Nanoparticle distribution during systemic inflammation is size-dependent and organ-specific
NASA Astrophysics Data System (ADS)
Chen, K.-H.; Lundy, D. J.; Toh, E. K.-W.; Chen, C.-H.; Shih, C.; Chen, P.; Chang, H.-C.; Lai, J. J.; Stayton, P. S.; Hoffman, A. S.; Hsieh, P. C.-H.
2015-09-01
This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner.This study comprehensively investigates the changing biodistribution of fluorescent-labelled polystyrene latex bead nanoparticles in a mouse model of inflammation. Since inflammation alters systemic circulatory properties, increases vessel permeability and modulates the immune system, we theorised that systemic inflammation would alter nanoparticle distribution within the body. This has implications for prospective nanocarrier-based therapies targeting inflammatory diseases. Low dose lipopolysaccharide (LPS), a bacterial endotoxin, was used to induce an inflammatory response, and 20 nm, 100 nm or 500 nm polystyrene nanoparticles were administered after 16 hours. HPLC analysis was used to accurately quantify nanoparticle retention by each vital organ, and tissue sections revealed the precise locations of nanoparticle deposition within key tissues. During inflammation, nanoparticles of all sizes redistributed, particularly to the marginal zones of the spleen. We found that LPS-induced inflammation induces splenic macrophage polarisation and alters leukocyte uptake of nanoparticles, with size-dependent effects. In addition, spleen vasculature becomes significantly more permeable following LPS treatment. We conclude that systemic inflammation affects nanoparticle distribution by multiple mechanisms, in a size dependent manner. Electronic supplementary information (ESI) available: IF images of brain, heart, low magnification images of spleen, mouse heart rate and blood pressure post-LPS. See DOI: 10.1039/c5nr03626g
Early environments and the ecology of inflammation
McDade, Thomas W.
2012-01-01
Recent research has implicated inflammatory processes in the pathophysiology of a wide range of chronic degenerative diseases, although inflammation has long been recognized as a critical line of defense against infectious disease. However, current scientific understandings of the links between chronic low-grade inflammation and diseases of aging are based primarily on research in high-income nations with low levels of infectious disease and high levels of overweight/obesity. From a comparative and historical point of view, this epidemiological situation is relatively unique, and it may not capture the full range of ecological variation necessary to understand the processes that shape the development of inflammatory phenotypes. The human immune system is characterized by substantial developmental plasticity, and a comparative, developmental, ecological framework is proposed to cast light on the complex associations among early environments, regulation of inflammation, and disease. Recent studies in the Philippines and lowland Ecuador reveal low levels of chronic inflammation, despite higher burdens of infectious disease, and point to nutritional and microbial exposures in infancy as important determinants of inflammation in adulthood. By shaping the regulation of inflammation, early environments moderate responses to inflammatory stimuli later in life, with implications for the association between inflammation and chronic diseases. Attention to the eco-logics of inflammation may point to promising directions for future research, enriching our understanding of this important physiological system and informing approaches to the prevention and treatment of disease. PMID:23045646
Rutkowski, Melanie R; Conejo-Garcia, Jose R
2015-08-01
We have reported that TLR5-mediated recognition of commensal microbiota modulates systemic tumor-promoting inflammation and malignant progression of tumors at distal locations. Approximately 7-10% of the general population harbors a deleterious single nucleotide polymorphism in TLR5, implicating a novel role for genetic variation during the initiation and progression of cancer.
Systemic inflammation and resting state connectivity of the default mode network.
Marsland, Anna L; Kuan, Dora C-H; Sheu, Lei K; Krajina, Katarina; Kraynak, Thomas E; Manuck, Stephen B; Gianaros, Peter J
2017-05-01
The default mode network (DMN) encompasses brain systems that exhibit coherent neural activity at rest. DMN brain systems have been implicated in diverse social, cognitive, and affective processes, as well as risk for forms of dementia and psychiatric disorders that associate with systemic inflammation. Areas of the anterior cingulate cortex (ACC) and surrounding medial prefrontal cortex (mPFC) within the DMN have been implicated specifically in regulating autonomic and neuroendocrine processes that relate to systemic inflammation via bidirectional signaling mechanisms. However, it is still unclear whether indicators of inflammation relate directly to coherent resting state activity of the ACC, mPFC, or other areas within the DMN. Accordingly, we tested whether plasma interleukin (IL)-6, an indicator of systemic inflammation, covaried with resting-state functional connectivity of the DMN among 98 adults aged 30-54 (39% male; 81% Caucasian). Independent component analyses were applied to resting state fMRI data to generate DMN connectivity maps. Voxel-wise regression analyses were then used to test for associations between IL-6 and DMN connectivity across individuals, controlling for age, sex, body mass index, and fMRI signal motion. Within the DMN, IL-6 covaried positively with connectivity of the sub-genual ACC and negatively with a region of the dorsal medial PFC at corrected statistical thresholds. These novel findings offer evidence for a unique association between a marker of systemic inflammation (IL-6) and ACC and mPFC functional connectivity within the DMN, a network that may be important for linking aspects of immune function to psychological and behavioral states in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Lamin-B in systemic inflammation, tissue homeostasis, and aging.
Chen, Haiyang; Zheng, Xiaobin; Zheng, Yixian
2015-01-01
Gradual loss of tissue function (or homeostasis) is a natural process of aging and is believed to cause many age-associated diseases. In human epidemiology studies, the low-grade and chronic systemic inflammation in elderly has been correlated with the development of aging related pathologies. Although it is suspected that tissue decline is related to systemic inflammation, the cause and consequence of these aging phenomena are poorly understood. By studying the Drosophila fat body and gut, we have uncovered a mechanism by which lamin-B loss in the fat body upon aging induces age-associated systemic inflammation. This chronic inflammation results in the repression of gut local immune response, which in turn leads to the over-proliferation and mis-differentiation of the intestinal stem cells, thereby resulting in gut hyperplasia. Here we discuss the implications and remaining questions in light of our published findings and new observations.
Peripheral inflammation and cognitive aging.
Lim, Alvin; Krajina, Katarina; Marsland, Anna L
2013-01-01
Evidence suggests that inflammation, an innate immune response facilitating recovery from injury and pathogenic invasion, is positively associated with age-related cognitive decline and may play a role in risk for dementia. Physiological pathways linking the peripheral immune and central nervous systems are outlined, and studies linking inflammation with neurocognitive function are overviewed. We also present recent studies from our laboratory showing that midlife inflammation is related to cognitive function and brain morphology. Finally, potential implications for treatment, future directions, and limitations are discussed. Copyright © 2013 S. Karger AG, Basel.
The Role of Innate and Adaptive Immunity in Parkinson's Disease
Kannarkat, George T.; Boss, Jeremy M.; Tansey, Malú G.
2014-01-01
In recent years, inflammation has become implicated as a major pathogenic factor in the onset and progression of Parkinson's disease. Understanding the precise role for inflammation in PD will likely lead to understanding of how sporadic disease arises. In vivo evidence for inflammation in PD includes microglial activation, increased expression of inflammatory genes in the periphery and in the central nervous system (CNS), infiltration of peripheral immune cells into the CNS, and altered composition and phenotype of peripheral immune cells. These findings are recapitulated in various animal models of PD and are reviewed herein. Furthermore, we examine the potential relevance of PD-linked genetic mutations to altered immune function and the extent to which environmental exposures that recapitulate these phenotypes, which may lead to sporadic PD through similar mechanisms. Given the implications of immune system involvement on disease progression, we conclude by reviewing the evidence supporting the potential efficacy of immunomodulatory therapies in PD prevention or treatment. There is a clear need for additional research to clarify the role of immunity and inflammation in this chronic, neurodegenerative disease. PMID:24275605
Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity
Irwin, Michael R; Opp, Mark R
2017-01-01
Sleep disturbances including insomnia independently contribute to risk of inflammatory disorders and major depressive disorder. This review and overview provides an integrated understanding of the reciprocal relationships between sleep and the innate immune system and considers the role of sleep in the nocturnal regulation of the inflammatory biology dynamics; the impact of insomnia complaints, extremes of sleep duration, and experimental sleep deprivation on genomic, cellular, and systemic markers of inflammation; and the influence of sleep complaints and insomnia on inflammaging and molecular processes of cellular aging. Clinical implications of this research include discussion of the contribution of sleep disturbance to depression and especially inflammation-related depressive symptoms. Reciprocal action of inflammatory mediators on the homeostatic regulation of sleep continuity and sleep macrostructure, and the potential of interventions that target insomnia to reverse inflammation, are also reviewed. Together, interactions between sleep and inflammatory biology mechanisms underscore the implications of sleep disturbance for inflammatory disease risk, and provide a map to guide the development of treatments that modulate inflammation, improve sleep, and promote sleep health. PMID:27510422
Ceelen, Judith J M; Schols, Annemie M W J; Thielen, Nathalie G M; Haegens, Astrid; Gray, Douglas A; Kelders, Marco C J M; de Theije, Chiel C; Langen, Ramon C J
2018-05-02
Pulmonary inflammation in response to respiratory infections can evoke muscle wasting. Increased activity of the ubiquitin (Ub)-proteasome system (UPS) and the autophagy lysosome pathway (ALP) have been implicated in inflammation-induced muscle atrophy. Since poly-Ub conjugation is required for UPS-mediated proteolysis and has been implicated in the ALP, we assessed the effect of impaired ubiquitin conjugation on muscle atrophy and recovery following pulmonary inflammation, and compared activation and suppression of these proteolytic systems to protein synthesis regulation. Pulmonary inflammation was induced in mice by an intratracheal instillation of LPS. Proteolysis (UPS and ALP) and synthesis signaling were examined in gastrocnemius muscle homogenates. Ub-conjugation-dependency of muscle atrophy and recovery was addressed using Ub-K48R (K48R) mice with attenuated poly-ubiquitin conjugation, and compared to UBWT control mice. Pulmonary inflammation caused a decrease in skeletal muscle mass which was accompanied by a rapid increase in expression of UPS and ALP constituents and reduction in protein synthesis signaling acutely after LPS. Muscle atrophy was attenuated in K48R mice, while ALP and protein synthesis signaling were not affected. Muscle mass recovery starting 72 h post LPS, correlated with reduced expression of UPS and ALP constituents and restoration of protein synthesis signaling. K48R mice however displayed impaired recovery of muscle mass. Pulmonary inflammation-induced muscle atrophy is in part attributable to UPS-mediated proteolysis, as activation of ALP- and suppression of protein synthesis signaling occur independently of poly-Ub conjugation during muscle atrophy. Recovery of muscle mass following pulmonary inflammation involves inverse regulation of proteolysis and protein synthesis signaling, and requires a functional poly-Ub conjugation.
Nur77 deficiency leads to systemic inflammation in elderly mice.
Li, Xiu-Ming; Lu, Xing-Xing; Xu, Qian; Wang, Jing-Ru; Zhang, Shen; Guo, Peng-Da; Li, Jian-Ming; Wu, Hua
2015-01-01
Nur77, an orphan member of the nuclear receptor superfamily, has been implicated in the regulation of inflammation. However, the in vivo function of Nur77 remains largely unexplored. In the current study, we investigated the role of Nur77 in inflammation and immunity in mice. We found that elderly 8-month-old Nur77-deficient mice (Nur77(-/-)) developed systemic inflammation. Compared to wild-type (WT) mice (Nur77(+/+)), Nur77(-/-) mice showed splenomegaly, severe infiltration of inflammatory cells in several organs including liver, lung, spleen and kidney, increased hyperplasia of fibrous tissue in the lung and enlargement of kidney glomeruli. Additionally, Nur77(-/-) mice had increased production of pro-inflammatory cytokines and immunoglobulin, and elicited pro-inflammatory M1-like polarization in macrophages as revealed by increased expression of CXCL11 and INDO, and decreased expression of MRC1. These in vivo observations provide evidence for a pivotal role for Nur77 in the regulation of systemic inflammation and emphasize the pathogenic significance of Nur77 in vivo.
Paley, Carole A; Johnson, Mark I
2016-04-01
The increasing prevalence of chronic pain and obesity has significant health and cost implications for economies in the developed and developing world. Evidence suggests that there is a positive correlation between obesity and chronic pain and the link between them is thought to be systemic inflammation. The aim of this narrative review was to explore the physiological links between chronic musculoskeletal pain and obesity and to consider the potential role of regular physical activity in providing a means of managing obesity-related chronic pain. Systemic inflammation, mechanical overload, and autonomic dysfunction are associated with increased prevalence and severity of chronic pain in individuals with obesity. It has been proposed, therefore, that interventions that target systemic inflammation could help to reduce chronic pain in obese individuals. Reduction in abdominal fat has been shown to alleviate pain and reduce the systemic markers of inflammation that contribute to chronic pain. Interventions that include exercise prescription have been shown to reduce both abdominal fat and systemic inflammation. Furthermore, exercise is also known to reduce pain perception and improve mental health and quality of life that also improves pain outcomes. However, adherence to formal exercise prescription is poor and therefore exercise programmes should be tailored to the interests, needs, and abilities of individuals to reduce attrition.
Effects of inflammation on social processes and implications for health.
Moieni, Mona; Eisenberger, Naomi I
2018-05-28
Although at first glance inflammation and social behavior may appear unrelated, research points to an important role for inflammation in shaping social processes. This review summarizes findings in this field, specifically highlighting work that provides support for the idea that inflammation can lead to (1) increases in sensitivity to negative, threatening social experiences and (2) increases in sensitivity to positive, socially rewarding experiences. These diverging sensitivities in response to inflammation may depend on context and be adaptive for recuperation and recovery from illness. This review also discusses the implications of these findings for health and future research, including implications for depression, loneliness, and inflammatory disorders. © 2018 New York Academy of Sciences.
Inflammatory Mechanisms Linking Periodontal Diseases to Cardiovascular Diseases
Schenkein, Harvey A.; Loos, Bruno G.
2015-01-01
Aims In this paper, inflammatory mechanisms that link periodontal diseases to cardiovascular diseases (CVD) are reviewed. Materials and Methods and Results This paper is a literature review. Studies in the literature implicate a number of possible mechanisms that could be responsible for increased inflammatory responses in atheromatous lesions due to periodontal infections. These include increased systemic levels of inflammatory mediators stimulated by bacteria and their products at sites distant from the oral cavity, elevated thrombotic and hemostatic markers that promote a prothrombotic state and inflammation, cross-reactive systemic antibodies that promote inflammation and interact with the atheroma, promotion of dyslipidemia with consequent increases in proinflammatory lipid classes and subclasses, and common genetic susceptibility factors present in both disease leading to increased inflammatory responses. Conclusions Such mechanisms may be thought to act in concert to increase systemic inflammation in periodontal disease and to promote or exacerbate atherogenesis. However, proof that the increase in systemic inflammation attributable to periodontitis impacts inflammatory responses during atheroma development, thrombotic events, or myocardial infarction or stroke is lacking. PMID:23627334
Chronic bowel inflammation and inflammatory joint disease: Pathophysiology.
Speca, Silvia; Dubuquoy, Laurent
2017-07-01
Bowel inflammation is closely linked to chronic joint inflammation. Research reported in the 1980s demonstrated bowel inflammation with gross and microscopic pathological features identical to those of Crohn's disease in over 60% of patients with spondyloarthritis (SpA). Numerous prospective studies have evidenced joint involvement in patients with chronic inflammatory bowel disease (IBD) and bowel inflammation in patients with SpA. Nevertheless, the interactions of joint disease and chronic bowel inflammation remain incompletely elucidated. Two main hypotheses have been suggested to explain potential links between inflammation of the mucosal immune system and peripheral arthritis: one identifies gut bacteria as potentially implicated in the development of joint inflammation and the other involves the recruitment of gut lymphocytes or activated macrophages to the joints. Pathophysiological investigations have established that HLA-B27 is a pivotal pathogenic factor. Here, we review current data on links between chronic bowel inflammation and inflammatory joint disease. Copyright © 2017 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.
Systemic effects of inflammation on health during chronic HIV infection.
Deeks, Steven G; Tracy, Russell; Douek, Daniel C
2013-10-17
Combination antiretroviral therapy for HIV infection improves immune function and eliminates the risk of AIDS-related complications but does not restore full health. HIV-infected adults have excess risk of cardiovascular, liver, kidney, bone, and neurologic diseases. Many markers of inflammation are elevated in HIV disease and strongly predictive of the risk of morbidity and mortality. A conceptual model has emerged to explain this syndrome of diseases where HIV-mediated destruction of gut mucosa leads to local and systemic inflammation. Translocated microbial products then pass through the liver, contributing to hepatic damage, impaired microbial clearance, and impaired protein synthesis. Chronic activation of monocytes and altered liver protein synthesis subsequently contribute to a hypercoagulable state. The combined effect of systemic inflammation and excess clotting on tissue function leads to end-organ disease. Multiple therapeutic interventions designed to reverse these pathways are now being tested in the clinic. It is likely that knowledge gained on how inflammation affects health in HIV disease could have implications for our understanding of other chronic inflammatory diseases and the biology of aging. Copyright © 2013 Elsevier Inc. All rights reserved.
The microbiome and HIV persistence: implications for viral remission and cure.
