To achieve such requirements, we utilized unique optical setup, such as paired dichroic mirrors to compensate dispersion, additional relay lens to increase working distance and translational sample probe to freely select imaging area and focal plane. The multi-functionality of the system was demonstrated in an investigation of hemodynamic and metabolic responses on an acute wound healing model in mouse pinna in vivo. The microvasculature, blood flow and hemoglobin concentration from millimeter down to capillary level were comprehensively visualized. The captured instantaneous responses to wound onset differed greatly between localized areas; after that blood flow had a rebalance tendency, and hemoglobin concentration dynamically recovered to baseline situation.

  6. Hemodynamic signature of breast cancer under fractional mammographic compression using a dynamic diffuse optical tomography system

    PubMed Central

    Carp, Stefan A.; Sajjadi, Amir Y.; Wanyo, Christy M.; Fang, Qianqian; Specht, Michelle C.; Schapira, Lidia; Moy, Beverly; Bardia, Aditya; Boas, David A.; Isakoff, Steven J.

    2013-01-01

    Near infrared dynamic diffuse optical tomography measurements of breast hemodynamics during fractional mammographic compression offer a novel contrast mechanism for detecting breast cancer and monitoring chemotherapy. Tissue viscoelastic relaxation during the compression period leads to a slow reduction in the compression force and reveals biomechanical and metabolic differences between healthy and lesion tissue. We measured both the absolute values and the temporal evolution of hemoglobin concentration during 25-35 N of compression for 22 stage II and III breast cancer patients scheduled to undergo neoadjuvant chemotherapy. 17 patients were included in the group analysis (average tumor size 3.2 cm, range: 1.3-5.7 cm). We observed a statistically significant differential decrease in total and oxy-hemoglobin, as well as in hemoglobin oxygen saturation in tumor areas vs. healthy tissue, as early as 30 seconds into the compression period. The hemodynamic contrast is likely driven by the higher tumor stiffness and different viscoelastic relaxation rate, as well as the higher tumor oxygen metabolism rate. PMID:24409390

  7. [Implantable hemodynamic monitoring devices].

    PubMed

    Seifert, M; Butter, C

    2015-11-01

    Heart failure is one of the most frequent diagnoses in hospital admissions in Germany. In the majority of these admissions acute decompensation of an already existing chronic heart failure is responsible. New mostly wireless and remote strategies for monitoring, titration, adaptation and optimization are the focus for improvement of the treatment of heart failure patients and the poor prognosis. The implantation of hemodynamic monitoring devices follows the hypothesis that significant changes in hemodynamic parameters occur before the occurrence of acute decompensation requiring readmission. Three different hemodynamic monitoring devices have so far been investigated in clinical trials employing right ventricular pressure, left atrial pressure and pulmonary artery pressure monitoring. Only one of these systems, the CardioMENS™ HF monitoring system, demonstrated a significant reduction of hospitalization due to heart failure over 6 months in the CHAMPION trial. The systematic adaptation of medication in the CHAMPION trial significantly differed from the usual care of the control arm over 6 months. This direct day to day management of diuretics is currently under intensive investigation; however, further studies demonstrating a positive effect on mortality are needed before translation of this approach into guidelines. Without this evidence a further implementation of pressure monitoring into currently used devices and justification of the substantial technical and personnel demands are not warranted.

  8. The hemodynamic effect of phase differences between the BJUT-II ventricular assist device and native heart on the cardiovascular system.

    PubMed

    Gu, Kaiyun; Gao, Bin; Chang, Yu; Zeng, Yi

    2014-11-01

    The BJUT-II VAD (which was previously called the intra-aorta pump) is a novel left ventricular assist device (LVAD) with a special structure and connection with the native heart. The hemodynamic effect of the phase difference of this pump on the cardiovascular system is still unclear. In this work, seven speed waveforms, whose phase differences vary from 0° to 180°, are used to evaluate the hemodynamic effect of change in phase difference on the cardiovascular system. The external work (EW), equivalent afterload (EAL), pulsatile ratio (PR), and mean aortic pressure during diastolic period (MAPD) are chosen to evaluate the hemodynamic state of the circulatory system. Mathematical study results show that the support levels generated by the BJUT-II VAD under various phase differences are comparable. In contrast, EW, EAL, PR, and MAPD are significantly affected by change in phase difference. It is found that EW reaches its maximum value when the phase difference equals 30°. Similarly, EAL declines with increasing phase difference. PR reaches its maximum value when the phase difference is at 60°. In addition, MAPD decreases with increasing phase difference and then achieves its maximum value at 30°. To obtain comprehensive evaluation of the hemodynamic effects of phase difference on the cardiovascular system, a weight detection algorithm (WDA) whose output indicates the hemodynamic state of the circulatory system is also designed, with EW, PR, and MAPD chosen as the inputs. The minimum value of the output of the WDA indicates the optimal hemodynamic state and optimal phase difference for the BJUT-II VAD. According to the output of the WDA, 30° is considered to be the optimal phase difference for the BJUT-II VAD.

  9. S3 guidelines for intensive care in cardiac surgery patients: hemodynamic monitoring and cardiocirculary system

    PubMed Central

    Carl, M.; Alms, A.; Braun, J.; Dongas, A.; Erb, J.; Goetz, A.; Goepfert, M.; Gogarten, W.; Grosse, J.; Heller, A. R.; Heringlake, M.; Kastrup, M.; Kroener, A.; Loer, S. A.; Marggraf, G.; Markewitz, A.; Reuter, D.; Schmitt, D. V.; Schirmer, U.; Wiesenack, C.; Zwissler, B.; Spies, C.

    2010-01-01

    Hemodynamic monitoring and adequate volume-therapy, as well as the treatment with positive inotropic drugs and vasopressors are the basic principles of the postoperative intensive care treatment of patient after cardiothoracic surgery. The goal of these S3 guidelines is to evaluate the recommendations in regard to evidence based medicine and to define therapy goals for monitoring and therapy. In context with the clinical situation the evaluation of the different hemodynamic parameters allows the development of a therapeutic concept and the definition of goal criteria to evaluate the effect of treatment. Up to now there are only guidelines for subareas of postoperative treatment of cardiothoracic surgical patients, like the use of a pulmonary artery catheter or the transesophageal echocardiography. The German Society for Thoracic and Cardiovascular Surgery (Deutsche Gesellschaft für Thorax-, Herz- und Gefäßchirurgie, DGTHG) and the German Society for Anaesthesiology and Intensive Care Medicine (Deutsche Gesellschaft für Anästhesiologie und lntensivmedizin, DGAI) made an approach to ensure and improve the quality of the postoperative intensive care medicine after cardiothoracic surgery by the development of S3 consensus-based treatment guidelines. Goal of this guideline is to assess the available monitoring methods with regard to indication, procedures, predication, limits, contraindications and risks for use. The differentiated therapy of volume-replacement, positive inotropic support and vasoactive drugs, the therapy with vasodilatators, inodilatators and calcium sensitizers and the use of intra-aortic balloon pumps will also be addressed. The guideline has been developed following the recommendations for the development of guidelines by the Association of the Scientific Medical Societies in Germany (AWMF). The presented key messages of the guidelines were approved after two consensus meetings under the moderation of the Association of the Scientific Medical

  10. Short-term effects of phenylephrine on systemic and regional hemodynamics in patients with septic shock: a crossover pilot study.

    PubMed

    Morelli, Andrea; Lange, Matthias; Ertmer, Christian; Dünser, Martin; Rehberg, Sebastian; Bachetoni, Alessandra; D'Alessandro, Marladomenica; Van Aken, Hugo; Guarracino, Fabio; Pietropaoli, Paolo; Traber, Daniel L; Westphal, Martin

    2008-04-01

    Clinical studies evaluating the use of phenylephrine in septic shock are lacking. The present study was designed as a prospective, crossover pilot study to compare the effects of norepinephrine (NE) and phenylephrine on systemic and regional hemodynamics in patients with catecholamine-dependent septic shock. In 15 septic shock patients, NE (0.82 +/- 0.689 microg x kg(-1) x min(-1)) was replaced with phenylephrine (4.39 +/- 5.23 microg x kg(-1) x min(-1)) titrated to maintain MAP between 65 and 75 mmHg. After 8 h of phenylephrine infusion treatment was switched back to NE. Data from right heart catheterization, acid-base balance, thermo-dye dilution catheter, gastric tonometry, and renal function were obtained before, during, and after replacing NE with phenylephrine. Variables of systemic hemodynamics, global oxygen transport, and acid-base balance remained unchanged after replacing NE with phenylephrine except for a significant decrease in heart rate (phenylephrine, 89 +/- 18 vs. NE, 93 +/- 18 bpm; P < 0.05). However, plasma disappearance rate (phenylephrine, 13.5 +/- 7.1 vs. NE, 16.4 +/- 8.7% x min(-1)) and clearance of indocyanine green (phenylephrine, 330 +/- 197 vs. NE, 380 +/- 227 mL x min(-1) x m(-2)), as well as creatinine clearance (phenylephrine, 81.3 +/- 78.4 vs. NE, 94.3 +/- 93.5 mL x min(-1)) were significantly decreased by phenylephrine infusion (each P < 0.05). In addition, phenylephrine increased arterial lactate concentrations as compared with NE infusion (1.7 +/- 1.0 vs. 1.4 +/- 1.1 mM; P < 0.05). After switching back to NE, all variables returned to values obtained before phenylephrine infusion except creatinine clearance and gastric tonometry values. Our results suggest that for the same MAP, phenylephrine causes a more pronounced hepatosplanchnic vasoconstriction as compared with NE.

  11. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System

    PubMed Central

    Takakura, Hiromasa; Nishijo, Hisao; Ishikawa, Akihiro; Shojaku, Hideo

    2015-01-01

    To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information. PMID:26635574

  12. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System.

    PubMed

    Takakura, Hiromasa; Nishijo, Hisao; Ishikawa, Akihiro; Shojaku, Hideo

    2015-01-01

    To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information. PMID:26635574

  13. Cerebral Hemodynamic Responses During Dynamic Posturography: Analysis with a Multichannel Near-Infrared Spectroscopy System.

    PubMed

    Takakura, Hiromasa; Nishijo, Hisao; Ishikawa, Akihiro; Shojaku, Hideo

    2015-01-01

    To investigate cortical roles in standing balance, cortical hemodynamic activity was recorded from the right hemisphere using near-infrared spectroscopy (NIRS) while subjects underwent the sensory organization test (SOT) protocol that systematically disrupts sensory integration processes (i.e., somatosensory or visual inputs or both). Eleven healthy men underwent the SOT during NIRS recording. Group statistical analyses were performed based on changes in oxygenated hemoglobin concentration in 10 different cortical regions of interest and on a general linear analysis with NIRS statistical parametric mapping. The statistical analyses indicated significant activation in the right frontal operculum (f-Op), right parietal operculum (p-Op), and right superior temporal gyrus (STG), right posterior parietal cortex (PPC), right dorsal and ventral premotor cortex (PMC), and the supplementary motor area (SMA) under various conditions. The activation patterns in response to specific combinations of SOT conditions suggested that (1) f-Op, p-Op, and STG are essential for sensory integration when standing balance is perturbed; (2) the SMA is involved in the execution of volitional action and establishment of new motor programs to maintain postural balance; and (3) the PPC and PMC are involved in the updating and computation of spatial reference frames during instances of sensory conflict between vestibular and visual information.

  14. Study of endothelial cell apoptosis using fluorescence resonance energy transfer (FRET) biosensor cell line with hemodynamic microfluidic chip system.

    PubMed

    Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q

    2013-07-21

    To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection

  15. Synthetic cannabinoids: the multi-organ failure and metabolic derangements associated with getting high

    PubMed Central

    Sherpa, Dolkar; Paudel, Bishow M.; Subedi, Bishnu H.; Chow, Robert Dobbin

    2015-01-01

    Synthetic cannabinoids (SC), though not detected with routine urine toxicology screening, can cause severe metabolic derangements and widespread deleterious effects in multiple organ systems. The diversity of effects is related to the wide distribution of cannabinoid receptors in multiple organ systems. Both cannabinoid-receptor-mediated and non-receptor-mediated effects can result in severe cardiovascular, renal, and neurologic manifestations. We report the case of a 45-year-old African American male with ST-elevation myocardial infarction, subarachnoid hemorrhage, reversible cardiomyopathy, acute rhabdomyolysis, and severe metabolic derangement associated with the use of K2, an SC. Though each of these complications has been independently associated with SCs, the combination of these effects in a single patient has not been heretofore reported. This case demonstrates the range and severity of complications associated with the recreational use of SCs. Though now banned in the United States, use of systemic cannabinoids is still prevalent, especially among adolescents. Clinicians should be aware of their continued use and the potential for harm. To prevent delay in diagnosis, tests to screen for these substances should be made more readily available. PMID:26333853

  16. General joint hypermobility and temporomandibular joint derangement in adolescents.

    PubMed Central

    Westling, L; Mattiasson, A

    1992-01-01

    Joint mobility was assessed in each member of an epidemiological sample of 96 girls and 97 boys, 17 years old, and graded by means of the hypermobility score of Beighton et al. Twenty two per cent of the girls and 3% of the boys could perform five or more of the nine manoeuvres. The prevalence of symptoms and signs of internal derangement in the temporomandibular joint was higher in adolescents with hypermobility of joints (score greater than or equal to 5/9). In subjects with a high mobility score oral parafunctions (overuse) correlated more strongly with several signs and symptoms of craniomandibular disorder than in those with a low score. PMID:1540046

  17. Three dimensional transient multifield analysis of a piezoelectric micropump for drug delivery system for treatment of hemodynamic dysfunctions.

    PubMed

    Nisar, Asim; Afzulpurkar, Nitin; Tuantranont, Adisorn; Mahaisavariya, Banchong

    2008-12-01

    In this paper, we present design of a transdermal drug delivery system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The system comprises of integrated control electronics and microelectromechanical system devices such as micropump, micro blood pressure sensor and microneedle array. The objective is to overcome the limitations of oral therapy such as variable absorption profile and the need for frequent dosing, by fabricating a safe, reliable and cost effective transdermal drug delivery system to dispense various pharmacological agents through the skin for treatment of hemodynamic dysfunction such as hypertension. Moreover, design optimization of a piezoelectrically actuated valveless micropump is presented for the drug delivery system. Because of the complexity in analysis of piezoelectric micropump, which involves structural and fluid field couplings in a complicated geometrical arrangement, finite element (FE) numerical simulation rather than an analytical system has been used. The behavior of the piezoelectric actuator with biocompatible polydimethylsiloxane membrane is first studied by conducting piezoelectric analysis. Then the performance of the valveless micropump is analyzed by building a three dimensional electric-solid-fluid model of the micropump. The effect of geometrical dimensions on micropump characteristics and efficiency of nozzle/diffuser elements of a valveless micropump is investigated in the transient analysis using multiple code coupling method. The deformation results of the membrane using multifield code coupling analysis are in good agreement with analytical as well as results of single code coupling analysis of a piezoelectric micropump. The analysis predicts that to enhance the performance of the micropump, diffuser geometrical dimensions such as diffuser length, diffuser neck width and diffuser angle need to be optimized. Micropump flow rate is not strongly affected at low excitation frequencies from 10

  18. A hemodynamics model to study the collective behavior of the ventricular-arterial system

    NASA Astrophysics Data System (ADS)

    Lin Wang, Yuh-Ying; Wang, Wei-Kung

    2013-01-01

    Applying principles from complex systems to study the efficacy of integrative therapies has become a new interest in medical research. We aimed to construct a concise model for the ventricular-arterial (VA) system and to provide a systematic method for exploring its overall behavior. The transportation of blood from the heart to the peripheral arterioles via hydraulic pressure forces was described by a multi-rank model. Parts of the VA system that have strong mutual interactions were combined into a single sub system. Sub systems of four different ranks were characterized. We then applied the multi-rank model to analyze the aortic pressure wave generated by the periodic ventricular blood ejection, the renal pressure in response to the input from the VA system, and the blood flowing from the renal artery to its arterioles. Maintaining the pressure distribution along the main arteries and in all of the organs with the lowest possible ventricular input turned out to be the first principle for the operation of an efficient VA system. By this principle, we pointed out the benefit of some arterial structures in mammals, derived specific regulation rules and deduced some fundamental concepts for healing. The justification of the biomechanics in our model that differed greatly from those in the prevailing models was given. We concluded that the oscillatory motion and the pressure pulse of the arterial system can be analyzed as steady states with resonance behaviors and suggested utilizing this model to construct integrative therapies for diseases correlated with abnormality in blood circulation.

  19. Differential systemic and regional hemodynamic profiles of four angiotensin-I converting-enzyme inhibitors in the rat.

    PubMed

    Richer, C; Doussau, M P; Giudicelli, J F

    1989-12-01

    Angiotensin-converting enzyme (ACE) inhibitors decrease blood pressure by reducing systemic vascular resistance. That the peripheral vasodilating properties of ACE inhibitors might not be homogeneously distributed in all vascular beds and might differ from one drug to another has been investigated in the normotensive rat by the pulsed Doppler technique using the active components of four different ACE inhibitors: captopril, enalapril, perindopril, and ramipril. Systemic (cardiac output and blood pressure) and regional (kidney, mesentery, hindquarter) hemodynamic responses to saline or to cumulative bolus injections (0.01-1 mg/kg) of captopril, enalaprilat, perindoprilat, or ramiprilat were continuously monitored. The effects of successive bolus injections (0.3-300 ng/kg) of angiotensinII were also investigated. The four ACE inhibitors produced an almost complete blockade of plasma angiotensin-II converting-enzyme activity (83%, 100%, 100%, and 100%, respectively), induced dose-dependent decreases in mean blood pressure, did not significantly affect cardiac output, and reduced total peripheral and mesenteric vascular resistances to the same extent. Hindlimb vascular resistance was identically decreased, but to a lower extent than total peripheral resistance by enalaprilat, perindoprilat, and ramiprilat, whereas it was increased by captopril at low doses only. Renal resistance was markedly decreased by the four drugs, and especially by captopril. The decreasing rank order for ACE-inhibitor-induced vasodilation is exactly the same (renal greater than total peripheral = mesenteric greater than hindlimb vascular resistances) as that of angiotensin-H-induced regional vasoconstriction, indicating that the vasodilator properties of ACE inhibitors are mainly due to angiotensin-II vasomotor tone suppression. None of the investigated compounds significantly affected mesenteric and hindlimb blood flows, except captopril, which lowered the latter significantly

  20. High frame-rate MR-guided near-infrared tomography system to monitor breast hemodynamics

    NASA Astrophysics Data System (ADS)

    Li, Zhiqiu; Jiang, Shudong; Krishnaswamy, Venkataramanan; Davis, Scott C.; Srinivasan, Subhadra; Paulsen, Keith D.; Pogue, Brian W.

    2011-02-01

    A near-infrared (NIR) tomography system with spectral-encoded sources at two wavelength bands was built to quantify the temporal contrast at 20 Hz bandwidth, while imaging breast tissue. The NIR system was integrated with a magnetic resonance (MR) machine through a custom breast coil interface, and both NIR data and MR images were acquired simultaneously. MR images provided breast tissue structural information for NIR reconstruction. Acquisition of finger pulse oximeter (PO) plethysmogram was synchronized with the NIR system in the experiment to offer a frequency-locked reference. The recovered absorption coefficients of the breast at two wavelengths showed identical temporal frequency as the PO output, proving this multi-modality design can recover the small pulsatile variation of absorption property in breast tissue related to the heartbeat. And it also showed the system's ability on novel contrast imaging of fast flow signals in deep tissue.

  1. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements

    PubMed Central

    Swithers, Susan E.

    2013-01-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements. PMID:23850261

  2. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements.

    PubMed

    Swithers, Susan E

    2013-09-01

    The negative impact of consuming sugar-sweetened beverages on weight and other health outcomes has been increasingly recognized; therefore, many people have turned to high-intensity sweeteners like aspartame, sucralose, and saccharin as a way to reduce the risk of these consequences. However, accumulating evidence suggests that frequent consumers of these sugar substitutes may also be at increased risk of excessive weight gain, metabolic syndrome, type 2 diabetes, and cardiovascular disease. This paper discusses these findings and considers the hypothesis that consuming sweet-tasting but noncaloric or reduced-calorie food and beverages interferes with learned responses that normally contribute to glucose and energy homeostasis. Because of this interference, frequent consumption of high-intensity sweeteners may have the counterintuitive effect of inducing metabolic derangements.

  3. Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia

    PubMed Central

    Tracz, MJ; Juncos, JP; Croatt, AJ; Ackerman, AW; Grande, JP; Knutson, KL; Kane, GC; Terzic, A; Griffin, MD; Nath, KA

    2010-01-01

    Heme oxygenase-1 may exert cytoprotective effects. In this study we examined the sensitivity of heme oxygenase-1 knockout (HO-1−/−) mice to renal ischemia by assessing glomerular filtration rate (GFR) and cytokine expression in the kidney, and inflammatory responses in the systemic circulation and in vital extrarenal organs. Four hours after renal ischemia, the GFR of HO-1−/− mice was much lower than that of wild-type mice in the absence of changes in renal blood flow or cardiac output. Eight hours after renal ischemia, there was a marked induction of interleukin-6 (IL-6) mRNA and its downstream signaling effector, phosphorylated signal transducer and activator of transcription 3 (pSTAT3), in the kidney, lung, and heart in HO-1−/− mice. Systemic levels of IL-6 were markedly and uniquely increased in HO-1−/− mice after ischemia as compared to wild-type mice. The administration of an antibody to IL-6 protected against the renal dysfunction and mortality observed in HO-1−/− mice following ischemia. We suggest that the exaggerated production of IL-6, occurring regionally and systemically following localized renal ischemia, in an HO-1-deficient state may underlie the heightened sensitivity observed in this setting. PMID:17728706

  4. Endothelin-A blockade attenuates systemic and renal hemodynamic effects of L-NAME in humans.

    PubMed

    Montanari, A; Biggi, A; Carra, N; Fasoli, E; Calzolari, M; Corsini, F; Perinotto, P; Novarini, A

    2000-01-01

    Eight Na-repleted volunteers underwent 3 separate 90-minute infusions of either N(G)-nitro-L-arginine methyl ester (L-NAME) 3.0 mg. kg(-1). min(-1) or endothelin-A receptor (ET-A) blocker BQ-123 (BQ) 0.125 nmol. kg(-1). min(-1) or both. Mean arterial pressure (MAP), glomerular filtration rate (GFR), renal blood flow (RBF), renal vascular resistances (RVR), and sodium excretion rate (UNaV) were measured at baseline (b) and from 0 to 45 minutes (period 1) and 45 to 90 minutes (period 2) of infusion. BQ alone had no effect. GFR declined by 4.9% (P<0.001 versus b) in period 1, to 9.9% (P<0. 001) in period 2 with L-NAME, and by 3.3% (P<0.01) to 6.6% (P<0.001) with L-NAME plus BQ (P=NS between L-NAME and L-NAME plus BQ). UNaV fell equally with L-NAME or L-NAME plus BQ. MAP rose significantly in period 2 with L-NAME (6.9%; P<0.001) but not with coinfused BQ (2. 1%; P=NA versus b, P=0.005 versus L-NAME alone). RBF declined by 12. 2% (P<0.001) to 18.3% (P<0.001) with L-NAME and by 4.6% (P<0.005) to 8.2% (P<0.001) with L-NAME plus BQ. These changes were smaller with L-NAME plus BQ (P<0.05 in period 1 and P<0.02 in period 2). Blunted changes were also seen for RVR (P<0.005 in period 1 and P<0.001 in period 2 between L-NAME alone and L-NAME plus BQ). These findings show that systemic and renal vasoconstriction due to L-NAME are attenuated by BQ, which suggests that an interaction between endogenous nitric oxide production and ET-A activity participates in the maintenance of baseline systemic and renal vascular tone in humans.

  5. Systemic and regional hemodynamic effects of high-dose epinephrine infusion in hypoxic piglets resuscitated with 100% oxygen.

    PubMed

    Cheung, Po-Yin; Abozaid, Sameh; Al-Salam, Zakariya; Johnson, Scott; Li, Yingqian; Bigam, David

    2007-10-01

    Shock and poor regional perfusion are common in asphyxiated neonates. We compared the systemic and regional hemodynamic effects of high-dose epinephrine (E) with those of dopamine combined with low-dose epinephrine (DE) infusions in a neonatal model of hypoxia-reoxygenation. Neonatal piglets (1-3 days, 1.5-2.5 kg) were acutely instrumented to continuously monitor systemic arterial pressure (SAP), pulmonary artery pressure, cardiac index (CI), and blood flows at the left common carotid, superior mesenteric, and renal arteries. Either epinephrine (1 microg.kg(-1).min(-1)) or dopamine (10 microg.kg(-1).min(-1)) and epinephrine (0.2 microg.kg(-1).min(-1)) were given for 2 h in hypoxic piglets resuscitated with 100% oxygen (n = 8 per group) in a randomized blinded fashion. Control piglets received hypoxia and reoxygenation but no catecholamine infusion (n = 7). Alveolar hypoxia (PaO2, 33-37 mmHg) caused reduced CI (89-92 vs. 171-186 mL.kg(-1).min(-1) of baseline, P < 0.05), hypotension (SAP, 28-32 mmHg) with pH 7.05 to 7.10, and decreased regional flows. Upon reoxygenation, CI and SAP improved but gradually deteriorated to 131 to 136 mL.kg(-1).min(-1) and 41 to 49 mmHg at 2 h of reoxygenation, respectively. E and DE administration similarly improved CI (167 +/- 60 and 166 +/- 55 vs. 121 +/- 35 mL.kg(-1).min(-1) of controls) and SAP (53 +/- 7 and 56 +/- 10 vs. 39 +/- 8 mmHg of controls), respectively, and the pulmonary vascular resistance (vs. controls, all P < 0.05). Heart rate and pulmonary artery pressure were not different between groups. Systemic oxygen delivery and consumption were increased in E- and DE-treated groups with no difference in extraction ratio between groups. There were no differences in regional blood flows and oxygen delivery between groups. After hyperlactatemia with hypoxia, plasma lactate levels decreased with no difference between groups. Epinephrine given as the sole agent is as effective as dopamine and low-dose epinephrine combined in

  6. Systemic and regional hemodynamic, antiarrhythmic and antiischemic effects of bevantolol in anesthetized pigs.

    PubMed

    Verdouw, P D; Hartog, J M; Saxena, P R; Hugenholtz, P G

    1986-11-26

    In doses of 0.5 to 3.0 mg/kg bevantolol caused dose-dependent decreases in cardiac output (10% to 35%), primarily due to negative chronotropic actions, as heart rate decreased by 10% to 25%. Stroke volume decreased after the highest dose (15%), due to a negative inotropic action (maximum left ventricular dP/dt decreased by 40%) and a mild vasoconstriction in systemic vascular beds. Decreases in perfusion of the heart, kidneys, liver, spleen, stomach, muscles and adrenals were similar to those in cardiac output. However, blood flow to the brain and small intestine was not significantly affected. Bevantolol (0.5 or 1.5 mg/kg IV) gave full protection against ventricular fibrillation during the first period (10 minutes) of proximal left anterior descending (LAD) coronary artery occlusion in the highest dose. After the third and last reperfusion period, 70% of these animals survived, while only 8% of the untreated and 15% of the animals treated with the lower dose survived. After permanent ligation of the LAD coronary artery at midpoint, bevantolol prevented ventricular fibrillation during the first phase of early ventricular arrhythmias but was unable to prevent it during the second phase of early arrhythmias. Administration of bevantolol (1.5 mg/kg) to animals in which the LAD coronary artery blood flow was reduced to 35% of baseline did not improve transmural myocardial blood flow to the ischemic zone. However, the drug caused a redistribution in favor of the endocardial layers. The changes in flow were accompanied by a narrowing of the arterial-coronary venous differences in pH and pCO2.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. In vitro hemodynamic evaluation of a novel pulsatile extracorporeal life support system: impact of perfusion modes and circuit components on energy loss.

    PubMed

    Wang, Shigang; Kunselman, Allen R; Clark, Joseph B; Ündar, Akif

    2015-01-01

    The objective of this study is to investigate the impact of every component of extracorporeal life support (ECLS) circuit on hemodynamic energy transmission in terms of energy equivalent pressure (EEP), total hemodynamic energy (THE), and surplus hemodynamic energy (SHE) under nonpulsatile and pulsatile modes in a novel ECLS system. The ECLS circuit consisted of i-cor diagonal pump and console (Xenios AG, Heilbronn, Germany), an iLA membrane ventilator (Xenios AG), an 18 Fr femoral arterial cannula, a 23/25 Fr femoral venous cannula, and 3/8-in ID arterial and venous tubing. The circuit was primed with lactated Ringer's solution and human whole blood (hematocrit 33%). All trials were conducted under room temperature at the flow rates of 1-4 L/min (1 L/min increments). The pulsatile flow settings were set at pulsatile frequency of 75 beats per minute and differential speed values of 1000-4000 rpm (1000 rpm increments). Flow and pressure data were collected using a custom-based data acquisition system. EEP was significantly higher than mean arterial pressure in all experimental conditions under pulsatile flow (P < 0.01). THE was also increased under pulsatile flow compared with the nonpulsatile flow (P < 0.01). Under pulsatile flow conditions, SHE was significantly higher and increased differential rpm resulted in significantly higher SHE (P < 0.01). There was no SHE generated under nonpulsatile flow. Energy loss depending on the circuit components was almost similar in both perfusion modes at all different flow rates. The pressure drops across the oxygenator were 3.8-24.9 mm Hg, and the pressure drops across the arterial cannula were 19.3-172.6 mm Hg at the flow rates of 1-4 L/min. Depending on the pulsatility setting, i-cor ECLS system generates physiological quality pulsatile flow without increasing the mean circuit pressure. The iLA membrane ventilator is a low-resistance oxygenator, and allows more hemodynamic energy to be delivered

  8. Hemodynamic Intervention of Cerebral Aneurysms

    NASA Astrophysics Data System (ADS)

    Meng, Hui

    2005-11-01

    Cerebral aneurysm is a pathological vascular response to hemodynamic stimuli. Endovascular treatment of cerebral aneurysms essentially alters the blood flow to stop them from continued growth and eventual rupture. Compared to surgical clipping, endovascular methods are minimally invasive and hence rapidly gaining popularity. However, they are not always effective with risks of aneurysm regrowth and various complications. We aim at developing a Virtual Intervention (VI) platform that allows: patient-specific flow calculation and risk prediction as well as recommendation of tailored intervention based on quantitative analysis. This is a lofty goal requiring advancement in three areas of research: (1). Advancement of image-based CFD; (2) Understanding the biological/pathological responses of tissue to hemodynamic factors in the context of cerebral aneurysms; and (3) Capability of designing and testing patient-specific endovascular devices. We have established CFD methodologies based on anatomical geometry obtained from 3D angiographic or CT images. To study the effect of hemodynamics on aneurysm development, we have created a canine model of a vascular bifurcation anastomosis to provide the hemodynamic environment similar to those in CA. Vascular remodeling was studied using histology and compared against the flow fields obtained from CFD. It was found that an intimal pad, similar to those frequently seen clinically, developed at the flow impingement site, bordering with an area of `groove' characteristic of an early stage of aneurysm, where the micro environment exhibits an elevated wall shear stresses. To further address the molecular mechanisms of the flow-mediated aneurysm pathology, we are also developing in vitro cell culture systems to complement the in vivo study. Our current effort in endovascular device development focuses on novel stents that alters the aneurysmal flow to promote thrombotic occlusion as well as favorable remodeling. Realization of an

  9. Evaluating the hemodynamical response of a cardiovascular system under support of a continuous flow left ventricular assist device via numerical modeling and simulations.

    PubMed

    Bozkurt, Selim; Safak, Koray K

    2013-01-01

    Dilated cardiomyopathy is the most common type of the heart failure which can be characterized by impaired ventricular contractility. Mechanical circulatory support devices were introduced into practice for the heart failure patients to bridge the time between the decision to transplant and the actual transplantation which is not sufficient due to the state of donor organ supply. In this study, the hemodynamic response of a cardiovascular system that includes a dilated cardiomyopathic heart under support of a newly developed continuous flow left ventricular assist device--Heart Turcica Axial--was evaluated employing computer simulations. For the evaluation, a numerical model which describes the pressure-flow rate relations of Heart Turcica Axial, a cardiovascular system model describing the healthy and pathological hemodynamics, and a baroreflex model regulating the heart rate were used. Heart Turcica Axial was operated between 8000 rpm and 11,000 rpm speeds with 1000 rpm increments for assessing the pump performance and response of the cardiovascular system. The results also give an insight about the range of the possible operating speeds of Heart Turcica Axial in a clinical application. Based on the findings, operating speed of Heart Turcica Axial should be between 10,000 rpm and 11,000 rpm.

  10. Preservation Of Native Aortic Valve Flow And Full Hemodynamic Support With The TORVAD™ Using A Computational Model Of The Cardiovascular System

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Chang, Kay-Won; Larson, Erik R.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2014-01-01

    This paper describes the stroke volume selection and operational design for the TORVAD™, a synchronous, positive-displacement ventricular assist device (VAD). A lumped parameter model was used to simulate hemodynamics with the TORVAD™ compared to those under continuous flow VAD support. Results from the simulation demonstrated that a TORVAD™ with a 30 mL stroke volume ejecting with an early diastolic counterpulse provides comparable systemic support to the HeartMate II® (HMII) (cardiac output 5.7 L/min up from 3.1 L/min in simulated heart failure). By taking advantage of synchronous pulsatility, the TORVAD™ delivers full hemodynamic support with nearly half the VAD flow rate (2.7 L/min compared to 5.3 L/min for the HMII) by allowing the left ventricle to eject during systole, thus preserving native aortic valve flow (3.0 L/min compared to 0.4 L/min for the HMII, down from 3.1 L/min at baseline). The TORVAD™ also preserves pulse pressure (26.7 mmHg compared to 12.8 mmHg for the HMII, down from 29.1 mmHg at baseline). Preservation of aortic valve flow with synchronous pulsatile support could reduce the high incidence of aortic insufficiency and valve cusp fusion reported in patients supported with continuous flow VADs. PMID:25485562

  11. Hemodynamics of Cerebral Aneurysms

    PubMed Central

    Sforza, Daniel M.; Putman, Christopher M.; Cebral, Juan Raul

    2009-01-01

    The initiation and progression of cerebral aneurysms are degenerative processes of the arterial wall driven by a complex interaction of biological and hemodynamic factors. Endothelial cells on the artery wall respond physiologically to blood-flow patterns. In normal conditions, these responses are associated with nonpathological tissue remodeling and adaptation. The combination of abnormal blood patterns and genetics predisposition could lead to the pathological formation of aneurysms. Here, we review recent progress on the basic mechanisms of aneurysm formation and evolution, with a focus on the role of hemodynamic patterns. PMID:19784385

  12. Temporomandibular joint internal derangement type III: relationship to magnetic resonance imaging findings of internal derangement and osteoarthrosis. An intraindividual approach.

    PubMed

    Emshoff, R; Rudisch, A; Innerhofer, K; Bösch, R; Bertram, S

    2001-10-01

    The purpose of this study was to investigate whether in patients with a clinical unilateral temporomandibular joint (TMJ)-related finding of internal derangement type (ID)-III (disk displacement without reduction) in combination with TMJ-related pain, the intraindividual variable of 'unilateral TMJ ID-III pain' may be linked to subject-related magnetic resonance (MR) imaging findings of TMJ ID, and TMJ osteoarthrosis (OA). The study comprised 48 consecutive TMJ pain patients, who were assigned a clinical unilateral TMJ pain side-related diagnosis of ID-III. Bilateral sagittal and coronal MR images were obtained to establish the presence or absence of TMJ ID and/or OA. Comparison of the TMJ side-related data showed a significant relationship between the clinical finding of TMJ ID-III pain and the MR imaging diagnoses of TMJ ID (P=0.000) and TMJ ID type (P=0.000). There was no correlation between the clinical finding of TMJ ID-III pain and the MR imaging diagnosis of TMJ OA (P=0.217), nor between the MR imaging diagnosis of TMJ OA and that of TMJ ID (P=0.350). Regarding the diagnostic subgroups of TMJ ID, a significant relationship was found between the presence of TMJ OA and the MR imaging diagnoses of TMJ ID type(P=0.002). Use of the Kappa statistical test indicated a fair diagnostic agreement between the presence of TMJ ID-III pain and the MR imaging diagnosis of disk displacement without reduction (DDNR) (K=0.42). The results suggest that TMJ ID-III pain is related to TMJ-related MR imaging diagnoses of ID. Further, the data confirm the biological concept of 'DDNR and OA' as an underlying mechanism in the etiology of TMJ-related pain and dysfunction. PMID:11720040

  13. Use of a decision support system improves the management of hemodynamic and respiratory events in orthopedic patients under propofol sedation and spinal analgesia: a randomized trial.

    PubMed

    Zaouter, Cedrick; Wehbe, Mohamad; Cyr, Shantale; Morse, Joshua; Taddei, Riccardo; Mathieu, Pierre A; Hemmerling, Thomas M

    2014-02-01

    Decision support systems (DSSs) have been successfully implemented into clinical practice offering clinical suggestions and treatment options with excellent results in various clinical settings. Although their results appeared promising, showing that DSSs can increase anesthesiologists' vigilance and patient safety during surgery, DSSs have never been used before to help anesthesiologists in identifying critical events in patients under spinal analgesia with sedation. We have developed and clinically evaluated a DSS for this specific task. The DSS was developed with the ability to indicate respiratory and hemodynamic critical events via audio-visual alarms and give decisional aid. Critical respiratory events were defined as SpO2 <92 % and/or respiratory rate <8/min. Critical hemodynamic events were defined as mean arterial pressure (MAP) <60 mmHg and/or heart rate <40 bpm. The objective of this trial was to determine the duration to detect and treat these critical events with the help of the DSS (DSS Group) compared with a standard Control Group where the system was not in place. One hundred and fifty orthopedic patients undergoing spinal analgesia with propofol sedation were enrolled in this randomized control trial, 75 each group. All respiratory and hemodynamic critical events were detected in the DSS Group, while in the Control Group 26 % of the events were not detected.The delay to detect and treat critical events was significantly shorter (P < 0.0001) in the DSS Group at 9.1 ± 3.6 s, whereas 27.5 ± 18.9 s were necessary to identify them in the Control Group. There were no significant differences in physiological parameters in the two groups during surgery. The number of critical events/h occurring and the duration of surgery were similar in both groups. The number of hypoxemia episodes was significantly less (P = 0.036) in the DSS group (0.7 ± 1.0 vs. 1.4 ± 2.2 for the Control Group). The DSS tested in this trial could help the clinician to detect and

  14. Functional Hemodynamic Monitoring

    PubMed Central

    Pinsky, Michael R.

    2014-01-01

    Functional hemodynamic monitoring is the assessment of the dynamic interactions of hemodynamic variables in response to a defined perturbation. Dynamic tissue O2 saturation (StO2) responses to complete stop flow conditions (vascular occlusion test), which can be created by measuring hand StO2 and occluding flow with a blood pressure cuff, assesses cardiovascular sufficiency and microcirculatory blood flow distribution. Recent interest in functional hemodynamic monitoring for the bedside assessment of cardiovascular insufficiency has heightened with the documentation of its accuracy in predicting volume responsiveness using a wide variety of monitoring devices both invasive and non-invasive and across multiple patient groups and clinical conditions. Accordingly, fluid responsiveness can be predicted in a quantities fashion by measuring as arterial pulse pressure variation, left ventricular stroke volume variation or their surrogates during positive pressure breathing or the change in cardiac output response to a passive leg raising maneuver. However, volume responsiveness, though important, reflects only part of the overall spectrum of functional physiological variables that can be measured to define physiologic state and monitor response to therapy. PMID:25435480

  15. The Role of Intraarticular Platelet Rich Plasma (PRP) Injection in Patients with Internal Knee Derangements.

    PubMed

    Razaq, Sarah; Ejaz, Amer; Rao, Sajid Ejaz; Yasmeen, Rehana; Arshad, M Aleem

    2015-09-01

    Platelet Rich Plasma (PRP) is an emerging biotechnology which uses patient's own blood components to create healing effect to their own injured tissues. This study was carried out to evaluate the clinical effects, adverse reactions and patient satisfaction after intraarticular injection of platelet rich plasma in a small group of patients with internal derangements of knee at Combined Military Hospital, Panoaqil, Pakistan. In this single center, open study, 10 patients with internal derangements of knee fulfilling the inclusion criteria received two doses of 3 ml of platelet rich plasma as intraarticular knee injection at two weeks interval. All patients were evaluated at 0, 4 and 12 weeks after treatment using IKDC, TEGNER, KOOS and VAS. Adverse events and patient's satisfaction was recorded. There was significant improvement in all scores. Intraarticular PRP injection is safe and effective method in the conservative treatment of internal knee derangements. PMID:26374371

  16. Frequency of Electrolyte Derangement after Transurethral Resection of Prostate: Need for Postoperative Electrolyte Monitoring

    PubMed Central

    Aziz, Wajahat; Ather, M. Hammad

    2015-01-01

    Objective. To determine the electrolyte derangement following transurethral resection of prostate (TURP). Methods. All patients undergoing TURP from June 2012 to April 2013 were included. Preoperative electrolytes were performed within a week of procedures. Monopolar TURP using 1.5% glycine was performed. Serum Na+ and K+ were assessed within 1 hour postoperatively and subsequently if clinically indicated. Results. The study included 280 patients. Sixty-six patients (23.6%) had electrolyte derangement after TURP. Patients with deranged electrolytes were older (mean age of 73.41 ± 4.08 yrs. versus 68.93 yrs. ± 10.34) and had a longer mean resection time (42.5 ± 20.04 min versus 28.34 ± 14.64 min). Mean weight of tissue resected (41.49 ± 34.46 g versus 15.33 ± 9.74 g) and volume of irrigant used (23.55 ± 15.20 L versus 12.81 ± 7.57 L) were also significantly higher in patients with deranged electrolytes (all p = 0.00). On multivariate logistic regression analysis preoperative sodium level was found to be a significant predictor of postoperative electrolyte derangement (odds ratio 0.267, S.E. = 0.376, and p value = 0.00). Conclusion. Electrolyte derangement occurs in older patients, with larger amount of tissue and longer time of resection and higher volume of irrigant, and in those with lower serum preoperative sodium levels. PMID:26089874

  17. Basic Perforator Flap Hemodynamic Mathematical Model

    PubMed Central

    Tao, Youlun; Ding, Maochao; Wang, Aiguo; Zhuang, Yuehong; Chang, Shi-Min; Mei, Jin; Hallock, Geoffrey G.

    2016-01-01

    Background: A mathematical model to help explain the hemodynamic characteristics of perforator flaps based on blood flow resistance systems within the flap will serve as a theoretical guide for the future study and clinical applications of these flaps. Methods: There are 3 major blood flow resistance network systems of a perforator flap. These were defined as the blood flow resistance of an anastomosis between artery and artery of adjacent perforasomes, between artery and vein within a perforasome, and then between vein and vein corresponding to the outflow of that perforasome. From this, a calculation could be made of the number of such blood flow resistance network systems that must be crossed for all perforasomes within a perforator flap to predict whether that arrangement would be viable. Results: The summation of blood flow resistance networks from each perforasome in a given perforator flap could predict which portions would likely survive. This mathematical model shows how this is directly dependent on the location of the vascular pedicle to the flap and whether supercharging or superdrainage maneuvers have been added. These configurations will give an estimate of the hemodynamic characteristics for the given flap design. Conclusions: This basic mathematical model can (1) conveniently determine the degree of difficulty for each perforasome within a perforator flap to survive; (2) semiquantitatively allow the calculation of basic hemodynamic parameters; and (3) allow the assessment of the pros and cons expected for each pattern of perforasomes encountered clinically based on predictable hemodynamic observations. PMID:27579238

  18. Advanced hemodynamic monitoring: principles and practice in neurocritical care.

    PubMed

    Lazaridis, Christos

    2012-02-01

    Advanced hemodynamic monitoring is necessary for many patients with acute brain and/or spinal cord injury. Optimizing cerebral and systemic physiology requires multi-organ system function monitoring. Hemodynamic manipulations are cardinal among interventions to regulate cerebral perfusion pressure and cerebral blood flow. The pulmonary artery catheter is not any more the sole tool available; less invasive and potentially more accurate methodologies have been developed and employed in the operating room and among diverse critically ill populations. These include transpulmonary thermodilution, arterial pressure pulse contour, and waveform analysis and bedside critical care ultrasound. A thorough understanding of hemodynamics and of the available monitoring modalities is an essential skill for the neurointensivist.

  19. Statins and cerebral hemodynamics

    PubMed Central

    Giannopoulos, Sotirios; Katsanos, Aristeidis H; Tsivgoulis, Georgios; Marshall, Randolph S

    2012-01-01

    HMG-CoA reductase inhibitors (statins) are associated with improved stroke outcome. This observation has been attributed in part to the palliative effect of statins on cerebral hemodynamics and cerebral autoregulation (CA), which are mediated mainly through the upregulation of endothelium nitric oxide synthase (eNOS). Several animal studies indicate that statin pretreatment enhances cerebral blood flow after ischemic stroke, although this finding is not further supported in clinical settings. Cerebral vasomotor reactivity, however, is significantly improved after long-term statin administration in most patients with severe small vessel disease, aneurysmal subarachnoid hemorrhage, or impaired baseline CA. PMID:22929438

  20. Deranged jaw-neck motor control in whiplash-associated disorders.

    PubMed

    Eriksson, Per-Olof; Zafar, Hamayun; Häggman-Henrikson, Birgitta

    2004-02-01

    Recent findings of simultaneous and well coordinated head-neck movements during single as well as rhythmic jaw opening-closing tasks has led to the conclusion that 'functional jaw movements' are the result of activation of jaw as well as neck muscles, leading to simultaneous movements in the temporomandibular, atlanto-occipital and cervical spine joints. It can therefore be assumed that disease or injury to any of these joint systems would disturb natural jaw function. To test this hypothesis, amplitudes, temporal coordination, and spatiotemporal consistency of concomitant mandibular and head-neck movements during single maximal jaw opening-closing tasks were analysed in 25 individuals suffering from whiplash-associated disorders (WAD) using optoelectronic movement recording technique. In addition, the relative durations for which the head position was equal to, leading ahead of, or lagging behind the mandibular position during the entire jaw opening-closing cycle were determined. Compared with healthy individuals, the WAD group showed smaller amplitudes, and changed temporal coordination between mandibular and head-neck movements. No divergence from healthy individuals was found for the spatiotemporal consistency or for the analysis during the entire jaw opening-closing cycle. These findings in the WAD group of a 'faulty', but yet consistent, jaw-neck behavior may reflect a basic importance of linked control of the jaw and neck sensory-motor systems. In conclusion, the present results suggest that neck injury is associated with deranged control of mandibular and head-neck movements during jaw opening-closing tasks, and therefore might compromise natural jaw function.

  1. Hemodynamic findings in patients with brain stroke

    PubMed Central

    Siebert, Janusz; Molisz, Andrzej; Trzeciak, Bartosz; Nyka, Walenty

    2012-01-01

    Introduction Standard procedures carried out at a stroke department in patients after a cerebral event may prove insufficient for monitoring hemodynamic indices. Impedance cardiography enables hemodynamic changes to be monitored non-invasively. The aim of the work was to describe hemodynamic parameters in patients with acute phase of ischemic and hemorrhagic stroke and to analyse the correlation between the type of hemodynamic response and long-term prognosis. Material and methods The 45 consecutive subjects with ischemic stroke and 16 with a hemorrhagic stroke were examined additionally with impedance cardiography during the first day of hospitalization. The heart contractility, pump performance, afterload and preload indices were recorded and calculated automatically and the data analyzed in terms of 6-month mortality. Results We found a significant association between the systemic vascular resistance index, Heather index, stroke index, heart rate, systolic and diastolic and mean arterial blood pressure and mortality in patients with ischemic stroke (p = 0.002, p = 0.008, p = 0.012, p = 0.005, p = 0.007, p = 0.009, p = 0.002 respectively). Logistic regression analysis identified the thoracic fluid content as the most significant variable correlating with the non-survival of the patients with ischemic stroke and in the whole group (ischemic and hemorrhagic stroke). The significant parameters were also mean arterial pressure and stroke index in ischemic stroke (the correct answer ratio was 86.67%) and heart rate in the whole group (the correct answer ratio was 80.33%). There were no significant associations in hemorrhagic stroke. Conclusions The hemodynamic parameters correlate with long term prognosis in patients with ischemic brain stroke. PMID:22662014

  2. Interaction between alpha 2-adrenergic and angiotensin II systems in the control of glomerular hemodynamics as assessed by renal micropuncture in the rat

    NASA Technical Reports Server (NTRS)

    Thomson, S. C.; Gabbai, F. B.; Tucker, B. J.; Blantz, R. C.

    1992-01-01

    The hypothesis that renal alpha 2 adrenoceptors influence nephron filtration rate (SNGFR) via interaction with angiotensin II (AII) was tested by renal micropuncture. The physical determinants of SNGFR were assessed in adult male Munich Wistar rats 5-7 d after ipsilateral surgical renal denervation (DNX). DNX was performed to isolate inhibitory central and presynaptic alpha 2 adrenoceptors from end-organ receptors within the kidney. Two experimental protocols were employed: one to test whether prior AII receptor blockade with saralasin would alter the glomerular hemodynamic response to alpha 2 adrenoceptor stimulation with the selective agonist B-HT 933 under euvolemic conditions, and the other to test whether B-HT 933 would alter the response to exogenous AII under conditions of plasma volume expansion. In euvolemic rats, B-HT 933 caused SNGFR to decline as the result of a decrease in glomerular ultrafiltration coefficient (LpA), an effect that was blocked by saralasin. After plasma volume expansion, B-HT 933 showed no primary effect on LpA but heightened the response of arterial blood pressure, glomerular transcapillary pressure gradient, and LpA to AII. The parallel results of these converse experiments suggest a complementary interaction between renal alpha 2-adrenergic and AII systems in the control of LpA.

  3. Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle.

    PubMed

    Bartoli, Carlo R; Giridharan, Guruprasad A; Litwak, Kenneth N; Sobieski, Michael; Prabhu, Sumanth D; Slaughter, Mark S; Koenig, Steven C

    2010-01-01

    Debate exists regarding the merits and limitations of continuous versus pulsatile flow mechanical circulatory support. To characterize the hemodynamic differences between each mode of support, we investigated the acute effects of continuous versus pulsatile unloading of the failing left ventricle in a bovine model. Heart failure was induced in male calves (n = 14). During an acute study, animals were instrumented through thoracotomy for hemodynamic measurement. A continuous flow (n = 8) and/or pulsatile flow (n = 8) left ventricular assist device (LVAD) was implanted and studied during maximum support ( approximately 5 L/min) and moderate support ( approximately 2-3 L/min) modes. Pulse pressure (PP), surplus hemodynamic energy (SHE), and (energy equivalent pressure [EEP]/mean aortic pressure (MAP) - 1) x 100% were derived to characterize hemodynamic energy profiles during the different support modes. Standard hemodynamic parameters of cardiac performance were also derived. Data were analyzed by repeated measures one-way analysis of variance within groups and unpaired Student's t-tests across groups. During maximum and moderate continuous unloading, PP, SHE, and (EEP/MAP - 1) x 100% were significantly decreased compared with baseline and compared with pulsatile unloading. As a result, continuous unloading significantly altered left ventricular peak systolic pressure, aortic systolic and diastolic pressure, +/-dP/dt, and rate x pressure product, whereas pulsatile unloading preserved a normal profile of physiologic values. As continuous unloading increased, the pressure-volume relationship collapsed, and the aortic valve remained closed. In contrast, as pulsatile unloading increased, a comparable decrease in left ventricular volumes was noted. However, a normal range of left ventricular pressures was preserved. Continuous unloading deranged the physiologic profile of myocardial and vascular hemodynamic energy utilization, whereas pulsatile unloading preserved more

  4. Temporary Incomplete Ischemia of the Legs Induced by Aortic Clamping in Man: Effects on Central Hemodynamics and Skeletal Muscle Metabolism by Adrenergic Block

    PubMed Central

    Eklöf, B.; Neglén, P.; Thomson, D.

    1981-01-01

    The hemodynamic changes which occur when clamping and unclamping the aorta during reconstructive surgery might be a threat to the elderly patient with concomitant cardiac disease. In addition, the cross-clamping induces a temporary ischemia of the legs, with severe metabolic derangement after the release of the aortic clamp. We have studied the effect of a intraoperative adrenergic block (phenoxybenzamine plus metoprolol) on the central circulation and the skeletal metabolism in 14 patients undergoing aortic reconstruction to treat occlusive arteriosclerotic disease. Cardiac output, heart rate, arterial and pulmonary artery pressures, and cardiac filling pressures, as well as femoral venous blood flow were studied. Biopsy specimens of the lateral vastus muscle and blood samples from the radial artery and iliac vein were taken before aortic clamping, and before, 30 minutes, four and 16 hours after the aorta was unclamped, as well as five days postoperatively. In addition, intramuscular temperature and pH were measured. Glycogen, glucose, lactate, pyruvate, ATP, ADP, AMP, phosphocreatine (PCr) and creatine (Cr) contents of the muscle and lactate and pyruvate concentrations in iliac venous and radial arterial blood were determined using enzymatic fluorometric techniques. Mean arterial blood pressure (MAP) averaged 80 mmHg before clamping, chiefly because of the low systemic vascular resistance (SVR), and left ventricular stroke work (LVSW) was normal. At clamping MAP, SVR, LVSW, remained unchanged. MAP and LVSW were unaffected even though SVR decreased slightly after the aorta was unclamped and resulted in an increased cardiac output, mainly due to a higher stroke volume. No major change in the pulmonary circulation was observed. During clamping the muscle lactate/pyruvate ratio increased, intramuscular pH and femoral venous blood flow decreased indicating insufficient tissue perfusion. Energy charge (EC), the adenylate (ATP + ADP + AMP) and creatine (PCr + Cr) pools

  5. In vivo left ventricular assist induced coagulation derangements. Comparison of Sarns-3M and St. Jude Medical circuits.

    PubMed

    Curtis, J J; Wagner-Mann, C C; Mann, F A; Demmy, T L; Walls, J T; Schmaltz, R A

    1997-01-01

    An in vitro comparison of centrifugal pumping systems manufactured by Sarns-3M and St. Jude Medical revealed a difference in blood cell derangement. The purpose of this study was to compare in vivo the effects of 96 hr of left ventricular assist (LVA) on indexes of coagulopathy, hemolysis, and complement activation. Two groups of calves (each: n = 5) were instrumented with identical left atrial to thoracic aorta centrifugal pumping circuits using either Sarns-3M or St. Jude centrifugal pumps. Laboratory evaluations were performed pre-assist and at 1, 4, 24, 48, 72, and 96 hr during LVA. Platelet counts dropped significantly by 24 hr (Sarns-3M: 28%; St. Jude: 30%); no significant change in function was noted. Activated clotting time increased slightly (p > 0.05). Prothrombin time increased at 4 and 24 hr of LVA, returning to baseline by 96 hr (p < 0.05). Activated partial thromboplastin time increased with the St. Jude device from 24 to 96 hr on LVA (p < 0.05); the increase with the Sarns-3M device never reached significance. No significant changes in lactate dehydrogenase or plasma free hemoglobin were detected. Complement fraction C5a rose by 1 hr of LVA (p < 0.05), peaking at 4 hr and returning to baseline by 96 hr with both pumps. No significant difference was detected between pump groups for any of the parameters. It was concluded that 1) 96 hr Sarns-3M and St. Jude LVA caused coagulation derangement in calves, 2) neither pump demonstrated an advantage regarding coagulation and complement parameters, 3) hemolysis observed with the Sarns-3M pump in vitro was not evidenced in vivo, and 4) in vitro evidenced centrifugal pump differences may not be realized in vivo.

  6. Derangement of the temporomandibular joint; a case study using Mechanical Diagnosis and Therapy.

    PubMed

    Krog, C; May, S

    2012-10-01

    Mechanical Diagnosis and Therapy (MDT) is widely used for spinal problems, and more recently the principles and mechanical syndromes have been applied to extremity musculoskeletal problems. One of the most common classifications is derangement syndrome, which describes a presentation in which repeated movements causes a decrease in symptoms and a restoration of restricted range of movement. The case study describes the application of repeated movements to a patient with a 7-year history of non-specific temporomandibular pain and reduced function, who had had lots of previous failed treatment. Examination using repeated movements resulted in a classification of derangement, and the patient rapidly responded in 4 treatment sessions, with an abolition of pain and full restoration of function, and remained improved after many years. The case study demonstrates the application of Mechanical Diagnosis and Therapy principles to a patient with a temporomandibular problem. PMID:22177711

  7. Internal derangements of the temporomandibular joint: A review of the anatomy, diagnosis, and management

    PubMed Central

    Young, Andrew L.

    2015-01-01

    Internal derangements of the temporomandibular joint are conditions in which the articular disc has become displaced from its original position the condylar head. Relevant anatomic structures and their functional relationships are briefly discussed. The displacement of the disc can result in numerous presentations, with the most common being disc displacement with reduction (with or without intermittent locking), and disc displacement without reduction (with or without limited opening). These are described in this article according to the standardized Diagnostic Criteria for Temporomandibular Disorders, as well as the less common posterior disc displacement. Appropriate management usually ranges from patient education and monitoring to splints, physical therapy, and medications. In rare and select cases, surgery may be necessary. However, in for the majority of internal derangements, the prognosis is good, particularly with conservative care. PMID:26929478

  8. Internal derangements of the temporomandibular joint: findings in the pediatric age group

    SciTech Connect

    Katzberg, R.W.; Tallents, R.H.; Hayakawa, K.; Miller, T.L.; Goske, M.J.; Wood, B.P.

    1985-01-01

    Findings in 31 pediatric patients with pain and dysfunction of the temporomandibular joint (TMJ) are reported. The average age was 14 years and the average duration of symptoms was 21.4 months. Internal derangements were found in 29 patients (94%) and degenerative arthritis in 13 (42%). In 12 patients (39%), the problem could be traced to an injury to the jaw. Secondary condylar hypoplasia was associated with the meniscal abnormality in 3 patients (10%). Further awareness of internal derangements of the TMJ in the pediatric population should permit greater recognition of their etiology. It is important that threatment be initiated as soon as possible, not only to minimize the development of osseous disease in young adults but also to prevent facial growth deformities.

  9. [Role of the serotonergic nervous system in hemodynamic and vasopressin responses to centrally administrated angiotensin-II in spontaneously hypertensive rats].

    PubMed

    Hatayama, Y; Kushiro, T; Kurumatani, H; Kajiwara, N

    1990-07-20

    The purpose of the study is to investigate the role of the serotonergic nervous system in centrally administrated angiotensin II (A-II) mediated hemodynamic as well as vasopressin (AVP) responses. Eight-week-old male SHR and age-matched Wistar Kyoto rats (WKY) were used and the experiment was performed in the conscious state. In protocol 1, after resting observation of 30 minutes 10ng of A-II was given intracerebroventricularly (i.c.v.). This was followed by i.c.v. injection of 1 microgram of 5-HT2 receptor antagonist, xylamidine, 50 minutes later; then 10ng of i.c.v. A-II was repeated after 10 minutes (SHR: n = 7, WKY: n = 10). In protocol 2, plasma vasopressin (AVP) was measured in the following groups. In one group, 1.3ml of blood was sampled from the carotid cannula after resting observation, and the same amount of blood from an age-matched donor rat of the same strain was transfused immediately. Two hours later, 10ng of A-II was given i.c.v., and blood was sampled again after 1 minute (SHR: n = 7, WKY: n = 12). In another group, 1 microgram of xylamidine was given i.c.v. and was followed by 10ng of A-II 10 minutes later; then blood was collected after 1 minute (SHR: n = 8, WKY: n = 13). In protocol 1, resting MAP were 144 +/- 6mmHg in SHR and 99 +/- 2mmHg in WKY. I.c.v. A-II elicited a consistent pressor response in both SHR and WKY, but the response was significantly larger in SHR than that in WKY, +45 +/- 3 and +37 +/- 1mmHg, respectively. Xylamidine had no effect on MAP, and repeated A-II produced significant pressor responses. However, the responses were significantly smaller in both SHR (+36 +/- 3mmHg) and WKY (+25 +/- 1mmHg) as compared with those to initial A-II injection. In protocol 2, resting AVP were similar in SHR (1.5 +/- 0.2pg/ml) and in WKY (1.6 +/- 0.1pg/ml). However, after i.c.v. A-II injection, AVP became higher in SHR (131 +/- 14pg/ml) than in WKY (64 +/- 6pg/ml). AVP after A-II injection with xylamidine pretreatment were similar in SHR (48

  10. Hemodynamic and autonomic nervous system responses to mixed meal ingestion in healthy young and old subjects and dysautonomic patients with postprandial hypotension

    NASA Technical Reports Server (NTRS)

    Lipsitz, L. A.; Ryan, S. M.; Parker, J. A.; Freeman, R.; Wei, J. Y.; Goldberger, A. L.

    1993-01-01

    BACKGROUND. Although postprandial hypotension is a common cause of falls and syncope in elderly persons and in patients with autonomic insufficiency, the pathophysiology of this disorder remains unknown. METHODS AND RESULTS. We examined the hemodynamic, splanchnic blood pool, plasma norepinephrine (NE), and heart rate (HR) power spectra responses to a standardized 400-kcal mixed meal in 11 healthy young (age, 26 +/- 5 years) and nine healthy elderly (age, 80 +/- 5 years) subjects and 10 dysautonomic patients with symptomatic postprandial hypotension (age, 65 +/- 16 years). Cardiac and splanchnic blood pools were determined noninvasively by radionuclide scans, and forearm vascular resistance was determined using venous occlusion plethysmography. In healthy young and old subjects, splanchnic blood volume increased, but supine blood pressure remained unchanged after the meal. In both groups, HR increased and systemic vascular resistance remained stable. Forearm vascular resistance and cardiac index increased after the meal in elderly subjects, whereas these responses were highly variable and of smaller magnitude in the young. Young subjects demonstrated postprandial increases in low-frequency HR spectral power, representing cardiac sympatho-excitation, but plasma NE remained unchanged. In elderly subjects, plasma NE increased after the meal but without changes in the HR power spectrum. Patients with dysautonomia had a large postprandial decline in blood pressure associated with no change in forearm vascular resistance, a fall in systemic vascular resistance, and reduction in left ventricular end diastolic volume index. HR increased in these patients but without changes in plasma NE or the HR power spectrum. CONCLUSIONS. 1) In healthy elderly subjects, the maintenance of blood pressure homeostasis after food ingestion is associated with an increase in HR, forearm vascular resistance, cardiac index, and plasma NE. In both young and old, systemic vascular resistance is

  11. Time-Varying Modeling of Cerebral Hemodynamics

    PubMed Central

    Marmarelis, Vasilis Z.; Shin, Dae C.; Orme, Melissa; Zhang, Rong

    2014-01-01

    The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, Cerebral Flow Autoregulation (CFA) and CO2 Vasomotor Reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, MCI, Alzheimer’s disease and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e. changes in cerebrovascular characteristics) due to neural, endocrine and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from 10 healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields “time-averaged models” of physiological and clinical utility. PMID:24184697

  12. Time-varying modeling of cerebral hemodynamics.

    PubMed

    Marmarelis, Vasilis Z; Shin, Dae C; Orme, Melissa; Rong Zhang

    2014-03-01

    The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, cerebral flow autoregulation (CFA) and CO2 vasomotor reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e., changes in cerebrovascular characteristics) due to neural, endocrine, and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from ten healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields "time-averaged models" of physiological and clinical utility.

  13. Closed-loop real-time simulation model of hemodynamics and oxygen transport in the cardiovascular system

    PubMed Central

    2013-01-01

    Background Computer technology enables realistic simulation of cardiovascular physiology. The increasing number of clinical surgical and medical treatment options imposes a need for better understanding of patient-specific pathology and outcome prediction. Methods A distributed lumped parameter real-time closed-loop model with 26 vascular segments, cardiac modelling with time-varying elastance functions and gradually opening and closing valves, the pericardium, intrathoracic pressure, the atrial and ventricular septum, various pathological states and including oxygen transport has been developed. Results Model output is pressure, volume, flow and oxygen saturation from every cardiac and vascular compartment. The model produces relevant clinical output and validation of quantitative data in normal physiology and qualitative directions in simulation of pathological states show good agreement with published data. Conclusion The results show that it is possible to build a clinically relevant real-time computer simulation model of the normal adult cardiovascular system. It is suggested that understanding qualitative interaction between physiological parameters in health and disease may be improved by using the model, although further model development and validation is needed for quantitative patient-specific outcome prediction. PMID:23842033

  14. Hemodynamic management of subarachnoid hemorrhage.

    PubMed

    Treggiari, Miriam M

    2011-09-01

    Hemodynamic augmentation therapy is considered standard treatment to help prevent and treat vasospasm and delayed cerebral ischemia. Standard triple-H therapy combines volume expansion (hypervolemia), blood pressure augmentation (hypertension), and hemodilution. An electronic literature search was conducted of English-language papers published between 2000 and October 2010 that focused on hemodynamic augmentation therapies in patients with subarachnoid hemorrhage. Among the eligible reports identified, 11 addressed volume expansion, 10 blood pressure management, 4 inotropic therapy, and 12 hemodynamic augmentation in patients with unsecured aneurysms. While hypovolemia should be avoided, hypervolemia did not appear to confer additional benefits over normovolemic therapy, with an excess of side effects occurring in patients treated with hypervolemic targets. Overall, hypertension was associated with higher cerebral blood flow, regardless of volume status (normo- or hypervolemia), with neurological symptom reversal seen in two-thirds of treated patients. Limited data were available for evaluating inotropic agents or hemodynamic augmentation in patients with additional unsecured aneurysms. In the context of sparse data, no incremental risk of aneurysmal rupture has been reported with the induction of hemodynamic augmentation. PMID:21786046

  15. Lagrangian postprocessing of computational hemodynamics

    PubMed Central

    Shadden, Shawn C.; Arzani, Amirhossein

    2014-01-01

    Recent advances in imaging, modeling and computing have rapidly expanded our capabilities to model hemodynamics in the large vessels (heart, arteries and veins). This data encodes a wealth of information that is often under-utilized. Modeling (and measuring) blood flow in the large vessels typically amounts to solving for the time-varying velocity field in a region of interest. Flow in the heart and larger arteries is often complex, and velocity field data provides a starting point for investigating the hemodynamics. This data can be used to perform Lagrangian particle tracking, and other Lagrangian-based postprocessing. As described herein, Lagrangian methods are necessary to understand inherently transient hemodynamic conditions from the fluid mechanics perspective, and to properly understand the biomechanical factors that lead to acute and gradual changes of vascular function and health. The goal of the present paper is to review Lagrangian methods that have been used in post-processing velocity data of cardiovascular flows. PMID:25059889

  16. Hemodynamic aspects of Alzheimer's disease.

    PubMed

    Nagata, Ken; Sato, Mika; Satoh, Yuichi; Watahiki, Yasuhito; Kondoh, Yasushi; Sugawara, Maki; Box, Georgia; Wright, David; Leung, Sumie; Yuya, Hiromichi; Shimosegawa, Eku

    2002-11-01

    Neuroradiological functional imaging techniques demonstrate the patterns of hypoperfusion and hypometabolism that are thought to be useful in the differential diagnosis of Alzheimer's disease (AD) from other dementing disorders. Besides the distribution patterns of perfusion or energy metabolism, vascular transit time (VTT), vascular reactivity (VR), and oxygen extraction fraction (OEF), which can be measured with positron emission tomography (PET), provide hemodynamic aspects of brain pathophysiology. In order to evaluate the hemodynamic features of AD, PET studies were carried out in 20 patients with probable AD and 20 patients with vascular dementia (VaD). The PET findings were not included in their diagnostic process of AD. Using oxygen-15-labeled compounds, cerebral blood flow (CBF), cerebral metabolic rate of oxygen (CMRO(2)), OEF, cerebral blood volume, and VTT were measured quantitatively during resting state. To evaluate VR, CBF was also measured during CO(2) inhalation. There was a significant increase in OEF in and around the parietotemporal cortices, but both VTT and VR were well preserved in patients with AD. By contrast, VR was markedly depressed and VTT was mildly prolonged in patients with VaD. Thus, from the hemodynamic point of view, the preservation of vascular reserve may be a distinct difference between AD and VaD. Furthermore, this indicates a hemodynamic integrity of the vasculature in the level of arterioles in AD.

  17. Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.

    PubMed

    Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio

    2016-01-21

    In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical

  18. Impaired cognitive performance in neuronal nitric oxide synthase knockout mice is associated with hippocampal protein derangements.

    PubMed

    Kirchner, Liselotte; Weitzdoerfer, Rachel; Hoeger, Harald; Url, Angelika; Schmidt, Peter; Engelmann, Mario; Villar, Santiago Rosell; Fountoulakis, Michael; Lubec, Gert; Lubec, Barbara

    2004-12-01

    Nitric oxide is implicated in modulation of memory and pharmacological as well as genetic inhibition of neuronal nitric oxide synthase (nNOS) leads to impaired cognitive function. We therefore decided to study learning and memory functions and cognitive flexibility in the Morris water maze (MWM) in 1-month-old male mice lacking nNOS (nNOS KO). Hippocampal protein profiling was carried out to possibly link protein derangement to impaired cognitive function. Two-dimensional gel electrophoresis with in-gel digestion of spots and subsequent MALDI-TOF identification of proteins and quantification of proteins using specific software was applied. In the memory as well as in the relearning task of the MWM, most of the nNOS KO failed to find the submerged platform within a given time. Proteomic evaluation of hippocampus, the main anatomical structure computing cognitive functions, revealed aberrant expression of a synaptosomal associated protein of the exocytotic machinery (NSF), glycolytic enzymes, chaperones 78 kDa glucose-regulated protein, T-complex protein 1; the signaling structure guanine nucleotide-binding protein G(I)/G(S)/G(T) and heterogeneous nuclear ribonucleoprotein H of the splicing machinery. We conclude that nNOS knockout mice show impaired spatial performance in the MWM, a finding that may be either linked to direct effects of nNOS/NO and/or to specific hippocampal protein derangements.