Koay, Wei Li A; Siems, Lilly V; Persaud, Deborah
2018-01-01
This article discusses the interaction between HIV infection, the gut microbiome, inflammation and immune activation, and HIV reservoirs, along with interventions to target the microbiome and their implications for HIV remission and cure. Most studies show that HIV-infected adults have a gut microbiome associated with decreased bacterial richness and diversity, and associated systemic inflammation and immune activation. A unique set of individuals, elite controllers, who spontaneously control HIV replication, have a similar microbiome to HIV-uninfected individuals. Conversely, exposure to maternal HIV in infants was shown to alter the gut microbiome, even in infants who escaped perinatal infection. Emerging research highlights the importance of the metabolomics and metaproteomics of the gut microbiome, which may have relevance for HIV remission and cure. Together, these studies illustrate the complexity of the relationship between HIV infection, the gut microbiome, and its systemic effects. Understanding the association of HIV with the microbiome, metabolome, and metaproteome may lead to novel therapies to decrease inflammation and immune activation, and impact HIV reservoir size and vaccine responses. Further research in this area is important to inform HIV remission and cure treatments.
Inflammatory cells implicated in neoplasia development in idiopathic inflammatory bowel disease.
Hashash, Jana G; Hartman, Douglas J
2017-11-10
The inflammatory mechanisms that lead to the clinical symptoms that are grouped under the term inflammatory bowel disease have not been fully characterized. Although a specific mechanism has not been identified, inflammatory bowel disease is believed to be related to an inability by the immune system to shut active inflammation within the intestine. Many contributing factors have been implicated in the disease process. Based on population studies, patients with inflammatory bowel disease have an increased risk for neoplastic development. Although no specific immune cell has been implicated in neoplastic development within this patient population, several immune cells have been implicated as possible etiologies in inflammatory bowel disease. In this review, we will review the clinical evidence about the risk for neoplastic development in inflammatory bowel disease and the current clinical guidelines to survey this patient population. We will also review the pathologic assessment of inflammation within this patient population as well the underlying immune cells and cytokines that have been implicated in the etiology of inflammatory bowel disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Hong, Hye Kyoung; Lee, Hyun Ju; Ko, Jung Hwa; Park, Ji Hyun; Park, Ji Yeon; Choi, Chang Won; Yoon, Chang-Hwan; Ahn, Seong Joon; Park, Kyu Hyung; Woo, Se Joon; Oh, Joo Youn
2014-05-15
Alteration of retinal angiogenesis during development leads to retinopathy of prematurity (ROP) in preterm infants, which is a leading cause of visual impairment in children. A number of clinical studies have reported higher rates of ROP in infants who had perinatal infections or inflammation, suggesting that exposure of the developing retina to inflammation may disturb retinal vessel development. Thus, we investigated the effects of systemic inflammation on retinal vessel development and retinal inflammation in neonatal rats. To induce systemic inflammation, we intraperitoneally injected 100 μl lipopolysaccharide (LPS, 0.25 mg/ml) or the same volume of normal saline in rat pups on postnatal days 1, 3, and 5. The retinas were extracted on postnatal days 7 and 14, and subjected to assays for retinal vessels, inflammatory cells and molecules, and apoptosis. We found that intraperitoneal injection of LPS impaired retinal vessel development by decreasing vessel extension, reducing capillary density, and inducing localized overgrowth of abnormal retinal vessels and dilated peripheral vascular ridge, all of which are characteristic findings of ROP. Also, a large number of CD11c+ inflammatory cells and astrocytes were localized in the lesion of abnormal vessels. Further analysis revealed that the number of major histocompatibility complex (MHC) class IIloCD68loCD11bloCD11chi cells in the retina was higher in LPS-treated rats compared to controls. Similarly, the levels of TNF-α, IL-1β, and IL-12a were increased in LPS-treated retina. Also, apoptosis was increased in the inner retinal layer where retinal vessels are located. Our data demonstrate that systemic LPS-induced inflammation elicits retinal inflammation and impairs retinal angiogenesis in neonatal rats, implicating perinatal inflammation in the pathogenesis of ROP.
Regulation of inflammation and T cells by glycogen synthase kinase-3: Links to mood disorders
Beurel, Eleonore
2014-01-01
Substantial evidence has implicated a role for the immune system in regulating the susceptibility to depression. Proinflammatory cytokines have been shown to be involved in promoting the induction of depressive behavior both in humans and mice, opening new avenues for therapeutic intervention. Because glycogen synthase kinase-3 (GSK3) was recently found to control the production of proinflammatory cytokines, and for many years GSK3 has been implicated in mood disorders, it has been proposed that the proinflammatory action of GSK3 may contribute to the promoting susceptibility to depressive behavior. Moreover, besides regulating cytokine production, GSK3 also promotes the differentiation of proinflammatory subtypes of Th cells, which are sufficient to induce depressive behavior in mice. Although the clear involvement of the immune system during depressive behavior still needs to be firmly demonstrated, there is growing evidence for the involvement of inflammation in the induction of depressive behavior. PMID:24557047
Acne vulgaris, probiotics and the gut-brain-skin axis - back to the future?
Bowe, Whitney P; Logan, Alan C
2011-01-31
Over 70 years have passed since dermatologists John H. Stokes and Donald M. Pillsbury first proposed a gastrointestinal mechanism for the overlap between depression, anxiety and skin conditions such as acne. Stokes and Pillsbury hypothesized that emotional states might alter the normal intestinal microflora, increase intestinal permeability and contribute to systemic inflammation. Among the remedies advocated by Stokes and Pillsbury were Lactobacillus acidophilus cultures. Many aspects of this gut-brain-skin unifying theory have recently been validated. The ability of the gut microbiota and oral probiotics to influence systemic inflammation, oxidative stress, glycemic control, tissue lipid content and even mood itself, may have important implications in acne. The intestinal microflora may also provide a twist to the developing diet and acne research. Here we provide a historical perspective to the contemporary investigations and clinical implications of the gut-brain-skin connection in acne.
Acne vulgaris, probiotics and the gut-brain-skin axis - back to the future?
2011-01-01
Over 70 years have passed since dermatologists John H. Stokes and Donald M. Pillsbury first proposed a gastrointestinal mechanism for the overlap between depression, anxiety and skin conditions such as acne. Stokes and Pillsbury hypothesized that emotional states might alter the normal intestinal microflora, increase intestinal permeability and contribute to systemic inflammation. Among the remedies advocated by Stokes and Pillsbury were Lactobacillus acidophilus cultures. Many aspects of this gut-brain-skin unifying theory have recently been validated. The ability of the gut microbiota and oral probiotics to influence systemic inflammation, oxidative stress, glycemic control, tissue lipid content and even mood itself, may have important implications in acne. The intestinal microflora may also provide a twist to the developing diet and acne research. Here we provide a historical perspective to the contemporary investigations and clinical implications of the gut-brain-skin connection in acne. PMID:21281494
So depression is an inflammatory disease, but where does the inflammation come from?
2013-01-01
Background We now know that depression is associated with a chronic, low-grade inflammatory response and activation of cell-mediated immunity, as well as activation of the compensatory anti-inflammatory reflex system. It is similarly accompanied by increased oxidative and nitrosative stress (O&NS), which contribute to neuroprogression in the disorder. The obvious question this poses is ‘what is the source of this chronic low-grade inflammation?’ Discussion This review explores the role of inflammation and oxidative and nitrosative stress as possible mediators of known environmental risk factors in depression, and discusses potential implications of these findings. A range of factors appear to increase the risk for the development of depression, and seem to be associated with systemic inflammation; these include psychosocial stressors, poor diet, physical inactivity, obesity, smoking, altered gut permeability, atopy, dental cares, sleep and vitamin D deficiency. Summary The identification of known sources of inflammation provides support for inflammation as a mediating pathway to both risk and neuroprogression in depression. Critically, most of these factors are plastic, and potentially amenable to therapeutic and preventative interventions. Most, but not all, of the above mentioned sources of inflammation may play a role in other psychiatric disorders, such as bipolar disorder, schizophrenia, autism and post-traumatic stress disorder. PMID:24228900
Bellinger, Denise L; Lorton, Dianne
2018-04-13
Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.
Bioactive Egg Components and Inflammation
Andersen, Catherine J.
2015-01-01
Inflammation is a normal acute response of the immune system to pathogens and tissue injury. However, chronic inflammation is known to play a significant role in the pathophysiology of numerous chronic diseases, such as cardiovascular disease, type 2 diabetes mellitus, and cancer. Thus, the impact of dietary factors on inflammation may provide key insight into mitigating chronic disease risk. Eggs are recognized as a functional food that contain a variety of bioactive compounds that can influence pro- and anti-inflammatory pathways. Interestingly, the effects of egg consumption on inflammation varies across different populations, including those that are classified as healthy, overweight, metabolic syndrome, and type 2 diabetic. The following review will discuss the pro- and anti-inflammatory properties of egg components, with a focus on egg phospholipids, cholesterol, the carotenoids lutein and zeaxanthin, and bioactive proteins. The effects of egg consumption of inflammation across human populations will additionally be presented. Together, these findings have implications for population-specific dietary recommendations and chronic disease risk. PMID:26389951
TNF-α signaling in Fanconi anemia
Du, Wei; Erden, Ozlem; Pang, Qishen
2013-01-01
Tumor necrosis factor-alpha (TNF-α is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contribute to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA. PMID:23890415
TNF-α signaling in Fanconi anemia.
Du, Wei; Erden, Ozlem; Pang, Qishen
2014-01-01
Tumor necrosis factor-alpha (TNF-α) is a major pro-inflammatory cytokine involved in systemic inflammation and the acute phase reaction. Dysregulation of TNF production has been implicated in a variety of human diseases including Fanconi anemia (FA). FA is a genomic instability syndrome characterized by progressive bone marrow failure and cancer susceptibility. The patients with FA are often found overproducing TNF-α, which may directly affect hematopoietic stem cell (HSC) function by impairing HSC survival, homing and proliferation, or indirectly change the bone marrow microenvironment critical for HSC homeostasis and function, therefore contributing to disease progression in FA. In this brief review, we discuss the link between TNF-α signaling and FA pathway with emphasis on the implication of inflammation in the pathophysiology and abnormal hematopoiesis in FA. © 2013.
Neuro-immune interactions in inflammation and host defense: Implications for transplantation.
Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M
2018-03-01
Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Nutritional Approaches for Managing Obesity-Associated Metabolic Diseases
Botchlett, Rachel; Woo, Shih-Lung; Liu, Mengyang; Pei, Ya; Guo, Xin; Li, Honggui; Wu, Chaodong
2017-01-01
Obesity is an ongoing pandemic and serves as a causal factor of a wide spectrum of metabolic diseases including diabetes, fatty liver disease, and cardiovascular disease. Much evidence has demonstrated that nutrient overload/overnutrition initiates or exacerbates inflammatory responses in tissues/organs involved in the regulation of systemic metabolic homeostasis. This obesity-associated inflammation is usually at a low-grade and viewed as metabolic inflammation. When it exists continuously, inflammation inappropriately alters metabolic pathways and impairs insulin signaling cascades in peripheral tissues/organs such as adipose tissue, the liver and skeletal muscle, resulting in local fat deposition and insulin resistance and systemic metabolic dysregulation. In addition, inflammatory mediators, e.g., proinflammatory cytokines, and excessive nutrients, e.g., glucose and fatty acids, act together to aggravate local insulin resistance and form a vicious cycle to further disturb local metabolic pathways and exacerbate systemic metabolic dysregulation. Owing to the critical role of nutrient metabolism in the control of the initiation and progression of inflammation and insulin resistance, nutritional approaches have been implicated as effective tools for managing obesity and obesity-associated metabolic diseases. Based on the mounting evidence generated from both basic and clinical research, nutritional approaches are commonly used for suppressing inflammation, improving insulin sensitivity, and/or decreasing fat deposition. Consequently, the combined effects are responsible for improvement of systemic insulin sensitivity and metabolic homeostasis. PMID:28400405
2010-01-01
multi-system organ failure, and remote organ injury at sites such as the lung, liver , small intestines, and brain, representing major causes of...inflammatory components. The development of systemic inflammation following severe thermal injury has been implicated in immune dysfunction, delayed wound...healing, multi-system organ failure and increased mortality. Methods: In this study, we examined the impact of thermal injury -induced systemic
Zass, Lyndon J; Hart, Stephanie A; Seedat, Soraya; Hemmings, Sian M J; Malan-Müller, Stefanie
2017-02-01
Post-traumatic stress disorder (PTSD) is a debilitating condition that only occurs in the aftermath of traumatic event exposure and is characterized by an impaired stress response and chronic, low-grade inflammation. Dysregulation of the immune system may contribute towards central nervous system tissue damage and exacerbation of fear memories following trauma. Patients with PTSD often have comorbid psychiatric and somatic disorders that are of themselves associated with heightened inflammation. Several immune-related genes have been associated with PTSD and other co-occurring disorders. In this review, we propose that chronic inflammation, particularly neuroinflammation, is an important contributory factor towards PTSD comorbidity. Thus, novel treatments that target dysregulated inflammatory processes could provide symptomatic relief from PTSD and its comorbid disorders. This review investigates the intricate links between chronic stress, anxiety and neuroinflammation and the potential impact of increased neuroinflammation on PTSD pathology and comorbidity.
Role of interleukins in obesity: implications for metabolic disease.
Febbraio, Mark A
2014-06-01
It has been two decades since the discovery that pro-inflammatory cytokines are expressed in obesity. This initial work was the catalyst for the now-accepted paradigm that nutrient overload promotes inflammation and links the metabolic and immune systems, where inflammation may be pathological. However, inflammation is an adaptive and, importantly, an energy-consuming process. Indeed, the rapid mobilization of stored energy reserves by cytokines such as the interleukins, is critical to mounting any successful inflammatory response. Thus, the role of the interleukins in metabolism and energy homeostasis is more complex than first thought and recent evidence is mounting that, for several interleukins, although excess production is negative, blockade or insufficiency is equally undesirable. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mansilha, Armando; Sousa, Joel
2018-06-05
Chronic venous disease (CVD) is a common pathology, with significant physical and psychological impacts for patients and high economic costs for national healthcare systems. Throughout the last decades, several risk factors for this condition have been identified, but only recently, have the roles of inflammation and endothelial dysfunction been properly assessed. Although still incompletely understood, current knowledge of the pathophysiological mechanisms of CVD reveals several potential targets and strategies for therapeutic intervention, some of which are addressable by currently available venoactive drugs. The roles of these drugs in the clinical improvement of venous tone and contractility, reduction of edema and inflammation, as well as in improved microcirculation and venous ulcer healing have been studied extensively, with favorable results reported in the literature. Here, we aim to review these pathophysiological mechanisms and their implications regarding currently available venoactive drug therapies.
Skelly, Donal T; Griffin, Éadaoin W; Murray, Carol L; Harney, Sarah; O'Boyle, Conor; Hennessy, Edel; Dansereau, Marc-Andre; Nazmi, Arshed; Tortorelli, Lucas; Rawlins, J Nicholas; Bannerman, David M; Cunningham, Colm
2018-06-06
Systemic inflammation can impair cognition with relevance to dementia, delirium and post-operative cognitive dysfunction. Episodes of delirium also contribute to rates of long-term cognitive decline, implying that these acute events induce injury. Whether systemic inflammation-induced acute dysfunction and acute brain injury occur by overlapping or discrete mechanisms remains unexplored. Here we show that systemic inflammation, induced by bacterial LPS, produces both working-memory deficits and acute brain injury in the degenerating brain and that these occur by dissociable IL-1-dependent processes. In normal C57BL/6 mice, LPS (100 µg/kg) did not affect working memory but impaired long-term memory consoliodation. However prior hippocampal synaptic loss left mice selectively vulnerable to LPS-induced working memory deficits. Systemically administered IL-1 receptor antagonist (IL-1RA) was protective against, and systemic IL-1β replicated, these working memory deficits. Dexamethasone abolished systemic cytokine synthesis and was protective against working memory deficits, without blocking brain IL-1β synthesis. Direct application of IL-1β to ex vivo hippocampal slices induced non-synaptic depolarisation and irrevesible loss of membrane potential in CA1 neurons from diseased animals and systemic LPS increased apoptosis in the degenerating brain, in an IL-1RI -/- -dependent fashion. The data suggest that LPS induces working memory dysfunction via circulating IL-1β but direct hippocampal action of IL-1β causes neuronal dysfunction and may drive neuronal death. The data suggest that acute systemic inflammation produces both reversible cognitive deficits, resembling delirium, and acute brain injury contributing to long-term cognitive impairment but that these events are mechanistically dissociable. These data have significant implications for management of cognitive dysfunction during acute illness.
Towards a Genetic Definition of Cancer-Associated Inflammation
Prendergast, George C.; Metz, Richard; Muller, Alexander J.
2010-01-01
Chronic inflammation drives the development of many cancers, but a genetic definition of what constitutes ‘cancer-associated’ inflammation has not been determined. Recently, a mouse genetic study revealed a critical role for the immune escape mediator indoleamine 2,3-dioxygenase (IDO) in supporting inflammatory skin carcinogenesis. IDO is generally regarded as being immunosuppressive; however, there was no discernable difference in generalized inflammatory processes in IDO-null mice under conditions where tumor development was significantly suppressed, implicating IDO as key to establishing the pathogenic state of ‘cancer-associated’ inflammation. Here we review recent findings and their potential implications to understanding the relationship between immune escape and inflammation in cancer. Briefly, we propose that genetic pathways of immune escape in cancer are synonymous with pathways that define ‘cancer-associated’ inflammation and that these processes may be identical rather than distinct, as generally presumed, in terms of their genetic definition. PMID:20228228
Systemic inflammation induces axon injury during brain inflammation.
Moreno, Beatriz; Jukes, John-Paul; Vergara-Irigaray, Nuria; Errea, Oihana; Villoslada, Pablo; Perry, V Hugh; Newman, Tracey A
2011-12-01
Axon injury is a key contributor to the progression of disability in multiple sclerosis (MS). Systemic infections, which frequently precede relapses in MS, have been linked to clinical progression in Alzheimer's disease. There is evidence of a role for the innate immune system in MS lesions, as axonal injury is associated with macrophage activation. We hypothesize that systemic inflammation leads to enhanced axonal damage in MS as a consequence of innate immune system activation. Monophasic experimental allergic encephalomyelitis (EAE) was induced in a cohort of Lewis rats. The animals received a systemic challenge with either an inflammagen (lipopolysaccharide [LPS]) or saline as a control, at 1, 3, or 6 weeks into the remission phase of the disease. The clinical outcome, cellular recruitment to lesions, degree of tissue damage, and cytokine profiles were measured. We found that systemic inflammation activates the central nervous system (CNS) innate immune response and results in a switch in the macrophage/microglia phenotype. This switch was accompanied by inducible nitric oxide synthase (iNOS) and interleukin-1β (IL-1β) expression and increased axon injury. This increased injury occurred independently of the re-emergence of overt clinical signs. Our evidence indicates that microglia/macrophages, associated with lesions, respond to circulating cytokines, produced in response to an inflammatory event outside the CNS, by producing immune mediators that lead to tissue damage. This has implications for people with MS, in which prevention and stringent management of systemic infectious diseases may slow disease progression. Copyright © 2011 American Neurological Association.
[Menstruation, inflammation and comorbidities: implications for woman health].
Graziottin, A; Zanello, P P
2015-02-01
Menstruation is the genital sign of systemic endocrine events. Heterogeneity of perimenstrual symptoms is associated with levels of inflammation, triggered by the fall of estrogens at genital and systemic level. Aim of the review is to concisely analyze the evidence on: 1) genital and systemic endocrine and inflammatory events associated with periods and perimenstrual symptoms; 2) rationale of intervention to reduce their intensity and impact on women's lives. This review of the literature, selected with a clinical perspective, supports the inflammatory basis of the menstrual event, triggered by the estrogens' and progesterone' fall. Moreover, the review analyzes the endocrine and inflammatory basis of perimenstrual pelvic and extrapelvic symptoms such as: menstrual pain, menstrual irregularities, premenstrual syndrome, gastrointestinal symptoms, catamenial headache, depression, perimenstrual myalgia, joint pain, allergies and asthma, heavy menstrual bleeding, associated ironless anemia, brain and behavioral consequences. Inflammation, with increase of cytokines and other markers, is modulated by the degranulation of mast cells at the basal level of the endometrium, in the blood, in all the organs where mast-cell are already activated from local pathologies and within the brain. The shift of inflammation from physiological to a pathologic intensity increases the severity of perimenstrual symptoms. Symptoms persist, moderately attenuated, also during the hormone free interval (HFI) in contraception. The HFI reduction from seven to two days significantly reduces menstrual inflammation and associated symptoms.
Ozone is a ubiquitous smog-associated photochemical oxidant with deleterious health effects. While most of the adverse effects described to date involve the respiratory system (i.e, decrements in lung function, airway injury and inflammation, exacerbation of asthma, and compromis...
Kopalli, Spandana Rajendra; Kang, Tae-Bong; Koppula, Sushruta
2016-11-01
Recent studies have shown substantial interplay between the apoptosis and necroptosis pathways. Necroptosis, a form of programmed cell death, has been found to stimulate the immune system contributing to the pathophysiology of several inflammation-mediated disorders. Determining the contribution of necroptotic signaling pathways to inflammation may lead to the development of selective and specific molecular target implicated necroptosis inhibitors. Areas covered: This review summarizes the recently published and patented necroptosis inhibitors as therapeutic targets in inflammation-mediated disorders. The role of several necroptosis inhibitors, focusing on specific signaling molecules, was discussed with particular attention to inflammation-mediated disorders. Data was obtained from Espacenet®, WIPO®, USPTO® patent websites, and other relevant sources (2006-2016). Expert opinion: Necroptosis inhibitors hold promise for treatment of inflammation-mediated clinical conditions in which necroptotic cell death plays a major role. Although necroptosis inhibitors reviewed in this survey showed inhibitory effects against several inflammation-mediated disorders, only a few have passed to the stage of clinical testing and need extensive research for therapeutic practice. Revisiting the existing drugs and developing novel necroptosis inhibiting agents as well as understanding their mechanism are essential. A detailed study of necroptosis function in animal models of inflammation may provide us an alternative strategy for the development of drug-like necroptosis inhibitors.
Teeling, J.L.; Cunningham, C.; Newman, T.A.; Perry, V.H.
2010-01-01
Systemic inflammation gives rise to metabolic and behavioural changes, largely mediated by pro-inflammatory cytokines and prostaglandin production (PGE2) at the blood–brain barrier. Despite numerous studies, the exact biological pathways that give rise to these changes remains elusive. This study investigated the mechanisms underlying immune-to-brain communication following systemic inflammation using various anti-inflammatory agents. Mice were pre-treated with selective cyclo-oxygenase (COX) inhibitors, thromboxane synthase inhibitors or dexamethasone, followed by intra-peritoneal injection of lipopolysaccharide (LPS). Changes in body temperature, open-field activity, and burrowing were assessed and mRNA and/or protein levels of inflammatory mediators measured in serum and brain. LPS-induced systemic inflammation resulted in behavioural changes and increased production of IL-6, IL-1β and TNF-α, as well as PGE2 in serum and brain. Indomethacin and ibuprofen reversed the effect of LPS on behaviour without changing peripheral or central IL-6, IL-1β and TNF-α mRNA levels. In contrast, dexamethasone did not alter LPS-induced behavioural changes, despite complete inhibition of cytokine production. A selective COX-1 inhibitor, piroxicam, but not the selective COX-2 inhibitor, nimesulide, reversed the LPS-induced behavioural changes without affecting IL-6, IL-1β and TNF-α protein expression levels in the periphery or mRNA levels in the hippocampus. Our results suggest that the acute LPS-induced changes in burrowing and open-field activity depend on COX-1. We further show that COX-1 is not responsible for the induction of brain IL-6, IL-1β and TNF-α synthesis or LPS-induced hypothermia. Our results may have implications for novel therapeutic strategies to treat or prevent neurological diseases with an inflammatory component. PMID:19931610
D'Mello, Charlotte; Swain, Mark G
2014-01-01
Chronic inflammatory liver diseases are often accompanied by behavior alterations including fatigue, mood disorders, cognitive dysfunction and sleep disturbances. These altered behaviors can adversely affect patient quality of life. The communication pathways between the inflamed liver and the brain that mediate changes in central neural activity leading to behavior alterations during liver inflammation are poorly understood. Neural and humoral communication pathways have been most commonly implicated as driving peripheral inflammation to brain signaling. Classically, the cytokines TNFα, IL-1β and IL-6 have received the greatest scientific attention as potential mediators of this communication pathway. In mice with liver inflammation we have identified a novel immune-mediated liver-to-brain communication pathway whereby CCR2(+) monocytes found within the peripheral circulation transmigrate into the brain parenchyma in response to MCP-1/CCL2 expressing activated microglia. Inhibition of cerebral monocyte infiltration in these mice significantly improved liver inflammation associated sickness behaviors. Importantly, in recent work we have found that at an earlier time point, when cerebral monocyte infiltration is not evident in mice with liver inflammation, increased monocyte:cerebral endothelial cell adhesive interactions are observed using intravital microscopy of the brain. These monocyte:cerebral endothelial cell adhesive interactions are P-selectin mediated, and inhibition of these interactions attenuated microglial activation and sickness behavior development. Delineating the pathways that the periphery uses to communicate with the brain during inflammatory liver diseases, and the central neurotransmitter systems that are altered through these communication pathways (e.g., serotonin, corticotrophin releasing hormone) to give rise to liver inflammation-associated sickness behaviors, will allow for the identification of novel therapeutic targets to decrease the burden of debilitating symptoms in these patients. Copyright © 2013 Elsevier Inc. All rights reserved.
The role of glucose-6-phosphate dehydrogenase in adipose tissue inflammation in obesity.
Park, Yoon Jeong; Choe, Sung Sik; Sohn, Jee Hyung; Kim, Jae Bum
2017-04-03
Obesity is closely associated with metabolic diseases including type 2 diabetes. One hallmark characteristics of obesity is chronic inflammation that is coordinately controlled by complex signaling networks in adipose tissues. Compelling evidence indicates that reactive oxygen species (ROS) and its related signaling pathways play crucial roles in the progression of chronic inflammation in obesity. The pentose phosphate pathway (PPP) is an anabolic pathway that utilizes the glucoses to generate molecular building blocks and reducing equivalents in the form of NADPH. In particular, NADPH acts as one of the key modulators in the control of ROS through providing an electron for both ROS generation and scavenging. Recently, we have reported that glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the PPP, is implicated in adipose tissue inflammation and systemic insulin resistance in obesity. Mechanistically, G6PD potentiates generation of ROS that augments pro-inflammatory responses in adipose tissue macrophages, leading to systemic insulin resistance. Here, we provide an overview of cell type- specific roles of G6PD in the regulation of ROS balance as well as additional details on the significance of G6PD that contributes to pro-oxidant NADPH generation in obesity-related chronic inflammation and insulin resistance.
Dong, Hongquan; Zhang, Xiang; Wang, Yiming; Zhou, Xiqiao; Qian, Yanning; Zhang, Shu
2017-03-01
Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the "first responder" in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the "mast cell degranulator" compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. "Mast cell stabilizer" disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H 1 R), histamine receptor 4 (H 4 R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient Kit W-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.
The therapeutic value of targeting inflammation in gastrointestinal cancers
Sun, Beicheng; Karin, Michael
2014-01-01
Inflammation has been implicated in the initiation and progression of gastrointestinal (GI) cancers. Inflammation also plays important roles in subverting immune tolerance, escape from immune surveillance, and conferring resistance to chemotherapeutic agents. Targeting key regulators and mediators of inflammation represents an attractive strategy for GI cancer prevention and treatment. However, the targeting of inflammation in GI cancer is not straight-forward and sometimes inflammation may contribute to tumor regression. We discuss the origins and effects of inflammation in GI cancer and how to target it successfully. PMID:24881011
Christensen, Jeppe Romme; Börnsen, Lars; Ratzer, Rikke; Piehl, Fredrik; Khademi, Mohsen; Olsson, Tomas; Sørensen, Per Soelberg; Sellebjerg, Finn
2013-01-01
Pathology studies of progressive multiple sclerosis (MS) indicate a major role of inflammation including Th17-cells and meningeal inflammation with ectopic lymphoid follicles, B-cells and plasma cells, the latter indicating a possible role of the newly identified subset of follicular T-helper (TFH) cells. Although previous studies reported increased systemic inflammation in progressive MS it remains unclear whether systemic inflammation contributes to disease progression and intrathecal inflammation. This study aimed to investigate systemic inflammation in progressive MS and its relationship with disease progression, using flow cytometry and gene expression analysis of CD4+ and CD8+T-cells, B-cells, monocytes and dendritic cells. Furthermore, gene expression of cerebrospinal fluid cells was studied. Flow cytometry studies revealed increased frequencies of ICOS+TFH-cells in peripheral blood from relapsing-remitting (RRMS) and secondary progressive (SPMS) MS patients. All MS subtypes had decreased frequencies of Th1 TFH-cells, while primary progressive (PPMS) MS patients had increased frequency of Th17 TFH-cells. The Th17-subset, interleukin-23-receptor+CD4+T-cells, was significantly increased in PPMS and SPMS. In the analysis of B-cells, we found a significant increase of plasmablasts and DC-SIGN+ and CD83+B-cells in SPMS. ICOS+TFH-cells and DC-SIGN+B-cells correlated with disease progression in SPMS patients. Gene expression analysis of peripheral blood cell subsets substantiated the flow cytometry findings by demonstrating increased expression of IL21, IL21R and ICOS in CD4+T-cells in progressive MS. Cerebrospinal fluid cells from RRMS and progressive MS (pooled SPMS and PPMS patients) had increased expression of TFH-cell and plasmablast markers. In conclusion, this study is the first to demonstrate the potential involvement of activated TFH-cells in MS. The increased frequencies of Th17-cells, activated TFH- and B-cells parallel findings from pathology studies which, along with the correlation between activated TFH- and B-cells and disease progression, suggest a pathogenic role of systemic inflammation in progressive MS. These observations may have implications for the treatment of progressive MS. PMID:23469245
Definition and management of varicella zoster virus-associated meningoradiculitis: a case report.
Luisier, Vincent; Weber, Lalensia; Fishman, Daniel; Praz, Gérard; Ghika, Joseph-André; Genoud, Didier; Chabwine, Joelle Nsimire
2016-09-26
The varicella zoster virus affects the central or peripheral nervous systems upon reactivation, especially when cell-mediated immunity is impaired. Among varicella zoster virus-related neurological syndromes, meningoradiculitis is an ill-defined condition for which clear management guidelines are still lacking. Zoster paresis is usually considered to be a varicella zoster virus-peripheral nervous system complication and treated with oral antiviral therapy. Yet in the literature, the few reported cases of herpes zoster with mild cerebral spinal fluid inflammation were all considered meningoradiculitis and treated using intravenous antiviral drugs, despite absence of systemic signs of meningitis. Nevertheless, these two clinical pictures are very similar. We report the case of an alcohol-dependent elderly Caucasian man presenting with left lower limb zoster paresis and mild cerebral spinal fluid inflammation, with favorable outcome upon IV antiviral treatment. We discuss interpretation of liquor inflammation in the absence of clinical meningitis and implications for the antiviral treatment route. From this case report we suggest that varicella zoster virus-associated meningoradiculitis should necessarily include meningitis symptoms with the peripheral neurological deficits and cerebral spinal fluid inflammation, requiring intravenous antiviral treatment. In the absence of (cell-mediated) immunosuppression, isolated zoster paresis does not necessitate spinal tap or intravenous antiviral therapy.
Cancer cell: using inflammation to invade the host
Arias, José-Ignacio; Aller, María-Angeles; Arias, Jaime
2007-01-01
Background Inflammation is increasingly recognized as an important component of tumorigenesis, although the mechanisms involved are not fully characterized. The invasive capacity of cancers is reflected in the classic metastatic cascade: tumor (T), node (N) and metastasis (M). However, this staging system for cancer would also have a tumoral biological significance. Presentation of the hypothesis To integrate the mechanisms that control the inflammatory response in the actual staging system of cancer. It is considered that in both processes of inflammation and cancer, three successive phenotypes are presented that represent the expression of trophic functional systems of increasing metabolic complexity for using oxygen. Testing the hypothesis While a malignant tumor develops it express phenotypes that also share the inflammatory response such as: an ischemic phenotype (anoxic-hypoxic), a leukocytic phenotype with anaerobic glycolysis and migration, and an angiogenic phenotype with hyperactivity of glycolytic enzymes, tumor proliferation and metastasis, and cachexia of the host. The increasing metabolic complexity of the tumor cell to use oxygen allows for it to be released, migrate and proliferate, thus creating structures of growing complexity. Implication of the hypothesis One aim of cancer gene therapy could be the induction of oxidative phosphorylation, the last metabolic step required by inflammation in order to differentiate the tissue that it produces. PMID:17437633
Inflammatory bowel disease: cause and immunobiology.
Baumgart, Daniel C; Carding, Simon R
2007-05-12
Crohn's disease and ulcerative colitis are idiopathic inflammatory bowel disorders. In this paper, we discuss how environmental factors (eg, geography, cigarette smoking, sanitation and hygiene), infectious microbes, ethnic origin, genetic susceptibility, and a dysregulated immune system can result in mucosal inflammation. After describing the symbiotic interaction of the commensal microbiota with the host, oral tolerance, epithelial barrier function, antigen recognition, and immunoregulation by the innate and adaptive immune system, we examine the initiating and perpetuating events of mucosal inflammation. We pay special attention to pattern-recognition receptors, such as toll-like receptors and nucleotide-binding-oligomerisation-domains (NOD), NOD-like receptors and their mutual interaction on epithelial cells and antigen-presenting cells. We also discuss the important role of dendritic cells in directing tolerance and immunity by modulation of subpopulations of effector T cells, regulatory T cells, Th17 cells, natural killer T cells, natural killer cells, and monocyte-macrophages in mucosal inflammation. Implications for novel therapies, which are discussed in detail in the second paper in this Series, are covered briefly.
From endocrine to rheumatism: do gut hormones play roles in rheumatoid arthritis?