  19. Hemodynamic Conditions in a Failing Peripheral Artery Bypass Graft

    PubMed Central

    McGah, Patrick M.; Leotta, Daniel F.; Beach, Kirk W.; Zierler, R. Eugene; Riley, James J.; Aliseda, Alberto

    2012-01-01

    Objective The mechanisms of restenosis in autogenous vein bypass grafts placed for peripheral artery disease are not completely understood. We seek to investigate the role of hemodynamic stress in a case study of a revised bypass graft that failed due to restenosis. Methods The morphology of the lumen is reconstructed from a custom 3D ultrasound system. Scans were taken at one, six, and sixteen months after a patch angioplasty procedure. Computational hemodynamic simulations of the patient-specific model provide the blood flow features and the hemodynamic stresses on the vessel wall at the three time points studied. Results The vessel was initially free of any detectable lesions, but a 60% diameter reducing stenosis developed over the 16 month interval of study. As determined from the simulations, chaotic and recirculating flow occurred downstream of the stenosis due to the sudden widening of the lumen at the patch location. Curvature and a sudden increase in the lumen cross-sectional area induce these flow features that are hypothesized to be conducive to intimal hyperplasia. Favorable agreement was found between simulation results and in vivo Doppler ultrasound velocity measurements. Conclusions Transitional and chaotic flow occurs at the site of the revision, inducing a complex pattern of wall shear are computed with the hemodynamic simulations. This supports the hypothesis that the hemodynamic stresses in the revised segment, produced by the coupling of vessel geometry and chaotic flow, led to the intimal hyperplasia and restenosis of the graft. PMID:22551907

  20. Derangement of body representation in complex regional pain syndrome: report of a case treated with mirror and prisms

    PubMed Central

    Rafal, Robert D.

    2009-01-01

    Perhaps the most intriguing disorders of body representation are those that are not due to primary disease of brain tissue. Strange and sometimes painful phantom limb sensations can result from loss of afference to the brain; and Complex Regional Pain Syndrome (CRPS)—the subject of the current report—can follow limb trauma without pathology of either the central or peripheral nervous system. This enigmatic and vexing condition follows relatively minor trauma, and can result in enduring misery and a useless limb. It manifests as severe pain, autonomic dysfunction, motor disability and ‘neglect-like’ symptoms with distorted body representation. For this special issue on body representation we describe the case of a patient suffering from CRPS, including symptoms suggesting a distorted representation of the affected limb. We report contrasting effects of mirror box therapy, as well as a new treatment—prism adaptation therapy—that provided sustained pain relief and reduced disability. The benefits were contingent upon adapting with the affected limb. Other novel observations suggest that: (1) pain may be a consequence, not the cause, of a disturbance of body representation that gives rise to the syndrome; (2) immobilisation, not pain, may precipitate this reorganisation of somatomotor circuits in susceptible individuals; and (3) limitation of voluntary movement is neither due to pain nor to weakness but, rather, to derangement of body representation which renders certain postures from the repertoire of hand movements inaccessible. PMID:19967390

  1. Hemodynamic Consequences of Malignant Ascites in Epithelial Ovarian Cancer Surgery∗

    PubMed Central

    Hunsicker, Oliver; Fotopoulou, Christina; Pietzner, Klaus; Koch, Mandy; Krannich, Alexander; Sehouli, Jalid; Spies, Claudia; Feldheiser, Aarne

    2015-01-01

    Abstract Malignant ascites (MA) is most commonly observed in patients scheduled for epithelial ovarian cancer (EOC) surgery and is supposed as a major risk factor promoting perioperative hemodynamic deterioration. We aimed to assess the hemodynamic consequences of MA on systemic circulation in patients undergoing cytoreductive EOC surgery. This study is a predefined post-hoc analysis of a randomized controlled pilot trial comparing intravenous solutions within a goal-directed algorithm to optimize hemodynamic therapy in patients undergoing cytoreductive EOC surgery. Ascites was used to stratify the EOC patients prior to randomization in the main study. We analyzed 2 groups according to the amount of ascites (NLAS: none or low ascites [<500 mL] vs HAS: high ascites group [>500 mL]). Differences in hemodynamic variables with respect to time were analyzed using nonparametric analysis for longitudinal data and multivariate generalized estimating equation adjusting the analysis for the randomized study groups of the main study. A total of 31 patients in the NLAS and 16 patients in the HAS group were analyzed. Although cardiac output was not different between groups suggesting a similar circulatory blood flow, the HAS group revealed higher heart rates and lower stroke volumes during surgery. There were no differences in pressure-based hemodynamic variables. In the HAS group, fluid demands, reflected by the time to reindication of a fluid challenge after preload optimization, increased steadily, whereas stroke volume could not be maintained at baseline resulting in hemodynamic instability after 1.5 h of surgery. In contrast, in the NLAS group fluid demands were stable and stroke volume could be maintained during surgery. Clinically relevant associations of the type of fluid replacement with hemodynamic consequences were particularly observed in the HAS group, in which transfusion of fresh frozen plasma (FFP) was associated to an improved circulatory flow and reduced

  2. [Influence of pilot's professional activity on the adaptive character of hemodynamic reactions to the tilt test].

    PubMed

    Batishcheva, G A; Chernov, Iu N; Soldatov, S K; Goncharova, N Iu; Khomenko, M N

    2010-01-01

    The comparative study of blood circulation reaction to the tilt test was performed with three groups of essentially healthy subjects: AF pilots (n = 72), locomen (n = 44) and students of Military Institute of Radio Electronics (n = 32). In each group, adequate adaptive reactions were due to the eukinetic hemodynamics with steady minute volume and blood pressure values combined with heart rate increase by 10-12%. Hypokinetic hemodynamics caused 20% growth in minute volume during the initial 5 minutes of tilting in pilots versus 8-12% growth in non-flyers. Hyperkinetic hemodynamics was responsible for the minute volume growth in pilots but not in the other groups of subjects. Parasympathetic system activation was peculiar of hypokinetic hemodynamics, while sympathetic system activation was associated with hyperkinetic hemodynamics. These results point to a larger body functional reserve in pilots compared with the other subjects as a by-effect of the profession.

  3. Hemodynamics of Mechanical Circulatory Support.

    PubMed

    Burkhoff, Daniel; Sayer, Gabriel; Doshi, Darshan; Uriel, Nir

    2015-12-15

    An increasing number of devices can provide mechanical circulatory support (MCS) to patients with acute hemodynamic compromise and chronic end-stage heart failure. These devices work by different pumping mechanisms, have various flow capacities, are inserted by different techniques, and have different sites from which blood is withdrawn and returned to the body. These factors result in different primary hemodynamic effects and secondary responses of the body. However, these are not generally taken into account when choosing a device for a particular patient or while managing a patient undergoing MCS. In this review, we discuss fundamental principles of cardiac, vascular, and pump mechanics and illustrate how they provide a broad foundation for understanding the complex interactions between the heart, vasculature, and device, and how they may help guide future research to improve patient outcomes.

  4. A derangement of the brain wound healing process may cause some cases of Alzheimer's disease.

    PubMed

    Lehrer, Steven; Rheinstein, Peter H

    2016-08-01

    A derangement of brain wound healing may cause some cases of Alzheimer's disease. Wound healing, a highly complex process, has four stages: hemostasis, inflammation, repair, and remodeling. Hemostasis and the initial phases of inflammation in brain tissue are typical of all vascularized tissue, such as skin. However, distinct differences arise in brain tissue during the later stages of inflammation, repair, and remodeling, and closely parallel the changes of Alzheimer's disease. Our hypothesis -- Alzheimer's disease is brain wound healing gone awry at least in some cases -- could be tested by measuring progression with biomarkers for the four stages of wound healing in humans or appropriate animal models. Autopsy studies might be done. Chronic traumatic encephalopathy might also result from the brain wound healing process. PMID:27585229

  5. Reactive arthritis in relation to internal derangements of the temporomandibular joint: a case control study.

    PubMed

    Lund, Bodil; Holmlund, Anders; Wretlind, Bengt; Jalal, Shah; Rosén, Annika

    2015-09-01

    The aim of this study was to find out if reactive arthritis was involved in the aetiology of chronic closed lock of the temporomandibular joint (TMJ) by looking for bacterial antigens in the synovial membrane of the TMJ, and by studying the antibody serology and carriage of human leucocyte antigen (HLA) B27 in patients with chronic closed lock. Patients with reciprocal clicking and healthy subjects acted as controls. We studied a total of 43 consecutive patients, 15 with chronic closed lock, 13 with reciprocal clicking, and 15 healthy controls with no internal derangements of the TMJ. Venous blood samples were collected from all subjects for measurement of concentrations of HLA tissue antigen and serology against Chlamydia trachomatis, Yersinia enterocolitica, Salmonella spp., Campylobacter jejuni, and Mycoplasma pneumoniae. Samples of synovial tissue from patients with closed lock and reciprocal clicking were obtained during discectomy and divided into two pieces, the first of which was tested by strand displacement amplification for the presence of C trachomatis, and the second of which was analysed for the presence of species-specific bacterial DNA using 16s rRNA pan-polymerase chain reaction (PCR). There were no significant differences between the groups in the incidence of antibodies against M pneumoniae, Salmonella spp. or Y enterocolitica. No patient had antibodies towards C trachomatis or C jejuni. We found no bacterial DNA in the synovial fluid from any patient. The HLA B27 antigen was present in 2/15 subjects in both the closed lock and control groups, and none in the reciprocal clicking group. In conclusion, reactive arthritis does not seem to be the mechanism of internal derangement of the TMJ.

  6. Elementary Hemodynamic Principles Based on Modified Bernoulli's Equation.

    ERIC Educational Resources Information Center

    Badeer, Henry S.

    1985-01-01

    Develops and expands basic concepts of Bernoulli's equation as it applies to vascular hemodynamics. Simple models are used to illustrate gravitational potential energy, steady nonturbulent flow, pump-driven streamline flow, and other areas. Relationships to the circulatory system are also discussed. (DH)

  7. Spatiotemporal hemodynamic response functions derived from physiology.

    PubMed

    Aquino, K M; Robinson, P A; Drysdale, P M

    2014-04-21

    Probing neural activity with functional magnetic resonance imaging (fMRI) relies upon understanding the hemodynamic response to changes in neural activity. Although existing studies have extensively characterized the temporal hemodynamic response, less is understood about the spatial and spatiotemporal hemodynamic responses. This study systematically characterizes the spatiotemporal response by deriving the hemodynamic response due to a short localized neural drive, i.e., the spatiotemporal hemodynamic response function (stHRF) from a physiological model of hemodynamics based on a poroelastic model of cortical tissue. In this study, the model's boundary conditions are clarified and a resulting nonlinear hemodynamic wave equation is derived. From this wave equation, damped linear hemodynamic waves are predicted from the stHRF. The main features of these waves depend on two physiological parameters: wave propagation speed, which depends on mean cortical stiffness, and damping which depends on effective viscosity. Some of these predictions were applied and validated in a companion study (Aquino et al., 2012). The advantages of having such a theory for the stHRF include improving the interpretation of spatiotemporal dynamics in fMRI data; improving estimates of neural activity with fMRI spatiotemporal deconvolution; and enabling wave interactions between hemodynamic waves to be predicted and exploited to improve the signal to noise ratio of fMRI. PMID:24398024

  8. The Diagnostic Validity of Clinical Tests in Temporomandibular Internal Derangement: A Systematic Review and Meta-analysis

    PubMed Central

    Chaput, Ève; Stewart, Ryan; Nadeau, Gordon; Goldsmith, Charlie H.

    2012-01-01

    ABSTRACT Purpose: To assess the diagnostic validity of clinical tests for temporomandibular internal derangement relative to magnetic resonance imaging (MRI). Methods: MEDLINE and Embase were searched from 1994 through 2009. Independent reviewers conducted study selection; risk of bias was assessed using Quality Assessment of studies of Diagnostic Accuracy included in Systematic reviews (QUADAS); ≥9/14) and data abstraction. Overall quality of evidence was profiled using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Agreement was measured using quadratic weighted kappa (κw). Positive (+) or negative (−) likelihood ratios (LR) with 95% CIs were calculated and pooled using the DerSimonian–Laird method and a random-effects model when homogeneous (I2≥0.40, Q-test p≤0.10). Results: We selected 8 of 36 studies identified. There is very low quality evidence that deflection (+LR: 6.37 [95% CI, 2.13–19.03]) and crepitation (LR:5.88 [95% CI, 1.95–17.76]) as single tests and crepitation, deflection, pain, and limited mouth opening as a cluster of tests are the most valuable for ruling in internal derangement without reduction (+LR:6.37 [95% CI, 2.13–19.03]), (−LR:0.27 [95% CI, 0.11–0.64]) while the test cluster click, deviation, and pain rules out internal derangement with reduction (−LR: 0.09 [95% CI, 0.01–0.72]). No single test or cluster of tests was conclusive and of significant value for ruling in internal derangement with reduction. Conclusions: Findings of this review will assist clinicians in deciding which diagnostic tests to use when internal derangement is suspected. The literature search revealed a lack of high-quality studies; further research with adequate description of patient populations, blinded assessments, and both sagittal and coronal MRI planes is therefore recommended. PMID:23449757

  9. [Hemodynamic repercussion of epidural bupivacaine in thoracic injuries].

    PubMed

    Pérez Gallardo, A; Lajara Montell, A M; Manzanos Luna, A M

    1991-01-01

    Systemic and pulmonary hemodynamic effects of 8 to 10 ml of 0.25% bupivacaine containing 1:200,000 adrenaline administered at the midthoracic level were prospectively assessed in 20 patients (aged 45 +/- 16 years) with thoracic trauma presenting 6 +/- 2 rib fractures and pulmonary contusion of different extent and radiologic density. The study was carried out at comparable evolving times, 24 h after trauma, during the second or third day of treatment, and when the hemodynamic stability of the patient was achieved. Hemodynamic measurements were performed before and 30 min after administration of the analgesic agent using a Swan-Ganz catheter. The results indicate that administration of moderate doses of epidural bupivacaine at the middle thoracic level in patients with normovolemic thoracic traumatism were not followed by alterations in the hemodynamic function except for a slight decrease in systemic arterial and pulmonary pressure. The mean arterial pressure decreased by 8% (p less than 0.05), the cardiac index showed a 4% reduction (p = 0.05), and the mean pulmonary pressure experienced a 14% decrease (p less than 0.05).

  10. [Diltiazem poisoning: hemodynamic aspects].

    PubMed

    Beauvoir, C; Passeron, D; du Cailar, G; Millet, E

    1991-01-01

    A case is reported of a 50-year-old man who took a massive overdose of diltiazem (5,400 mg), together with 1,350 mg potassium clorazepate and 390 mg nordazepate, five months after having experienced a myocardial infarction (MI). On admission, systolic blood pressure was 80 mmHg, with an irregular heart rate of 60 b.min-1. There was superficial polypnea (40 c.min-1) with hypoxia (PaO2: 63.5 mmHg). The ECG revealed, besides the MI scar, complete sinus arrest. Endotracheal intubation and mechanical ventilation were rapidly required. The patient then had gastric lavage, and was given activated charcoal. Treatment with 1.5 mg atropine and 2 g intravenous calcium chloride were unable to amend the cardiac dysrhythmia. A continuous isoproterenol infusion restored a sinus rhythm, but this was not maintained because of the risk of side-effects. Cardiovascular collapse was treated with dobutamine (10 micrograms.kg-1.min-1). As the peripheral and pulmonary vascular resistances were greatly diminished (464 dyn.s.cm-5 and 86 dyn.s.cm-5 respectively), alpha and beta mimetics were used: 1 microgram.kg-1.min-1 noradrenaline and 15 micrograms.kg-1.min-1 dobutamine. After 7 h of this treatment, spontaneous sinus rhythm returned abruptly. Noradrenaline and dobutamine were replaced thereafter with adrenaline (0.25 microgram.kg-1.min-1), which was stopped 24 h later. There was a marked respiratory and haemodynamic improvement, the patient leaving the intensive care unit on the fourth day and returning home one week after the overdose. The relationships between cellular calcium movements and the adrenergic system are discussed, as well as the possible mechanism of cardiac failure.

  11. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results

    NASA Astrophysics Data System (ADS)

    Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin

    2008-03-01

    We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.

  12. Development of a custom-designed echo particle image velocimetry system for multi-component hemodynamic measurements: system characterization and initial experimental results.

    PubMed

    Liu, Lingli; Zheng, Hairong; Williams, Logan; Zhang, Fuxing; Wang, Rui; Hertzberg, Jean; Shandas, Robin

    2008-03-01

    We have recently developed an ultrasound-based velocimetry technique, termed echo particle image velocimetry (Echo PIV), to measure multi-component velocity vectors and local shear rates in arteries and opaque fluid flows by identifying and tracking flow tracers (ultrasound contrast microbubbles) within these flow fields. The original system was implemented on images obtained from a commercial echocardiography scanner. Although promising, this system was limited in spatial resolution and measurable velocity range. In this work, we propose standard rules for characterizing Echo PIV performance and report on a custom-designed Echo PIV system with increased spatial resolution and measurable velocity range. Then we employed this system for initial measurements on tube flows, rotating flows and in vitro carotid artery and abdominal aortic aneurysm (AAA) models to acquire the local velocity and shear rate distributions in these flow fields. The experimental results verified the accuracy of this technique and indicated the promise of the custom Echo PIV system in capturing complex flow fields non-invasively.

  13. [YAKTON INFLUENCE ON THE RABBITS CARDIAC ACTIVITY AND SYSTEMI HEMODYNAMIC IN THE CONDITIONS OF 5-FLUOROURACILUM INTOXICATION].

    PubMed

    Maksimchuk, E A

    2015-01-01

    In the experiments on the rabbits the disturbances of cardio and systemic hemodynamic after 5-fluorouracilum administration have been shown. Yakton administercd intravenously in dose 560 mg/ kg one hour before 5-fluorouracilum protects the disturbances of cardio- and systemic hemodynamic data in animals. PMID:26827456

  14. First report of congenital or infantile cataract in deranged proteoglycan metabolism with released xylose

    PubMed Central

    Sulochana, K; Ramakrishnan, S; Vasanthi, S; Madhavan, H; Arunagiri, K; Punitham, R

    1997-01-01

    AIM—To investigate the chemical pathology in the blood and lens, in cases of congenital or infantile cataract in children excreting predominantly non-reducing carbohydrates in urine.
METHODS—Urine samples from children with congenital or infantile cataract, and age and sex-matched controls, were analysed for (i) inherited errors of metabolism, (ii) paper chromatography of sugars, (iii) spectrophotometric assay of glycosaminoglycans (GAG), (iv) cetyl trimethyl ammonium bromide test, (v) electrophoresis using Alcian blue, (vi) ion exchange chromatography with IR 120 resin, and (vii) HPLC for xylose. Blood and lens material were also tested for GAG fragments and xylose. β Glucuronidase was assayed in lymphocytes and urine.
RESULTS—Of 220 children of both sexes below 12 years of age, with congenital or infantile cataract treated in Sankara Nethralaya, Madras, India, during a period of 2 years, 145 excreted fragments of GAG (heparan and chondroitin sulphates) in their urine. There was no such excretion among the control group of 50 children. The same was found accumulated in the blood and lenses of affected children. In addition, xylose was present in small amounts in the urine and blood and xylitol was present in the lens. There was a significant elevation in the activity of β glucuronidase in lymphocytes and urine, when compared with normals. All the above findings suggest deranged proteoglycan metabolism. As the urine contained mostly GAG fragments and very little xylose, Benedict's reagent was not reduced. This ruled out galactosaemia.
CONCLUSION—An increase of β glucuronidase activity might have caused extensive fragmentation of GAG with resultant accumulation in the blood and lens and excretion in urine. Small amounts of xylose may have come from xylose links between GAG and core protein of proteoglycans. Owing to their polyanionic nature, GAG fragments in the lens might abstract sodium, and with it water, thereby increasing the hydration

  15. Central hemodynamics and target organ damage in hypertension.

    PubMed

    Hashimoto, Junichiro

    2014-01-01

    Recent advances in technology have enabled the noninvasive evaluation of pulsatile hemodynamics in the central aorta; namely, central pressure and flow measurements. The central blood pressure represents the true load imposed on the heart, kidney and brain, and the central blood flow influences the local flow into these vital organs. An elevation of the central blood pressure has a direct, adverse impact on the target organ and, thus, the cardiovascular prognosis in patients with hypertension. A decrease in the central blood flow can cause organ dysfunction and failure. The central pressure and flow dynamics were conventionally regarded as unidirectional from the heart to the periphery. However, current evidence suggests that it should be recognized as a bidirectional interplay between the central and peripheral arteries. Specifically, the pressure pulse wave is not only transmitted forward to the periphery but also reflected backward to the central aorta. The flow pulse wave is also composed of the forward and reverse components. Aortic stiffening and arteriolar remodeling due to hypertension not only augment the central pressure by increasing the wave reflection but also may alter the central bidirectional flow, inducing hemodynamic damage/dysfunction in susceptible organs. Therefore, central hemodynamic monitoring has the potential to provide a diagnostic and therapeutic basis for preventing systemic target organ damage and for offering personalized therapy suitable for the arterial properties in each patient with hypertension. This brief review will summarize hypothetical mechanisms for the association between the central hemodynamics and hypertensive organ damage in the heart, kidney and brain.

  16. Cocaine-induced cardiovascular effects: lack of evidence for a central nervous system site of action based on hemodynamic studies with cocaine methiodide.

    PubMed

    Dickerson, L W; Rodak, D J; Kuhn, F E; Wahlstrom, S K; Tessel, R E; Visner, M S; Schaer, G L; Gillis, R A

    1999-01-01

    It has been suggested that cocaine acts directly in the brain to enhance central sympathetic outflow. However, some studies suggested that the cardiovascular effects of cocaine are related to a peripheral action. To characterize further the site of cocaine's cardiovascular effect, we compared the hemodynamic effects of cocaine (2 mg/kg, i.v. bolus) with those observed after administration of an equimolar dose (2.62 mg/kg, i.v. bolus) of cocaine methiodide, a quaternary derivative of cocaine that does not penetrate the blood-brain barrier, by using sufentanil-sedated dogs. Cocaine produced significant (p < 0.05) increases in heart rate (+37+/-11 beats/min), mean arterial pressure (+55+/-11 mm Hg), left ventricular end-diastolic pressure (+5.3+/-1.0 mm Hg), and cardiac output (+2.4+/-0.9 L/min). Cocaine methiodide produced increases in heart rate (+57+/-11 beats/min), mean arterial pressure (+45+/-11 mm Hg), left ventricular end-diastolic pressure (+3.4+/-1.0 mm Hg), and cardiac output (1.1+/-0.9 L/min), which were not significantly different from those observed with cocaine. Because opiate sedation potentially might have attenuated central sympathetic outflow, we further confirmed the qualitative similarity of the actions of cocaine and cocaine methiodide on heart rate and blood pressure in unsedated, conscious dogs. Our data suggest that the cardiovascular effects of cocaine result primarily from a peripheral site of action.

  17. Monitoring changes in hemodynamics following optogenetic stimulation

    NASA Astrophysics Data System (ADS)

    Frye, Seth

    The brain is composed of billions of neurons, all of which connected through a vast network. After years of study and applications of different technologies and techniques, there are still more questions than answers when it comes to the fundamental functions of the brain. This project aims to provide a new tool which can be used to gain a better understanding of the fundamental mechanisms that govern neurological processes inside the brain. In order for neural networks to operate, blood has to be supplied through neighboring blood vessels. As such, the increase or decrease in the blood supply has been used as an indicator of neural activity. The neural activity and blood supply relationship is known as neural vasculature coupling. Monitoring the hemodynamics is used as an indicator of neurological activity, but the causal relationship is an area of current research. Gaining a better understanding of the coupling of neural activity and the surrounding vasculature provides a more accurate methodology to evaluate regional neural activity. The new optical technology applied in this project provides a set of tools to both stimulate and monitor this coupling relationship. Optogenetics provides the capability of stimulating neural activity using specific wavelengths of light. Essentially this tool allows for the direct stimulation of networks of neurons by simply shining one color of light onto the brain. Optical Coherence Tomography (OCT), another new optical technology applied in this project, can record volumetric images of blood vessels and flow using only infrared light. The combination of the two optical technologies is then capable of stimulating neural activity and monitoring the hemodynamic response inside the brain using only light. As a result of this project we have successfully demonstrated the capability of both stimulating and imaging the brain using new optical technologies. The optical stimulation of neural activity has evoked a direct hemodynamic effect

  18. Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism.

    PubMed

    van den Brom, Charissa E; Bulte, Carolien Se; Loer, Stephan A; Bouwman, R Arthur; Boer, Christa

    2013-01-01

    Volatile anaesthetics exert protective effects on the heart against perioperative ischaemic injury. However, there is growing evidence that these cardioprotective properties are reduced in case of type 2 diabetes mellitus. A strong predictor of postoperative cardiac function is myocardial substrate metabolism. In the type 2 diabetic heart, substrate metabolism is shifted from glucose utilisation to fatty acid oxidation, resulting in metabolic inflexibility and cardiac dysfunction. The ischaemic heart also loses its metabolic flexibility and can switch to glucose or fatty acid oxidation as its preferential state, which may deteriorate cardiac function even further in case of type 2 diabetes mellitus.Recent experimental studies suggest that the cardioprotective properties of volatile anaesthetics partly rely on changing myocardial substrate metabolism. Interventions that target at restoration of metabolic derangements, like lifestyle and pharmacological interventions, may therefore be an interesting candidate to reduce perioperative complications. This review will focus on the current knowledge regarding myocardial substrate metabolism during volatile anaesthesia in the obese and type 2 diabetic heart during perioperative ischaemia. PMID:23452502

  19. The effect of milrinone on the intraoperative hemodynamics during off-pump coronary bypass surgery in patients with an elevated echocardiographic index of the ventricular filling pressure

    PubMed Central

    Song, Jong Wook; Jo, Youn Yi; Jun, Na Hyung; Kim, Ha Kyoung

    2011-01-01

    Background Hemodynamic derangement during off-pump coronary artery bypass surgery (OPCAB) is mainly attributed to impaired filling and diastolic dysfunction. An elevated ratio of the mitral velocity to the early-diastolic velocity of the mitral annulus (E/e' > 15) is a relatively new indicator of diastolic function, and this was reported to be associated with impaired hemodynamics during OPCAB. We investigated the efficacy of milrinone on the perioperative hemodynamics and short term outcomes of patients with an E/e' > 15 and who underwent OPCAB. Methods The patients were randomly allocated into either group C (control, n = 31) or group M (n = 31) and they were treated with the same amount of either normal saline or milrinone (0.5 µg/kg/min) without bolus loading after completion of internal mammary artery harvest until the end of operation. Hemodynamic measurements were recorded after the induction of anesthesia (T1), 5 min after starting each distal anastomosis of the left anterior descending artery (T2), left circumflex artery (T3) and right coronary artery (T4), and 5 min after sternum closure (T5). Results The mixed venous oxygen saturation (SvO2) was lower through T2-T4 compared to the baseline value in both groups, while the degree of the decrease was significantly less in group M than that in group C. The other hemodynamic variables, the operative data and the postoperative outcomes were similar between the two groups. Conclusions Intraoperative infusion of milrinone did not significantly improve the perioperative hemodynamics and the subsequent short term outcomes for the patients with preexisting diastolic dysfunction as represented by an elevated E/e' value, although it reduced the degree of decrease of the SvO2 during OPCAB. PMID:21490820

  20. Peripheral Disc Margin Shape and Internal Disc Derangement: Imaging Correlation in Significantly Painful Discs Identified at Provocation Lumbar Discography

    PubMed Central

    Bartynski, W.S.; Rothfus, W.E.

    2012-01-01

    Summary Annular margin shape is used to characterize lumbar disc abnormality on CT/MR imaging studies. Abnormal discs also have internal derangement including annular degeneration and radial defects. The purpose of this study was to evaluate potential correlation between disc-margin shape and annular internal derangement on post-discogram CT in significantly painful discs encountered at provocation lumbar discography (PLD). Significantly painful discs were encountered at 126 levels in 86 patients (47 male, 39 female) studied by PLD where no prior surgery had been performed and response to intradiscal lidocaine after provocation resulted in either substantial/total relief or no improvement after lidocaine administration. Post-discogram CT and discogram imaging was evaluated for disc-margin characteristics (bulge/protrusion), features of disc internal derangement (radial annular defect [RD: radial tear/fissure/annular gap], annular degeneration) and presence/absence of discographic contrast leakage. In discs with focal protrusion, 50 of 63 (79%) demonstrated Grade 3 RD with 13 (21%) demonstrating severe degenerative change only. In discs with generalized-bulge-only, 48 of 63 (76%) demonstrated degenerative change only (primarily Dallas Grade 3) with 15 of 63 (24%) demonstrating a RD (Dallas Grade 3). Differences were highly statistically significant (p<0.001). Pain elimination with intra-discal lidocaine correlated with discographic contrast leakage (p<0.001). Disc-margin shape correlates with features of internal derangement in significantly painful discs encountered at PLD. Discs with focal protrusion typically demonstrate RD while generalized bulging discs typically demonstrated degenerative changes only (p<0.001). Disc-margin shape may provide an important imaging clue to the cause of chronic discogenic low back pain. PMID:22681741

  1. Peripheral disc margin shape and internal disc derangement: imaging correlation in significantly painful discs identified at provocation lumbar discography.

    PubMed

    Bartynski, W S; Rothfus, W E

    2012-06-01

    Annular margin shape is used to characterize lumbar disc abnormality on CT/MR imaging studies. Abnormal discs also have internal derangement including annular degeneration and radial defects. The purpose of this study was to evaluate potential correlation between disc-margin shape and annular internal derangement on post-discogram CT in significantly painful discs encountered at provocation lumbar discography (PLD). Significantly painful discs were encountered at 126 levels in 86 patients (47 male, 39 female) studied by PLD where no prior surgery had been performed and response to intradiscal lidocaine after provocation resulted in either substantial/total relief or no improvement after lidocaine administration. Post-discogram CT and discogram imaging was evaluated for disc-margin characteristics (bulge/protrusion), features of disc internal derangement (radial annular defect [RD: radial tear/fissure/annular gap], annular degeneration) and presence/absence of discographic contrast leakage. In discs with focal protrusion, 50 of 63 (79%) demonstrated Grade 3 RD with 13 (21%) demonstrating severe degenerative change only. In discs with generalized-bulge-only, 48 of 63 (76%) demonstrated degenerative change only (primarily Dallas Grade 3) with 15 of 63 (24%) demonstrating a RD (Dallas Grade 3). Differences were highly statistically significant (p<0.001). Pain elimination with intra-discal lidocaine correlated with discographic contrast leakage (p<0.001). Disc-margin shape correlates with features of internal derangement in significantly painful discs encountered at PLD. Discs with focal protrusion typically demonstrate RD while generalized bulging discs typically demonstrated degenerative changes only (p<0.001). Disc-margin shape may provide an important imaging clue to the cause of chronic discogenic low back pain. PMID:22681741

  2. Relationship between temporomandibular joint pain and magnetic resonance imaging findings of internal derangement.

    PubMed

    Emshoff, R; Innerhofer, K; Rudisch, A; Bertram, S

    2001-04-01

    In terms of clinical decision-making in instances of temporomandibular disorders (TMD) and orofacial pain, there is controversy in the literature over the diagnostic significance of the temporomandibular joint (TMJ)-related variable disk-condyle relationship (DCR). The purpose of this study was to investigate whether in patients with TMJ-related pain, the variable of TMJ pain may be linked to magnetic resonance (MR) imaging findings of internal derangement (ID). The study comprised 163 consecutive TMJ pain patients. Criteria for including a patient were report of orofacial pain referred to the TMJ, and the presence of uni- or bilateral TMJ pain during palpation, during function, and/or during unassisted or assisted mandibular opening. Bilateral sagittal and coronal MR images were obtained to establish the prevalence of TMJ ID types. Analysis of the data revealed the presence of TMJ pain to be associated with significantly more MR imaging diagnoses of ID than an absence of ID (P<0.001), and disk displacement without reduction than disk displacement with reduction (P<0.001). Using chi-square analysis, the results showed a significant relationship between the presence of TMJ-related pain and the MR imaging diagnosis of TMJ ID (P=0.001), and TMJ ID type (P=0.000). Use of the Kappa statistical test indicated poor diagnostic agreement between the presence of TMJ pain and the MR imaging diagnosis of ID (K=0.16). The results suggest that the clinical variable of TMJ pain may have a significant effect on the prevalences of MR imaging diagnoses of TMJ ID. The data confirm the biological concept of DCR as a diagnostic approach in patients with signs and symptoms of TMJ-related pain.

  3. Concurrent bias correction in hemodynamic data assimilation.

    PubMed

    Hu, Zhenghui; Liu, Huafeng; Shi, Pengcheng

    2012-10-01

    Low-frequency drift in fMRI datasets can be caused by various sources and are generally not of interest in a conventional task-based fMRI experiment. This feature complicates the assimilation approach that is always under specific assumption on statistics of system uncertainties. In this paper, we present a novel approach to the assimilation of nonlinear hemodynamic system with stochastic biased noise. By treating the drift variation as a random-walk process, the assimilation problem was translated into the identification of a nonlinear system in the presence of time-varying bias. We developed a bias aware unscented Kalman estimator to efficiently handle this problem. In this framework, the estimates of bias-free states and drift are separately carried out in two parallel filters, the optimal estimates of the system states then are corrected from bias-free states with drift estimates. The approach can simultaneously deal with the fMRI responses and drift in an assimilation cycle in an on-line fashion. It makes no assumptions of the structure and statistics of the drift, thereby is particularly suited for fMRI imaging where the formulation of real drift remains difficult to acquire. Experiments with synthetic data and real fMRI data are performed to demonstrate feasibility of our approach and to explore its potential advantages over classic polynomial approach. Moreover, we include the comparison of the variability of observables from the scanner and of normalized signal used in assimilation procedure in Appendix.

  4. Transitional cardiovascular physiology and comprehensive hemodynamic monitoring in the neonate: relevance to research and clinical care.

    PubMed

    Azhibekov, Timur; Noori, Shahab; Soleymani, Sadaf; Seri, Istvan

    2014-02-01

    A thorough understanding of developmental cardiovascular physiology is essential for early recognition of cardiovascular compromise, selective screening of at-risk groups of neonates, and individualized management using pathophysiology-targeted interventions. Although we have gained a better understanding of the physiology and pathophysiology of postnatal cardiovascular transition over the past decade with the use of sophisticated methods to study neonatal hemodynamics, most aspects of neonatal hemodynamics remain incompletely understood. In addition, targeted therapeutic interventions of neonatal hemodynamic compromise have not been shown to improve mortality and clinically relevant outcomes. However, the recent development of comprehensive hemodynamic monitoring systems capable of non-invasive, continuous and simultaneous bedside assessment of cardiac output, organ blood flow, microcirculation, and tissue oxygen delivery has made sophisticated analysis of the obtained physiologic data possible and has created new research opportunities with the potential of direct implications to patient care.

  5. Systemic response to low-dose endotoxin infusion in cats.

    PubMed

    DeClue, Amy E; Williams, Kurt J; Sharp, Claire; Haak, Carol; Lechner, Elizabeth; Reinero, Carol R

    2009-12-15

    Sepsis is a common problem in feline patients and is associated with substantial morbidity and mortality. There has been little research investigating the physiologic response to bacterial infection in cats, in part because appropriate models have not been developed. The objective of this study was to characterize the response to low-dose LPS infusion in conscious, healthy cats. Measures of systemic inflammation, hemodynamic stability, coagulation, metabolic function, and organ damage were compared between placebo and low-dose LPS infusion (2mcg/kg/hx4h, IV) in cats, with each cat serving as its own control. Markers of systemic inflammation including temperature, plasma TNF activity, IL-6, CXCL-8 and IL-10 concentrations were significantly increased and white blood cell counts were significantly decreased after LPS infusion. A biphasic hypotensive response was observed after initiation of LPS infusion without concurrent tachycardia. Additionally, LPS administration significantly increased blood glucose, lactate and creatinine concentrations. Patchy alveolar congestion, multifocal acute alveolar epithelial necrosis, and mild pulmonary edema were noted in the lungs along with acute centrilobular hepatocellular necrosis, and mild lymphocyte apoptosis in the spleen and/or intestinal Peyer's patches. No biologically significant alterations in coagulation parameters developed after LPS infusion. Low-dose LPS infusion in cats induced systemic inflammation, hemodynamic derangement, metabolic alterations and mild organ damage. Low-dose endotoxin infusion is a viable pre-clinical model to study naturally developing sepsis in cats.

  6. Systemic Metabolic Derangement, Pulmonary Effects, and Insulin Insufficiency following subchronic ozone exposure in rats

    EPA Science Inventory

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to in...

  7. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats.

    PubMed

    Miller, Desinia B; Snow, Samantha J; Henriquez, Andres; Schladweiler, Mette C; Ledbetter, Allen D; Richards, Judy E; Andrews, Debora L; Kodavanti, Urmila P

    2016-09-01

    Acute ozone exposure induces a classical stress response with elevated circulating stress hormones along with changes in glucose, protein and lipid metabolism in rats, with similar alterations in ozone-exposed humans. These stress-mediated changes over time have been linked to insulin resistance. We hypothesized that acute ozone-induced stress response and metabolic impairment would persist during subchronic episodic exposure and induce peripheral insulin resistance. Male Wistar Kyoto rats were exposed to air or 0.25ppm or 1.00ppm ozone, 5h/day, 3 consecutive days/week (wk) for 13wks. Pulmonary, metabolic, insulin signaling and stress endpoints were determined immediately after 13wk or following a 1wk recovery period (13wk+1wk recovery). We show that episodic ozone exposure is associated with persistent pulmonary injury and inflammation, fasting hyperglycemia, glucose intolerance, as well as, elevated circulating adrenaline and cholesterol when measured at 13wk, however, these responses were largely reversible following a 1wk recovery. Moreover, the increases noted acutely after ozone exposure in non-esterified fatty acids and branched chain amino acid levels were not apparent following a subchronic exposure. Neither peripheral or tissue specific insulin resistance nor increased hepatic gluconeogenesis were present after subchronic ozone exposure. Instead, long-term ozone exposure lowered circulating insulin and severely impaired glucose-stimulated beta-cell insulin secretion. Thus, our findings in young-adult rats provide potential insights into epidemiological studies that show a positive association between ozone exposures and type 1 diabetes. Ozone-induced beta-cell dysfunction may secondarily contribute to other tissue-specific metabolic alterations following chronic exposure due to impaired regulation of glucose, lipid, and protein metabolism. PMID:27368153

  8. [Central and regional hemodynamics in long space flights].

    PubMed

    Turchaninova, V F; Egorov, A D; Domracheva, M V

    1989-01-01

    This paper presents the results of studying central and regional hemodynamics in short-term (7 days) and long-term (65-237 days) space mission onboard Salyut-6--Soyuz and Salyut-7--Soyuz using the method of tetrapolar rheography. During space flights circulation changes were observed: variations in pulse blood filling and tone of regional vessels (head, forearm, leg) and insignificant changes of stroke volume and cardiac output. In response to exercise tests the contribution of stroke volume to cardiac output decreased and that of the chronotropic function of the heart increased. These changes were induced by variations in the hemodynamic status of the human body and were, to a certain extent, dependent on flight duration and position of the vascular area relative to the heart. The changes suggested that the circulation system retained its adaptive capabilities in flights of 237 days in duration.

  9. Changes in cerebral hemodynamics during laparoscopic cholecystectomy.

    PubMed

    De Cosmo, G; Iannace, E; Primieri, P; Valente, M R; Proietti, R; Matteis, M; Silvestrini, M

    1999-10-01

    Laparoscopic surgery requires a series of procedures, including intraperitoneal CO2 insufflation, which can cause cardiovascular and hemogasanalytic modifications, potentially able to impair cerebral perfusion. The aim of this study was to evaluate changes in cerebral blood flow velocity during laparoscopic cholecystectomy. Eighteen patients undergoing laparoscopic cholecystectomy were studied. Middle cerebral artery blood flow velocity was monitored using transcranial Doppler ultrasonography. Electrical bioimpedance was employed to measure cardiac output, stroke volume and to calculate derived parameters. End-tidal CO2, mean arterial blood pressure, end expiratory anesthetic concentration and O2 saturation were monitored non-invasively. Cerebral artery blood flow velocity increased significantly after CO2 insufflation (p < 0.05) and remained stable. The highest values were reached after CO2 desufflation. A significant reduction in stroke volume and cardiac output (p < 0.05) associated with increased vascular systemic resistances (p < 0.001) was observed soon after CO2 insufflation. The decrease in cardiac output and the increase in vascular systemic resistances remained significant throughout abdominal insufflation. Heart rate and mean arterial pressure remained substantially unchanged with the exception of a significant decrease (p < 0.001) before CO2 insufflation. There was no significant change in end-tidal CO2 during abdominal insufflation. These findings suggest that the cerebrovascular system can undergo adaptive changes during all phases of laparoscopic surgery. However, the extent of cardio- and cerebrovascular variation indicates the need for careful preliminary evaluation of cerebral hemodynamics in patients with vascular disorders before laparoscopic surgery. PMID:10555187

  10. Quantifying the abnormal hemodynamics of sickle cell anemia

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Karniadakis, George

    2012-02-01

    Sickle red blood cells (SS-RBC) exhibit heterogeneous morphologies and abnormal hemodynamics in deoxygenated states. A multi-scale model for SS-RBC is developed based on the Dissipative Particle Dynamics (DPD) method. Different cell morphologies (sickle, granular, elongated shapes) typically observed in deoxygenated states are constructed and quantified by the Asphericity and Elliptical shape factors. The hemodynamics of SS-RBC suspensions is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. Moreover, SS-RBCs exhibit abnormal adhesive interactions with both the vessel endothelium cells and the leukocytes. The effect of the abnormal adhesive interactions on the hemodynamics of sickle blood is investigated using the current model. It is found that both the SS-RBC - endothelium and the SS-RBC - leukocytes interactions, can potentially trigger the vicious ``sickling and entrapment'' cycles, resulting in vaso-occlusion phenomena widely observed in micro-circulation experiments.

  11. Hemodynamics driven cardiac valve morphogenesis.

    PubMed

    Steed, Emily; Boselli, Francesco; Vermot, Julien

    2016-07-01

    Mechanical forces are instrumental to cardiovascular development and physiology. The heart beats approximately 2.6 billion times in a human lifetime and heart valves ensure that these contractions result in an efficient, unidirectional flow of the blood. Composed of endocardial cells (EdCs) and extracellular matrix (ECM), cardiac valves are among the most mechanically challenged structures of the body both during and after their development. Understanding how hemodynamic forces modulate cardiovascular function and morphogenesis is key to unraveling the relationship between normal and pathological cardiovascular development and physiology. Most valve diseases have their origins in embryogenesis, either as signs of abnormal developmental processes or the aberrant re-expression of fetal gene programs normally quiescent in adulthood. Here we review recent discoveries in the mechanobiology of cardiac valve development and introduce the latest technologies being developed in the zebrafish, including live cell imaging and optical technologies, as well as modeling approaches that are currently transforming this field. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  12. Severity of Locomotor and Cardiovascular Derangements after Experimental High-Thoracic Spinal Cord Injury Is Anesthesia Dependent in Rats

    PubMed Central

    Beattie, Michael S.; Bresnahan, Jacqueline C.

    2012-01-01

    Abstract Anesthetics affect outcomes from central nervous system (CNS) injuries differently. This is the first study to show how two commonly used anesthetics affect continuously recorded hemodynamic parameters and locomotor recovery during a 2-week period after two levels of contusion spinal cord injury (SCI) in rats. We hypothesized that the level of cardiovascular depression and recovery of locomotor function would be dependent upon the anesthetic used during SCI. Thirty-two adult female rats were subjected to a sham, 25-mm or 50-mm SCI at T3–4 under pentobarbital or isoflurane anesthesia. Mean arterial pressure (MAP) and heart rate (HR) were telemetrically recorded before, during, and after SCI. Locomotor function recovered best in the 25-mm-injured isoflurane-anesthetized animals. There was no significant difference in locomotor recovery between the 25-mm-injured pentobarbital-anesthetized animals and the 50-mm-injured isoflurane-anesthetized animals. White matter sparing and extent of intermediolateral cell column loss appeared larger in animals anesthetized with pentobarbital, but this was not significant. There were no differential effects of anesthetics on HR and MAP before SCI, but recovery from anesthesia was significantly slower in pentobarbital-anesthetized animals. At the time of SCI, MAP was acutely elevated in the pentobarbital-anesthetized animals, whereas MAP decreased in the isoflurane-anesthetized animals. Hypotension occurred in the pentobarbital-anesthetized groups and in the 50-mm-injured isoflurane-anesthetized group. In pentobarbital-anesthetized animals, SCI resulted in acute elevation of HR, although HR remained low. Return of HR to baseline was much slower in the pentobarbital-anesthetized animals. Severe SCI at T3 produced significant chronic tachycardia that was injury severity dependent. Although some laboratories monitor blood pressure, HR, and other physiological variables during surgery for SCI, inherently few have monitored

  13. [Comparative studies of the tridosha theory in Ayurveda and the theory of the four deranged elements in Buddhist medicine].

    PubMed

    Endo, J; Nakamura, T

    1995-01-01

    It has been said that the tridosha theory in Ayurveda originated from the theory of the three elements of the universe. The names of these three doshas, which are roughly equivalent to humour, are vata (wind), pitta (bile), and Kapha (phlegm), corresponding to the three elements of the universe: air, fire, and water. On the other hand, Buddhist medicine which has a close relation to Ayurveda is based on the theory of the four elements of the universe which includes the earth as well as the three elements mentioned above. Greek medicine on the other hand, is founded on the theory of the four humours, i.e. blood, yellow bile, black bile, and phlegm. Furthermore, even in Ayurveda, like in "Sushruta Samhita", the theory of the four humours can be found: this includes the above-mentioned tridosha plus blood as the fourth humour. "Timaios" by Plato also mentions this. We compared these various theories and pointed out that the tridosha theory had its origin in the theory of the four elements of the universe. The process of the formation of the tridosha theory is considered as follows: (1) "Earth" was segregated from the four elements of the universe owing to its solid properties, and was rearranged into the seven elements of the body called "dhatu"; and the other three elements. "water", "fire", and "air", were integrated as the tridosha theory, namely, the theory of the three humours, owing to their properties of fluid; (2) "Blood", assigned to the element of "earth", was segregated from the tridosha because "blood" was considered to be comprised of the properties of every humour without having its own peculiar properties. Therefore, the diseases caused by deranged "blood" were regarded as an aggregate disease caused by the other three deranged humours. Then the category of the disease, caused by deranged "earth", did not appear.

  14. Human bulbar conjunctival hemodynamics in hemoglobin SS and SC disease.

    PubMed

    Wanek, Justin; Gaynes, Bruce; Lim, Jennifer I; Molokie, Robert; Shahidi, Mahnaz

    2013-08-01

    The known biophysical variations of hemoglobin (Hb) S and Hb C may result in hemodynamic differences between subjects with SS and SC disease. The purpose of this study was to measure and compare conjunctival hemodynamics between subjects with Hb SS and SC hemoglobinopathies. Image sequences of the conjunctival microcirculation were acquired in 9 healthy control subjects (Hb AA), 24 subjects with SC disease, and 18 subjects with SS disease, using a prototype imaging system. Diameter (D) and blood velocity (V) measurements were obtained in multiple venules of each subject. Data were categorized according to venule caliber by averaging V and D for venules with diameters less than (vessel size 1) or greater than (vessel size 2) 15 µm. V in vessel size 2 was significantly greater than V in vessel size 1 in the AA and SS groups (P ≥ 0.009), but not in the SC group (P = 0.1). V was significantly lower in the SC group as compared to the SS group (P = 0.03). In AA and SS groups, V correlated with D (P ≤ 0.005), but the correlation was not statistically significant in the SC group (P = 0.08). V was inversely correlated with hematocrit in the SS group for large vessels (P = 0.03); however, no significant correlation was found in the SC group (P ≥ 0.2). Quantitative assessment of conjunctival microvascular hemodynamics in SS and SC disease may advance understanding of sickle cell disease pathophysiology and thereby improve therapeutic interventions.

  15. Calf pump activity influencing venous hemodynamics in the lower extremity.

    PubMed

    Recek, Cestmir

    2013-03-01

    Calf muscle pump is the motive force enhancing return of venous blood from the lower extremity to the heart. It causes displacement of venous blood in both vertical and horizontal directions, generates ambulatory pressure gradient between thigh and lower leg veins, and bidirectional streaming within calf perforators. Ambulatory pressure gradient triggers venous reflux in incompetent veins, which induces ambulatory venous hypertension in the lower leg and foot. Bidirectional flow in calf perforators enables quick pressure equalization between deep and superficial veins of the lower leg; the outward (into the superficial veins) oriented component of the bidirectional flow taking place during calf muscle contraction is no pathological reflux but a physiological centripetal flow streaming via great saphenous vein into the femoral vein. Calf perforators are communicating channels between both systems making them conjoined vessels; they are not involved in the generation of pathological hemodynamic situations, nor do they cause ambulatory venous hypertension. The real cause why recurrences develop has not as yet been cleared. Pressure gradient arising during calf pump activity between the femoral vein and the saphenous remnant after abolition of saphenous reflux triggers biophysical and biochemical events, which might induce recurrence. Thus, abolition of saphenous reflux removes the hemodynamic disturbance, but at the same time it generates precondition for reflux recurrence and for the comeback of the previous pathological situation; this chain of events has been called hemodynamic paradox. PMID:24436580

  16. Dynamic cerebral autoregulation measured with coherent hemodynamics spectroscopy (CHS)

    NASA Astrophysics Data System (ADS)

    Kainerstorfer, Jana M.; Sassaroli, Angelo; Tgavalekos, Kristen T.; Fantini, Sergio

    2015-03-01

    Coherent Hemodynamics Spectroscopy (CHS) is a novel technique for non-invasive measurements of local microcirculation quantities such as the capillary blood transit times and dynamic autoregulation. The basis of CHS is to measure, for instance with near-infrared spectroscopy (NIRS), peripheral coherent hemodynamic changes that are induced by controlled perturbations in the systemic mean arterial pressure (MAP). In this study, the MAP perturbation was induced by the fast release of two pneumatic cuffs placed around the subject's thighs after they were kept inflated (at 200 mmHg) for two minutes. The resulting transient changes in cerebral oxy- (O) and deoxy- (D) hemoglobin concentrations measured with NIRS on the prefrontal cortex are then described by a novel hemodynamic model, from which quantifiable parameters such as the capillary blood transit time and a cutoff frequency for cerebral autoregulation are obtained. We present results on eleven healthy volunteers in a protocol involving measurements during normal breathing and during hyperventilation, which is known to cause a hypocapnia-induced increase in cerebral autoregulation. The measured capillary transit time was unaffected by hyperventilation (normal breathing: 1.1±0.1 s; hyperventilation: 1.1±0.1 s), whereas the cutoff frequency of autoregulation, which increases for higher autoregulation efficiency, was indeed found to be significantly greater during hyperventilation (normal breathing: 0.017±0.002 Hz; hyperventilation: 0.034±0.005 Hz). These results provide a validation of local cerebral autoregulation measurements with the new technique of CHS.

  17. Eating disorders should be considered in the differential diagnosis of patients presenting with acute kidney injury and electrolyte derangement

    PubMed Central

    Talbot, Ben Edward Michael; Lawman, Sarah H A

    2014-01-01

    We present a case of a 40-year-old woman with a history of ongoing anorexia nervosa and bulimia nervosa who has required multiple admissions to hospital for management of acute kidney injury (AKI) and electrolyte derangement. This case is of interest as recent studies have highlighted the significant prevalence of disordered eating and the major public health implications this may have. We discuss the unusual finding of hypercalcaemia in this case and address the investigation and management of AKI and electrolyte disturbance in a patient with anorexia and bulimia. PMID:24654247

  18. Wireless Monitoring of Liver Hemodynamics In Vivo

    SciTech Connect

    Akl, Tony; Wilson, Mark A.; Ericson, Milton Nance; Farquhar, Ethan; Cote, Gerard L.

    2014-01-01

    Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics.

  19. Vestibular stimulation leads to distinct hemodynamic patterning

    NASA Technical Reports Server (NTRS)

    Kerman, I. A.; Emanuel, B. A.; Yates, B. J.

    2000-01-01

    Previous studies demonstrated that responses of a particular sympathetic nerve to vestibular stimulation depend on the type of tissue the nerve innervates as well as its anatomic location. In the present study, we sought to determine whether such precise patterning of vestibulosympathetic reflexes could lead to specific hemodynamic alterations in response to vestibular afferent activation. We simultaneously measured changes in systemic blood pressure and blood flow (with the use of Doppler flowmetry) to the hindlimb (femoral artery), forelimb (brachial artery), and kidney (renal artery) in chloralose-urethane-anesthetized, baroreceptor-denervated cats. Electrical vestibular stimulation led to depressor responses, 8 +/- 2 mmHg (mean +/- SE) in magnitude, that were accompanied by decreases in femoral vasoconstriction (23 +/- 4% decrease in vascular resistance or 36 +/- 7% increase in vascular conductance) and increases in brachial vascular tone (resistance increase of 10 +/- 6% and conductance decrease of 11 +/- 4%). Relatively small changes (<5%) in renal vascular tone were observed. In contrast, electrical stimulation of muscle and cutaneous afferents produced pressor responses (20 +/- 6 mmHg) that were accompanied by vasoconstriction in all three beds. These data suggest that vestibular inputs lead to a complex pattern of cardiovascular changes that is distinct from that which occurs in response to activation of other types of somatic afferents.

  20. Intraoperative brain hemodynamic response assessment with real-time hyperspectral optical imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Laurence, Audrey; Pichette, Julien; Angulo-Rodríguez, Leticia M.; Saint Pierre, Catherine; Lesage, Frédéric; Bouthillier, Alain; Nguyen, Dang Khoa; Leblond, Frédéric

    2016-03-01

    Following normal neuronal activity, there is an increase in cerebral blood flow and cerebral blood volume to provide oxygenated hemoglobin to active neurons. For abnormal activity such as epileptiform discharges, this hemodynamic response may be inadequate to meet the high metabolic demands. To verify this hypothesis, we developed a novel hyperspectral imaging system able to monitor real-time cortical hemodynamic changes during brain surgery. The imaging system is directly integrated into a surgical microscope, using the white-light source for illumination. A snapshot hyperspectral camera is used for detection (4x4 mosaic filter array detecting 16 wavelengths simultaneously). We present calibration experiments where phantoms made of intralipid and food dyes were imaged. Relative concentrations of three dyes were recovered at a video rate of 30 frames per second. We also present hyperspectral recordings during brain surgery of epileptic patients with concurrent electrocorticography recordings. Relative concentration maps of oxygenated and deoxygenated hemoglobin were extracted from the data, allowing real-time studies of hemodynamic changes with a good spatial resolution. Finally, we present preliminary results on phantoms obtained with an integrated spatial frequency domain imaging system to recover tissue optical properties. This additional module, used together with the hyperspectral imaging system, will allow quantification of hemoglobin concentrations maps. Our hyperspectral imaging system offers a new tool to analyze hemodynamic changes, especially in the case of epileptiform discharges. It also offers an opportunity to study brain connectivity by analyzing correlations between hemodynamic responses of different tissue regions.

  1. Amelioration of pancreatic and renal derangements in streptozotocin-induced diabetic rats by polyphenol extracts of Ginger (Zingiber officinale) rhizome.

    PubMed

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin

    2015-12-01

    Free and bound polyphenol extracts of Zingiber officinale rhizome were investigated for their antidiabetic potential in the pancreatic and renal tissues of diabetic rats at a dose of 500mg/kg body weight. Forty Wistar rats were completely randomized into five groups: A-E consisting of eight animals each. Group A (control) comprises normal healthy animals and were orally administered 1.0mL distilled water on a daily basis for 42 days while group B-E were made up of 50mg/kg streptozotocin (STZ)-induced diabetic rats. Group C and D received 1.0mL 500mg/kg body weight free and bound polyphenol extracts respectively while group E received 1.0mL 0.6mg/kg of glibenclamide. Administration of the extracts to the diabetic rats significantly reduced (p<0.05) serum glucose and urea concentrations, increased (p<0.05) serum insulin and Homeostatic Model Assessment for β-cell dysfunction (HOMA-β) while the level of creatinine and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were not affected. Histological examination of the pancreas and kidney revealed restoration of the structural derangements caused by streptozotocin in the polyphenol extracts treated diabetic rats compared to the control groups. Therefore, polyphenols from Zingiber officinale could ameliorate diabetes-induced pancreatic and renal derangements in rats.

  2. Donizetti and the music of mental derangement: Anna Bolena, Lucia di Lammermoor, and the composer's neurobiological illness.

    PubMed Central

    Peschel, E.; Peschel, R.

    1992-01-01

    The composer Gaetano Donizetti, who died in a state of mental derangement due to neurosyphilis, created some of opera's greatest scenes of psychosis. His letters reveal the clinical progression of his neurobiological illness, which was confirmed by autopsy. One can hypothesize that the composer's brain disease, which led to his psychosis and death, may have had an influence on his ability to create the powerful and unforgettable scenes of psychosis in his operas. In Anna Bolena, he captured in musical and dramatic terms Anne Boleyn's historically corroborated mental disorder during her imprisonment in the Tower of London. Sixteen years after having composed Anna Bolena, Donizetti himself would be locked up, against his will, in a mental institution. In Lucia di Lammermoor, Donizetti portrayed a girl given to hallucinations who, in her unforgettable "mad" scene, comes on stage, a pathetic embodiment of a human being in the throes of psychosis. Thirteen years after Lucia's première, Donizetti would die, psychotic and paralyzed, of untreated neurosyphilis. Studying Donizetti's neurosyphilis and the portrayals of psychosis in his operas can help one to appreciate the pain of human beings trapped in the prison of a brain subjected to the devastation of mental derangement. PMID:1285447

  3. Depth-resolved optical imaging of hemodynamic response in mouse brain with microcirculatory beds

    NASA Astrophysics Data System (ADS)

    Jia, Yali; Nettleton, Rosemary; Rosenberg, Mara; Boudreau, Eilis; Wang, Ruikang K.

    2011-03-01

    Optical hemodynamic imaging employed in pre-clinical studies with high spatial and temporal resolution is significant to unveil the functional activities of brain and the mechanism of internal or external stimulus effects in diverse pathological conditions and treatments. Most current optical systems only resolve hemodynamic changes within superficial macrocirculatory beds, such as laser speckle contrast imaging; or only provide vascular structural information within microcirculatory beds, such as multi-photon microscopy. In this study, we introduce a hemodynamic imaging system based on Optical Micro-angiography (OMAG) which is capable of resolving and quantifying 3D dynamic blood perfusion down to microcirculatory level. This system can measure the optical phase shifts caused by moving blood cells in microcirculation. Here, the utility of OMAG was demonstrated by monitoring the hemodynamic response to alcohol administration in mouse prefrontal cortex. Our preliminary results suggest that the spatiotemporal tracking of cerebral micro-hemodynamic using OMAG can be successfully applied to the mouse brain and reliably distinguish between vehicle and alcohol stimulation experiment.

  4. Verification of a computational cardiovascular system model comparing the hemodynamics of a continuous flow to a synchronous valveless pulsatile flow left ventricular assist device

    PubMed Central

    Gohean, Jeffrey R.; George, Mitchell J.; Pate, Thomas D.; Kurusz, Mark; Longoria, Raul G.; Smalling, Richard W.

    2012-01-01

    The purpose of this investigation is to utilize a computational model to compare a synchronized valveless pulsatile left ventricular assist device to continuous flow left ventricular assist devices at the same level of device flow, and to verify the model with in vivo porcine data. A dynamic system model of the human cardiovascular system was developed to simulate support of a healthy or failing native heart from a continuous flow left ventricular assist device or a synchronous, pulsatile, valveless, dual piston positive displacement pump. These results were compared to measurements made during in vivo porcine experiments. Results from the simulation model and from the in vivo counterpart show that the pulsatile pump provides higher cardiac output, left ventricular unloading, cardiac pulsatility, and aortic valve flow as compared to the continuous flow model at the same level of support. The dynamic system model developed for this investigation can effectively simulate human cardiovascular support by a synchronous pulsatile or continuous flow ventricular assist device. PMID:23438771

  5. The hemodynamic effects of ibopamine, a dopamine congener, in patients with congestive heart failure.

    PubMed

    Leier, C V; Ren, J H; Huss, P; Unverferth, D V

    1986-01-01

    Ten patients with congestive heart failure underwent noninvasive and invasive hemodynamic testing before and sequentially after the administration of ibopamine to determine the cardiovascular effects of this oral dopamine congener. Single doses of 200, 400 and 600 mg were administered to all patients and 5 repeated doses of 200 or 400 mg were studied in 8. Hemodynamic effects occurred as early as 30 minutes and lasted up to 4 hours after dosing. In general, ibopamine elicited statistically significant dose-related increases in cardiac output and reductions in the derived resistance of the systemic and pulmonary circulations. A biphasic response in central and peripheral pressures was observed; up to 1 hour after administration, ibopamine elevated mean right and left atrial pressures and pulmonary and systemic arterial pressures with a significant reduction of these measurements beyond 1 hour. It did not alter heart rate. Repeated doses qualitatively affected hemodynamics similar to the initial dose and did not appear to be accompanied by short-term tolerance. While oral ibopamine elicits some favorable hemodynamic effects in humans with cardiac failure, the biphasic hemodynamic response is generally undesirable in the majority of these patients.

  6. A Signal Processing Approach for Detection of Hemodynamic Instability before Decompensation

    PubMed Central

    Belle, Ashwin; Ansari, Sardar; Spadafore, Maxwell; Convertino, Victor A.; Ward, Kevin R.; Derksen, Harm; Najarian, Kayvan

    2016-01-01

    Advanced hemodynamic monitoring is a critical component of treatment in clinical situations where aggressive yet guided hemodynamic interventions are required in order to stabilize the patient and optimize outcomes. While there are many tools at a physician’s disposal to monitor patients in a hospital setting, the reality is that none of these tools allow hi-fidelity assessment or continuous monitoring towards early detection of hemodynamic instability. We present an advanced automated analytical system which would act as a continuous monitoring and early warning mechanism that can indicate pending decompensation before traditional metrics can identify any clinical abnormality. This system computes novel features or bio-markers from both heart rate variability (HRV) as well as the morphology of the electrocardiogram (ECG). To compare their effectiveness, these features are compared with the standard HRV based bio-markers which are commonly used for hemodynamic assessment. This study utilized a unique database containing ECG waveforms from healthy volunteer subjects who underwent simulated hypovolemia under controlled experimental settings. A support vector machine was utilized to develop a model which predicts the stability or instability of the subjects. Results showed that the proposed novel set of features outperforms the traditional HRV features in predicting hemodynamic instability. PMID:26871715

  7. A Signal Processing Approach for Detection of Hemodynamic Instability before Decompensation.

    PubMed

    Belle, Ashwin; Ansari, Sardar; Spadafore, Maxwell; Convertino, Victor A; Ward, Kevin R; Derksen, Harm; Najarian, Kayvan

    2016-01-01

    Advanced hemodynamic monitoring is a critical component of treatment in clinical situations where aggressive yet guided hemodynamic interventions are required in order to stabilize the patient and optimize outcomes. While there are many tools at a physician's disposal to monitor patients in a hospital setting, the reality is that none of these tools allow hi-fidelity assessment or continuous monitoring towards early detection of hemodynamic instability. We present an advanced automated analytical system which would act as a continuous monitoring and early warning mechanism that can indicate pending decompensation before traditional metrics can identify any clinical abnormality. This system computes novel features or bio-markers from both heart rate variability (HRV) as well as the morphology of the electrocardiogram (ECG). To compare their effectiveness, these features are compared with the standard HRV based bio-markers which are commonly used for hemodynamic assessment. This study utilized a unique database containing ECG waveforms from healthy volunteer subjects who underwent simulated hypovolemia under controlled experimental settings. A support vector machine was utilized to develop a model which predicts the stability or instability of the subjects. Results showed that the proposed novel set of features outperforms the traditional HRV features in predicting hemodynamic instability.

  8. Wireless monitoring of liver hemodynamics in vivo.

    PubMed

    Akl, Tony J; Wilson, Mark A; Ericson, M Nance; Farquhar, Ethan; Coté, Gerard L

    2014-01-01

    Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics. PMID:25019160

  9. Wireless Monitoring of Liver Hemodynamics In Vivo

    PubMed Central

    Akl, Tony J.; Wilson, Mark A.; Ericson, M. Nance; Farquhar, Ethan; Coté, Gerard L.

    2014-01-01

    Liver transplants have their highest technical failure rate in the first two weeks following surgery. Currently, there are limited devices for continuous, real-time monitoring of the graft. In this work, a three wavelengths system is presented that combines near-infrared spectroscopy and photoplethysmography with a processing method that can uniquely measure and separate the venous and arterial oxygen contributions. This strategy allows for the quantification of tissue oxygen consumption used to study hepatic metabolic activity and to relate it to tissue stress. The sensor is battery operated and communicates wirelessly with a data acquisition computer which provides the possibility of implantation provided sufficient miniaturization. In two in vivo porcine studies, the sensor tracked perfusion changes in hepatic tissue during vascular occlusions with a root mean square error (RMSE) of 0.135 mL/min/g of tissue. We show the possibility of using the pulsatile wave to measure the arterial oxygen saturation similar to pulse oximetry. The signal is also used to extract the venous oxygen saturation from the direct current (DC) levels. Arterial and venous oxygen saturation changes were measured with an RMSE of 2.19% and 1.39% respectively when no vascular occlusions were induced. This error increased to 2.82% and 3.83% when vascular occlusions were induced during hypoxia. These errors are similar to the resolution of a commercial oximetry catheter used as a reference. This work is the first realization of a wireless optical sensor for continuous monitoring of hepatic hemodynamics. PMID:25019160

  10. Acute hemodynamic responses to weightlessness in humans

    NASA Technical Reports Server (NTRS)

    Lathers, C. M.; Charles, J. B.; Elton, K. F.; Holt, T. A.; Mukai, C.; Bennett, B. S.; Bungo, M. W.

    1989-01-01

    As NASA designs space flights requiring prolonged periods of weightlessness for a broader segment of the population, it will be important to know the acute and sustained effects of weightlessness on the cardiovascular system since this information will contribute to understanding of the clinical pharmacology of drugs administered in space. Due to operational constraints on space flights, earliest effects of weightlessness have not been documented. We examined hemodynamic responses of humans to transitions from acceleration to weightlessness during parabolic flight on NASA's KC-135 aircraft. Impedance cardiography data were collected over four sets of 8-10 parabolas, with a brief rest period between sets. Each parabola included a period of 1.8 Gz, then approximately 20 seconds of weightlessness, and finally a period of 1.6 Gz; the cycle repeated almost immediately for the remainder of the set. Subjects were semi-supine (Shuttle launch posture) for the first set, then randomly supine, sitting and standing for each subsequent set. Transition to weightlessness while standing produced decreased heart rate, increased thoracic fluid content, and increased stroke index. Surprisingly, the onset of weightlessness in the semi-supine posture produced little evidence of a headward fluid shift. Heart rate, stroke index, and cardiac index are virtually unchanged after 20 seconds of weightlessness, and thoracic fluid content is slightly decreased. Semi-supine responses run counter to Shuttle crewmember reports of noticeable fluid shift after minutes to hours in orbit. Apparently, the headward fluid shift commences in the semi-supine posture before launch. is augmented by launch acceleration, but briefly interrupted immediately in orbit, then resumes and is completed over the next hours.

  11. Simultaneous measurement of hemorheological and hemodynamic properties using a rat extracorporeal model

    NASA Astrophysics Data System (ADS)

    Yeom, Eunseop; Lee, Sang Joon; CenterBiofluid; Biomimetics Research Team

    2015-11-01

    It is well known that cardiovascular diseases (CVDs) are closely related with the variations of hemorheological and hemodynamic properties. Accurate measurement of these properties is essential for early diagnosis of CVDs. However, in vitro measurements have technical limitation for the accurate measurement because in vitro exposure can change hemorheological properties. To resolve this problem, a rat extracorporeal model which connects the artery and vein in a rat was employed in this study. Blood flows in the rat extracorporeal model were visualized by an ultrasound imaging system and microfluidic devices for monitoring hemorheological and hemodynamic properties. As a result, the system can be effectively used to measure blood viscosity, red blood cell aggregation and flow rate under ex vivo conditions. The present results would be helpful to develop a diagnostic modality for monitoring the variations in hemorheological and hemodynamic parameters. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP) (No. 2008-0061991).

  12. Invasive hemodynamic characterization of heart failure with preserved ejection fraction.

    PubMed

    Andersen, Mads J; Borlaug, Barry A

    2014-07-01

    Recent hemodynamic studies have advanced our understanding of heart failure with preserved ejection fraction (HFpEF). Despite improved pathophysiologic insight, clinical trials have failed to identify an effective treatment for HFpEF. Invasive hemodynamic assessment can diagnose or exclude HFpEF, making it invaluable in understanding the basis of the disease. This article reviews the hemodynamic mechanisms underlying HFpEF and how they manifest clinically, discusses invasive hemodynamic assessment as a diagnostic tool, and explores how invasive hemodynamic profiling may allow understanding of pathophysiological differences and inform the design and entry criteria for future trials.

  13. Role of Protein Farnesylation in Burn-Induced Metabolic Derangements and Insulin Resistance in Mouse Skeletal Muscle

    PubMed Central

    Tanaka, Tomokazu; Kramer, Joshua; Yu, Yong-Ming; Fischman, Alan J.; Martyn, J. A. Jeevendra; Tompkins, Ronald G.; Kaneki, Masao

    2015-01-01

    Objective Metabolic derangements, including insulin resistance and hyperlactatemia, are a major complication of major trauma (e.g., burn injury) and affect the prognosis of burn patients. Protein farnesylation, a posttranslational lipid modification of cysteine residues, has been emerging as a potential component of inflammatory response in sepsis. However, farnesylation has not yet been studied in major trauma. To study a role of farnesylation in burn-induced metabolic aberration, we examined the effects of farnesyltransferase (FTase) inhibitor, FTI-277, on burn-induced insulin resistance and metabolic alterations in mouse skeletal muscle. Methods A full thickness burn (30% total body surface area) was produced under anesthesia in male C57BL/6 mice at 8 weeks of age. After the mice were treated with FTI-277 (5 mg/kg/day, IP) or vehicle for 3 days, muscle insulin signaling, metabolic alterations and inflammatory gene expression were evaluated. Results Burn increased FTase expression and farnesylated proteins in mouse muscle compared with sham-burn at 3 days after burn. Simultaneously, insulin-stimulated phosphorylation of insulin receptor (IR), insulin receptor substrate (IRS)-1, Akt and GSK-3β was decreased. Protein expression of PTP-1B (a negative regulator of IR-IRS-1 signaling), PTEN (a negative regulator of Akt-mediated signaling), protein degradation and lactate release by muscle, and plasma lactate levels were increased by burn. Burn-induced impaired insulin signaling and metabolic dysfunction were associated with increased inflammatory gene expression. These burn-induced alterations were reversed or ameliorated by FTI-277. Conclusions Our data demonstrate that burn increased FTase expression and protein farnesylation along with insulin resistance, metabolic alterations and inflammatory response in mouse skeletal muscle, all of which were prevented by FTI-277 treatment. These results indicate that increased protein farnesylation plays a pivotal role in burn

  14. Hyperuricemia: A Biomarker of Renal Hemodynamic Impairment

    PubMed Central

    Susic, Dinko; Frohlich, Edward D.