Chen, Chih-Yen; Tsai, Chang-Youh
2014-02-01
RA is characterized by chronic inflammation in the musculoskeletal system, in which TNF-α is the key cytokine trigger. TNF-α, previously known as cachectin, is implicated in the modulation of body composition and energy expenditure. Gut hormones, including acyl ghrelin, des-acyl ghrelin, GIP, GLP-1 and PYY, have been known to be the major regulators of appetite, nutrition, energy expenditure and body mass formation. Emerging evidence indicates that blockade of TNF-α by biologics not only ameliorates rheumatoid inflammation, but can affect the secretion and action of gut hormones on appetite, body composition, energy expenditure, muscle catabolism and bone remodelling. A link between the gastrointestinal endocrine axis and the immune system may be established through the interaction of proinflammatory cytokines, including TNF-α and these gut hormones. With the ever-increasing understanding of rheumatoid inflammation and the invention of more biologics to modulate the cytokine network, more attention should be given to the possible immunomodulatory roles of gut hormones in autoimmune inflammatory reactions.
Hysing, E-B; Smith, L; Thulin, M; Karlsten, R; Gordh, T
2017-12-29
Aims A few previous studies indicate an ongoing of low-grade systemic inflammation in chronic pain patients (CPP) [1, 2]. In the present study we investigated the plasma inflammatory profile in severely impaired chronic pain patients. In addition we studied if there were any alterations in inflammation patterns at one-year follow up, after the patients had taken part in a CBT-ACT based 4 weeks in-hospital pain rehabilitation program (PRP). Methods Blood samples were collected from 52 well characterized chronic pain patients. Plasma from matched healthy blood donors were used as controls. At one year after the treatment program, 28 of the patients were available for follow up. Instead of only analyzing single inflammation-related substances, we used a new multiplex panel enabling the simultaneous analysis of 92 inflammation-related proteins, mainly cytokines and chemokines (Proseek Inflammation, Olink, Uppsala, Sweden). Multivariate statistics were used for analysis. Results Clear signs of increased inflammatory activity were detected in the pain patients. Accepting a false discovery rate (FDR) of 5%, there were significant differences in 43 of the 92 inflammatory biomarkers. The expression of 8 biomarkers were 4 times higher in patients compared to controls. Three biomarkers, CXCL5, SIRT2, AXIN1 were more than 8 times higher. The conventional marker for inflammation, CRP, did not differ. Of the 28 patients available for follow up one year after the intervention, all showed lower levels of the inflammatory biomarker initially raised. Conclusions The results indicate that CPP suffer from a low grade of chronic systemic inflammation, not detectable by CRP analysis. This may have implications for the general pain hypersensitivity, and other symptoms, often described in this group of patients. We conclude that inflammatory plasma proteins may be measureable molecular markers to distinguishes CPP from pain free controls, and that a CBT-ACT pain rehab program seem to decrease this inflammatory activity.
Giles, James A; Greenhalgh, Andrew D; Davies, Claire L; Denes, Adam; Shaw, Tovah; Coutts, Graham; Rothwell, Nancy J; McColl, Barry W; Allan, Stuart M
2015-01-01
The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders. PMID:25367678
Zhou, Qin; Zhu, Hui; Niu, Wen-yan; Feng, Jing; Wang, Yan; Cao, Jie; Chen, Bao-yuan
2014-01-01
Objectives Intermittent hypoxia (IH), resulted from recurring episodes of upper airway obstruction, is the hallmark feature and the most important pathophysiologic pathway of obstructive sleep apnea (OSA). IH is believed to be the most important factor causing systemic inflammation. Studies suggest that insulin resistance (IR) is positively associated with OSA. In this study, we hypothesized that the recurrence of IH might result in cellular and systemic inflammation, which was manifested through the levels of proinflammatory cytokines and adipokines after IH exposure, and because IR is linked with inflammation tightly, this inflammatory situation may implicate an IR status. Methods We developed an IH 3T3-L1 adipocyte and rat model respectively, recapitulating the nocturnal oxygen profile in OSA. In IH cells, nuclear factor kappa B (NF-κB) DNA binding reactions, hypoxia-inducible factor-1α (HIF-1α), glucose transporter-1 (Glut-1), necrosis factor alpha (TNF-α), interleukin (IL) -6, leptin, adiponectin mRNA transcriptional activities and protein expressions were measured. In IH rats, blood glucose, insulin, TNF-α, IL-6, leptin and adiponectin levels were analyzed. Results The insulin and blood glucose levels in rats and NF-κB DNA binding activities in cells had significantly statistical results described as severe IH>moderate IH>mild IH>sustained hypoxia>control. The mRNA and protein levels of HIF-1α and Glut-1 in severe IH group were the highest. In cellular and animal models, both the mRNA and protein levels of TNF-α, IL-6 and leptin were the highest in severe IH group, when the lowest in severe IH group for adiponectin. Conclusions Oxidative stress and the release of pro-inflammatory cytokines/adipokines, which are the systemic inflammatory markers, are associated with IH closely and are proportional to the severity of IH. Because IR and glucose intolerance are linked with inflammation tightly, our results may implicate the clinical relationships between OSA and IR. PMID:24466027
Cigarette Smoke and Inflammation: Role in Cerebral Aneurysm Formation and Rupture
Chalouhi, Nohra; Ali, Muhammad S.; Starke, Robert M.; Jabbour, Pascal M.; Tjoumakaris, Stavropoula I.; Gonzalez, L. Fernando; Rosenwasser, Robert H.; Koch, Walter J.; Dumont, Aaron S.
2012-01-01
Smoking is an established risk factor for subarachnoid hemorrhage yet the underlying mechanisms are largely unknown. Recent data has implicated a role of inflammation in the development of cerebral aneurysms. Inflammation accompanying cigarette smoke exposure may thus be a critical pathway underlying the development, progression, and rupture of cerebral aneurysms. Various constituents of the inflammatory response appear to be involved including adhesion molecules, cytokines, reactive oxygen species, leukocytes, matrix metalloproteinases, and vascular smooth muscle cells. Characterization of the molecular basis of the inflammatory response accompanying cigarette smoke exposure will provide a rational approach for future targeted therapy. In this paper, we review the current body of knowledge implicating cigarette smoke-induced inflammation in cerebral aneurysm formation/rupture and attempt to highlight important avenues for future investigation. PMID:23316103
INTESTINAL ALKALINE PHOSPHATASE: A SUMMARY OF ITS ROLE IN CLINICAL DISEASE
Fawley, Jason; Gourlay, David
2016-01-01
Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP’s physiologic function, mechanisms of action and current research in specific surgical diseases. PMID:27083970
Elevated inflammatory biomarkers during unemployment: modification by age and country in the UK
Hughes, Amanda; McMunn, Anne; Bartley, Mel; Kumari, Meena
2015-01-01
Background There is raised risk of mortality following unemployment, and reviews have consistently found worse psychological health among the unemployed. Inflammation is increasingly implicated as a mediating factor relating stress to physical disease and is strongly linked to depression. Inflammation may, therefore, be implicated in processes associated with excess mortality and morbidity during unemployment. This study examined associations of unemployment with inflammatory markers among working-age men and women from England and Scotland. Methods Cross-sectional analyses using data from the Health Survey for England and the Scottish Health Survey collected between 1998 and 2010. Systemic inflammation was indexed by serum concentrations of C reactive protein (CRP) and fibrinogen, and compared between participants currently employed/self-employed, currently unemployed and other groups. Results CRP, fibrinogen and odds of CRP >3 mg/L were all significantly raised for the unemployed, as compared to the employed participants (eg, OR for CRP >3 mg/L=1.43, CI 1.15 to 1.78 N=23 025), following adjustment for age, gender, occupational social class, housing tenure, smoking, alcohol consumption, body mass index, long-term illness and depressive/anxiety symptoms. Strengths of associations varied considerably by both age and country/region, with effects mainly driven by participants aged ≥48 and participants from Scotland, which had comparatively high unemployment during this time. Conclusions Current unemployment is associated with elevated inflammatory markers using data from two large-scale, nationally representative UK studies. Effect modification by age suggests inflammation may be particularly involved in processes leading to ill-health among the older unemployed. Country/regional effects may suggest the relationship of unemployment with inflammation is strongly influenced by contextual factors, and/or reflect life course accumulation processes. PMID:25700535
Paouri, Evi; Tzara, Ourania; Kartalou, Georgia-Ioanna; Zenelak, Sofia; Georgopoulos, Spiros
2017-05-17
Increasing evidence has suggested that systemic inflammation along with local brain inflammation can play a significant role in Alzheimer's disease (AD) pathogenesis. Identifying key molecules that regulate the crosstalk between the immune and the CNS can provide potential therapeutic targets. TNF-α is a proinflammatory cytokine implicated in the pathogenesis of systemic inflammatory and neurodegenerative diseases, such as rheumatoid arthritis (RA) and AD. Recent studies have reported that anti-TNF-α therapy or RA itself can modulate AD pathology, although the underlying mechanism is unclear. To investigate the role of peripheral TNF-α as a mediator of RA in the pathogenesis of AD, we generated double-transgenic 5XFAD/Tg197 AD/TNF mice that develop amyloid deposits and inflammatory arthritis induced by human TNF-α (huTNF-α) expression. We found that 5XFAD/Tg197 mice display decreased amyloid deposition, compromised neuronal integrity, and robust brain inflammation characterized by extensive gliosis and elevated blood-derived immune cell populations, including phagocytic macrophages and microglia. To evaluate the contribution of peripheral huTNF-α in the observed brain phenotype, we treated 5XFAD/Tg197 mice systemically with infliximab, an anti-huTNF-α antibody that does not penetrate the blood-brain barrier and prevents arthritis. Peripheral inhibition of huTNF-α increases amyloid deposition, rescues neuronal impairment, and suppresses gliosis and recruitment of blood-derived immune cells, without affecting brain huTNF-α levels. Our data report, for the first time, a distinctive role for peripheral TNF-α in the modulation of the amyloid phenotype in mice by regulating blood-derived and local brain inflammatory cell populations involved in β-amyloid clearance. SIGNIFICANCE STATEMENT Mounting evidence supports the active involvement of systemic inflammation, in addition to local brain inflammation, in Alzheimer's disease (AD) progression. TNF-α is a pluripotent cytokine that has been independently involved in the pathogenesis of systemic inflammatory rheumatoid arthritis (RA) and AD. Here we first demonstrate that manipulation of peripheral TNF-α in the context of arthritis modulates the amyloid phenotype by regulating immune cell trafficking in the mouse brain. Our study suggests that additionally to its local actions in the AD brain, TNF-α can also indirectly modulate amyloid pathology as a regulator of peripheral inflammation. Our findings may have significant implications in the treatment of RA patients with anti-TNF-α drugs and in the potential use of TNF-targeted therapies for AD. Copyright © 2017 the authors 0270-6474/17/375155-17$15.00/0.
Heisler, Jillian M.; O’Connor, Jason C.
2015-01-01
Cognitive dysfunction in depression is a prevalent and debilitating symptom that is poorly treated by the currently available pharmacotherapies. Research over the past decade has provided evidence for proinflammatory involvement in the neurobiology of depressive disorders and symptoms associated with these disorders, including aspects of memory dysfunction. Recent clinical studies implicate inflammation-related changes in kynurenine metabolism as a potential pathogenic factor in the development of a range of depressive symptoms, including deficits in cognition and memory. Additionally, preclinical work has demonstrated a number of mood-related depressive-like behaviors to be dependent on indoleamine 2,3-dioxygenase-1 (IDO1), the inflammation-induced rate-limiting enzyme of the kynurenine pathway. Here, we demonstrate in a mouse model, that peripheral administration of endotoxin induced a deficit in recognition memory. Mice deficient in IDO were protected from cognitive impairment. Furthermore, endotoxin-induced inflammation increased kynurenine metabolism within the perirhinal/entorhinal cortices, brain regions which have been implicated in recognition memory. A single peripheral injection of kynurenine, the metabolic product of IDO1, was sufficient to induce a deficit in recognition memory in both control and IDO null mice. Finally, kynurenine monooxygenase (KMO) deficient mice were also protected from inflammation-induced deficits on novel object recognition. These data implicate IDO-dependent neurotoxic kynurenine metabolism as a pathogenic factor for cognitive dysfunction in inflammation-induced depressive disorders and a potential novel target for the treatment of these disorders. PMID:26130057
Inflammation-Related Effects of Diesel Engine Exhaust Particles: Studies on Lung Cells In Vitro
Schwarze, P. E.; Totlandsdal, A. I.; Låg, M.; Refsnes, M.; Holme, J. A.; Øvrevik, J.
2013-01-01
Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers. PMID:23509760
Myasoedova, Elena
2017-05-01
To highlight recently published studies addressing lipid changes with disease-modifying antirheumatic drug use and outline implications on cardiovascular outcomes in rheumatoid arthritis (RA). Growing evidence suggests lower lipid levels are present in patients with active RA vs. general population, and significant modifications of lipid profile with inflammation suppression. Increase in lipid levels in patients with RA on synthetic and biological disease-modifying antirheumatic drugs may be accompanied by antiatherogenic changes in lipid composition and function. The impact of lipid changes on cardiovascular outcomes in RA is a subject of active research. The role of lipids in cardiovascular risk in RA may be overpowered by the benefits of inflammation suppression with antirheumatic medication use. Recommendations on lipid management in RA are evolving but uncertainty exists regarding frequency of lipid testing and goals of treatment. Knowledge about quantitative and qualitative lipid changes in RA is expanding. The relative role of lipids in cardiovascular risk in the context of systemic inflammation and antirheumatic therapy remains uncertain, delaying development of effective strategies for cardiovascular risk management in RA. Studies are underway to address these knowledge gaps and may be expected to inform cardiovascular risk management in RA and the general population.
Razawy, Wida; van Driel, Marjolein; Lubberts, Erik
2018-02-01
The IL-23/Th17 axis has been implicated in the development of autoimmune diseases, such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heterogeneous diseases with substantial burden on patients. Increasing evidence suggests that the IL-23 signaling pathway may be involved in the development of autoimmunity and erosive joint damage. IL-23 can act either directly or indirectly on bone forming osteoblasts as well as on bone resorbing osteoclasts. As IL-23 regulates the activity of cells of the bone, it is conceivable that in addition to inflammation-mediated joint erosion, IL-23 may play a role in physiological bone remodeling. In this review, we focus on the role of IL-23 in autoimmune arthritis in patients and murine models, and provide an overview of IL-23 producing and responding cells in autoimmune arthritic joints. In addition, we discuss the role of IL-23 on bone forming osteoblasts and bone resorbing osteoclasts regarding inflammation-mediated joint damage and bone remodeling. At last, we briefly discuss the clinical implications of targeting this pathway for joint damage and systemic bone loss in autoimmune arthritis. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The adipocyte fatty acid–binding protein aP2 is required in allergic airway inflammation
Shum, Bennett O.V.; Mackay, Charles R.; Gorgun, Cem Z.; Frost, Melinda J.; Kumar, Rakesh K.; Hotamisligil, Gökhan S.; Rolph, Michael S.
2006-01-01
The adipocyte fatty acid–binding protein aP2 regulates systemic glucose and lipid metabolism. We report that aP2, in addition to being abundantly expressed by adipocytes, is also expressed by human airway epithelial cells and shows a striking upregulation following stimulation of epithelial cells with the Th2 cytokines IL-4 and IL-13. Regulation of aP2 mRNA expression by Th2 cytokines was highly dependent on STAT6, a transcription factor with a major regulatory role in allergic inflammation. We examined aP2-deficient mice in a model of allergic airway inflammation and found that infiltration of leukocytes, especially eosinophils, into the airways was highly dependent on aP2 function. T cell priming was unaffected by aP2 deficiency, suggesting that aP2 was acting locally within the lung, and analysis of bone marrow chimeras implicated non-hematopoietic cells, most likely bronchial epithelial cells, as the site of action of aP2 in allergic airway inflammation. Thus, aP2 regulates allergic airway inflammation and may provide a link between fatty acid metabolism and asthma. PMID:16841093
Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer
Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros
2014-01-01
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer. PMID:24409421
Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A
2016-01-01
A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions.
Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer.
Wang, Lihui; Kounatidis, Ilias; Ligoxygakis, Petros
2014-01-09
Drosophila has a primitive yet effective blood system with three types of haemocytes which function throughout different developmental stages and environmental stimuli. Haemocytes play essential roles in tissue modeling during embryogenesis and morphogenesis, and also in innate immunity. The open circulatory system of Drosophila makes haemocytes ideal signal mediators to cells and tissues in response to events such as infection and wounding. The application of recently developed and sophisticated genetic tools to the relatively simple genome of Drosophila has made the fly a popular system for modeling human tumorigensis and metastasis. Drosophila is now used for screening and investigation of genes implicated in human leukemia and also in modeling development of solid tumors. This second line of research offers promising opportunities to determine the seemingly conflicting roles of blood cells in tumor progression and invasion. This review provides an overview of the signaling pathways conserved in Drosophila during haematopoiesis, haemostasis, innate immunity, wound healing and inflammation. We also review the most recent progress in the use of Drosophila as a cancer research model with an emphasis on the roles haemocytes can play in various cancer models and in the links between inflammation and cancer.
Inflammation and immunity in organ regeneration.
Mescher, Anthony L; Neff, Anton W; King, Michael W
2017-01-01
The ability of vertebrates to regenerate amputated appendages is increasingly well-understood at the cellular level. Cells mediating an innate immune response and inflammation in the injured tissues are a prominent feature of the limb prior to formation of a regeneration blastema, with macrophage activity necessary for blastema growth and successful development of the new limb. Studies involving either anti-inflammatory or pro-inflammatory agents suggest that the local inflammation produced by injury and its timely resolution are both important for regeneration, with blastema patterning inhibited in the presence of unresolved inflammation. Various experiments with Xenopus larvae at stages where regenerative competence is declining show improved digit formation after treatment with certain immunosuppressive, anti-inflammatory, or antioxidant agents. Similar work with the larval Xenopus tail has implicated adaptive immunity with regenerative competence and suggests a requirement for regulatory T cells in regeneration, which also occurs in many systems of tissue regeneration. Recent analyses of the human nail organ indicate a capacity for local immune tolerance, suggesting roles for adaptive immunity in the capacity for mammalian appendage regeneration. New information and better understanding regarding the neuroendocrine-immune axis in the response to stressors, including amputation, suggest additional approaches useful for investigating effects of the immune system during repair and regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.
Inflammation in aging part 1: physiology and immunological mechanisms.
Hunt, Katherine J; Walsh, Bronagh M; Voegeli, David; Roberts, Helen C
2010-01-01
During the aging process, remodeling of several body systems occurs, and these changes can have a startling effect upon the immune system. The reduction in sex steroids and growth hormones and declines in vitamin D concentration that accompany the aging process are associated with increases in the baseline levels of inflammatory proteins. At the same time, inflammation arising from atherosclerosis and other chronic diseases further contributes to the inflammatory milieu and effects a state of chronic inflammation. This chronic inflammation, or ''inflammaging'' as it has been termed, seems to be associated with a host of adverse effects contributing to many of the health problems that increase morbidity and decrease both quality of life and the ability to maintain independence in old age. For nurses to be truly informed when caring for older people and to ensure that they have a detailed understanding of the complexities of older people's health needs, they must have a knowledge of the physiological and immunological changes with age. This is the first of a two-part article on inflammatory processes in aging. These age-related changes are presented here, including an examination of the impact of genetic and lifestyle factors. The effect of these changes on the health of the individual and implications for practice are described in Part 2.
Dumnicka, Paulina; Maduzia, Dawid; Ceranowicz, Piotr; Olszanecki, Rafał; Drożdż, Ryszard; Kuśnierz-Cabala, Beata
2017-01-01
Acute pancreatitis (AP) is an inflammatory disease with varied severity, ranging from mild local inflammation to severe systemic involvement resulting in substantial mortality. Early pathologic events in AP, both local and systemic, are associated with vascular derangements, including endothelial activation and injury, dysregulation of vasomotor tone, increased vascular permeability, increased leukocyte migration to tissues, and activation of coagulation. The purpose of the review was to summarize current evidence regarding the interplay between inflammation, coagulation and endothelial dysfunction in the early phase of AP. Practical aspects were emphasized: (1) we summarized available data on diagnostic usefulness of the markers of endothelial dysfunction and activated coagulation in early prediction of severe AP; (2) we reviewed in detail the results of experimental studies and clinical trials targeting coagulation-inflammation interactions in severe AP. Among laboratory tests, d-dimer and angiopoietin-2 measurements seem the most useful in early prediction of severe AP. Although most clinical trials evaluating anticoagulants in treatment of severe AP did not show benefits, they also did not show significantly increased bleeding risk. Promising results of human trials were published for low molecular weight heparin treatment. Several anticoagulants that proved beneficial in animal experiments are thus worth testing in patients. PMID:28208708
Harrison, Neil A.; Cooper, Ella; Voon, Valerie; Miles, Ken; Critchley, Hugo D.
2013-01-01
Inflammation is a risk factor for both depression and cardiovascular disease. Depressed mood is also a cardiovascular risk factor. To date, research into mechanisms through which inflammation impacts cardiovascular health rarely takes into account central effects on autonomic cardiovascular control, instead emphasizing direct effects of peripheral inflammatory responses on endothelial reactivity and myocardial function. However, brain responses to inflammation engage neural systems for motivational and homeostatic control and are expressed through depressed mood state and changes in autonomic cardiovascular regulation. Here we combined an inflammatory challenge, known to evoke an acute reduction in mood, with neuroimaging to identify the functional brain substrates underlying potentially detrimental changes in autonomic cardiovascular control. We first demonstrated that alterations in the balance of low to high frequency (LF/HF) changes in heart rate variability (a measure of baroreflex sensitivity) could account for some of the inflammation-evoked changes in diastolic blood pressure, indicating a central (rather than solely local endothelial) origin. Accompanying alterations in regional brain metabolism (measured using 18FDG-PET) were analysed to localise central mechanisms of inflammation-induced changes in cardiovascular state: three discrete regions previously implicated in stressor-evoked blood pressure reactivity, the dorsal anterior and posterior cingulate and pons, strongly mediated the relationship between inflammation and blood pressure. Moreover, activity changes within each region predicted the inflammation-induced shift in LF/HF balance. These data are consistent with a centrally-driven component originating within brain areas supporting stressor evoked blood pressure reactivity. Together our findings highlight mechanisms binding psychological and physiological well-being and their perturbation by peripheral inflammation. PMID:23416033
Rudolph, Marc D; Graham, Alice M; Feczko, Eric; Miranda-Dominguez, Oscar; Rasmussen, Jerod M; Nardos, Rahel; Entringer, Sonja; Wadhwa, Pathik D; Buss, Claudia; Fair, Damien A
2018-05-01
Several lines of evidence support the link between maternal inflammation during pregnancy and increased likelihood of neurodevelopmental and psychiatric disorders in offspring. This longitudinal study seeks to advance understanding regarding implications of systemic maternal inflammation during pregnancy, indexed by plasma interleukin-6 (IL-6) concentrations, for large-scale brain system development and emerging executive function skills in offspring. We assessed maternal IL-6 during pregnancy, functional magnetic resonance imaging acquired in neonates, and working memory (an important component of executive function) at 2 years of age. Functional connectivity within and between multiple neonatal brain networks can be modeled to estimate maternal IL-6 concentrations during pregnancy. Brain regions heavily weighted in these models overlap substantially with those supporting working memory in a large meta-analysis. Maternal IL-6 also directly accounts for a portion of the variance of working memory at 2 years of age. Findings highlight the association of maternal inflammation during pregnancy with the developing functional architecture of the brain and emerging executive function.
Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis
Martinez-Outschoorn, Ubaldo E; Lin, Zhao; Pavlides, Stephanos; Whitaker-Menezes, Diana; Pestell, Richard G; Howell, Anthony
2011-01-01
In 1889, Dr. Stephen Paget proposed the “seed and soil” hypothesis, which states that cancer cells (the seeds) need the proper microenvironment (the soil) for them to grow, spread and metastasize systemically. In this hypothesis, Dr. Paget rightfully recognized that the tumor microenvironment has an important role to play in cancer progression and metastasis. In this regard, a series of recent studies have elegantly shown that the production of hydrogen peroxide, by both cancer cells and cancer-associated fibroblasts, may provide the necessary “fertilizer,” by driving accelerated aging, DNA damage, inflammation and cancer metabolism, in the tumor microenvironment. By secreting hydrogen peroxide, cancer cells and fibroblasts are mimicking the behavior of immune cells (macrophages/neutrophils), driving local and systemic inflammation, via the innate immune response (NFκB). Thus, we should consider using various therapeutic strategies (such as catalase and/or other antioxidants) to neutralize the production of cancer-associated hydrogen peroxide, thereby preventing tumor-stroma co-evolution and metastasis. The implications of these findings for overcoming chemo-resistance in cancer cells are also discussed in the context of hydrogen peroxide production and cancer metabolism. PMID:21734470
Parkinson's disease and periodontitis - the missing link? A review.
Kaur, Tejaswani; Uppoor, Ashita; Naik, Dilip
2016-12-01
In this article an attempt has been made to postulate a possible link between Parkinson's disease and periodontal disease. Various systemic diseases such as cardiac disease, diabetes, renal diseases, low birth weight and Alzheimer's disease have been proposed to be linked with periodontal disease on the basis of systemic inflammation. Parkinson's disease is a chronic progressive neurodegenerative disorder with multifactorial aetiology. Until now, periodontal disease and Parkinson's disease has been linked only on the basis of poor motor and cognitive control in Parkinson's patient which leads to poor oral health maintenance. Evidence now suggests that chronic neuroinflammation is consistently associated with the pathophysiology of Parkinson's disease. Also, recently, systemic inflammation has been suggested as one of the contributing factors for neurodegeneration. Dental and medical literature especially those dealing with neurosciences were selected which highlighted the link between systemic inflammation and infection. So far there is no direct evidence implicating an effect of periodontitis in the pathogenesis of Parkinson's disease. To clarify this link, studies on population based case-control or cohort design are needed. This would be especially significant in the present era where there is paucity for preventive measures as far as a cognitive disorder such as Parkinson's disease is concerned. We cannot cure Parkinson's disease, but if in future this missing link is established, an attempt can be made to prevent it by tackling one of its possible contributors (periodontitis) for systemic inflammation by simple preventive oral hygiene measures. © 2015 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley & Sons Ltd.
Clinical evidence of inflammation driving secondary brain injury: A systematic review
Hinson, Holly E.; Rowell, Susan; Schreiber, Martin
2015-01-01
Background Despite advances in both prevention and treatment, traumatic brain injury (TBI) remains one of the most burdensome diseases; 2% of the US population currently lives with disabilities resulting from TBI. Recent advances in the understanding of inflammation and its impact on the pathophysiology of trauma have increased the interest in inflammation as a possible mediator in TBI outcome. Objectives The goal of this systematic review is to address the question: “What is the evidence in humans that inflammation is linked to secondary brain injury?” As the experimental evidence has been well described elsewhere, this review will focus on the clinical evidence for inflammation as a mechanism of secondary brain injury. Data Sources Medline database (1996-Week 1 June 2014), Pubmed and Google Scholar databases were queried for relevant studies. Study Eligibility Criteria Studies were eligible if participants were adults and/or children who sustained moderate or severe TBI in the acute phase of injury, published in English. Studies published in the last decade (since 2004) were preferentially included. Trials could be observational or interventional in nature. Appraisal and Synthesis Methods To address the quality of the studies retrieved, we applied the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) criteria to assess the limitations of the included studies. Results Trauma initiates local central nervous system as well as systemic immune activation. Numerous observational studies describe elevation of pro-inflammatory cytokines that are associated with important clinical variables including neurologic outcome and mortality. A small number of clinical trials have included immunomodulating strategies, but no intervention to date has proven effective in improving outcomes after TBI. Limitations Inclusion of studies not initially retrieved by the search terms may have biased our results. Additionally, some reports may have been inadvertently excluded due to use of non-search term key words. Conclusions and Implications of Key Findings Clinical evidence of inflammation causing secondary brain injury in humans is gaining momentum. While inflammation is certainly present, it is not clear from the literature at what juncture inflammation becomes maladaptive, promoting secondary injury rather than facilitating repairand identifying patients with maladaptive inflammation (neuro-inflammation, systemic, or both) after TBI remains elusive. Direct agonism/antagonism represents an exciting target for future study. Level of Evidence Systematic review, level III. PMID:25539220
Intestinal alkaline phosphatase: a summary of its role in clinical disease.
Fawley, Jason; Gourlay, David M
2016-05-01
Over the past few years, there is increasing evidence implicating a novel role for Intestinal Alkaline Phosphatase (IAP) in mitigating inflammatory mediated disorders. IAP is an endogenous protein expressed by the intestinal epithelium that is believed to play a vital role in maintaining gut homeostasis. Loss of IAP expression or function is associated with increased intestinal inflammation, dysbiosis, bacterial translocation and subsequently systemic inflammation. As these events are a cornerstone of the pathophysiology of many diseases relevant to surgeons, we sought to review recent research in both animal and humans on IAP's physiologic function, mechanisms of action and current research in specific surgical diseases. Copyright © 2016 Elsevier Inc. All rights reserved.
Giles, James A; Greenhalgh, Andrew D; Davies, Claire L; Denes, Adam; Shaw, Tovah; Coutts, Graham; Rothwell, Nancy J; McColl, Barry W; Allan, Stuart M
2015-02-01
The immune system is implicated in a wide range of disorders affecting the brain and is, therefore, an attractive target for therapy. Interleukin-1 (IL-1) is a potent regulator of the innate immune system important for host defense but is also associated with injury and disease in the brain. Here, we show that IL-1 is a key mediator driving an innate immune response to inflammatory challenge in the mouse brain but is dispensable in extracerebral tissues including the lung and peritoneum. We also demonstrate that IL-1α is an important ligand contributing to the CNS dependence on IL-1 and that IL-1 derived from the CNS compartment (most likely microglia) is the major source driving this effect. These data reveal previously unknown tissue-specific requirements for IL-1 in driving innate immunity and suggest that IL-1-mediated inflammation in the brain could be selectively targeted without compromising systemic innate immune responses that are important for resistance to infection. This property could be exploited to mitigate injury- and disease-associated inflammation in the brain without increasing susceptibility to systemic infection, an important complication in several neurological disorders. © 2014 The Authors. European Journal of Immunology published by Wiley-VCH Verlag GmbH & Co. KGaA Weinheim.
Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease
Horseman, Michael A.; Surani, Salim; Bowman, John D.
2017-01-01
Background: Endotoxin is a lipopolysaccharide (LPS) constituent of the outer membrane of most gram negative bacteria. Ubiquitous in the environment, it has been implicated as a cause or con-tributing factor in several disparate disorders from sepsis to heatstroke and Type II diabetes mellitus. Starting at birth, the innate immune system develops cellular defense mechanisms against environmen-tal microbes that are in part modulated through a series of receptors known as toll-like receptors. Endo-toxin, often referred to as LPS, binds to toll-like receptor 4 (TLR4)/ myeloid differentiation protein 2 (MD2) complexes on various tissues including cells of the innate immune system, smooth muscle and endothelial cells of blood vessels including coronary arteries, and adipose tissue. Entry of LPS into the systemic circulation ultimately leads to intracellular transcription of several inflammatory mediators. The subsequent inflammation has been implicated in the development and progression atherosclerosis and subsequent coronary artery disease and heart failure. Objective: The potential roles of endotoxin and TLR4 are reviewed regarding their role in the pathogen-esis of atherosclerotic heart disease. Conclusion: Atherosclerosis is initiated by inflammation in arterial endothelial and subendothelial cells, and inflammatory processes are implicated in its progression to clinical heart disease. Endotoxin and TLR4 play a central role in the inflammatory process, and represent potential targets for therapeutic intervention. Therapy with HMG-CoA inhibitors may reduce the expression of TLR4 on monocytes. Other therapeutic interventions targeting TLR4 expression or function may prove beneficial in athero-sclerotic disease prevention and treatment.
The Role of Magnesium Deficiency in Cardiovascular and Intestinal Inflammation
Weglicki, William B.; Mak, Iu Tong; Chmielinska, Joanna J.; Tejero-Taldo, Maria Isabel; Komarov, Andrei; Kramer, Jay H.
2013-01-01
Hypomagnesemia continues to cause difficult clinical problems, such as significant cardiac arrhythmias where intravenous magnesium therapy can be lifesaving. Nutritional deficiency of magnesium may present with some subtle symptoms such as leg cramps and occasional palpitation. We have investigated dietary-induced magnesium deficiency in rodent models to assess the pathobiology associated with prolonged hypomagnesemia. We found that neuronal sources of the neuropeptide, substance P (SP), contributed to very early prooxidant/proinflammatory changes during Mg deficiency. This neurogenic inflammation is systemic in nature, affecting blood cells, cardiovascular, intestinal, and other tissues, leading to impaired cardiac contractility similar to that seen in patients with heart failure. We have used drugs that block the release of SP from neurons and SP-receptor blockers to prevent some of these pathobiological changes; whereas, blocking SP catabolism enhances inflammation. Our findings emphasize the essential role of this cation in preventing cardiomyopathic changes and intestinal inflammation in a well-studied animal model, and also implicate the need for more appreciation of the potential clinical relevance of optimal magnesium nutrition and therapy. PMID:20971697
Meconium Aspiration Syndrome: A Role for Fetal Systemic Inflammation
LEE, JoonHo; ROMERO, Roberto; LEE, Kyung A; KIM, Eun Na; KORZENIEWSKI, Steven J; CHAEMSAITHONG, Piya; YOON, Bo Hyun
2017-01-01
Background Meconium aspiration syndrome (MAS) is a leading cause of morbidity and mortality in term infants. Meconium-stained amniotic fluid (MSAF) occurs in approximately one of every seven pregnancies, but only 5% of neonates exposed to MSAF develop MAS. Why some infants exposed to meconium develop MAS while others do not is a fundamental question. Patients with MSAF have a higher frequency of intra-amniotic infection/inflammation than those with clear fluid. We propose that fetal systemic inflammation is a risk factor for the development of MAS in patients with MSAF. Objective To investigate whether intra-amniotic inflammation and funisitis, the histopathologic landmark of a fetal inflammatory response, predispose to MAS. Study Design A prospective cohort study was conducted from 1995 through 2009. Amniotic fluid (AF) samples (n=1,281) were collected at the time of cesarean delivery from women who delivered singleton newborns at term (gestational age ≥38 weeks). Intra-amniotic inflammation was diagnosed if the AF concentration of matrix metalloproteinase-8 (MMP-8) was >23 ng/ml. Funisitis was diagnosed by histologic examination if inflammation was present in the umbilical cord. Results The prevalence of MSAF was 9.2% (118/1,281), and 10.2% (12/118) of neonates exposed to MSAF developed MAS. There were no significant differences in the median gestational age or umbilical cord arterial pH at birth between neonates who developed MAS and those who did not (each p > 0.1). Mothers whose newborns developed MAS had a higher median AF MMP-8 (456.8 ng/ml vs.157.2 ng/ml; p < 0.05). Newborns exposed to intra-amniotic inflammation had a higher rate of MAS than those who were not exposed to intra-amniotic inflammation [13.0% (10/77) vs. 0% (0/32), p = 0.03], as did those exposed to funisitis [31.3% (5/16) vs. 7.3% (6/82), relative risk, 4.3; 95% confidence interval, 1.5–12.3]. Among the 89 newborns for whom both AF and placental histology were available, MAS was more common in patients with both intra-amniotic inflammation and funisitis than in those without intra-amniotic inflammation and funisitis [28.6% (4/14) vs. 0% (0/28), p = 0.009], while the rate of MAS did not show a significant difference between patients with intra-amniotic inflammation alone (without funisitis) and those without intra-amniotic inflammation and funisitis [10.9% (5/46) vs. 0% (0/28)]. Conclusion The combination of intra-amniotic inflammation with fetal systemic inflammation is an important antecedent of MAS. This concept has implications for the understanding of the mechanisms of disease responsible for MAS and for the development of prognostic models and therapeutic interventions for this disorder. PMID:26484777
Is inflammation the cause of pre-eclampsia?