    2015-01-01

    Background Many epidemiological, clinical, and experimental reports have demonstrated an association between serum uric acid concentration and a variety of cardiovascular and renal diseases, particularly in hypertension. At present, there seems to be no resolution to the question whether this relationship is causal or coincidental. Summary This discussion examines a number of biological, pathophysiological, fundamental, and clinical relationships between serum uric acid concentration and several of these disorders. To this end, discussion and review provide some specific insight conclusions and recommendations related to their clinical relevance. Key Messages We suggest that, in most instances (especially in patients with essential hypertension), the increase in serum uric acid concentration is coincidental, serving as a useful biomarker that relates the magnitude of circulating plasma uric acid concentration with the extent of impaired cardiovascular and renal function. Moreover, the value of certain pharmaceutical agents affecting the serum uric acid level should be considered carefully by taking into consideration the associated pathophysiological derangements. PMID:26195969

  15. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    SciTech Connect

    Ortega, J; Hartman, J; Rodriguez, J; Maitland, D

    2008-01-16

    Aneurysm re-growth and rupture can sometimes unexpectedly occur following treatment procedures that were initially considered to be successful at the time of treatment and post-operative angiography. In some cases, this can be attributed to surgical clip slippage or endovascular coil compaction. However, there are other cases in which the treatment devices function properly. In these instances, the subsequent complications are due to other factors, perhaps one of which is the post-treatment hemodynamic stress. To investigate whether or not a treatment procedure can subject the parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. The simulations demonstrate that the treatment procedure produces a substantial increase in the wall shear stress. Analysis of the post-treatment flow field indicates that the increase in wall shear stress is due to the impingement of the basilar artery flow upon the aneurysm filling material and to the close proximity of a vortex tube to the artery wall. Calculation of the time-averaged wall shear stress shows that there is a region of the artery exposed to a level of wall shear stress that can cause severe damage to endothelial cells. The results of this study demonstrate that it is possible for a treatment procedure, which successfully excludes the aneurysm from the vascular system and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the immediately adjacent vessel wall.

  16. Human bulbar conjunctival hemodynamics in hemoglobin SS and SC disease

    PubMed Central

    Wanek, Justin; Gaynes, Bruce; Lim, Jennifer I.; Molokie, Robert; Shahidi, Mahnaz

    2014-01-01

    The known biophysical variations of hemoglobin (Hb) S and Hb C may result in hemodynamic differences between subjects with SS and SC disease. The purpose of this study was to measure and compare conjunctival hemodynamics between subjects with Hb SS and SC hemoglobinopathies. Image sequences of the conjunctival microcirculation were acquired in 9 healthy control subjects (Hb AA), 24 subjects with SC disease, and 18 subjects with SS disease, using a prototype imaging system. Diameter (D) and blood velocity (V) measurements were obtained in multiple venules of each subject. Data were categorized according to venule caliber by averaging V and D for venules with diameters less than (vessel size 1) or greater than (vessel size 2) 15 µm. V in vessel size 2 was significantly greater than V in vessel size 1 in the AA and SS groups (P ≥ 0.009), but not in the SC group (P = 0.1). V was significantly lower in the SC group as compared to the SS group (P = 0.03). In AA and SS groups, V correlated with D (P ≥ 0.005), but the correlation was not statistically significant in the SC group (P = 0.08). V was inversely correlated with hematocrit in the SS group for large vessels (P = 0.03); however, no significant correlation was found in the SC group (P ≥ 0.2). Quantitative assessment of conjunctival microvascular hemodynamics in SS and SC disease may advance understanding of sickle cell disease pathophysiology and thereby improve therapeutic interventions. PMID:23657867

  17. Bioimpedance Measurement of Segmental Fluid Volumes and Hemodynamics

    NASA Technical Reports Server (NTRS)

    Montgomery, Leslie D.; Wu, Yi-Chang; Ku, Yu-Tsuan E.; Gerth, Wayne A.; DeVincenzi, D. (Technical Monitor)

    2000-01-01

    Bioimpedance has become a useful tool to measure changes in body fluid compartment volumes. An Electrical Impedance Spectroscopic (EIS) system is described that extends the capabilities of conventional fixed frequency impedance plethysmographic (IPG) methods to allow examination of the redistribution of fluids between the intracellular and extracellular compartments of body segments. The combination of EIS and IPG techniques was evaluated in the human calf, thigh, and torso segments of eight healthy men during 90 minutes of six degree head-down tilt (HDT). After 90 minutes HDT the calf and thigh segments significantly (P < 0.05) lost conductive volume (eight and four percent, respectively) while the torso significantly (P < 0.05) gained volume (approximately three percent). Hemodynamic responses calculated from pulsatile IPG data also showed a segmental pattern consistent with vascular fluid loss from the lower extremities and vascular engorgement in the torso. Lumped-parameter equivalent circuit analyses of EIS data for the calf and thigh indicated that the overall volume decreases in these segments arose from reduced extracellular volume that was not completely balanced by increased intracellular volume. The combined use of IPG and EIS techniques enables noninvasive tracking of multi-segment volumetric and hemodynamic responses to environmental and physiological stresses.

  18. Hemodynamic simulations in coronary aneurysms of children with Kawasaki disease

    NASA Astrophysics Data System (ADS)

    Sengupta, Dibyendu; Burns, Jane; Marsden, Alison

    2009-11-01

    Kawasaki disease (KD) is a serious pediatric illness affecting the cardiovascular system. One of the most serious complications of KD, occurring in about 25% of untreated cases, is the formation of large aneurysms in the coronary arteries, which put patients at risk for myocardial infarction. In this project we performed patient specific computational simulations of blood flow in aneurysmal left and right coronary arteries of a KD patient to gain an understanding about their hemodynamics. Models were constructed from CT data using custom software. Typical pulsatile flow waveforms were applied at the model inlets, while resistance and RCR lumped models were applied and compared at the outlets. Simulated pressure waveforms compared well with typical physiologic data. High wall shear stress values are found in the narrow region at the base of the aneurysm and low shear values occur in regions of recirculation. A Lagrangian approach has been adopted to perform particle tracking and compute particle residence time in the recirculation. Our long-term goal will be to develop links between hemodynamics and the risk for thrombus formation in order to assist in clinical decision-making.

  19. Hemodynamics: Biophysics for AP Biology

    ERIC Educational Resources Information Center

    Neulieb, Marilyn Huetten; Neulieb, Robert

    1975-01-01

    Discusses the physics of fluids flowing through vessels in the context of blood moving in the circulatory system. The method of presentation used is judged suitable for students in an advanced high school science course emphasizing individualized instruction in an interdisciplinary field. (Author/PEB)

  20. [Study of sharing platform of web-based enhanced extracorporeal counterpulsation hemodynamic waveform data].

    PubMed

    Huang, Mingbo; Hu, Ding; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2011-12-01

    Enhanced extracorporeal counterpulsation (EECP) information consists of both text and hemodynamic waveform data. At present EECP text information has been successfully managed through Web browser, while the management and sharing of hemodynamic waveform data through Internet has not been solved yet. In order to manage EECP information completely, based on the in-depth analysis of EECP hemodynamic waveform file of digital imaging and communications in medicine (DICOM) format and its disadvantages in Internet sharing, we proposed the use of the extensible markup language (XML), which is currently the Internet popular data exchange standard, as the storage specification for the sharing of EECP waveform data. Then we designed a web-based sharing system of EECP hemodynamic waveform data via ASP. NET 2.0 platform. Meanwhile, we specifically introduced the four main system function modules and their implement methods, including DICOM to XML conversion module, EECP waveform data management module, retrieval and display of EECP waveform module and the security mechanism of the system. PMID:22295686

  1. [Study of sharing platform of web-based enhanced extracorporeal counterpulsation hemodynamic waveform data].

    PubMed

    Huang, Mingbo; Hu, Ding; Yu, Donglan; Zheng, Zhensheng; Wang, Kuijian

    2011-12-01

    Enhanced extracorporeal counterpulsation (EECP) information consists of both text and hemodynamic waveform data. At present EECP text information has been successfully managed through Web browser, while the management and sharing of hemodynamic waveform data through Internet has not been solved yet. In order to manage EECP information completely, based on the in-depth analysis of EECP hemodynamic waveform file of digital imaging and communications in medicine (DICOM) format and its disadvantages in Internet sharing, we proposed the use of the extensible markup language (XML), which is currently the Internet popular data exchange standard, as the storage specification for the sharing of EECP waveform data. Then we designed a web-based sharing system of EECP hemodynamic waveform data via ASP. NET 2.0 platform. Meanwhile, we specifically introduced the four main system function modules and their implement methods, including DICOM to XML conversion module, EECP waveform data management module, retrieval and display of EECP waveform module and the security mechanism of the system.

  2. Simultaneous measurement of neuronal activity and cortical hemodynamics by unshielded magnetoencephalography and near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Seki, Yusuke; Miyashita, Tsuyoshi; Kandori, Akihiko; Maki, Atsushi; Koizumi, Hideaki

    2012-10-01

    The correlation between neuronal activity and cortical hemodynamics, namely, neurovascular coupling (NVC), is important to shed light on the mechanism of a variety of brain functions or neuronal diseases. NVC can be studied by simultaneously measuring neuronal activity and cortical hemodynamics. Consequently, noninvasive measurements of the NVC have been widely studied using both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). However, electromagnetic interference between EEG and fMRI is still a major problem. On the other hand, near-infrared spectroscopy (NIRS) is another promising tool for detecting cortical hemodynamics because it can be combined with EEG or magnetoencephalography (MEG) without any electromagnetic interference. Accordingly, in the present study, a simultaneous measurement system-combining an unshielded MEG using a two-dimensional gradiometer based on a low-T superconducting quantum interference device (SQUID) and an NIRS using nonmagnetic thin probes-was developed. This combined system was used to simultaneously measure both an auditory-evoked magnetic field and blood flow change in the auditory cortex. It was experimentally demonstrated that the combined unshielded MEG/NIRS system can simultaneously measure neuronal activity and cortical hemodynamics.

  3. Hemodynamic responses to functional activation accessed by optical imaging

    NASA Astrophysics Data System (ADS)

    Ni, Songlin; Li, Pengcheng; Yang, Yuanyuan; Lv, Xiaohua; Luo, Qingming

    2006-01-01

    A multi-wavelength light-emitting diode (LED) and laser diode (LD) based optical imaging system was developed to visualize the changes in cerebral blood flow, oxygenation following functional activation simultaneously in rodent cortex. The 2-D blood flow image was accessed by laser speckle contrast imaging, and the spectroscopic imaging of intrinsic signal was used for the calculation of oxyhemoglobin (HbO), deoxyhemoglobin (Hb) and total hemoglobin (HbT) concentration. The combination of spectroscopic imaging and laser speckle contrast imaging provides the capability to simultaneously investigate the spatial and temporal blood flow and hemoglobin concentration changes with high resolution, which may lead to a better understanding of the coupling between neuronal activation and vascular responses. The optical imaging system been built is compact and convenient to investigators. And it is reliable to acquire raw data. In present study, the hemodynamic responses to cortical spreading depression (CSD) in parietal cortex of ~-chloralose/urethan anesthetized rats were demonstrated.

  4. Management of open bite that developed during treatment for internal derangement and osteoarthritis of the temporomandibular joint

    PubMed Central

    Choi, Jae Won; Nakaoka, Kazutoshi; Hamada, Yoshiki; Nakamura, Yoshiki

    2015-01-01

    This case report describes the orthodontic treatment performed for open bite caused by internal derangement (ID) and osteoarthritis (OA) of the temporomandibular joint (TMJ). A Japanese woman, aged 31 years and 11 months, referred to our department by an oral surgeon had an open bite with clockwise rotation of the mandible and degeneration of the condyle. The overbite was corrected through intrusion of the maxillary and mandibular molars using mini-screw implants to induce counterclockwise rotation of the mandible. Then, the mandibular second premolars were extracted and comprehensive orthodontic treatment was performed to establish a Class I molar relationship with distalization of the maxillary arch and to eliminate anterior crowding. Following treatment, her facial profile improved and a functional and stable occlusion was achieved without recurrence of the TMJ symptoms. These results suggest that orthodontic intrusion of the molars is one of the safer and less stressful alternatives for the management of open bite due to degeneration of the condyles caused by ID and OA of TMJ. PMID:26023542

  5. Mortality and testicular derangements in red flour beetles, Tribolium castaneum (Herbst) exposed to hen's egg white proteins.

    PubMed

    Parshad, Ranjit K; Kansal, Megha

    2012-03-01

    Red flour beetle (T. castaneum) is a major pest of stored grains and is known for its adaptability to all classes of insecticides. The present study was carried out to determine the insecticidal potential of egg white proteins to manage beetle population. Protein samples obtained through salt fractionation were lyophilized and were used separately and simultaneously in different concentrations by adding them to wheat flour and milk powder. The results indicated that the mortality rate of the adult beetles was dependent on the type of treatment, concentration of protein samples and duration of feeding. In multiple-choice feeding trials beetles showed their movement towards the control section as the concentration of treatment increases. Marked abnormalities were observed in appearance and dimensions of the testes which indicated that the egg white proteins caused considerable effect on the process of spermatogenesis and sperm functions. SEM study revealed the formation of deep wrinkles and folds on the testicular surface of the testes of beetles fed on treated diets, points towards the depletion of internal cellular material. The results suggest that egg white protein affects the survival and cause subsequent derangements in the testis of red flour beetle. PMID:22439439

  6. A cross-sectional study of the relationship between serum sexual hormone levels and internal derangement of temporomandibular joint.

    PubMed

    Madani, A S; Shamsian, A A; Hedayati-Moghaddam, M R; Fathi-Moghadam, F; Sabooni, M R; Mirmortazavi, A; Golmohamadi, M

    2013-08-01

    Temporomandibular disorders (TMD) are defined as clinical conditions that involve the masticatory muscles, temporomandibular joint (TMJ) or both. The aim of this study was to evaluate serum 17β-oestradiol and progesterone levels in menstruating women affected by internal derangement of the TMJ. A total of 142 women (mean age 30·2 ± 6·7) who referred to medical diagnostic laboratory of Iranian Academic Centre for Education, Culture and Research (ACECR), Mashhad Branch, were enrolled during 2007 and 2008. Forty-seven individuals had disc displacement with reduction (Group IIa) according to Research Diagnostic Criteria (RDC)/TMD Axis I diagnosis. Radioimmunoassay was used for the detection of serum 17β-oestradiol and progesterone levels in all 142 subjects. The mean progesterone level was significantly higher in control group (11·6 ± 10·4 ng mL(-1) ) compared to women with TMD (8·4 ± 6·8 ng mL(-1) , P = 0·03). No significant difference was found in two groups regarding 17β-oestradiol level. Lower progesterone level in women with TMD can suggest the more important role of this hormone in the development of the disorder.

  7. Hemodynamic and metabolic effects of cerebral revascularization.

    PubMed

    Leblanc, R; Tyler, J L; Mohr, G; Meyer, E; Diksic, M; Yamamoto, L; Taylor, L; Gauthier, S; Hakim, A

    1987-04-01

    Pre- and postoperative positron emission tomography (PET) was performed in six patients undergoing extracranial to intracranial bypass procedures for the treatment of symptomatic extracranial carotid occlusion. The six patients were all men, aged 52 to 68 years. Their symptoms included transient ischemic attacks (five cases), amaurosis fugax (two cases), and completed stroke with good recovery (one case). Positron emission tomography was performed within 4 weeks prior to surgery and between 3 to 6 months postoperatively, using oxygen-15-labeled CO, O2, and CO2 and fluorine-18-labeled fluorodeoxyglucose. Cerebral blood flow (CBF), cerebral blood volume (CBV), cerebral metabolic rates for oxygen and glucose (CMRO2 and CMRGlu), and the oxygen extraction fraction (OEF) were measured in both hemispheres. Preoperatively, compared to five elderly control subjects, patients had increased CBV, a decreased CBF/CBV ratio, and decreased CMRO2, indicating reduced cerebral perfusion pressure and depressed oxygen metabolism. The CBF was decreased in only one patient who had bilateral carotid occlusions; the OEF, CMRGlu, and CMRO2/CMRGlu and CMRGlu/CBF ratios were not significantly different from control measurements. All bypasses were patent and all patients were asymptomatic following surgery. Postoperative PET revealed decreased CBV and an increased CBF/CBV ratio, indicating improved hemodynamic function and oxygen hypometabolism. This was associated with increased CMRO2 in two patients in whom the postoperative OEF was also increased. The CMRGlu and CMRGlu/CBF ratio were increased in five patients. Changes in CBF and the CMRO2/CMRGlu ratio were variable. One patient with preoperative progressive mental deterioration, documented by serial neuropsychological testing and decreasing CBF and CMRO2, had improved postoperative CBF and CMRO2 concomitant with improved neuropsychological functioning. It is concluded that symptomatic carotid occlusion is associated with altered

  8. Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes.

    PubMed

    Al-Khalili, Lubna; de Castro Barbosa, Thais; Ostling, Jörgen; Massart, Julie; Cuesta, Pablo Garrido; Osler, Megan E; Katayama, Mutsumi; Nyström, Ann-Christin; Oscarsson, Jan; Zierath, Juleen R

    2014-11-01

    Two-dimensional difference gel electrophoresis (2-D DIGE)-based proteome analysis has revealed intrinsic insulin resistance in myotubes derived from type 2 diabetic patients. Using 2-D DIGE-based proteome analysis, we identified a subset of insulin-resistant proteins involved in protein turnover in skeletal muscle of type 2 diabetic patients, suggesting aberrant regulation of the protein homeostasis maintenance system underlying metabolic disease. We then validated the role of the ubiquitin-proteasome system (UPS) in myotubes to investigate whether impaired proteasome function may lead to metabolic arrest or insulin resistance. Myotubes derived from muscle biopsies obtained from people with normal glucose tolerance (NGT) or type 2 diabetes were exposed to the proteasome inhibitor bortezomib (BZ; Velcade) without or with insulin. BZ exposure increased protein carbonylation and lactate production yet impaired protein synthesis and UPS function in myotubes from type 2 diabetic patients, marking the existence of an insulin-resistant signature that was retained in cultured myotubes. In conclusion, BZ treatment further exacerbates insulin resistance and unmasks intrinsic features of metabolic disease in myotubes derived from type 2 diabetic patients. Our results highlight the existence of a confounding inherent abnormality in cellular protein dynamics in metabolic disease, which is uncovered through concurrent inhibition of the proteasome system.

  9. Hemodynamic Effect of Laser Therapy in Spontaneously Hypertensive Rats

    PubMed Central

    Tomimura, Suely; Silva, Bianca Passos Assumpção; Sanches, Iris Callado; Canal, Marina; Consolim-Colombo, Fernanda; Conti, Felipe Fernandes; Angelis, Katia De; Chavantes, Maria Cristina

    2014-01-01

    Systemic arterial hypertension (SAH) is considered to be the greatest risk factor for the development of neuro-cardiovascular pathologies, thus constituting a severe Public Health issue in the world. The Low-Level Laser Therapy (LLLT), or laser therapy, activates components of the cellular structure, therefore converting luminous energy into photochemical energy and leading to biophysical and biochemical reactions in the mitochondrial respiratory chain. The LLLT promotes cellular and tissue photobiomodulation by means of changes in metabolism, leading to molecular, cellular and systemic changes. The objective of this study was to analyze the action of low-level laser in the hemodynamic modulation of spontaneously hypertensive rats, in the long term. Animals (n = 16) were randomly divided into the Laser Group (n = 8), which received three weekly LLLT irradiations for seven weeks, and into the Sham Group (n = 8), which received three weekly simulations of laser for seven weeks, accounting for 21 applications in each group. After seven weeks, animals were cannulated by the implantation of a catheter in the left carotid artery. On the following day, the systemic arterial pressure was recorded. The Laser Group showed reduced levels of mean blood pressure, with statistically significant reduction (169 ± 4 mmHg* vs. 182 ± 4 mmHg from the Sham Group) and reduced levels of diastolic pressure (143 ± 4 mmHg* vs. 157 ± 3 mmHg from the Sham Group), revealing a 13 and 14 mmHg decrease, respectively. Besides, there was a concomitant important decline in heart rate (312 ± 14 bpm vs. 361 ± 13 bpm from the Sham Group). Therefore, laser therapy was able to produce hemodynamic changes, thus reducing pressure levels in spontaneously hypertensive rats. PMID:25211315

  10. Hemodynamic effect of laser therapy in spontaneously hypertensive rats.

    PubMed

    Tomimura, Suely; Silva, Bianca Passos Assumpção; Sanches, Iris Callado; Canal, Marina; Consolim-Colombo, Fernanda; Conti, Felipe Fernandes; De Angelis, Katia; Chavantes, Maria Cristina

    2014-08-01

    Systemic arterial hypertension (SAH) is considered to be the greatest risk factor for the development of neuro-cardiovascular pathologies, thus constituting a severe Public Health issue in the world. The Low-Level Laser Therapy (LLLT), or laser therapy, activates components of the cellular structure, therefore converting luminous energy into photochemical energy and leading to biophysical and biochemical reactions in the mitochondrial respiratory chain. The LLLT promotes cellular and tissue photobiomodulation by means of changes in metabolism, leading to molecular, cellular and systemic changes. The objective of this study was to analyze the action of low-level laser in the hemodynamic modulation of spontaneously hypertensive rats, in the long term. Animals (n = 16) were randomly divided into the Laser Group (n = 8), which received three weekly LLLT irradiations for seven weeks, and into the Sham Group (n = 8), which received three weekly simulations of laser for seven weeks, accounting for 21 applications in each group. After seven weeks, animals were cannulated by the implantation of a catheter in the left carotid artery. On the following day, the systemic arterial pressure was recorded. The Laser Group showed reduced levels of mean blood pressure, with statistically significant reduction (169 ± 4 mmHg* vs. 182 ± 4 mmHg from the Sham Group) and reduced levels of diastolic pressure (143 ± 4 mmHg* vs. 157 ± 3 mmHg from the Sham Group), revealing a 13 and 14 mmHg decrease, respectively. Besides, there was a concomitant important decline in heart rate (312 ± 14 bpm vs. 361 ± 13 bpm from the Sham Group). Therefore, laser therapy was able to produce hemodynamic changes, thus reducing pressure levels in spontaneously hypertensive rats.

  11. Derangements of coagulation and fibrinolysis in critically ill patients with sepsis and septic shock.

    PubMed

    Vervloet, M G; Thijs, L G; Hack, C E

    1998-01-01

    In patients with sepsis and septic shock, both coagulation and fibrinolysis are activated frequently leading to the syndrome of diffuse intravascular coagulation (DIC). The different mechanisms leading to abnormalities in coagulation and fibrinolysis are discussed in detail. The coagulation and fibrinolytic system appear to be influenced by the septic process largely independently, leading to a procoagulant imbalance between these systems. Coagulation is initiated by mediator-induced expression of tissue factor and is associated with consumption of the natural coagulation inhibitors antithrombin III, protein C, and protein S. As a result, high plasma levels of thrombin-antithrombin complex (TAT) can be found. The effects on fibrinolysis are dominated by (highly) increased levels of plasminogen activator inhibitor type 1 (PAI-1), leading to inadequate fibrinolysis. Although levels of plasminogen activator antigen are increased, its activity is almost completely inhibited by PAI-1. The resulting effects predispose to a procoagulant state, with widespread fibrin deposition, which may be an important mechanism contributing to multiple organ failure. A thorough understanding of the pathophysiological mechanisms underlying the DIC-syndrome is a prerequisite for a rational approach and future therapy for this severe complication of sepsis.

  12. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers.

    PubMed

    Son, Taeyoon; Wang, Benquan; Thapa, Damber; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2016-08-01

    Blood flow changes are highly related to neural activities in the retina. It has been reported that neural activity increases when flickering light stimulation of the retina is used. It is known that blood flow changes with flickering light stimulation can be altered in patients with vascular disease and that measurement of flicker-induced vasodilatation is an easily applied tool for monitoring functional microvascular alterations. However, details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood due to the limitation of existing techniques. In this study, flickering light stimulation was applied to mouse retinas to investigate stimulus evoked hemodynamic responses in individual retinal layers. A spectral domain optical coherence tomography (OCT) angiography imaging system was developed to provide dynamic mapping of hemodynamic responses in the ganglion cell layer, inner plexiform layer, outer plexiform layer and choroid layer before, during and after flickering light stimulation. Experimental results showed hemodynamic responses with different magnitudes and time courses in individual retinal layers. We anticipate that the dynamic OCT angiography of stimulus evoked hemodynamic responses can greatly foster the study of neurovascular coupling mechanisms in the retina, promising new biomarkers for retinal disease detection and diagnosis. PMID:27570706

  13. Hemodynamic assessment in heart failure: role of physical examination and noninvasive methods.

    PubMed

    Almeida Junior, Gustavo Luiz; Xavier, Sérgio Salles; Garcia, Marcelo Iorio; Clausell, Nadine

    2012-01-01

    Among the cardiovascular diseases, heart failure (HF) has a high rate of hospitalization, morbidity and mortality, consuming vast resources of the public health system in Brazil and other countries. The correct determination of the filling pressures of the left ventricle by noninvasive or invasive assessment is critical to the proper treatment of patients with decompensated chronic HF, considering that congestion is the main determinant of symptoms and hospitalization. Physical examination has shown to be inadequate to predict the hemodynamic pattern. Several studies have suggested that agreement on physical findings by different physicians is small and that, ultimately, adaptive physiological alterations in chronic HF mask important aspects of the physical examination. As the clinical assessment fails to predict hemodynamic aspects and because the use of Swan-Ganz catheter is not routinely recommended for this purpose in patients with HF, noninvasive hemodynamic assessment methods, such as BNP, echocardiography and cardiographic bioimpedance, are being increasingly used. The present study intends to carry out, for the clinician, a review of the role of each of these tools when defining the hemodynamic status of patients with decompensated heart failure, aiming at a more rational and individualized treatment.

  14. The Hemodynamic Effects of Blood Flow-Arterial Wall Interaction on Cerebral Aneurysms

    NASA Astrophysics Data System (ADS)

    Oshima, Marie

    2005-11-01

    Mechanical stresses such as wall shear induced by blood flow play an important role on cardiovascular diseases and cerebral disorders like arterioscleroses and cerebral aneurysm. In order to obtain a better understanding of mechanism of formation, growth, and rupture of cerebral aneurysm, this paper focuses on investigation of cerebral hemodynamics and its effects on aneurismal wall. The paper mainly consists of three parts. Since it is important to obtain the detailed information on the hemodynamic properties in the cerebral circulatory system, the first part discusses a large-scale hemodynamic simulation of the Cerebral Arterial Circle of Willis. The second part presents the simulation and in-vitro experiment of cerebral aneurysm with the consideration of blood flow-arterial wall interaction. Both simulations in the first and the second parts are conducted in a patient specific manner using medical images and also include modeling of boundary conditions to emulate realistic hemodynamic conditions. The present mathematical model, however, includes only macroscopic mechanical functions. Therefore, in the third part, the paper touches upon on future prospects in modeling of microscopic functions such as the effects of endothelial cells and multi physics functions such as physiological effects.

  15. Optical coherence tomography angiography of stimulus evoked hemodynamic responses in individual retinal layers

    PubMed Central

    Son, Taeyoon; Wang, Benquan; Thapa, Damber; Lu, Yiming; Chen, Yanjun; Cao, Dingcai; Yao, Xincheng

    2016-01-01

    Blood flow changes are highly related to neural activities in the retina. It has been reported that neural activity increases when flickering light stimulation of the retina is used. It is known that blood flow changes with flickering light stimulation can be altered in patients with vascular disease and that measurement of flicker-induced vasodilatation is an easily applied tool for monitoring functional microvascular alterations. However, details of distortions in retinal neurovascular coupling associated with major eye diseases are not well understood due to the limitation of existing techniques. In this study, flickering light stimulation was applied to mouse retinas to investigate stimulus evoked hemodynamic responses in individual retinal layers. A spectral domain optical coherence tomography (OCT) angiography imaging system was developed to provide dynamic mapping of hemodynamic responses in the ganglion cell layer, inner plexiform layer, outer plexiform layer and choroid layer before, during and after flickering light stimulation. Experimental results showed hemodynamic responses with different magnitudes and time courses in individual retinal layers. We anticipate that the dynamic OCT angiography of stimulus evoked hemodynamic responses can greatly foster the study of neurovascular coupling mechanisms in the retina, promising new biomarkers for retinal disease detection and diagnosis. PMID:27570706

  16. Noninvasive high-speed photoacoustic tomography of cerebral hemodynamics in awake-moving rats

    PubMed Central

    Tang, Jianbo; Xi, Lei; Zhou, Junli; Huang, Hua; Zhang, Tao; Carney, Paul R; Jiang, Huabei

    2015-01-01

    We present a noninvasive method of photoacoustic tomography (PAT) for imaging cerebral hemodynamics in awake-moving rats. The wearable PAT (wPAT) system has a size of 15 mm in height and 33 mm in diameter, and a weight of ~8 g (excluding cabling). The wPAT achieved an imaging rate of 3.33 frames/s with a lateral resolution of 243 μm. Animal experiments were designed to show wPAT feasibility for imaging cerebral hemodynamics on awake-moving animals. Results showed that the cerebral oxy-hemoglobin and deoxy-hemoglobin changed significantly in response to hyperoxia; and, after the injection of pentylenetetrazol (PTZ), cerebral blood volume changed faster over time and larger in amplitude for rats in awake-moving state compared with rats under anesthesia. By providing a light-weight, high-resolution technology for in vivo monitoring of cerebral hemodynamics in awake-behaving animals, it will be possible to develop a comprehensive understanding on how activity alters hemodynamics in normal and diseased states. PMID:26082016

  17. Joint state and parameter estimation of the hemodynamic model by particle smoother expectation maximization method

    NASA Astrophysics Data System (ADS)

    Aslan, Serdar; Taylan Cemgil, Ali; Akın, Ata

    2016-08-01

    Objective. In this paper, we aimed for the robust estimation of the parameters and states of the hemodynamic model by using blood oxygen level dependent signal. Approach. In the fMRI literature, there are only a few successful methods that are able to make a joint estimation of the states and parameters of the hemodynamic model. In this paper, we implemented a maximum likelihood based method called the particle smoother expectation maximization (PSEM) algorithm for the joint state and parameter estimation. Main results. Former sequential Monte Carlo methods were only reliable in the hemodynamic state estimates. They were claimed to outperform the local linearization (LL) filter and the extended Kalman filter (EKF). The PSEM algorithm is compared with the most successful method called square-root cubature Kalman smoother (SCKS) for both state and parameter estimation. SCKS was found to be better than the dynamic expectation maximization (DEM) algorithm, which was shown to be a better estimator than EKF, LL and particle filters. Significance. PSEM was more accurate than SCKS for both the state and the parameter estimation. Hence, PSEM seems to be the most accurate method for the system identification and state estimation for the hemodynamic model inversion literature. This paper do not compare its results with Tikhonov-regularized Newton—CKF (TNF-CKF), a recent robust method which works in filtering sense.

  18. Vascular tracers alter hemodynamics and airway pressure in anesthetized sheep

    SciTech Connect

    Albertine, K.H.; Staub, N.C.

    1986-11-01

    The technique of vascular labeling was developed to mark sites of increased microvascular permeability. We used the vascular labeling technique in anesthetized sheep and found that hemodynamics and airway pressure were adversely affected by intraarterial infusions of two vascular tracers. Monastral blue (nine sheep) immediately caused systemic arterial hypotension, pulmonary arterial hypertension, and bronchoconstriction. All three physiological responses were partially blocked by a cyclooxygenase inhibitor (indomethacin) but not by an H1-antihistamine (chlorpheniramine). Colloidal gold (nine sheep) caused immediate, but less dramatic, pulmonary arterial hypertension which was not attenuated by the blocking agents. We conclude that these two vascular tracers caused detrimental physiological side effects in sheep at the usual doses used to label injured microvessels in other species.

  19. Hemodynamics of vascular 'waterfall': is the analogy justified?

    PubMed

    Badeer, H S; Hicks, J W

    1992-02-01

    The concept of 'vascular waterfall' has been used for collapsible vessels in different hemodynamic states which have little similarity to each other from a dynamic standpoint. Examples include (a) flow through large systemic veins entering the thorax, (b) flow through microvessels, such as pulmonary, cardiac, hepatic, cerebral, and (c) flow through the jugular vein of the giraffe. The dynamics of freely falling liquids (waterfall) as compared with flow through collapsible blood vessels (in vivo and in vitro) and in collapsible tubes are dissimilar in too many respects to justify analogy. The flow through collapsible tubes and blood vessels can be explained satisfactorily on the basis of elementary principles of fluid mechanics (Bernoulli-Poiseuille). Hence, the term waterfall as a metaphor is misleading and unjustified. We suggest that the use of the term be discontinued for describing vascular dynamics.

  20. Advanced Hemodynamic Management in Patients with Septic Shock

    PubMed Central

    Huber, Wolfgang; Nierhaus, Axel; Kluge, Stefan; Reuter, Daniel A.; Wagner, Julia Y.

    2016-01-01

    In patients with sepsis and septic shock, the hemodynamic management in both early and later phases of these “organ dysfunction syndromes” is a key therapeutic component. It needs, however, to be differentiated between “early goal-directed therapy” (EGDT) as proposed for the first 6 hours of emergency department treatment by Rivers et al. in 2001 and “hemodynamic management” using advanced hemodynamic monitoring in the intensive care unit (ICU). Recent large trials demonstrated that nowadays protocolized EGDT does not seem to be superior to “usual care” in terms of a reduction in mortality in emergency department patients with early identified septic shock who promptly receive antibiotic therapy and fluid resuscitation. “Hemodynamic management” comprises (a) making the diagnosis of septic shock as one differential diagnosis of circulatory shock, (b) assessing the hemodynamic status including the identification of therapeutic conflicts, and (c) guiding therapeutic interventions. We propose two algorithms for hemodynamic management using transpulmonary thermodilution-derived variables aiming to optimize the cardiocirculatory and pulmonary status in adult ICU patients with septic shock. The complexity and heterogeneity of patients with septic shock implies that individualized approaches for hemodynamic management are mandatory. Defining individual hemodynamic target values for patients with septic shock in different phases of the disease must be the focus of future studies. PMID:27703980

  1. Review: hemodynamic response to carbon monoxide

    SciTech Connect

    Penney, D.G.

    1988-04-01

    Historically, and at present, carbon monoxide is a major gaseous poison responsible for widespread morbidity and mortality. From threshold to maximal nonlethal levels, a variety of cardiovascular changes occur, both immediately and in the long term, whose homeostatic function it is to renormalize tissue oxygen delivery. However, notwithstanding numerous studies over the past century, the literature remains equivocal regarding the hemodynamic responses in animals and humans, although CO hypoxia is clearly different in several respects from hypoxic hypoxia. Factors complicating interpretation of experimental findings include species, CO dose level and rate, route of CO delivery, duration, level of exertion, state of consciousness, and anesthetic agent used. Augmented cardiac output usually observed with moderate COHb may be compromised in more sever poisoning for the same reasons, such that regional or global ischemia result. The hypotension usually seen in most animal studies is thought to be a primary cause of CNS damage resulting from acute CO poisoning, yet the exact mechanism(s) remains unproven in both animals and humans, as does the way in which CO produces hypotension. This review briefly summarizes the literature relevant to the short- and long-term hemodynamic responses reported in animals and humans. It concludes by presenting an overview using data from a single species in which the most complete work has been done to date.

  2. Hemodynamic Simulations in Dialysis Access Fistulae

    NASA Astrophysics Data System (ADS)

    McGah, Patrick; Leotta, Daniel; Beach, Kirk; Riley, James; Aliseda, Alberto

    2010-11-01

    Arteriovenous fistulae are created surgically to provide adequate access for dialysis in patients with End-Stage Renal Disease. It has long been hypothesized that the hemodynamic and mechanical forces (such as wall shear stress, wall stretch, or flow- induced wall vibrations) constitute the primary external influence on the remodeling process. Given that nearly 50% of fistulae fail after one year, understanding fistulae hemodynamics is an important step toward improving patency in the clinic. We perform numerical simulations of the flow in patient-specific models of AV fistulae reconstructed from 3D ultrasound scans with physiologically-realistic boundary conditions also obtained from Doppler ultrasound. Comparison of the flow features in different geometries and configurations e.g. end-to-side vs. side-to-side, with the in vivo longitudinal outcomes will allow us to hypothesize which flow conditions are conducive to fistulae success or failure. The flow inertia and pulsatility in the simulations (mean Re 700, max Re 2000, Wo 4) give rise to complex secondary flows and coherent vortices, further complicating the spatio- temporal variability of the wall pressure and shear stresses. Even in mature fistulae, the anastomotic regions are subjected to non-physiological shear stresses (>10.12pcPa) which may potentially lead to complications.

  3. Local and global contributions to hemodynamic activity in mouse cortex

    PubMed Central

    Pisauro, M. Andrea; Benucci, Andrea

    2016-01-01

    Imaging techniques such as functional magnetic resonance imaging seek to estimate neural signals in local brain regions through measurements of hemodynamic activity. However, hemodynamic activity is accompanied by large vascular fluctuations of unclear significance. To characterize these fluctuations and their impact on estimates of neural signals, we used optical imaging in visual cortex of awake mice. We found that hemodynamic activity can be expressed as the sum of two components, one local and one global. The local component reflected presumed neural signals driven by visual stimuli in the appropriate retinotopic region. The global component constituted large fluctuations shared by larger cortical regions, which extend beyond visual cortex. These fluctuations varied from trial to trial, but they did not constitute noise; they correlated with pupil diameter, suggesting that they reflect variations in arousal or alertness. Distinguishing local and global contributions to hemodynamic activity may help understand neurovascular coupling and interpret measurements of hemodynamic responses. PMID:26984421

  4. Clinical decision-making in the management of cervical spine derangement: a case study survey using a patient vignette

    PubMed Central

    Hahn, Tracy; Kelly, Christina; Murphy, Erin; Whissel, Paul; Brown, Michael; Schenk, Ron

    2014-01-01

    Background: Neck pain is one of the most common, potentially disabling, and costly musculoskeletal conditions seen in outpatient physical therapy (PT). Clinical decision-making involves referral or the selection of intervention based on the results of the PT examination. Despite evidence that suggests that treatment based classification is most efficacious, it is hypothesized that examination and intervention may be heavily influenced by post-graduate training experiences. Purpose: The purpose of this study was to analyze which tests, measures, and interventions are most commonly selected by physical therapists (PTs) holding a credential from the McKenzie Institute and those holding the McKenzie credential plus the credential of Fellow of the American Academy of Orthopaedic Manual Physical Therapy (FAAOMPT). Their responses were based on a simulated case vignette involving a patient with a presentation of cervical spine disk derangement. Methods: A survey administered through Survey Monkey was sent to 714 members of the McKenzie Institute who are certified or hold a diploma in mechanical diagnosis and therapy (MDT) or these credentials with the addition of Fellowship credentialing (MDT+FAAOMPT). Of the 714 surveyed PTs, 83 completed the survey for a response rate of 11.6%. As the PTs were given further information regarding the patient, they were asked to progress through a clinical decision-making process by indicating their sequence of examination techniques, and then indicating which interventions would be performed based on the results of the examination. Results: A descriptive analysis was conducted to determine the most common sequences chosen by the PTs based on their training. To perform the analysis, only respondents who completed the survey were included: clinicians with MDT credentials, (n = 77), and clinicians with both the MDT and FAAOMPT credentials (MDT+FAAOMPT), (n = 6). Initially, the most common examination chosen regardless of credential

  5. Deranged calcium signaling in Purkinje cells and pathogenesis in spinocerebellar ataxia 2 (SCA2) and other ataxias.

    PubMed

    Kasumu, Adebimpe; Bezprozvanny, Ilya

    2012-09-01

    Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 30 autosomal-dominant genetic and neurodegenerative disorders. SCAs are generally characterized by progressive ataxia and cerebellar atrophy. Although all SCA patients present with the phenotypic overlap of cerebellar atrophy and ataxia, 17 different gene loci have so far been implicated as culprits in these SCAs. It is not currently understood how mutations in these 17 proteins lead to the cerebellar atrophy and ataxia. Several pathogenic mechanisms have been studied in SCAs but there is yet to be a promising target for successful treatment of SCAs. Emerging research suggests that a fundamental cellular signaling pathway is disrupted by a majority of these mutated genes, which could explain the characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. We propose that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells either as a result of an excitotoxic increase or a compensatory suppression of calcium signaling. We argue that disruptions in Purkinje cell calcium signaling lead to initial cerebellar dysfunction and ataxic sympoms and eventually proceed to Purkinje cell death. Here, we discuss a calcium hypothesis of Purkinje cell neurodegeneration in SCAs by primarily focusing on an example of spinocerebellar ataxia 2 (SCA2). We will also present evidence linking deranged calcium signaling to the pathogenesis of other SCAs (SCA1, 3, 5, 6, 14, 15/16) that lead to significant Purkinje cell dysfunction and loss in patients.

  6. Obesity-metabolic derangement exacerbates cardiomyocyte loss distal to moderate coronary artery stenosis in pigs without affecting global cardiac function.

    PubMed

    Li, Zi-Lun; Ebrahimi, Behzad; Zhang, Xin; Eirin, Alfonso; Woollard, John R; Tang, Hui; Lerman, Amir; Wang, Shen-Ming; Lerman, Lilach O

    2014-04-01

    Obesity associated with metabolic derangements (ObM) worsens the prognosis of patients with coronary artery stenosis (CAS), but the underlying cardiac pathophysiologic mechanisms remain elusive. We tested the hypothesis that ObM exacerbates cardiomyocyte loss distal to moderate CAS. Obesity-prone pigs were randomized to four groups (n = 6 each): lean-sham, ObM-sham, lean-CAS, and ObM-CAS. Lean and ObM pigs were maintained on a 12-wk standard or atherogenic diet, respectively, and left circumflex CAS was then induced by placing local-irritant coils. Cardiac structure, function, and myocardial oxygenation were assessed 4 wk later by computed-tomography and blood oxygenation level dependent (BOLD) MRI, the microcirculation with micro-computed-tomography, and injury mechanisms by immunoblotting and histology. ObM pigs showed obesity, dyslipidemia, and insulin resistance. The degree of CAS (range, 50-70%) was similar in lean and ObM pigs, and resting myocardial perfusion and global cardiac function remained unchanged. Increased angiogenesis distal to the moderate CAS observed in lean was attenuated in ObM pigs, which also showed microvascular dysfunction and increased inflammation (M1-macrophages, TNF-α expression), oxidative stress (gp91), hypoxia (BOLD-MRI), and fibrosis (Sirius-red and trichrome). Furthermore, lean-CAS showed increased myocardial autophagy, which was blunted in ObM pigs (downregulated expression of unc-51-like kinase-1 and autophagy-related gene-12; P < 0.05 vs. lean CAS) and associated with marked apoptosis. The interaction diet xstenosis synergistically inhibited angiogenic, autophagic, and fibrogenic activities. ObM exacerbates structural and functional myocardial injury distal to moderate CAS with preserved myocardial perfusion, possibly due to impaired cardiomyocyte turnover.

  7. The impact of hemodynamic stress on sensory signal processing in the rodent lateral geniculate nucleus

    PubMed Central

    Zitnik, Gerard A.; Clark, Brain D.; Waterhouse, Barry D.

    2013-01-01

    Hemodynamic stress via hypotensive challenge has been shown previously to cause a corticotropin-releasing factor (CRF)-mediated increase in tonic locus coeruleus (LC) activity and consequent release of norepinephrine (NE) in noradrenergic terminal fields. Although alterations in LC-NE can modulate the responsiveness of signal processing neurons along sensory pathways, little is understood regarding how continuous CRF-mediated activation of LC-NE output due to physiologically relevant stressor affects downstream target cell physiology. The goal of the present study was to investigate the effects of a physiological stressor [hemodynamic stress via sodium nitroprusside (SNP) i.v.] on stimulus evoked responses of sensory processing neurons that receive LC inputs. In rat, the dorsal lateral geniculate nucleus (dLGN) of the thalamus is the primary relay for visual information and is a major target of the LC-NE system. We used extracellular recording techniques in the anesthetized rat monitor single dLGN neuron activity during repeated presentation of light stimuli before and during hemodynamic stress. A significant decrease in magnitude occurred, as well as an increase in latency of dLGN stimulus-evoked responses were observed during hemodynamic stress. In another group of animals the CRF antagonist DpheCRF12–41 was infused onto the ipsilateral LC prior to SNP administration. This infusion blocked the hypotension-induced changes in dLGN stimulus-evoked discharge. These results show that CRF-mediated increases in LC-NE due to hemodynamic stress disrupts the transmission of information along thalamic-sensory pathways by: (1) initially reducing signal transmission during onset of the stressor and (2) decreasing the speed of stimulus evoked sensory transmission. PMID:23643838

  8. Effect of ultra-fast mild hypothermia using total liquid ventilation on hemodynamics and respiratory mechanics.

    PubMed

    Sage, Michaël; Nadeau, Mathieu; Kohlhauer, Matthias; Praud, Jean-Paul; Tissier, Renaud; Robert, Raymond; Walti, Hervé; Micheau, Philippe

    2016-08-01

    Ultra-fast cooling for mild therapeutic hypothermia (MTH) has several potential applications, including prevention of post-cardiac arrest syndrome. Ultra-fast MTH by total liquid ventilation (TLV) entails the sudden filling of the lungs with a cold perfluorocarbon liquid and its subsequent use to perform TLV. The present physiological study was aimed at assessing whether pulmonary and systemic hemodynamics as well as lung mechanics are significantly altered during this procedure. Pulmonary and systemic arterial pressures, cardiac output as well as airway resistance and respiratory system compliance were measured during ultra-fast MTH by TLV followed by rewarming and normothermia in six healthy juvenile lambs. Results show that none of the studied variables were altered upon varying the perfluorocarbon temperature from 12 to 41 °C. It is concluded that ultra-fast MTH by TLV does not have any deleterious effect on hemodynamics or lung mechanics in healthy juvenile lambs.

  9. Hemodynamic management of septic shock: is it time for "individualized goal-directed hemodynamic therapy" and for specifically targeting the microcirculation?

    PubMed

    Saugel, Bernd; Trepte, Constantin J; Heckel, Kai; Wagner, Julia Y; Reuter, Daniel A

    2015-06-01

    Septic shock is a life-threatening condition in both critically ill medical patients and surgical patients during the perioperative phase. In septic shock, specific alterations in global cardiovascular dynamics (i.e., the macrocirculation) and in the microcirculatory blood flow (i.e., the microcirculation) have been described. However, the presence and degree of microcirculatory failure are in part independent from systemic macrohemodynamic variables. Macrocirculatory and microcirculatory failure can independently induce organ dysfunction. We review current diagnostic and therapeutic approaches for the assessment and optimization of both the macrocirculation and the microcirculation in septic shock. There are various technologies for the determination of macrocirculatory hemodynamic variables. We discuss the data on early goal-directed therapy for the resuscitation of the macrocirculation. In addition, we describe the concept of "individualized goal-directed hemodynamic therapy." Technologies to assess the local microcirculation are also available. However, adequate resuscitation goals for the optimization of the microcirculation still need to be defined. At present, we are not ready to specifically monitor and target the microcirculation in clinical routine outside studies. In the future, concepts for an integrative approach for individualized hemodynamic management of the macrocirculation and in parallel the microcirculation might constitute a huge opportunity to define additional resuscitation end points in septic shock.

  10. [Myocardial contractility and hemodynamics in hypothyroidism].

    PubMed

    Selivonenko, V G

    1977-01-01

    The author determined the phasic structure of the systole of the left ventricle by the method of polycardiography and hemodynamics in 20 patients suffering from hypothyrodism. Blood plasma and erythrocyte electrolytes were examined at the same time. Patients with hypothyroidism displayed a phasic syndrome of hypodynamia and a marked correlation between the phase of the synchronous contraction, the period of ejection, the strength of contraction of the left ventricle and the electrolyte content. Sodium and magnesium produced the greatest influence on the phasic structure of the systole; potassium and calcium had a lesser effect. The heart stroke volume diminished; as to the cardiac index, expenditure of the energy of cardiac contractions directed to the maintenance of movement of 1 litre of the minute blood volume; the external work, and the peripheral vascular resistance displayed no significant change.

  11. Hemodynamic Traveling Waves in Human Visual Cortex

    PubMed Central

    Aquino, Kevin M.; Schira, Mark M.; Robinson, P. A.; Drysdale, Peter M.; Breakspear, Michael

    2012-01-01

    Functional MRI (fMRI) experiments rely on precise characterization of the blood oxygen level dependent (BOLD) signal. As the spatial resolution of fMRI reaches the sub-millimeter range, the need for quantitative modelling of spatiotemporal properties of this hemodynamic signal has become pressing. Here, we find that a detailed physiologically-based model of spatiotemporal BOLD responses predicts traveling waves with velocities and spatial ranges in empirically observable ranges. Two measurable parameters, related to physiology, characterize these waves: wave velocity and damping rate. To test these predictions, high-resolution fMRI data are acquired from subjects viewing discrete visual stimuli. Predictions and experiment show strong agreement, in particular confirming BOLD waves propagating for at least 5–10 mm across the cortical surface at speeds of 2–12 mm s-1. These observations enable fundamentally new approaches to fMRI analysis, crucial for fMRI data acquired at high spatial resolution. PMID:22457612

  12. Hemodynamic Correlates of Cognition in Human Infants

    PubMed Central

    Aslin, Richard N.; Shukla, Mohinish; Emberson, Lauren L.

    2015-01-01

    Over the past 20 years, the field of cognitive neuroscience has relied heavily on hemodynamic measures of blood oxygenation in local regions of the brain to make inferences about underlying cognitive processes. These same functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) techniques have recently been adapted for use with human infants. We review the advantages and disadvantages of these two neuroimaging methods for studies of infant cognition, with a particular emphasis on their technical limitations and the linking hypotheses that are used to draw conclusions from correlational data. In addition to summarizing key findings in several domains of infant cognition, we highlight the prospects of improving the quality of fNIRS data from infants to address in a more sophisticated way how cognitive development is mediated by changes in underlying neural mechanisms. PMID:25251480

  13. Hemodynamic consequences of continuous arteriovenous hemofiltration.

    PubMed

    Lauer, A; Alvis, R; Avram, M

    1988-08-01

    Continuous arteriovenous hemofiltration (CAVH) is an extracorporeal treatment in which fluid, electrolytes, and low and middle molecular weight solutes are removed from the blood by ultrafiltration. It is efficacious in the management of acute or chronic renal failure complicated by fluid overload, and following surgery. In this study, cardiac filling pressures, cardiac indices, and BP were monitored in nine patients. A mean of 7 kg of fluid was removed in ten treatments without the induction of hypotension. In nine of ten treatments, cardiac index increased following fluid removal. An increment in myocardial pump function was noted even in patients with low output heart failure. This treatment differs from dialysis in its ability to remove large fluid volumes without compromising cardiac hemodynamics. In addition, CAVH may have a role in treating volume overload patients with renal insufficiency and heart failure resistant to pharmacologic intervention. PMID:3400631

  14. Fontan hemodynamics: Importance of pulmonary artery diameter

    PubMed Central

    Dasi, Lakshmi P.; KrishnankuttyRema, Resmi; Kitajima, Hiroumi D.; Pekkan, Kerem; Sundareswaran, Kartik S.; Fogel, Mark; Sharma, Shiva; Whitehead, Kevin; Kanter, Kirk; Yoganathan, Ajit P.

    2010-01-01

    Objective We quantify the geometric and hemodynamic characteristics of extracardiac and lateral tunnel Fontan surgical options and correlate certain anatomic characteristics with their hemodynamic efficiency and patient cardiac index. Methods and Results The study was conducted retrospectively on 22 patients undergoing Fontan operations (11 extracardiac and 11 lateral tunnel operations). Total cavopulmonary connection geometric parameters such as vessel areas, curvature, and offsets were quantified using a skeletonization method. Energy loss at the total cavopulmonary connection junction was available from previous in vitro experiments and computational fluid dynamic simulations for 5 and 9 patients, respectively. Cardiac index data were available for all patients. There was no significant difference in the mean and minimum cross-sectional vessel areas of the pulmonary artery between the extracardiac and lateral tunnel groups. The indexed energy dissipation within the total cavopulmonary connection was strongly correlated to minimum cross-sectional area of the pulmonary arteries (R2 value of 0.90 and P < .0002), whereas all other geometric features, including shape characteristics, had no significant correlation. Finally, cardiac index significantly correlated with the minimum pulmonary artery area (P = .006), suggesting that total cavopulmonary connection energy losses significantly affect resting cardiac output. Conclusions The minimum outlet size of the total cavopulmonary connection (ie, minimum cross section of pulmonary artery) governs the energy loss characteristics of the total cavopulmonary connection more strongly than variations in the shapes corresponding to extracardiac and lateral tunnel configurations. Differences in pulmonary artery sizes must be accounted for when comparing energy losses between extracardiac and lateral tunnel geometries. PMID:19258065

  15. Large Eddy Simulation of Powered Fontan Hemodynamics

    PubMed Central

    Delorme, Y.; Anupindi, K.; Kerlo, A.E.; Shetty, D.; Rodefeld, M.; Chen, J.; Frankel, S.

    2012-01-01

    Children born with univentricular heart disease typically must undergo three open heart surgeries within the first 2–3 years of life to eventually establish the Fontan circulation. In that case the single working ventricle pumps oxygenated blood to the body and blood returns to the lungs flowing passively through the Total Cavopulmonary Connection (TCPC) rather than being actively pumped by a subpulmonary ventricle. The TCPC is a direct surgical connection between the superior and inferior vena cava and the left and right pulmonary arteries. We have postulated that a mechanical pump inserted into this circulation providing a 3–5 mmHg pressure augmentation will reestablish bi-ventricular physiology serving as a bridge-to-recovery, bridge-to-transplant or destination therapy as a “biventricular Fontan” circulation. The Viscous Impeller Pump (VIP) has been proposed by our group as such an assist device. It is situated in the center of the 4-way TCPC intersection and spins pulling blood from the vena cavae and pushing it into the pulmonary arteries. We hypothesized that Large Eddy Simulation (LES) using high-order numerical methods are needed to capture unsteady powered and unpowered Fontan hemodynamics. Inclusion of a mechanical pump into the CFD further complicates matters due to the need to account for rotating machinery. In this study, we focus on predictions from an in-house high-order LES code (WenoHemo™) for unpowered and VIP-powered idealized TCPC hemodynamics with quantitative comparisons to Stereoscopic Particle Imaging Velocimetry (SPIV) measurements. Results are presented for both instantaneous flow structures and statistical data. Simulations show good qualitative and quantitative agreement with measured data. PMID:23177085

  16. Time evolution and hemodynamics of cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Sforza, Daniel M.; Putman, Christopher; Tateshima, Satoshi; Viñuela, Fernando; Cebral, Juan

    2011-03-01

    Cerebral aneurysm rupture is a leading cause of hemorrhagic strokes. Because they are being more frequently diagnosed before rupture and the prognosis of subarachnoid hemorrhage is poor, clinicians are often required to judge which aneurysms are prone to progression and rupture. Unfortunately, the processes of aneurysm initiation, growth and rupture are not well understood. Multiple factors associated to these processes have been identified. Our goal is to investigate two of them, arterial hemodynamics (using computational fluid dynamics) and the peri-aneurysmal environment, by studying a group of growing cerebral aneurysms that are followed longitudinally in time. Six patients with unruptured untreated brain aneurysms which exhibited growth during the observation period were selected for the study. Vascular models of each aneurysm at each observation time were constructed from the corresponding computed tomography angiography (CTA) images. Subsequently, models were aligned, and geometrical differences quantified. Blood flow was modeled with the 3D unsteady incompressible Navier-Stokes equation for a Newtonian fluid, and wall shear stress distribution and flow patterns were calculated and visualized. Analysis of the simulations and changes in geometry revealed asymmetric growth patterns and suggests that areas subject to vigorous flows, i.e. relative high wall shear stress and concentrated streamlines patterns; correspond to regions of aneurysm growth. Furthermore, in some cases the geometrical evolution of aneurysms is clearly affected by contacts with bone structures and calcifications in the wall, and as a consequence the hemodynamics is greatly modified. Thus, in these cases the peri-aneurysmal environment must be considered when analyzing aneurysm evolution.

  17. [Analysis and computational fluid dynamics simulation of hemodynamic influences caused by splenic vein thrombosis].

    PubMed

    Zhou, Hongyu; Gong, Peiyun; Du, Xuesen; Wang, Meng

    2015-02-01

    This paper aims to analyze the impact of splenic vein thrombosis (SVT) on the hemodynamic parameters in hepatic portal vein system. Based on computed tomography (CT) images of a patient with portal hypertension and commercial software MIMICS, the patient's portal venous system model was reconstructed. Color Doppler ultrasound method was used to measure the blood flow velocity in portal vein system and then the blood flow velocities were used as the inlet boundary conditions of simulation. By using the computational fluid dynamics (CFD) method, we simulated the changes of hemodynamic parameters in portal venous system with and without splenic vein thrombosis and analyzed the influence of physiological processes. The simulation results reproduced the blood flow process in portal venous system and the results showed that the splenic vein thrombosis caused serious impacts on hemodynamics. When blood flowed through the thrombosis, blood pressure reduced, flow velocity and wall shear stress increased. Flow resistance increased, blood flow velocity slowed down, the pressure gradient and wall shear stress distribution were more uniform in portal vein. The blood supply to liver decreased. Splenic vein thrombosis led to the possibility of forming new thrombosis in portal vein and surroundings.

  18. Profiling biochemical and hemodynamic markers using chronically instrumented, conscious and unrestrained rats undergoing severe, acute controlled hemorrhagic hypovolemic shock as an integrated in-vivo model system to assess new blood substitutes.

    PubMed

    Daull, P; Blouin, A; Cayer, J; Beaudoin, M; Belleville, K; Sirois, P; Nantel, F; Chang, T M S; Battistini, B

    2005-10-01

    The aim of the present study was to assess several biochemical and physiological endpoint parameters alongside controlled hemorrhagic and recovery phases of chronically instrumented, conscious and unrestrained healthy rats. Male Sprague-Dawley rats (12-14 weeks; 430+/-20 g; n=22-18) were instrumented with a saline-perfused femoral arterial catheter and placed individually in a metabolic cage for up to 20 days, allowing instant assessments of the hemodynamic profile and blood and urine sampling for hematological profile and biochemical measurements to assess hepatic, renal and metabolic functions. In addition, body weight, food and water intake, and diuresis were monitored daily. After a 7-day stabilization period, the rats underwent severe and acute hemorrhagic shock (HS) (removal of 50% of total circulating blood volume), kept in hypovolemic shock for an ischemic period of 50 min and then resuscitated over 10 min. Gr. 1 was re-infused with autologous shed blood (AB; n=10) whereas Gr. 2 was infused 1:1 with a solution of sterile saline-albumin (SA; 7% w/v) (n=8-12). Ischemic rats recovered much more rapidly following AB re-infusion than those receiving SA. Normal hemodynamic and biochemical profiles were re-established after 24 h. Depressed blood pressure lasted 4-5 days in SA rats. The hematological profile in the SA resuscitated rats was even more drastically affected. Circulating plasma concentrations of hemoglobin (-40%), hematocrit (-50%), RBC (-40%) and platelets (-41%) counts were still severely decreased 24 h after the acute ischemic event whereas WBC counts increased 2.2-fold by day 4. It took 5-9 days for these profiles to normalize after ischemia-reperfusion with SA. Diuresis increased in both groups (by 45+/-7% on day 1) but presented distinct electrolytic profiles. Hepatic and renal functions were normal in AB rats whereas altered in SA rats. The present set of experiments enabled us to validate a model of HS in conscious rats and the use of an

  19. Advanced clinical monitoring: considerations for real-time hemodynamic diagnostics.

    PubMed

    Goldman, J M; Cordova, M J

    1994-01-01

    In an effort to ease staffing burdens and potentially improve patient outcome in an intensive care unit (ICU) environment, we are developing a real-time system to accurately and efficiently diagnose cardiopulmonary emergencies. The system is being designed to utilize all relevant routinely-monitored physiological data in order to automatically diagnose potentially fatal events. The initial stage of this project involved formulating the overall system design and appropriate methods for real-time data acquisition, data storage, data trending, waveform analysis, and implementing diagnostic rules. Initially, we defined a conceptual analysis of the minimum physiologic data set, and the monitoring time-frames (trends) which would be required to diagnose cardiopulmonary emergencies. Following that analysis, we used a fuzzy logic diagnostic engine to analyze physiological data during a simulated arrhythmic cardiac arrest (ACA) in order to assess the validity of our diagnostic methodology. We used rate, trend, and morphologic data extracted from the following signals: expired CO2 time-concentration curve (capnogram), electrocardiogram, and arterial blood pressure. The system performed well: The fuzzy logic engine effectively diagnosed the likelihood of ACA from the subtle hemodynamic trends which preceded the complete arrest. As the clinical picture worsened, the fuzzy logic-based system accurately indicated the change in patient condition. Termination of the simulated arrest was rapidly detected by the diagnostic engine. In view of the effectiveness of this fuzzy logic implementation, we plan to develop additional fuzzy logic modules to diagnose other cardiopulmonary emergencies.

  20. Hemodynamic Consequences of Malignant Ascites in Epithelial Ovarian Cancer Surgery*: A Prospective Substudy of a Randomized Controlled Trial.

    PubMed

    Hunsicker, Oliver; Fotopoulou, Christina; Pietzner, Klaus; Koch, Mandy; Krannich, Alexander; Sehouli, Jalid; Spies, Claudia; Feldheiser, Aarne

    2015-12-01

    Malignant ascites (MA) is most commonly observed in patients scheduled for epithelial ovarian cancer (EOC) surgery and is supposed as a major risk factor promoting perioperative hemodynamic deterioration. We aimed to assess the hemodynamic consequences of MA on systemic circulation in patients undergoing cytoreductive EOC surgery.This study is a predefined post-hoc analysis of a randomized controlled pilot trial comparing intravenous solutions within a goal-directed algorithm to optimize hemodynamic therapy in patients undergoing cytoreductive EOC surgery. Ascites was used to stratify the EOC patients prior to randomization in the main study. We analyzed 2 groups according to the amount of ascites (NLAS: none or low ascites [<500 mL] vs HAS: high ascites group [>500 mL]). Differences in hemodynamic variables with respect to time were analyzed using nonparametric analysis for longitudinal data and multivariate generalized estimating equation adjusting the analysis for the randomized study groups of the main study.A total of 31 patients in the NLAS and 16 patients in the HAS group were analyzed. Although cardiac output was not different between groups suggesting a similar circulatory blood flow, the HAS group revealed higher heart rates and lower stroke volumes during surgery. There were no differences in pressure-based hemodynamic variables. In the HAS group, fluid demands, reflected by the time to reindication of a fluid challenge after preload optimization, increased steadily, whereas stroke volume could not be maintained at baseline resulting in hemodynamic instability after 1.5 h of surgery. In contrast, in the NLAS group fluid demands were stable and stroke volume could be maintained during surgery. Clinically relevant associations of the type of fluid replacement with hemodynamic consequences were particularly observed in the HAS group, in which transfusion of fresh frozen plasma (FFP) was associated to an improved circulatory flow and reduced

  1. Atrium of stone: A case of confined left atrial calcification without hemodynamic compromise.

    PubMed

    Jones, Christopher; Lodhi, Aadil Mubeen; Cao, Long Bao; Chagarlamudi, Arjun Kumar; Movahed, Assad

    2014-05-16

    Dystrophic cardiac calcification is often associated with conditions causing systemic inflammation and when present, is usually extensive, often encompassing multiple cardiac chambers and valves. We present an unusual case of dystrophic left atrial calcification in the setting of end stage renal disease on hemodialysis diagnosed by echocardiography and computed tomography. Significant calcium deposition is confined within the walls of the left atrium with no involvement of the mitral valve, and no hemodynamic effects. PMID:24868514

  2. Multi-Segment Hemodynamic and Volume Assessment With Impedance Plethysmography: Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Webbon, Bruce W. (Technical Monitor)

    1995-01-01

    Definition of multi-segmental circulatory and volume changes in the human body provides an understanding of the physiologic responses to various aerospace conditions. We have developed instrumentation and testing procedures at NASA Ames Research Center that may be useful in biomedical research and clinical diagnosis. Specialized two, four, and six channel impedance systems will be described that have been used to measure calf, thigh, thoracic, arm, and cerebral hemodynamic and volume changes during various experimental investigations.

  3. Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Xue, Yuan; Zhao, Huijuan; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2007-08-01

    Our preliminary results on two-dimensional (2D) optical tomographic imaging of hemodynamic changes in a preterm infant brain are reported. We use the established 16-channel time-correlated single photon counting system for the detection and generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that diffuse optical tomography may be a potent means for investigating brain functions and neural development of infant brains in the perinatal period.

  4. Deep and surface hemodynamic signal from functional time resolved transcranial near infrared spectroscopy compared to skin flowmotion.

    PubMed

    Aletti, Federico; Re, Rebecca; Pace, Vincenzo; Contini, Davide; Molteni, Erika; Cerutti, Sergio; Maria Bianchi, Anna; Torricelli, Alessandro; Spinelli, Lorenzo; Cubeddu, Rinaldo; Baselli, Giuseppe

    2012-03-01

    The potential disturbance in the prefrontal cortex hemodynamic signal measured by functional near infrared spectroscopy (NIRS), due to forehead skin flowmotion, detected by laser Doppler flowmetry, was investigated by a standard protocol of hemodynamic challenge by Valsalva maneuver, aimed at assessing and disentangling local regulatory responses in skin vasomotion and in cerebral perfusion in presence of a strong systemic drive, and to quantify the common information in the two signals. The deep cortical NIRS signal did not appear to be affected by surface vasomotor activity, and autoregulation dynamics were dominant with respect to autonomic control of circulation.

  5. In Vivo Monitoring of Hemodynamic Changes during Clogging and Unclogging of Blood Supply for the Application of Clinical Shock Detection

    NASA Astrophysics Data System (ADS)

    Kanawade, Rajesh; Stelzle, Florian; Schmidt, Michael

    This paper presents a novel methodology in early detection of clinical shock by monitoring hemodynamic changes using diffuse reflectance measurement technique. Detailed prototype of the reflectance measurement system and data analysis technique of hemodynamic monitoring was carried out in our laboratory. The real time in-vivo measurements were done from the index finger. This study demonstrates preliminary results of real time monitoring of reduced/- oxyhemoglobin changes during clogging and unclogging of blood flow in the finger tip. The obtained results were verified with pulse-oximeter values, connected to the tip of the same index finger.

  6. An overview of the hemodynamic aspects of the blood flow in the venous outflow tract of the arteriovenous fistula.

    PubMed

    Georgakarakos, Efstratios I; Kapoulas, Konstantinos C; Georgiadis, George S; Tsangaris, Adamantios S; Nikolopoulos, Evagelos S; Lazarides, Miltos K

    2012-01-01

    Upper limb vein aneurysms complicate all types of autogenous arteriovenous fistulae (AVF) and comprise false aneurysms secondary to venipuncture trauma as well as true aneurysms, characterized by dilatation of native veins. The dilatation of a normal vein and the development of a true aneurysm are strongly influenced by local hemodynamic factors affecting the flow in the drainage venous system and are also the target of operative interventions. This review article focuses on the description of these hemodynamic aspects which all physicians involved in the management of dialysis patients should be aware of. Furthermore, it delineates their complicated interactions and also highlights their utility in clinical decision-making and therapeutic management. PMID:22266583

  7. ‘Progressive-Onset' versus Injury-Associated Discogenic Low Back Pain: Features of Disc Internal Derangement in Patients Studied with Provocation Lumbar Discography

    PubMed Central

    Bartynski, W.S.; Dejohn, L.M.; Rothfus, W.E.; Gerszten, P.C.