Ramma, Wenda; Ahmed, Asif
2011-01-01
It has been proposed that either excessive inflammation or an imbalance in angiogenic factors cause pre-eclampsia. In the present review, the arguments for and against the role of inflammation and/or angiogenic imbalance as the cause of pre-eclampsia are discussed on the basis of the Bradford–Hill criteria for disease causation. Although both angiogenic imbalance and systemic inflammation are implicated in pre-eclampsia, the absence of temporality of inflammatory markers with pre-eclampsia challenges the concept that excessive inflammation is the cause of pre-eclampsia. In contrast, the elevation of anti-angiogenic factors that precede the clinical signs of pre-eclampsia fulfils the criterion of temporality. The second most important criterion is the dose–response relationship. Although such a relationship has not been proven between pro-inflammatory cytokines and pre-eclampsia, high levels of anti-angiogenic factors have been shown to correlate with increased incidence and disease severity, hence satisfying this condition. Finally, as the removal of circulating sFlt-1 (soluble Fms-like tyrosine kinase receptor-1) from pre-eclamptic patients significantly improves the clinical outcome, it fulfils the Hill's experiment principle, which states that removal of the cause by an appropriate experimental regimen should ameliorate the condition. In contrast, treatment with high doses of corticosteroid fails to improve maternal outcome in pre-eclampsia, despite suppressing inflammation. Inflammation may enhance the pathology induced by the imbalance in the angiogenic factors, but does not by itself cause pre-eclampsia. Development of therapies based on the angiogenic and cytoprotective mechanisms seems more promising. PMID:22103497
Lopresti, Adrian L
2017-06-01
There is growing evidence confirming increased inflammation in a subset of adults with depression. The impact of this relationship has mostly been considered in biologically based interventions; however, it also has potential implications for psychological therapies. Cognitive behaviour therapy is the most commonly used psychological intervention for the treatment of depression with theories around its efficacy primarily based on psychological mechanisms. However, cognitive behaviour therapy may have an effect on, and its efficacy influenced by, physiological processes associated with depression. Accordingly, the purpose of this systematic review was to examine the relationship between cognitive behaviour therapy and inflammation. Studies examining the anti-inflammatory effects of cognitive behaviour therapy in people with depression and other medical conditions (e.g. cancer, diabetes and heart disease) were examined. In addition, the relationship between change in inflammatory markers and change in depressive symptoms following cognitive behaviour therapy, and the influence of pre-treatment inflammation on cognitive behaviour therapy treatment response were reviewed. A total of 23 studies investigating the anti-inflammatory effects of cognitive behaviour therapy were identified. In 14 of these studies, at least one reduction in an inflammatory marker was reported, increases were identified in three studies and no change was found in six studies. Three studies examined the relationship between change in inflammation and change in depressive symptoms following cognitive behaviour therapy. In two of these studies, change in depressive symptoms was associated with a change in at least one inflammatory marker. Finally, three studies examined the influence of pre-treatment inflammation on treatment outcome from cognitive behaviour therapy, and all indicated a poorer treatment response in people with higher premorbid inflammation. Preliminary evidence suggests inflammation should be considered within the context of cognitive behaviour therapy, although robust studies examining the relationship are sparse, and heterogeneity between studies and populations examined was high. The potential treatment implications of the bi-directional relationship between inflammation and cognitive behaviour therapy are discussed, and recommendations for future research are proposed.
Modulating inflammation through the negative regulation of NF-κB signaling.
Rothschild, Daniel E; McDaniel, Dylan K; Ringel-Scaia, Veronica M; Allen, Irving C
2018-02-01
Immune system activation is essential to thwart the invasion of pathogens and respond appropriately to tissue damage. However, uncontrolled inflammation can result in extensive collateral damage underlying a diverse range of auto-inflammatory, hyper-inflammatory, and neoplastic diseases. The NF-κB signaling pathway lies at the heart of the immune system and functions as a master regulator of gene transcription. Thus, this signaling cascade is heavily targeted by mechanisms designed to attenuate overzealous inflammation and promote resolution. Mechanisms associated with the negative regulation of NF-κB signaling are currently under intense investigation and have yet to be fully elucidated. Here, we provide an overview of mechanisms that negatively regulate NF-κB signaling through either attenuation of signal transduction, inhibition of posttranscriptional signaling, or interference with posttranslational modifications of key pathway components. While the regulators discussed for each group are far from comprehensive, they exemplify common mechanistic approaches that inhibit this critical biochemical signaling cascade. Despite their diversity, a commonality among these regulators is their selection of specific targets at key inflection points in the pathway, such as TNF-receptor-associated factor family members or essential kinases. A better understanding of these negative regulatory mechanisms will be essential to gain greater insight related to the maintenance of immune system homeostasis and inflammation resolution. These processes are vital elements of disease pathology and have important implications for targeted therapeutic strategies. ©2018 Society for Leukocyte Biology.
Splanchnic-aortic inflammatory axis in experimental portal hypertension
Aller, Maria-Angeles; de las Heras, Natalia; Nava, Maria-Paz; Regadera, Javier; Arias, Jaime; Lahera, Vicente
2013-01-01
Splanchnic and systemic low-grade inflammation has been proposed to be a consequence of long-term prehepatic portal hypertension. This experimental model causes minimal alternations in the liver, thus making a more selective study possible for the pathological changes characteristic of prehepatic portal hypertension. Low-grade splanchnic inflammation after long-term triple partial portal vein ligation could be associated with liver steatosis and portal hypertensive intestinal vasculopathy. In fact, we have previously shown that prehepatic portal hypertension in the rat induces liver steatosis and changes in lipid and carbohydrate metabolism similar to those produced in chronic inflammatory conditions described in metabolic syndrome in humans. Dysbiosis and bacterial translocation in this experimental model suggest the existence of a portal hypertensive intestinal microbiome implicated in both the splanchnic and systemic alterations related to prehepatic portal hypertension. Among the systemic impairments, aortopathy characterized by oxidative stress, increased levels of proinflammatory cytokines and profibrogenic mediators stand out. In this experimental model of long-term triple portal vein ligated-rats, the abdominal aortic proinflammatory response could be attributed to oxidative stress. Thus, the increased aortic reduced-nicotinamide-adenine dinucleotide phosphate [NAD(P)H] oxidase activity could be associated with reactive oxygen species production and promote aortic inflammation. Also, oxidative stress mediated by NAD(P)H oxidase has been associated with risk factors for inflammation and atherosclerosis. The splanchnic and systemic pathology that is produced in the long term after triple partial portal vein ligation in the rat reinforces the validity of this experimental model to study the chronic low-grade inflammatory response induced by prehepatic portal hypertension. PMID:24307792
Diet Bioactive Compounds: Implications for Oxidative Stress and Inflammation in the Vascular System.
Gabriele, Morena; Pucci, Laura
2017-11-16
Increasing evidence has demonstrated that dietary products and their active components are independently or jointly responsible for the apparent reduction of the cardiovascular diseases (CVDs) risk. Nowadays, there is a growing attention in the use of nutraceuticals as a new approach for the prevention and management of many diseases, as well as for controlling rising of chronic illnesses with minimal side effects. Food-derived peptides, as well as peptide-rich protein hydrolysates, represent new and valuable tools for the prevention of metabolic and cardiovascular diseases, acting as modulators of oxidative stress, inflammation, and overactivity of the renin-angiotensin system (RAS). This review summarizes the recently published data on antioxidant, anti-inflammatory, and vascular protective properties of nutraceuticals, notably on the effects of food-derived bioactive peptides and protein hydrolysates, paying particular attention to those derived from fermented foods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Szymanski, Ann Marie; Ombrello, Michael J
2018-04-25
The intersection of granulomatosis and autoinflammatory disease is a rare occurrence that can be generally subdivided into purely granulomatous phenotypes and disease spectra that are inclusive of granulomatous features. NOD2 (nucleotide-binding oligomerization domain-containing protein 2)-related disease, which includes Blau syndrome and early-onset sarcoidosis, is the prototypic example of granulomatous inflammation in the context of monogenic autoinflammation. Granulomatous inflammation has also been observed in two related autoinflammatory diseases caused by mutations in PLCG2 (phospholipase Cγ2). More recently, mutations in LACC1 (laccase domain-containing protein 1) have been identified as the cause of a monogenic form of systemic juvenile idiopathic arthritis, which does not itself manifest granulomatous inflammation, but the same LACC1 mutations have also been shown to cause an early-onset, familial form of a well-known granulomatous condition, Crohn's disease (CD). Rare genetic variants of PLCG2 have also been shown to cause a monogenic form of CD, and moreover common variants of all three of these genes have been implicated in polygenic forms of CD. Additionally, common variants of NOD2 and LACC1 have been implicated in susceptibility to leprosy, a granulomatous infection. Although no specific mechanistic link exists between these three genes, they form an intriguing web of susceptibility to both monogenic and polygenic autoinflammatory and granulomatous phenotypes.
Macrophages – Key Cells in the Response to Wear Debris from Joint Replacements
Nich, Christophe; Takakubo, Yuya; Pajarinen, Jukka; Ainola, Mari; Salem, Abdelhakim; Sillat, Tarvo; Rao, Allison J.; Raska, Milan; Tamaki, Yasunobu; Takagi, Michiaki; Konttinen, Yrjö T.; Goodman, Stuart B.; Gallo, Jiri
2013-01-01
The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of pro-inflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented. PMID:23568608
Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A.
2016-01-01
A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions. PMID:27242789
Periodontal disease as a potential factor of migraine chronification.
Ameijeira, Pablo; Leira, Yago; Blanco, Juan; Leira, Rogelio
2017-05-01
Migraine is a hereditary constitutional base disorder, which is characterized by recurrent episodes of headache pulsatile characteristics associated with photophobia/phonophobia, nausea and/or vomiting. The main complication in migraine is the chronicity of the process, now recognized as a chronic migraine. Although pathogenic mechanisms that may influence the pathophysiology of migraine and its possible chronicity are not fully understood, previous studies have shown in patients with migraine molecular alterations of systemic inflammation, neurogenic inflammation, endothelial dysfunction, innate immunity, dysfunction of matrix proteases and blood-brain barrier. Periodontal disease is an inflammatory lesion caused by bacteria. After the bacterial infection begins, an immune response that will be responsible for individual susceptibility appears. More advanced forms of periodontitis have demonstrated molecular alterations of inflammation, endothelial dysfunction, dysfunction of matrix proteases and innate immunity, similar to those observed in migraine. Furthermore, the main molecular mediators of neurogenic inflammation related to activation of the trigeminovascular system, which are characteristic of migraine, are overexpressed in gingival crevicular fluid and mucosa in patients with periodontal disease. Hypertension, hypercholesterolemia, insulin resistance, stroke or coronary artery disease are comorbidities that periodontal disease and migraine could share. Therefore, several mechanisms and hypotheses could explain the possible association between both diseases. However, epidemiological and molecular studies will be necessary to provide a better understanding of this potential association, which could be implicated in the chronification of migraine. Copyright © 2017 Elsevier Ltd. All rights reserved.
Therapeutic Implications of a Barrier-Based Pathogenesis of Atopic Dermatitis
Wakefield, Joan S.
2015-01-01
Excessive Th2 cell signaling and IgE production play key roles in the pathogenesis of atopic dermatitis (AD). Yet, recent information suggests that the inflammation in AD instead is initiated by inherited insults to the barrier, including a strong association between mutations in FILAGGRIN and SPINK5 in Netherton syndrome, the latter of which provides an important clue that AD is provoked by excess serine protease activity. But acquired stressors to the barrier may also be required to initiate inflammation in AD, and in addition, microbial colonization by Staphylococcus aureus both amplifies inflammation, but also further stresses the barrier in AD. Therapeutic implications of these insights are as follows: While current therapy has been largely directed toward ameliorating Th2-mediated inflammation and/or pruritus, these therapies are fraught with short-term and potential long-term risks. In contrast, “barrier repair” therapy, with a ceramide-dominant triple-lipid mixture of stratum corneum lipids, is more logical, of proven efficacy, and it provides a far-improved safety profile. PMID:21174234
The emerging role of the endocannabinoid system in cardiovascular disease
2009-01-01
Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders. PMID:19357846
Elevated inflammatory biomarkers during unemployment: modification by age and country in the UK.
Hughes, Amanda; McMunn, Anne; Bartley, Mel; Kumari, Meena
2015-07-01
There is raised risk of mortality following unemployment, and reviews have consistently found worse psychological health among the unemployed. Inflammation is increasingly implicated as a mediating factor relating stress to physical disease and is strongly linked to depression. Inflammation may, therefore, be implicated in processes associated with excess mortality and morbidity during unemployment. This study examined associations of unemployment with inflammatory markers among working-age men and women from England and Scotland. Cross-sectional analyses using data from the Health Survey for England and the Scottish Health Survey collected between 1998 and 2010. Systemic inflammation was indexed by serum concentrations of C reactive protein (CRP) and fibrinogen, and compared between participants currently employed/self-employed, currently unemployed and other groups. CRP, fibrinogen and odds of CRP >3 mg/L were all significantly raised for the unemployed, as compared to the employed participants (eg, OR for CRP >3 mg/L=1.43, CI 1.15 to 1.78 N=23 025), following adjustment for age, gender, occupational social class, housing tenure, smoking, alcohol consumption, body mass index, long-term illness and depressive/anxiety symptoms. Strengths of associations varied considerably by both age and country/region, with effects mainly driven by participants aged ≥48 and participants from Scotland, which had comparatively high unemployment during this time. Current unemployment is associated with elevated inflammatory markers using data from two large-scale, nationally representative UK studies. Effect modification by age suggests inflammation may be particularly involved in processes leading to ill-health among the older unemployed. Country/regional effects may suggest the relationship of unemployment with inflammation is strongly influenced by contextual factors, and/or reflect life course accumulation processes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Beavers, Kristen M; Serra, Monica C; Beavers, Daniel P; Cooke, Matthew B; Willoughby, Darryn S
2009-09-01
Aging is associated with increasing levels of systemic inflammation and oxidative stress, both of which contribute to the progression of cardiovascular disease. Attenuation of such processes via dietary intervention has significant public health implications. Soyfoods, as a source of high-quality protein and isoflavones, may improve such indices, although such effects in healthy aging women are not well delineated. The purpose of this study was to test the hypothesis that 4 weeks of daily soymilk consumption would improve systemic markers of inflammation and oxidative stress in postmenopausal women when compared with a dairy control. In September 2009, a single-blind, randomized, controlled trial was conducted on 31 postmenopausal women at Baylor University, Waco, Tex. Subjects were randomly assigned to consume 3 servings of vanilla soy (n = 16) or reduced fat dairy (n = 15) milk per day for 4 weeks. Plasma markers of inflammation (tumor necrosis factor alpha [TNF-alpha], interleukin [IL]-1beta, IL-6) and oxidative stress (superoxide dismutase [SOD], glutathione peroxidase [GPx], cyclooxygenase-2 [COX-2]) were obtained before and after supplementation. No significant differences were observed for any of the plasma inflammatory (TNF-alpha, P = .08; IL-1beta, P = .14; IL-6, P = .26) or oxidative stress (SOD, P = .68; GPx, P = .58; COX-2, P = .99) variables by dietary treatment group. Despite good dietary compliance, our study failed to show a significant effect of soymilk consumption on markers of inflammation and oxidative stress in this postmenopausal female population. Potential reasons for this nonsignificant finding are discussed, and future research directions are presented.