    2013-01-01

    Summary Chronic low back pain (LBP) can be ‘progressive onset' or injury-related. This study compares the patient-reported cause of chronic LBP to features of disc internal derangement at painful concordant discs evaluated by provocation lumbar discography. Concordant LBP was identified in 114 patients with chronic LBP studied by provocation discography. LBP cause, discogram pain response and discogram/post-discogram CT features of internal derangement were retrospectively reviewed. ‘Progressive-onset' LBP was reported in 32 (28%) patients, injury-related LBP in 75 (66%) with LBP equated to non-specific causes in seven. Injury-related LBP was more commonly identified in men (52 of 63 [83%]) with women reporting near-equal frequency of ‘progressive-onset' (23 of 44 [52%]) and injury-related (21 of 44 [48%]) LBP (p=0.002). In 172 concordant painful discs, near-equal frequency of severely degenerative (Dallas grade-3: 82 of 172 [47.3%]) and full-thickness radial fissure discs (Dallas grade-3: 90 of 172 [52.7%]) were identified. Women with ‘progressive-onset' LBP demonstrated more frequent severely degenerative discs (24 of 37 [65%]); women with injury-related LBP demonstrated more frequent radial-defect discs (21 of 31 [68%]; p=0.01). In men with injury-related LBP, severe degeneration-only (44 of 89 [49%]) and radial defect discs (45 of 89 [51%] were seen with equal frequency. In men with ‘progressive-onset' LBP, radial defects are more common (11 of 15 [73%]). ‘Progressive-onset' and injury-related chronic LBP subgroups are definable. Gender-related differences in incidence and internal derangement features at concordant discs are identified at discogram/post-discogram CT. These differences may have implications related to LBP origin/treatment-response. PMID:23472733

  8. Supporting hemodynamics: what should we target? What treatments should we use?

    PubMed Central

    2013-01-01

    Assessment and monitoring of hemodynamics is a cornerstone in critically ill patients as hemodynamic alteration may become life-threatening in a few minutes. Defining normal values in critically ill patients is not easy, because 'normality' is usually referred to healthy subjects at rest. Defining 'adequate' hemodynamics is easier, which embeds whatever pressure and flow set is sufficient to maintain the aerobic metabolism. We will refer to the unifying hypothesis proposed by Schrier several years ago. Accordingly, the alteration of three independent variables - heart (contractility and rate), vascular tone and intravascular volume - may lead to underfilling of the arterial tree, associated with reduced (as during myocardial infarction or hemorrhage) or expanded (sepsis or cirrhosis) plasma volume. The underfilling is sensed by the arterial baroreceptors, which activate primarily the sympathetic nervous system and renin-angiotensin-aldosterone system, as well as vasopressin, to restore the arterial filling by increasing the vascular tone and retaining sodium and water. Under 'normal' conditions, therefore, the homeostatic system is not activated and water/sodium excretion, heart rate and oxygen extraction are in the range found in normal subjects. When arterial underfilling occurs, the mechanisms are activated (sodium and water retention) - associated with low central venous oxygen saturation (ScvO2) if underfilling is caused by low flow/hypovolemia, or with normal/high ScvO2 if associated with high flow/hypervolemia. Although the correction of hemodynamics should be towards the correction of the independent determinants, the usual therapy performed is volume infusion. An accepted target is ScvO2 >70%, although this ignores the arterial underfilling associated with volume expansion/high flow. For large-volume resuscitation the worst solution is normal saline solution (chloride load, strong ion difference = 0, acidosis). To avoid changes in acid-base equilibrium the

  9. Imaging of hemodynamic effects in arthritic joints with dynamic optical tomography

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Lasker, Joseph M.; Fong, Christopher J.; Dwyer, Edward

    2007-07-01

    Optical probing of hemodynamics is often employed in areas such as brain, muscular, and breast-cancer imaging. In these studies an external stimulus is applied and changes in relevant physiological parameters, e.g. oxy or deoxyhemoglobin concentrations, are determined. In this work we present the first application of this method for characterizing joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal-interphalangeal (PIP) finger joints. Using a dual-wavelength tomographic imaging system together with previously implemented model-based iterative image reconstruction schemes, we have performed dynamic imaging case studies on a limited number of healthy volunteers and patients diagnosed with RA. Inflating a sphygmomanometer cuff placed around the forearm we elicited a controlled vascular response. We observed pronounced differences between the hemodynamic effect occurring in healthy volunteers and patients affected by RA.

  10. Lattice Boltzmann method simulating hemodynamics in the three-dimensional stenosed and recanalized human carotid bifurcations

    NASA Astrophysics Data System (ADS)

    Kang, XiuYing

    2015-01-01

    By using the lattice Boltzmann method (LBM) pulsatile blood flows were simulated in three-dimensional moderate stenosed and recanalized carotid bifurcations to understand local hemodynamics and its relevance in arterial atherosclerosis formation and progression. The helical flow patterns, secondary flow and wall dynamical pressure spatiotemporal distributions were investigated, which leads to the disturbed shear forces in the carotid artery bifurcations. The wall shear stress distributions indicated by time-averaged wall shear stress (TAWSS), oscillatory shear index (OSI), and the relative residence time (RRT) in a cardiac cycle revealed the regions where atherosclerotic plaques are prone to form, extend or rupture. This study also illustrates the point that locally disturbed flow may be considered as an indicator for early atherosclerosis diagnosis. Additionally the present work demonstrates the robust and highly efficient advantages of the LBM for the hemodynamics study of the human blood vessel system.

  11. Using ventilator and cardiovascular graphics in the patient who is hemodynamically unstable.

    PubMed

    Murphy, Bryant A; Durbin, Charles G

    2005-02-01

    The interaction of a mechanical ventilator and the human cardiovascular system is complex. One of the most important effects of positive-pressure ventilation (PPV) is that it can decrease venous return. PPV also alters right- and left-ventricular ejection. Increased lung volume increases right-ventricular size by increasing pulmonary vascular resistance, causing intraventricular cardiac-septum shift, and decreasing left-ventricular filling. Increased intrathoracic pressure reduces afterload on the LV and increases ejection of blood from the LV. Understanding and managing these complex and often opposing interactions in critically ill patients is facilitated by analysis of hemodynamic and ventilator waveforms at the bedside. The relationship of PPV to changes in the arterial pressure waveform gives important information regarding appropriate fluid and vasopressor treatment. This article focuses on effects of respiratory pressures on hemodynamics and considers how cardiac pressures can be transmitted to the airway and cause ventilator malfunction. PMID:15691395

  12. Computational Hemodynamics Framework for the Analysis of Cerebral Aneurysms

    PubMed Central

    Mut, Fernando; Löhner, Rainald; Chien, Aichi; Tateshima, Satoshi; Viñuela, Fernando; Putman, Christopher; Cebral, Juan

    2010-01-01

    Assessing the risk of rupture of intracranial aneurysms is important for clinicians because the natural rupture risk can be exceeded by the small but significant risk carried by current treatments. To this end numerous investigators have used image-based computational fluid dynamics models to extract patient-specific hemodynamics information, but there is no consensus on which variables or hemodynamic characteristics are the most important. This paper describes a computational framework to study and characterize the hemodynamic environment of cerebral aneurysms in order to relate it to clinical events such as growth or rupture. In particular, a number of hemodynamic quantities are proposed to describe the most salient features of these hemodynamic environments. Application to a patient population indicates that ruptured aneurysms tend to have concentrated inflows, concentrated wall shear stress distributions, high maximal wall shear stress and smaller viscous dissipation ratios than unruptured aneurysms. Furthermore, these statistical associations are largely unaffected by the choice of physiologic flow conditions. This confirms the notion that hemodynamic information derived from image-based computational models can be used to assess aneurysm rupture risk, to test hypotheses about the mechanisms responsible for aneurysm formation, progression and rupture, and to answer specific clinical questions. PMID:21643491

  13. Computational modeling of cardiac hemodynamics: Current status and future outlook

    NASA Astrophysics Data System (ADS)

    Mittal, Rajat; Seo, Jung Hee; Vedula, Vijay; Choi, Young J.; Liu, Hang; Huang, H. Howie; Jain, Saurabh; Younes, Laurent; Abraham, Theodore; George, Richard T.

    2016-01-01

    The proliferation of four-dimensional imaging technologies, increasing computational speeds, improved simulation algorithms, and the widespread availability of powerful computing platforms is enabling simulations of cardiac hemodynamics with unprecedented speed and fidelity. Since cardiovascular disease is intimately linked to cardiovascular hemodynamics, accurate assessment of the patient's hemodynamic state is critical for the diagnosis and treatment of heart disease. Unfortunately, while a variety of invasive and non-invasive approaches for measuring cardiac hemodynamics are in widespread use, they still only provide an incomplete picture of the hemodynamic state of a patient. In this context, computational modeling of cardiac hemodynamics presents as a powerful non-invasive modality that can fill this information gap, and significantly impact the diagnosis as well as the treatment of cardiac disease. This article reviews the current status of this field as well as the emerging trends and challenges in cardiovascular health, computing, modeling and simulation and that are expected to play a key role in its future development. Some recent advances in modeling and simulations of cardiac flow are described by using examples from our own work as well as the research of other groups.

  14. [HEMODYNAMIC CHILDREN WITH ISOLATED ANOMALOUS CHORDS OF THE LEFT VENTRICLE DEPENDING ON LOCATION AND QUANTITY].

    PubMed

    Kondrashova, V G

    2015-01-01

    A total of 156 children group (children born to parents exposed to the Chernobyl disaster), in which, according to Doppler echocardiography, revealed isolated abnormal chords of the left ventricle (AHLV). Analysis of morphometric parameters and central hemodynamics conducted according to the localization AHLV. Found that concomitant localization AHLV at the threshold of the number of the most influencing change morphoinetric indicators and central hemodynamics. Condition of systemic circulation indicates a decline in their adaptive capacity of the cardiovascular system due to changes in the dynamics and power of the heartbeat. The decrease in stroke volume, stroke and cardiac index suggests hypokinetic type of organization of central hemodynamics, which can be considered an early sign of stress features of the heart and blood vessels. In this subgroup of children revealed significant changes in transmitral flow, indicating the initiation they have diastolic dysfunc tion. When the number of prethreshold AHLV most pronounced changes were found in the middle of their localization. Almost a third of children in this subgroup with individual assessment also revealed signs of initiation of diastolic dysfunction. PMID:27089709

  15. [HEMODYNAMIC CHILDREN WITH ISOLATED ANOMALOUS CHORDS OF THE LEFT VENTRICLE DEPENDING ON LOCATION AND QUANTITY].

    PubMed

    Kondrashova, V G

    2015-01-01

    A total of 156 children group (children born to parents exposed to the Chernobyl disaster), in which, according to Doppler echocardiography, revealed isolated abnormal chords of the left ventricle (AHLV). Analysis of morphometric parameters and central hemodynamics conducted according to the localization AHLV. Found that concomitant localization AHLV at the threshold of the number of the most influencing change morphoinetric indicators and central hemodynamics. Condition of systemic circulation indicates a decline in their adaptive capacity of the cardiovascular system due to changes in the dynamics and power of the heartbeat. The decrease in stroke volume, stroke and cardiac index suggests hypokinetic type of organization of central hemodynamics, which can be considered an early sign of stress features of the heart and blood vessels. In this subgroup of children revealed significant changes in transmitral flow, indicating the initiation they have diastolic dysfunc tion. When the number of prethreshold AHLV most pronounced changes were found in the middle of their localization. Almost a third of children in this subgroup with individual assessment also revealed signs of initiation of diastolic dysfunction.

  16. Evolution from electrophysiologic to hemodynamic monitoring: the story of left atrial and pulmonary artery pressure monitors

    PubMed Central

    Mooney, Deirdre M.; Fung, Erik; Doshi, Rahul N.; Shavelle, David M.

    2015-01-01

    Heart failure (HF) is a costly, challenging and highly prevalent medical condition. Hospitalization for acute decompensation is associated with high morbidity and mortality. Despite application of evidence-based medical therapies and technologies, HF remains a formidable challenge for virtually all healthcare systems. Repeat hospitalizations for acute decompensated HF (ADHF) can have major financial impact on institutions and resources. Early and accurate identification of impending ADHF is of paramount importance yet there is limited high quality evidence or infrastructure to guide management in the outpatient setting. Historically, ADHF was identified by physical exam findings or invasive hemodynamic monitoring during a hospital admission; however, advances in medical microelectronics and the advent of device-based diagnostics have enabled long-term ambulatory monitoring of HF patients in the outpatient setting. These monitors have evolved from piggybacking on cardiac implantable electrophysiologic devices to standalone implantable hemodynamic monitors that transduce left atrial or pulmonary artery pressures as surrogate measures of left ventricular filling pressure. As technology evolves, devices will likely continue to miniaturize while their capabilities grow. An important, persistent challenge that remains is developing systems to translate the large volumes of real-time data, particularly data trends, into actionable information that leads to appropriate, safe and timely interventions without overwhelming outpatient cardiology and general medical practices. Future directions for implantable hemodynamic monitors beyond their utility in heart failure may include management of other major chronic diseases such as pulmonary hypertension, end stage renal disease and portal hypertension. PMID:26500556

  17. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  18. ED 02-3 CLINICAL IMPLICATIONS OF CENTRAL HEMODYNAMICS ON AORTIC AND END-ORGAN DISEASES.

    PubMed

    Hashimoto, Junichiro

    2016-09-01

    The central aorta constitutes the main trunk of the systemic arterial tree. It dilates passively with cardiac ejection during systole and then constricts with its recoil function during diastole, thereby regulating blood pressure and blood flow. The central pulsatile hemodynamics affects local hemodynamics within as well as downstream of the aorta (e.g., end organs).The aorta progressively stiffens and dilates with advancing age, and such age-dependent change is accelerated by hypertension. According to the law of Laplace, wall stress depends on the diameter and pressure of the blood vessel. This has been confirmed by substantial studies which have associated baseline aortic diameter with subsequent development of aortic dissection and progressive dilatation of aortic lumen. This law can also imply potential importance of local pressure within the aorta (i.e., the central pressure) in predicting the development and progression of aortic aneurysms.Several previous studies have shown that hypertension (together with age and obesity) is related to dilatation of the proximal ascending aorta (rather than of the aortic root). In addition, aortic blood flow abnormality may also be importantly related to aortic dilatation because of strong positive association between the diastole flow reversal and lumen diameter in the proximal thoracic aorta. As for the abdominal (infrarenal) aorta, aneurysmal development and progression have been attributed to aortic segmental stiffening (of the bifurcational versus infrarenal segment) and aortic pressure elevation, respectively.Central pulsatile pressure not only represents aortic wall stress but also determines cardiac afterload and microvascular wall stress in the brain and kidney. Central pulsatile flow (in both directions) could also affect the flow distribution into the upper and lower parts of the body and control end-organ function. Aortic structural change (including segmental stiffening and aneurysmal formation) causes central

  19. ED 02-3 CLINICAL IMPLICATIONS OF CENTRAL HEMODYNAMICS ON AORTIC AND END-ORGAN DISEASES.

    PubMed

    Hashimoto, Junichiro

    2016-09-01

    The central aorta constitutes the main trunk of the systemic arterial tree. It dilates passively with cardiac ejection during systole and then constricts with its recoil function during diastole, thereby regulating blood pressure and blood flow. The central pulsatile hemodynamics affects local hemodynamics within as well as downstream of the aorta (e.g., end organs).The aorta progressively stiffens and dilates with advancing age, and such age-dependent change is accelerated by hypertension. According to the law of Laplace, wall stress depends on the diameter and pressure of the blood vessel. This has been confirmed by substantial studies which have associated baseline aortic diameter with subsequent development of aortic dissection and progressive dilatation of aortic lumen. This law can also imply potential importance of local pressure within the aorta (i.e., the central pressure) in predicting the development and progression of aortic aneurysms.Several previous studies have shown that hypertension (together with age and obesity) is related to dilatation of the proximal ascending aorta (rather than of the aortic root). In addition, aortic blood flow abnormality may also be importantly related to aortic dilatation because of strong positive association between the diastole flow reversal and lumen diameter in the proximal thoracic aorta. As for the abdominal (infrarenal) aorta, aneurysmal development and progression have been attributed to aortic segmental stiffening (of the bifurcational versus infrarenal segment) and aortic pressure elevation, respectively.Central pulsatile pressure not only represents aortic wall stress but also determines cardiac afterload and microvascular wall stress in the brain and kidney. Central pulsatile flow (in both directions) could also affect the flow distribution into the upper and lower parts of the body and control end-organ function. Aortic structural change (including segmental stiffening and aneurysmal formation) causes central

  20. Hemodynamics of Curved Vessels with Stenosis

    NASA Astrophysics Data System (ADS)

    Boghosian, Michael E.; Cassel, Kevin W.

    2007-11-01

    In hemodialysis access, the brachiocephalic or upper-arm fistula has less than optimal functional rates. The cause of this reduced patency is stenosis due to intimal hyperplasia in the cephalic vein. Stenosis typically leads to thrombosis and ultimately failure of the fistula. To increase our understanding of this process, numerical simulations of the unsteady, two-dimensional, incompressible Navier-Stokes equations are solved for the flow in an infinite channel having curvature and stenosis. Physiologically relevant Reynolds numbers ranging from 300 to 1500 and stenosis percentages of 0, 25, 50, and 75 are modeled. The post-stenotic flow is characterized by strong shear layers and recirculation regions. The largest shear stresses are found just upstream of the stenosis apex. The maximum shear stress increases with increasing Reynolds number and percent stenosis. The results indicate that hemodynamic conditions in the vein after fistula creation combined with curvature of the cephalic arch lead to shear stresses that exceed normal physiological values (both minimum and maximum). In some cases, the shear stresses are sufficiently large to cause damage to the endothelium and possibly denudation.

  1. Saccades and prefrontal hemodynamics in basketball players.

    PubMed

    Fujiwara, K; Kiyota, N; Maekawa, M; Kunita, K; Kiyota, T; Maeda, K

    2009-09-01

    We investigated saccade performance and prefrontal hemodynamics in basketball players with different skill levels. Subjects were 27 undergraduate basketball players and 13 non-athlete undergraduates (control group: CON). The players were divided into two groups: those who had played in the National Athletic Meet during high school or played regularly (n=13, elite group: ELI) and those who were bench warmers (n=14, skilled group: SKI). Horizontal eye movement and oxy-, deoxy-, and total-hemoglobin (Hb) concentration in the prefrontal cortex during pro- and anti-saccade were measured using electro-oculography and near-infrared spectroscopy, respectively. Only error rate in anti-saccade was less in ELI (4.8+/-4.0%) than SKI (13.7+/-12.6%) and CON (13.9+/-8.3%) (p<0.05). In ELI alone, oxy- (-0.15+/-0.18 mmol*mm) and total-Hb (-0.12+/-0.15 mmol*mm) during anti-saccade decreased significantly compared with that during rest (p<0.05), while those in CON significantly increased (oxy-Hb: 0.17+/-0.15 mmol*mm, total-Hb: 0.14+/-0.14 mmol*mm) (p<0.05). These results suggest that inhibition of eye movement to a visual target changes from voluntary to automatic through the motor learning of basketball. PMID:19569008

  2. Effects of spaceflight on human calf hemodynamics

    NASA Technical Reports Server (NTRS)

    Watenpaugh, D. E.; Buckey, J. C.; Lane, L. D.; Gaffney, F. A.; Levine, B. D.; Moore, W. E.; Wright, S. J.; Blomqvist, C. G.

    2001-01-01

    Chronic microgravity may modify adaptations of the leg circulation to gravitational pressures. We measured resting calf compliance and blood flow with venous occlusion plethysmography, and arterial blood pressure with sphygmomanometry, in seven subjects before, during, and after spaceflight. Calf vascular resistance equaled mean arterial pressure divided by calf flow. Compliance equaled the slope of the calf volume change and venous occlusion pressure relationship for thigh cuff pressures of 20, 40, 60, and 80 mmHg held for 1, 2, 3, and 4 min, respectively, with 1-min breaks between occlusions. Calf blood flow decreased 41% in microgravity (to 1.15 +/- 0.16 ml x 100 ml(-1) x min(-1)) relative to 1-G supine conditions (1.94 +/- 0.19 ml x 100 ml(-1) x min(-1), P = 0.01), and arterial pressure tended to increase (P = 0.05), such that calf vascular resistance doubled in microgravity (preflight: 43 +/- 4 units; in-flight: 83 +/- 13 units; P < 0.001) yet returned to preflight levels after flight. Calf compliance remained unchanged in microgravity but tended to increase during the first week postflight (P > 0.2). Calf vasoconstriction in microgravity qualitatively agrees with the "upright set-point" hypothesis: the circulation seeks conditions approximating upright posture on Earth. No calf hemodynamic result exhibited obvious mechanistic implications for postflight orthostatic intolerance.

  3. Saccades and prefrontal hemodynamics in basketball players.

    PubMed

    Fujiwara, K; Kiyota, N; Maekawa, M; Kunita, K; Kiyota, T; Maeda, K

    2009-09-01

    We investigated saccade performance and prefrontal hemodynamics in basketball players with different skill levels. Subjects were 27 undergraduate basketball players and 13 non-athlete undergraduates (control group: CON). The players were divided into two groups: those who had played in the National Athletic Meet during high school or played regularly (n=13, elite group: ELI) and those who were bench warmers (n=14, skilled group: SKI). Horizontal eye movement and oxy-, deoxy-, and total-hemoglobin (Hb) concentration in the prefrontal cortex during pro- and anti-saccade were measured using electro-oculography and near-infrared spectroscopy, respectively. Only error rate in anti-saccade was less in ELI (4.8+/-4.0%) than SKI (13.7+/-12.6%) and CON (13.9+/-8.3%) (p<0.05). In ELI alone, oxy- (-0.15+/-0.18 mmol*mm) and total-Hb (-0.12+/-0.15 mmol*mm) during anti-saccade decreased significantly compared with that during rest (p<0.05), while those in CON significantly increased (oxy-Hb: 0.17+/-0.15 mmol*mm, total-Hb: 0.14+/-0.14 mmol*mm) (p<0.05). These results suggest that inhibition of eye movement to a visual target changes from voluntary to automatic through the motor learning of basketball.

  4. Hemodynamics in coronary arteries with overlapping stents.

    PubMed

    Rikhtegar, Farhad; Wyss, Christophe; Stok, Kathryn S; Poulikakos, Dimos; Müller, Ralph; Kurtcuoglu, Vartan

    2014-01-22

    Coronary artery stenosis is commonly treated by stent placement via percutaneous intervention, at times requiring multiple stents that may overlap. Stent overlap is associated with increased risk of adverse clinical outcome. While changes in local blood flow are suspected to play a role therein, hemodynamics in arteries with overlapping stents remain poorly understood. In this study we analyzed six cases of partially overlapping stents, placed ex vivo in porcine left coronary arteries and compared them to five cases with two non-overlapping stents. The stented vessel geometries were obtained by micro-computed tomography of corrosion casts. Flow and shear stress distribution were calculated using computational fluid dynamics. We observed a significant increase in the relative area exposed to low wall shear stress (WSS<0.5 Pa) in the overlapping stent segments compared both to areas without overlap in the same samples, as well as to non-overlapping stents. We further observed that the configuration of the overlapping stent struts relative to each other influenced the size of the low WSS area: positioning of the struts in the same axial location led to larger areas of low WSS compared to alternating struts. Our results indicate that the overlap geometry is by itself sufficient to cause unfavorable flow conditions that may worsen clinical outcome. While stent overlap cannot always be avoided, improved deployment strategies or stent designs could reduce the low WSS burden.

  5. A parameter estimation framework for patient-specific hemodynamic computations

    NASA Astrophysics Data System (ADS)

    Itu, Lucian; Sharma, Puneet; Passerini, Tiziano; Kamen, Ali; Suciu, Constantin; Comaniciu, Dorin

    2015-01-01

    We propose a fully automated parameter estimation framework for performing patient-specific hemodynamic computations in arterial models. To determine the personalized values of the windkessel models, which are used as part of the geometrical multiscale circulation model, a parameter estimation problem is formulated. Clinical measurements of pressure and/or flow-rate are imposed as constraints to formulate a nonlinear system of equations, whose fixed point solution is sought. A key feature of the proposed method is a warm-start to the optimization procedure, with better initial solution for the nonlinear system of equations, to reduce the number of iterations needed for the calibration of the geometrical multiscale models. To achieve these goals, the initial solution, computed with a lumped parameter model, is adapted before solving the parameter estimation problem for the geometrical multiscale circulation model: the resistance and the compliance of the circulation model are estimated and compensated. The proposed framework is evaluated on a patient-specific aortic model, a full body arterial model, and multiple idealized anatomical models representing different arterial segments. For each case it leads to the best performance in terms of number of iterations required for the computational model to be in close agreement with the clinical measurements.

  6. Fine particulate matter results in hemodynamic changes in subjects with blunted nocturnal blood pressure dipping.

    PubMed

    Chen, Szu-Ying; Chan, Chang-Chuan; Lin, Yu-Lun; Hwang, Jing-Shiang; Su, Ta-Chen

    2014-05-01

    Particulate matter with aerodynamic diameter of <2.5 μm (PM2.5) is associated with blood pressure and hemodynamic changes. Blunted nocturnal blood pressure dipping is a major risk factor for cardiovascular events; limited information is available on whether PM2.5 exposure-related hemodynamic changes vary with day-night blood pressure circadian rhythms. In this study, we enrolled 161 subjects and monitored the changes in ambulatory blood pressure and hemodynamics for 24h. The day-night blood pressure and cardiovascular metrics were calculated according to the sleep-wake cycles logged in the subject׳s diary. The effects of PM2.5 exposure on blood pressure and hemodynamic changes were analyzed using generalized linear mixed-effect model. After adjusting for potential confounders, a 10-μg/m(3) increase in PM2.5 was associated with 1.0 mmHg [95% confidence interval (CI): 0.2-1.8 mmHg] narrowing in the pulse pressure, 3.1% (95% CI: 1.4-4.8%) decrease in the maximum rate of left ventricular pressure rise, and 3.6% (95% CI: 1.6-5.7%) increase in systemic vascular resistance among 79 subjects with nocturnal blood pressure dip of <10%. In contrast, PM2.5 was not associated with any changes in cardiovascular metrics among 82 subjects with nocturnal blood pressure dip of ≥10%. Our findings demonstrate that short-term exposure to PM2.5 contributes to pulse pressure narrowing along with cardiac and vasomotor dysfunctions in subjects with nocturnal blood pressure dip of <10%.

  7. A Critical Role for Proinflammatory Behavior of Smooth Muscle Cells in Hemodynamic Initiation of Intracranial Aneurysm

    PubMed Central

    Mandelbaum, Max; Kolega, John; Dolan, Jennifer M.; Siddiqui, Adnan H.; Meng, Hui

    2013-01-01

    Background Intracranial aneurysm initiation is poorly understood, although hemodynamic insult is believed to play an important role in triggering the pathology. It has recently been found in a rabbit model that while macrophages are absent during hemodynamic aneurysm initiation, matrix metalloproteinases (MMPs) are elevated and co-localize with smooth muscle cells (SMCs). This study investigates whether SMCs play a mechanistic role in aneurysm initiation triggered by hemodynamics. Methods Aneurysmal damage was induced at the basilar terminus via bilateral common carotid artery ligation in rabbits (n = 45, plus 7 sham controls). 16 ligated rabbits were treated with doxycycline to inhibit MMPs, 7 received clodronate liposomes to deplete circulating monocytes, and the rest received no drug. Effects of the treatments on aneurysm development were assessed histologically 5 days and 6 months after ligation. MMP production and expression of inflammatory markers by SMCs was monitored by immunohistochemistry and in situ hybridization. Results Treatment with doxycycline attenuated aneurysmal development examined at 5 days and 6 months, suggesting that MMPs contribute to aneurysm initiation. However, systemic depletion of macrophages did not decrease MMPs or suppress aneurysmal development. Immunofluorescence showed that during aneurysm initiation MMP-2 and MMP-9 were distributed in SMCs, and in situ hybridization indicated that they were transcribed by SMCs. In regions of early aneurysmal lesion, SMCs exhibited decreased expression of smooth muscle actin and increased NF-κB and MCP-1 expressions. Conclusions During aneurysm initiation triggered by hemodynamics, SMCs rather than macrophages are responsible for MMP production that is critical for aneurysmal lesion development. These SMCs exhibit proinflammatory behavior. PMID:24023941

  8. Hemodynamic Flow-Induced Mechanotransduction Signaling Influences the Radiation Response of the Vascular Endothelium.

    PubMed

    Natarajan, Mohan; Aravindan, Natarajan; Sprague, Eugene A; Mohan, Sumathy

    2016-08-01

    Hemodynamic shear stress is defined as the physical force exerted by the continuous flow of blood in the vascular system. Endothelial cells, which line the inner layer of blood vessels, sense this physiological force through mechanotransduction signaling and adapt to maintain structural and functional homeostasis. Hemodynamic flow, shear stress and mechanotransduction signaling are, therefore, an integral part of endothelial pathophysiology. Although this is a well-established concept in the cardiovascular field, it is largely dismissed in studies aimed at understanding radiation injury to the endothelium and subsequent cardiovascular complications. We and others have reported on the differential response of the endothelium when the cells are under hemodynamic flow shear compared with static culture. Further, we have demonstrated significant differences in the gene expression of static versus shear-stressed irradiated cells in four key pathways, reinforcing the importance of shear stress in understanding radiation injury of the endothelium. This article further emphasizes the influence of hemodynamic shear stress and the associated mechanotransduction signaling on physiological functioning of the vascular endothelium and underscores its significance in understanding radiation injury to the vasculature and associated cardiac complications. Studies of radiation effect on endothelial biology and its implication on cardiotoxicity and vascular complications thus far have failed to highlight the significance of these factors. Factoring in these integral parts of the endothelium will enhance our understanding of the contribution of the endothelium to radiation biology. Without such information, the current approaches to studying radiation-induced injury to the endothelium and its consequences in health and disease are limited. PMID:27387860

  9. 4D subject-specific inverse modeling of the chick embryonic heart outflow tract hemodynamics.

    PubMed

    Goenezen, Sevan; Chivukula, Venkat Keshav; Midgett, Madeline; Phan, Ly; Rugonyi, Sandra

    2016-06-01

    Blood flow plays a critical role in regulating embryonic cardiac growth and development, with altered flow leading to congenital heart disease. Progress in the field, however, is hindered by a lack of quantification of hemodynamic conditions in the developing heart. In this study, we present a methodology to quantify blood flow dynamics in the embryonic heart using subject-specific computational fluid dynamics (CFD) models. While the methodology is general, we focused on a model of the chick embryonic heart outflow tract (OFT), which distally connects the heart to the arterial system, and is the region of origin of many congenital cardiac defects. Using structural and Doppler velocity data collected from optical coherence tomography, we generated 4D ([Formula: see text]) embryo-specific CFD models of the heart OFT. To replicate the blood flow dynamics over time during the cardiac cycle, we developed an iterative inverse-method optimization algorithm, which determines the CFD model boundary conditions such that differences between computed velocities and measured velocities at one point within the OFT lumen are minimized. Results from our developed CFD model agree with previously measured hemodynamics in the OFT. Further, computed velocities and measured velocities differ by [Formula: see text]15 % at locations that were not used in the optimization, validating the model. The presented methodology can be used in quantifications of embryonic cardiac hemodynamics under normal and altered blood flow conditions, enabling an in-depth quantitative study of how blood flow influences cardiac development.

  10. Prediction of hemodynamic changes towards PEEP titrations at different volemic levels using a minimal cardiovascular model.

    PubMed

    Starfinger, C; Chase, J G; Hann, C E; Shaw, G M; Lambert, P; Smith, B W; Sloth, E; Larsson, A; Andreassen, S; Rees, S

    2008-08-01

    A cardiovascular system model and parameter identification method have previously been validated for porcine experiments of induced pulmonary embolism and positive end-expiratory pressure (PEEP) titrations, accurately tracking all the main hemodynamic trends. In this research, the model and parameter identification process are further validated by predicting the effect of intervention. An overall population-specific rule linking specific model parameters to increases in PEEP is formulated to predict the hemodynamic effects on arterial pressure, pulmonary artery pressure and stroke volume. Hemodynamic changes are predicted for an increase from 0 to 10 cm H(2)O with median absolute percentage errors less than 7% (systolic pressures) and 13% (stroke volume). For an increase from 10 to 20 cm H(2)O median absolute percentage errors are less than 11% (systolic pressures) and 17% (stroke volume). These results validate the general applicability of such a rule, which is not pig-specific, but holds over for all analyzed pigs. This rule enables physiological simulation and prediction of patient response. Overall, the prediction accuracy achieved represents a further clinical validation of these models, methods and overall approach to cardiovascular diagnosis and therapy guidance.

  11. Application of near-infrared spectroscopy to measurement of hemodynamic signals accompanying stimulated saliva secretion.

    PubMed

    Sato, Hiroki; Obata, Akiko N; Moda, Ichiro; Ozaki, Kazutaka; Yasuhara, Takaomi; Yamamoto, Yukari; Kiguchi, Masashi; Maki, Atsushi; Kubota, Kisou; Koizumi, Hideaki

    2011-04-01

    We aim to test the feasibility of using near-infrared spectroscopy (NIRS) for indirect measurement of human saliva secretion in response to taste stimuli for potential application to organoleptic testing. We use an NIRS system to measure extracranial hemodynamics (Hb-signals around the temples) of healthy participants when taste stimuli are taken in their mouths. First, the Hb-signals and volume of expelled saliva (stimulated by distilled-water or sucrose-solution intake) are simultaneously measured and large Hb-signal changes in response to the taste stimuli (Hb-responses) are found. Statistical analysis show that both the Hb response and saliva volume are larger for the sucrose solution than for the distilled water with a significant correlation between them (r = 0.81). The effects of swallowing on the Hb-signals are investigated. Similar Hb responses, differing from the sucrose solution and distilled water, are obtained even though the participants swallow the mouth contents. Finally, functional magnetic resonance imaging is used to identify possible sources of the Hb signals corresponding to salivation. Statistical analysis indicates similar responses in the extracranial regions, mainly around the middle meningeal artery. In conclusion, the identified correlation between extracranial hemodynamics and the saliva volume suggests that NIRS is applicable to the measurement of hemodynamic signals accompanying stimulated saliva secretion.

  12. The hemodynamics of human septic shock relate to circulating innate immunity factors.

    PubMed

    Hartemink, Koen J; Groeneveld, A B Johan

    2010-01-01

    The role of innate immunity, e.g., complement activation and cytokine release in the hemodynamic alterations in the course of human septic shock is largely unknown. We prospectively studied 14 consecutive septic shock patients with a pulmonary artery catheter in place. For 3 days after admission, hemodynamic variables and plasma levels of C3a, a product of complement activation, and interleukin (IL)-6 and tumor necrosis factor alpha (TNF-α) were measured 6-hourly. Doses of vasoactive drugs were recorded. Of the 14 patients, 8 died in the ICU. Patients had a hyperdynamic circulation with tachycardia, mild hypotension, increased cardiac index, peripheral vasodilation and myocardial depression. C3a, IL-6 and TNF-α plasma levels were supranormal in 123 of 138 (89%), 132 of 138 (96%) and 83 of 111 (75%) measurements, respectively. Independently of blood culture results, treatment with vasoactive drugs and outcome, mean arterial blood pressure and systemic vascular resistance index were lower when IL-6 levels were higher and left ventricular function was less depressed when C3a levels were higher in the course of septic shock. The TNF-α levels did not invariably relate to peripheral vascular and myocardial function parameters. Our serial observations suggest that, in human septic shock, peripheral vasodilation is most strongly and independently, of all inflammatory factors, associated with IL-6 release, whereas complement activation partly offsets the myocardial depression of the syndrome. Innate immunity factors may thus differ in their contribution to the course of hemodynamic abnormalities of septic shock.

  13. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise.

    PubMed

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D Travis; Xenos, Eleftherios S; Saha, Sibu P; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV̇O2). We calibrated rBF and rV̇O2 profiles with absolute baseline values of BF and V̇O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease. PMID:26720871

  14. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity

    PubMed Central

    Yamamuro, Kazuhiko; Kimoto, Sohei; Iida, Junzo; Kishimoto, Naoko; Nakanishi, Yoko; Tanaka, Shohei; Ota, Toyosaku; Makinodan, Manabu; Kishimoto, Toshifumi

    2016-01-01

    Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS) is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP). Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11) to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP. PMID:27050450

  15. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  16. Vascular and Renal Hemodynamic Changes after Renal Denervation

    PubMed Central

    Ott, Christian; Janka, Rolf; Schmid, Axel; Titze, Stephanie; Ditting, Tilmann; Sobotka, Paul A.; Veelken, Roland; Uder, Michael

    2013-01-01

    Summary Background and objectives Renal denervation (RDN) has been shown to be effective in reducing BP in treatment-resistant hypertension. Measurement of the renal and sympathetic activity revealed a decrease in sympathetic drive to the kidney and small resistance vessels after RDN. However, the consequences on renal perfusion and renal vascular resistance (RVR), as well as central hemodynamics, are unknown. Design, setting, participants, & measurements Nineteen patients with treatment-resistant hypertension (office BP≥140/90 mmHg, despite at least three antihypertensive drugs [including a diuretic], and diagnosis confirmed by 24-hour ambulatory BP monitoring) underwent RDN between January and October 2011. Renal perfusion and RVR were noninvasively assessed by magnetic resonance imaging with arterial spin labeling, and renal function was assessed by estimating GFR before (day −1), after (day +1), and again after 3 months of RDN. Central hemodynamics was assessed using pulse wave analysis at day −1 and after 6 months of RDN. Results Peripheral office BP (systolic, 158±26 versus 142±23 mmHg, P=0.002; diastolic, 83±13 versus 76±9 mmHg, P=0.02) and mean systolic 24-hour ambulatory BP (159±17 versus 152±17 mmHg, P=0.02) were significantly reduced 6 months after RDN. Renal perfusion was not statistically different between day −1 and day +1 (256.8 [interquartile range (IQR), 241–278] versus 263.4 [IQR, 252–277] ml/min per 100 g; P=0.17) as well as after 3 months (256.8 [IQR, 241–278] versus 261.2 [IQR, 240–285] ml/min per 100 g; P=0.27) after RDN. RVR dropped (432.1 [IQR, 359–525] versus 390.6 [IQR, 338–461] AU; P=0.02), whereas renal function was not statistically different at any time point. Central systolic BP (145±31 versus 131±28 mmHg; P=0.009), diastolic BP (85±18 versus 80±14 mmHg; P=0.03), and central pulse pressure (61±18 versus 52±18 mmHg; P=0.02) were significantly reduced 6 months after RDN. Central augmentation index (24±8

  17. An electrical network model of intracranial arteriovenous malformations: analysis of variations in hemodynamic and biophysical parameters.

    PubMed

    Hademenos, G J; Massoud, T F

    1996-12-01

    The propensity of intracranial arteriovenous malformations (AVMs) to hemorrhage is correlated significantly with their hemodynamic features. Biomathematical models offer a theoretical approach to analyse complex AVM hemodynamics, which otherwise are difficult to quantify, particularly within or in close proximity to the nidus. Our purpose was to investigate a newly developed biomathematical AVM model based on electrical network analysis in which morphological, biophysical, and hemodynamic characteristics of intracranial AVMs were replicated accurately. Several factors implemented into the model were altered systematically to study the effects of a possible wide range of normal variations in AVM hemodynamic and biophysical parameters on the behavior of this model and its fidelity to physiological reality. The model represented a complex, noncompartmentalized AVM with four arterial feeders, two draining veins, and a nidus consisting of 28 interconnected plexiform and fistulous components. Various clinically-determined experimentally-observed, or hypothetically-assumed values for the nidus vessel radii (plexiform: 0.01 cm-0.1 cm; fistulous: 0.1 cm-0.2 cm), mean systemic arterial pressure (71 mm Hg-125 mm Hg), mean arterial feeder pressures (21 mm Hg-80 mm Hg), mean draining vein pressures (5 mm Hg-23 mm Hg), wall thickness of nidus vessels (20 microns-70 microns), and elastic modulus of nidus vessels (1 x 10(4) dyn/cm2 to 1 x 10(5) dyn/cm2) were used as normal or realistic ranges of parameters implemented in the model. Using an electrical analogy of Ohm's law, flow was determined based on Poiseuille's law given the aforementioned pressures and resistance of each nidus vessel. Circuit analysis of the AVM vasculature based on the conservation of flow and voltage revealed the flow rate through each vessel in the AVM network. An expression for the risk of AVM nidus rupture was derived based on the functional distribution of the critical radii of component vessels. The two

  18. A biomathematical model of intracranial arteriovenous malformations based on electrical network analysis: theory and hemodynamics.

    PubMed

    Hademenos, G J; Massoud, T F; Viñuela, F

    1996-05-01

    Hemodynamics play a significant role in the propensity of intracranial arteriovenous malformations (AVMs) to hemorrhage and in influencing both therapeutic strategies and their complications. AVM hemodynamics are difficult to quantitate, particularly within or in close proximity to the nidus. Biomathematical models represent a theoretical method of investigating AVM hemodynamics but currently provide limited information because of the simplicity of simulated anatomic and physiological characteristics in available models. Our purpose was to develop a new detailed biomathematical model in which the morphological, biophysical, and hemodynamic characteristics of an intracranial AVM are replicated more faithfully. The technique of electrical network analysis was used to construct the biomathematical AVM model to provide an accurate rendering of transnidal and intranidal hemodynamics. The model represented a complex, noncompartmentalized AVM with 4 arterial feeders (with simulated pial and transdural supply), 2 draining veins, and a nidus consisting of 28 interconnecting plexiform and fistulous components. Simulated vessel radii were defined as observed in human AVMs. Common values were assigned for normal systemic arterial pressure, arterial feeder pressures, draining vein pressures, and central venous pressure. Using an electrical analogy of Ohm's law, flow was determined based on Poiseuille's law given the aforementioned pressures and resistances of each nidus vessel. Circuit analysis of the AVM vasculature based on the conservation of flow and voltage revealed the flow rate through each vessel in the AVM network. Once the flow rate was established, the velocity, the intravascular pressure gradient, and the wall shear stress were determined. Total volumetric flow through the AVM was 814 ml/min. Hemodynamic analysis of the AVM showed increased flow rate, flow velocity, and wall shear stress through the fistulous component. The intranidal flow rate varied from 5.5 to 57

  19. Hemodynamic Features of Symptomatic Vertebrobasilar Disease

    PubMed Central

    Amin-Hanjani, Sepideh; Du, Xinjian; Rose-Finnell, Linda; Pandey, Dilip K.; Richardson, DeJuran; Thulborn, Keith R.; Elkind, Mitchell S.V.; Zipfel, Gregory J.; Liebeskind, David S.; Silver, Frank L.; Kasner, Scott E.; Aletich, Victor A.; Caplan, Louis R.; Derdeyn, Colin P.; Gorelick, Philip B; Charbel, Fady T.

    2015-01-01

    Background and Purpose Atherosclerotic vertebrobasilar (VB) disease is an important etiology of posterior circulation stroke. To examine the role of hemodynamic compromise, a prospective multi-center study, Vertebrobasilar Flow Evaluation and Risk of Transient Ischemic Attack and Stroke (VERiTAS), was conducted. Here we report clinical features and vessel flow measurements from the study cohort. Methods Patients with recent VB TIA or stroke and ≥50% atherosclerotic stenosis or occlusion in vertebral (VA) and/or basilar (BA) arteries were enrolled. Large vessel flow in the VB territory was assessed using quantitative MRA. Results The cohort (n=72, 44% female) had a mean age of 65.6 years; 72% presented with ischemic stroke. Hypertension (93%) and hyperlipidemia (81%) were the most prevalent vascular risk factors. BA flows correlated negatively with percentage stenosis in the affected vessel, and positively to the minimal diameter at the stenosis site (p<0.01). A relative threshold effect was evident, with flows dropping most significantly with ≥80% stenosis/occlusion (p<0.05). Tandem disease involving the BA and either/both VAs had the greatest negative impact on immediate downstream flow in the BA (43 ml/min vs. 71 ml/min, p=0.01). Distal flow status assessment, based on an algorithm incorporating collateral flow by examining distal vessels (BA and posterior cerebral arteries), correlated neither with multifocality of disease nor severity of the maximal stenosis. Conclusions Flow in stenotic posterior circulation vessels correlates with residual diameter, and drops significantly with tandem disease. However, distal flow status, incorporating collateral capacity, is not well predicted by the severity or location of the disease. PMID:25977279

  20. Cerebral hemodynamics during graded Valsalva maneuvers

    PubMed Central

    Perry, Blake G.; Cotter, James D.; Mejuto, Gaizka; Mündel, Toby; Lucas, Samuel J. E.

    2014-01-01

    The Valsalva maneuver (VM) produces large and abrupt changes in mean arterial pressure (MAP) that challenge cerebral blood flow and oxygenation. We examined the effect of VM intensity on middle cerebral artery blood velocity (MCAv) and cortical oxygenation responses during (phases I–III) and following (phase IV) a VM. Healthy participants (n = 20 mean ± SD: 27 ± 7 years) completed 30 and 90% of their maximal VM mouth pressure for 10 s (order randomized) whilst standing. Beat-to-beat MCAv, cerebral oxygenation (NIRS) and MAP across the different phases of the VM are reported as the difference from standing baseline. There were significant interaction (phase * intensity) effects for MCAv, total oxygenation index (TOI) and MAP (all P < 0.01). MCAv decreased during phases II and III (P < 0.01), with the greatest decrease during phase III (−5 ± 8 and −19 ± 15 cm·s−1 for 30 and 90% VM, respectively). This pattern was also evident in TOI (phase III: −1 ± 1 and −5 ± 4%, both P < 0.05). Phase IV increased MCAv (22 ± 15 and 34 ± 23 cm·s−1), MAP (15 ± 14 and 24 ± 17 mm Hg) and TOI (5 ± 6 and 7 ± 5%) relative to baseline (all P < 0.05). Cerebral autoregulation, indexed, as the %MCAv/%MAP ratio, showed a phase effect only (P < 0.001), with the least regulation during phase IV (2.4 ± 3.0 and 3.2 ± 2.9). These data illustrate that an intense VM profoundly affects cerebral hemodynamics, with a reactive hyperemia occurring during phase IV following modest ischemia during phases II and III. PMID:25309449

  1. Glomerular hemodynamics in persistent renovascular hypertension in the rat.

    PubMed

    Herrera-Acosta, J; Gabbai, F; Franco, M; Tapia, E; Linfa, G; Díaz, L; Campos, J

    1983-01-01

    We studied the glomerular hemodynamics and activity of the tubuloglomerular feedback system (TGFS) in Wistar rats with persistent hypertension 60 days after removal of the clipped kidney in the Goldblatt (two-kidney, one clip) hypertension model. Ten hypertensive rats (HBP) were compared with 12 normotensive ones (NBP). Micropuncture studies revealed that values for the single nephron glomerular filtration rate (SNGFR), glomerular plasma flow (QA), and afferent oncotic pressure (PAR.A) were similar in both groups, whereas glomerular capillary pressure (PGC) and effective filtration pressure (EFP) were higher in the HBP group (p less than 0.05). A slight but insignificant increase in afferent resistance was present in the HBP group. A positive correlation was found between mean arterial pressure and stop flow pressure (SFP) (r = 0.64, p less than 0.05) but not with SNGFR, suggesting a reduction in the ultrafiltration coefficient in hypertensive rats. This was further supported by studies of the activity of the TGFS, which demonstrated that interrupting flow to the macula densa was followed by a smaller increment in SNGFR in HBP, in spite of a similar rise in SFP. The mechanism responsible for decreasing glomerular permeability is unknown but could be related to structural changes in glomerular capillary or to an increase in intrarenal angiotensin II, as has been demonstrated previously in this model. It is suggested that these adaptations occurring in the kidney exposed to hypertension can contribute to the maintenance of elevated arterial pressure after removing the stenotic kidney.

  2. Varicose veins of lower extremities, hemodynamics and treatment methods.

    PubMed

    Chwała, Maciej; Szczeklik, Wojciech; Szczeklik, Michał; Aleksiejew-Kleszczyński, Tomasz; Jagielska-Chwała, Maria

    2015-01-01

    Chronic venous insufficiency is one of the most common disorders of the vascular system, affecting approximately 50% of adults. If left untreated it can lead to a number of complications, including venous ulceration and venous thrombosis. This review paper outlines the epidemiology and ethiopathogenesis of the disease with regard to hemodynamics and microcirculation disturbances. It describes the medical treatment as well as the traditional surgical approach to varicose veins (with several modifications of this technique), and its limitations and contraindications. Furthermore, it discusses a number of new, minimally invasive treatment methods, namely thermal in form (radiofrequency ablation, endovenous laser ablation, steam ablation) and nonthermal (sclerotherapy, echosclerotherapy, Clarivein, Sapheon). For each method, there is a brief historical overview, a description of its mechanism of action, and its indications and limitations. The results of comparative studies on individual treatment methods as well as meta-analyses on this topic are briefly discussed. This paper highlights the progressive trend towards minimally invasive methods and attempts to predict the further development.

  3. Hemodynamic measurements for evaluating vasovagal syncope in the emergency department

    PubMed Central

    Chan, Stewart Siu-Wa; Mo, Junrong; Graham, Colin Alexander; Rainer, Timothy Hudson

    2015-01-01

    Syncope is a sudden and transient loss of consciousness and postural tone, with spontaneous recovery without medical intervention. It accounts for 1.0% to 1.5% of emergency department (ED) visits and up to 6% of hospital admissions. Vasovagal syncope may be the cause of syncope in 21% to 40% of cases. A 53-year-old Chinese woman was brought to the ED by ambulance after a near-syncope episode while performing gentle morning exercises. She was hypotensive and bradycardic in the ambulance. Upon arrival at the ED, her blood pressure was 89/61 mmHg. The use of a Doppler cardiac output monitor readily demonstrated that the patient’s systemic vascular resistance was reduced, with cardiac output at the lower limit of the normal range. These hemodynamic data were useful in supporting the diagnosis of vasovagal syncope; they helped in the risk stratification of our patient with syncope, and guided the management and subsequent disposition decision.

  4. The Hemodynamics of Total Cavo-Pulmonary Connection Anatomies

    NASA Astrophysics Data System (ADS)

    Wang, Chang

    2005-11-01

    The single ventricle is a congenital heart defect in which the right side of the heart is hypoplastic or totally absent. This anomaly results in mixing of the oxygenated and deoxygenated blood in the single ventricle, reducing the amount of oxygen transferred to the body. In U.S. two in 1000 babies are born with a single ventricle heart defect. Palliative surgical treatments are performed in stages as the child grows. The last stage is the total cavo-pulmonary connection (TCPC), which bypasses the right side of the heart and the single ventricle drives blood throughout the pulmonary and systemic circulations. We simulate the flow in two TCPC anatomies using a sharp-interface, hybrid Cartesian/Immersed Boundary approach. The computed solutions are compared with PIV in-vitro experiments and analyzed in detail to elucidate the richness of the hemodynamics in the surgically create pouch region where the inferior and superior vena cava flows collide and bifurcate into the left and right pulmonary arteries. The effect of the connection anatomy on the flow dynamics will also be discussed.

  5. Ocular hemodynamic effects of nitrovasodilators in healthy subjects.

    PubMed

    Schmidl, D; Polska, E; Kiss, B; Sacu, S; Garhofer, G; Schmetterer, L

    2010-01-01

    Nitric oxide (NO) plays a key role in the regulation of ocular blood flow and may be an interesting therapeutic target in ocular ischemic disease. In the present study, we hypothesized that NO-releasing drugs may increase blood flow to the head of the optic nerve and also in the choroid. The study employed a randomized, placebo-controlled, double blind, four-way crossover design. On separate study days, 12 healthy subjects received infusions of nitroglycerin, isosorbide dinitrate, sodium nitroprusside, or placebo. All three study drugs reduced the mean arterial pressure (MAP) and ocular perfusion pressure (OPP) (P < 0.001). None of the administered drugs increased the ocular hemodynamic variables. By contrast, vascular resistance decreased dose dependently during administration of the study drugs (P < 0.001). These results indicate that systemic administration of NO-donor drugs is associated with a decrease in vascular resistance in the ocular vasculature. However, because these drugs also reduce blood pressure, they do not improve perfusion to the posterior eye pole.

  6. Bayesian estimation of the hemodynamic response function in functional MRI

    NASA Astrophysics Data System (ADS)

    Marrelec, G.; Benali, H.; Ciuciu, P.; Poline, J.-B.

    2002-05-01

    Functional MRI (fMRI) is a recent, non-invasive technique allowing for the evolution of brain processes to be dynamically followed in various cognitive or behavioral tasks. In BOLD fMRI, what is actually measured is only indirectly related to neuronal activity through a process that is still under investigation. A convenient way to analyze BOLD fMRI data consists of considering the whole brain as a system characterized by a transfer response function, called the Hemodynamic Response Function (HRF). Precise and robust estimation of the HRF has not been achieved yet: parametric methods tend to be robust but require too strong constraints on the shape of the HRF, whereas non-parametric models are not reliable since the problem is badly conditioned. We therefore propose a full Bayesian, non-parametric method that makes use of basic but relevant a priori knowledge about the underlying physiological process to make robust inference about the HRF. We show that this model is very robust to decreasing signal-to-noise ratio and to the actual noise sampling distribution. We finally apply the method to real data, revealing a wide variety of HRF shapes.

  7. Deleterious effects of bretylium on hemodynamic recovery from ventricular fibrillation.

    PubMed

    Euler, D E; Zeman, T W; Wallock, M E; Scanlon, P J

    1986-07-01

    To study the effects of bretylium on the restoration of circulatory function after resuscitation from ventricular fibrillation, closed-chest anesthetized dogs were electrically fibrillated for 1 minute followed by defibrillation (direct-current shock). After one control episode of fibrillation and defibrillation, 16 dogs received a bolus of bretylium (10 mg/kg intravenously). A second episode of fibrillation and defibrillation was induced in eight dogs 3 minutes after bretylium and in eight dogs 4 hours after bretylium. Prior to bretylium, mean arterial blood pressure spontaneously recovered to exceed 200 mm Hg by 2 minutes after defibrillation in all 16 dogs. However, after bretylium, 13 of 16 dogs were in electromechanical dissociation 2 minutes after defibrillation (p less than 0.001). Despite external chest compression, epinephrine, and sodium bicarbonate, a stable blood pressure could not be restored in 6 of 16 dogs. Clofilium, a bretylium analogue lacking sympathetic influences, did not alter the pattern of hemodynamic recovery following defibrillation in five of five dogs. The results suggest that the effects of bretylium on the sympathetic nervous system may profoundly influence the outcome of cardiac resuscitation from fibrillation. PMID:3728284

  8. Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations.

    PubMed

    Beier, Susann; Ormiston, John; Webster, Mark; Cater, John; Norris, Stuart; Medrano-Gracia, Pau; Young, Alistair; Cowan, Brett

    2016-02-01

    Stent induced hemodynamic changes in the coronary arteries are associated with higher risk of adverse clinical outcome. The purpose of this study was to evaluate the impact of stent design on wall shear stress (WSS), time average WSS, and WSS gradient (WSSG), in idealized stent geometries using computational fluid dynamics. Strut spacing, thickness, luminal protrusion, and malapposition were systematically investigated and a comparison made between two commercially available stents (Omega and Biomatrix). Narrower strut spacing led to larger areas of adverse low WSS and high WSSG but these effects were mitigated when strut size was reduced, particularly for WSSG. Local hemodynamics worsened with luminal protrusion of the stent and with stent malapposition, adverse high WSS and WSSG were identified around peak flow and throughout the cardiac cycle respectively. For the Biomatrix stent, the adverse effect of thicker struts was mitigated by greater strut spacing, radial cell offset and flow-aligned struts. In conclusion, adverse hemodynamic effects of specific design features (such as strut size and narrow spacing) can be mitigated when combined with other hemodynamically beneficial design features but increased luminal protrusion can worsen the stent's hemodynamic profile significantly.

  9. Effects of glucosamine-chondroitin combination on synovial fluid IL-1β, IL-6, TNF-α and PGE2 levels in internal derangements of temporomandibular joint

    PubMed Central

    Esen, Emin; Tatli, Ufuk

    2015-01-01

    Background The aim of the present study was to evaluate the effects of glucosamine-chondroitin sulphate combination on internal derangements of temporomandibular joint in clinical and biochemical manners. Material and Methods This randomized clinical study included 31 cases reporting joint tenderness, in which disc displacement was detected on MR imaging. In all patients, synovial fluid sampling was performed under local anesthesia. In the study group, the patients were prescribed a combination of 1500 mg glucosamine and 1200 mg chondroitin sulphate, while patients in the control group were only prescribed 50 mg tramadol HCl (twice daily) for pain control. After 8 weeks, synovial fluid sampling was repeated in the same manner. The levels of pain, maximum mouth opening (MMO), synovial fluid IL-1ß, IL-6, TNF-α and PGE2 measured before and after pharmacological intervention were compared. Results The reduction in pain levels was significant in both groups. There was no significant difference between two groups in terms of pain reduction. The improvement in MMO was significant in the study group but it was not in the control group. The MMO improvement was significantly higher in the study group compared to the control group. In the study group, significant decrease was observed in PGE2 level, while the decreases in IL-1β, IL-6 and TNF-α levels were not significant. In the control group, no significant decrease was observed in any of the inflammatory cytokines after 8 weeks, moreover IL-1ß and IL-6 levels were increased. Alterations of IL-1ß and IL-6 levels were significant in study group while TNF-α and PGE2 levels were not, compared to control group. Conclusions In conclusion, these results might suggest that glucosamine-chondroitin combination significantly increases the MMO and decreases the synovial fluid IL1β and IL6 levels in internal derangements of TMJ compared to tramadol. The modifications of synovial fluid TNF-α and PGE2 levels do not reach

  10. The optimal hemodynamics management of post-cardiac arrest shock.

    PubMed

    Pellis, Tommaso; Sanfilippo, Filippo; Ristagno, Giuseppe

    2015-12-01

    Patients resuscitated from cardiac arrest develop a pathophysiological state named "post-cardiac arrest syndrome." Post-resuscitation myocardial dysfunction is a common feature of this syndrome, and many patients eventually die from cardiovascular failure. Cardiogenic shock accounts for most deaths in the first 3 days, when post-resuscitation myocardial dysfunction peaks. Thus, identification and treatment of cardiovascular failure is one of the key therapeutic goals during hospitalization of post-cardiac arrest patients. Patients with hemodynamic instability may require advanced cardiac output monitoring. Inotropes and vasopressors should be considered if hemodynamic goals are not achieved despite optimized preload. If these measures fail to restore adequate organ perfusion, a mechanical circulatory assistance device may be considered. Adequate organ perfusion should be ensured in the absence of definitive data on the optimal target pressure goals. Hemodynamic goals should also take into account targeted temperature management and its effect on the cardiovascular function.

  11. A Revised Hemodynamic Theory of Age-Related Macular Degeneration.

    PubMed

    Gelfand, Bradley D; Ambati, Jayakrishna

    2016-08-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  12. Study of severe scorpion envenoming following subcutaneous venom injection into dogs: Hemodynamic and concentration/effect analysis.

    PubMed

    Elatrous, Souheil; Ouanes-Besbes, Lamia; Ben Sik-Ali, Habiba; Hamouda, Zineb; BenAbdallah, Saoussen; Tilouche, Nejla; Jalloul, Faten; Fkih-Hassen, Mohamed; Dachraoui, Fahmi; Ouanes, Islem; Abroug, Fekri

    2015-09-15

    To evaluate the dose-effects of Androctonus australis hector (Aah) venom injected subcutaneously on hemodynamics and neurohormonal secretions, 10 anesthetized and ventilated mongrel dogs, were split in two groups (n = 5/group). Subcutaneous injection was done with either 0.2 mg/kg or 0.125 mg/kg of the purified G50 scorpion toxic fraction. Hemodynamic parameters using right heart catheter were recorded and plasma concentrations of catecholamine, troponin, and serum toxic fraction were measured sequentially from baseline to 120 min. We identified the dose of toxic fraction evoking characteristic hemodynamic perturbation of severe envenomation, the time-lapse to envenomation, and the associated plasma level. The injection of 0.125 mg/kg toxic fraction was not associated with significant variations in hemodynamic parameters, whereas the 0.2 mg/kg dose caused envenomation characterized by significant increase in plasma catecholamines, increased pulmonary artery occluded pressure, mean arterial pressure, and systemic vascular resistance (p < 0.05), in association with sustained decline in cardiac output (p < 0.001). Envenomation occurred by the 30th minute, and the corresponding concentration of toxic fraction was 1.14 ng/ml. The current experiment allowed the identification of the sub-lethal dose (0.2 mg/kg) of the toxic fraction of Aah administered by the subcutaneous route. Two parameters with potential clinical relevance were also uncovered: the time-lapse to envenomation and the corresponding concentration of toxic fraction.

  13. Study of severe scorpion envenoming following subcutaneous venom injection into dogs: Hemodynamic and concentration/effect analysis.

    PubMed

    Elatrous, Souheil; Ouanes-Besbes, Lamia; Ben Sik-Ali, Habiba; Hamouda, Zineb; BenAbdallah, Saoussen; Tilouche, Nejla; Jalloul, Faten; Fkih-Hassen, Mohamed; Dachraoui, Fahmi; Ouanes, Islem; Abroug, Fekri

    2015-09-15

    To evaluate the dose-effects of Androctonus australis hector (Aah) venom injected subcutaneously on hemodynamics and neurohormonal secretions, 10 anesthetized and ventilated mongrel dogs, were split in two groups (n = 5/group). Subcutaneous injection was done with either 0.2 mg/kg or 0.125 mg/kg of the purified G50 scorpion toxic fraction. Hemodynamic parameters using right heart catheter were recorded and plasma concentrations of catecholamine, troponin, and serum toxic fraction were measured sequentially from baseline to 120 min. We identified the dose of toxic fraction evoking characteristic hemodynamic perturbation of severe envenomation, the time-lapse to envenomation, and the associated plasma level. The injection of 0.125 mg/kg toxic fraction was not associated with significant variations in hemodynamic parameters, whereas the 0.2 mg/kg dose caused envenomation characterized by significant increase in plasma catecholamines, increased pulmonary artery occluded pressure, mean arterial pressure, and systemic vascular resistance (p < 0.05), in association with sustained decline in cardiac output (p < 0.001). Envenomation occurred by the 30th minute, and the corresponding concentration of toxic fraction was 1.14 ng/ml. The current experiment allowed the identification of the sub-lethal dose (0.2 mg/kg) of the toxic fraction of Aah administered by the subcutaneous route. Two parameters with potential clinical relevance were also uncovered: the time-lapse to envenomation and the corresponding concentration of toxic fraction. PMID:26166304

  14. Physical Activity and Hemodynamic Reactivity in Chronic Kidney Disease

    PubMed Central

    Agarwal, Rajiv; Light, Robert P.

    2008-01-01

    Background and objectives: Patients with chronic kidney disease (CKD) have an elevated cardiovascular risk. This study was designed to understand better the presence and strength of the relationship between physical activity and BP and to explore determinants of hemodynamic reactivity. Design, setting, participants, & measurements: Twenty-four patients with CKD (mean age 69.5 yr; 3.1 antihypertensive drugs; estimated GFR 47 ml/min per 1.73 m2, albumin/creatinine ratio 403 mg/g) were studied on three occasions during a 6-wk period with 24-h ambulatory BP monitoring and simultaneous activity monitoring with wrist actigraphy. Results: Nondippers were found have a greater level of sleep activity compared with dippers, although the awake activity level was similar (7.06 versus 6.73) between groups (P = 0.042 for interaction). In 3587 BP activity pairs, hemodynamic reactivity was variable between individuals (systolic BP reactivity 1.06 [SD 10.50]; diastolic BP reactivity 0.89 [SD 7.80] heart rate reactivity 1.18 [SD 11.00]); those who were more sedentary had a greater increment in systolic BP compared with those who were less sedentary. Antihypertensive drugs blunted hemodynamic reactivity. Hemodynamic reactivity was greatest between 12 a.m. and 8 a.m., making this a vulnerable period for cardiovascular events. Conclusions: Greater hemodynamic reactivity in sedentary people with CKD offers a possible and thus far unrecognized mechanism of cardiovascular damage. Besides reducing BP, antihypertensive drugs reduce hemodynamic reactivity, which offers another plausible mechanism of cardiovascular protection with their use. PMID:18922983

  15. Hemodynamic monitoring in the era of digital health.

    PubMed

    Michard, Frederic

    2016-12-01

    Digital innovations are changing medicine, and hemodynamic monitoring will not be an exception. Five to ten years from now, we can envision a world where clinicians will learn hemodynamics with simulators and serious games, will monitor patients with wearable or implantable sensors in the hospital and after discharge, will use medical devices able to communicate and integrate the historical, clinical, physiologic and biological information necessary to predict adverse events, propose the most rationale therapy and ensure it is delivered properly. Considerable intellectual and financial investments are currently made to ensure some of these new ideas and products soon become a reality. PMID:26885656

  16. Ultrasonic Imaging of Hemodynamic Force in Carotid Blood Flow

    NASA Astrophysics Data System (ADS)

    Nitta, N.; Homma, K.

    Hemodynamic forces including blood pressure and shear stress affect vulnerable plaque rupture in arteriosclerosis and biochemical activation of endothelium such as NO production. In this study, a method for estimating and imaging shear stress and pressure gradient distributions in blood vessel as the hemodynamic force based on viscosity estimation is presented. Feasibility of this method was investigated by applying to human carotid blood flow. Estimated results of shear stress and pressure gradient distributions coincide with the ideal distributions obtained by numerical simulation and flow-phantom experiment.

  17. Acute hemodynamic response to weightlessness during parabolic flight

    NASA Technical Reports Server (NTRS)

    Mukai, Chiaki N.; Lathers, Claire M.; Charles, John B.; Bennett, Barbara S.; Igarashi, Makoto; Patel, Saumil

    1991-01-01

    The effect of a short exposure to weightlessness on hemodynamic parameters of humans was investigated in seven subjects flown aboard the KC-135 aircraft. Particular attention is given to the relationships among various hemodynamic responses to hypergravic and hypogravic states, observed for four different postures: semisupine, supine, standing, and sitting. Results are presented on changes in the thoracic fluid index, heart rate, cardiac index, and the coefficient of variation of the R-R intervals. High values of the coefficient of variation were found at the onset of 0-G, suggesting that vagal cardiac neural activity increases in all positions except supine (where a small decrease was registered).

  18. Prediction of Prolonged Hemodynamic Instability During Carotid Angioplasty and Stenting

    PubMed Central

    Rhim, Jong Kook; Park, Jeong Jin; Choi, Hyuk Jai; Cho, Young Dae; Sheen, Seung Hun; Jang, Kyung-Sool

    2016-01-01

    Purpose The aim of this study was to assess the risk factors of prolonged hemodynamic instability (HDI) after carotid angioplasty and stenting (CAS). Herein, a simplified predictive scoring system for prolonged HDI is proposed. Materials and Methods Sixty-six patients who had CAS from 2011 to 2016 at a single institution were evaluated. Prolonged HDI was defined as systolic blood pressure >160 mm Hg or <90 mm Hg or heart rate <50 beats/min, lasting over 30 minutes despite medical treatments. For the study, clinical data and radiologic data, including plaque morphology and stenosis were analyzed. Results Prolonged HDI was observed in 21 patients (31.8%). Multivariable analysis revealed that calcification (OR, 6.726; p=0.006), eccentric stenosis (OR, 3.645; p=0.047) and extensive plaque distribution (OR, 7.169; p=0.006) were related to prolonged HDI. According to these results, a simplified scoring scale was proposed based on the summation of points: 2 points for calcified plaque, 2 points for extensive plaque distribution, and 1 point for eccentric stenosis. The percentages of prolonged HDI according to the total score were as follows: score 0, 8.7%; score 1, 20.0%; score 2, 38.5%; score 3, 72.7%; score 4, 66.7%; score 5, 100%. From the analysis, the total score in patients with prolonged HDI was significantly higher than those without prolonged HDI (p<0.001). Conclusion Prolonged HDI can be associated with calcification of plaque, eccentric stenosis and extensive plaque distribution, and a simplified scoring system enables prediction of prolonged HDI according to our cohort. PMID:27621949

  19. Prediction of Prolonged Hemodynamic Instability During Carotid Angioplasty and Stenting

    PubMed Central

    Rhim, Jong Kook; Park, Jeong Jin; Choi, Hyuk Jai; Cho, Young Dae; Sheen, Seung Hun; Jang, Kyung-Sool

    2016-01-01

    Purpose The aim of this study was to assess the risk factors of prolonged hemodynamic instability (HDI) after carotid angioplasty and stenting (CAS). Herein, a simplified predictive scoring system for prolonged HDI is proposed. Materials and Methods Sixty-six patients who had CAS from 2011 to 2016 at a single institution were evaluated. Prolonged HDI was defined as systolic blood pressure >160 mm Hg or <90 mm Hg or heart rate <50 beats/min, lasting over 30 minutes despite medical treatments. For the study, clinical data and radiologic data, including plaque morphology and stenosis were analyzed. Results Prolonged HDI was observed in 21 patients (31.8%). Multivariable analysis revealed that calcification (OR, 6.726; p=0.006), eccentric stenosis (OR, 3.645; p=0.047) and extensive plaque distribution (OR, 7.169; p=0.006) were related to prolonged HDI. According to these results, a simplified scoring scale was proposed based on the summation of points: 2 points for calcified plaque, 2 points for extensive plaque distribution, and 1 point for eccentric stenosis. The percentages of prolonged HDI according to the total score were as follows: score 0, 8.7%; score 1, 20.0%; score 2, 38.5%; score 3, 72.7%; score 4, 66.7%; score 5, 100%. From the analysis, the total score in patients with prolonged HDI was significantly higher than those without prolonged HDI (p<0.001). Conclusion Prolonged HDI can be associated with calcification of plaque, eccentric stenosis and extensive plaque distribution, and a simplified scoring system enables prediction of prolonged HDI according to our cohort.

  20. Telemetric Catheter-Based Pressure Sensor for Hemodynamic Monitoring: Experimental Experience

    SciTech Connect

    Mahnken, Andreas H.; Urban, Ute; Fassbender, Holger; Schnakenberg, Uwe; Schoth, Felix; Schmitz-Rode, Thomas

    2009-07-15

    The purpose of this study was to evaluate the technical and animal experimental feasibility of a percutaneously implantable pulmonary arterial implant for permanent hemodynamic monitoring. Two systems for measuring pulmonary artery pressure (PAP) as well as pulmonary artery occlusion pressure (PAOP) were developed by modifying a commercially available pulmonary artery catheter (PAC). First, a cable-bound catheter-based system was designed by implementation of a capacitive absolute-pressure sensor in the catheter tip. This system was developed further into a completely implantable telemetric system. The devices were tested in an acute setting in a total of 10 sheep. The implant was placed with its tip in the descending pulmonary artery via the right jugular approach. Results were compared with conventional PAC positioned in the contralateral pulmonary artery using Pearson's correlation coefficients and Bland-Altman plots. Implantation of the monitoring systems was uneventful in 10 animals. Data from two fully functional cable-bound and telemetric pressure monitoring systems were available, with a total of 18,506 measurements. There was an excellent correlation between reference data and the data obtained with the implants (r = 0.9944). Bland-Altman plots indicated a very good agreement between the techniques. We report the development and successful initial test of an implantable catheter-based device for long-term measurement of PAP and PAOP. Both devices may be applicable for hemodynamic monitoring. Further long-term studies for assessing reliability and durability of the device are warranted.

  1. [Autonomic, cardio- and hemodynamic indices of healthy men, representatives of the native and nonnative population of Kazakhstan].

    PubMed

    Veber, V R; Gaevskiĭ, Iu G; Karibaev, K R

    1985-01-01

    Healthy men, representatives of the indigenous population and newcomers, have some differences on the part of the vegetative and cardiovascular system. The newcomers mostly show coronary atherosclerosis and predominance of the tone of the ergotropic system. The cardio- and hemodynamic differences manifest by more pronounced shifts on making orthostatic and exercise tests, by an appreciable rise of myocardial contractility and energy expenditure for blood translocation.