Kanda, Atsuhiro; Ishizuka, Erdal Tan; Shibata, Atsushi; Matsumoto, Takahiro; Toyofuku, Hidekazu; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu
2017-06-16
The receptor-associated prorenin system (RAPS) refers to the pathogenic mechanism whereby prorenin binding to the (pro)renin receptor [(P)RR] dually activates the tissue renin-angiotensin system (RAS) and RAS-independent intracellular signaling. Here we revealed significant upregulation of prorenin and soluble (P)RR levels in the vitreous fluid of patients with uveitis compared to non-inflammatory controls, together with a positive correlation between these RAPS components and monocyte chemotactic protein-1 among several upregulated cytokines. Moreover, we developed a novel single-strand RNAi agent, proline-modified short hairpin RNA directed against human and mouse (P)RR [(P)RR-PshRNA], and we determined its safety and efficacy in vitro and in vivo. Application of (P)RR-PshRNA in mice caused significant amelioration of acute (uveitic) and chronic (diabetic) models of ocular inflammation with no apparent adverse effects. Our findings demonstrate the significant implication of RAPS in the pathogenesis of human uveitis and the potential usefulness of (P)RR-PshRNA as a therapeutic agent to reduce ocular inflammation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Based primarily on cell culture experiments, long-chain saturated fatty acids (SFAs) are thought to promote inflammation and contribute to metabolic dysfunction through toll-like receptor activation. This, in turn, has been implicated in contributing to chronic low-grade inflammation associated with...
Plasma biomarkers of chronic inflammation are elevated in overweight Mexican-American children
USDA-ARS?s Scientific Manuscript database
Excess body weight is associated with an accumulation of chronic, low-grade inflammation that has been implicated in the pathophysiology of various diseases. The obesity epidemic is more prevalent in certain ethnic groups. Despite this health disparity, few published studies have measured biomarke...
The Role of c-FLIP(L) in Regulating Apoptotic Pathways in Prostate Cancer
2006-12-01
which regulates gene expression 3. c-Fos has been shown to play an important role in development, inflammation and oncogenic processes. For example...important role in development, inflammation and oncogenic processes. For example, TNF-family induction of c-Fos plays an important role in proper bone c...identifying the down-stream targets of c-Fos has significant implications in understanding of normal development, inflammation and oncogenesis (10). In
Cyclic Dinucleotides in the Scope of the Mammalian Immune System.
Mankan, Arun K; Müller, Martina; Witte, Gregor; Hornung, Veit
2017-01-01
First discovered in prokaryotes and more recently in eukaryotes, cyclic dinucleotides (CDNs) constitute a unique branch of second messenger signaling systems. Within prokaryotes CDNs regulate a wide array of different biological processes, whereas in the vertebrate system CDN signaling is largely dedicated to activation of the innate immune system. In this book chapter we summarize the occurrence and signaling pathways of these small-molecule second messengers, most importantly in the scope of the mammalian immune system. In this regard, our main focus is the role of the cGAS-STING axis in the context of microbial infection and sterile inflammation and its implications for therapeutic applications.
Regulation of defensive function on gingival epithelial cells can prevent periodontal disease.
Fujita, Tsuyoshi; Yoshimoto, Tetsuya; Kajiya, Mikihito; Ouhara, Kazuhisa; Matsuda, Shinji; Takemura, Tasuku; Akutagawa, Keiichi; Takeda, Katsuhiro; Mizuno, Noriyoshi; Kurihara, Hidemi
2018-05-01
Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell-cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro , in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.
Therapeutic Implications of Brain–Immune Interactions: Treatment in Translation
Miller, Andrew H; Haroon, Ebrahim; Felger, Jennifer C
2017-01-01
A wealth of data has been amassed that details a complex, yet accessible, series of pathways by which the immune system, notably inflammation, can influence the brain and behavior. These data have opened the window to a diverse array of novel targets whose potential efficacy is tied to specific neurotransmitters and neurocircuits as well as specific behaviors. What is clear is that the impact of inflammation on the brain cuts across psychiatric disorders and engages dopaminergic and glutamatergic pathways that regulate motivation and motor activity as well as the sensitivity to threat. Given the ability to identify patient populations with increased inflammation, the precision of interventions can be further tuned, in conjunction with the ability to establish target engagement in the brain through the use of multiple neuroimaging strategies. After a brief overview of the mechanisms by which inflammation affects the brain and behavior, this review examines the extant literature on the efficacy of anti-inflammatory treatments, while forging guidelines for future intelligent clinical trial design. An examination of the most promising therapeutic strategies is also provided, along with some of the most exciting clinical trials that are currently being planned or underway. PMID:27555382
Autism spectrum disorder in children born preterm—role of exposure to perinatal inflammation
Meldrum, Suzanne J.; Strunk, T.; Currie, A.; Prescott, S. L.; Simmer, K.; Whitehouse, A. J. O.
2013-01-01
Autism Spectrum Disorder (ASD) is the collective term for neurodevelopmental disorders characterized by qualitative impairments in social interaction, communication, and a restricted range of activities and interests. Many countries, including Australia, have reported a dramatic increase in the number of diagnoses over the past three decades, with current prevalence of ASD at 1 in every 110 individuals (~1%). The potential role for an immune-mediated mechanism in ASD has been implicated by several studies, and some evidence suggests a potential link between prenatal infection-driven inflammation and subsequent development of ASD. Furthermore, a modest number of contemporary studies have reported a markedly increased prevalence of ASD in children born preterm, who are at highest risk of exposure to perinatal inflammation. However, the mechanisms that underpin the susceptibility to infection-driven inflammation during pregnancy and risk of preterm birth, and how these intersect with the subsequent development of ASD in the offspring, is not understood. This review aims to summarize and discuss the potential mechanisms and evidence for the role of prenatal infection on the central nervous system, and how it may increase the susceptibility for ASD pathogenesis in children born preterm. PMID:23885233
Landis, B N; Grouzmann, E; Monod, M; Busso, N; Petak, F; Spiliopoulos, A; Robert, J H; Szalay-Quinodoz, I; Morel, D R; Lacroix, J S
2008-01-01
Decreased dipeptidylpeptidase IV (DPPIV) activity within the human nasal mucosa has previously been shown to contribute to the severity of chronic inflammatory rhinosinusitis. To investigate and correlate the role of DPPIV activity with regard to bronchial inflammation. DPPIV/CD26 activity/concentration was investigated in the bronchial tissue of human subjects suffering from chronic bronchial inflammation. In addition, the effect of a recombinant Aspergillus fumigatus DPPIV (fuDPPIV) was investigated on histamine-induced bronchoconstriction in anesthetized rabbits. DPPIV/CD26 was present in submucosal seromucous glands, in leukocytes and to a very low degree in endothelial cells of human bronchi. DPPIV activity was correlated with tissue CD26 content measured by immunoassay. As previously reported for the nasal mucosa, DPPIV/CD26 activity was inversely correlated with the degree of airway inflammation. Systemic pretreatment with recombinant fuDPPIV markedly reduced the increase in histamine-induced airway resistance in rabbits. In conclusion, DPPIV activity modulates lower airway tone by degrading unknown peptidic substrates released by histamine in response to an allergen. Contrasting with our observations in the nose, this modulation is apparently not mediated via a neurokinin (NK1) receptor. (c) 2007 S. Karger AG, Basel.
Lymphatic System in Cardiovascular Medicine.
Aspelund, Aleksanteri; Robciuc, Marius R; Karaman, Sinem; Makinen, Taija; Alitalo, Kari
2016-02-05
The mammalian circulatory system comprises both the cardiovascular system and the lymphatic system. In contrast to the blood vascular circulation, the lymphatic system forms a unidirectional transit pathway from the extracellular space to the venous system. It actively regulates tissue fluid homeostasis, absorption of gastrointestinal lipids, and trafficking of antigen-presenting cells and lymphocytes to lymphoid organs and on to the systemic circulation. The cardinal manifestation of lymphatic malfunction is lymphedema. Recent research has implicated the lymphatic system in the pathogenesis of cardiovascular diseases including obesity and metabolic disease, dyslipidemia, inflammation, atherosclerosis, hypertension, and myocardial infarction. Here, we review the most recent advances in the field of lymphatic vascular biology, with a focus on cardiovascular disease. © 2016 American Heart Association, Inc.
Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias
King, Eleanor; O’Brien, John Tiernan; Donaghy, Paul; Morris, Christopher; Barnett, Nicola; Olsen, Kirsty; Martin-Ruiz, Carmen; Taylor, John-Paul; Thomas, Alan J
2018-01-01
Objectives There is growing evidence for the role of systemic inflammation in Alzheimer’s disease (AD) and other neurodegenerative diseases; however the systemic inflammatory profile in dementia with Lewy bodies (DLB) has never before been investigated. This study aimed to characterise systemic inflammatory mediators in established DLB and AD, as well as in their prodromal, mild cognitive impairment (MCI) phases. Methods We obtained plasma samples from patients with DLB (n=37), AD (n=20), MCI with DLB profile (n=38), MCI with AD profile (n=20) and healthy control subjects (n=20). The following inflammatory biomarkers were measured using Roche cobas c702 and Meso Scale Discovery V-Plex Plus: high-sensitivity C-reactive protein, interferon-gamma, interleukin (IL)-10, IL-12p70, IL-13, IL-1beta, IL-2, IL-4, IL-6, IL-8 and tumour necrosis factor-alpha. Results We found significantly higher levels of IL-10, IL-1beta, IL-4 and IL-2 in both MCI groups (P<0.001), while there was no significant difference in inflammatory markers between dementia groups and controls. Furthermore, increased disease severity was associated with lower levels of IL-1beta, IL-2 and IL-4 (P<0.05). Interpretation We have shown for the first time that in both DLB and AD, increased peripheral inflammation occurs early at the MCI disease stages. These data support a role for inflammation early in the disease process, and have important implications for the stage of disease where trials of anti-inflammatory medication should be focused. PMID:29248892
USDA-ARS?s Scientific Manuscript database
Chronic alcohol intake decreases adiponectin and sirtuin 1 (SIRT1) expressions, both of which have been implicated in various biological processes including inflammation, apoptosis and metabolism. We have previously shown that moderate consumption of alcohol aggravates liver inflammation and apoptos...
BMP2-Induced Inflammation Can Be Suppressed by the Osteoinductive Growth Factor NELL-1
Shen, Jia; James, Aaron W.; Zara, Janette N.; Asatrian, Greg; Khadarian, Kevork; Zhang, James B.; Ho, Stephanie; Kim, Hyun Ju
2013-01-01
Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a serious public health concern with potentially life-threatening complications. In the present study, we observed that the growth factor, NELL-1, significantly attenuates or completely reverses BMP2-induced inflammation. The mechanisms of NELL-1's anti-inflammatory effect are only partially elucidated, and may include reduction of NF-κB transcriptional activity or ROS generation. PMID:23758588
Duran, Charity G; Burbank, Allison J; Mills, Katherine H; Duckworth, Heather R; Aleman, Maria M; Kesic, Matthew J; Peden, David B; Pan, Yinghao; Zhou, Haibo; Hernandez, Michelle L
2016-07-22
Sulforaphane (SFN), a naturally occurring isothiocyanate found in cruciferous vegetables, is implicated as a possible therapy for airway inflammation via induction of the transcription factor NF-E2-related factor 2 (NRF2). In this proof-of-concept clinical study, we show that supplementation of SFN with broccoli sprout homogenate in healthy human subjects did not induce expression of antioxidant genes or protect against neutrophilic airway inflammation in an ozone-exposure model. Therefore, dietary sulforaphane supplementation is not a promising candidate for larger scale clinical trials targeting airway inflammation. NCT01625130 . Registered 19 June, 2012.
The initiation of metabolic inflammation in childhood obesity.
Singer, Kanakadurga; Lumeng, Carey N
2017-01-03
An understanding of the events that initiate metabolic inflammation (metainflammation) can support the identification of targets for preventing metabolic disease and its negative effects on health. There is ample evidence demonstrating that the initiating events in obesity-induced inflammation start early in childhood. This has significant implications on our understanding of how early life events in childhood influence adult disease. In this Review we frame the initiating events of metainflammation in the context of child development and discuss what this reveals about the mechanisms by which this unique form of chronic inflammation is initiated and sustained into adulthood.
The initiation of metabolic inflammation in childhood obesity
2017-01-01
An understanding of the events that initiate metabolic inflammation (metainflammation) can support the identification of targets for preventing metabolic disease and its negative effects on health. There is ample evidence demonstrating that the initiating events in obesity-induced inflammation start early in childhood. This has significant implications on our understanding of how early life events in childhood influence adult disease. In this Review we frame the initiating events of metainflammation in the context of child development and discuss what this reveals about the mechanisms by which this unique form of chronic inflammation is initiated and sustained into adulthood. PMID:28045405
Increased activity of the complement system in the liver of patients with alcoholic hepatitis.
Shen, Hong; French, Barbara A; Liu, Hui; Tillman, Brittany C; French, Samuel W
2014-12-01
Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH. Copyright © 2014 Elsevier Inc. All rights reserved.
Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.
Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing
2016-09-02
Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.
Hogan, Simon P.; Seidu, Luqman; Blanchard, Carine; Groschwitz, Katherine; Mishra, Anil; Karow, Margaret L.; Ahrens, Richard; Artis, David; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Rothenberg, Marc E.
2007-01-01
Background: Resistin-like molecule (RELM) β is a cysteine-rich cytokine expressed in the gastrointestinal tract and implicated in insulin resistance and gastrointestinal nematode immunity; however, its function primarily remains an enigma. Objective: We sought to elucidate the function of RELM-β in the gastrointestinal tract. Methods: We generated RELM-β gene-targeted mice and examined colonic epithelial barrier function, gene expression profiles, and susceptibility to acute colonic inflammation. Results: We show that RELM-β is constitutively expressed in the colon by goblet cells and enterocytes and has a role in homeostasis, as assessed by alterations in colon mRNA transcripts and epithelial barrier function in the absence of RELM-β. Using acute colonic inflammatory models, we demonstrate that RELM-β has a central role in the regulation of susceptibility to colonic inflammation. Mechanistic studies identify that RELM-β regulates expression of type III regenerating gene (REG) (REG3β and γ), molecules known to influence nuclear factor κB signaling. Conclusions: These data define a critical role for RELM-β in the maintenance of colonic barrier function and gastrointestinal innate immunity. Clinical implications: These findings identify RELM-β as an important molecule in homeostatic gastrointestinal function and colonic inflammation, and as such, these results have implications for a variety of human inflammatory gastrointestinal conditions, including allergic gastroenteropathies. PMID:16815164
Liu, Dehua; Chan, Ben Chung-Lap; Cheng, Ling; Tsang, Miranda Sin-Man; Zhu, Jing; Wong, Chun-Wai; Jiao, Delong; Chan, Helen Yau-Tsz; Leung, Ping Chung; Lam, Christopher Wai-Kei; Wong, Chun Kwok
2018-03-02
The immune system responds to Mycobacterium tuberculosis (MTB) infection by forming granulomas to quarantine the bacteria from spreading. Granuloma-mediated inflammation is a cause of lung destruction and disease transmission. Sophora flavescens (SF) has been demonstrated to exhibit bactericidal activities against MTB. However, its immune modulatory activities on MTB-mediated granulomatous inflammation have not been reported. In the present study, we found that flavonoids from Sophora flavescens (FSF) significantly suppressed the pro-inflammatory mediators released from mouse lung alveolar macrophages (MH-S) upon stimulation by trehalose dimycolate (TDM), the most abundant lipoglycan on MTB surface. Moreover, FSF reduced adhesion molecule (LFA-1) expression on MH-S cells after TDM stimulation. Furthermore, FSF treatment on TDM-activated lung epithelial (MLE-12) cells significantly downregulated macrophage chemoattractant protein (MCP-1/CCL2) expression, which in turn reduced the in vitro migration of MH-S to MLE-12 cells. In addition, FSF increased the clearance of mycobacterium bacteria (Mycobacterium aurum) in macrophages. FSF mainly affected the Mincle-Syk-Erk signaling pathway in TDM-activated MH-S cells. In TDM-induced mouse granulomas model, oral administration with FSF significantly suppressed lung granulomas formation and inflammation. These findings collectively implicated an anti-inflammatory role of FSF on MTB-mediated granulomatous inflammation, thereby providing evidence of FSF as an efficacious adjunct treatment during mycobacterial infection.
Kovačević, Sanja; Nestorov, Jelena; Matić, Gordana; Elaković, Ivana
2017-02-01
The consumption of refined, fructose-enriched food continuously increases and has been linked to development of obesity, especially in young population. Low-grade inflammation and increased oxidative stress have been implicated in the pathogenesis of obesity-related disorders including type 2 diabetes. In this study, we examined alterations in inflammation and antioxidative defense system in the visceral adipose tissue (VAT) of fructose-fed young female rats, and related them to changes in adiposity and insulin sensitivity. We examined the effects of 9-week fructose-enriched diet applied immediately after weaning on nuclear factor κB (NF-κB) intracellular distribution, and on the expression of pro-inflammatory cytokines (IL-1β and TNFα) and key antioxidative enzymes in the VAT of female rats. Insulin signaling in the VAT was evaluated at the level of insulin receptor substrate-1 (IRS-1) protein and its inhibitory phosphorylation on Ser 307 . Fructose-fed rats had increased VAT mass along with increased NF-κB nuclear accumulation and elevated IL-1β, but not TNFα expression. The protein levels of antioxidative defense enzymes, mitochondrial manganese superoxide dismutase 2, and glutathione peroxidase, were reduced, while the protein content of IRS-1 and its inhibitory phosphorylation were not altered by fructose diet. The results suggest that fructose overconsumption-related alterations in pro-inflammatory markers and antioxidative capacity in the VAT of young female rats can be implicated in the development of adiposity, but do not affect inhibitory phosphorylation of IRS-1.