  2. Non-invasive assessment of hemodynamics: a comparative analysis of fingertip pulse contour analysis and impedance cardiography

    PubMed Central

    Sauder, Katherine A.; Pokorney, Paige E.; McCrea, Cindy E.; Ulbrecht, Jan S.; Kris-Etherton, Penny M.; West, Sheila G.

    2015-01-01

    Objective Systemic hemodynamic assessment is useful for characterizing the underlying physiology of hypertension, selecting individualized treatment approaches, and understanding the underlying mechanisms of action of interventions. Invasive methods are not suitable for routine clinic or research use, and non-invasive methods such as impedance cardiography have technical and practical limitations. Fingertip pulse contour analysis measured with the Nexfin device is a novel alternative for non-invasive assessment of blood pressure and hemodynamics. While both impedance cardiography and the Nexfin have been validated against invasive methods, the extent to which they correlate with each other is unknown. This study is a comparative analysis of data simultaneously obtained with impedance cardiography and the Nexfin device. Methods As part of a larger clinical trial, 13 adults with type 2 diabetes completed cardiovascular reactivity testing on three occasions: at study baseline and after two 4-week dietary treatment periods. Blood pressure, hemodynamics, and heart rate variability were assessed at rest and during acute mental stress. Results Blood pressure, heart rate, and heart rate variability data were significantly correlated between the two devices, but hemodynamic data (stroke volume, cardiac output, total peripheral resistance) were not significantly correlated. Both techniques detected treatment-related changes in blood pressure and total peripheral resistance, but significantly differed in magnitude and/or direction of the treatment effects. Conclusions We conclude that Nexfin is not an appropriate alternative to impedance cardiography for measurement of underlying hemodynamics in psychophysiological research, but may be useful for beat-to-beat monitoring of blood pressure and heart rate variability. PMID:25815738

  3. Taurine, cardiopulmonary hemodynamics, and pulmonary hypertension syndrome in broilers.

    PubMed

    Ruiz-Feria, C A; Wideman, R F

    2001-11-01

    Previous studies have suggested cardiac taurine is released into the plasma in response to hypoxemia (low blood oxygen levels) during the pathogenesis of pulmonary hypertension syndrome (PHS, ascites). In the present study, broilers reared under cool temperature conditions (16 C) were provided tap water (control group), tap water supplemented with taurine, or tap water supplemented with the taurine transport antagonist beta-alanine. When compared with control values, taurine supplementation consistently elevated free taurine concentrations in the plasma but not in cardiac tissues, whereas beta-alanine supplementation consistently reduced free taurine concentrations in cardiac tissues but not in the plasma. Neither the incidence of PHS nor specific predictors of PHS susceptibility (electrocardiogram Lead II S-wave amplitude, % saturation of hemoglobin with oxygen, heart rate, right to total ventricular weight ratio) were affected by taurine or beta-alanine supplementation. Cardiopulmonary hemodynamic evaluations were conducted to compare control and beta-alanine supplemented broilers breathing room air or air containing 12% oxygen (low oxygen challenge). While breathing room air, the betaalanine-supplemented broilers had higher baseline values for cardiac output (186.2 vs. 146.9 mL/min/kg BW) and pulmonary arterial pressure (27.4 vs. 22.4 mm Hg), similar values for mean systemic arterial pressure (100 vs. 104 mm Hg) and pulmonary vascular resistance (0.062 vs. 0.064 resistance units), and lower values for total peripheral resistance (0.228 vs. 0.296 resistance units) when compared with control broilers breathing room air. During low oxygen challenges, the beta-alanine-supplemented broilers exhibited larger reductions in cardiac output, mean systemic arterial pressure, and pulmonary arterial pressure and greater increases in pulmonary vascular resistance than control broilers. These observations indicate that beta-alanine-supplemented broilers breathing room air had

  4. Hemodynamic and cellular response feedback in calcific aortic valve disease.

    PubMed

    Gould, Sarah T; Srigunapalan, Suthan; Simmons, Craig A; Anseth, Kristi S

    2013-07-01

    This review highlights aspects of calcific aortic valve disease that encompass the entire range of aortic valve disease progression from initial cellular changes to aortic valve sclerosis and stenosis, which can be initiated by changes in blood flow (hemodynamics) and pressure across the aortic valve. Appropriate hemodynamics is important for normal valve function and maintenance, but pathological blood velocities and pressure can have profound consequences at the macroscopic to microscopic scales. At the macroscopic scale, hemodynamic forces impart shear stresses on the surface of the valve leaflets and cause deformation of the leaflet tissue. As discussed in this review, these macroscale forces are transduced to the microscale, where they influence the functions of the valvular endothelial cells that line the leaflet surface and the valvular interstitial cells that populate the valve extracellular matrix. For example, pathological changes in blood flow-induced shear stress can cause dysfunction, impairing their homeostatic functions, and pathological stretching of valve tissue caused by elevated transvalvular pressure can activate valvular interstitial cells and latent paracrine signaling cytokines (eg, transforming growth factor-β1) to promote maladaptive tissue remodeling. Collectively, these coordinated and complex interactions adversely impact bulk valve tissue properties, feeding back to further deteriorate valve function and propagate valve cell pathological responses. Here, we review the role of hemodynamic forces in calcific aortic valve disease initiation and progression, with focus on cellular responses and how they feed back to exacerbate aortic valve dysfunction.

  5. Dietary melatonin alters uterine artery hemodynamics in pregnant holstein heifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective was to examine uterine artery hemodynamics and maternal serum profiles in pregnant heifers supplemented with dietary melatonin (MEL) or no supplementation (CON). In addition, melatonin receptor–mediated responses in steroid metabolism were examined using a bovine endometrial epithelial...

  6. Hemodynamic alterations in chronically conscious unrestrained diabetic rats

    SciTech Connect

    Carbonell, L.F.; Salmon, M.G.; Garcia-Estan, J.; Salazar, F.J.; Ubeda, M.; Quesada, T.

    1987-05-01

    Important cardiovascular dysfunctions have been described in streptozotocin (STZ)-diabetic rats. To determine the influence of these changes on the hemodynamic state and whether insulin treatment can avoid them, different hemodynamic parameters, obtained by the thermodilution method, were studied in STZ-induced (65 mg/kg) diabetic male Wistar rats, as well as in age-control, weight-control, and insulin-treated diabetic ones. Plasma volume was measured by dilution of radioiodinated (/sup 125/I) human serum albumin. All rats were examined in the conscious, unrestrained state 12 wk after induction of diabetes or acidified saline (pH 4.5) injection. At 12 wk of diabetic state most important findings were normotension, high blood volume, bradycardia, increase in stroke volume, cardiac output, and cardiosomatic ratio, and decrease in total peripheral resistance and cardiac contractility and relaxation (dP/dt/sub max/ and dP/dt/sub min/ of left ventricular pressure curves). The insulin-treated diabetic rats did not show any hemodynamic differences when compared with the control animals. These results suggest that important hemodynamic alterations are present in the chronic diabetic states, possibly conditioning congestive heart failure. These alterations can be prevented by insulin treatment.

  7. Central circulatory hemodynamics as a function of gravitational stress

    NASA Technical Reports Server (NTRS)

    Latham, Rick D.; White, C. D.; Fanton, J. W.; Owens, R. W.; Barber, J. F.; Lewkowski, B. E.; Goff, O. T.

    1991-01-01

    This study focuses on an evaluation of the central hemodynamics in a nonhuman primate model to variations in gravitational states. The baboon, phylogenectically close to man, was chosen as the human surrogate. The study environments selected are head-down and head-up tilt in the physiology laboratory, centrifugation to test hypergravic stress, and parabolic flights to test transient acute responses to microgravity.

  8. Mining data from hemodynamic simulations for generating prediction and explanation models.

    PubMed

    Bosnić, Zoran; Vračar, Petar; Radović, Milos D; Devedžić, Goran; Filipović, Nenad D; Kononenko, Igor

    2012-03-01

    One of the most common causes of human death is stroke, which can be caused by carotid bifurcation stenosis. In our work, we aim at proposing a prototype of a medical expert system that could significantly aid medical experts to detect hemodynamic abnormalities (increased artery wall shear stress). Based on the acquired simulated data, we apply several methodologies for1) predicting magnitudes and locations of maximum wall shear stress in the artery, 2) estimating reliability of computed predictions, and 3) providing user-friendly explanation of the model's decision. The obtained results indicate that the evaluated methodologies can provide a useful tool for the given problem domain. PMID:21846607

  9. Numerical analysis of the hemodynamics of an abdominal aortic aneurysm repaired using the endovascular chimney technique.

    PubMed

    Ben Gur, Hila; Kosa, Gabor; Brand, Moshe

    2015-08-01

    This paper presents a numerical analysis of the hemodynamics in an abdominal aorta (AA) with an aneurysm repaired by a stent graft (SG) system using the chimney technique. Computational fluid dynamics (CFD) simulations were conducted in a model of an AA repaired with a chimney stent graft (CSG) inserted into a renal artery parallel to an aortic SG and a model of a healthy AA. Comparing the simulation results of these two cases suggests that the presence of the CSG in the AA causes changes in average wall shear stress (WSS), potentially damaging recirculation zones, and additional changes in flow patterns. PMID:26736427

  10. Effects of nitroglycerin on hemodynamics in dogs with experimentally inserted heartworms.

    PubMed

    Yamamoto, S; Miyatake, K; Okamoto, Y; Minami, S; Matsuhashi, A

    1993-04-01

    Hemodynamic effects of nitroglycerin were investigated in dogs with right ventricular failure including engorgement of the pulmonary artery and ascites induced by insertion of adult live heartworms into the pulmonary artery. The mean pulmonary arterial pressure (21.5 +/- 6.6 mmHg) in heartworm-inserted dogs 4 or 5 weeks after heartworm insertion were higher than that of control (4.2-7.1 mmHg). Nitroglycerin administered intravenously at doses of 3 or 10 micrograms/kg decreased pulmonary arterial pressure in these heartworm inserted dogs. This drug also decreased pulmonary vascular resistance and total systemic resistance with no effect on cardiac index and heart rate.

  11. Imaging hemodynamic changes in preterm infant brains with two-dimensional diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Ma, Yiwen; Yang, Fang; Zhao, Huijuan; Jiang, Jingying; Kusaka, Takashi; Ueno, Masanori; Yamada, Yukio

    2008-02-01

    We present our preliminary results on two-dimensional (2-D) optical tomographic imaging of hemodynamic changes of two preterm infant brains in different ventilation settings conditions. The investigations use the established two-wavelength, 16-channel time-correlated single photon counting system for the detection, and the generalized pulse spectrum technique based algorithm for the image reconstruction. The experiments demonstrate that two-dimensional diffuse optical tomography may be a potent and relatively simple way of investigating the functions and neural development of infant brains in the perinatal period.

  12. Estradiol improves pulmonary hemodynamics and vascular remodeling in perinatal pulmonary hypertension.

    PubMed

    Parker, T A; Ivy, D D; Galan, H L; Grover, T R; Kinsella, J P; Abman, S H

    2000-02-01

    Partial ligation of the ductus arteriosus (DA) in the fetal lamb causes sustained elevation of pulmonary vascular resistance (PVR) and hypertensive structural changes in small pulmonary arteries, providing an animal model for persistent pulmonary hypertension of the newborn. Based on its vasodilator and antimitogenic properties in other experimental studies, we hypothesized that estradiol (E(2)) would attenuate the pulmonary vascular structural and hemodynamic changes caused by pulmonary hypertension in utero. To test our hypothesis, we treated chronically instrumented fetal lambs (128 days, term = 147 days) with daily infusions of E(2) (10 microg; E(2) group, n = 6) or saline (control group, n = 5) after partial ligation of the DA. We measured intrauterine pulmonary and systemic artery pressures in both groups throughout the study period. After 8 days, we delivered the study animals by cesarean section to measure their hemodynamic responses to birth-related stimuli. Although pulmonary and systemic arterial pressures were not different in utero, fetal PVR immediately before ventilation was reduced in the E(2)-treated group (2.43 +/- 0.79 vs. 1.48 +/- 0.26 mmHg. ml(-1). min, control vs. E(2), P < 0.05). During the subsequent delivery study, PVR was lower in the E(2)-treated group in response to ventilation with hypoxic gas but was not different between groups with ventilation with 100% O(2). During mechanical ventilation after delivery, arterial partial O(2) pressure was higher in E(2) animals than controls (41 +/- 11 vs. 80 +/- 35 Torr, control vs. E(2), P < 0. 05). Morphometric studies of hypertensive vascular changes revealed that E(2) treatment decreased wall thickness of small pulmonary arteries (59 +/- 1 vs. 48 +/- 1%, control vs. E(2), P < 0.01). We conclude that chronic E(2) treatment in utero attenuates the pulmonary hemodynamic and histological changes caused by DA ligation in fetal lambs. PMID:10666122

  13. Acute hemodynamic effects and blood pool kinetics of polystyrene microspheres following intravenous administration

    SciTech Connect

    Slack, J.D.; Kanke, M.; Simmons, G.H.; DeLuca, P.P.

    1981-06-01

    The acute hemodynamic effect of intravenous administration of polystyrene microspheres was investigated and correlated with their distribution pattern and kinetics. Microspheres of three diameters (3.4, 7.4, and 11.6 micrometer) were administered. The 7.4- and 11.6-micrometer diameter microspheres were filtered by the pulmonary capillary network following intravenous administration, the majority during the first pass. There was no significant hemodynamic effect following administrations of the 7.4- and 11.6-micrometer diameter microspheres in doses as high as 3.0 X 10(9) and 6.1 X 10(8) respectively (total cross-sectional area of 1.3 X 10(11) and 6.4 X 10(10) micrometer2, respectively). Intravenous administration of 3.4-micrometer diameter microspheres produced significant dose-dependent systemic hypotension and depression of myocardial performance at dosages as slow as 1.0 X 10(10) (cross-sectional area of 9.1 X 10(10) micrometer2). These differences in acute hemodynamic effect from the 7.4- and 11.6-micrometer diameter microspheres may be due to the differences in distribution kinetics and fate of the 3.4-micrometer diameter microspheres, which readily pass through the lungs to the spleen. Although elimination of the smaller spheres from the blood during the first 6-8 min was rapid, i.e., t 1/2 . 1.62 and 1.72 min from the venous and arterial blood circulation, respectively, levels of 10(3) spheres/g of blood were present in the circulation for greater than 1 hr. These findings must be considered in the planning of intravenous administration of microspheres as a drug delivery system to target organs.

  14. Hemodynamics during Rotary Blood Pump support with speed synchronization in heart failure condition: A modelling study.

    PubMed

    Htet, Zwe Lin; Aye, Thin Pa Pa; Singhavilai, Thamvarit; Naiyanetr, Phornphop

    2015-01-01

    The aim of this work is to study the hemodynamic changes in the cardiovascular system under different modes of Rotary Blood Pump (RBP) support. Continuous mode (constant pump speed) and co-pulse mode (increased pump speed in systole) are studied. Computer simulation studies have been conducted to evaluate the performances of these two modes under normal and pathological conditions. The pathological heart condition is simulated by reducing the maximum systolic elestance (Emax) in the cardiovascular system model. The model is implemented by using MATLAB Simulink. The pressure-volume loop of different heart conditions (normal heart: 100% of normal contractility, pathological heart: 30% of normal contractility) and the different modes of RBP support (8 krpm and 11 krpm in continuous mode, between 8 krpm and 11 krpm in co-pulse mode) are simulated. The results of this study show the slope of end systolic pressure volume relationship (ESPVR) changes in pathological condition. The reduction of area inside pressure volume loops depend on the increasing level of pump speed. The results indicated systolic aortic pressures in co-pulse mode are higher than in the continuous mode. In normal condition, the value of systolic aortic pressure in co-pulse mode is 113 mmHg and the values of systolic aortic pressures in continuous modes are 109 mmHg (8 k) and 95 mmHg (11 k). In pathological condition, the value of systolic aortic pressure in co pulse mode is 100 mmHg and the values of systolic aortic pressures in continuous modes are 90 mmHg (8 k) and 95 mmHg (11 k). The hemodynamics results of this study are comparable in vivo data, clinical data and other simulation studies. Therefore, this simulation enables hemodynamic studies in patients with end-stage heart failure, and patients under different modes of rotary blood pump support. PMID:26736999

  15. Radionuclide assessment of peripheral hemodynamics: a new technique for measurement of forearm blood volume and flow

    SciTech Connect

    Todo, Y.; Tanimoto, M.; Yamamoto, T.; Iwasaki, T.

    1986-02-01

    A new peripheral hemodynamic measurement system using /sup 99m/Tc-labeled red blood cells has been developed. This method was carried out on 22 normal subjects, 29 with coronary artery disease, and two with dilated cardiomyopathy. Peripheral hemodynamic indices obtained from this method included forearm blood volume (FBV), venous capacity (FVC), venous capacity index (VCI), blood flow (FBF), and vascular resistance (FVR), and were compared with the central hemodynamic parameters of left ventricular filling pressure (LVFP), cardiac output (CO), and total systemic vascular resistance (TSVR) obtained with an invasive technique. The normal values were FBV 8.54 +/- 2.04 ml/100 ml; FVC 4.54 +/- 1.23 ml/100 ml; VCI 65.5 +/- 3.8%; FBF 4.26 +/- 0.56 ml/100 ml/min; and FVR 20.9 +/- 4.4 mmHg/ml/100 ml/min. These values were in good agreement with the values reported using conventional plethysmography. The 16 patients with congestive heart failure (NYHA Class II or III) showed significantly lower FBV, FVC, and FBF values and significantly higher VCI and FVR values than the healthy subjects. Capacitance vessel parameters (FBV, FVC, and VCI) and LVFP, FBF and CO, and FVR and TSVR each showed significant correlation; reproducibility was also good. The advantages of this method are (a) the detector does not come in contact with the region being measured; (b) it is possible to ascertain the absolute quantity of blood in the tissue; (c) extravasation of the plasma component can be ignored; and (d) data processing is simple.

  16. Theoretical Analysis of the Relative Impact of Obesity on Hemodynamic Stability During Acute Hemorrhagic Shock

    PubMed Central

    Sterling, Sarah A.; Jones, Alan E.; Coleman, Thomas G.; Summers, Richard L.

    2015-01-01

    Background: Evidence suggests that morbid obesity may be an independent risk factor for adverse outcomes in patients with traumatic injuries. Objectives: In this study, a theoretic analysis using a derivation of the Guyton model of cardiovascular physiology examines the expected impact of obesity on hemodynamic changes in Mean Arterial Pressure (MAP) and Cardiac Output (CO) during Hemorrhagic Shock (HS). Patients and Methods: Computer simulation studies were used to predict the relative impact of increasing Body Mass Index (BMI) on global hemodynamic parameters during HS. The analytic procedure involved recreating physiologic conditions associated with changing BMI for a virtual subject in an In Silico environment. The model was validated for the known effect of a BMI of 30 on iliofemoral venous pressures. Then, the relative effect of changing BMI on the outcome of target cardiovascular parameters was examined during simulated acute loss of blood volume in class II hemorrhage. The percent changes in these parameters were compared between the virtual nonobese and obese subjects. Model parameter values are derived from known population distributions, producing simulation outputs that can be used in a deductive systems analysis assessment rather than traditional frequentist statistical methodologies. Results: In hemorrhage simulation, moderate increases in BMI were found to produce greater decreases in MAP and CO compared to the normal subject. During HS, the virtual obese subject had 42% and 44% greater falls in CO and MAP, respectively, compared to the nonobese subject. Systems analysis of the model revealed that an increase in resistance to venous return due to changes in intra-abdominal pressure resulting from obesity was the critical mechanism responsible for the differences. Conclusions: This study suggests that obese patients in HS may have a higher risk of hemodynamic instability compared to their nonobese counterparts primarily due to obesity

  17. Hemodynamic Measurements of the Human Adult Head in Transmittance Mode by Near-Infrared Time-Resolved Spectroscopy.

    PubMed

    Suzuki, Hiroaki; Oda, Motoki; Ohmae, Etsuko; Suzuki, Toshihiko; Yamashita, Daisuke; Yoshimoto, Kenji; Homma, Shu; Yamashita, Yutaka

    2016-01-01

    Using a near-infrared time-resolved spectroscopy (TRS) system, we measured the human head in transmittance mode to obtain the optical properties and the hemodynamic changes of deep brain tissues in seven healthy adult volunteers during hyperventilation. For six out of seven volunteers, we obtained the optical signals with sufficient intensity within 10 sec. of sampling. We confirmed that it is possible to non-invasively measure the hemodynamic changes of the human head during hyperventilation, even in the transmittance measurements by the developed TRS system. These results showed that the level of deoxygenated hemoglobin was significantly increased, and the level of oxygenated and total hemoglobin and tissue oxygen saturation were also significantly decreased during hyperventilation. We expect that this TRS technique will be applied to clinical applications for measuring deep brain tissues and deep biological organs. PMID:26782238

  18. Multi-parametric imaging of cerebral hemodynamic and metabolic response followed by ischemic injury

    NASA Astrophysics Data System (ADS)

    Qin, Jia; Shi, Lei; Dziennis, Suzan; Wang, Ruikang K.

    2014-02-01

    We use rodent parietal cortex as a model system and utilize a synchronized dual wavelength laser speckle imaging (SDW-LSCI) technique to explore the hemodynamic response of infarct and penumbra to a brain injury (middle cerebral artery occlusion (MCAO) model). The SDW-LSCI system is able to take snapshots rapidly (maximum 500 Hz) over the entire brain surface, providing key information about the hemodynamic response, in terms of which it may be used to elucidate evolution of penumbra region from onsite to 90 min of MCAO. Changes in flow are quantified as to the flow experiencing physical occlusions of the MCA normalized to that of baseline. Furthermore, the system is capable of providing information as to the changes of the concentration of oxygenated, (HbO) deoxygenated (Hb), and total hemoglobin (HbT) in the cortex based on the spectral characteristics of HbO and Hb. We observe that the oxygenation variations in the four regions are detectable and distinct. Combining the useful information, four regions of interest (ROI), infarct, penumbra, reduced flow and contralateral portions in the brain upon ischemic injury may be differentiated. Implications of our results are discussed with respect to current understanding of the mechanisms underlying MCAO. We anticipate that SDW-LSCI holds promise for rapid and large field of view localization of ischemic injury.

  19. Visually evoked hemodynamical response and assessment of neurovascular coupling in the optic nerve and retina.

    PubMed

    Riva, Charles E; Logean, Eric; Falsini, Benedetto

    2005-03-01

    The retina and optic nerve are both optically accessible parts of the central nervous system. They represent, therefore, highly valuable tissues for studies of the intrinsic physiological mechanism postulated more than 100 years ago by Roy and Sherrington, by which neural activity is coupled to blood flow and metabolism. This article describes a series of animal and human studies that explored the changes in hemodynamics and oxygenation in the retina and optic nerve in response to increased neural activity, as well as the mechanisms underlying these changes. It starts with a brief review of techniques used to assess changes in neural activity, hemodynamics, metabolism and tissue concentration of various potential mediators and modulators of the coupling. We then review: (a) the characteristics of the flicker-induced hemodynamical response in different regions of the eye, starting with the optic nerve, the region predominantly studied; (b) the effect of varying the stimulus parameters, such as modulation depth, frequency, luminance, color ratio, area of stimulation, site of measurement and others, on this response; (c) data on activity-induced intrinsic reflectance and functional magnetic resonance imaging signals from the optic nerve and retina. The data undeniably demonstrate that visual stimulation is a powerful modulator of retinal and optic nerve blood flow. Exploring the relationship between vasoactivity and metabolic changes on one side and corresponding neural activity changes on the other confirms the existence of a neurovascular/neurometabolic coupling in the neural tissue of the eye fundus and reveals that the mechanism underlying this coupling is complex and multi-factorial. The importance of fully exploiting the potential of the activity-induced vascular changes in the assessment of the pathophysiology of ocular diseases motivated studies aimed at identifying potential mediators and modulators of the functional hyperemia, as well as conditions

  20. ACUTE IMPROVEMENT IN HEMODYNAMIC CONTROL AFTER OSTEOPATHIC MANIPULATIVE TREATMENT IN THE THIRD TRIMESTER OF PREGNANCY

    PubMed Central

    Hensel, Kendi L.; Pacchia, Christina F.; Smith, Michael L.

    2013-01-01

    Objectives The physiological changes that occur during pregnancy, including increased blood volume and cardiac output, can affect hemodynamic control, most profoundly with positional changes that affect venous return to the heart. By using Osteopathic Manipulative Treatment (OMT), a body-based modality theorized to affect somatic structures related to nervous and circulatory systems, we hypothesized that OMT acutely improves both autonomic and hemodynamic control during head-up tilt and heel raise in women at 30 weeks gestation. Design One hundred subjects were recruited at 30 weeks gestation. Setting The obstetric clinics of UNTHealth in Fort Worth, Texas. Intervention Subjects were randomized into one of three treatment groups: OMT, placebo ultrasound, or time control. Ninety subjects had complete data (N=25, 31 and 34 in each group respectively). Main outcome measures Blood pressure and heart rate were recorded during 5 min of head-up tilt followed by 4 min of intermittent heel raising. Results No significant differences in blood pressure, heart rate or heart rate variability were observed between groups with tilt before or after treatment (p>0.36), and heart rate variability was not different between treatment groups (p>0.55). However, blood pressure increased significantly (p=0.02) and heart rate decreased (p<0.01) during heel raise after OMT compared to placebo or time control. Conclusions These data suggest that OMT can acutely improve hemodynamic control during engagement of the skeletal muscle pump and this was most likely due to improvement of structural restrictions to venous return. PMID:24280470

  1. Development and evaluation of a pliable biological valved conduit. Part II: Functional and hemodynamic evaluation.

    PubMed

    Sung, H W; Witzel, T H; Hata, C; Tu, R; Shen, S H; Lin, D; Noishiki, Y; Tomizawa, Y; Quijano, R C

    1993-04-01

    Many congenital cardiac malformations may require a valved conduit for the reconstruction of the right ventricular outflow tract. In spite of many endeavors made in the last 25 years, the clinical results of right ventricular outflow tract reconstruction with currently available valved conduits are still not satisfactory. Specific problems encountered clinically include suboptimal hemodynamic performance, conduit kinking or compression, and fibrous peeling from the luminal surface. To address these deficiencies, we undertook the development of a biological valved conduit: a bovine external jugular vein graft with a retained native valve cross-linked with a diglycidyl ether (DE). This study, using a canine model, was to evaluate the functional and hemodynamic performance of this newly developed valved conduit. Three 14 mm conduits, implanted as bypass grafts, right ventricle to pulmonary artery, were evaluated. The evaluation was conducted with a noninvasive color Doppler flow mapping system at pre-implantation, immediately post implantation, one- and three-months post implantation, and prior to retrieval (five-months post implantation). The two-dimensional tomographic inspection of the leaflet motion at various periods post implantation showed that the valvular leaflets in the DE treated conduit was quite pliable. No cardiac failure or valvular dysfunction was observed in any of the studied cases. The color Doppler flow mapping study demonstrated that the valve in the DE treated conduit was competent, with no conduit kinking or compression observed in any of the three cases. The spectral Doppler velocity study evidenced that the transvalvular pressure gradients of the DE treated conduit were minimal as compared to those of the currently available conduits. In conclusion, from the functional and hemodynamic performance points of view, this newly developed valved conduit is superior to those currently available. PMID:8325697

  2. Bench-to-bedside review: An approach to hemodynamic monitoring--Guyton at the bedside.

    PubMed

    Magder, Sheldon

    2012-10-29

    Hemodynamic monitoring is used to identify deviations from hemodynamic goals and to assess responses to therapy. To accomplish these goals one must understand how the circulation is regulated. In this review I begin with an historical review of the work of Arthur Guyton and his conceptual understanding of the circulation and then present an approach by which Guyton's concepts can be applied at the bedside. Guyton argued that cardiac output and central venous pressure are determined by the interaction of two functions: cardiac function, which is determined by cardiac performance; and a return function, which is determined by the return of blood to the heart. This means that changes in cardiac output are dependent upon changes of one of these two functions or of both. I start with an approach based on the approximation that blood pressure is determined by the product of cardiac output and systemic vascular resistance and that cardiac output is determined by cardiac function and venous return. A fall in blood pressure with no change in or a rise in cardiac output indicates that a decrease in vascular resistance is the dominant factor. If the fall in blood pressure is due to a fall in cardiac output then the role of a change in the return function and cardiac function can be separated by the patterns of changes in central venous pressure and cardiac output. Measurement of cardiac output is a central component to this approach but until recently it was not easy to obtain and was estimated from surrogates. However, there are now a number of non-invasive devices that can give measures of cardiac output and permit the use of physiological principles to more rapidly appreciate the primary pathophysiology behind hemodynamic abnormalities and to provide directed therapy.

  3. [Significance of correlation between weather factors and hemodynamic parameters in patients with arterial hypertension and coronary heart desease receiving traditional treatment and combined therapy with melatonin].

    PubMed

    2011-01-01

    The study included 2 groups of patients with arterial hypertension and coronary heart disease treated by traditional therapy or its combination with melatonin. All 31 patients aged 41-70 years underwent measurement of AP and pulse rate in morning and evening hours. Correlation analysis between hemodynamic parameters and weather factors (curtsey of Institute of Terrestrial Magnetism, Ionosphere and Radiowaves) was performed. The study revealed 64 significant correlations in patients given traditional treatment. Atmospheric pressure, air and dew point temperature proved to have the most pronounced effect on hemodynamic parameters. Morning pulse rate was especially sensitive to meteorological factors. Treatment with melaxene reduced the number of correlations to 35. Specifically, the influence of temperature on hemodynamics decreased whereas effects of dew point temperature, wind speed and direction on the cardiovascular system were totally absent. PMID:22242268

  4. EVALUATION AND TREATMENT OF A PATIENT DIAGNOSED WITH ADHESIVE CAPSULITIS CLASSIFIED AS A DERANGEMENT USING THE MCKENZIE METHOD: A CASE REPORT

    PubMed Central

    Swanson, Brian T.

    2016-01-01

    ABSTRACT Background/Purpose The McKenzie Method of mechanical diagnosis and therapy (MDT) is supported in the literature as a valid and reliable approach to the management of spine injuries. It can also be applied to the peripheral joints, but has not been explored through research to the same extent. This method sub-classifies an injury based on tissue response to mechanical loading and repeated motion testing, with directional preferences identified in the exam used to guide treatment. The purpose of this case report is to demonstrate the assessment, intervention, and clinical outcomes of a subject classified as having a shoulder derangement syndrome using MDT methodology. Case Description The subject was a 52-year-old female with a four-week history of insidious onset left shoulder pain, referred to physical therapy with a medical diagnosis of adhesive capsulitis. She presented with pain (4-7/10 on the visual analog scale [VAS]) and decreased shoulder range of motion that limited her activities of daily living and work capabilities (Upper Extremity Functional Index (UEFI) score: 55/80). Active and passive ranges of motion (A/PROM) were limited in all planes. Repeated motion testing was performed, with an immediate reduction in pain and increased shoulder motion in all planes following repeated shoulder extension. As a result, her MDT classification was determined to be derangement syndrome. Treatment involved specific exercises, primarily repeated motions, identified as symptom alleviating during the evaluation process. Outcomes The subject demonstrated significant improvements in the UEFI (66/80), VAS (0-2/10), and ROM within six visits over eight weeks. At the conclusion of treatment, A/PROM was observed to be equal to the R shoulder without pain. Discussion This subject demonstrated improved symptoms and functional abilities following evaluation and treatment using MDT methodology. While a cause-effect relationship cannot be determined with a single case, MDT

  5. The impact of heparin-coated circuits on hemodynamics during and after cardiopulmonary bypass.

    PubMed

    de Vroege, Roel; Huybregts, Rien; van Oeveren, Wim; van Klarenbosch, Jan; Linley, Gerard; Mutlu, Jihan; Jansen, Evert; Hack, Erik; Eijsman, Leon; Wildevuur, Charles

    2005-06-01

    This study was performed to investigate if heparin-coated extracorporeal circuits can reduce the systemic inflammatory reaction with the subsequent release of vasoactive substances during and after cardiopulmonary bypass. Fifty-one patients scheduled for coronary artery bypass grafting were perfused with either a heparin-coated or an uncoated circuit. During bypass the mean arterial pressure was maintained as near as possible to 60 mm Hg. Mediators for inflammation, hemodynamic, and oxygen parameters were determined during and after bypass. To reach the target mean arterial pressure in the first hour of bypass the pump flow in the uncoated group had to be increased (P<0.05), consequently the systemic vascular resistance index decreased (P<0.05). After bypass more inotropic support was necessary in this group to reach this pressure. In the coated group less bradykinin, complement activation, and elastase was generated during bypass (P<0.05). The results of this study suggest that heparin coating not only improves biocompatibility, but also ameliorates the hemodynamic instability during and after bypass.

  6. Ischemia and reperfusion injury in renal transplantation: hemodynamic and immunological paradigms

    PubMed Central

    Requião-Moura, Lúcio Roberto; Durão, Marcelino de Souza; de Matos, Ana Cristina Carvalho; Pacheco-Silva, Alvaro

    2015-01-01

    Ischemia and reperfusion injury is an inevitable event in renal transplantation. The most important consequences are delayed graft function, longer length of stay, higher hospital costs, high risk of acute rejection, and negative impact of long-term follow-up. Currently, many factors are involved in their pathophysiology and could be classified into two different paradigms for education purposes: hemodynamic and immune. The hemodynamic paradigm is described as the reduction of oxygen delivery due to blood flow interruption, involving many hormone systems, and oxygen-free radicals produced after reperfusion. The immune paradigm has been recently described and involves immune system cells, especially T cells, with a central role in this injury. According to these concepts, new strategies to prevent ischemia and reperfusion injury have been studied, particularly the more physiological forms of storing the kidney, such as the pump machine and the use of antilymphocyte antibody therapy before reperfusion. Pump machine perfusion reduces delayed graft function prevalence and length of stay at hospital, and increases long-term graft survival. The use of antilymphocyte antibody therapy before reperfusion, such as Thymoglobulin™, can reduce the prevalence of delayed graft function and chronic graft dysfunction. PMID:25993079

  7. Coupled simulation of vascular growth and remodeling, hemodynamics and stress-mediated mechanotransduction

    NASA Astrophysics Data System (ADS)

    Wu, Jiacheng; Shadden, Shawn C.

    2015-11-01

    A computational framework to couple vascular G&R, blood flow simulation and stress-mediated mechanotransduction is derived for patient specific geometry. A hyperelastic constitutive relation is considered for vascular material and vessel wall is modeled via constrained mixture theory. The coupled simulation is divided into three time scales - G&R (weeks-years), hemodynamics (seconds) and stress-mediated mechanotransduction (much less than 1 second). G&R is simulated and vessel wall deformation (and tension) is computed to obtain the current vessel geometry, which defines the new boundary for blood flow. Hemodynamics are then simulated in the updated domain to calculate WSS field. A system of ODE's is derived based on conservation law and phenomenological models to describe the signaling pathways from mechanical stimuli (WSS, wall tension) to mass production rate of vascular constituents, which, in turn, changes the kinetics of G&R. To reduce computation cost, blood flow is only simulated when G&R causes significant change to geometry, and steady state response of the ODE system for mechanotransduction is used to characterize the influence of WSS and wall tension on G&R, due to separation of three time scales.

  8. Intravenous vs. left ventricular injection of ionic contrast material: hemodynamic implications for digital subtraction angiography

    SciTech Connect

    Mancini, G.B.; Ostrander, D.R.; Slutsky, R.A.; Shabetai, R.; Higgins, C.B.

    1983-03-01

    Because of the increased use of intravenous injection of contrast material for the evaluation of cardiac structure and function by digital subtraction techniques, a study was done to assess the hemodynamic effects of contrast material when used in this fashion in man. In 10 patients, with each serving as his own control, the effects of intravenous and intraventricular injections of sodium meglumine diatrizoate (Renografin 76) in the same dose were compared. There was no difference between these two methods with respect to changes in pulmonary wedge pressures, systemic pressures, and pulmonary vascular resistance. The elevation of mean pulmonary artery and right atrial pressure was greater after the intraventricular injection (p <0.05). The elevated cardiac output and systemic vascular resistance returned to control values somewhat more quickly after the intravenous injection (p<0.001 and p<0.05, respectively); and the increase in cardiac output was greater after the intravenous injection at 1 min (p<0.05), but less than after the intraventricular injection at 2 min (p<0.05). Despite the detection of these statistically significant differences, the magnitude and timing of these differences are too small to justify the notion that imaging by intravenous injections of standard ionic contrast media provides any substantial hemodynamic benefits or decreased risk to the patient.

  9. Vascular endothelial cells express a functional fas-receptor due to lack of hemodynamic forces.

    PubMed

    Freyberg, M A; Kaiser, D; Graf, R; Friedl, P

    2001-10-01

    The fas system is present in atherosclerotic lesions. However, its role in the initiation and progression is still unclear. Here we show that in endothelial cells (EC) the expression of the fas receptor is regulated by flow conditions. The EC of the vascular system are regularly exposed to a range of hemodynamic forces with great impact on cellular structures and functions. Recently it was reported that in endothelial cells the lack of hemodynamic forces as well as irregular flow conditions trigger apoptosis by induction of a mechanosensitive autocrine loop of thrombospondin-1 and the alpha(V)beta(3) integrin/integrin-associated protein complex. Here we show that EC cultivated under regular laminar flow conditions are devoid of the fas-receptor whereas cultivation under static conditions as well as under turbulence leads to its expression. Stimulation of the fas-receptor by its ligand increases the amount of apoptotic cells by twofold; the increase can be prevented by blocking the fas-receptor. The availability of the expressed fas receptor for stimulation by its ligand hints at a role as a tool for progression of atherosclerosis. PMID:11483857

  10. Renal hemodynamic effects of captopril and doxazosin during slight physical activity in hypertensive patients with type-1 diabetes mellitus.

    PubMed

    Svarstad, E; Gerdts, E; Omvik, P; Ofstad, J; Iversen, B M

    2001-01-01

    Angiotensin-converting enzyme inhibitors are renoprotective in diabetes mellitus through their intrarenal hemodynamic effects. Alpha-1 blockade has variable pre- and postglomerular vasodilatory effects dependent upon the stimulation of the sympathetic nervous system. We tested the hypothesis that the two different classes of drugs have similar renal hemodynamic effects when the patients are examined in an upright position where the sympathetic nervous system is activated. Mean blood pressure (MAP), glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) were examined in 28 hypertensive type-1 diabetic patients with variable degree of nephropathy treated for a mean period of 7.6 +/- 0.4 months with captopril (n = 13) or doxazosin (n = 15). Average treatment doses were 112 +/- 7 mg/day in the captopril group and 8 +/- 1 mg/day in the doxazosin group. Sitting MAP decreased from 118 +/- 3 to 106 +/- 4 mm Hg after captopril (p < 0.05), and from 117 +/- 4 to 110 +/- 3 mm Hg after doxazosin (p = 0.07). GFR and ERPF were unchanged in both groups. The filtration fraction (FF) decreased from 0.27 +/- 0.02 to 0.25 +/- 0.02 after captopril (p < 0.05) and from 0.26 +/- 0.01 to 0.25 +/- 0.01 after doxazosin (p = 0.08). Calculation of 95% confidence intervals of the difference between the post-treatment values as well as the difference between pre- and post-treatment values of MAP, GFR, ERPF and FF of the two drugs indicates no difference in renal hemodynamic response between the drugs. In conclusion, captopril and doxazosin have similar renal hemodynamic responses when the patients are examined in a situation where the sympathetic nervous system is stimulated, and this suggests that doxazosin has a renoprotective effect beyond the blood pressure-lowering effect.

  11. Hemodynamic-impact-based prioritization of ventricular tachycardia alarms.

    PubMed

    Desai, Kalpit; Lexa, Michael; Matthews, Brett; Genc, Sahika

    2014-01-01

    Ventricular tachycardia (V-tach) is a very serious condition that occurs when the ventricles are driven at high rates. The abnormal excitation pathways make ventricular contraction less synchronous resulting in less effective filling and emptying of the left ventricles. However, almost half of the V-tach alarms declared through processing of patterns observed in electrocardiography are not clinically actionable. The focus of this study is to provide guidance on determining whether a technically-correct V-tach alarm is clinically-actionable by determining its "hemodynamic impact". A supervisory learning approach based on conditional inference trees to determine the hemodynamic impact of a V-tach alarm based on extracted features is described. According to preliminary results on a subset of Multiparameter intelligent monitoring in intensive care II (MIMIC-II) database, true positive rate of more than 90% can be achieved. PMID:25570734

  12. Optimal control of CPR procedure using hemodynamic circulation model

    DOEpatents

    Lenhart, Suzanne M.; Protopopescu, Vladimir A.; Jung, Eunok

    2007-12-25

    A method for determining a chest pressure profile for cardiopulmonary resuscitation (CPR) includes the steps of representing a hemodynamic circulation model based on a plurality of difference equations for a patient, applying an optimal control (OC) algorithm to the circulation model, and determining a chest pressure profile. The chest pressure profile defines a timing pattern of externally applied pressure to a chest of the patient to maximize blood flow through the patient. A CPR device includes a chest compressor, a controller communicably connected to the chest compressor, and a computer communicably connected to the controller. The computer determines the chest pressure profile by applying an OC algorithm to a hemodynamic circulation model based on the plurality of difference equations.

  13. Cerebral venous hemodynamic abnormalities in episodic and chronic migraine

    PubMed Central

    Petolicchio, Barbara; Viganò, Alessandro; di Biase, Lazzaro; Tatulli, Doriana; Toscano, Massimiliano; Vicenzini, Edoardo; Passarelli, Francesco; Di Piero, Vittorio

    2016-01-01

    Summary Alterations of cerebral venous drainage have been demonstrated in chronic migraine (CM), suggesting that cerebral venous hemodynamic abnormalities (CVHAs) play a role in this condition. The aim of the present study was to look for a correlation between CM and CVHAs. We recruited 33 subjects suffering from CM with or without analgesic overuse, 29 episodic migraine (EM) patients with or without aura, and 21 healthy subjects as controls (HCs). CVHAs were evaluated by transcranial and extracranial echo-color Doppler evaluation of five venous hemodynamic parameters. CVHAs were significantly more frequent in the CM and EM patients than in the HCs. In the migraine patients, CVHAs were not correlated with clinical features. The significantly greater frequency of CVHAs observed in the migraineurs may reflect a possible relationship between migraine and these abnormalities. Prospective longitudinal studies are needed to investigate whether CVHAs have a role in the processes of migraine chronification. PMID:27358220

  14. Hemodynamic Responses to Head and Neck Cooling

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Carbo, Jorge E.; Montgomery, Leslie D.; Webbon, Bruce W.

    1994-01-01

    Personal thermoregulatory systems which provide head and neck cooling are used in the industrial and aerospace environments to alleviate thermal stress. However, little information is available regarding the physiologic and circulatory changes produced by routine operation of these systems. The objective of this study was to measure the scalp temperature and circulatory responses during use of one commercially available thermal control system. The Life Support Systems, Inc. Mark VII portable cooling system and a liquid cooling helmet were used in this study. Two EEG electrodes and one skin temperature transducer were placed on the anterior midline of the scalp to measure the scalp blood and temperature. Blood flow was measured using a bipolar impedance rheograph. Ten subjects, seated in an upright position at normal room temperature, were tested at high, medium, moderate, moderate-low and low coolant temperatures. Scalp blood flow was recorded continuously using a computer data acquisition system with a sampling frequency of 200 Hz. Scalp temperature and cooling helmet Inlet temperature was logged periodically during the test period. This study quantifies the effect of head cooling upon scalp temperature and blood flow. These data may also be used to select operational specifications of the head cooling system for biomedical applications such as the treatment of migraine headaches, scalp cooling during chemotherapy, and cooling of multiple sclerosis patients.

  15. Near-infrared measurements of hemodynamic and oxygenation changes on the frontal cortex during breath holding, hyperventilation, and natural sleep

    NASA Astrophysics Data System (ADS)

    Noponen, Tommi E.; Kotilahti, Kalle; Toppila, Jussi; Nissila, Ilkka T.; Salmi, Tapani; Kajava, Timo T.; Katila, Toivo E.

    2003-07-01

    We have developed a frequency-domain near-infrared device suitable for physiological studies in human. In this work, a four-channel configuration of the instrument is applied to monitor hemodynamic and oxygenation changes in the frontal cortex of volunteers during different ventilation tasks. We use four different source-receiver separations (2, 3, 4, and 5 cm) and three wavelengths (760, 808, and 830 nm) to test the sensitivity of these parameters to cardiovascular and metabolic changes. Low-frequency oscillations (~ 0.02 Hz) and variations in heart rate during different ventilation tasks are investigated as well. We also study physiological changes during natural sleep using the frequency-domain instrument simultaneously with a polysomnography system containing a pulse oximeter. Our results indicate that hemodynamic and oxygenation changes in the frontal cortex during natural sleep can be detected using near-infrared measurements.

  16. The Impact of Hemodialysis and Arteriovenous Access Flow on Extracranial Hemodynamic Changes in End-Stage Renal Disease Patients.

    PubMed

    Chung, Sarah; Jeong, Hye Seon; Choi, Dae Eun; Song, Hee-Jung; Lim, Young Gi; Ham, Joo Yeon; Na, Ki Ryang; Lee, Kang Wook

    2016-08-01

    In this study, we characterized cerebral blood flow changes by assessment of blood flow parameters in neck arteries using carotid duplex ultrasonography and predictive factors for these hemodynamic changes. Hemodynamic variables were measured before and during hemodialysis in 81 patients with an arteriovenous access in their arm. Hemodialysis produced significant lowering in peak systolic velocity and flow volume of neck arteries and calculated total cerebral blood flow (1,221.9 ± 344.9 [before hemodialysis] vs. 1,085.8 ± 319.2 [during hemodialysis], P < 0.001). Effects were greater in vessels on the same side as the arteriovenous access and these changes were influenced by arteriovenous access flow during hemodialysis, both in the CCA (r = -0.277, P = 0.015) and the VA (r = -0.239, P = 0.034). The change of total cerebral blood flow during hemodialysis was independently related with age, presence of diabetes, and systemic blood pressure. PMID:27478334

  17. Pharmacological Modulation of Hemodynamics in Adult Zebrafish In Vivo

    PubMed Central

    Brönnimann, Daniel; Dellenbach, Christian; Saveljic, Igor; Rieger, Michael; Rohr, Stephan; Filipovic, Nenad; Djonov, Valentin

    2016-01-01

    Introduction Hemodynamic parameters in zebrafish receive increasing attention because of their important role in cardiovascular processes such as atherosclerosis, hematopoiesis, sprouting and intussusceptive angiogenesis. To study underlying mechanisms, the precise modulation of parameters like blood flow velocity or shear stress is centrally important. Questions related to blood flow have been addressed in the past in either embryonic or ex vivo-zebrafish models but little information is available for adult animals. Here we describe a pharmacological approach to modulate cardiac and hemodynamic parameters in adult zebrafish in vivo. Materials and Methods Adult zebrafish were paralyzed and orally perfused with salt water. The drugs isoprenaline and sodium nitroprusside were directly applied with the perfusate, thus closely resembling the preferred method for drug delivery in zebrafish, namely within the water. Drug effects on the heart and on blood flow in the submental vein were studied using electrocardiograms, in vivo-microscopy and mathematical flow simulations. Results Under control conditions, heart rate, blood flow velocity and shear stress varied less than ± 5%. Maximal chronotropic effects of isoprenaline were achieved at a concentration of 50 μmol/L, where it increased the heart rate by 22.6 ± 1.3% (n = 4; p < 0.0001). Blood flow velocity and shear stress in the submental vein were not significantly increased. Sodium nitroprusside at 1 mmol/L did not alter the heart rate but increased blood flow velocity by 110.46 ± 19.64% (p = 0.01) and shear stress by 117.96 ± 23.65% (n = 9; p = 0.03). Discussion In this study, we demonstrate that cardiac and hemodynamic parameters in adult zebrafish can be efficiently modulated by isoprenaline and sodium nitroprusside. Together with the suitability of the zebrafish for in vivo-microscopy and genetic modifications, the methodology described permits studying biological processes that are dependent on hemodynamic

  18. Altering hemodynamics leads to congenital heart defects (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ford, Stephanie M.; McPheeters, Matthew T.; Wang, Yves T.; Gu, Shi; Doughman, Yong Qiu; Strainic, James P.; Rollins, Andrew M.; Watanabe, Michiko; Jenkins, Michael W.

    2016-03-01

    The role of hemodynamics in early heart development is poorly understood. In order to successfully assess the impact of hemodynamics on development, we need to monitor and perturb blood flow, and quantify the resultant effects on morphology. Here, we have utilized cardiac optical pacing to create regurgitant flow in embryonic hearts and OCT to quantify regurgitation percentage and resultant morphology. Embryonic quail in a shell-less culture were optically paced at 3 Hz (well above the intrinsic rate or 1.33-1.67 Hz) on day 2 of development (3-4 weeks human) for 5 minutes. The pacing fatigued the heart and led to a prolonged period (> 1 hour) of increased regurgitant flow. Embryos were kept alive until day 3 (cardiac looping - 4-5 weeks human) or day 8 (4 chambered heart - 8 weeks human) to quantify resultant morphologic changes with OCT. All paced embryos imaged at day 3 displayed cardiac defects. The extent of regurgitant flow immediately after pacing was correlated with cardiac cushion size 24-hours post pacing (p-value < 0.01) with higher regurgitation leading to smaller cushions. Almost all embryos (16/18) surviving to day 8 exhibited congenital heart defects (CHDs) including 11/18 with valve defects, 5/18 with ventricular septal defects and 5/18 with hypoplastic right ventricles. Our data suggests that regurgitant flow leads to smaller cushions, which develop into abnormal valves and septa. Our model produces similar phenotypes as found in our fetal alcohol syndrome and velo-cardio-facial/DiGeorge syndrome models suggesting that hemodynamics plays a role in these syndromes as well. Utilizing OCT and optical pacing to understand hemodynamics in development is an important step towards determining CHD mechanisms and ultimately developing earlier treatments.

  19. A comparative study of fluoride ingestion levels, serum thyroid hormone & TSH level derangements, dental fluorosis status among school children from endemic and non-endemic fluorosis areas.

    PubMed

    Singh, Navneet; Verma, Kanika Gupta; Verma, Pradhuman; Sidhu, Gagandeep Kaur; Sachdeva, Suresh

    2014-01-01

    The study was undertaken to determine serum/urinary fluoride status and comparison of free T4, free T3 and thyroid stimulating hormone levels of 8 to 15 years old children with and without dental fluorosis living in an endemic and non-endemic fluorosis area. A sample group of 60 male and female school children, with or without dental fluorosis, consuming fluoride-contaminated water in endemic fluoride area of Udaipur district, Rajasthan were selected through a school dental fluorosis survey. The sample of 10 children of same age and socio-economic status residing in non endemic areas who did not have dental fluorosis form controls. Fluoride determination in drinking water, urine and blood was done with Ion 85 Ion Analyzer Radiometer with Hall et al. method. The thyroid gland functional test was done by Immonu Chemiluminiscence Micropartical Assay with Bayer Centaur Autoanalyzer. The significantly altered FT3, FT4 and TSH hormones level in both group1A and 1B school children were noted. The serum and urine fluoride levels were found to be increased in both the groups. A significant relationship of water fluoride to urine and serum fluoride concentration was seen. The serum fluoride concentration also had significant relationship with thyroid hormone (FT3/FT4) and TSH concentrations. The testing of drinking water and body fluids for fluoride content, along with FT3, FT4, and TSH in children with dental fluorosis is desirable for recognizing underlying thyroid derangements and its impact on fluorosis.

  20. Stenosis hemodynamics: from physical principles to clinical indices.

    PubMed

    Brown, Donald J; Smith, Francis W K

    2002-01-01

    Clinical evaluation of patients with aortic stenosis entails hemodynamic determinations and interpretations that depend on complex blood flow patterns. Although pressure gradient and Doppler velocity are intrinsically adjusted for a wide range of species and body size, they are highly flow-dependent indices that can vary among patients with physically identical stenosis areas and within individuals between determinations. Other indices, such as the Gorlin area, are adjusted for flow. All stenosis indices derived from hemodynamic measurements, however, must exhibit some degree of flow dependence because of fundamental aspects of fluid dynamics that affect the blood velocity profile. The Gorlin effective orifice area is an index that sacrifices adjustment for body size. This hinders comparisons over a range of patient species, breed, and size because it may be problematic to determine what effective orifice area is appropriate for a given individual. One potential solution is to compare the effective area of an individual's normal tract, if one exists, to the tract in question as a ratio, the effective orifice area ratio (EOAR). The EOAR can be estimated from the ratio of flow velocity integrals (FVIs) of the 2 outflow tracts. Clinical data and experience are lacking, but theoretical advantages of the index include intrinsic adjustment for both body size and flow rate. Aortic stenosis is a complex, multifactorial disease, and selection of an optimal hemodynamic severity index may not result in adequate prognostic criteria for segregation of patient risk and treatment groups.

  1. Hemodynamic Responses to Speech and Music in Preverbal Infants

    PubMed Central

    Fava, Eswen; Hull, Rachel; Baumbauer, Kyle; Bortfeld, Heather

    2013-01-01

    Numerous studies have provided clues about the ontogeny of lateralization of auditory processing in humans, but most have employed specific subtypes of stimuli and/or have assessed responses in discrete temporal windows. The present study used near-infrared spectroscopy (NIRS) to establish changes in hemodynamic activity in the neocortex of preverbal infants (aged 4-11 months) while they were exposed to two distinct types of complex auditory stimuli (full sentences and musical phrases). Measurements were taken from bilateral temporal regions, including both anterior and posterior superior temporal gyri. When the infant sample was treated as a homogenous group, no significant effects emerged for stimulus type. However, when infants' hemodynamic responses were categorized according to their overall changes in volume, two very clear neurophysiological patterns emerged. A high responder group, showed a pattern of early and increasing activation, primarily in the left hemisphere, similar to that observed in comparable studies with adults. In contrast, a low responder group showed a pattern of gradual decreases inactivation over time. Although age did track with responder type, no significant differences between these groups emerged for stimulus type, suggesting that the high versus low responder characterization generalizes across classes of auditory stimuli. These results highlight a new way to conceptualize the variable cortical blood flow patterns that are frequently observed across infants and stimuli, with hemodynamic response volumes potentially serving as an early indicator of developmental changes in auditory processing sensitivity. PMID:23777481

  2. Hemodynamic responses to speech and music in preverbal infants.

    PubMed

    Fava, Eswen; Hull, Rachel; Baumbauer, Kyle; Bortfeld, Heather

    2014-01-01

    Numerous studies have provided clues about the ontogeny of lateralization of auditory processing in humans, but most have employed specific subtypes of stimuli and/or have assessed responses in discrete temporal windows. The present study used near-infrared spectroscopy (NIRS) to establish changes in hemodynamic activity in the neocortex of preverbal infants (aged 4-11 months) while they were exposed to two distinct types of complex auditory stimuli (full sentences and musical phrases). Measurements were taken from bilateral temporal regions, including both anterior and posterior superior temporal gyri. When the infant sample was treated as a homogenous group, no significant effects emerged for stimulus type. However, when infants' hemodynamic responses were categorized according to their overall changes in volume, two very clear neurophysiological patterns emerged. A high-responder group showed a pattern of early and increasing activation, primarily in the left hemisphere, similar to that observed in comparable studies with adults. In contrast, a low-responder group showed a pattern of gradual decreases in activation over time. Although age did track with responder type, no significant differences between these groups emerged for stimulus type, suggesting that the high- versus low-responder characterization generalizes across classes of auditory stimuli. These results highlight a new way to conceptualize the variable cortical blood flow patterns that are frequently observed across infants and stimuli, with hemodynamic response volumes potentially serving as an early indicator of developmental changes in auditory-processing sensitivity.

  3. A study of the hemodynamics of anterior communicating artery aneurysms

    NASA Astrophysics Data System (ADS)

    Cebral, Juan R.; Castro, Marcelo A.; Putman, Christopher M.

    2006-03-01

    In this study, the effects of unequal physiologic flow conditions in the internal carotid arteries on the intra-aneurysmal hemodynamics of anterior communicating artery aneurysms were investigated. Patient-specific vascular computational fluid dynamics models of five cerebral aneurysms were constructed from bilateral 3D rotational angiography images. The aneurysmal hemodynamics was analyzed under a range of physiologic flow conditions including the effects of unequal mean flows and phase shifts between the flow waveforms of the left and right internal carotid arteries. A total of five simulations were performed for each patient, and unsteady wall shear stress (WSS) maps were created for each flow condition. Time dependent curves of average WSS magnitude over selected regions on the aneurysms were constructed and used to analyze the influence of the inflow conditions. It was found that mean flow imbalances in the feeding vessels tend to shift the regions of elevated WSS (flow impingement region) towards the dominating inflow jet and to change the magnitude of the WSS peaks. However, the overall qualitative appearance of the WSS distribution and velocity simulations is not substantially affected. In contrast, phase differences tend to increase the temporal complexity of the hemodynamic patterns and to destabilize the intra-aneurysmal flow pattern. However, these effects are less important when the A1 confluence is less symmetric, i.e. dominated by one of the A1 segments. Conditions affecting the flow characteristics in the parent arteries of cerebral aneurysms with more than one avenue of inflow should be incorporated into flow models.

  4. [Study on Indicator Densitometry Determination Method of Hemodynamic Parameters].

    PubMed

    Liu, Guang-da; Zhou, Run-dong; Zha, Yu-tong; Cai, Jing; Niu, Jun-qi; Gao, Pu-jun; Liu, Li-li

    2016-03-01

    Measurement for hemodynamic parameters has always been a hot spot of clinical research. Methods for measuring hemodynamic parameters clinically have the problems of invasiveness, complex operation and being unfit for repeated measurement. To solve the problems, an indicator densitometry analysis method is presented based on near-infrared spectroscopy (NIRS) and indicator dilution theory, which realizes the hemodynamic parameters measured noninvasively. While the indocyanine green (ICG) was injected into human body, circulation carried the indicator mixing and diluting with the bloodstream. Then the near-nfrared probe was used to emit near-infrared light at 735, 805 and 940 nm wavelengths through the sufferer's fingertip and synchronously capture the transmission light containing the information of arterial pulse wave. By uploading the measured data, the computer would calculate the ICG concentration, establish continuous concentration curve and compute some intermediate variables such as the mean transmission time (MTT) and the initial blood ICG concentration (c(t0)). Accordingly Cardiac Output (CO) and Circulating Blood Volume (CBV) could be calculated. Compared with the clinical "gold standard" methods of thermodilution and I-131 isotope-labelling method to measure the two parameters by clinical controlled trials, ten sets of data were obtained. The maximum relative errors of this method were 8.88% and 4.28% respectively, and both of the average relative errors were below 5%. The result indicates that this method can meet the clinical accuracy requirement and can be used as a noninvasive, repeatable and applied solution for clinical hemodynamnic parameters measurement. PMID:27400501

  5. Hemodynamics in Coronary Arterial Tree of Serial Stenoses

    PubMed Central

    Lu, Bin; Jia, Xinwei; Zhong, Liang; Kassab, Ghassan S.; Tan, Wenchang

    2016-01-01

    Serial segmental narrowing frequently occurs in humans, which alters coronary hemodynamics and further affects atherosclerotic progression and plaque formation. The objective of this study was to understand the distribution of hemodynamic parameters in the epicardial left main coronary arterial (LMCA) tree with serial stenoses reconstructed from patient computer tomography angiography (CTA) images. A finite volume method was used in conjunction with the inlet pressure wave and outlet flow resistance. The time-averaged wall shear stress (TAWSS) and oscillatory shear index (OSI) were determined from the flow field. A stenosis at a mother vessel mainly deteriorated the hemodynamics near the bifurcation while a stenosis at a daughter vessel affected the remote downstream bifurcation. In comparison with a single stenosis, serial stenoses increased the peak pressure gradient along the main trunk of the epicardial left anterior descending arterial tree by > 50%. An increased distance between serial stenoses further increased the peak pressure gradient. These findings have important implications on the diagnosis and treatment of serial coronary stenoses. PMID:27685989

  6. Hemodynamics alter arterial low-density lipoprotein metabolism

    SciTech Connect

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S. )

    1989-10-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels.

  7. Hemodynamics in an Aorta with Bicuspid and Trileaflet Valves

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Sotiropoulos, Fotis

    2015-11-01

    Bicuspid aortic valve (BAV) is a congenital heart defect that has been associated with serious aortopathies, such as ascending aortic aneurysm, aortic stenosis, aortic regurgitation, infective endocarditis, aortic dissection, calcific aortic valve and dilatation of ascending aorta. Two main hypotheses - the genetic and the hemodynamic are discussed in literature to explain the development and progression of aortopathies in patients with BAV. In this study we seek to investigate the possible role of hemodynamic factors as causes of BAV-associated aortopathy. We employ the Curvilinear Immersed Boundary (CURVIB) method coupled with an efficient thin-shell finite element (TS-FE) formulation for tissues to carry out fluid-structure interaction simulations of a healthy tri-leaflet aortic valve (TAV) and a BAV placed in the same anatomic aorta. The computed results reveal major differences between the TAV and BAV flow patterns. These include: the dynamics of the aortic valve vortex ring formation and break up; the large scale flow patterns in the ascending aorta; and the shear stress magnitude on the aortic wall. The computed results are in qualitative agreement with in vivo Magnetic Resonance Imaging (MRI) data and suggest that the linkages between BAV aortopathy and hemodynamics deserve further investigation. This work is supported by the Lillehei Heart Institute at the University of Minnesota and the Minnesota Supercomputing Institute.

  8. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves

    NASA Astrophysics Data System (ADS)

    Gilmanov, Anvar; Sotiropoulos, Fotis

    2016-04-01

    Bicuspid aortic valve (BAV) is a congenital heart defect that has been associated with serious aortopathies, such as aortic stenosis, aortic regurgitation, infective endocarditis, aortic dissection, calcific aortic valve and dilatation of ascending aorta. There are two main hypotheses to explain the increase prevalence of aortopathies in patients with BAV: the genetic and the hemodynamic. In this study, we seek to investigate the possible role of hemodynamic factors as causes of BAV-associated aortopathy. We employ the curvilinear immersed boundary method coupled with an efficient thin-shell finite-element formulation for tissues to carry out fluid-structure interaction simulations of a healthy trileaflet aortic valve (TAV) and a BAV placed in the same anatomic aorta. The computed results reveal major differences between the TAV and BAV flow patterns. These include: the dynamics of the aortic valve vortex ring formation and break up; the large-scale flow patterns in the ascending aorta; the shear stress magnitude, directions, and dynamics on the heart valve surfaces. The computed results are in qualitative agreement with in vivo magnetic resonance imaging data and suggest that the linkages between BAV aortopathy and hemodynamics deserve further investigation.

  9. Biological and hemodynamic effects of low doses of fludrocortisone and hydrocortisone, alone or in combination, in healthy volunteers with hypoaldosteronism.

    PubMed

    Laviolle, B; Le Maguet, P; Verdier, M-C; Massart, C; Donal, E; Lainé, F; Lavenu, A; Pape, D; Bellissant, E

    2010-08-01

    Low doses of hydrocortisone (HC) and fludrocortisone (FC) administered together improve the prognosis after septic shock; however, there continues to be disagreement about the utility of FC for this indication. The biological and hemodynamic effects of HC (50 mg intravenously) and FC (50 microg orally) were assessed in 12 healthy male volunteers with saline-induced hypoaldosteronism in a placebo-controlled, randomized, double-blind, crossover study performed according to a 2 x 2 factorial design. HC and FC significantly decreased urinary sodium and potassium levels (from -58% at 4 h to -28% at 10 h and from -35% at 8 h to -24% at 12 h, respectively) with additive effects. At 4 h after administration, HC significantly increased cardiac output (+14%), decreased systemic vascular resistances (-14%), and slightly increased heart rate (+4 beats/min), whereas FC had no hemodynamic effect. At doses used in septic shock, HC induced greater mineralocorticoid effect than FC did. HC also induced transient systemic hemodynamic effects, whereas FC did not. New studies are required to better define the optimal dose of FC in septic shock.

  10. Impact of the postpump resistance on pressure-flow waveform and hemodynamic energy level in a neonatal pulsatile centrifugal pump.

    PubMed

    Wang, Shigang; Haines, Nikkole; Richardson, J Scott; Dasse, Kurt A; Undar, Akif

    2009-01-01

    This study tested the impact of different postpump resistances on pulsatile pressure-flow waveforms and hemodynamic energy output in a mock extracorporeal system. The circuit was primed with a 40% glycerin-water mixture, and a PediVAS centrifugal pump was used. The pre- and postpump pressures and flow rates were monitored via a data acquisition system. The postpump resistance was adjusted using a Hoffman clamp at the outlet of the pump. Five different postpump resistances and rotational speeds were tested with nonpulsatile (NP: 5000 RPM) and pulsatile (P: 4000 RPM) modes. No backflow was found when using pulsatile flow. With isoresistance, increased arterial resistances decreased pump flow rates (NP: from 1,912 ml/min to 373 ml/min; P: from 1,485 ml/min to 288 ml/min), increased postpump pressures (NP: from 333 mm Hg to 402 mm Hg; P: from 223 mm Hg to 274 mm Hg), and increased hemodynamic energy output with pulsatile mode. Pump flow rate correlated linearly with rotational speed (RPMs) of the pump, whereas postpump pressures and hemodynamic energy outputs showed curvilinear relationships with RPMs. The maximal pump flow rate also increased from 618 ml/min to 4,293 ml/min with pulsatile mode and from 581 ml/min to 5,665 ml/min with nonpulsatile mode. Results showed that higher postpump resistance reduced the pump flow range, and increased postpump pressure and surplus hemodynamic energy output with pulsatile mode. Higher rotational speeds also generated higher pump flow rates, postpump pressures, and increased pulsatility.

  11. Regulation of Renal Hemodynamics and Function by RGS2.

    PubMed

    Osei-Owusu, Patrick; Owens, Elizabeth A; Jie, Li; Reis, Janaina S; Forrester, Steven J; Kawai, Tatsuo; Eguchi, Satoru; Singh, Harpreet; Blumer, Kendall J

    2015-01-01

    Regulator of G protein signaling 2 (RGS2) controls G protein coupled receptor (GPCR) signaling by acting as a GTPase-activating protein for heterotrimeric G proteins. Certain Rgs2 gene mutations have been linked to human hypertension. Renal RGS2 deficiency is sufficient to cause hypertension in mice; however, the pathological mechanisms are unknown. Here we determined how the loss of RGS2 affects renal function. We examined renal hemodynamics and tubular function by monitoring renal blood flow (RBF), glomerular filtration rate (GFR), epithelial sodium channel (ENaC) expression and localization, and pressure natriuresis in wild type (WT) and RGS2 null (RGS2-/-) mice. Pressure natriuresis was determined by stepwise increases in renal perfusion pressure (RPP) and blood flow, or by systemic blockade of nitric oxide synthase with L-NG-Nitroarginine methyl ester (L-NAME). Baseline GFR was markedly decreased in RGS2-/- mice compared to WT controls (5.0 ± 0.8 vs. 2.5 ± 0.1 μl/min/g body weight, p<0.01). RBF was reduced (35.4 ± 3.6 vs. 29.1 ± 2.1 μl/min/g body weight, p=0.08) while renal vascular resistance (RVR; 2.1 ± 0.2 vs. 3.0 ± 0.2 mmHg/μl/min/g body weight, p<0.01) was elevated in RGS2-/- compared to WT mice. RGS2 deficiency caused decreased sensitivity and magnitude of changes in RVR and RBF after a step increase in RPP. The acute pressure-natriuresis curve was shifted rightward in RGS2-/- relative to WT mice. Sodium excretion rate following increased RPP by L-NAME was markedly decreased in RGS2-/- mice and accompanied by increased translocation of ENaC to the luminal wall. We conclude that RGS2 deficiency impairs renal function and autoregulation by increasing renal vascular resistance and reducing renal blood flow. These changes impair renal sodium handling by favoring sodium retention. The findings provide a new line of evidence for renal dysfunction as a primary cause of hypertension. PMID:26193676

  12. Regulation of Renal Hemodynamics and Function by RGS2

    PubMed Central

    Osei-Owusu, Patrick; Owens, Elizabeth A.; Jie, Li; Reis, Janaina S.; Forrester, Steven J.; Kawai, Tatsuo; Eguchi, Satoru; Singh, Harpreet; Blumer, Kendall J.

    2015-01-01

    Regulator of G protein signaling 2 (RGS2) controls G protein coupled receptor (GPCR) signaling by acting as a GTPase-activating protein for heterotrimeric G proteins. Certain Rgs2 gene mutations have been linked to human hypertension. Renal RGS2 deficiency is sufficient to cause hypertension in mice; however, the pathological mechanisms are unknown. Here we determined how the loss of RGS2 affects renal function. We examined renal hemodynamics and tubular function by monitoring renal blood flow (RBF), glomerular filtration rate (GFR), epithelial sodium channel (ENaC) expression and localization, and pressure natriuresis in wild type (WT) and RGS2 null (RGS2-/-) mice. Pressure natriuresis was determined by stepwise increases in renal perfusion pressure (RPP) and blood flow, or by systemic blockade of nitric oxide synthase with L-NG-Nitroarginine methyl ester (L-NAME). Baseline GFR was markedly decreased in RGS2-/- mice compared to WT controls (5.0 ± 0.8 vs. 2.5 ± 0.1 μl/min/g body weight, p<0.01). RBF was reduced (35.4 ± 3.6 vs. 29.1 ± 2.1 μl/min/g body weight, p=0.08) while renal vascular resistance (RVR; 2.1 ± 0.2 vs. 3.0 ± 0.2 mmHg/μl/min/g body weight, p<0.01) was elevated in RGS2-/- compared to WT mice. RGS2 deficiency caused decreased sensitivity and magnitude of changes in RVR and RBF after a step increase in RPP. The acute pressure–natriuresis curve was shifted rightward in RGS2-/- relative to WT mice. Sodium excretion rate following increased RPP by L-NAME was markedly decreased in RGS2-/- mice and accompanied by increased translocation of ENaC to the luminal wall. We conclude that RGS2 deficiency impairs renal function and autoregulation by increasing renal vascular resistance and reducing renal blood flow. These changes impair renal sodium handling by favoring sodium retention. The findings provide a new line of evidence for renal dysfunction as a primary cause of hypertension. PMID:26193676

  13. [Hemodynamic analysis of a centrifugal blood pump].

    PubMed

    Wang, Yang; Yang, Ming; Xu, Zihao; Zhuang, Xiaoqi; Li, Qilei; Xu, Liang

    2015-01-01

    This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels.

  14. Label-Free Determination of Hemodynamic Parameters in the Microcirculaton with Third Harmonic Generation Microscopy

    PubMed Central

    Dietzel, Steffen; Pircher, Joachim; Nekolla, A. Katharina; Gull, Mazhar; Brändli, André W.; Pohl, Ulrich; Rehberg, Markus

    2014-01-01

    Determination of blood flow velocity and related hemodynamic parameters is an important aspect of physiological studies which in many settings requires fluorescent labeling. Here we show that Third Harmonic Generation (THG) microscopy is a suitable tool for label-free intravital investigations of the microcirculation in widely-used physiological model systems. THG microscopy is a non-fluorescent multi-photon scanning technique combining the advantages of label-free imaging with restriction of signal generation to a focal spot. Blood flow was visualized and its velocity was measured in adult mouse cremaster muscle vessels, non-invasively in mouse ear vessels and in Xenopus tadpoles. In arterioles, THG line scanning allowed determination of the flow pulse velocity curve and hence the heart rate. By relocating the scan line we obtained velocity profiles through vessel diameters, allowing shear rate calculations. The cell free layer containing the glycocalyx was also visualized. Comparison of the current microscopic resolution with theoretical, diffraction limited resolution let us conclude that an about sixty-fold THG signal intensity increase may be possible with future improved optics, optimized for 1200–1300 nm excitation. THG microscopy is compatible with simultaneous two-photon excited fluorescence detection. It thus also provides the opportunity to determine important hemodynamic parameters in parallel to common fluorescent observations without additional label. PMID:24933027

  15. Hemodynamic effects of 6% hydroxyethyl starch infusion in sevoflurane-anesthetized thoroughbred horses.

    PubMed

    Ohta, Minoru; Kurimoto, Shinjiro; Tokushige, Hirotaka; Kuroda, Taisuke; Ishikawa, Yuhiro

    2013-07-31

    To determine hemodynamic effects of hydroxyethyl starch (HES) infusion during anesthesia in horses, incremental doses of 6% HES were administered to 6 healthy Thoroughbred horses. Anesthesia was induced with xylazine, guaifenesin and thiopental and maintained with sevoflurane at 2.8% of end-tidal concentration in all horses. The horses were positioned in right lateral recumbency and administered 3 intravenous dose of 6% HES (5 ml/kg) over 15 min with 15-min intervals in addition to constant infusion of lactated Ringer's solution at 10 ml/kg/hr. Hemodynamic parameters were measured before and every 15 min until 90 min after the administration of 6% HES. There was no significant change in heart rate and arterial blood pressures throughout the experiment. The HES administration produced significant increases in mean right atrial pressure, stroke volume, cardiac output (CO) and decrease in systemic vascular resistance (SVR) in a dose-dependent manner. There was no significant change in electrolytes (Na(+), K(+), Cl(-)) throughout the experiment, however, packed cell volume, hemoglobin concentration, and total protein and albumin concentrations decreased in a dose-dependent manner following the HES administration. In conclusion, the HES administration provides a dose-dependent increase in CO, but has no impact upon arterial blood pressures due to a simultaneous decrease in SVR. PMID:23411483

  16. Time-Frequency Characterization of Cerebral Hemodynamics of Migraine Sufferers as Assessed by NIRS Signals

    NASA Astrophysics Data System (ADS)

    Molinari, Filippo; Rosati, Samanta; Liboni, William; Negri, Emanuela; Mana, Ornella; Allais, Gianni; Benedetto, Chiara

    2010-12-01

    Near-infrared spectroscopy (NIRS) is a noninvasive system for the real-time monitoring of the concentration of oxygenated ([InlineEquation not available: see fulltext.]) and reduced (HHb) hemoglobin in the brain cortex. [InlineEquation not available: see fulltext.] and HHb concentrations vary in response to cerebral autoregulation. Sixty-eight women (14 migraineurs without aura, 49 migraineurs with aura, and 5 controls) performed breath-holding and hyperventilation during NIRS recordings. Signals were processed using the Choi-Williams time-frequency transform in order to measure the power variation of the very-low frequencies (VLF: 20-40 mHz) and of the low frequencies (LF: 40-140 mHz). Results showed that migraineurs without aura present different LF and VLF power levels than controls and migraineurs with aura. The accurate power measurement of the time-frequency analysis allowed for the discrimination of the subjects' hemodynamic patterns. The time-frequency analysis of NIRS signals can be used in clinical practice to assess cerebral hemodynamics.

  17. The hemodynamic effects of methylene blue when administered at the onset of cardiopulmonary bypass.

    PubMed

    Maslow, Andrew D; Stearns, Gary; Butala, Parag; Batula, Parag; Schwartz, Carl S; Gough, Jeffrey; Singh, Arun K

    2006-07-01

    Hypotension occurs during cardiopulmonary bypass (CPB), in part because of induction of the inflammatory response, for which nitric oxide and guanylate cyclase play a central role. In this study we examined the hemodynamic effects of methylene blue (MB), an inhibitor of guanylate cyclase, administered during cardiopulmonary bypass (CPB) to patients taking angiotensin-converting enzyme inhibitors. Thirty patients undergoing cardiac surgery were randomized to receive either MB (3 mg/kg) or saline (S) after institution of CPB and cardioplegic arrest. CPB was managed similarly for all study patients. Hemodynamic data were assessed before, during, and after CPB. The use of vasopressors was recorded. All study patients experienced a similar reduction in mean arterial blood pressure (MAP) and systemic vascular resistance (SVR) with the onset of CPB and cardioplegic arrest. MB increased MAP and SVR and this effect lasted for 40 minutes. The saline group demonstrated a persistently reduced MAP and SVR throughout CPB. The saline group received phenylephrine more frequently during CPB, and more norepinephrine after CPB to maintain a desirable MAP. The MB group recorded significantly lower serum lactate levels despite equal or greater MAP and SVR. In conclusion, administration of MB after institution of CPB for patients taking angiotensin-converting enzyme inhibitors increased MAP and SVR and reduced the need for vasopressors. Furthermore, serum lactate levels were lower in MB patients, suggesting more favorable tissue perfusion. PMID:16790616

  18. Altered hemodynamics during muscle metaboreflex in young type 1 diabetes patients.

    PubMed

    Roberto, Silvana; Marongiu, Elisabetta; Pinna, Marco; Angius, Luca; Olla, Sergio; Bassareo, Pierpaolo; Tocco, Filippo; Concu, Alberto; Milia, Raffaele; Crisafulli, Antonio

    2012-10-15

    A reduction in catecholamine levels during exercise has been described in young subjects with type 1 diabetes mellitus (DM1). It has been suggested that type 1 diabetes per se is associated with the loss of sympathetic response before any clinical evidence. Considering that an increase in sympathetic drive is required for normal cardiovascular response to muscle metaboreflex, the aim of this study was to assess the hemodynamics during metaboreflex in DM1 patients. Impedance cardiography was used to measure hemodynamics during metaboreflex activation, obtained through postexercise ischemia in 14 DM1 patients and in 11 healthy controls (CTL). Principal results were: 1) blunted blood pressure response during metaboreflex was observed in DM1 patients compared with the CTL; 2) reduced capacity to increase systemic vascular resistance was also witnessed in DM1 subjects; 3) DM1 subjects reported higher stroke volumes as a consequence of reduced cardiac afterload compared with the CTL, which led to a more evident cardiac output response, which partially compensated for the lack of vasoconstriction. These facts suggest that cardiovascular regulation was altered in DM1 patients and that there was a reduced capacity to increase sympathetic tone, even in the absence of any overt clinical sign. The metaboreflex test appears to be a valid tool to detect early signs of this cardiovascular dysregulation. PMID:22700802

  19. A New Framework for the Assessment of Cerebral Hemodynamics Regulation in Neonates Using NIRS.

    PubMed

    Caicedo, Alexander; Alderliesten, Thomas; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Van Huffel, Sabine

    2016-01-01

    We present a new framework for the assessment of cerebral hemodynamics regulation (CHR) in neonates using near-infrared spectroscopy (NIRS). In premature infants, NIRS measurements have been used as surrogate variables for cerebral blood flow (CBF) in the assessment of cerebral autoregulation (CA). However, NIRS measurements only reflect changes in CBF under constant changes in arterial oxygen saturation (SaO2). This condition is unlikely to be met at the bedside in the NICU. Additionally, CA is just one of the different highly coupled mechanisms that regulate brain hemodynamics. Traditional methods for the assessment of CA do not take into account the multivariate nature of CHR, producing inconclusive results. In this study we propose a newly developed multivariate methodology for the assessment of CHR. This method is able to effectively decouple the influences of SaO2 from the NIRS measurements, and at the same time, produces scores indicating the strength of the coupling between the systemic variables and NIRS recordings. We explore the use of this method, and its derived scores, for the monitoring of CHR using data from premature infants who developed a grade III-IV intra-ventricular hemorrhage during the first 3 days of life.

  20. A New Framework for the Assessment of Cerebral Hemodynamics Regulation in Neonates Using NIRS.

    PubMed

    Caicedo, Alexander; Alderliesten, Thomas; Naulaers, Gunnar; Lemmers, Petra; van Bel, Frank; Van Huffel, Sabine

    2016-01-01

    We present a new framework for the assessment of cerebral hemodynamics regulation (CHR) in neonates using near-infrared spectroscopy (NIRS). In premature infants, NIRS measurements have been used as surrogate variables for cerebral blood flow (CBF) in the assessment of cerebral autoregulation (CA). However, NIRS measurements only reflect changes in CBF under constant changes in arterial oxygen saturation (SaO2). This condition is unlikely to be met at the bedside in the NICU. Additionally, CA is just one of the different highly coupled mechanisms that regulate brain hemodynamics. Traditional methods for the assessment of CA do not take into account the multivariate nature of CHR, producing inconclusive results. In this study we propose a newly developed multivariate methodology for the assessment of CHR. This method is able to effectively decouple the influences of SaO2 from the NIRS measurements, and at the same time, produces scores indicating the strength of the coupling between the systemic variables and NIRS recordings. We explore the use of this method, and its derived scores, for the monitoring of CHR using data from premature infants who developed a grade III-IV intra-ventricular hemorrhage during the first 3 days of life. PMID:26782251

  1. A numerical framework to investigate hemodynamics during endovascular mechanical recanalization in acute stroke.

    PubMed

    Neidlin, Michael; Büsen, Martin; Brockmann, Carolin; Wiesmann, Martin; Sonntag, Simon J; Steinseifer, Ulrich; Kaufmann, Tim A S

    2016-04-01

    Ischemic stroke, caused by embolism of cerebral vessels, inflicts high morbidity and mortality. Endovascular aspiration of the blood clot is an interventional technique for the recanalization of the occluded arteries. However, the hemodynamics in the Circle of Willis (CoW) are not completely understood, which results in medical misjudgment and complications during surgeries. In this study we establish a multiscale description of cerebral hemodynamics during aspiration thrombectomy. First, the CoW is modeled as a 1D pipe network on the basis of computed tomography angiography (CTA) scans. Afterwards, a vascular occlusion is placed in the middle cerebral artery and the relevant section of the CoW is transferred to a 3D computational fluid dynamic (CFD) domain. A suction catheter in different positions is included in the CFD simulations. The boundary conditions of the 3D domain are taken from the 1D domain to ensure system coupling. A Eulerian-Eulerian multiphase simulation describes the process of thrombus aspiration. The physiological blood flow in the 1D and 3D domains is validated with literature data. Further on, it is proved that domain reduction and pressure coupling at the boundaries are an appropriate method to reduce computational costs. Future work will apply the developed framework to various clinical questions.

  2. The effect of low-dose oxytocin infusion on cerebral hemodynamics in pregnant women.

    PubMed

    van Veen, Teelkien R; Belfort, Michael A; Zeeman, Gerda G

    2011-08-01

    We investigated the cerebrovascular effects of continuous infusion of low-dose oxytocin in normal pregnant women undergoing induction of labor. In our prospective observational study, middle cerebral artery velocity was measured with transcranial Doppler ultrasound in 25 healthy, normotensive, nonsmoking patients undergoing induction of labor. No vasoactive drugs were used before or during the study period. Measurements were made at baseline and 15, 30, 60, and 120 minutes after oxytocin initiation. Mean arterial pressure, cerebral perfusion pressure, resistance index, resistance area product, and cerebral flow index at different times were calculated and compared using one-way analysis of variance (ANOVA) for repeated measures or Friedman repeated-measures ANOVA as appropriate, with P<0.05 regarded as significant. No significant systemic or cerebrovascular changes were noted after oxytocin initiation, and there was no correlation between the dosage administered and any hemodynamic parameter. Induction-dose oxytocin does not significantly affect selected cerebral hemodynamic parameters in the first 2 hours after initiation.

  3. A numerical framework to investigate hemodynamics during endovascular mechanical recanalization in acute stroke.

    PubMed

    Neidlin, Michael; Büsen, Martin; Brockmann, Carolin; Wiesmann, Martin; Sonntag, Simon J; Steinseifer, Ulrich; Kaufmann, Tim A S

    2016-04-01

    Ischemic stroke, caused by embolism of cerebral vessels, inflicts high morbidity and mortality. Endovascular aspiration of the blood clot is an interventional technique for the recanalization of the occluded arteries. However, the hemodynamics in the Circle of Willis (CoW) are not completely understood, which results in medical misjudgment and complications during surgeries. In this study we establish a multiscale description of cerebral hemodynamics during aspiration thrombectomy. First, the CoW is modeled as a 1D pipe network on the basis of computed tomography angiography (CTA) scans. Afterwards, a vascular occlusion is placed in the middle cerebral artery and the relevant section of the CoW is transferred to a 3D computational fluid dynamic (CFD) domain. A suction catheter in different positions is included in the CFD simulations. The boundary conditions of the 3D domain are taken from the 1D domain to ensure system coupling. A Eulerian-Eulerian multiphase simulation describes the process of thrombus aspiration. The physiological blood flow in the 1D and 3D domains is validated with literature data. Further on, it is proved that domain reduction and pressure coupling at the boundaries are an appropriate method to reduce computational costs. Future work will apply the developed framework to various clinical questions. PMID:26420012

  4. A Wearable Patch to Enable Long-Term Monitoring of Environmental, Activity and Hemodynamics Variables.

    PubMed

    Etemadi, Mozziyar; Inan, Omer T; Heller, J Alex; Hersek, Sinan; Klein, Liviu; Roy, Shuvo

    2016-04-01

    We present a low power multi-modal patch designed for measuring activity, altitude (based on high-resolution barometric pressure), a single-lead electrocardiogram, and a tri-axial seismocardiogram (SCG). Enabled by a novel embedded systems design methodology, this patch offers a powerful means of monitoring the physiology for both patients with chronic cardiovascular diseases, and the general population interested in personal health and fitness measures. Specifically, to the best of our knowledge, this patch represents the first demonstration of combined activity, environmental context, and hemodynamics monitoring, all on the same hardware, capable of operating for longer than 48 hours at a time with continuous recording. The three-channels of SCG and one-lead ECG are all sampled at 500 Hz with high signal-to-noise ratio, the pressure sensor is sampled at 10 Hz, and all signals are stored to a microSD card with an average current consumption of less than 2 mA from a 3.7 V coin cell (LIR2450) battery. In addition to electronic characterization, proof-of-concept exercise recovery studies were performed with this patch, suggesting the ability to discriminate between hemodynamic and electrophysiology response to light, moderate, and heavy exercise. PMID:25974943

  5. Biotelemetry of cardiovascular hemodynamic measurements in miniswine.

    PubMed

    Pitsillides, K F; Symons, J D; Longhurst, J C

    1992-09-01

    A three-channel biotelemetry system has been designed and implemented for use in a chronically instrumented animal model of cardiovascular disease. A dual-channel ultrasonic transit-time micrometer allows monitoring of left-ventricular wall motion for the regions perfused by the left circumflex and left anterior descending coronary arteries. A third channel provides left ventricular blood pressure obtained from a high-fidelity blood pressure transducer implanted in the left ventricle. The biotelemetry system features a high voltage dc-dc converter for improved ultrasonic signal strength, a time-to-voltage converter that is highly immune to synchronization frequency variations, low power consumption (approx. 100 mW), small size (4 x 6 x 12 cm), and low weight (approx. 200 g). This three-channel system has enabled our laboratory to continuously monitor untethered animals for 24-h periods. Data obtained from this miniature biotelemetry system can be utilized to quantify myocardial oxygen demand and regional left-ventricular wall thickening.

  6. A comparative study of esmolol and dexmedetomidine on hemodynamic responses to carbon dioxide pneumoperitoneum during laparoscopic surgery

    PubMed Central

    Bhattacharjee, Dhurjoti Prosad; Saha, Sauvik; Paul, Sanjib; Roychowdhary, Shibsankar; Mondal, Shirsendu; Paul, Suhrita

    2016-01-01

    Background: Carbon dioxide pneumoperitoneum for laparoscopic surgery increases arterial pressures, heart rate (HR), and systemic vascular resistance. In this randomized, single-blind, placebo-controlled clinical study, we investigated and compared the efficacy of esmolol and dexmedetomidine to provide perioperative hemodynamic stability in patients undergoing laparoscopic cholecystectomy. Methods: Sixty patients, of either sex undergoing elective laparoscopic cholecystectomy, were randomly allocated into three groups containing twenty patients each. Group E received bolus dose of 500 μg/kg intravenous (IV) esmolol before pneumoperitoneum followed by an infusion of 100 μg/kg/min. Group D received bolus dose of 1 μg/kg IV dexmedetomidine before pneumoperitoneum followed by infusion of 0.2 μg/kg/h. Group S (control) received saline 0.9%. Results: Mean arterial pressure and HR in Group E and D were significantly less throughout the period of pneumoperitoneum in comparison to Group S. IV nitroglycerine was required in 45% (9 out of 20) patients in Group S to control intraoperative hypertension, and it was clinically significant in comparison to Group E and D. Conclusion: Both esmolol and dexmedetomidine attenuate the adverse hemodynamic response to pneumoperitoneum and provide hemodynamic stability during laparoscopic surgery. PMID:27746555

  7. Differences in the Pulsatile Component of the Skin Hemodynamic Response to Verbal Fluency Tasks in the Forehead and the Fingertip

    PubMed Central

    Takahashi, Toshimitsu; Takikawa, Yoriko; Kawagoe, Reiko

    2016-01-01

    Several studies have claimed that hemodynamic signals measured by near-infrared spectroscopy (NIRS) on the forehead exhibit different patterns during a verbal fluency task (VFT) in various psychiatric disorders, whereas many studies have noted that NIRS signals can reflect task-related changes in skin blood flow. If such a task-related skin hemodynamic response is also observed in the fingertip, a simpler biomarker may be developed. Furthermore, determining the difference in the response pattern may provide physiological insights into the condition. We found that the magnitude of the pulsatile component in skin hemodynamic signals increased on the forehead (p < 0.001 for N = 50, p = 0.073 for N = 8) but decreased on the fingertip (p < 0.001, N = 8) during the VFT, whereas the rate in both areas increased (p < 0.02, N = 8). We also did not find a repetition effect in both the rate and the magnitude on the fingertip, whereas the effect was present in the magnitude (p < 0.02, N = 8) but not in the rate on the forehead. These results suggest that the skin vasomotor system in the forehead could have a different vessel mechanism to psychological tasks compared to the fingertip. PMID:26905432

  8. Physiological responses to environmental factors related to space flight. [hemodynamic and metabolic responses to weightlessness

    NASA Technical Reports Server (NTRS)

    Pace, N.

    1973-01-01

    Physiological base line data are established, and physiological procedures and instrumentation necessary for the automatic measurement of hemodynamic and metabolic parameters during prolonged periods of weightlessness are developed.

  9. Extracellular brain pH with or without hypoxia is a marker of profound metabolic derangement and increased mortality after traumatic brain injury

    PubMed Central

    Timofeev, Ivan; Nortje, Jurgens; Al-Rawi, Pippa G; Hutchinson, Peter JA; Gupta, Arun K

    2013-01-01

    Cerebral hypoxia and acidosis can follow traumatic brain injury (TBI) and are associated with increased mortality. This study aimed to evaluate a relationship between reduced pHbt and disturbances of cerebral metabolism. Prospective data from 56 patients with TBI, receiving microdialysis and Neurotrend monitoring, were analyzed. Four tissue states were defined based on pHbt and PbtO2: 1—low PbtO2/pHbt, 2—low pHbt/normal PbtO2, 3—normal pHbt/low PbtO2, and 4—normal pHbt/PbtO2). Microdialysis values were compared between the groups. The relationship between PbtO2 and lactate/pyruvate (LP) ratio was evaluated at different pHbt levels. Proportional contribution of each state was evaluated against mortality. As compared with the state 4, the state 3 was not different, the state 2 exhibited higher levels of lactate, LP, and glucose and the state 1—higher LP and reduced glucose (P<0.001). A significant negative correlation between LP and PbtO2 (rho=−0.159, P<0.001) was stronger at low pHbt (rho=−0.201, P<0.001) and nonsignificant at normal pHbt (P=0.993). The state 2 was a significant discriminator of mortality categories (P=0.031). Decreased pHbt is associated with impaired metabolism. Measuring pHbt with PbtO2 is a more robust way of detecting metabolic derangements. PMID:23232949

  10. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet

    PubMed Central

    Jackson, Ellen E.; Rendina-Ruedy, Elisabeth; Smith, Brenda J.; Lacombe, Veronique A.

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway. PMID:26539824

  11. Non invasive continuous hemodynamic evaluation of cirrhotic patients after postural challenge

    PubMed Central

    Tarquini, Roberto; Mazzoccoli, Gianluigi; Fusi, Fulvio; Laffi, Giacomo; Gensini, Gian Franco; Romano, Salvatore Mario

    2012-01-01

    AIM: To assess whether Most Care is able to detect the cardiovascular alterations in response to physiological stress (posture). METHODS: Non invasive hemodynamic was assessed in 26 cirrhotic patients compared to healthy subjects, both in the supine and standing positions. RESULTS: In baseline conditions, when compared to healthy subjects, cirrhotic patients showed significantly lower values of dicrotic and diastolic pressures and systemic vascular resistance. While in the standing position, cirrhotic patients showed higher values of cardiac index, stroke volume index and cardiac cycle efficiency. When returning to the supine position, cirrhotic patients exhibited lower values of dicrotic and diastolic pressures and systemic vascular resistance in the presence of higher values of cardiac index, stroke volume index and cardiac cycle efficiency. CONCLUSION: Most Care proved to be able to detect cardiovascular abnormalities bedside in the resting state and after postural challenge in cirrhotic patients. PMID:22567187

  12. Hemodynamic modeling of the intrarenal circulation.

    PubMed

    M'rabet Bensalah, K; Uehlinger, D; Kalicki, R; Czerwinska, J

    2013-12-01

    Three dimensional, time dependent numerical simulations of healthy and pathological conditions in a model kidney were performed. Blood flow in a kidney is not commonly investigated by computational approach, in contrast for example, to the flow in a heart. The flow in a kidney is characterized by relatively small Reynolds number (100 < Re < 0.01-laminar regime). The presented results give insight into the structure of such flow, which is hard to measure in vivo. The simulations have suggested that venous thrombosis is more likely than arterial thrombosis-higher shear rate observed. The obtained maximum velocity, as a result of the simulations, agrees with the observed in vivo measurements. The time dependent simulations show separation regimes present in the vicinity of the maximum pressure value. The pathological constriction introduced to the arterial geometry leads to the changes in separation structures. The constriction of a single vessel affects flow in the whole kidney. Pathology results in different flow rate values in healthy and affected branches, as well as, different pulsate cycle characteristic for the whole system.

  13. Effects of positive intrathoracic pressure on pulmonary and systemic hemodynamics.

    PubMed

    Tyberg, J V; Grant, D A; Kingma, I; Moore, T D; Sun, Y; Smith, E R; Belenkie, I

    2000-02-01

    The Frank-Starling Law accounts for many changes in cardiac performance previously attributed to changes in contractility in that changes in contractility might have been incorrectly inferred from changing ventricular function curves (i.e. systolic performance plotted against filling pressure) if diastolic compliance also changed. To apply the Frank-Starling Law in the presence of changing diastolic compliance, it is necessary to measure end-diastolic volume directly or to calculate end-diastolic transmural pressure, which requires that pericardial pressure be known. Under most normal circumstances, increased intrathoracic pressure (and other interventions, such as vasodilators or lower-body negative pressure, that decrease central blood volume) decreases the transmural end-diastolic pressures of both ventricles, their end-diastolic volumes and stroke work. However, when ventricular interaction is significant, the effects of these interventions might be quite different; this may be important in patients with heart-failure. Although these interventions decrease RV transmural pressure, they may increase LV transmural pressure, end-diastolic volume, and thus stroke work by the Frank-Starling mechanism. PMID:10722860

  14. Optical imaging of neural and hemodynamic brain activity

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer Lynn

    Optical imaging technologies can be used to record neural and hemodynamic activity. Neural activity elicits physiological changes that alter the optical tissue properties. Specifically, changes in polarized light are concomitant with neural depolarization. We measured polarization changes from an isolated lobster nerve during action potential propagation using both reflected and transmitted light. In transmission mode, polarization changes were largest throughout the center of the nerve, suggesting that most of the optical signal arose from the inner nerve bundle. In reflection mode, polarization changes were largest near the edges, suggesting that most of the optical signal arose from the outer sheath. To overcome irregular cell orientation found in the brain, we measured polarization changes from a nerve tied in a knot. Our results show that neural activation produces polarization changes that can be imaged even without regular cell orientations. Neural activation expends energy resources and elicits metabolic delivery through blood vessel dilation, increasing blood flow and volume. We used spectroscopic imaging techniques combined with electrophysiological measurements to record evoked neural and hemodynamic responses from the auditory cortex of the rat. By using implantable optics, we measured responses across natural wake and sleep states, as well as responses following different amounts of sleep deprivation. During quiet sleep, evoked metabolic responses were larger compared to wake, perhaps because blood vessels were more compliant. When animals were sleep deprived, evoked hemodynamic responses were smaller following longer periods of deprivation. These results suggest that prolonged neural activity through sleep deprivation may diminish vascular compliance as indicated by the blunted vascular response. Subsequent sleep may allow vessels to relax, restoring their ability to deliver blood. These results also suggest that severe sleep deprivation or chronic

  15. Hemodynamic effects of prazosin in chronic heart failure.

    PubMed

    Parmley, W W; Chatterjee, K; Arnold, S; Rubin, S A; Brundage, B H; Williams, R L; Ports, T; Chuck, L; Rouleau, J

    1981-09-01

    Three series of investigations were carried out with prazosin (PZN) hydrochloride. In the first, hemodynamic effects of PZN were compared with those of hydralazine (HDZ) in 11 patients with chronic congestive heart failure (CHF). In doses up to 5 mg, PZN increased cardiac output (CO) 20% accompanied by a 20% decrease in pulmonary capillary wedge pressure (LVFP). HDZ increased CO by 50% with little or no effect on LVFP. An additional 12 patients were given multiple 5 mg doses of PZN at 6-hour intervals with measurements of hemodynamic and plasma blood levels. Results suggested an attenuation of the effects of PZN on increasing CO but not on decreasing LVFP. This attenuation of CO was not due to inadequate plasma levels. Acute exercise studies (supine bicycle) were performed in 10 patients with severe CHF before and after the administration of several doses of PZN. There appeared to be a greater effect of PZN during exercise than at rest, with a beneficial increase in CO and reduction in LVFP. These data suggest that, despite hemodynamic attenuation of its effects on CO at rest, PZN may still be beneficial to active patients with CHF. In vitro studies with various vasodilators were performed to evaluate potential intropic effects. Isometric force (cat papillary muscle) increased 2% with 10-4M and 31% with 10-3M HDZ. PZN increased force 4% at 10-6M and 18% at 10-4M. Captopril did not increase force development at any dose level. The doses of HDZ and PZN that increased force development were higher than usual clinical doses.

  16. Post-stenotic Recirculating Flow May Cause Hemodynamic Perforator Infarction

    PubMed Central

    Kim, Bum Joon; Ha, Hojin; Huh, Hyung Kyu; Kim, Guk Bae; Kim, Jong S.; Kim, Namkug; Lee, Sang-Joon; Kang, Dong-Wha; Kwon, Sun U.

    2016-01-01

    Background and Purpose The primary mechanism underlying paramedian pontine infarction (PPI) is atheroma obliterating the perforators. Here, we encountered a patient with PPI in the post-stenotic area of basilar artery (BA) without a plaque, shown by high-resolution magnetic resonance imaging (HR-MRI). We performed an experiment using a 3D-printed BA model and a particle image velocimetry (PIV) to explore the hemodynamic property of the post-stenotic area and the mechanism of PPI. Methods 3D-model of a BA stenosis was reconstructed with silicone compound using a 3D-printer based on the source image of HR-MRI. Working fluid seeded with fluorescence particles was used and the velocity of those particles was measured horizontally and vertically. Furthermore, microtubules were inserted into the posterior aspect of the model to measure the flow rates of perforators (pre-and post-stenotic areas). The flow rates were compared between the microtubules. Results A recirculating flow was observed from the post-stenotic area in both directions forming a spiral shape. The velocity of the flow in these regions of recirculation was about one-tenth that of the flow in other regions. The location of recirculating flow well corresponded with the area with low-signal intensity at the time-of-flight magnetic resonance angiography and the location of PPI. Finally, the flow rate through the microtubule inserted into the post-stenotic area was significantly decreased comparing to others (P<0.001). Conclusions Perforator infarction may be caused by a hemodynamic mechanism altered by stenosis that induces a recirculation flow. 3D-printed modeling and PIV are helpful understanding the hemodynamics of intracranial stenosis. PMID:26687122

  17. Effect of dialysate temperature on hemodynamic stability among hemodialysis patients.

    PubMed

    Azar, Ahmad Taher

    2009-07-01

    Cooling the dialysate below 36.5 degrees C is an important factor that contributes to hemodynamic stability in patients during hemodialysis (HD). In this study, the effect of dialysate temperature on hemodynamic stability, patients' perception of dialysis discomfort and post dialysis fatigue were assessed in a group of patients on HD. A total of 50 patients, all of whom were on 3-times-per-week dialysis regimen, were studied. Patients were assessed during six dialysis sessions; in three sessions, the dialysate temperature was normal (37 degrees C) and in three other sessions, the dialysate temperature was low (35 degrees C). Specific scale questionnaires were used in each dialysis session, to evaluate the symptoms during the dialysis procedure as well as post-dialysis fatigue, and respective scores were noted. The results showed that usage of low dialysate temperature was associated with the following: higher post dialysis systolic blood pressure (P< 0.05) and lower post dialysis heart rate (P< 0.01), with similar ultrafiltration rates, better intra-dialysis symptoms score and post-dialysis fatigue scores (P< 0.001, and P < 0.001, respectively), shorter post-dialysis fatigue period (P< 0.001) as well as higher urea removal (P< 00001) and Kt/V (P< 0.0001). Patients' perceptions were measured by a questionnaire, which showed that 76% of them felt more energetic after dialysis with cool dialysate and requested to be always dialyzed with cool dialysate. Low temperature dialysate is particularly beneficial for highly symptomatic patients, improves tolerance to dialysis in hypotensive patients and helps increase ultrafiltration while maintaining hemodynamic stability during and after dialysis.

  18. Central and regional hemodynamics in prolonged space flights

    NASA Astrophysics Data System (ADS)

    Gazenko, O. G.; Shulzhenko, E. B.; Turchaninova, V. F.; Egorov, A. D.

    This paper presents the results of measuring central and regional (head, forearm, calf) hemodynamics at rest and during provocative tests by the method of tetrapolar rheography in the course of Salyut-6-Soyuz and Salyut-7-Soyuz missions. The measurements were carried out during short-term (19 man-flights of 7 days in duration) and long-term (21 man-flights of 65-237 days in duration) manned missions. At rest, stroke volume (SV) and cardiac output (CO) as well as heart rate (HR) decreased insignificantly (in short-term flights) or remained essentially unchanged (in long-term flights). In prolonged flights CO increased significantly in response to exercise tests due to an increase in HR and the lack of changes in SV. After exercise tests SV and CO decreased as compared to the preflight level. During lower body negative pressure (LBNP) tests HR and CO were slightly higher than preflight. Changes in regional hemodynamics included a distinct decrease of pulse blood filling (PBF) of the calf, a reduction of the tone of large vessels of the calf and small vessels of the forearm. Head examination (in the region of the internal carotid artery) showed a decrease of PBF of the left hemisphere (during flight months 2-8) and a distinct decline of the tone of small vessels, mainly, in the right hemisphere. During LBNP tests the tone of pre- and postcapillary vessels of the brain returned to normal while PBF of the right and left hemisphere vessels declined. It has been shown that regional circulation variations depend on the area examined and are induced by a rearrangement of total hemodynamics of the human body in microgravity. This paper reviews the data concerning changes in central and regional circulation of men in space flights of different duration.

  19. Computational study of anterior communicating artery hemodynamics before aneurysm formation

    NASA Astrophysics Data System (ADS)

    Castro, Marcelo A.; Putman, Christopher M.; Cebral, Juan R.

    2012-03-01

    It is widely accepted that complexity in the flow pattern at the anterior communicating artery (AComA) is associated with the high rate of aneurysm formation in that location observed in large studies. A previous computational hemodynamic study showed a possible association between high maximum intraaneurysmal wall shear stress (WSS) at the systolic peak with rupture in a cohort of AComA aneurysms. In another study it was observed a connection between location of aneurysm blebs and regions of high WSS in models where blebs were virtually removed. However, others reported associations between low WSS and either rupture or blister formation. The purpose of this work is to study associations between hemodynamic patterns and AComA aneurysm initiation by comparing hemodynamics in the aneurysm and the normal model where the aneurysm was computationally removed. Vascular models of both right and left circulation were independently reconstructed from three-dimensional rotational angiography images using deformable models, and fused using a surface merging algorithm. The geometric models were then used to generate high-quality volumetric finite element grids of tetrahedra with an advancing front technique. For each patient, the second anatomical model was created by digitally removing the aneurysm. It was iteratively achieved by applying a Laplacian smoothing filter and remeshing the surface. Finite element blood flow numerical simulations were performed. It was observed that aneurysms initiated in regions of high and moderate WSS in the counterpart normal models. Adjacent or close to those regions, low WSS portions of the arterial wall were not affected by the disease.

  20. Phonocardiographic Assessment of Hemodynamic Response to Balloon Aortic Valvuloplasty

    PubMed Central

    Bush, Howard S.; Ferguson, James J.

    1990-01-01

    The time to systolic murmur peak is a clinical index that is useful in assessing the severity of valvular aortic stenosis. To determine whether phonocardiography could be used to detect a change in the timing of the murmur and thus to measure hemodynamic improvements in elderly balloon aortic valvuloplasty patients, we retrospectively reviewed phonocardiographic tracings of 18 patients taken before and after the procedure. Ten men and 8 women were included in the study; the mean age was 80.7 ± 11.2 years (range, 64 to 90). Phonocardiographic signals were digitized, and the R-wave to murmur peak interval (R-MP) was measured. In 11 patients, the R-MP decreased (mean decrease, 16% ± 11%): of these, 10 had a significant (> 25%) decrease in mean gradient; 10 had a significant (> 25%) decrease in peak-to-peak gradient; and the average increase in aortic valve area was 38%. Seven patients had an increase in R-MP (mean increase, 10% ± 9%): of these, 6 had a decrease in mean gradient of less than 25%; 6 had a decrease in peak-to-peak gradient of less than 25%; and the average increase in aortic valve area was 21%. Pre- and post-balloon aortic valvuloplasty heart rates were not significantly different (71 ± 8 beats/min versus 73 ± 5 beats/min). In this study, hemodynamic improvements after valvuloplasty were manifested by a reduction in the R-MP interval. We conclude that phonocardiography may be a practical, noninvasive method of assessing the hemodynamic response to balloon aortic valvuloplasty. (Texas Heart Institute Journal 1990;17:42-7) PMID:15227188

  1. A Simple Echocardiographic Prediction Rule for Hemodynamics in Pulmonary Hypertension

    PubMed Central

    Opotowsky, Alexander R.; Ojeda, Jason; Rogers, Frances; Prasanna, Vikram; Clair, Mathieu; Moko, Lilamarie; Vaidya, Anjali; Afilalo, Jonathan; Forfia, Paul R.

    2012-01-01

    Background Pulmonary hypertension (PH) has diverse causes with heterogeneous physiology compelling distinct management. Differentiating patients with primarily elevated pulmonary vascular resistance (PVR) from those with PH predominantly due to elevated left sided filling pressure is critical. Methods and Results We reviewed hemodynamics, echocardiography, and clinical data for 108 patients seen at a referral PH clinic with transthoracic echocardiogram and right heart catheterization within 1 year. We derived a simple echocardiographic prediction rule to allow hemodynamic differentiation of PH due to pulmonary vascular disease (PHPVD, defined as pulmonary artery wedge pressure (PAWP) ≤ 15mmHg and PVR >3WU). Age averaged 61.3±14.8 years, μPAWP and PVR were 16.4±7.1mmHg and 6.3±4.0WU respectively, and 52 (48.1%) patients fulfilled PHPVD hemodynamic criteria. The derived prediction rule ranged from −2 to +2 with higher scores suggesting higher probability of PHPVD: +1 point for left atrial AP dimension<3.2cm; +1 for presence of a mid-systolic notch or acceleration time<80msec; −1 for lateral mitral E:e′>10; −1 for left atrial AP dimension>4.2cm. PVR increased stepwise with score (for −2, 0 and +2, μPVR were 2.5, 4.5, and 8.1WU) while the inverse was true for PAWP (corresponding μPAWP were 21.5, 16.5 and 10.4mmHg). Among subjects with complete data, the score had an AUC of 0.921 for PHPVD. A score ≥ 0 had 100% sensitivity and 69.3% positive predictive value for PHPVD, with 62.3% specificity. No patients with a negative score had PHPVD. Patients with a negative score and acceleration time >100msec had normal PVR (μPVR=1.8WU, range=0.7–3.2WU). Conclusions We present a simple echocardiographic prediction rule that accurately defines PH hemodynamics facilitates improved screening and focused clinical investigation for PH diagnosis and management. PMID:22914595

  2. Enteral nutrition in the hemodynamically unstable critically ill patient.

    PubMed

    Flordelís Lasierra, J L; Pérez-Vela, J L; Montejo González, J C

    2015-01-01

    The benefit of enteral nutrition in critically ill patients has been demonstrated by several studies, especially when it is started early, in the first 24-48h of stay in the Intensive Care Unit, and this practice is currently advised by the main clinical guidelines. The start of enteral nutrition is controversial in patients with hemodynamic failure, since it may trigger intestinal ischemia. However, there are data from experimental studies in animals, as well as from observational studies in humans that allow for hypotheses regarding its beneficial effect and safety. Interventional clinical trials are needed to confirm these findings.

  3. Hemodynamics and annuloplasty in isolated mitral regurgitation in children.

    PubMed

    Sulayman, R; Mathew, R; Thilenius, O G; Replogle, R; Arcilla, R A

    1975-12-01

    Isolated mitral insufficiency in children is quantitated angiographically by comparing the stroke volumes of the right ventricle and left ventricle. The disease results in greater enlargement of the left atrium than of the left ventricle and is accompanied by a significant increase in left atrial "distensibility." Right and left heart pressures may be normal or may be increased; they tend to be elevated in the group with regurgitant fractions of over 50%. Annuloplasty results in marked clinical and hemodynamic improvement and may even be corrective.

  4. Modeling Fluid Flows in Distensible Tubes for Applications in Hemodynamics

    NASA Astrophysics Data System (ADS)

    Descovich, X.; Pontrelli, G.; Melchionna, S.; Succi, S.; Wassertheurer, S.

    2013-05-01

    We present a lattice Boltzmann (LB) model for the simulation of hemodynamic flows in the presence of compliant walls. The new scheme is based on the use of a continuous bounce-back boundary condition, as combined with a dynamic constitutive relation between the flow pressure at the wall and the resulting wall deformation. The method is demonstrated for the case of two-dimensional (axisymmetric) pulsatile flows, showing clear evidence of elastic wave propagation of the wall perturbation in response to the fluid pressure. The extension of the present two-dimensional axisymmetric formulation to more general three-dimensional geometries is currently under investigation.

  5. From hemodynamic towards cardiomechanic sensors in implantable devices

    NASA Astrophysics Data System (ADS)

    Ferek-Petric, Bozidar

    2013-06-01

    Sensor could significantly improve the cardiac electrotherapy. It has to provide long-term stabile signal not impeding the device longevity and lead reliability. It may not introduce special implantation and adjustment procedures. Hemodynamic sensors based on the blood flow velocity and cardiomechanic sensors based on the lead bending measurement are disclosed. These sensors have a broad clinical utility. Triboelectric and high-frequency lead bending sensors yield accurate and stable signals whereby functioning with every cardiac lead. Moreover, high frequency measurement avoids use of any kind of special hardware mounted on the cardiac lead.

  6. Effect of continuous ATP injection on human hemodynamics.

    PubMed

    Komukai, Kimiaki; Hashimoto, Koichi; Shibata, Takahiro; Iwano, Keiji; Muto, Makoto; Mogi, Junichi; Imai, Kamon; Horie, Toshinobu; Mochizuki, Seibu

    2002-10-01

    Continuous ATP injection is used clinically for Tl imaging or coronary flow measurement and because the effect on human hemodynamics is unknown, the present study investigated it in 14 patients undergoing heart catheter examination. Continuous ATP injection induced chest symptoms in 13 of the patients and second-degree atrioventricular block in one, but these complications disappeared immediately after the end of ATP infusion. Continuous ATP injection decreased aortic pressure, but increased pulmonary artery pressure, right atrial pressure and pulmonary capillary wedge pressure. ATP increased heart rate, stroke volume and cardiac output, the latter the result of an increase in preload, a decrease in afterload, and the increase in heart rate. PMID:12381087

  7. Temporal hemodynamic effects of permissive hypercapnia associated with ideal PEEP in ARDS.

    PubMed

    Carvalho, C R; Barbas, C S; Medeiros, D M; Magaldi, R B; Lorenzi Filho, G; Kairalla, R A; Deheinzelin, D; Munhoz, C; Kaufmann, M; Ferreira, M; Takagaki, T Y; Amato, M B

    1997-11-01

    The associated use of permissive hypercapnia (PHY) and high PEEP levels (PEEP(IDEAL)) has been recently indicated as part of a lung-protective-approach (LPA) in acute respiratory distress syndrome (ARDS). However, the net hemodynamic effect produced by this association is not known. We analyzed the temporal hemodynamic effects of this combined strategy in 48 patients (mean age 34 +/- 13 yr) with ARDS, focusing on its immediate (after 1 h), early (first 36 h), and late (2nd-7th d) consequences. Twenty-five patients were submitted to LPA--with the combined use of permissive hypercapnia (PHY), VT < 6 ml/kg, distending pressures above PEEP < 20 cm H2O, and PEEP 2 cm H2O above the lower inflection point on the static inspiratory P-V curve (P(FLEX))- and 23 control patients were submitted to conventional mechanical ventilation. LPA was initiated at once, resulting in an immediate increase in heart rate (p = 0.0002), cardiac output (p = 0.0002), oxygen delivery (DO2l, p = 0.0003), and mixed venous Po2 (p = 0.0006), with a maintained systemic oxygen consumption (p = 0.52). The mean pulmonary arterial pressure markedly increased (mean increment 8.8 mm Hg; p < 0.0001), but the pulmonary vascular resistance did not change (p = 0.32). Cardiac filling pressures increased (p < 0.001) and the systemic vascular resistance fell (p = 0.003). All these alterations were progressively attenuated in the course of the first 36 h, despite persisting hypercapnia. Plasma lactate suffered a progressive decrement along the early period in LPA but not in control patients (p < 0.0001). No hemodynamic consequences of LPA were noticed in the late period and renal function was preserved. A multivariate analysis suggested that these acute hyperdynamic effects were related to respiratory acidosis, with no depressant effects ascribed to high PEEP levels. In contrast, high plateau pressures were associated with cardiovascular depression. Thus, as long as sufficiently low distending pressures are

  8. Bedside calculation of hemodynamic parameters with a hand held programmable calculator. Part II: Programs for hemodynamic and oxygen transport parameters computation.

    PubMed

    Laurent, M

    1980-01-01

    Two programs calculating oxygen transport parameters and hemodynamic values respectively are described. They may be used indifferently with HP 67 or HP 97 Hewlett Packard calculators. (Acta anaesth. belg., 1980, 31, 53-59).

  9. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications

    PubMed Central

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee

    2016-01-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions. PMID:27390537

  10. Hemodynamic Measurement Using Four-Dimensional Phase-Contrast MRI: Quantification of Hemodynamic Parameters and Clinical Applications.

    PubMed

    Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee; Yang, Dong Hyun; Kim, Namkug

    2016-01-01

    Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions. PMID:27390537

  11. The cerebral hemodynamics of normotensive hypovolemia during lower-body negative pressure

    NASA Technical Reports Server (NTRS)

    Giller, C. A.; Levine, B. D.; Meyer, Y.; Buckey, J. C.; Lane, L. D.; Borchers, D. J.

    1992-01-01

    Although severe hypovolemia can lead to hypotension and neurological decline, many patients with neurosurgical disorders experience a significant hypovolemia while autonomic compensatory mechanisms maintain a normal blood pressure. To assess the effects of normotensive hypovolemia upon cerebral hemodynamics, transcranial Doppler ultrasound monitoring of 13 healthy volunteers was performed during graded lower-body negative pressure of up to -50 mm Hg, an accepted laboratory model for reproducing the physiological effects of hypovolemia. Middle cerebral artery flow velocity declined by 16% +/- 4% (mean +/- standard error of the mean) and the ratio between transcranial Doppler ultrasound pulsatility and systemic pulsatility rose 22% +/- 8%, suggesting cerebral small-vessel vasoconstriction in response to the sympathetic activation unmasked by lower-body negative pressure. This vasoconstriction may interfere with the autoregulatory response to a sudden fall in blood pressure, and may explain the common observation of neurological deficit during hypovolemia even with a normal blood pressure.

  12. Multiparametric optical coherence tomography imaging of the inner retinal hemodynamic response to visual stimulation

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Harsha; Srinivasan, Vivek J.

    2013-08-01

    The hemodynamic response to neuronal activation is a well-studied phenomenon in the brain, due to the prevalence of functional magnetic resonance imaging. The retina represents an optically accessible platform for studying lamina-specific neurovascular coupling in the central nervous system; however, due to methodological limitations, this has been challenging to date. We demonstrate techniques for the imaging of visual stimulus-evoked hyperemia in the rat inner retina using Doppler optical coherence tomography (OCT) and OCT angiography. Volumetric imaging with three-dimensional motion correction, en face flow calculation, and normalization of dynamic signal to static signal are techniques that reduce spurious changes caused by motion. We anticipate that OCT imaging of retinal functional hyperemia may yield viable biomarkers in diseases, such as diabetic retinopathy, where the neurovascular unit may be impaired.

  13. Encephalic hemodynamic phases in subarachnoid hemorrhage: how to improve the protective effect in patient prognoses

    PubMed Central

    de Lima Oliveira, Marcelo; de Azevedo, Daniel Silva; de Azevedo, Milena Krajnyk; de Carvalho Nogueira, Ricardo; Teixeira, Manoel Jacobsen; Bor-Seng-Shu, Edson

    2015-01-01

    Subarachnoid hemorrhage is frequently associated with poor prognoses. Three different hemodynamic phases were identified during subarachnoid hemorrhage: oligemia, hyperemia, and vasospasm. Each phase is associated with brain metabolic changes. In this review, we correlated the hemodynamic phases with brain metabolism and potential treatment options in the hopes of improving patient prognoses. PMID:26109948

  14. Endovascular Treatment of Thoracic Aortic Dissection: Hemodynamic Shear Stress Study

    NASA Astrophysics Data System (ADS)

    Tang, Yik Sau; Lai, Siu Kai; Cheng, Stephen Wing Keung; Chow, Kwok Wing

    2012-11-01

    Thoracic Aortic Dissection (TAD), a life threatening cardiovascular disease, occurs when blood intrudes into the layers of the aortic wall, creating a new artificial channel (the false lumen) beside the original true lumen. The weakened false lumen wall may expand, enhancing the risk of rupture and resulting in high mortality. Endovascular treatment involves the deployment of a stent graft into the aorta, thus blocking blood from entering the false lumen. Due to the irregular geometry of the aorta, the stent graft, however, may fail to conform to the vessel curvature, and would create a ``bird-beak'' configuration, a wedge-shaped domain between the graft and the vessel wall. Computational fluid dynamics analysis is employed to study the hemodynamics of this pathological condition. With the `beaking' configuration, the local hemodynamic shear stress will drop below the threshold of safety reported earlier in the literature. The oscillating behavior of the shear stress might lead to local inflammation, atherosclerosis and other undesirable consequences. Supported by the Innovation and Technology Fund of the Hong Kong Government.

  15. Hemodynamic transition driven by stent porosity in sidewall aneurysms.

    PubMed

    Bouillot, Pierre; Brina, Olivier; Ouared, Rafik; Lovblad, Karl-Olof; Farhat, Mohamed; Pereira, Vitor Mendes

    2015-05-01

    The healing process of intracranial aneurysms (IAs) treated with flow diverter stents (FDSs) depends on the IA flow modifications and on the epithelization process over the neck. In sidewall IA models with straight parent artery, two main hemodynamic regimes with different flow patterns and IA flow magnitude were broadly observed for unstented and high porosity stented IA on one side, and low porosity stented IA on the other side. The hemodynamic transition between these two regimes is potentially involved in thrombosis formation. In the present study, CFD simulations and multi-time lag (MTL) particle imaging velocimetry (PIV) measurements were combined to investigate the physical nature of this transition. Measurable velocity fields and non-measurable shear stress and pressure fields were assessed experimentally and numerically in the aneurysm volume in the presence of stents with various porosities. The two main regimes observed in both PIV and CFD showed typical flow features of shear and pressure driven regimes. In particular, the waveform of the averaged IA velocities was matching both the shear stress waveform at IA neck or the pressure gradient waveform in parent artery. Moreover, the transition between the two regimes was controlled by stent porosity: a decrease of stent porosity leads to an increase (decrease) of pressure differential (shear stress) through IA neck. Finally, a good PIV-CFD agreement was found except in transitional regimes and low motion eddies due to small mismatch of PIV-CFD running conditions. PMID:25798761

  16. Bayesian hemodynamic parameter estimation by bolus tracking perfusion weighted imaging.

    PubMed

    Boutelier, Timothé; Kudo, Koshuke; Pautot, Fabrice; Sasaki, Makoto

    2012-07-01

    A delay-insensitive probabilistic method for estimating hemodynamic parameters, delays, theoretical residue functions, and concentration time curves by computed tomography (CT) and magnetic resonance (MR) perfusion weighted imaging is presented. Only a mild stationarity hypothesis is made beyond the standard perfusion model. New microvascular parameters with simple hemodynamic interpretation are naturally introduced. Simulations on standard digital phantoms show that the method outperforms the oscillating singular value decomposition (oSVD) method in terms of goodness-of-fit, linearity, statistical and systematic errors on all parameters, especially at low signal-to-noise ratios (SNRs). Delay is always estimated sharply with user-supplied resolution and is purely arterial, by contrast to oSVD time-to-maximum TMAX that is very noisy and biased by mean transit time (MTT), blood volume, and SNR. Residue functions and signals estimates do not suffer overfitting anymore. One CT acute stroke case confirms simulation results and highlights the ability of the method to reliably estimate MTT when SNR is low. Delays look promising for delineating the arterial occlusion territory and collateral circulation. PMID:22410325

  17. Neuronal or Hemodynamic? Grappling with the Functional MRI Signal

    PubMed Central

    2014-01-01

    Abstract Magnetic resonance imaging (MRI) and functional MRI (fMRI) continue to advance because creative physicists, engineers, neuroscientists, clinicians, and physiologists find new ways for extracting more information from the signal. Innovations in pulse sequence design, paradigm design, and processing methods have advanced the field and firmly established fMRI as a cornerstone for understanding the human brain. In this article, the field of fMRI is described through consideration of the central problem of separating hemodynamic from neuronal information. Discussed here are examples of how pulse sequences, activation paradigms, and processing methods are integrated such that novel, high-quality information can be obtained. Examples include the extraction of information such as activation onset latency, metabolic rate, neuronal adaptation, vascular patency, vessel diameter, vigilance, and subvoxel activation. Experimental measures include time series latency, hemodynamic shape, MR phase, multivoxel patterns, ratios of activation-related R2* to R2, metabolic rate changes, fluctuation correlations and frequencies, changes in fluctuation correlations and frequencies over time, resting correlation states, echo time dependence, and more. PMID:25093397

  18. Antiadrenergic and hemodynamic effects of ranolazine in conscious dogs.

    PubMed

    Zhao, Gong; Walsh, Erin; Shryock, John C; Messina, Eric; Wu, Yuzhi; Zeng, Dewan; Xu, Xiaobin; Ochoa, Manuel; Baker, Stephen P; Hintze, Thomas H; Belardinelli, Luiz

    2011-06-01

    Effects of ranolazine alone and in the presence of phenylephrine (PE) or isoproterenol (ISO) on hemodynamics, coronary blood flow and heart rate (HR) in the absence and presence of hexamethonium (a ganglionic blocker) were studied in conscious dogs. Ranolazine (0.4, 1.2, 3.6, and 6 mg/kg, intravenous) alone caused transient (<1 minute) and reversible hemodynamic changes. PE (0.3-10 μg/kg) caused a dose-dependent increase in blood pressure and decrease in HR. ISO (0.01-0.3 μg/kg) caused a dose-dependent decrease in blood pressure and an increase in HR. Ranolazine at high (11-13 mM), but not at moderate (4-5 mM) concentrations partially attenuated changes in mean arterial blood pressure and HR caused by either PE or ISO in normal conscious dogs. However, in dogs treated with hexamethonium (20 mg/kg) to cause autonomic blockade, ranolazine (both 4-5 and 11-13 μM) significantly attenuated both the PE- and ISO-induced changes in mean arterial blood pressure. The results suggest that a potential antiadrenergic effect of ranolazine was masked by autonomic control mechanisms in conscious dogs but could be observed when these mechanisms were inhibited (eg, in the hexamethonium-treated dog). Ranolazine, at plasma concentrations <10 μM and in conscious dogs with intact autonomic regulation, had minimal antiadrenergic (α and β) effects.

  19. Bicuspid aortic valve hemodynamics: a fluid-structure interaction study

    NASA Astrophysics Data System (ADS)

    Chandra, Santanu; Seaman, Clara; Sucosky, Philippe

    2011-11-01

    The bicuspid aortic valve (BAV) is a congenital defect in which the aortic valve forms with two leaflets instead of three. While calcific aortic valve disease (CAVD) also develops in the normal tricuspid aortic valve (TAV), its progression in the BAV is more rapid. Although studies have suggested a mechano-potential root for the disease, the native BAV hemodynamics remains largely unknown. This study aimed at characterizing BAV hemodynamics and quantifying the degree of wall-shear stress (WSS) abnormality on BAV leaflets. Fluid-structure interaction models validated with particle-image velocimetry were designed to predict the flow and leaflet dynamics in idealized TAV and BAV anatomies. Valvular function was quantified in terms of the effective orifice area. The regional leaflet WSS was characterized in terms of oscillatory shear index, temporal shear magnitude and temporal shear gradient. The predictions indicate the intrinsic degree of stenosis of the BAV anatomy, reveal drastic differences in shear stress magnitude and pulsatility on BAV and TAV leaflets and confirm the side- and site-specificity of the leaflet WSS. Given the ability of abnormal fluid shear stress to trigger valvular inflammation, these results support the existence of a mechano-etiology of CAVD in the BAV.

  20. Hemodynamic effects of isoproterenol in canine endotoxin shock

    PubMed Central

    Starzecki, Boleslaw; Spink, Wesley W.

    1968-01-01

    Myocardial function and peripheral hemodynamic alterations were measured through the late stages of canine endotoxin shock. 60 min postendotoxin paired animals were given infusions of either 5 ml/kg per hr of 5% dextrose or dextrose plus isoproterenol (0.25 μg/kg per min). Comparable blood lactic and pyruvic acid levels were determined, the excess lactic acid calculated, and pH values were obtained. During the initial stages the classic pattern of hemodynamic alterations was observed; an excess of lactic acid appeared and the pH decreased. Outstanding was evidence of markedly reduced myocardial function in the late stages of shock with progressive rise in left ventricular end diastolic pressure (LVEDP), low cardiac index, rise of central venous pressure, increased central blood volume, tachycardia, and declining arterial pressure. Analyses of left ventricular function curves also indicated myocardial failure. Infusion of dextrose alone failed to decrease mortality rate (10 of 18 dying), whereas the rate was significantly decreased with isoproterenol (2 of 18). Dextrose infusion did not benefit myocardial function. Isoproterenol resulted in a marked improvement in myocardial action with a significant increase in heart work associated with, yet very minor, increments of LVEDP. In addition, tachycardia subsided, peripheral resistance decreased, and the blood pressure stabilized. The prognostic value of excess lactic acid was doubtful but a progressive fall in later stages was associated with survival. Images PMID:5676517

  1. Hemodynamic responses to amygdaloid stimulation in spontaneously hypertensive rats.

    PubMed

    Galeno, T M; Brody, M J

    1983-08-01

    Our studies were done to determine 1) the regional hemodynamic effects of stimulating the central amygdaloid nucleus in conscious and anesthetized rats and 2) whether these effects differ between normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Flow was recorded with miniaturized pulsed Doppler probes placed on the renal and superior mesenteric arteries and the lower abdominal aorta. In rats anesthetized with Dialurethane, electrical stimulation elicited a depressor response accompanied by a decrease in hindquarter vascular resistance, with little or no change in heart rate or renal or mesenteric resistance in both SHR and WKY. By contrast, in conscious rats, stimulation was accompanied by a pressor response, tachycardia, and renal and mesenteric vasoconstriction in both groups. Hindquarter vascular resistance was unchanged in WKY and decreased at higher frequencies in SHR. There were no significant differences between SHR and WKY, whether anesthetized or awake, in hemodynamic responses to amygdaloid stimulation. Despite previous evidence indicating that the central amygdaloid nucleus contributes to the development of spontaneous hypertension, our results show that stimulation of this region does not elicit exaggerated cardiovascular responses in SHR.

  2. Closed-Loop Dynamic Modeling of Cerebral Hemodynamics

    PubMed Central

    Marmarelis, V. Z.; Shin, D. C.; Orme, M. E.; Zhang, R.

    2013-01-01

    The dynamics of cerebral hemodynamics have been studied extensively because of their fundamental physiological and clinical importance. In particular, the dynamic processes of cerebral flow autoregulation and CO2 vasomotor reactivity have attracted broad attention because of their involvement in a host of pathologies and clinical conditions (e.g. hypertension, syncope, stroke, traumatic brain injury, vascular dementia, Alzheimer’s disease, mild cognitive impairment etc.). This raises the prospect of useful diagnostic methods being developed on the basis of quantitative models of cerebral hemodynamics, if cerebral vascular dysfunction can be quantified reliably from data collected within practical clinical constraints. This paper presents a modeling method that utilizes beat-to-beat measurements of mean arterial blood pressure, cerebral blood flow velocity and end-tidal CO2 (collected non-invasively under resting conditions) to quantify the dynamics of cerebral flow autoregulation (CFA) and cerebral vasomotor reactivity (CVMR). The unique and novel aspect of this dynamic model is that it is nonlinear and operates in a closed-loop configuration. PMID:23292615

  3. Immediate hemodynamic response to furosemide in patients undergoing chronic hemodialysis.

    PubMed

    Schmieder, R E; Messerli, F H; deCarvalho, J G; Husserl, F E

    1987-01-01

    To evaluate the effect of furosemide on cardiovascular hemodynamics in patients with end-stage renal failure, we studied ten patients undergoing hemodialysis three times a week. Arterial pressure, heart rate, and cardiac output (indocyanine green dye) were measured in triplicate; total peripheral resistance and central blood volume were calculated by standard formulas. Hemodynamics were determined at baseline and 5, 10, 15, and 30 minutes after intravenous (IV) bolus injection of furosemide 60 mg. Furosemide produced a decrease in central blood volume of -13% +/- 2.2% from pretreatment values (P less than .01) that was most pronounced five minutes after injection, together with a fall in cardiac output (from 6.76 +/- 0.59 to 6.17 +/- 0.52 L/min, P less than .10). Stroke volume decreased with a maximum fall occurring after 15 minutes (from 84 +/- 7 to 79 +/- 7 mL/min, P less than .05), and total peripheral resistance increased (from 15.8 +/- 2.1 to 17.8 +/- 2.3 units, P less than .05) after furosemide. Arterial pressure and heart rate did not change. The decrease in central blood volume reflects a shift of the total blood volume from the cardiopulmonary circulation to the periphery, suggesting dilation of the peripheral venous bed. Thus, even in patients undergoing hemodialysis, furosemide acutely decreases left ventricular preload by venous dilation and should therefore prove to be beneficial in acute volume overload.

  4. Hemodynamic and organ blood flow responses to halothane and sevoflurane anesthesia during spontaneous ventilation.

    PubMed

    Crawford, M W; Lerman, J; Saldivia, V; Carmichael, F J

    1992-12-01

    This study compared systemic hemodynamic and organ blood flow responses to equipotent concentrations of halothane and sevoflurane during spontaneous ventilation in the rat. The MAC values for halothane and sevoflurane were determined. Cardiac output and organ blood flows were measured using radiolabeled microspheres. Measurements were obtained in awake rats (control values) and at 1.0 MAC halothane or sevoflurane. The MAC values (mean +/- SEM) for halothane and sevoflurane were 1.10% +/- 0.05% and 2.40% +/- 0.05%, respectively. The PaCO2 increased to a similar extent in both groups compared with control values. During halothane anesthesia, heart rate decreased by 12% (P < 0.01), cardiac index by 26% (P < 0.01), and mean arterial blood pressure by 18% (P < 0.01) compared with control values. Stroke volume index and systemic vascular resistance did not change. During sevoflurane anesthesia, hemodynamic variables remained unchanged compared with control values. Coronary blood flow decreased by 21% (P < 0.01) and renal blood flow by 18% (P < 0.01) at 1.0 MAC halothane, whereas both remained unchanged at 1.0 MAC sevoflurane. Cerebral blood flow increased to a greater extent with halothane (63%; P < 0.01) than with sevoflurane (35%; P < 0.05). During halothane anesthesia, hepatic arterial blood flow increased by 48% (P < 0.01), whereas portal tributary blood flow decreased by 28% (P < 0.01). During sevoflurane anesthesia, hepatic arterial blood flow increased by 70% (P < 0.01) without a concomitant reduction in portal tributary blood flow. Total liver blood flow decreased only with halothane (16%; P < 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Computational Modeling of Neonatal Cardiopulmonary Bypass Hemodynamics With Full Circle of Willis Anatomy.

    PubMed

    Piskin, Senol; Ündar, Akif; Pekkan, Kerem

    2015-10-01

    Cardiopulmonary bypass (CPB) procedure is employed to repair most congenital heart defects (CHD). Cannulation is a critical component of this procedure where the location and diameter of cannula controls the hemodynamic performance. State-of-the-art computational studies of neonatal CPB employed an isolated aortic arch region by truncating the three-dimensional (3D) patient-specific cerebral system. The present work expanded these studies where the 3D patient-specific MRI reconstruction of the cerebral system, including the Circle of Willis (CoW), is integrated with a hypoplastic neonatal aortic arch. The inlet of the arterial cannula is assigned a steady velocity boundary condition of the CPB pump, while all outlets are modeled as resistance boundary conditions, thus allowing acute comparisons between different cannula configurations. Three-dimensional (3D) flow simulations in the aortic arch model are performed at a Reynolds number of 2150 using an experimentally validated commercial solver. Results demonstrate that the inclusion of 3D CoW is essential to predict the accurate head-neck blood perfusion and therefore critical in deciding the neonatal aortic cannulation strategy preoperatively. Using this integrated model two CPB configurations are studied, where the cannulas were placed at innominate artery (IA) (IA-cannula configuration) and ductus arteriosus (DA) (DA-cannula configuration). Configuration change produced significant differences in flow splits and local hemodynamics of blood flow throughout the whole aortic arch, neck and cerebral arteries. Percent flow rate differences between the IA- and DA-cannula configurations are computed to be: 19%, for descending aorta, 198% for ascending aorta (perfusing coronary arteries), 91% for right anterior cerebral artery, and 68% for left anterior cerebral artery. Another important finding is the retrograde flow at vertebral arteries for IA-cannula configuration, but not for DA-cannula. These results may help to

  6. Non-parametric temporal modeling of the hemodynamic response function via a liquid state machine.

    PubMed

    Avesani, Paolo; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M; Sona, Diego

    2015-10-01

    Standard methods for the analysis of functional MRI data strongly rely on prior implicit and explicit hypotheses made to simplify the analysis. In this work the attention is focused on two such commonly accepted hypotheses: (i) the hemodynamic response function (HRF) to be searched in the BOLD signal can be described by a specific parametric model e.g., double-gamma; (ii) the effect of stimuli on the signal is taken to be linearly additive. While these assumptions have been empirically proven to generate high sensitivity for statistical methods, they also limit the identification of relevant voxels to what is already postulated in the signal, thus not allowing the discovery of unknown correlates in the data due to the presence of unexpected hemodynamics. This paper tries to overcome these limitations by proposing a method wherein the HRF is learned directly from data rather than induced from its basic form assumed in advance. This approach produces a set of voxel-wise models of HRF and, as a result, relevant voxels are filterable according to the accuracy of their prediction in a machine learning framework. This approach is instantiated using a temporal architecture based on the paradigm of Reservoir Computing wherein a Liquid State Machine is combined with a decoding Feed-Forward Neural Network. This splits the modeling into two parts: first a representation of the complex temporal reactivity of the hemodynamic response is determined by a universal global "reservoir" which is essentially temporal; second an interpretation of the encoded representation is determined by a standard feed-forward neural network, which is trained by the data. Thus the reservoir models the temporal state of information during and following temporal stimuli in a feed-back system, while the neural network "translates" this data to fit the specific HRF response as given, e.g. by BOLD signal measurements in fMRI. An empirical analysis on synthetic datasets shows that the learning process can

  7. [Use of alpha-tocopherol acetate in the treatment of hemodynamic disorders in patients with pulmonary tuberculosis].

    PubMed

    Ditiatkov, A E; Tikhonov, V A; Radzevich, A E; Zholnin, P A

    2005-01-01

    Examination of 101 patients with pulmonary tuberculosis established the impact of specific intoxication on central hemodynamics in 51 patients. Specific treatment was found to have a certain positive effect on impaired hemodynamics. However, there were no significant changes in patients with severe tuberculosis. Hemodynamics substantially improved when alpha-tocopherol acetate was supplemented to antibacterial therapy.

  8. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  9. Intra-articular and muscle symptoms and subjective relief during TMJ internal derangement treatment with maxillary anterior repositioning splint or SVED and MORA splints: A comparison with untreated control subjects.

    PubMed

    Tecco, Simona; Caputi, Sergio; Teté, Stefano; Orsini, Giovanna; Festa, Felice

    2006-04-01

    Discomfort associated with wearing an intraoral splint represents a problem in the management of temporomandibular joint (TMJ) internal derangement. This study evaluated whether the use of a mandibular splint during the day and a maxillary splint at night could be more comfortable and therefore as efficacious in internal derangement treatment as a maxillary splint (AR splint). Fifty (50) patients (average age 28.8; range 14-63) with confirmed internal derangement in at least one TMJ were divided into three groups: 20 patients treated with AR splint (Group I); 20 patients treated with a SVED (Sagittal Vertical Extrusion Device) and a MORA (Mandibular Anterior Repositioning Splint) (Group II); and 10 patients who underwent no treatment (Control Group). Joint noise, pain intensity and its character (as constant or chewing/biting pain), muscular pain, and subjective relief were evaluated monthly before treatment began (T0) and for six months thereafter. The following results were found: 1. Subjects in Group I and Group II displayed a significant decrease in joint pain (p<0.001), constant pain (p<0.001), chewing/biting pain (p<0.001), joint noise and muscle pain from the beginning through the sixth month follow-ups; 2. At T1 and T2, subjects in Group II reported significantly lower discomfort associated with the devices than subjects in Group I. The use of two splints seems to be as efficacious as the use of an AR maxillary splint; however an AR splint is considered more comfortable by patients, especially during the first months of therapy.

  10. Estimating Hemodynamic Responses to the Wingate Test Using Thoracic Impedance

    PubMed Central

    Astorino, Todd A.; Bovee, Curtis; DeBoe, Ashley

    2015-01-01

    Techniques including direct Fick and Doppler echocardiography are frequently used to assess hemodynamic responses to exercise. Thoracic impedance has been shown to be a noninvasive alternative to these methods for assessing these responses during graded exercise to exhaustion, yet its feasibility during supramaximal bouts of exercise is relatively unknown. We used thoracic impedance to estimate stroke volume (SV) and cardiac output (CO) during the Wingate test (WAnT) and compared these values to those from graded exercise testing (GXT). Active men (n = 9) and women (n = 7) (mean age = 24.8 ± 5.9 yr) completed two Wingate tests and two graded exercise tests on a cycle ergometer. During exercise, heart rate (HR), SV, and CO were continuously estimated using thoracic impedance. Repeated measures analysis of variance was used to identify potential differences in hemodynamic responses across protocols. Results: Maximal SV (138.6 ± 37.4 mL vs. 135.6 ± 26.9 mL) and CO (24.5 ± 6.1 L·min-1 vs. 23.7 ± 5.1 L·min-1) were similar (p > 0.05) between repeated Wingate tests. Mean maximal HR was higher (p < 0.01) for GXT (185 ± 7 b·min-1) versus WAnT (177 ± 11 b·min-1), and mean SV was higher in response to WAnT (137.1 ± 32.1 mL) versus GXT (123.0 ± 32.0 mL), leading to similar maximal cardiac output between WAnT and GXT (23.9 ± 5.6 L·min-1 vs. 22.5 ± 6.0 L·min-1). Our data show no difference in hemodynamic responses in response to repeated administrations of the Wingate test. In addition, the Wingate test elicits similar cardiac output compared to progressive cycling to VO2max. Key points Measurement of cardiac output (CO), the rate of oxygen transport delivered by the heart to skeletal muscle, is not widely-employed in Exercise Physiology due to the level of difficulty and invasiveness characteristic of most techniques used to measure this variable. Nevertheless, thoracic impedance has been shown to provide a noninvasive and simpler approach to continuously

  11. Growth and hemodynamics after early embryonic aortic arch occlusion*

    PubMed Central

    Lindsey, Stephanie E.; Menon, Prahlad G.; Kowalski, William J.; Shekhar, Akshay; Yalcin, Huseyin C.; Nishimura, Nozomi; Schaffer, Chris B.; Butcher, Jonathan T.; Pekkan, Kerem

    2015-01-01

    The majority of severe clinically significant forms of congenital heart disease (CHD) is associated with great artery lesions, including hypoplastic, double, right or interrupted aortic arch morphologies. While fetal and neonatal interventions are advancing, their potential ability to restore cardiac function, optimal timing, location, and intensity required for intervention remain largely unknown. We here combine computational fluid dynamics (CFD) simulations with in vivo experiments to test how individual pharyngeal arch artery hemodynamics alters as a result of local interventions to obstruct individual arch artery flow. Simulated isolated occlusions within each pharyngeal arch artery were created with image derived three-dimensional (3D) reconstructions of normal chick pharyngeal arch anatomy at Hamburger-Hamilton (HH) developmental stages HH18 and HH24. Acute flow redistributions were then computed using in vivo measured subject-specific aortic sinus inflow velocity profiles. A kinematic vascular growth-rendering algorithm was then developed and implemented to test the role of changing local wall shear stress patterns in downstream 3D morphogenesis of arch arteries. CFD simulations predicted that altered pressure gradients and flow redistributions were most sensitive to occlusion of the IVth arches. To evaluate these simulations experimentally, a novel in vivo experimental model of pharyngeal arch occlusion was developed and implemented using two-photon microscopy guided femtosecond laser based photodisruption surgery. The right IVth arch was occluded at HH18, and resulting diameter changes were followed for up to 24 hours. Pharyngeal arch diameter responses to acute hemodynamic changes were predicted qualitatively but poorly quantitatively. Chronic growth and adaptation to hemodynamic changes however were predicted in a subset of arches. Our findings suggest that this complex biodynamic process is governed through more complex forms of mechanobiological

  12. Pyruvate stabilizes electrocardiographic and hemodynamic function in pigs recovering from cardiac arrest

    PubMed Central

    Cherry, Brandon H; Nguyen, Anh Q; Hollrah, Roger A; Williams, Arthur G; Hoxha, Besim; Olivencia-Yurvati, Albert H

    2015-01-01

    Cardiac electromechanical dysfunction may compromise recovery of patients who are initially resuscitated from cardiac arrest, and effective treatments remain elusive. Pyruvate, a natural intermediary metabolite, energy substrate, and antioxidant, has been found to protect the heart from ischemia-reperfusion injury. This study tested the hypothesis that pyruvate-enriched resuscitation restores hemodynamic, metabolic, and electrolyte homeostasis following cardiac arrest. Forty-two Yorkshire swine underwent pacing-induced ventricular fibrillation and, after 6 min pre-intervention arrest, 4 min precordial compressions followed by transthoracic countershocks. After defibrillation and recovery of spontaneous circulation, the pigs were monitored for another 4 h. Sodium pyruvate or NaCl were infused i.v. (0.1 mmol·kg−1·min−1) throughout precordial compressions and the first 60 min recovery. In 8 of the 24 NaCl-infused swine, the first countershock converted ventricular fibrillation to pulseless electrical activity unresponsive to subsequent countershocks, but only 1 of 18 pyruvate-treated swine developed pulseless electrical activity (relative risk 0.17; 95% confidence interval 0.13–0.22). Pyruvate treatment also lowered the dosage of vasoconstrictor phenylephrine required to maintain systemic arterial pressure at 15–60 min recovery, hastened clearance of excess glucose, elevated arterial bicarbonate, and raised arterial pH; these statistically significant effects persisted up to 3 h after sodium pyruvate infusion, while infusion-induced hypernatremia subsided. These results demonstrate that pyruvate-enriched resuscitation achieves electrocardiographic and hemodynamic stability in swine during the initial recovery from cardiac arrest. Such metabolically based treatment may offer an effective strategy to support cardiac electromechanical recovery immediately after cardiac arrest. PMID:26088865

  13. Chemotherapeutic (cyclophosphamide) effects on rat breast tumor hemodynamics monitored by multi-channel NIRS

    NASA Astrophysics Data System (ADS)

    Kim, Jae G.; Zhao, Dawen; Mason, Ralph P.; Liu, Hanli

    2005-04-01

    We previously suggested that the two time constants quantified from the increase of tumor oxyhemoglobin concentration, ▵ [HbO2], during hyperoxic gas intervention are associated with two blood flow/perfusion rates in well perfused and poorly perfused regions of tumors. In this study, our hypothesis is that when cancer therapy is applied to a tumor, changes in blood perfusion will occur and be detected by the NIRS. For experiments, systemic chemotherapy, cyclophosphamide (CTX), was applied to two groups of rats bearing syngeneic 13762NF mammary adenocarcinomas: one group received a single high dose i. p. (200 mg/kg CTX) and the other group continuous low doses (20 mg/kg CTX i. p. for 10 days). Time courses of changes in tumor ▵ [HbO2] were measured at four different locations on the breast tumors non-invasively with an inhaled gas sequence of air-oxygen-air before and after CTX administration. Both rat body weight and tumor volume decreased after administration of high dose CTX, but continuous low doses showed decrease of tumor volume only. Baselines (without any therapy) intra- and inter-tumor heterogeneity of vascular oxygenation during oxygen inhalation were similar to our previous observations. After CTX treatment, significant changes in vascular hemodynamic response to oxygen inhalation were observed from both groups. By fitting the increase of ▵ [HbO2] during oxygen inhalation, we have obtained changes of vascular structure ratio and also of perfusion rate ratio before and after chemotherapy. The preliminary results suggest that cyclophosphamide has greatest effect on the well perfused tumor vasculature. Overall, our study supports our earlier hypothesis, proving that the effects of chemotherapy in tumor may be monitored non-invasively by using NIRS to detect changes of hemodynamics induced with respiratory challenges.

  14. Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses

    PubMed Central

    Yücel, Meryem A.; Selb, Juliette; Aasted, Christopher M.; Petkov, Mike P.; Becerra, Lino; Borsook, David; Boas, David A.

    2015-01-01

    Abstract. Autonomic nervous system response is known to be highly task-dependent. The sensitivity of near-infrared spectroscopy (NIRS) measurements to superficial layers, particularly to the scalp, makes it highly susceptible to systemic physiological changes. Thus, one critical step in NIRS data processing is to remove the contribution of superficial layers to the NIRS signal and to obtain the actual brain response. This can be achieved using short separation channels that are sensitive only to the hemodynamics in the scalp. We investigated the contribution of hemodynamic fluctuations due to autonomous nervous system activation during various tasks. Our results provide clear demonstrations of the critical role of using short separation channels in NIRS measurements to disentangle differing autonomic responses from the brain activation signal of interest. PMID:26835480

  15. Simultaneous hemodynamic and echocardiographic changes during abdominal gas insufflation.

    PubMed

    Myre, K; Buanes, T; Smith, G; Stokland, O

    1997-10-01

    The purpose of this study was to investigate cardiovascular changes during CO2 pneumoperitoneum. We performed simultaneous hemodynamic recordings and transesophageal echocardiographic measurements of possible alterations in cardiac dimensions. Seven patients scheduled for elective laparoscopic cholecystectomy were investigated. With an intraabdominal pressure of 15 mm Hg, mean arterial pressure increased from 75 to 93 mm Hg (p < 0.05). Despite the increase in pulmonary capillary wedge pressure (PCWP) from 10 (9.5-12) to 17 (16-19.9) mm Hg (p < 0.05), left ventricular end-diastolic area index (EDAI) did not change significantly. The cardiac index remained unchanged. Thus abdominal gas insufflation substantially alters the PCWP/EDAI relation. During pneumoperitoneum, left ventricular filling pressure, estimated by PCWP, cannot be used as an indicator of left ventricular dilation. PMID:9348623

  16. CFD modeling of pulsatile hemodynamics in the total cavopulmonary connection

    NASA Astrophysics Data System (ADS)

    Zobaer, S. M. Tareq; Hasan, A. B. M. Toufique

    2016-07-01

    Total cavopulmonary connection is a blood flow pathway which is created surgically by an operation known as Fontan procedure, performed on children with single ventricle heart defects. Recent studies have shown that the hemodynamics in the connection can be strongly influenced by the presence of pulsatile flow. The aim of this paper is model the pulsatile flow patterns, and to calculate the vorticity field and power losses in an idealized 1.5D offset model of Total Cavopulmonary Connection. A three-dimensional polyhedral mesh was constructed for the numerical simulation. The rheological properties of blood were considered as Newtonian, and flow in the connection was assumed to be laminar. The results demonstrated complex flow patterns in the connection. The outcomes of the simulation showed reasonable agreement with the results available in the literature for a similar model.

  17. [Current concepts on hemodynamic support and therapy in septic shock].

    PubMed

    Rocha, Leonardo Lima; Pessoa, Camila Menezes Souza; Corrêa, Thiago Domingos; Pereira, Adriano José; de Assunção, Murillo Santucci Cesar; Silva, Eliézer

    2015-01-01

    Severe sepsis and septic shock represent a major healthcare challenge. Much of the improvement in mortality associated with septic shock is related to early recognition combined with timely fluid resuscitation and adequate antibiotics administration. The main goals of septic shock resuscitation include intravascular replenishment, maintenance of adequate perfusion pressure and oxygen delivery to tissues. To achieve those goals, fluid responsiveness evaluation and complementary interventions - i.e. vasopressors, inotropes and blood transfusion - may be necessary. This article is a literature review of the available evidence on the initial hemodynamic support of the septic shock patients presenting to the emergency room or to the intensive care unit and the main interventions available to reach those targets, focusing on fluid and vasopressor therapy, blood transfusion and inotrope administration.

  18. Current concepts on hemodynamic support and therapy in septic shock.

    PubMed

    Rocha, Leonardo Lima; Pessoa, Camila Menezes Souza; Corrêa, Thiago Domingos; Pereira, Adriano José; de Assunção, Murillo Santucci Cesar; Silva, Eliézer

    2015-01-01

    Severe sepsis and septic shock represent a major healthcare challenge. Much of the improvement in mortality associated with septic shock is related to early recognition combined with timely fluid resuscitation and adequate antibiotics administration. The main goals of septic shock resuscitation include intravascular replenishment, maintenance of adequate perfusion pressure and oxygen delivery to tissues. To achieve those goals, fluid responsiveness evaluation and complementary interventions - i.e. vasopressors, inotropes and blood transfusion - may be necessary. This article is a literature review of the available evidence on the initial hemodynamic support of the septic shock patients presenting to the emergency room or to the intensive care unit and the main interventions available to reach those targets, focusing on fluid and vasopressor therapy, blood transfusion and inotrope administration.

  19. The hemodynamics of septic shock: a historical perspective.

    PubMed

    Feihl, Francois; Waeber, Bernard; Liaudet, Lucas

    2013-03-01

    In the late 19th century, it was already known that severe infections could be associated with cardiovascular collapse, a fact essentially attributed to cardiac failure. A major experimental work in the rabbit, published by Romberg and Pässler in 1899, shifted attention to disturbed peripheral vascular tone as the mechanism of hypotension in these conditions. In the first half of the 20th century, great progresses were made in the pathophysiologic understanding of hemorrhagic and traumatic shocks, while researchers devoted relatively little attention to septic shock. Progress in the hemodynamic understanding of septic shock resumed with the advent of critical care units. The hyperdynamic state was recognized in the late fifties and early sixties. The present short review ends with landmark studies by Max Harry Weil, demonstrating the importance of venous pooling, and John H. Siegel, which introduced the concept of deficient peripheral utilization of oxygen, inspiring later work on the microvascular disturbances of septic shock.

  20. Echocardiographic Hemodynamic Monitoring in the Critically Ill Patient

    PubMed Central

    Romero-Bermejo, Francisco J; Ruiz-Bailén, Manuel; Guerrero-De-Mier, Manuel; López-Álvaro, Julián

    2011-01-01

    Echocardiography has shown to be an essential diagnostic tool in the critically ill patient's assessment. In this scenario the initial fluid therapy, such as it is recommended in the actual clinical guidelines, not always provides the desired results and maintains a considerable incidence of cardiorrespiratory insufficiency. Echocardiography can council us on these patients' clinical handling, not only the initial fluid therapy but also on the best-suited election of the vasoactive/inotropic treatment and the early detection of complications. It contributes as well to improving the etiological diagnosis, allowing one to know the heart performance with more precision. The objective of this manuscript is to review the more important parameters that can assist the intensivist in theragnosis of hemodynamically unstable patients. PMID:22758613

  1. Efficient hemodynamic event detection utilizing relational databases and wavelet analysis

    NASA Technical Reports Server (NTRS)

    Saeed, M.; Mark, R. G.

    2001-01-01

    Development of a temporal query framework for time-oriented medical databases has hitherto been a challenging problem. We describe a novel method for the detection of hemodynamic events in multiparameter trends utilizing wavelet coefficients in a MySQL relational database. Storage of the wavelet coefficients allowed for a compact representation of the trends, and provided robust descriptors for the dynamics of the parameter time series. A data model was developed to allow for simplified queries along several dimensions and time scales. Of particular importance, the data model and wavelet framework allowed for queries to be processed with minimal table-join operations. A web-based search engine was developed to allow for user-defined queries. Typical queries required between 0.01 and 0.02 seconds, with at least two orders of magnitude improvement in speed over conventional queries. This powerful and innovative structure will facilitate research on large-scale time-oriented medical databases.

  2. Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis

    PubMed Central

    Vilas-Boas, Walkíria Wingester; Ribeiro-Oliveira Jr, Antônio; Pereira, Regina Maria; da Cunha Ribeiro, Renata; Almeida, Jerusa; Nadu, Ana Paula; Simões e Silva, Ana Cristina; dos Santos, Robson Augusto Souza

    2009-01-01

    AIM: To measure circulating angiotensins at different stages of human cirrhosis and to further evaluate a possible relationship between renin angiotensin system (RAS) components and hemodynamic changes. METHODS: Patients were allocated into 4 groups: mild-to-moderate liver disease (MLD), advanced liver disease (ALD), patients undergoing liver transplantation, and healthy controls. Blood was collected to determine plasma renin activity (PRA), angiotensin (Ang) I, Ang II, and Ang-(1-7) levels using radioimmunoassays. During liver transplantation, hemodynamic parameters were determined and blood was simultaneously obtained from the portal vein and radial artery in order to measure RAS components. RESULTS: PRA and angiotensins were elevated in ALD when compared to MLD and controls (P < 0.05). In contrast, Ang II was significantly reduced in MLD. Ang-(1-7)/Ang II ratios were increased in MLD when compared to controls and ALD. During transplantation, Ang II levels were lower and Ang-(1-7)/Ang II ratios were higher in the splanchnic circulation than in the peripheral circulation (0.52 ± 0.08 vs 0.38 ± 0.04, P < 0.02), whereas the peripheral circulating Ang II/Ang I ratio was elevated in comparison to splanchnic levels (0.18 ± 0.02 vs 0.13 ± 0.02, P < 0.04). Ang-(1-7)/Ang II ratios positively correlated with cardiac output (r = 0.66) and negatively correlated with systemic vascular resistance (r = -0.70). CONCLUSION: Our findings suggest that the relationship between Ang-(1-7) and Ang II may play a role in the hemodynamic changes of human cirrhosis. PMID:19469002

  3. In-vivo optical imaging and spectroscopy of cerebral hemodynamics

    NASA Astrophysics Data System (ADS)

    Zhou, Chao

    Functional optical imaging techniques, such as diffuse optical imaging and spectroscopy and laser speckle imaging (LSI), were used in research and clinical settings to measure cerebral hemodynamics. In this thesis, theoretical and experimental developments of the techniques and their in-vivo applications ranging from small animals to adult humans are demonstrated. Near infrared diffuse optical techniques non-invasively measure hemoglobin concentrations, blood oxygen saturation (diffuse reflectance spectroscopy, DRS) and blood flow (diffuse correlation spectroscopy, DCS) in deep tissues, e.g. brain. A noise model was derived for DCS measurements. Cerebral blood flow (CBF) measured with DCS was validated with arterial-spin-labeling MRI. Three-dimensional CBF tomography was obtained during cortical spreading depression from a rat using the optimized diffuse correlation tomographic method. Cerebral hemodynamics in newborn piglets after traumatic brain injury were continuously monitored optically for six hours to demonstrate the feasibility of using diffuse optical techniques as bedside patient monitors. Cerebral autoregulation in piglets and human stroke patients was demonstrated to be non-invasively assessable via the continuous DCS measurement. Significant differences of CBF responses to head-of-bead maneuvers were observed between the peri- and contra-infarct hemispheres in human stroke patients. A significant portion of patient population showed paradoxical CBF responses, indicating the importance of individualized stroke management. The development of a speckle noise model revealed the source of noise for LSI. LSI was then applied to study the acute functional recovery of the rat brain following transient brain ischemia. The spatial and temporal cerebral blood flow responses to functional stimulation were statistically quantified. The area of activation, and the temporal response to stimulation were found significantly altered by the ischemic insult, while the

  4. Optimal hemodynamic response model for functional near-infrared spectroscopy

    PubMed Central

    Kamran, Muhammad A.; Jeong, Myung Yung; Mannan, Malik M. N.

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650–950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > tcritical and p-value < 0.05). PMID:26136668

  5. Critical Transitions in Early Embryonic Aortic Arch Patterning and Hemodynamics

    PubMed Central

    Kowalski, William J.; Dur, Onur; Wang, Yajuan; Patrick, Michael J.; Tinney, Joseph P.; Keller, Bradley B.; Pekkan, Kerem

    2013-01-01

    Transformation from the bilaterally symmetric embryonic aortic arches to the mature great vessels is a complex morphogenetic process, requiring both vasculogenic and angiogenic mechanisms. Early aortic arch development occurs simultaneously with rapid changes in pulsatile blood flow, ventricular function, and downstream impedance in both invertebrate and vertebrate species. These dynamic biomechanical environmental landscapes provide critical epigenetic cues for vascular growth and remodeling. In our previous work, we examined hemodynamic loading and aortic arch growth in the chick embryo at Hamburger-Hamilton stages 18 and 24. We provided the first quantitative correlation between wall shear stress (WSS) and aortic arch diameter in the developing embryo, and observed that these two stages contained different aortic arch patterns with no inter-embryo variation. In the present study, we investigate these biomechanical events in the intermediate stage 21 to determine insights into this critical transition. We performed fluorescent dye microinjections to identify aortic arch patterns and measured diameters using both injection recordings and high-resolution optical coherence tomography. Flow and WSS were quantified with 3D computational fluid dynamics (CFD). Dye injections revealed that the transition in aortic arch pattern is not a uniform process and multiple configurations were documented at stage 21. CFD analysis showed that WSS is substantially elevated compared to both the previous (stage 18) and subsequent (stage 24) developmental time-points. These results demonstrate that acute increases in WSS are followed by a period of vascular remodeling to restore normative hemodynamic loading. Fluctuations in blood flow are one possible mechanism that impacts the timing of events such as aortic arch regression and generation, leading to the variable configurations at stage 21. Aortic arch variations noted during normal rapid vascular remodeling at stage 21 identify a

  6. Mathematical simulation of hemodynamical processes and medical technologies

    NASA Astrophysics Data System (ADS)

    Tsitsyura, Nadiya; Novyc'kyy, Victor V.; Lushchyk, Ulyana B.

    2001-06-01

    Vascular pathologies constitute a significant part of human's diseases and their rate tends to increase. Numerous investigations of brain blood flow in a normal condition and in a pathological one has created a new branch of modern medicine -- angioneurology. It combines the information on brain angioarchitecture and on blood supply in a normal condition and in a pathological one. Investigations of a disease's development constitute an important problem of a modern medicine. Cerebrum blood supply is regulated by arterial inflow and venous outflow, but, unfortunately, in the literature available arterial and venous beds are considered separately. This causes an one-sided interpretation of atherosclerotical and discirculatory encefalopathies. As arterial inflow and venous outflow are interrelated, it seems to be expedient to perform a complex estimation of arteriovenous interactions, prove a correlation dependence connection between the beds and find a dependence in a form of mathematical function. The results will be observed clearly in the graphs. There were 139 patients aged from 2 up to 70 examined in the 'Istyna' Scientific Medical Ultrasound Center by means of a Logidop 2 apparatus manufactured by Kranzbuhler, Germany using a technique of cerebral arteries and veins ultrasound location (invented and patented by Ulyana Lushchyk, State Patent of Ukraine N10262 of 19/07/1995). A clinical interpretation of the results obtained was performed. With the help of this technique and ultrasound Dopplerography the blood flow in major head and cervical arteries was investigated. While performing a visual graphic analysis we paid attention to the changes of carotid artery (CA), internal jugular vein (IJV) and supratrochlear artery's (STA) hemodynamical parameters. Generally accepted blood flow parameters: FS -- maximal systolic frequency and FD -- minimal diastolic frequency were measured. The correlation between different combinations of parameters in the vessels mentioned

  7. Plethyzmography in assessment of hemodynamic results of pacemaker functions programming

    NASA Astrophysics Data System (ADS)

    Wojciechowski, Dariusz; Sionek, Piotr; Peczalski, Kazimierz; Janusek, Dariusz

    2011-01-01

    The paper presents potential role of plethyzmography in optimization of heart hemodynamic function during pacemaker programming. The assessment of optimal stroke volume in patients, with implanted dual chamber pacemaker (DDD), by plethyzmography was a goal of the study. The data were collected during pacing rhythm. 20 patients (8 female and 12 male, average 77.4+/-4.6 years) with dual chamber pacemaker (DDD) and with pacing rhythm during routine pacemaker control and study tests were incorporated in the study group. Hemodynamic parameters were assessed during modification of atrio-ventricular delay (AVD) for pacing rhythm of 70 bpm and 90 bpm. The time of atrioventricular was programmed with 20 ms steps within range 100-200 ms and data were recorded with two minutes delay between two consecutive measurements. Stroke volume (SV) and cardiac output (CO) were calculated from plethyzmographic signal by using Beatscope software (TNO Holand). Highest SV calculated for given pacing rhythm was named optimal stroke volume (OSV) and consequently highest cardiac output was named maximal cardiac output (MCO). The time of atrio-ventricular delay for OSV was named optimal atrioventricular delay (OAVD). The results have showed: mean values of OAVD for 70 bpm - 152+/-33 ms and for 90 bpm -149+/-35 ms, shortening of the mean OAVD time caused by increase of pacing rate from 70 bpm to 90 bpm what resulted in statistically significant decrease of OSV with not statistically significant increase of MCO. The analysis of consecutive patients revealed three types of response to increase of pacing rhythm: 1. typical-shortening of OAVD, 2. neutral-no change of OAVD and 3.atypical-lengthening of OAVD.

  8. Leonardo da Vinci and the first hemodynamic observations.

    PubMed

    Martins e Silva, J

    2008-02-01

    Leonardo da Vinci was a genius whose accomplishments and ideas come down to us today, five centuries later, with the freshness of innovation and the fascination of discovery. This brief review begins with a summary of Leonardo's life and a description of the most important works of art that he bequeathed us, and then concentrates on his last great challenge. There was a point at which Leonardo's passion for art gave way to the study of human anatomy, not only to improve his drawing but to go beyond what had been simply a representation of form to understand the underlying functioning. Among his many interests, we focus on his study of the heart and blood vessels, which he observed carefully in animals and human autopsies, and reproduced in drawings of great quality with annotations of astonishing acuteness. The experience that he had acquired from observing the flow of water in currents and around obstacles, and the conclusions that he drew concerning hydrodynamics, were central to his interpretation of the mechanisms of the heart and of blood flow, to which he devoted much of his time between 1508 and 1513. From these studies, immortalized in drawings of great clarity, come what are acknowledged to be the first hemodynamic records, in which Leonardo demonstrates the characteristics of blood flow in the aorta and great vessels and the importance of blood reflux and the formation of eddies in the sinus in aortic valve his assiduous and careful observations, and his subsequent deductions, Leonardo put forward detailed findings on hemodynamic questions that advanced technology has only recently enabled us to confirm.

  9. Effect of Sildenafil on Neuropathic Pain and Hemodynamics in Rats

    PubMed Central

    Huang, Lan Ji; Choi, Jeong Il; Kim, Woong Mo; Lee, Hyung Gon; Kim, Yeo Ok

    2010-01-01

    Purpose The inhibition of phosphodiesterase 5 produces an antinociception through the increase of cyclic guanosine monophosphate (cGMP), and increasing cGMP levels enhance the release of γ-aminobutyric acid (GABA). Furthermore, this phosphodiesterase 5 plays a pivotal role in the regulation of the vasodilatation associated to cGMP. In this work, we examined the contribution of GABA receptors to the effect of sildenafil, a phosphodiesterase 5 inhibitor, in a neuropathic pain rat, and assessed the hemodynamic effect of sildenafil in normal rats. Materials and Methods Neuropathic pain was induced by ligation of L5/6 spinal nerves in Sprague-Dawley male rats. After observing the effect of intravenous sildenafil on neuropathic pain, GABAA receptor antagonist (bicuculline) and GABAB receptor antagonist (saclofen) were administered prior to delivery of sildenafil to determine the role of GABA receptors in the activity of sildenafil. For hemodynamic measurements, catheters were inserted into the tail artery. Mean arterial pressure (MAP) and heart rate (HR) were measured over 60 min following administration of sildenafil. Results Intravenous sildenafil dose-dependently increased the withdrawal threshold to the von Frey filament application in the ligated paw. Intravenous bicuculline and saclofen reversed the antinociception of sildenafil. Intravenous sildenafil increased the magnitude of MAP reduction at the maximal dosage, but it did not affect HR response. Conclusion These results suggest that sildenafil is active in causing neuropathic pain. Both GABAA and GABAB receptors are involved in the antinociceptive effect of sildenafil. Additionally, intravenous sildenafil reduces MAP without affecting HR. PMID:20046518

  10. Post-Treatment Hemodynamics of a Basilar Aneurysm and Bifurcation

    PubMed Central

    Ortega, J.; Hartman, J.; Rodriguez, J.; Maitland, D.

    2009-01-01

    To investigate whether or not a successful aneurysm treatment procedure can subject a parent artery to harmful hemodynamic stresses, computational fluid dynamics simulations are performed on a patient-specific basilar aneurysm and bifurcation before and after a virtual endovascular treatment. Prior to treatment, the aneurysm at systole is filled with a periodic train of vortex tubes, which form at the aneurysm neck and advect upwards into the dome. Following the treatment procedure however, the motion of the vortex train is inhibited by the aneurysm filling material, which confines the vortex tubes to the region beneath the aneurysm neck. Analysis of the post-treatment flow field indicates that the impingement of the basilar artery flow upon the treated aneurysm neck and the close proximity of a vortex tube to the parent artery wall increase the maximum wall shear stresses to values approximately equal to 50 Pa at systole. Calculation of the time-averaged wall shear stresses indicates that there is a 1.4 × 9 10−7 m2 area on the parent artery exposed to wall shear stresses greater than 37.9 Pa, a value shown by Fry [Circ. Res. 22(2):165–197, 1968] to cause severe damage to the endothelial cells that line the artery wall. The results of this study demonstrate that it is possible for a treatment procedure, which successfully isolates the aneurysm from the circulation and leaves no aneurysm neck remnant, to elevate the hemodynamic stresses to levels that are injurious to the artery wall. PMID:18629647

  11. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension

    PubMed Central

    Palatini, Paolo; Casiglia, Edoardo; Gąsowski, Jerzy; Głuszek, Jerzy; Jankowski, Piotr; Narkiewicz, Krzysztof; Saladini, Francesca; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Van Bortel, Luc; Wojciechowska, Wiktoria; Kawecka-Jaszcz, Kalina

    2011-01-01

    This review summarizes several scientific contributions at the recent Satellite Symposium of the European Society of Hypertension, held in Milan, Italy. Arterial stiffening and its hemodynamic consequences can be easily and reliably measured using a range of noninvasive techniques. However, like blood pressure (BP) measurements, arterial stiffness should be measured carefully under standardized patient conditions. Carotid-femoral pulse wave velocity has been proposed as the gold standard for arterial stiffness measurement and is a well recognized predictor of adverse cardiovascular outcome. Systolic BP and pulse pressure in the ascending aorta may be lower than pressures measured in the upper limb, especially in young individuals. A number of studies suggest closer correlation of end-organ damage with central BP than with peripheral BP, and central BP may provide additional prognostic information regarding cardiovascular risk. Moreover, BP-lowering drugs can have differential effects on central aortic pressures and hemodynamics compared with brachial BP. This may explain the greater beneficial effect provided by newer antihypertensive drugs beyond peripheral BP reduction. Although many methodological problems still hinder the wide clinical application of parameters of arterial stiffness, these will likely contribute to cardiovascular assessment and management in future clinical practice. Each of the abovementioned parameters reflects a different characteristic of the atherosclerotic process, involving functional and/or morphological changes in the vessel wall. Therefore, acquiring simultaneous measurements of different parameters of vascular function and structure could theoretically enhance the power to improve risk stratification. Continuous technological effort is necessary to refine our methods of investigation in order to detect early arterial abnormalities. Arterial stiffness and its consequences represent the great challenge of the twenty-first century for

  12. Arterial stiffness, central hemodynamics, and cardiovascular risk in hypertension.

    PubMed

    Palatini, Paolo; Casiglia, Edoardo; Gąsowski, Jerzy; Głuszek, Jerzy; Jankowski, Piotr; Narkiewicz, Krzysztof; Saladini, Francesca; Stolarz-Skrzypek, Katarzyna; Tikhonoff, Valérie; Van Bortel, Luc; Wojciechowska, Wiktoria; Kawecka-Jaszcz, Kalina

    2011-01-01

    This review summarizes several scientific contributions at the recent Satellite Symposium of the European Society of Hypertension, held in Milan, Italy. Arterial stiffening and its hemodynamic consequences can be easily and reliably measured using a range of noninvasive techniques. However, like blood pressure (BP) measurements, arterial stiffness should be measured carefully under standardized patient conditions. Carotid-femoral pulse wave velocity has been proposed as the gold standard for arterial stiffness measurement and is a well recognized predictor of adverse cardiovascular outcome. Systolic BP and pulse pressure in the ascending aorta may be lower than pressures measured in the upper limb, especially in young individuals. A number of studies suggest closer correlation of end-organ damage with central BP than with peripheral BP, and central BP may provide additional prognostic information regarding cardiovascular risk. Moreover, BP-lowering drugs can have differential effects on central aortic pressures and hemodynamics compared with brachial BP. This may explain the greater beneficial effect provided by newer antihypertensive drugs beyond peripheral BP reduction. Although many methodological problems still hinder the wide clinical application of parameters of arterial stiffness, these will likely contribute to cardiovascular assessment and management in future clinical practice. Each of the abovementioned parameters reflects a different characteristic of the atherosclerotic process, involving functional and/or morphological changes in the vessel wall. Therefore, acquiring simultaneous measurements of different parameters of vascular function and structure could theoretically enhance the power to improve risk stratification. Continuous technological effort is necessary to refine our methods of investigation in order to detect early arterial abnormalities. Arterial stiffness and its consequences represent the great challenge of the twenty-first century for

  13. Intersystem relationships of respiration and hemodynamics in the initial period of postural effects.

    PubMed

    Donina, Zh A; Lavrova, I N; Baranov, V M

    2013-07-01

    We studied the dependence of parameters of lung volumes and the elastic properties of the lungs on changes in the central hemodynamics occurring in the initial period of passive postural changes in cats. It was found that transition from the horizontal to head-up and head-down tilting was accompanied by opposite hemodynamic changes in the cranial and caudal parts of the body. Changes in lung compliance and functional residual capacity of the lungs were opposite and linearly depended on the intensity of hemodynamic shifts, which indicates passive character of the primary disorders primarily determined by a physical factor, gravity-dependent redistribution of body fluids.

  14. Hemodynamic Influences on Abdominal Aortic Aneurysm Disease: Application of Biomechanics to Aneurysm Pathophysiology

    PubMed Central

    Dua, Monica M.; Dalman, Ronald L.

    2010-01-01

    “Atherosclerotic” abdominal aortic aneurysms (AAAs) occur with the greatest frequency in the distal aorta. The unique hemodynamic environment of this area predisposes it to site-specific degenerative changes. In this review, we summarize the differential hemodynamic influences present along the length of the abdominal aorta, and demonstrate how alterations in aortic flow and wall shear stress modify AAA progression in experimental models. Improved understanding of aortic hemodynamic risk profiles provides an opportunity to modify patient activity patterns to minimize risk of aneurysmal degeneration. PMID:20347049

  15. Simultaneous EEG and diffuse optical imaging of seizure-related hemodynamic activity in the newborn infant brain

    NASA Astrophysics Data System (ADS)

    Hebden, Jeremy C.; Cooper, Robert J.; Gibson, Adam; Everdell, Nick; Austin, Topun

    2012-06-01

    An optical imaging system has been developed which uses measurements of diffusely reflected near-infrared light to produce maps of changes in blood flow and oxygenation occurring within the cerebral cortex. Optical sources and detectors are coupled to the head via an array of optical fibers, on a probe held in contact with the scalp, and data is collected at a rate of 10 Hz. A clinical electroencephalography (EEG) system has been integrated with the optical system to enable simultaneous observation of electrical and hemodynamic activity in the cortex of neurologically compromised newborn infants diagnosed with seizures. Studies have made a potentially critically important discovery of previously unknown transient hemodynamic events in infants treated with anticonvulsant medication. We observed repeated episodes of small increases in cortical oxyhemoglobin concentration followed by a profound decrease in 3 of 4 infants studied, each with cerebral injury who presented with neonatal seizures. This was not accompanied by clinical or EEG seizure activity and was not present in nineteen matched controls. The underlying cause of these changes is currently unknown. We tentatively suggest that our results may be associated with a phenomenon known as cortical spreading depolarization, not previously observed in the infant brain.

  16. Hypertensive heart disease and obesity: a complex interaction between hemodynamic and not hemodynamic factors.

    PubMed

    Sarzani, Riccardo; Bordicchia, Marica; Spannella, Francesco; Dessì-Fulgheri, Paolo; Fedecostante, Massimiliano

    2014-06-01

    The worldwide prevalence of obesity has nearly doubled, with an increase in obesity-related cardiovascular disease and mortality. Several factors are involved in the genesis of hypertension and hypertensive heart disease (HHD) in overweight/obesity. This review is focused on bridging factors between excessive adiposity and HHD, presenting a unifying hypothesis of vascular-metabolic syndrome, where an "handicap" of the natriuretic peptide system has a central role both in adipocyte dysmetabolism as well as in increased blood pressure and HHD.

  17. Monitoring depth of anesthesia using combination of EEG measure and hemodynamic variables.

    PubMed

    Shalbaf, R; Behnam, H; Jelveh Moghadam, H

    2015-02-01

    Monitoring depth of anesthesia (DOA) via vital signs is a major ongoing challenge for anesthetists. A number of electroencephalogram (EEG)-based monitors such as the Bispectral (BIS) index have been proposed. However, anesthesia is related to central and autonomic nervous system functions whereas the EEG signal originates only from the central nervous system. This paper proposes an automated DOA detection system which consists of three steps. Initially, we introduce multiscale modified permutation entropy index which is robust in the characterization of the burst suppression pattern and combine multiscale information. This index quantifies the amount of complexity in EEG data and is computationally efficient, conceptually simple and artifact resistant. Then, autonomic nervous system activity is quantified with heart rate and mean arterial pressure which are easily acquired using routine monitoring machine. Finally, the extracted features are used as input to a linear discriminate analyzer (LDA). The method is validated with data obtained from 25 patients during the cardiac surgery requiring cardiopulmonary bypass. The experimental results indicate that an overall accuracy of 89.4 % can be obtained using combination of EEG measure and hemodynamic variables, together with LDA to classify the vital sign into awake, light, surgical and deep anesthetised states. The results demonstrate that the proposed method can estimate DOA more effectively than the commercial BIS index with a stronger artifact-resistance.

  18. Venous hemodynamic changes in lower limb venous disease: the UIP consensus according to scientific evidence.

    PubMed

    Lee, Byung B; Nicolaides, Andrew N; Myers, Kenneth; Meissner, Mark; Kalodiki, Evi; Allegra, Claudio; Antignani, Pier L; Bækgaard, Niels; Beach, Kirk; Belcaro, Giovanni; Black, Stephen; Blomgren, Lena; Bouskela, Eliete; Cappelli, Massimo; Caprini, Joseph; Carpentier, Patrick; Cavezzi, Attilio; Chastanet, Sylvain; Christenson, Jan T; Christopoulos, Demetris; Clarke, Heather; Davies, Alun; Demaeseneer, Marianne; Eklöf, Bo; Ermini, Stefano; Fernández, Fidel; Franceschi, Claude; Gasparis, Antonios; Geroulakos, George; Sergio, Gianesini; Giannoukas, Athanasios; Gloviczki, Peter; Huang, Ying; Ibegbuna, Veronica; Kakkos, Stavros K; Kistner, Robert; Kölbel, Tilo; Kurstjens, Ralph L; Labropoulos, Nicos; Laredo, James; Lattimer, Christopher R; Lugli, Marzia; Lurie, Fedor; Maleti, Oscar; Markovic, Jovan; Mendoza, Erika; Monedero, Javier L; Moneta, Gregory; Moore, Hayley; Morrison, Nick; Mosti, Giovanni; Nelzén, Olle; Obermayer, Alfred; Ogawa, Tomohiro; Parsi, Kurosh; Partsch, Hugo; Passariello, Fausto; Perrin, Michel L; Pittaluga, Paul; Raju, Seshadri; Ricci, Stefano; Rosales, Antonio; Scuderi, Angelo; Slagsvold, Carl E; Thurin, Anders; Urbanek, Tomasz; M VAN Rij, Andre; Vasquez, Michael; Wittens, Cees H; Zamboni, Paolo; Zimmet, Steven; Ezpeleta, Santiago Z

    2016-06-01

    There are excellent guidelines for clinicians to manage venous diseases but few reviews to assess their hemodynamic background. Hemodynamic concepts that evolved in the past have largely remained unchallenged in recent decades, perhaps due to their often complicated nature and in part due to emergence of new diagnostic techniques. Duplex ultrasound scanning and other imaging techniques which evolved in the latter part of the 20th century have dominated investigation. They have greatly improved our understanding of the anatomical patterns of venous reflux and obstruction. However, they do not provide the physiological basis for understanding the hemodynamics of flow, pressure, compliance and resistance. Hemodynamic investigations appear to provide a better correlation with post-treatment clinical outcome and quality of life than ultrasound findings. There is a far better prospect for understanding the complete picture of the patient's disability and response to management by combining ultrasound with hemodynamic studies. Accordingly, at the instigation of Dr Angelo Scuderi, the Union Internationale de Phlebologie (UIP) executive board commissioned a large number of experts to assess all aspects of management for venous disease by evidence-based principles. These included experts from various member societies including the European Venous Forum (EVF), American Venous Forum (AVF), American College of Phlebology (ACP) and Cardiovascular Disease Educational and Research Trust (CDERT). Their aim was to confirm or dispel long-held hemodynamic principles and to provide a comprehensive review of venous hemodynamic concepts underlying the pathophysiology of lower limb venous disorders, their usefulness for investigating patients and the relevant hemodynamic changes associated with various forms of treatment. Chapter 1 is devoted to basic hemodynamic concepts and normal venous physiology. Chapter 2 presents the mechanism and magnitude of hemodynamic changes in acute deep vein

  19. Hemodynamic impact of cerebral aneurysm endovascular treatment devices: coils and flow diverters.

    PubMed

    Goubergrits, Leonid; Schaller, Jens; Kertzscher, Ulrich; Woelken, Thies; Ringelstein, Moritz; Spuler, Andreas

    2014-07-01

    Coils and flow diverters or stents are devices successfully used to treat cerebral aneurysms. Treatment aims to reduce intra-aneurysmal flow, thereby separating the aneurysmal sac from the blood circulation. The focus and this manuscript combining literature review and our original research is an analysis of changes in aneurysmal hemodynamics caused by endovascular treatment devices. Knowledge of post-treatment hemodynamics is a path to successful long-term treatment. Summarizing findings on hemodynamic impact of treatment devices, we conclude: coiling and stenting do not affect post-treatment intra-aneurysmal pressure, but significantly alter aneurysmal hemodynamics through flow reduction and a change in flow structure. The impact of treatment devices on aneurysmal flow depends, however, on a set of parameters including device geometry, course of placement, parent vessel and aneurysm geometry.

  20. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation.

    PubMed

    Zamarripa Garcia, Mario A; Enriquez, Luz A; Dembitsky, Walter; May-Newman, Karen

    2008-01-01

    There is evidence that the incidence of aortic valve incompetence (AI) and other valvular pathologies may increase as more patients are submitted to longer periods of ventricular assist device (VAD) support. There is a need to better understand the mechanisms associated with the onset of these conditions and other possible complications related to the altered hemodynamics of VAD patients. In this study, the effect of AI on the hemodynamic response of continuous flow VAD (C-VAD) patients was measured in a mock loop over a range of pump speeds and level of native cardiac function. Our results showed that, in the presence of sufficient ventricular function, decreasing the C-VAD speed can allow a transition from series to parallel flow. Our study demonstrated that AI reduces the aortic pressure and flow when system impedance is unchanged. AI produces wasteful recirculation that substantially increases the pump work and decreases systemic perfusion, in particular during series flow conditions coupled with higher C-VAD speeds. The hematologic consequence of this regurgitant flow is a much higher exposure to shear for the blood, increasing the likelihood of hemolysis and thrombosis. While a certain degree of AI can be tolerated by a heart with good cardiac function, the consequences of AI for patients with VADs and poor cardiac function are much greater. Valve dysfunction in VAD patients may be related to structural changes in the tissue induced by altered biomechanics and excessive stress.

  1. [Effect of complex sanatorium treatment including magnetotherapy on hemodynamics in patients with arterial hypertension].

    PubMed

    Efremushkin, G G; Duruda, N V

    2003-01-01

    Forty nine patients with arterial hypertension of stage I-II received combined sanatorium treatment. Of them, 21 had adjuvant total magnetotherapy. All the patients were examined for parameters of central, cerebral hemodynamics and microcirculation. The adjuvant magnetotherapy produced a beneficial effect on hypertension: clinical symptoms attenuated, arterial pressure became more stable, hemodynamics improved, duration of hospitalization reduced, requirement in hypotensive drugs diminished. PMID:12852007

  2. Image-based modeling of the hemodynamics in cerebral arterial trees

    NASA Astrophysics Data System (ADS)

    Mut, Fernando; Wright, Susan; Putman, Christopher; Ascoli, Giorgio; Cebral, Juan

    2009-02-01

    Knowledge of the hemodynamics in normal arterial trees of the brain is important to better understand the mechanisms responsible for the initiation and progression of cerebrovascular diseases. Information about the baseline values of hemodynamic variables such as velocity magnitudes, swirling flows, wall shear stress, pressure drops, vascular resistances, etc. is important for characterization of the normal hemodynamics and comparison with pathological states such as aneurysms and stenoses. This paper presents image-based computational hemodynamics models of cerebral arterial trees constructed from magnetic resonance angiography (MRA) images. The construction of large models of cerebral arterial trees is challenging because of the following main reasons: a) it is necessary to acquire high resolution angiographic images covering the entire brain, b) it is necessary to construct topologically correct and geometrically accurate watertight models of the vasculature, and c) the models typically result in large computational grids which make the calculations computationally demanding. This paper presents a methodology to model the hemodynamics in the brain arterial network that combines high resolution MRA at 3T, a vector representation of the vascular structures based on semi-manual segmentation, and a novel algorithm to solve the incompressible flow equations efficiently in tubular geometries. These techniques make the study of the hemodynamics in the cerebral arterial network practical.

  3. Sub-band denoising and spline curve fitting method for hemodynamic measurement in perfusion MRI

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Dun; Huang, Hsiao-Ling; Hsu, Yuan-Yu; Chen, Chi-Chen; Chen, Ing-Yi; Wu, Liang-Chi; Liu, Ren-Shyan; Lin, Kang-Ping

    2003-05-01

    In clinical research, non-invasive MR perfusion imaging is capable of investigating brain perfusion phenomenon via various hemodynamic measurements, such as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean trasnit time (MTT). These hemodynamic parameters are useful in diagnosing brain disorders such as stroke, infarction and periinfarct ischemia by further semi-quantitative analysis. However, the accuracy of quantitative analysis is usually affected by poor signal-to-noise ratio image quality. In this paper, we propose a hemodynamic measurement method based upon sub-band denoising and spline curve fitting processes to improve image quality for better hemodynamic quantitative analysis results. Ten sets of perfusion MRI data and corresponding PET images were used to validate the performance. For quantitative comparison, we evaluate gray/white matter CBF ratio. As a result, the hemodynamic semi-quantitative analysis result of mean gray to white matter CBF ratio is 2.10 +/- 0.34. The evaluated ratio of brain tissues in perfusion MRI is comparable to PET technique is less than 1-% difference in average. Furthermore, the method features excellent noise reduction and boundary preserving in image processing, and short hemodynamic measurement time.

  4. Slow spontaneous hemodynamic oscillations during sleep measured with near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Virtanen, Jaakko; Näsi, Tiina; Noponen, Tommi; Toppila, Jussi; Salmi, Tapani; Ilmoniemi, Risto J.

    2011-07-01

    Spontaneous cerebral hemodynamic oscillations below 100 mHz reflect the level of cerebral activity, modulate hemodynamic responses to tasks and stimuli, and may aid in detecting various pathologies of the brain. Near-infrared spectroscopy (NIRS) is ideally suited for both measuring spontaneous hemodynamic oscillations and monitoring sleep, but little research has been performed to combine these two applications. We analyzed 30 all-night NIRS-electroencephalography (EEG) sleep recordings to investigate spontaneous hemodynamic activity relative to sleep stages determined by polysomnography. Signal power of hemodynamic oscillations in the low-frequency (LF, 40-150 mHz) and very-low-frequency (VLF, 3-40 mHz) bands decreased in slow-wave sleep (SWS) compared to light sleep (LS) and rapid-eye-movement (REM) sleep. No statistically significant (p < 0.05) differences in oscillation power between LS and REM were observed. However, the period of VLF oscillations around 8 mHz increased in REM sleep in line with earlier studies with other modalities. These results increase our knowledge of the physiology of sleep, complement EEG data, and demonstrate the applicability of NIRS to studying spontaneous hemodynamic fluctuations during sleep.

  5. Hemodynamic effects of plasma exchange in septic patients: preliminary report.

    PubMed

    Berlot, G; Gullo, A; Fasiolo, S; Serra, L; Silvestri, L; Wörz, M

    1997-01-01

    To assess the effects of plasma exchange on the hemodynamic performance of septic patients, we studied 12 septic patients (11 males and 1 female, age range 19-64, mean 39 +/- 17 years). After cardiovascular stabilization, plasma exchange was performed in the spontaneous mode via a femorofemoral arteriovenous shunt; during the treatment the infusion rate of cardiovascular drugs and the mechanical ventilation setting were not modified. Heart rate, pulmonary artery occlusion pressure, and peripheral vascular resistance did not change significantly. The stroke volume index increased significantly (from 49 +/- 9 to 60 +/- 9 ml/min/m2; p < 0.05) as well as the cardiac index (from 5.5 +/- 1.2 to 6.3 +/- 0.8 liters/min/m2, the oxygen delivery (from 785 +/- 166 to 872 +/- 118 ml/min/m2; p < 0.05), and the left ventricular stroke work index/pulmonary artery occlusion pressure ratio (from 4.03 +/- 1.92 to 5.07 +/- 2.54; p < 0.05). The oxygen consumption did not change. Four patients survived. In conclusion, in our patients plasma exchange was associated with an improvement in cardiac function, possibly due to the elimination of some sepsis mediator(s) with negative inotropic properties. PMID:9096906

  6. Effects of adenosine infusion into renal interstitium on renal hemodynamics

    SciTech Connect

    Pawlowska, D.; Granger, J.P.; Knox, F.G.

    1987-04-01

    This study was designed to investigate the hemodynamic effects of exogenous adenosine in the interstitium of the rat kidney. Adenosine or its analogues were infused into the renal interstitium by means of chronically implanted capsules. In fusion of adenosine decreased glomerular filtration rate (GFR) from 0.81 +/- 0.06 to 0.37 +/- 0.06 ml/min while having no effect on renal blood flow (RBF). The metabolically stable analogue, 2-chloradenosine (2-ClAdo), decreased GFR from 0.73 +/- 0.07 to 021 +/- 0.06 ml/min. Interstitial infusion of theophylline, an adenosine receptor antagonist, completely abolished the effects of adenosine and 2-ClAdo on GFR. The distribution of adenosine, when infused into the renal interstitium, was determined using radiolabeled 5'-(N-ethyl)-carboxamidoadenosine (NECA), a metabolically stable adenosine agonist. After continuous infusion, (/sup 3/H)NECA was distributed throughout the kidney. The effects of NECA to reduce GFR were similar to those of adenosine and 2-ClAdo. They conclude that increased levels of adenosine in the renal interstitium markedly decrease GFR without affecting RBF in steady-state conditions. The marked effects of adenosine agonists during their infusion into the renal interstitium and the complete blockade of these effects by theophylline suggest an extracellular action of adenosine.

  7. Hemodynamic forces regulate developmental patterning of atrial conduction.

    PubMed

    Bressan, Michael C; Louie, Jonathan D; Mikawa, Takashi

    2014-01-01

    Anomalous action potential conduction through the atrial chambers of the heart can lead to severe cardiac arrhythmia. To date, however, little is known regarding the mechanisms that pattern proper atrial conduction during development. Here we demonstrate that atrial muscle functionally diversifies into at least two heterogeneous subtypes, thin-walled myocardium and rapidly conducting muscle bundles, during a developmental window just following cardiac looping. During this process, atrial muscle bundles become enriched for the fast conduction markers Cx40 and Nav1.5, similar to the precursors of the fast conduction Purkinje fiber network located within the trabeculae of the ventricles. In contrast to the ventricular trabeculae, however, atrial muscle bundles display an increased proliferation rate when compared to the surrounding myocardium. Interestingly, mechanical loading of the embryonic atrial muscle resulted in an induction of Cx40, Nav1.5 and the cell cycle marker Cyclin D1, while decreasing atrial pressure via in vivo ligation of the vitelline blood vessels results in decreased atrial conduction velocity. Taken together, these data establish a novel model for atrial conduction patterning, whereby hemodynamic stretch coordinately induces proliferation and fast conduction marker expression, which in turn promotes the formation of large diameter muscle bundles to serve as preferential routes of conduction.

  8. Adrenergic Metabolic and Hemodynamic Effects of Octopamine in the Liver

    PubMed Central

    de Oliveira, Andrea Luiza; de Paula, Mariana Nascimento; Comar, Jurandir Fernando; Vilela, Vanessa Rodrigues; Peralta, Rosane Marina; Bracht, Adelar

    2013-01-01

    The fruit extracts of Citrus aurantium (bitter orange) are traditionally used as weight-loss products and as appetite suppressants. A component of these extracts is octopamine, which is an adrenergic agent. Weight-loss and adrenergic actions are always related to metabolic changes and this work was designed to investigate a possible action of octopamine on liver metabolism. The isolated perfused rat liver was used to measure catabolic and anabolic pathways and hemodynamics. Octopamine increased glycogenolysis, glycolysis, oxygen uptake, gluconeogenesis and the portal perfusion pressure. Octopamine also accelerated the oxidation of exogenous fatty acids (octanoate and oleate), as revealed by the increase in 14CO2 production derived from 14C labeled precursors. The changes in glycogenolysis, oxygen uptake and perfusion pressure were almost completely abolished by α1-adrenergic antagonists. The same changes were partly sensitive to the β-adrenergic antagonist propranolol. It can be concluded that octopamine accelerates both catabolic and anabolic processes in the liver via adrenergic stimulation. Acceleration of oxygen uptake under substrate-free perfusion conditions also means acceleration of the oxidation of endogenous fatty acids, which are derived from lipolysis. All these effects are compatible with an overall stimulating effect of octopamine on metabolism, which is compatible with its reported weight-loss effects in experimental animals. PMID:24196353

  9. Hemodynamic and alveolar protein studies in noncardiac pulmonary edema.

    PubMed

    Gelb, A F; Klein, E

    1976-11-01

    Hemodynamic data were obtained within 15 hours of admission in 11 previously healthy patients (20 to 51 years of age, 7 men and 4 women) who had developed transient, reversible pulmonary edema without cardiac dilation in association with near-death from freshwater drowning (2 cases), pentobarbital overdose, heroin overdose (2 cases), smoke inhalation, chest trauma, sepsis (2 cases), pancreatitis, or prolonged abdominal surgery with suspected sepsis. Using a balloon-tipped flow-directed catheter, the pulmonary artery systolic/diastolic pressures (in mm Hg) were 25/12, 22/9, 31/11, 26/15, 20/10, 35/15, 40/15, 32/18, 20/10, 24/10, and 20/7; the corresponding pulmonary capillary wedge pressures (in mm Hg) were 8, 9, 6, 14, 6, 6, 15, 15, 10, 10, and 5, respectively. Plasma colloidal osmotic pressures measured in the latter 5 cases were 26, 18, 18, 18, and 15 mm Hg, respectively. In addition, the protein content of the alveolar fluid was 5.1, 3.4, 4.0, and 7.1 g per 100 ml in 4 patients. The concentration and distribution of the protein in plasma and alveolar fluid were very similar. These findings provide strong efidence that altered capillary permeability is responsible for the pulmonary edema.

  10. Adverse pacemaker hemodynamics evaluated by pulmonary venous flow monitoring.

    PubMed

    Stierle, U; Krüger, D; Mitusch, R; Potratz, J; Taubert, G; Sheikhzadeh, A

    1995-11-01

    The pacemaker syndrome refers to symptoms and signs in the pacemaker patient caused by an inadequate timing of atrial and ventricular contractions. The lack of normal atrioventricular synchrony may result in a decreased cardiac output and venous cannon A waves. The objective of this study was to define the left atrial and pulmonary venous flow response to ventricular pacing in a group of 14 unselected consecutive patients with total heart block and sinus rhythm. Pulmonary venous flow was assessed by transesophageal pulsed Doppler echocardiography in the VVI and DDD pacing modes. An inappropriate atrial timing caused a marked augmentation of the normally small pulmonary venous z wave in all patients ("negative atrial kick," peak z wave in DDD pacing 14.5 +/- 4.6 cm/s, VVI pacing 51.8 +/- 15.0 cm/s). Restoration of AV synchrony (DDD pacing, AV interval 100 ms) abolished these "cannon z waves" in all patients, and a normal pattern of pulmonary venous flow was achieved. Abnormal pulmonary venous flow characteristics were observed in 2 of 14 patients during DDD pacing with short AV intervals (100 ms). The Doppler pattern was similar to the findings seen in VVI pacing. Assessment of pulmonary venous flow by transesophageal pulsed Doppler echocardiography may provide a simple, sensitive, and relatively noninvasive technique to evaluate patients with suspected pacing induced adverse hemodynamics.

  11. Hemodynamic and adrenergic responses of bevantolol and propranolol in hypertensives.

    PubMed

    Snedden, W; Fernandez, P G; Vasdev, S; Bolli, P

    1989-01-01

    The hemodynamic and neurohumoral responses of 21 thiazide-resistant hypertensives receiving sequential chronic therapy with propranolol and bevantolol, a new cardioselective beta-1 blocker, were studied and compared with their responses to placebo. The objective was to determine to what extent decreased circulation levels of catecholamines and renin activity contributed to the hypotensive action of bevantolol and whether it demonstrated a significant sparing effect on vascular resistance. Both propranolol and bevantolol lowered supine and erect blood pressures to a comparable extent but the response of diastolic pressure to upright posture was maintained. Resting heart rates were lowered and postural tachycardia was attenuated. Propranolol induced a greater decrease in forearm blood flow and greater increase in vascular resistance than bevantolol. Both drug therapies were associated with lowered plasma concentrations of noradrenaline and adrenaline, while the decrease in noradrenaline levels was linearly related to the fall of mean arterial pressure for both drugs. Plasma renin activity was lowered only to a marginal extent by either drug but aldosterone concentrations were significantly reduced to a comparable extent by both drugs. The results suggest that a negative chronotropic action on the heart and an overall reduction in sympathetic nervous tone both contribute to the hypotensive effects of bevantolol and propranolol, but reduction of plasma renin activity may be of lesser importance. Bevantolol demonstrated a significant vascular sparing effect in this patient group compared with propranolol.

  12. A near-infrared spectroscopy computational model for cerebral hemodynamics.

    PubMed

    Kannan, R; Przekwas, A

    2012-11-01

    Near infrared spectroscopy (NIRS) is a technique used to detect and measure changes in the concentrations of oxygenated hemoglobin, deoxygenated hemoglobin, and water in tissues based on the differential absorption, scattering, and refraction of the near infrared light. In this imaging technique, the optical properties of tissues are reconstructed from the measurements obtained from the sensors located on the boundary. A computational method for the rapid noninvasive detection ∕ quantification of cerebral hemorrhage is described using the above procedure. CFD Research Corporation's finite volume computational biology code was used to numerically mimic the NIRS procedure by (i) noninvasively 'numerically penetrating' the brain tissues and (ii) reconstructing the optical properties the presence of water, oxygenated, and deoxygenated blood. These numerical noninvasive measurements are then used to predict the extent and severity of the brain hemorrhage. The paper also discusses ideas to obtain the location and the severity of a localized injury. Two-dimensional and three-dimensional simulations are performed as a proof of concept for the numerical formulation being feasible for the above mentioned detection/quantification. The results demonstrate that this numerical NIRS formulation can be used as a noninvasive technique for both qualitative and quantitative evaluation of cerebral hemodynamics.

  13. Numerical predictions of hemodynamics following surgeries in cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Rayz, Vitaliy; Lawton, Michael; Boussel, Loic; Leach, Joseph; Acevedo, Gabriel; Halbach, Van; Saloner, David

    2014-11-01

    Large cerebral aneurysms present a danger of rupture or brain compression. In some cases, clinicians may attempt to change the pathological hemodynamics in order to inhibit disease progression. This can be achieved by changing the vascular geometry with an open surgery or by deploying a stent-like flow diverter device. Patient-specific CFD models can help evaluate treatment options by predicting flow regions that are likely to become occupied by thrombus (clot) following the procedure. In this study, alternative flow scenarios were modeled for several patients who underwent surgical treatment. Patient-specific geometries and flow boundary conditions were obtained from magnetic resonance angiography and velocimetry data. The Navier-Stokes equations were solved with a finite volume solver Fluent. A porous media approach was used to model flow-diverter devices. The advection-diffusion equation was solved in order to simulate contrast agent transport and the results were used to evaluate flow residence time changes. Thrombus layering was predicted in regions characterized by reduced velocities and shear stresses as well as increased flow residence time. The simulations indicated surgical options that could result in occlusion of vital arteries with thrombus. Numerical results were compared to experimental and clinical MRI data. The results demonstrate that image-based CFD models may help improve the outcome of surgeries in cerebral aneurysms. acknowledge R01HL115267.

  14. Hemodynamic Correlates of Proteinuria in Chronic Kidney Disease

    PubMed Central

    Townsend, Raymond R.; Fink, Jeffrey C.; Teal, Valerie; Anderson, Cheryl; Appel, Lawrence; Chen, Jing; He, Jiang; Litbarg, Natasha; Ojo, Akinlolu; Rahman, Mahboob; Rosen, Leigh; Sozio, Stephen M.; Steigerwalt, Susan; Strauss, Louise; Joffe, Marshall M.

    2011-01-01

    Summary Background and objectives Brachial artery measures of BP are associated with increasing degrees of proteinuria. Whether central measures of BP or vascular stiffness are associated with increased risk of proteinuria in patients with chronic kidney disease (CKD) is unknown. Design, setting, participants, & measurements Measurements of central and brachial artery BP, and aortic pulse wave velocity (PWV) were performed in a cross-sectional cohort of patients with CKD (n = 2144) from the Chronic Renal Insufficiency Cohort (CRIC) study to determine factors which predict increased risk of proteinuria. Multivariate analysis stratified by diabetes included age, ethnicity, gender, estimated glomerular filtration rate (GFR), waistline, smoking, heart rate, and medications to evaluate the relationship of hemodynamic factors and proteinuria. Results Brachial artery systolic BP (SBP) was important as an explanatory factor for variations in proteinuria among both diabetics (R2 = 0.40, P < 0.0001) and non diabetics (R2 = 0.38, P < 0.001). Measures of peripheral pulse pressure (PP), central SBP, and central pulse pressure added little to the explained variation in proteinuria beyond brachial artery SBP, whereas PWV as a measure of vascular stiffness incrementally accounted for a significant portion of variation in proteinuria beyond that explained by brachial artery SBP in diabetics (R2 = 0.42, P < 0.001) but not non diabetics. Conclusions Brachial artery SBP and PWV are both associated with variations in proteinuria in patients with CKD. PMID:21852669

  15. Evaluation of Hemodynamic Parameters as Predictors of Glaucoma Progression

    PubMed Central

    Janulevičiene, Ingrida; Ehrlich, Rita; Siesky, Brent; Nedzelskienė, Irena; Harris, Alon

    2011-01-01

    Purpose. To evaluate hemodynamic parameters as possible predictors for glaucoma progression. Methods. An 18-month randomized double-masked cohort study including 30 open-angle glaucoma patients receiving fixed-combination treatment with Dorzolamide/Timolol (DTFC) or Latanoprost/Timolol (LTFC) (n = 15 per group) was performed. Intraocular pressure (IOP), arterial blood pressure (BP), ocular and diastolic perfusion pressures (OPP, DPP), color Doppler imaging, pulsatile ocular blood flow analysis, scanning laser polarimetry, and Humphrey visual field evaluations were included. Results. Both treatments showed statistically similar IOP reduction. Six patients in DTFC and 7 in LTFC group met glaucoma progression criteria. DTFC group had higher OPP, DPP, and lower vascular resistivity indices as compared to the LTFC. Progressing patients had higher nerve fiber index, lower systolic BP, OPP, DPP, higher ophthalmic and central retinal artery vascular resistance, and lower pulse volume (P < .05; t-test). Conclusions. Structural changes consistent with glaucoma progression correlate with non-IOP-dependent risk factors. PMID:21577269

  16. Clinical predictive factors of sildenafil response: a penile hemodynamic study.

    PubMed

    Elhanbly, S M; Elkholy, A A-M; Alghobary, M; Abou Al-Ghar, M

    2015-03-01

    Phosphodiestrase-5 inhibitors are an important line of treatment for erectile dysfunction (ED). To detect the clinical and hemodynamic predictors of sildenafil response, we conducted this study on 124 Egyptian men with ED. All patients were evaluated by thorough history and clinical assessment with measurement of the abridged international index of erectile function-5 (IIEF-5) score. All patients were then subjected to intracavernosal injection (ICI) of trimix and pharmaco-penile duplex ultrasonography (PPDU). Patients were then classified into sildenafil responders and non-responders after six consecutive doses of 100 mg sildenafil. On doing the binary logistic stepwise regression analysis, only ED duration, IIEF-5 score, and response to ICI were the significant independent predictors of sildenafil response. These three parameters together correctly predicted the sildenafil response by 81.5% (p value <0.001). With the receiver operator characteristic curve analysis, the cut-off value of ED duration was 2.5 years and it was 14 for the IIEF-5 score. These findings indicate that ED duration, the IIEF-5 score and response to ICI are more significant predictors of sildenafil response than the more expensive and time-consuming PPDU testing. PMID:25644869

  17. Right Ventricular Hemodynamics in Patients with Pulmonary Hypertension

    NASA Astrophysics Data System (ADS)

    Browning, James; Fenster, Brett; Hertzberg, Jean; Schroeder, Joyce

    2012-11-01

    Recent advances in cardiac magnetic resonance imaging (CMR) have allowed for characterization of blood flow in the right ventricle (RV), including calculation of vorticity and circulation, and qualitative visual assessment of coherent flow patterns. In this study, we investigate qualitative and quantitative differences in right ventricular hemodynamics between subjects with pulmonary hypertension (PH) and normal controls. Fifteen (15) PH subjects and 10 age-matched controls underwent same day 3D time resolved CMR and echocardiography. Echocardiography was used to determine right ventricular diastolic function as well as pulmonary artery systolic pressure (PASP). Velocity vectors, vorticity vectors, and streamlines in the RV were visualized in Paraview and total RV Early (E) and Atrial (A) wave diastolic vorticity was quantified. Visualizations of blood flow in the RV are presented for PH and normal subjects. The hypothesis that PH subjects exhibit different RV vorticity levels than normals during diastole is tested and the relationship between RV vorticity and PASP is explored. The mechanics of RV vortex formation are discussed within the context of pulmonary arterial pressure and right ventricular diastolic function coincident with PH.

  18. Effect of uninostril yoga breathing on brain hemodynamics: A functional near-infrared spectroscopy study

    PubMed Central

    Singh, Karamjit; Bhargav, Hemant; Srinivasan, TM

    2016-01-01

    Objectives: To measure the effect of the right and left nostril yoga breathing on frontal hemodynamic responses in 32 right handed healthy male subjects within the age range of 18–35 years (23.75 ± 4.14 years). Materials and Methods: Each subject practiced right nostril yoga breathing (RNYB), left nostril yoga breathing (LNYB) or breath awareness (BA) (as control) for 10 min at the same time of the day for three consecutive days, respectively. The sequence of intervention was assigned randomly. The frontal hemodynamic response in terms of changes in the oxygenated hemoglobin (oxyHb), deoxygenated hemoglobin (deoxyHb), and total hemoglobin (totalHb or blood volume) concentration was tapped for 5 min before (pre) and 10 min during the breathing practices using a 16 channel functional near-infrared system (FNIR100-ACK-W, BIOPAC Systems, Inc., U.S.A.). Average of the eight channels on each side (right and left frontals) was obtained for the two sessions (pre and during). Data was analyzed using SPSS version 10.0 through paired and independent samples t-test. Results: Within group comparison showed that during RNYB, oxyHb levels increased significantly in the left prefrontal cortex (PFC) as compared to the baseline (P = 0.026). LNYB showed a trend towards significance for reduction in oxyHb in the right hemisphere (P = 0.057). Whereas BA caused significant reduction in deoxyHb (P = 0.023) in the left hemisphere. Between groups comparison revealed that oxyHb and blood volume in the left PFC increased significantly during RNYB as compared to BA (oxyHb: P =0.012; TotalHb: P =0.017) and LNYB (oxyHb: P =0.024; totalHb: P =0.034). Conclusion: RNYB increased oxygenation and blood volume in the left PFC as compared to BA and LNYB. This supports the relationship between nasal cycle and ultradian rhythm of cerebral dominance and suggests a possible application of uninostril yoga breathing in the management of psychopathological states which show lateralized cerebral

  19. Chronic monitoring of cortical hemodynamics in behaving, freely-moving rats using a miniaturized head-mounted optical microscope

    NASA Astrophysics Data System (ADS)

    Sigal, Iliya; Gad, Raanan; Koletar, Margaret; Ringuette, Dene; Stefanovic, Bojana; Levi, Ofer

    2016-03-01

    Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.

  20. A Longitudinal Study of Remodeling in a Revised Peripheral Artery Bypass Graft Using 3D Ultrasound Imaging and Computational Hemodynamics

    PubMed Central

    Leotta, Daniel F.; Beach, Kirk W.; Riley, James J.; Aliseda, Alberto

    2011-01-01

    We report a study of the role of hemodynamic shear stress in the remodeling and failure of a peripheral artery bypass graft. Three separate scans of a femoral to popliteal above-knee bypass graft were taken over the course of a 16 month period following a revision of the graft. The morphology of the lumen is reconstructed from data obtained by a custom 3D ultrasound system. Numerical simulations are performed with the patient-specific geometries and physiologically realistic flow rates. The ultrasound reconstructions reveal two significant areas of remodeling: a stenosis with over 85% reduction in area, which ultimately caused graft failure, and a poststenotic dilatation or widening of the lumen. Likewise, the simulations reveal a complicated hemodynamic environment within the graft. Preliminary comparisons with in vivo velocimetry also showed qualitative agreement with the flow dynamics observed in the simulations. Two distinct flow features are discerned and are hypothesized to directly initiate the observed in vivo remodeling. First, a flow separation occurs at the stenosis. A low shear recirculation region subsequently develops distal to the stenosis. The low shear region is thought to be conducive to smooth muscle cell proliferation and intimal growth. A poststenotic jet issues from the stenosis and subsequently impinges onto the lumen wall. The lumen dilation is thought to be a direct result of the high shear stress and high frequency pressure fluctuations associated with the jet impingement. PMID:21428682

  1. Multiclass classification of hemodynamic responses for performance improvement of functional near-infrared spectroscopy-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Shin, Jaeyoung; Jeong, Jichai

    2014-06-01

    We improved the performance of a functional near-infrared spectroscopy (fNIRS)-based brain-computer interface based on relatively short task duration and multiclass classification. A custom-built eight-channel fNIRS system was used over the motor cortex areas in both hemispheres to measure the hemodynamic responses evoked by four different motor tasks (overt execution of arm lifting and knee extension for both sides) instead of finger tapping. The hemodynamic responses were classified using the naive Bayes classifier. Among the mean, max, slope, variance, and median of the signal amplitude and the time lag of the signal, several signal features are chosen to obtain highest classification accuracy. Ten runs of threefold cross-validation were conducted, which yielded classification accuracies of 87.1%±2.4% to 95.5%±2.4%, 77.5%±1.9% to 92.4%±3.2%, and 73.8%±3.5% to 91.5%±1.4% for the binary, ternary, and quaternary classifications, respectively. Eight seconds of task duration for obtaining sufficient quaternary classification accuracy was suggested. The bit transfer rate per minute (BPM) based on the quaternary classification accuracy was investigated. A BPM can be achieved from 2.81 to 5.40 bits/min.

  2. Characterization of Hemodynamics in Great Arteries of Wild-Type Mouse Using Computational Fluid Dynamics Based on Ultrasound Images.

    PubMed

    Chen, Zhuo; Zhou, Yue; Ma, Youcai; Wang, Jingying; He, Yihua; Li, Zhian

    2016-03-01

    Hemodynamic factors in cardiovascular system are hypothesized to play a significant role in causing structural heart development. It is thus important to improve our understanding of velocity characteristics and parameters. We present such a study on wild-type mouse to characterize the vessel geometry, flow pattern, and wall shear stress in great arteries. Microultrasound imaging for small animals was used to measure blood boundary and velocity of the great arteries. Subsequently, specimens' flow boundary conditions were used for 3-dimensional reconstructions of the great artery and aortic arch dimensions, and blood flow velocity data were input into subject-specific computational fluid dynamics for modeling hemodynamics. Measurement by microultrasound imaging showed that blood velocities in the great artery and aortic arch had strong correlations with vascular sizes, whereas blood pressure had a weak trend in relation to vascular size. Wall shear stress magnitude increased when closer to arterial branches and reduced proximally in the aortic root and distally in the descending aorta, and the parameters were related to the fluid mechanics in branches in some degree. We developed a method to investigate fluid mechanics in mouse arteries, using a combination of microultrasound and computational fluid dynamics, and demonstrated its ability to reveal detailed geometric, kinematic, and fluid mechanics parameters.

  3. Effect of valsalva maneuver-induced hemodynamic changes on brain near-infrared spectroscopy measurements.

    PubMed

    Tsubaki, Atsuhiro; Kojima, Sho; Furusawa, Adriane Akemi; Onishi, Hideaki

    2013-01-01

    Near-infrared spectroscopy (NIRS) is widely used to measure human brain activation on the basis of cerebral hemodynamic response. However, a limitation of NIRS is that systemic changes influence the measured signals. The purpose of this study was to clarify the relationship between NIRS signals and blood pressure during the Valsalva maneuver. Nine healthy volunteers performed a 20-s Valsalva maneuver to change their blood pressure. Changes in oxyhemoglobin (O2Hb) concentration were measured with 34 channels with an inter-optode distance of 30 mm for deep-penetration measurements (deepO2Hb) and 9 channels with an inter-optode distance of 15 mm for shallow-penetration measurements (shallowO2Hb). The difference value (diffO2Hb) between deepO2Hb and shallowO2Hb was calculated. Mean arterial pressure (MAP) was recorded by volume clamping the finger pulse, and skin blood flow changes were measured at the forehead. Pearson's correlation coefficients between deepO2Hb and MAP, shallowO2Hb and MAP, and diffO2Hb and MAP were 0.893 (P < 0.01), 0.963 (P < 0.01), and 0.831 (P < 0.01), respectively. The results suggest that regional and systemic changes in the cardiovascular state strongly influence NIRS signals. PMID:23852482

  4. Mephedrone, a new designer drug of abuse, produces acute hemodynamic effects in the rat.

    PubMed

    Meng, Harry; Cao, James; Kang, Jiesheng; Ying, Xiaoyou; Ji, Junzhi; Reynolds, William; Rampe, David

    2012-01-01

    Mephedrone (4-methylmethcathinone) is a new and popular drug of abuse widely available on the Internet and still legal in some parts of the world. Clinical reports are now emerging suggesting that the drug displays sympathomimetic toxicity on the cardiovascular system but no studies have yet explored its cardiovascular effects. Therefore we examined the effects of mephedrone on the cardiovascular system using a combination of in vitro electrophysiology and in vivo hemodynamic and echocardiographic measurements. Patch clamp studies revealed that mephedrone, up to 30 μM, had little effect on the major voltage-dependent ion channels of the heart or on action potentials recorded in guinea pig myocytes. Subcutaneous administration of mephedrone (3 and 15 mg/kg) to conscious telemetry-implanted rats produced dose-dependent increases in heart rate and blood pressure which persisted after pre-treatment with reserpine. Echocardiographic analysis demonstrated that intravenous injection of mephedrone (0.3 and 1mg/kg) increased cardiac function, including cardiac output, ejection fraction, and stroke volume, similar to methamphetamine (0.3mg/kg). We conclude that mephedrone is not directly pro-arrhythmic, but induces substantial increases in heart rate, blood pressure and cardiac contractility and this activity contributes to the cardiovascular toxicity in people who abuse the drug.

  5. Progressive improvement in hemodynamic response to muscle metaboreflex in heart transplant recipients.

    PubMed

    Crisafulli, Antonio; Tocco, Filippo; Milia, Raffaele; Angius, Luca; Pinna, Marco; Olla, Sergio; Roberto, Silvana; Marongiu, Elisabetta; Porcu, Maurizio; Concu, Alberto

    2013-02-01

    Exercise capacity remains lower in heart transplant recipients (HTRs) following transplant compared with normal subjects, despite improved cardiac function. Moreover, metaboreceptor activity in the muscle has been reported to increase. The aim of the present investigation was to assess exercise capacity together with metaboreflex activity in HTR patients for 1 yr following heart transplant, to test the hypothesis that recovery in exercise capacity was paralleled by improvements in response to metaboreflex. A cardiopulmonary test for exercise capacity and Vo(2max) and hemodynamic response to metaboreflex activation obtained by postexercise ischemia were gathered in six HTRs and nine healthy controls (CTL) four times: at the beginning of the study (T0, 42 ± 6 days after transplant), at the 3rd, 6th, and 12th month after TO (T1, T2, and T3). The main results were: 1) exercise capacity and Vo(2max) were seen to progressively increase in HTRs; 2) at T0 and T1, HTRs achieved a higher blood pressure response in response to metaboreflex compared with CTL, and this difference disappeared at T2 and T3; and 3) this exaggerated blood pressure response was the result of a systemic vascular resistance increment. This study demonstrates that exercise capacity progressively improves in HTRs after transplant and that this phenomenon is accompanied by a progressive reduction of the metaboreflex-induced increase in blood pressure and systemic vascular resistance. These facts indicate that, despite improved cardiac function, resetting of cardiovascular regulation in HTRs requires months. PMID:23195627

  6. Effect of valsalva maneuver-induced hemodynamic changes on brain near-infrared spectroscopy measurements.

    PubMed

    Tsubaki, Atsuhiro; Kojima, Sho; Furusawa, Adriane Akemi; Onishi, Hideaki

    2013-01-01

    Near-infrared spectroscopy (NIRS) is widely used to measure human brain activation on the basis of cerebral hemodynamic response. However, a limitation of NIRS is that systemic changes influence the measured signals. The purpose of this study was to clarify the relationship between NIRS signals and blood pressure during the Valsalva maneuver. Nine healthy volunteers performed a 20-s Valsalva maneuver to change their blood pressure. Changes in oxyhemoglobin (O2Hb) concentration were measured with 34 channels with an inter-optode distance of 30 mm for deep-penetration measurements (deepO2Hb) and 9 channels with an inter-optode distance of 15 mm for shallow-penetration measurements (shallowO2Hb). The difference value (diffO2Hb) between deepO2Hb and shallowO2Hb was calculated. Mean arterial pressure (MAP) was recorded by volume clamping the finger pulse, and skin blood flow changes were measured at the forehead. Pearson's correlation coefficients between deepO2Hb and MAP, shallowO2Hb and MAP, and diffO2Hb and MAP were 0.893 (P < 0.01), 0.963 (P < 0.01), and 0.831 (P < 0.01), respectively. The results suggest that regional and systemic changes in the cardiovascular state strongly influence NIRS signals.

  7. Hemodynamic and metabolic basis of impaired exercise tolerance in patients with severe left ventricular dysfunction

    SciTech Connect

    Roubin, G.S.; Anderson, S.D.; Shen, W.F.; Choong, C.Y.; Alwyn, M.; Hillery, S.; Harris, P.J.; Kelly, D.T. )

    1990-04-01

    Hemodynamic and metabolic changes were measured at rest and during exercise in 23 patients with chronic heart failure and in 6 control subjects. Exercise was limited by leg fatigue in both groups and capacity was 40% lower in the patients with failure. At rest, comparing patients with control subjects, heart rate and right atrial and pulmonary wedge pressure were higher; cardiac output, stroke volume and work indexes and ejection fraction were lower; mean arterial and right atrial pressure and systemic resistance were similar. During all phases of exercise in patients with heart failure, pulmonary wedge pressure and systemic vascular resistance were higher and pulmonary vascular resistance remained markedly elevated compared with values in control subjects. Cardiac output was lower in the patients with failure, but appeared to have the same physiologic distribution in both groups during exercise. Although arterial-femoral venous oxygen content difference was higher in patients with heart failure, this increase did not compensate for the reduced blood flow. Even though the maximal oxygen consumption was significantly reduced, femoral venous lactate and pH values were higher than values in control subjects, but femoral venous pH was similar in both groups at their respective levels of maximal exercise. Ejection fraction was lower in those with heart failure at rest and did not increase with exercise. Ventilation in relation to oxygen consumption was higher in patients with failure than in control subjects.

  8. Hemodynamic and radionuclide effects of acute captopril therapy for heart failure: changes in left and right ventricular volumes and function at rest and during exercise

    SciTech Connect

    Massie, B.; Kramer, B.L.; Topic, N.; Henderson, S.G.

    1982-06-01

    Although the resting hemodynamic effects of captopril in congestive heart failure are known, little information is available about the hemodynamic response to captopril during exercise or about changes in noninvasive measurements of the size and function of both ventricles. In this study, 14 stable New York Heart Association class III patients were given 25 mg of oral captopril. Rest and exercise hemodynamic measurements and blood pool scintigrams were performed simultaneously before and 90 minutes after captopril. The radionuclide studies were analyzed for left and right ventricular end-diastolic volumes, end-systolic volumes, ejection fractions and pulmonary blood volume. The primary beneficial responses at rest were decreases in left and right ventricular end-diastolic volumes from 388 + 81 to 350 + 77 ml (p < 0.01) and from 52 + 26 to 43 + 20 volume units (p < 0.01), respectively, and in their corresponding filling pressures, from 24 + 10 to 17 + 9 mm Hg and 10 + 5 to and + 5 mm Hg (both p < 0.01). Altough stroke volume did not increase significantly, both left and right ventricular ejection fractions increased slightly, from 19 + 6% to 22 + 5% and from 25 + 9% to 29 + 11%, respectively (both p < 0.01). During exercise, similar changes were noted in both hemodynamic and radionuclide indexes. Thus, in patients with moderate symptomatic limitation from chronic heart failure, captopril predominantly reduces ventricular volume and filling pressure, with a less significant effect on cardiac output. These effects persist during exercise, when systemic vascular resistance is already very low. Radionuclide techniques are valuable in assessing the drug effect in these subjects, particularly when ventricular volumes are also measured.

  9. Hemodynamic and radionuclide effects of acute captopril therapy for heart failure: changes in left and right ventricular volumes and function at rest and during exercise

    SciTech Connect

    Massie, B.; Kramer, B.L.; Topic, N.; Henderson, S.G.

    1982-06-01

    Although the resting hemodynamic effects of captopril in congestive heart failure are known, little information is available about the hemodynamic response to captopril during exercise or about changes in noninvasive measurements of the size and function of both ventricles. In this study, 14 stable New York Heart Association class III patients were given 25 mg of oral captopril. Rest and exercise hemodynamic measurements and blood pool scintigrams were performed simultaneously before and 90 minutes after captopril. The radionuclide studies were analyzed for left and right ventricular end-diastolic volumes, end-systolic volumes, ejection fractions and pulmonary blood volume. The primary beneficial responses at rest were decreases in left and right ventricular end-diastolic volumes from 388 +/- 81 to 350 +/- 77 ml and from 52 +/- 26 to 43 +/- 20 volume units, respectively, and in their corresponding filling pressures, from 24 +/- 10 to 17 +/- 9 mm Hg and 10 +/- 5 to 6 +/- 5 mm Hg. Although stroke volume did not increase significantly, both left and right ventricular ejection fractions increased slightly, from 19 +/- 6% to 22+/- 5% and from 25 +/- 9% to 29 +/- 11%, respectively. During exercise, similar changes were noted in both hemodynamic and radionuclide indexes. This, in patients with moderate symptomatic limitation from chronic heart failure, captopril predominantly reduces ventricular volume and filling pressure, with a less significant effect on cardiac output. These effects persist during exercise, when systemic vascular resistance is already very low. Radionuclide techniques are valuable in assessing the drug effect in these subjects, particularly when ventricular volumes are also measured.

  10. Hemodynamic performance of coil embolization and stentassisted coil embolization treatments: a numerical comparative study based on subject-specific models of cerebral aneurysms

    NASA Astrophysics Data System (ADS)

    Wang, Shengzhang; Zhang, Yisen; Lu, Gang; Yang, Xinjian; Zhang, Xiaolong; Ding, Guanghong

    2011-11-01

    Hemodynamic characteristics such as blood velocity, blood pressure, flow impingement, wall shear stress and oscillatory shear index are considered to play important roles in the initiation, growth, rupture and recurrence of the cerebral aneurysms. Endovascular therapy is widely implemented to treat the cerebral aneurysms by releasing coils into the aneurysm sac for limiting the blood flow to the sac and stent-assisted coil embolization is adopted to occlude the wide-necked or complex aneurysms. Some researchers believe that stents are not only a mechanical device but may act as a biological system and contribute to vessel wall healing. Hemodynamics simulation helps people understand the effect of hemodynamic characteristics on the recurrence of the coiled aneurysm and it also benefits the interventional planning of neurosurgeons. This study constructed the numerical model for a subject-specific ICA aneurysm treated with stent-assisted coil embolization, which combined the coiled model of the aneurysm with a porous stent placement, and simulated the pulsatile blood flow in these aneurysm models. When a stent was placed across the aneurysm orifice in the coiled aneurysm, the high wall shear stress around the distal aneurysm root was reduced more than that of the coiled aneurysm without a stent. The simulated results point to the conclusion that the stent not only protects the parent artery from occlusion due to extension of coils or thrombosis, but may also reduce the recurrence risk of the stent-assisted coiled aneurysm.

  11. Hemodynamic reactions to circulatory stress tests in patients with neurocirculatory dystonia.

    PubMed

    Mäntysaari, M

    1984-01-01

    The hemodynamic reactions of 30 patients with neurocirculatory dystonia (NCD, DaCosta's syndrome) were compared to those of 30 healthy controls during the isometric handgrip test, orthostatic test, Valsalva test and the cold pressor test. The effects of hyperventilation on the ability to hold the breath were studied in both groups using the hyperventilation test. The patients and controls were young men, who were doing their conscript service, and the average age was 20 years in both groups. The diagnosis of NCD was made using the criteria described by Friedman (1947). The patients had several symptoms related to the cardiorespiratory system, the intensity of which varied from time to time and were not closely related to physical effort. In order to exclude organic diseases that could have caused the symptoms the patients were required to have no history of chronic organic diseases. They were also required to have no infectious diseases nor to be convalescents when participating in this study and to have a normal ECG and a normal thorax x-ray. The controls were anamnestically free from chronic diseases. The changes in the blood pressure, heart rate, stroke volume, cardiac index, peripheral vascular resistance and the systolic time intervals during the four tests were measured noninvasively using sphygmomanometry, electro-, phono- and impedance cardiography. The ability to hold the breath after a deep inspiration was similar in the two groups. Immediately after hyperventilation the ability to hold the breath did not improve in the NCD group as much as in the control group. In the orthostatic test the rise in the mean blood pressure was only momentarily greater in the control group than in the NCD group, and the heart rate increased about equally in the two groups. The transthoracic impedance increased significantly more in the controls than in the patients in the head-up position. The alterations in the systolic time intervals immediately after the changes of

  12. An in vitro assessment of the cerebral hemodynamics through three patient specific circle of Willis geometries.

    PubMed

    Fahy, Paul; Delassus, Patrick; McCarthy, Peter; Sultan, Sheriff; Hynes, Niamh; Morris, Liam

    2014-01-01

    The Circle of Willis (CoW) is a complex pentagonal network comprised of fourteen cerebral vessels located at the base of the brain. The collateral flow feature within the circle of Willis allows the ability to maintain cerebral perfusion of the brain. Unfortunately, this collateral flow feature can create undesirable flow impact locations due to anatomical variations within the CoW. The interaction between hemodynamic forces and the arterial wall are believed to be involved in the formation of cerebral aneurysms, especially at irregular geometries such as tortuous segments, bends, and bifurcations. The highest propensity of aneurysm formation is known to form at the anterior communicating artery (AcoA) and at the junctions of the internal carotid and posterior communicating arteries (PcoAs). Controversy still remains as to the existence of blood flow paths through the communicating arteries for a normal CoW. This paper experimentally describes the hemodynamic conditions through three thin walled patient specific models of a complete CoW based on medical images. These models were manufactured by a horizontal dip spin coating method and positioned within a custom made cerebral testing system that simulated symmetrical physiological afferent flow conditions through the internal carotid and vertebral arteries. The dip spin coating procedure produced excellent dimensional accuracy. There was an average of less than 4% variation in diameters and wall thicknesses throughout all manufactured CoW models. Our cerebral test facility demonstrated excellent cycle to cycle repeatability, with variations of less than 2% and 1% for the time and cycle averaged flow rates, respectively. The peak systolic flow rates had less than a 4% variation. Our flow visualizations showed four independent flow sources originating from all four inlet arteries impacting at and crossing the AcoA with bidirectional cross flows. The flow paths entering the left and right vertebral arteries dissipated

  13. Age-correlated changes in cerebral hemodynamics assessed by near-infrared spectroscopy.

    PubMed

    Safonova, Larisa P; Michalos, Antonios; Wolf, Ursula; Wolf, Martin; Hueber, Dennis M; Choi, Jee H; Gupta, Rajarsi; Polzonetti, Chiara; Mantulin, William W; Gratton, Enrico

    2004-01-01

    Cerebral hemodynamic responses due to normal aging may interfere with hormonal changes, drug therapy, diseases, life style, and other factors. Age-correlated alterations in cerebral vasculature and autoregulatory mechanisms are the subject of interest in many studies. Near-infrared spectroscopy (NIRS) is widely used for monitoring cerebral hemodynamics and oxygenation changes at the level of small vessels. We believe that the compensatory ability of cerebral arterioles under hypoxic conditions and the dilatatory ability of cerebral vessels due to vasomotion may decline with normal aging. To test this hypothesis we used frequency-domain NIRS to measure changes in cerebral tissue oxygenation and oxy- and deoxy-hemoglobin concentrations caused by hypoxia during breath holding. We also assessed cerebral vasomotion during profound relaxation. Thirty seven healthy volunteers, 12 females and 25 males, ranging from 22 to 56 years of age (mean age 35 +/- 11 years) participated in the study. We observed age-correlated changes in the cerebral hemodynamics of normal subjects: diminished cerebral hemodynamic response to hypoxia due to breath holding in middle-aged subjects (38-56 years) and reduced amplitude of cerebral hemodynamic changes due to vasomotion during rest. Snoring related changes in cerebral hemodynamics did not allow us to observe the effect of age in a group of snorers. The prolonged supine position influenced measured changes due to hypoxia. In this investigation NIRS methodology allowed detection of age-correlated changes in cerebral oxygenation and hemodynamics. Other variables, such as snoring or posture impacted the observations in our group of healthy volunteers. PMID:15381340

  14. In vivo isolation of the effects of melanin from underlying hemodynamics across skin types using spatial frequency domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Saager, Rolf B.; Sharif, Ata; Kelly, Kristen M.; Durkin, Anthony J.

    2016-05-01

    Skin is a highly structured tissue, raising concerns as to whether skin pigmentation due to epidermal melanin may confound accurate measurements of underlying hemodynamics. Using both venous and arterial cuff occlusions as a means of inducing differential hemodynamic perturbations, we present analyses of spectra limited to the visible or near-infrared regime, in addition to a layered model approach. The influence of melanin, spanning Fitzpatrick skin types I to V, on underlying estimations of hemodynamics in skin as interpreted by these spectral regions are assessed. The layered model provides minimal cross-talk between melanin and hemodynamics and enables removal of problematic correlations between measured tissue oxygenation estimates and skin phototype.

  15. Can maternal-fetal hemodynamics influence prenatal development in dogs?

    PubMed

    Freitas, Luana Azevedo de; Mota, Gustavo Lobato; Silva, Herlon Victor Rodrigues; Carvalho, Cibele Figueira; Silva, Lúcia Daniel Machado da

    2016-09-01

    The goals of this study were to report embryonic and fetal ultrasound changes and compare blood flow of uteroplacental and umbilical arteries of normal and abnormal conceptus. Accordingly, from the day of mating or artificial insemination, all fetuses in 60 pregnancies were evaluated weekly. According to the ultrasound findings, the gestational age was determined and the conceptuses were divided into normal or abnormal (embryonic and fetal abnormalities). The two-dimensional ultrasound assessment consists of measuring and evaluating the echogenicity of conceptus and extra-fetal structures. Doppler velocimetry measured the resistivity index (RI) and pulsatility index (PI) of uteroplacental and umbilical arteries. Two-dimensional and Doppler measurements were expressed as mean and standard deviation. Differences between normal and abnormal groups were subject to Mann-Whitney test (P<0.05). Of 264 fetuses, 15.90% showed embryonic abnormalities (resorption) and 5.68% presented fetal abnormalities (congenital abnormalities, fetal underdevelopment and fetal death). We observed a reduced diameter and abnormalities in the contour of gestational vesicle, lack of viability, increased placental thickness, increased fluid echogenicity and increases in RI and PI of uteroplacental arteries of conceptuses with embryonic resorption between the 2nd and 4th weeks. Fetuses with abnormalities showed changes in the flow of uteroplacental and umbilical arteries prior to visualization of two-dimensional alterations and different vascular behavior according to the classification of the change. Results show that ultrasound is efficient for the detection of embryonic and fetal abnormalities. When combined with Doppler ultrasound, it allows early detection of gestational changes, as well as hemodynamic changes, in conceptuses with abnormalities, which may influence their development. PMID:27509872

  16. Requirements for mesh resolution in 3D computational hemodynamics.

    PubMed

    Prakash, S; Ethier, C R

    2001-04-01

    Computational techniques are widely used for studying large artery hemodynamics. Current trends favor analyzing flow in more anatomically realistic arteries. A significant obstacle to such analyses is generation of computational meshes that accurately resolve both the complex geometry and the physiologically relevant flow features. Here we examine, for a single arterial geometry, how velocity and wall shear stress patterns depend on mesh characteristics. A well-validated Navier-Stokes solver was used to simulate flow in an anatomically realistic human right coronary artery (RCA) using unstructured high-order tetrahedral finite element meshes. Velocities, wall shear stresses (WSS), and wall shear stress gradients were computed on a conventional "high-resolution" mesh series (60,000 to 160,000 velocity nodes) generated with a commercial meshing package. Similar calculations were then performed in a series of meshes generated through an adaptive mesh refinement (AMR) methodology. Mesh-independent velocity fields were not very difficult to obtain for both the conventional and adaptive mesh series. However, wall shear stress fields, and, in particular, wall shear stress gradient fields, were much more difficult to accurately resolve. The conventional (nonadaptive) mesh series did not show a consistent trend towards mesh-independence of WSS results. For the adaptive series, it required approximately 190,000 velocity nodes to reach an r.m.s. error in normalized WSS of less than 10 percent. Achieving mesh-independence in computed WSS fields requires a surprisingly large number of nodes, and is best approached through a systematic solution-adaptive mesh refinement technique. Calculations of WSS, and particularly WSS gradients, show appreciable errors even on meshes that appear to produce mesh-independent velocity fields.

  17. Gender affects sympathetic and hemodynamic response to postural stress

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Hogeman, C. S.; Khan, M.; Kimmerly, D. S.; Sinoway, L. I.

    2001-01-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females.

  18. Ambient Temperature and Cerebrovascular Hemodynamics in the Elderly

    PubMed Central

    Pan, Wen-Chi; Eliot, Melissa N.; Koutrakis, Petros; Coull, Brent A.; Sorond, Farzaneh A.; Wellenius, Gregory A.

    2015-01-01

    Background and Purpose Some prior studies have linked ambient temperature with risk of cerebrovascular events. If causal, the pathophysiologic mechanisms underlying this putative association remain unknown. Temperature-related changes in cerebral vascular function may play a role, but this hypothesis has not been previously evaluated. Methods We evaluated the association between ambient temperature and cerebral vascular function among 432 participants ≥65 years old from the MOBILIZE Boston Study with data on cerebrovascular blood flow, cerebrovascular resistance, and cerebrovascular reactivity in the middle cerebral artery. We used linear regression models to assess the association of mean ambient temperature in the previous 1 to 28 days with cerebrovascular hemodynamics adjusting for potential confounding factors. Results A 10°C increase in the 21-day moving average of ambient temperature was associated with a 10.1% (95% confidence interval [CI], 2.2%, 17.3%) lower blood flow velocity, a 9.0% (95% CI, 0.7%, 18.0%) higher cerebrovascular resistance, and a 15.3% (95%CI, 2.7%, 26.4%) lower cerebral vasoreactivity. Further adjustment for ozone and fine particulate matter (PM2.5) did not materially alter the results. However, we found statistically significant interactions between ambient temperature and PM2.5 such that the association between temperature and blood flow velocity was attenuated at higher levels of PM2.5. Conclusions In this elderly population, we found that ambient temperature was negatively associated with cerebral blood flow velocity and cerebrovascular vasoreactivity and positively associated with cerebrovascular resistance. Changes in vascular function may partly underlie the observed associations between ambient temperature and risk of cerebrovascular events. PMID:26258469

  19. A dimensionless parameter for classifying hemodynamics in intracranial

    NASA Astrophysics Data System (ADS)

    Asgharzadeh, Hafez; Borazjani, Iman

    2015-11-01

    Rupture of an intracranial aneurysm (IA) is a disease with high rates of mortality. Given the risk associated with the aneurysm surgery, quantifying the likelihood of aneurysm rupture is essential. There are many risk factors that could be implicated in the rupture of an aneurysm. However, the most important factors correlated to the IA rupture are hemodynamic factors such as wall shear stress (WSS) and oscillatory shear index (OSI) which are affected by the IA flows. Here, we carry out three-dimensional high resolution simulations on representative IA models with simple geometries to test a dimensionless number (first proposed by Le et al., ASME J Biomech Eng, 2010), denoted as An number, to classify the flow mode. An number is defined as the ratio of the time takes the parent artery flow transports across the IA neck to the time required for vortex ring formation. Based on the definition, the flow mode is vortex if An>1 and it is cavity if An<1. We show that the specific definition of Le et al. works for sidewall but needs to be modified for bifurcation aneurysms. In addition, we show that this classification works on three-dimensional geometries reconstructed from three-dimensional rotational angiography of human subjects. Furthermore, we verify the correlation of IA flow mode and WSS/OSI on the human subject IA. This work was supported partly by the NIH grant R03EB014860, and the computational resources were partly provided by CCR at UB. We thank Prof. Hui Meng and Dr. Jianping Xiang for providing us the database of aneurysms and helpful discussions.

  20. Pulmonary hemodynamic profile in chronic obstructive pulmonary disease

    PubMed Central

    Portillo, Karina; Torralba, Yolanda; Blanco, Isabel; Burgos, Felip; Rodriguez-Roisin, Roberto; Rios, Jose; Roca, Josep; Barberà, Joan A

    2015-01-01

    Introduction Few data are available in regards to the prevalence of pulmonary hypertension (PH) in the broad spectrum of COPD. This study was aimed at assessing the prevalence of PH in a cohort of COPD patients across the severity of airflow limitation, and reporting the hemodynamic characteristics at rest and during exercise. Methods We performed a retrospective analysis on COPD patients who underwent right-heart catheterization in our center with measurements obtained at rest (n=139) and during exercise (n=85). PH was defined as mean pulmonary artery pressure (mPAP) ≥25 mmHg and pulmonary capillary wedge pressure <15 mmHg. Exercise-induced PH (EIPH) was defined by a ratio of ΔmPAP/Δcardiac output >3. Results PH was present in 25 patients (18%). According to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) classification, PH prevalence in GOLD 2 was 7% (3 patients); 25% (14 patients) in GOLD 3; and 22% (8 patients) in GOLD 4. Severe PH (mPAP ≥35 mmHg) was identified in four patients (2.8%). Arterial partial oxygen pressure was the outcome most strongly associated with PH (r=−0.29, P<0.001). EIPH was observed in 60 patients (71%) and had a similar prevalence in both GOLD 2 and 3, and was present in all GOLD 4 patients. Patients with PH had lower cardiac index during exercise than patients without PH (5.0±1.2 versus 6.7±1.4 L/min/m2, respectively; P=0.001). Conclusion PH has a similar prevalence in COPD patients with severe and very-severe airflow limitation, being associated with the presence of arterial hypoxemia. In contrast, EIPH is highly prevalent, even in moderate COPD, and might contribute to limiting exercise tolerance. PMID:26203238

  1. FALLS-protocol: lung ultrasound in hemodynamic assessment of shock.

    PubMed

    Lichtenstein, D

    2013-01-01

    The assessment of acute circulatory failure is a challenge in absence of solid gold standard. It is suggested that artifacts generated by lung ultrasound can be of help. The FALLS-protocol (Fluid Administration Limited by Lung Sonography) follows Weil's classification of shocks. Firstly, it searches for pericardial fluid, then right heart enlargment, lastly abolished lung sliding. In this setting, the diagnoses of pericardial tamponade, pulmonary embolism and tension pneumothorax, i.e. obstructive shock, can be schematically ruled out. Moreover, the search of diffuse lung rockets (i.e. multiple B-lines, a comet-tail artifact) is performed. Its absence excludes pulmonary edema, that in clinical practice is left cardiogenic shock (most cases). At this step, the patient (defined FALLS-responder) receives fluid therapy. He/she has usually a normal sonographic lung surface, an A-profile. Any clinical improvement suggests hypovolemic shock. The absence of improvement generates continuation of fluid therapy, eventually yielding fluid overload. This condition results in the change from A-profile to B-profile. Lung ultrasound has the advantage to demonstrate this interstitial syndrome at an early and infraclinical stage (FALLS-endpoint). The change from horizontal A-lines to vertical B-lines can be considered as a direct marker of volemia in this use. By elimination, this change indicates schematically distributive shock, while in current practice septic shock. The major limitation is the B-profile on admission generated by an initial lung disorder. FALLS-protocol, which can be associated with no drawback with traditional hemodynamic tools, uses a simple machine (without Doppler) and a suitable microconvex probe allowing for heart, lung and vein assessment. PMID:24364005

  2. Gender affects sympathetic and hemodynamic response to postural stress.

    PubMed

    Shoemaker, J K; Hogeman, C S; Khan, M; Kimmerly, D S; Sinoway, L I

    2001-11-01

    We tested the hypothesis that differences in sympathetic reflex responses to head-up tilt (HUT) between males (n = 9) and females (n = 8) were associated with decrements in postural vasomotor responses in women. Muscle sympathetic nerve activity (MSNA; microneurography), heart rate, stroke volume (SV; Doppler), and blood pressure (Finapres) were measured during a progressive HUT protocol (5 min at each of supine, 20 degrees, 40 degrees, and 60 degrees ). MSNA and hemodynamic responses were also measured during the cold pressor test (CPT) to examine nonbaroreflex neurovascular control. SV was normalized to body surface area (SV(i)) to calculate the index of cardiac output (Q(i)), and total peripheral resistance (TPR). During HUT, heart rate increased more in females versus males (P < 0.001) and SV(i) and Q(i) decreased similarly in both groups. Mean arterial pressure (MAP) increased to a lesser extent in females versus males in the HUT (P < 0.01) but increases in TPR during HUT were similar. MSNA burst frequency was lower in females versus males in supine (P < 0.03) but increased similarly during HUT. Average amplitude/burst increased in 60 degrees HUT for males but not females. Both males and females demonstrated an increase in MAP as well as MSNA burst frequency, mean burst amplitude, and total MSNA during the CPT. However, compared with females, males demonstrated a greater neural response (DeltaTotal MSNA) due to a larger increase in mean burst amplitude (P < 0.05). Therefore, these data point to gender-specific autonomic responses to cardiovascular stress. The different MSNA response to postural stress between genders may contribute importantly to decrements in blood pressure control during HUT in females. PMID:11668064

  3. Sanguineous normothermic machine perfusion improves hemodynamics and biliary epithelial regeneration in DCD porcine livers

    PubMed Central

    Liu, Qiang; Nassar, Ahmed; Farias, Kevin; Buccini, Laura; Baldwin, William; Mangino, Martin; Bennett, Ana; O'Rourke, Colin; Okamoto, Toshiro; Uso, Teresa Diago; Fung, John; Abu-Elmagd, Kareem; Miller, Charles; Quintini, Cristiano

    2014-01-01

    The effect of normothermic machine perfusion (NMP) on post-reperfusion hemodynamics and extrahepatic biliary duct histology of donors after cardiac death (DCD) livers after transplantation has not been addressed thoroughly and represented the object of this study. Ten livers (n=5/group) with 60’ of warm ischemia were preserved by cold storage (CS) or sanguineous NMP for 10 hours, and then reperfused for 24 hours with whole blood in an isolated perfusion system to simulate transplantation. In our experiment, arterial and portal venous flows were stable in NMP group during the entire simulated reperfusion, while decreased dramatically in CS group after 16 hours post-reperfusion (P<.05), findings consistent with severe parenchymal injury. Similarly, significant differences existed between CS and NMP group on hepatocellular enzyme release, bile volume produced, and enzyme released into bile (P<.05). On histology CS livers presented with diffuse hepatocyte congestion, necrosis, intraparenchymal hemorrhage, denudated biliary epithelium and submucosal bile duct necrosis, while NMP liver showed very mild injury in liver parenchyma and biliary architecture. Most importantly, Ki67 staining in extrahepatic bile duct showed biliary epithelial regeneration. Our findings advance the knowledge of post-reperfusion events that characterize DCD livers and propose NMP as a beneficial preservation modality able to improve biliary regeneration after a major ischemic event, which may prevent in clinical transplantation the development of ischemic cholangiopathy. PMID:24805852

  4. [Hemodynamic study of intravenous milrinone in 26 patients with NYHA class III or IV cardiac failure].

    PubMed

    Boesch, C; Dubois-Rande, J L; Pochmalicki, G; Lellouche, D; Teiger, E; Saal, J P; Cachin, J C; Mallo, C; Castaigne, A; Jan, F

    1992-11-01

    The hemodynamic effects of milrinone (WIN 47203) were studied in 26 NYHA Class III or IV patients. The compound was administered intravenously using a protocol including an initial push dose of 50 micrograms/kg in 10 min, followed by a 24 hour infusion at the dose of 0.5 microgram/kg/min. Maximal response was obtained after 15 min and persisted during the infusion: cardiac index increased from 2.08 +/- 0.36 l/min/m2 to 3.09 +/- 0.68 l/min/m2, while capillary pressure fell from 25 mmHg to 16-17 mmHg. These variations were significant (p = 0.01). Heart rate was stable. Mean peripheral blood pressure fell modestly (6%). Systemic vascular resistance fell by 30% and pulmonary vascular resistance by 20%. All these results confirmed the beneficial effect of this inotropic agent administered intravenously. The increase in ventricular premature contractions noted by many justifies the careful surveillance of these patients by monitoring.

  5. Evaluation of the hemodynamic effectiveness of aortic dissection treatments via virtual stenting.

    PubMed

    Alimohammadi, Mona; Bhattacharya-Ghosh, Benjamin; Seshadhri, Santhosh; Penrose, Justin; Agu, Obiekezie; Balabani, Stavroula; Díaz-Zuccarini, Vanessa

    2014-10-01

    Aortic dissection treatment varies for each patient and stenting is one of a number of approaches that are utilized to Stabilize the condition. Information regarding the hemodynamic forces in the aorta in dissected and virtually stented cases could support clinicians in their choices of treatment prior to medical intervention. Computational fluid dynamics coupled with lumped parameter models have shown promise in providing detailed information that could be used in the clinic; for this, it is necessary to develop personalized workflows in order to produce patient-specific simulations. In the present study, a case of pre- and post-stenting (virtual stent-graft) of an aortic dissection is investigated with a particular focus on the role of personalized boundary conditions. For each virtual case, velocity, pressure, energy loss, and wall shear stress values are evaluated and compared. The simulated single stent-graft only marginally reduced the pulse pressure and systemic energy loss. The double stent-graft results showed a larger reduction in pulse pressure and a 40% reduction in energy loss as well as a more physiological wall shear stress distribution.Regions of potential risk were highlighted. The methodology applied in the present study revealed detailed information about two possible surgical outcome cases and shows promise as both a diagnostic and an interventional tool.

  6. Virtual angioscopy in human coronary arteries with visualization of computational hemodynamics

    NASA Astrophysics Data System (ADS)

    Wahle, Andreas; Mitchell, Steven C.; Ramaswamy, Sharan D.; Chandran, Krishnan B.; Sonka, Milan

    2001-05-01

    We are presenting a comprehensive system for fusion of intravascular ultrasound (IVUS) data and x-ray angiography, aiming to create a geometrically accurate 3-D or 4-D (3-D plus time) model of the coronary vasculature. For hemodynamic analyses, methods of computational fluid dynamics (CFD) are applied to the reconstructed data, resulting in quantitative estimates of the wall shear stress. Visualization is performed using the Virtual Reality Modeling Language (VRML). Lumen and adventitia borders are modeled as surfaces using indexed face sets; quantitative results are encoded as color per vertex. The endoscopic mode (virtual angioscopy) allows an interactive fly-through animation with variable speed along with arbitrary positioning within the vessel. Since this functionality exceeds those of the standard VRML animation nodes, an external prototype library containing VRML and JavaScript definitions has been developed that provides a 3-D graphical user interface to navigate within the endoscopic mode. The control panel is available on demand, but does neither obstruct any vessel features when not needed, nor does it limit the viewport for the scene. Preliminary results showed a good feasibility of the overall procedure, and a high reliability of the fusion and CFD methods as well as the visualization with the virtual endoscopy VRML library.

  7. Hemodynamic impact of abdominal aortic aneurysm stent-graft implantation-induced stenosis.

    PubMed

    Aristokleous, Nicolas; Kontopodis, Nikolaos G; Tzirakis, Konstantinos; Ioannou, Christos V; Papaharilaou, Yannis

    2016-10-01

    The current study aims to computationally evaluate the hemodynamic impact of a novel sealing mechanism employed by a recently developed endograft (Ovation TriVascular Stent-Graft System) for endovascular aneurysm repair. The exploitation of two inflatable O-rings to achieve sealing may be advantageous in terms of accommodating challenging anatomies, but comes at a price of a marked inflow stenosis. Here, four representative patient cases of inflow stenosis ranging from 30 to 80 % were analyzed. Lumen surface models were constructed from 1 month post-operative computed tomography images and then used to numerically compute the complex endograft flow field. Our results highlight coexistence of stenotic wall regions exposed to high shear rate and post-stenotic recirculation zones. These conditions may implicate platelet activation and predispose thrombus formation and thromboembolic complications. A clinically insignificant cycle-averaged pressure drop along the inflow stenosis and further in the endograft main body legs was predicted (range 0.01-1.72 mmHg) which was, however, notable at peak systole (range 3.52-19.73 mmHg). Although the functional impact of the endograft stenosis at rest flow conditions may appear insignificant, increased flow rate during exercise is expected to strongly accentuate the observed effects. Pressure drop in the endograft legs was attributed to suboptimal, based on Murray's scaling law, cross-sectional area ratio between trunk and legs of the device. PMID:26676685

  8. Effects of prostaglandin inhibition on intrarenal hemodynamics in acutely saline-loaded rats.

    PubMed

    Düsing, R; Melder, B; Kramer, H J

    1977-09-01

    We studied the effect of inhibition of the prostaglandin (PG)-synthesizing enzyme system in female Sprague-Dawley rats following acute expansion of the extracellular fluid volume (ECV). In 57 conscious rats expansion of the ECV with isotonic saline corresponding to an increase in body weight of 10% was induced. Prior to ECV expansion 31 rats received indomethacin (10 mg/kg of body wt) by stomach tube. In six non-ECV-expanded rats indomethacin had no effect on glomerular filtration rate (GFR) and renal plasma flow (RPF). In ECV-expanded rats pretreated with indomethacin, GFR was unaltered but 125I-hippuran clearance decreased, and filtration fraction significantly increased. Intrarenal 86Rb distribution was similar in control and ECV-expanded rats. Indomethacin caused a slight increase in relative cortical 86 RB activity in non-ECV-expanded rats, but had no effect on intrarenal 86Rb distribution in ECV-expanded rats. No difference in intracortical glomerular perfusion was noted between control and ECV-expanded rats. In indomethacin-treated ECV-expanded rats an increase in relative inner cortical perfusion was observed. Absolute perfusion remained unaltered. Thus the decrease in total RPF was entirely due to decreased perfusion of outer cortical nephrons. Renal prostaglandins therefore may play a permissive role for physical factors to promote renal sodium excretion in acute ECV expansion via changes in intrarenal hemodynamics. PMID:890884

  9. Hemodynamic and hemolytic features of the St. Jude Medical valve prostheses.

    PubMed

    Sezai, Y; Umeda, S; Okazaki, T; Okamoto, I; Rikukawa, H; Shiono, M

    1984-01-01

    We performed valvular replacement in 86 cases (108 valves, 43 males, 43 females) from July 1978 to July 1981 with St. Jude Medical valves which utilize two discs made of pyrolytic carbon and employ a bileaflet central opening system. Ages ranged from 13 to 68 years (average 42.3). For all cases in this study, we performed anti-coagulant therapy. The incidence of thromboembolic complication was zero. With regard to postoperative clinical evaluation on valve function and chronic hemolysis, we compared the cases of St. Jude Medical valves with those of Starr-Edwards (S.E.) valves (aortic: Model 2320, mitral: Model 6400), Carpentier-Edwards (C.E.) valves and cases of open mitral commissurotomy. As for valve function such as left atrioventricular diastolic pressure gradient, mitral effective orifice area both at rest and on exercise, the St. Jude Medical valve yielded best results. Next was the C.E. and third was the S.E. The results of the St. Jude Medical valve group and those of the open mitral commissurotomy group were equivalent. In comparison with ball type cardiac valve prostheses and bioprostheses, the St. Jude Medical valve has excellent hemodynamic characteristic. Concerning hemolysis, the St. Jude Medical was below only the C.E., however the degree of hemolysis was so low that the St. Jude Medical valve holds great promise as central flow mechanical valve prostheses.

  10. Central and peripheral hemodynamics in exercising humans: leg vs arm exercise.

    PubMed

    Calbet, J A L; González-Alonso, J; Helge, J W; Søndergaard, H; Munch-Andersen, T; Saltin, B; Boushel, R

    2015-12-01

    In humans, arm exercise is known to elicit larger increases in arterial blood pressure (BP) than leg exercise. However, the precise regulation of regional vascular conductances (VC) for the distribution of cardiac output with exercise intensity remains unknown. Hemodynamic responses were assessed during incremental upright arm cranking (AC) and leg pedalling (LP) to exhaustion (Wmax) in nine males. Systemic VC, peak cardiac output (Qpeak) (indocyanine green) and stroke volume (SV) were 18%, 23%, and 20% lower during AC than LP. The mean BP, the rate-pressure product and the associated myocardial oxygen demand were 22%, 12%, and 14% higher, respectively, during maximal AC than LP. Trunk VC was reduced to similar values at Wmax. At Wmax, muscle mass-normalized VC and fractional O2 extraction were lower in the arm than the leg muscles. However, this was compensated for during AC by raising perfusion pressure to increase O2 delivery, allowing a similar peak VO2 per kg of muscle mass in both extremities. In summary, despite a lower Qpeak during arm cranking the cardiovascular strain is much higher than during leg pedalling. The adjustments of regional conductances during incremental exercise to exhaustion depend mostly on the relative intensity of exercise and are limb-specific.

  11. Central amygdaloid nucleus lesion attenuates exaggerated hemodynamic responses to noise stress in the spontaneously hypertensive rat.

    PubMed

    Galeno, T M; Van Hoesen, G W; Brody, M J

    1984-01-23

    The regional hemodynamic basis of the cardiovascular response to acute noise stress in spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats and the role of the central amygdaloid nucleus in mediating this response was investigated. Using the pulsed Doppler flow probe technique it was determined that in response to noise, SHR exhibit a significantly greater percent increase in renal and mesenteric vascular resistance than WKY. Vascular responses in the hindquarter were similar in both groups. Bilateral lesion of the central amygdaloid nucleus or its output pathways to the brainstem decreased the cardiovascular response to noise in both SHR and WKY, with SHR and WKY lesion rats responding similarly. The central amygdaloid nucleus appears to participate in the cardiovascular response to acute noise stress in SHR and WKY. Although other structures in the limbic system network may contribute to integration of responses that involve the amygdala the present data suggest that this structure may play a central role in mediating the exaggerated cardiovascular responsiveness of SHR to environmental stress.

  12. Time-resolved X-ray PIV measurements of hemodynamic information of real pulsatile blood flows

    NASA Astrophysics Data System (ADS)

    Park, Hanwook; Yeom, Eunseop; Lee, Sang Joon

    2015-11-01

    X-ray imaging technique has been used to visualize various bio-fluid flow phenomena as a nondestructive manner. To obtain hemodynamic information related with circulatory vascular diseases, a time-resolved X-ray PIV technique with high temporal resolution was developed. In this study, to embody actual pulsatile blood flows in a circular conduit without changes in hemorheological properties, a bypass loop is established by connecting a microtube between the jugular vein and femoral artery of a rat. Biocompatible CO2 microbubbles are used as tracer particles. After mixing with whole blood, CO2 microbubbles are injected into the bypass loop. Particle images of the pulsatile blood flows in the bypass loop are consecutively captured by the time-resolved X-ray PIV system. The velocity field information are obtained with varying flow rate and pulsataility. To verify the feasibility of the use of CO2 microbubbles under in vivo conditions, the effects of the surrounding-tissues are also investigated, because these effects are crucial for deteriorating the image contrast of CO2 microbubbles. Therefore, the velocity information of blood flows in the abdominal aorta are obtained to demonstrate the visibility and usefulness of CO2 microbubbles under ex vivo conditions. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2008-0061991).

  13. Assessment of periprocedural hemodynamic changes in arteriovenous malformation vessels by endovascular dual-sensor guidewire.

    PubMed

    Orlov, Kirill; Panarin, Vyacheslav; Krivoshapkin, Alexey; Kislitsin, Dmitry; Berestov, Vadim; Shayakhmetov, Timur; Gorbatykh, Anton

    2015-02-01

    Endovascular embolization is an important modality in the treatment of brain AVMs. Nowadays staged embolization is the method of choice for the prevention of perioperative hemorrhagic complications. Current theory suggests that simultaneous occlusion of more than 60% of AVM volume induces significant redistribution local blood flow. That, in turn, may lead to hemorrhage due to AVM rupture. Aside from angiographic findings, there is still no method that predicts the degree of safe partial embolization. Intraluminal measurement of flow velocity and pressure in the vicinity of the AVM nidus might allow detecting the changes in local hemodynamics. That can provide a valuable data and shed the light on the origin of vascular catastrophes. Ten patients underwent 12 embolization sessions with intraluminal flow velocity and pressure monitoring. The measurements were performed by dual-sensor guidewire. The "Combomap" (Volcano) system with Combowire microguidewires was chosen for measurements, as there is a documented experience of safe use of said guidewires in the cerebral vasculature. The findings observed during the study matched empirical data as well as the current physiological hypothesis of AVM hemorrhage. In conjunction with DSA runs, intraluminal flow velocity and pressure monitoring has the potential to become a valuable tool in AVM treatment. PMID:25934783

  14. Hemodynamic simulation of blood flow in a new type of cardiac assist device named AVICENA.

    PubMed

    Alizadeh, Mansour; Tehrani, Pedram; Rahmani, Shahrokh

    2014-08-01

    The purpose of this study is to investigate the hemodynamic parameters of blood flow in a balloon as a part of a new type of cardiac assist device named AVICENA, which is implanted into the descending aorta to improve the strength of pumping blood flow in a poor-performing left ventricle. Balloon is inflated and deflated during diastole and systole, respectively. The longitudinal velocity of blood flow during balloon inflation and deflation has been considered. Through these investigations, the result reveals that the balloon inflation causes the blood flow to accelerate through the balloon and compensates the blood flow velocity required for the normal circulation system. When the balloon deflates, a reverse flow is generated and improves the perfusion of coronary arteries. Furthermore, the inlet pressure and acting force on the aortic valve for the healthy, unhealthy, and assisted heart have been compared. Result indicates that the force acting on the aortic valve has been considerably reduced for the assisted heart compare to the unhealthy or unassisted heart.

  15. Saturation thresholds of evoked neural and hemodynamic responses in awake and asleep rats

    NASA Astrophysics Data System (ADS)

    Schei, Jennifer L.; Van Nortwick, Amy S.; Meighan, Peter C.; Rector, David M.

    2011-03-01

    Neural activation generates a hemodynamic response to the localized region replenishing nutrients to the area. Changes in vigilance state have been shown to alter the vascular response where the vascular response is muted during wake compared to quiet sleep. We tested the saturation thresholds of the neurovascular response in the auditory cortex during wake and sleep by chronically implanting rats with an EEG electrode, a light emitting diode (LED, 600 nm), and photodiode to simultaneously measure evoked response potentials (ERPs) and evoked hemodynamic responses. We stimulated the cortex with a single speaker click delivered at random intervals 2-13 s at varied stimulus intensities ranging from 45-80 dB. To further test the potential for activity related saturation, we sleep deprived animals for 2, 4, or 6 hours and recorded evoked responses during the first hour recovery period. With increasing stimulus intensity, integrated ERPs and evoked hemodynamic responses increased; however the hemodynamic response approached saturation limits at a lower stimulus intensity than the ERP. With longer periods of sleep deprivation, the integrated ERPs did not change but evoked hemodynamic responses decreased. There may be physical limits in cortical blood delivery and vascular compliance, and with extended periods of neural activity during wake, vessels may approach these limits.

  16. Self-reported tolerance influences prefrontal cortex hemodynamics and affective responses.

    PubMed

    Tempest, Gavin; Parfitt, Gaynor

    2016-02-01

    The relationship between cognitive and sensory processes in the brain contributes to the regulation of affective responses (pleasure-displeasure). Exercise can be used to manipulate sensory processes (by increasing physiological demand) in order to examine the role of dispositional traits that may influence an individual's ability to cognitively regulate these responses. With the use of near infrared spectroscopy, in this study we examined the influence of self-reported tolerance upon prefrontal cortex (PFC) hemodynamics and affective responses. The hemodynamic response was measured in individuals with high or low tolerance during an incremental exercise test. Sensory manipulation was standardized against metabolic processes (ventilatory threshold [VT] and respiratory compensation point [RCP]), and affective responses were recorded. The results showed that the high-tolerance group displayed a larger hemodynamic response within the right PFC above VT (which increased above RCP). The low-tolerance group showed a larger hemodynamic response within the left PFC above VT. The high-tolerance group reported a more positive/less negative affective response above VT. These findings provide direct neurophysiological evidence of differential hemodynamic responses within the PFC that are associated with tolerance in the presence of increased physiological demands. This study supports the role of dispositional traits and previous theorizing into the underlying mechanisms (cognitive vs. sensory processes) of affective responses. PMID:26337703

  17. Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy

    PubMed Central

    Yücel, Meryem A.; Selb, Juliette; Aasted, Christopher M.; Lin, Pei-Yi; Borsook, David; Becerra, Lino; Boas, David A.

    2016-01-01

    Analysis of cerebral hemodynamics reveals a wide spectrum of oscillations ranging from 0.0095 to 2 Hz. While most of these oscillations can be filtered out during analysis of functional near-infrared spectroscopy (fNIRS) signals when estimating stimulus evoked hemodynamic responses, oscillations around 0.1 Hz are an exception. This is due to the fact that they share a common spectral range with typical stimulus evoked hemodynamic responses from the brain. Here we investigate the effect of hemodynamic oscillations around 0.1 Hz on the estimation of hemodynamic response functions from fNIRS data. Our results show that for an expected response of ~1 µM in oxygenated hemoglobin concentration (HbO), Mayer wave oscillations with an amplitude > ~1 µM at 0.1 Hz reduce the accuracy of the estimated response as quantified by a 3 fold increase in the mean squared error and decrease in correlation (R2 below 0.78) when compared to the true HRF. These results indicate that the amplitude of oscillations at 0.1 Hz can serve as an objective metric of the expected HRF estimation accuracy. In addition, we investigated the effect of short separation regression on the recovered HRF, and found that this improves the recovered HRF when large amplitude 0.1 Hz oscillations are present in fNIRS data. We suspect that the development of other filtering strategies may provide even further improvement. PMID:27570699

  18. [MONITORING OF HEMODYNAMICS IN THE CHOICE OF INTENSIVE THERAPY IN THE OPERATED INFANTS].

    PubMed

    Stepanenko, S M; Afukov, I I; Sitnikova, M I

    2016-01-01

    Noninvasive monitoring in obtaining important and reliable information relevant to pediatric practices, not only in respect of dangers and complications of most invasive techniques, but also because a number of them difficult or even impossible in infants. The aim of this study was to estimate the significance of hemodynamic parameters and capabilities of ECHO and dophlercardiography for analyzing violations hemodynamics in primary diagnosis and conduct drug therapy in infants. The study included the results of a survey of 65 infants aged from 29 to 39 weeks with various surgical pathology, who received the various options the hemodynamic support. In the initial assessment and selecting tactics of therapy for hemodynamic analysis carried out routine monitoring and for evaluation of cardiac contractility used echo- and Doppler exams. All children have pointed out a number of significant changes of haemodynamics, that has required inotropic therapy with dopamine (64% of children with diaphragmatic hernia received additional dobutamine). Validation of expressed pulmonary hypertension children appointed sildenafil, and in the absence ofthe effect used nitrous oxide. Hemodynamic monitoring allows to monitor the status of circulation on the background of the treatment and to make timely changes to the script therapy. PMID:27192852

  19. Mayer waves reduce the accuracy of estimated hemodynamic response functions in functional near-infrared spectroscopy.

    PubMed

    Yücel, Meryem A; Selb, Juliette; Aasted, Christopher M; Lin, Pei-Yi; Borsook, David; Becerra, Lino; Boas, David A

    2016-08-01

    Analysis of cerebral hemodynamics reveals a wide spectrum of oscillations ranging from 0.0095 to 2 Hz. While most of these oscillations can be filtered out during analysis of functional near-infrared spectroscopy (fNIRS) signals when estimating stimulus evoked hemodynamic responses, oscillations around 0.1 Hz are an exception. This is due to the fact that they share a common spectral range with typical stimulus evoked hemodynamic responses from the brain. Here we investigate the effect of hemodynamic oscillations around 0.1 Hz on the estimation of hemodynamic response functions from fNIRS data. Our results show that for an expected response of ~1 µM in oxygenated hemoglobin concentration (HbO), Mayer wave oscillations with an amplitude > ~1 µM at 0.1 Hz reduce the accuracy of the estimated response as quantified by a 3 fold increase in the mean squared error and decrease in correlation (R(2) below 0.78) when compared to the true HRF. These results indicate that the amplitude of oscillations at 0.1 Hz can serve as an objective metric of the expected HRF estimation accuracy. In addition, we investigated the effect of short separation regression on the recovered HRF, and found that this improves the recovered HRF when large amplitude 0.1 Hz oscillations are present in fNIRS data. We suspect that the development of other filtering strategies may provide even further improvement. PMID:27570699

  20. Plasma and tissue levels of neuropeptide y in experimental septic shock: relation to hemodynamics, inflammation, oxidative stress, and hemofiltration.

    PubMed

    Kuncová, Jitka; Sýkora, Roman; Chvojka, Jiří; Svíglerová, Jitka; Stengl, Milan; Kroužecký, Aleš; Nalos, Lukáš; Matějovič, Martin

    2011-06-01

    Neuropeptide Y (NPY), a potent vasoconstrictor released from the sympathetic nerves, has been suggested to counterbalance sepsis-induced vasodilation. Thus, the changes in plasma and tissue NPY concentrations in relation to hemodynamic variables and inflammatory markers in a porcine model of moderate septic shock were investigated. Susceptibility of NPY to be removed by continuous hemofiltration in two settings has been also studied. Thirty-four domestic pigs were divided into five groups: (i) control group; (ii) control group with conventional hemofiltration; (iii) septic group; (iv) septic group with conventional hemofiltration; and (v) septic group with high-volume hemofiltration. Sepsis induced by fecal peritonitis continued for 22 h. Hemofiltration was applied for the last 10 h. Hemodynamic and inflammatory parameters (heart rate, mean arterial pressure, cardiac output, systemic vascular resistance, plasma concentrations of tumor necrosis factor-α, interleukin-6, and NPY) were measured before and at 12 and 22 h of peritonitis. NPY tissue levels were determined in the left ventricle and mesenteric and coronary arteries. Sepsis induced long-lasting increases in the systemic NPY levels without affecting its tissue concentrations. Continuous hemofiltration at any dose did not reduce sepsis-induced elevations in NPY plasma concentrations, nor did it affect the peptide tissue levels. The increases in NPY systemic levels were significantly correlated with changes in the systemic vascular resistance. The results support the hypothesis of NPY implication in the regulation of the vascular resistance under septic conditions and indicate that NPY clearance rate during hemofiltration does not exceed the capacity of perivascular nerves to release it.

  1. Hemodynamic effects of python neuropeptide gamma in the anesthetized python, Python regius.

    PubMed

    Skovgaard, Nini; Galli, Gina; Taylor, Edwin W; Conlon, J Michael; Wang, Tobias

    2005-05-15

    The effects of python neuropeptide gamma (NPgamma) on hemodynamic parameters have been investigated in the anesthetized ball python (Python regius). Bolus intra-arterial injections of synthetic python NPgamma (1-300 pmol kg-1) produced a dose-dependent decrease in systemic arterial blood pressure (Psys) concomitant with increases in systemic vascular conductance (Gsys), total cardiac output and stroke volume, but only minor effects on heart rate. The peptide had no significant effect on pulmonary arterial blood pressure (Ppul) and caused only a small increase in pulmonary conductance (Gpul) at the highest dose. In the systemic circulation, the potency of the NK1 receptor-selective agonist [Sar9,Met(0(2))11] substance P was >100-fold greater than the NK2 receptor-selective agonist [betaAla8] neurokinin A-(4-10)-peptide suggesting that the python cardiovascular system is associated with a receptor that resembles the mammalian NK1 receptor more closely than the NK2 receptor. Administration of the inhibitor of nitric oxide synthesis, L-nitro-arginine-methylester (L-NAME; 150 mg kg-1), resulted in a significant (P<0.05) increase in Psys as well as a decrease in Gsys, but no effect on Ppul and Gpul. Conversely, the nitric oxide donor, sodium nitroprusside (SNP; 60 microg kg-1) produced a significant (P<0.05) decrease in Psys along with an increase in Gsys and pulmonary blood flow. However, neither L-NAME nor indomethacin (10 mg kg-1) reduced the cardiovascular responses to NPgamma. Thus, nitric oxide is involved in regulation of basal vascular tone in the python, but neither nitric oxide nor prostaglandins mediate the vasodilatory action of NPgamma.

  2. Effect of an acute increase in central blood volume on cerebral hemodynamics.

    PubMed

    Ogoh, Shigehiko; Hirasawa, Ai; Raven, Peter B; Rebuffat, Thomas; Denise, Pierre; Lericollais, Romain; Sugawara, Jun; Normand, Hervé

    2015-10-15

    Systemic blood distribution is an important factor involved in regulating cerebral blood flow (CBF). However, the effect of an acute change in central blood volume (CBV) on CBF regulation remains unclear. To address our question, we sought to examine the CBF and systemic hemodynamic responses to microgravity during parabolic flight. Twelve healthy subjects were seated upright and exposed to microgravity during parabolic flight. During the brief periods of microgravity, mean arterial pressure was decreased (-26 ± 1%, P < 0.001), despite an increase in cardiac output (+21 ± 6%, P < 0.001). During microgravity, central arterial pulse pressure and estimated carotid sinus pressure increased rapidly. In addition, this increase in central arterial pulse pressure was associated with an arterial baroreflex-mediated decrease in heart rate (r = -0.888, P < 0.0001) and an increase in total vascular conductance (r = 0.711, P < 0.001). The middle cerebral artery mean blood velocity (MCA Vmean) remained unchanged throughout parabolic flight (P = 0.30). During microgravity the contribution of cardiac output to MCA Vmean was gradually reduced (P < 0.05), and its contribution was negatively correlated with an increase in total vascular conductance (r = -0.683, P < 0.0001). These findings suggest that the acute loading of the arterial and cardiopulmonary baroreceptors by increases in CBV during microgravity results in acute and marked systemic vasodilation. Furthermore, we conclude that this marked systemic vasodilation decreases the contribution of cardiac output to CBF. These findings suggest that the arterial and cardiopulmonary baroreflex-mediated peripheral vasodilation along with dynamic cerebral autoregulation counteracts a cerebral overperfusion, which otherwise would occur during acute increases in CBV. PMID:26310936

  3. Hemodynamic effects of L- and D-S-nitrosocysteine in the rat. Stereoselective S-nitrosothiol recognition sites.

    PubMed

    Davisson, R L; Travis, M D; Bates, J N; Lewis, S J

    1996-08-01

    The vasorelaxant effects of the endothelium-derived relaxing factor S-nitrosocysteine (SNC) may not be simply due to its decomposition to NO. The biological actions of SNC may also involve the transnitrosation of amino acids in the blood and in plasma membranes. The possibility that the SNC moiety possesses biological activity prompted us to examine whether the hemodynamic effects of this S-nitrosothiol involves the activation of stereoselective S-nitrosothiol receptors within the cardiovascular system. We examined (1) the hemodynamic effects produced by intravenous injections of the L and D isomers of SNC (L- and D-SNC, respectively; 100 to 800 nmol/kg), the L and D isomers of the parent thiols (L- and D-cysteine, respectively; 100 to 800 nmol/kg), the oxidized thiol L-cystine (100 to 800 nmol/kg), and the NO donor sodium nitroprusside (SNP, 1 to 36 micrograms/kg) in conscious freely moving rats, (2) the baroreceptor reflex-mediated changes in heart rate elicited in response to the falls in arterial pressure produced by L- and D-SNC and SNP in conscious rats, and (3) the relative decomposition of L- and D-SNC to NO upon addition to heparinized rat blood or upon direct application to cultured porcine aortic smooth muscle (PASM) cells. We now report that (1) L-SNC is a more potent hypotensive and vasodilator agent within the mesenteric bed and sympathetically intact and sympathetically denervated hindlimb beds of conscious rats than is D-SNC, (2) L- and D-SNC markedly inhibit baroreceptor reflex-mediated tachycardia in conscious rats and D-SNC is considerably more effective than L-SNC, (3) the intravenous injections of L- and D-cysteine or L-cystine do not affect arterial blood pressure or vascular resistances, and (4) L- and D-SNC decompose equally to NO upon application to rat blood or cultured PASM cells. These results suggest that the hemodynamic effects of endogenous SNC may involve its interaction with stereoselective S-nitrosothiol recognition sites within

  4. [Patients with hemodynamic unstable pelvic fractures in extremis: pelvic packing or angiography?].

    PubMed

    Liñán-Padilla, A; Giráldez-Sánchez, M Á; Serrano-Toledano, D; Lázaro-Gonzálvez, A; Cano-Luís, P

    2013-01-01

    The multidisciplinary management of patients with pelvic trauma has improved prognosis, but mortality is still very high. The appropriate treatment strategy remains controversial, especially regarding the control of bleeding in patients whose clinical situation is extreme by using angiography or pelvic packing. We propose using a tool of evidence-based medicine (CAT) the benefit of the completion of pelvic packing in relation to a specific clinical question from a specific situation. What is best for the management of bleeding, extraperitoneal pelvic packing or angiography, in patients with hemodynamically unstable pelvic fracture in extremis? From this study we can conclude that angiography may improve control of bleeding in patients with arterial bleeding and hemodynamically stable but the packing has priority in patients with pelvic fractures and hemodynamic instability.

  5. Utility of Functional Hemodynamics and Echocardiography to Aid Diagnosis and Management of Shock.

    PubMed

    McGee, William T; Raghunathan, Karthik; Adler, Adam C

    2015-12-01

    The utility of functional hemodynamics and bedside ultrasonography is increasingly recognized as advantageous for both improved diagnosis and management of shock states. In contrast to conventional "static" measures, "dynamic" hemodynamic measures and bedside imaging modalities enhance pathophysiology-based comprehensive understanding of shock states and the response to therapy. The current editions of major textbooks in the primary specialties--in which clinicians routinely encounter patients in shock--including surgery, anesthesia, emergency medicine, and internal medicine continue to incorporate traditional (conventional) descriptions of shock that use well-described (but potentially misleading) intravascular pressures to classify shock states. Reliance on such intravascular pressure measurements is not as helpful as newer "dynamic" functional measures including ultrasonography to both better assess volume responsiveness and biventricular cardiac function. This review thus emphasizes the application of current functional hemodynamics and ultrasonography to the diagnosis and management of shock as a contrast to conventional "static" pressure-based measures.

  6. Hemodynamic changes and baroreflex sensitivity associated with carotid endarterectomy and carotid artery stenting.

    PubMed

    Cao, Qinqin; Zhang, Jun; Xu, Gelin

    2015-01-01

    Atherosclerotic carotid lesion is a major cause of stroke which accounts for up to 20% of ischemic stroke. Aggressive treatment of carotid stenosis may prevent stroke. Currently, carotid endarterectomy (CEA) and carotid artery stenting (CAS) are the first-line treatments for severe carotid stenosis. CEA is superior to medical therapy in preventing stroke and cardiovascular death. CAS has emerged as an alternative to CEA in recent years due to its less invasive nature. However, both CEA and CAS may be associated with adverse hemodynamic changes as well as a variation of carotid baroreflex sensitivity. There is no consensus on which of these two methods is more advantageous concerning the procedure-related hemodynamic changes. This article reviews the hemodynamic changes and baroreflex sensitivity after CEA and CAS. PMID:25999987

  7. The influence of stenosis degrees and graft suture position on local hemodynamics of coronary bypass

    NASA Astrophysics Data System (ADS)

    Totorean, A. F.; Bernad, S. I.; Susan-Resiga, R. F.

    2016-06-01

    Bypass graft failure is mainly caused by intimal hyperplasia (IH) that occurs at the graft anastomosis after coronary artery bypass grafting (CABG) surgery. It has been shown that local hemodynamics influences the process of IH initiation and progression. A main concern at this type of surgery is to increase the graft patency, respectively to improve the local hemodynamics. This paper analyzes the influence of different degree of stenosis severity and graft suture position on graft patency, taking into consideration the local hemodynamics. Bypass configurations with anastomosis angle of 45° were numerically investigated, with respect to wall shear stress and pressure variation. We can assume that in the conditions of our study, different stenosis degrees and position of the graft suture influence the local blood flow conditions, and, nevertheless, the graft patency.

  8. Resolution and outcome of acute circulatory failure does not correlate with hemodynamics

    PubMed Central

    Suistomaa, Matti; Uusaro, Ari; Parviainen, Ilkka; Ruokonen, Esko

    2003-01-01

    Introduction Hemodynamic goals in the treatment of acute circulatory failure (ACF) are controversial. In critical care, organ failures can be assessed using Sequential Organ Failure Assessment and its refinement, total maximal Sequential Organ Failure Assessment (TMS). We studied the associations between resolution of ACF and hemodynamics in the early (< 24 hours) phase of intensive care unit care and their relation to TMS and mortality. Patients and methods Eighty-three patients with ACF (defined as arterial lactate > 2 mmol/l and/or base deficit > 4) who had pulmonary artery catheters and stayed for longer than 24 hours in the intensive care unit were included. Hemodynamics, oxygen transport, vasoactive drugs and TMS scores were recorded. Normalisation of hyperlactatemia and metabolic acidosis in less than 24 hours after admission was defined as a positive response to hemodynamic resuscitation. Results Fifty-two patients responded to resuscitation. Nonresponders had higher mortality than responders (52% versus 33%, P = 0.044). Hospital mortality was highest (63%) among nonresponders who received vasoactive drugs. The TMS scores of nonresponders (median [interquartile range], 12 [9-16]) were higher than the scores of responders (10 [7-12], P = 0.019). Late accumulation of TMS scores was associated with increasing mortality, and if the TMS score increase occurred > 5 days after admission then the mortality was 77%. Responders had higher mean arterial pressure at 24 hours, but it was no different between survivors and nonsurvivors. No other hemodynamic and oxygen transport variables were associated with the success of resuscitation or with mortality. Conclusions Except for the mean arterial pressure at 24 hours, invasively derived hemodynamic and oxygen transport variables are not associated with the response to resuscitation or with mortality. Positive response to resuscitation in ACF is associated with less severe organ failures as judged by TMS scores. Late

  9. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    NASA Astrophysics Data System (ADS)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  10. Rapid Cerebral Hemodynamic Modulation during Set Shifting: Evidence of Time-Locked Associations with Cognitive Control in Females

    ERIC Educational Resources Information Center

    Schuepbach, Daniel; Huizinga, Mariette; Duschek, Stefan; Grimm, Simone; Boeker, Heinz; Hell, Daniel

    2009-01-01

    Set shifting provokes specific alterations of cerebral hemodynamics in basal cerebral arteries. However, no gender differences have been reported. In the following functional transcranial Doppler study, we introduced cerebral hemodynamic modulation to the aspects of set shifting during Wisconsin Card Sorting Test (WCST). Twenty-one subjects…

  11. On the complexity of scoring acute respiratory distress syndrome: do not forget hemodynamics!

    PubMed

    Repessé, Xavier; Aubry, Alix; Vieillard-Baron, Antoine

    2016-08-01

    Acute respiratory distress syndrome (ARDS) remains associated with a poor outcome despite recent major therapeutic advances. Forecasting the outcome of patients suffering from such a syndrome is of a crucial interest and many scores have been proposed, all suffering from limits responsible for important discrepancies. Authors try to elaborate simple, routine and reliable scores but most of them do not consider hemodynamics yet acknowledged as a major determinant of outcome. This article aims at reminding the approach of scoring in AR