USDA-ARS?s Scientific Manuscript database
Vitamin K is an enzyme cofactor required for the carboxylation of vitamin K dependent proteins, several of which have been implicated in diseases of aging. Inflammation is recognized as a crucial component of many chronic aging diseases, and evidence suggests vitamin K has an anti-inflammatory actio...
GENETIC DIFFERENCES IN IN VIVO/IN VITRO AIRWAY INJURY AND INFLAMMATION AFTER OIL FLY ASH EXPOSURE
GENETIC DIFFERENCES IN IN VIVO/ IN VITRO AIRWAY INJURY/ INFLAMMATION AFTER OIL FLY ASH EXPOSURE
Janice Dye, Debora Andrews, Judy Richards, Annette King*, Urmila Kodavanti. US EPA & *SEE Program, RTP, NC.
Oxidative stress is implicated in the pathogenesis and progres...
Substance P at the Nexus of Mind and Body in Chronic Inflammation and Affective Disorders
ERIC Educational Resources Information Center
Rosenkranz, Melissa A.
2007-01-01
For decades, research has demonstrated that chronic diseases characterized by dysregulation of inflammation are particularly susceptible to exacerbation by stress and emotion. Likewise, rates of depression and anxiety are overrepresented in individuals suffering from chronic inflammatory disease. In recent years, substance P has been implicated in…
NOX2 protects against progressive lung injury and multiple organ dysfunction syndrome.
Whitmore, Laura C; Goss, Kelli L; Newell, Elizabeth A; Hilkin, Brieanna M; Hook, Jessica S; Moreland, Jessica G
2014-07-01
Systemic inflammatory response syndrome (SIRS) is a common clinical condition in patients in intensive care units that can lead to complications, including multiple organ dysfunction syndrome (MODS). MODS carries a high mortality rate, and it is unclear why some patients resolve SIRS, whereas others develop MODS. Although oxidant stress has been implicated in the development of MODS, several recent studies have demonstrated a requirement for NADPH oxidase 2 (NOX2)-derived oxidants in limiting inflammation. We recently demonstrated that NOX2 protects against lung injury and mortality in a murine model of SIRS. In the present study, we investigated the role of NOX2-derived oxidants in the progression from SIRS to MODS. Using a murine model of sterile systemic inflammation, we observed significantly greater illness and subacute mortality in gp91(phox-/y) (NOX2-deficient) mice compared with wild-type mice. Cellular analysis revealed continued neutrophil recruitment to the peritoneum and lungs of the NOX2-deficient mice and altered activation states of both neutrophils and macrophages. Histological examination showed multiple organ pathology indicative of MODS in the NOX2-deficient mice, and several inflammatory cytokines were elevated in lungs of the NOX2-deficient mice. Overall, these data suggest that NOX2 function protects against the development of MODS and is required for normal resolution of systemic inflammation. Copyright © 2014 the American Physiological Society.
Thompson, Aaron M S; Zanobetti, Antonella; Silverman, Frances; Schwartz, Joel; Coull, Brent; Urch, Bruce; Speck, Mary; Brook, Jeffrey R; Manno, Michael; Gold, Diane R
2010-01-01
Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardio-vascular disease. We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies. In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter
Petra, Anastasia I; Panagiotidou, Smaro; Hatziagelaki, Erifili; Stewart, Julia M; Conti, Pio; Theoharides, Theoharis C
2015-05-01
Gut microbiota regulate intestinal function and health. However, mounting evidence indicates that they can also influence the immune and nervous systems and vice versa. This article reviews the bidirectional relationship between the gut microbiota and the brain, termed the microbiota-gut-brain (MGB) axis, and discusses how it contributes to the pathogenesis of certain disorders that may involve brain inflammation. Articles were identified with a search of Medline (starting in 1980) by using the key words anxiety, attention-deficit hypersensitivity disorder (ADHD), autism, cytokines, depression, gut, hypothalamic-pituitary-adrenal (HPA) axis, inflammation, immune system, microbiota, nervous system, neurologic, neurotransmitters, neuroimmune conditions, psychiatric, and stress. Various afferent or efferent pathways are involved in the MGB axis. Antibiotics, environmental and infectious agents, intestinal neurotransmitters/neuromodulators, sensory vagal fibers, cytokines, and essential metabolites all convey information to the central nervous system about the intestinal state. Conversely, the hypothalamic-pituitary-adrenal axis, the central nervous system regulatory areas of satiety, and neuropeptides released from sensory nerve fibers affect the gut microbiota composition directly or through nutrient availability. Such interactions seem to influence the pathogenesis of a number of disorders in which inflammation is implicated, such as mood disorder, autism-spectrum disorders, attention-deficit hypersensitivity disorder, multiple sclerosis, and obesity. Recognition of the relationship between the MGB axis and the neuroimmune systems provides a novel approach for better understanding and management of these disorders. Appropriate preventive measures early in life or corrective measures such as use of psychobiotics, fecal microbiota transplantation, and flavonoids are discussed. Copyright © 2015 Elsevier HS Journals, Inc. All rights reserved.
Neonatal CNS infection and inflammation caused by Ureaplasma species: rare or relevant?
Glaser, Kirsten; Speer, Christian P
2015-02-01
Colonization with Ureaplasma species has been associated with adverse pregnancy outcome, and perinatal transmission has been implicated in the development of bronchopulmonary dysplasia in preterm neonates. Little is known about Ureaplasma-mediated infection and inflammation of the CNS in neonates. Controversy remains concerning its incidence and implication in the pathogenesis of neonatal brain injury. In vivo and in vitro data are limited. Despite improving care options for extremely immature preterm infants, relevant complications remain. Systematic knowledge of ureaplasmal infection may be of great benefit. This review aims to summarize pathogenic mechanisms, clinical data and diagnostic pitfalls. Studies in preterm and term neonates are critically discussed with regard to their limitations. Clinical questions concerning therapy or prophylaxis are posed. We conclude that ureaplasmas may be true pathogens, especially in preterm neonates, and may cause CNS inflammation in a complex interplay of host susceptibility, serovar pathogenicity and gestational age-dependent CNS vulnerability.
Acne vulgaris, probiotics and the gut-brain-skin axis: from anecdote to translational medicine.
Bowe, W; Patel, N B; Logan, A C
2014-06-01
Acne vulgaris has long been postulated to feature a gastrointestinal mechanism, dating back 80 years to dermatologists John H. Stokes and Donald M. Pillsbury. They hypothesised that emotional states (e.g. depression and anxiety) could alter normal intestinal microbiota, increase intestinal permeability, and contribute to systemic inflammation. They were also among the first to propose the use of probiotic Lactobacillus acidophilus cultures. In recent years, aspects of this gut-brain-skin theory have been further validated via modern scientific investigations. It is evident that gut microbes and oral probiotics could be linked to the skin, and particularly acne severity, by their ability to influence systemic inflammation, oxidative stress, glycaemic control, tissue lipid content, and even mood. This intricate relationship between gut microbiota and the skin may also be influenced by diet, a current area of intense scrutiny by those who study acne. Here we provide a historical background to the gut-brain-skin theory in acne, followed by a summary of contemporary investigations and clinical implications.
Cardiovascular safety of biologic therapies for the treatment of RA.
Greenberg, Jeffrey D; Furer, Victoria; Farkouh, Michael E
2011-11-15
Cardiovascular disease represents a major source of extra-articular comorbidity in patients with rheumatoid arthritis (RA). A combination of traditional cardiovascular risk factors and RA-related factors accounts for the excess risk in RA. Among RA-related factors, chronic systemic inflammation has been implicated in the pathogenesis and progression of atherosclerosis. A growing body of evidence--mainly derived from observational databases and registries--suggests that specific RA therapies, including methotrexate and anti-TNF biologic agents, can reduce the risk of future cardiovascular events in patients with RA. The cardiovascular profile of other biologic therapies for the treatment of RA has not been adequately studied, including of investigational drugs that improve systemic inflammation but alter traditional cardiovascular risk factors. In the absence of large clinical trials adequately powered to detect differences in cardiovascular events between biologic drugs in RA, deriving firm conclusions on cardiovascular safety is challenging. Nevertheless, observational research using large registries has emerged as a promising approach to study the cardiovascular risk of emerging RA biologic therapies.
Polotsky, Vsevolod Y; Bevans-Fonti, Shannon; Grigoryev, Dmitry N; Punjabi, Naresh M
2015-01-01
Obstructive sleep apnea is associated with high cardiovascular morbidity and mortality. Intermittent hypoxia of obstructive sleep apnea is implicated in the development and progression of insulin resistance and atherosclerosis, which have been attributed to systemic inflammation. Intermittent hypoxia leads to pro-inflammatory gene up-regulation in cell culture, but the effects of intermittent hypoxia on gene expression in humans have not been elucidated. A cross-over study was performed exposing eight healthy men to intermittent hypoxia or control conditions for five hours with peripheral blood mononuclear cell isolation before and after exposures. Total RNA was isolated followed by gene microarrays and confirmatory real time reverse transcriptase PCR. Intermittent hypoxia led to greater than two fold up-regulation of the pro-inflammatory gene toll receptor 2 (TLR2), which was not increased in the control exposure. We hypothesize that up-regulation of TLR2 by intermittent hypoxia may lead to systemic inflammation, insulin resistance and atherosclerosis in patients with obstructive sleep apnea.
Matsumoto, Cal S; Zasloff, Michael A; Fishbein, Thomas M
2014-06-01
The purpose of this review is to highlight the similarities between inflammatory bowel disease and the state of the intestine allograft after transplantation. The mutant nucleotide-binding oligomerization protein 2 (NOD2) gene, which encodes for an intracellular protein that serves as an innate immune system microbial sensor in macrophages, dendritic cells, and certain intestinal epithelial cells, has been recognized as a risk factor in Crohn's disease. Similarly, recent studies have also highlighted the contribution the NOD2 mutation may have on intestinal failure itself. More specifically, in intestinal transplant recipients with the NOD2 mutation, the discovery of the reduced ability to prevent bacterial clearance, increased enterocyte stress response, and failure of key downstream expression of important cytokines and growth factors have been implicated as major factors in intestinal transplant outcomes, namely graft loss and septic death. Treatment strategies with anti tumor necrosis factor (TNF) α, similar to inflammatory bowel disease, have been employed in intestinal transplantation with promising results. In intestinal transplantation, there is evidence that the classical alloimmunity pathways that lead toward graft dysfunction and eventual graft loss may, in fact, be working in concert with a disordered innate immune system to produce a state of chronic inflammation not unlike that seen in inflammatory bowel disease.
Neonatal NET-inhibitory factor and related peptides inhibit neutrophil extracellular trap formation
Yost, Christian C.; Schwertz, Hansjörg; Cody, Mark J.; Wallace, Jared A.; Campbell, Robert A.; Vieira-de-Abreu, Adriana; Araujo, Claudia V.; Schubert, Sebastian; Harris, Estelle S.; Rowley, Jesse W.; Rondina, Matthew T.; Koening, Curry L.; Weyrich, Andrew S.; Zimmerman, Guy A.
2016-01-01
Neutrophil granulocytes, also called polymorphonuclear leukocytes (PMNs), extrude molecular lattices of decondensed chromatin studded with histones, granule enzymes, and antimicrobial peptides that are referred to as neutrophil extracellular traps (NETs). NETs capture and contain bacteria, viruses, and other pathogens. Nevertheless, experimental evidence indicates that NETs also cause inflammatory vascular and tissue damage, suggesting that identifying pathways that inhibit NET formation may have therapeutic implications. Here, we determined that neonatal NET-inhibitory factor (nNIF) is an inhibitor of NET formation in umbilical cord blood. In human neonatal and adult neutrophils, nNIF inhibits key terminal events in NET formation, including peptidyl arginine deiminase 4 (PAD4) activity, neutrophil nuclear histone citrullination, and nuclear decondensation. We also identified additional nNIF-related peptides (NRPs) that inhibit NET formation. nNIFs and NRPs blocked NET formation induced by pathogens, microbial toxins, and pharmacologic agonists in vitro and in mouse models of infection and systemic inflammation, and they improved mortality in murine models of systemic inflammation, which are associated with NET-induced collateral tissue injury. The identification of NRPs as neutrophil modulators that selectively interrupt NET generation at critical steps suggests their potential as therapeutic agents. Furthermore, our results indicate that nNIF may be an important regulator of NET formation in fetal and neonatal inflammation. PMID:27599294
The Impact of Ghrelin in Metabolic Diseases: An Immune Perspective
2017-01-01
Obesity and insulin resistance have reached epidemic proportions. Obesogenic conditions are associated with increased risk for the development of other comorbidities and obesity-related diseases. In metabolic disorders, there is chronic low-grade inflammation induced by the activation of immune cells, especially in metabolic relevant organs such as white adipose tissue (WAT). These immune cells are regulated by environmental and systemic cues. Ghrelin is a peptide secreted mainly by X/A-like gastric cells and acts through the growth hormone secretagogue receptor (GHS-R). This receptor is broadly expressed in the central nervous system (CNS) and in several cell types, including immune cells. Studies show that ghrelin induces an orexigenic state, and there is increasing evidence implicating an immunoregulatory role for ghrelin. Ghrelin mainly acts on the innate and adaptive immune systems to suppress inflammation and induce an anti-inflammatory profile. In this review, we discuss the immunoregulatory roles of ghrelin, the mechanisms by which ghrelin acts and potential pharmacological applications for ghrelin in the treatment of obesity-associated inflammatory diseases, such as type 2 diabetes (T2D). PMID:29082258
Haroon, Ebrahim; Raison, Charles L; Miller, Andrew H
2012-01-01
The potential contribution of chronic inflammation to the development of neuropsychiatric disorders such as major depression has received increasing attention. Elevated biomarkers of inflammation, including inflammatory cytokines and acute-phase proteins, have been found in depressed patients, and administration of inflammatory stimuli has been associated with the development of depressive symptoms. Data also have demonstrated that inflammatory cytokines can interact with multiple pathways known to be involved in the development of depression, including monoamine metabolism, neuroendocrine function, synaptic plasticity, and neurocircuits relevant to mood regulation. Further understanding of mechanisms by which cytokines alter behavior have revealed a host of pharmacologic targets that may be unique to the impact of inflammation on behavior and may be especially relevant to the treatment and prevention of depression in patients with evidence of increased inflammation. Such targets include the inflammatory signaling pathways cyclooxygenase, p38 mitogen-activated protein kinase, and nuclear factor-κB, as well as the metabolic enzyme, indoleamine-2,3-dioxygenase, which breaks down tryptophan into kynurenine. Other targets include the cytokines themselves in addition to chemokines, which attract inflammatory cells from the periphery to the brain. Psychosocial stress, diet, obesity, a leaky gut, and an imbalance between regulatory and pro-inflammatory T cells also contribute to inflammation and may serve as a focus for preventative strategies relevant to both the development of depression and its recurrence. Taken together, identification of mechanisms by which cytokines influence behavior may reveal a panoply of personalized treatment options that target the unique contributions of the immune system to depression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takeda-Watanabe, Ai; Kitada, Munehiro; Kanasaki, Keizo
Highlights: Black-Right-Pointing-Pointer SIRT1 inactivation decreases autophagy in THP-1 cell. Black-Right-Pointing-Pointer Inhibition of autophagy induces inflammation. Black-Right-Pointing-Pointer SIRT1 inactivation induces inflammation through NF-{kappa}B activation. Black-Right-Pointing-Pointer The p62/Sqstm1 accumulation by impairment of autophagy is related to NF-{kappa}B activation. Black-Right-Pointing-Pointer SIRT1 inactivation is involved in the activation of mTOR and decreased AMPK activation. -- Abstract: Inflammation plays a crucial role in atherosclerosis. Monocytes/macrophages are some of the cells involved in the inflammatory process in atherogenesis. Autophagy exerts a protective effect against cellular stresses like inflammation, and it is regulated by nutrient-sensing pathways. The nutrient-sensing pathway includes SIRT1, a NAD{sup +}-dependent histone deacetylase, whichmore » is implicated in the regulation of a variety of cellular processes including inflammation and autophagy. The mechanism through which the dysfunction of SIRT1 contributes to the regulation of inflammation in relation to autophagy in monocytes/macrophages is unclear. In the present study, we demonstrate that treatment with 2-[(2-Hydroxynaphthalen-1-ylmethylene)amino]-N-(1-phenethyl)benzamide (Sirtinol), a chemical inhibitor of SIRT1, induces the overexpression of inflammation-related genes such as tumor necrosis factor (TNF)-{alpha} and interleukin (IL)-6 through nuclear factor (NF)-{kappa}B signaling activation, which is associated with autophagy dysfunction, as shown through p62/Sqstm1 accumulation and decreased expression of light chain (LC) 3 II in THP-1 cells. The autophagy inhibitor, 3-methyladenine, also induces inflammation-related NF-{kappa}B activation. In p62/Sqstm1 knockdown cells, Sirtinol-induced inflammation through NF-{kappa}B activation is blocked. In addition, inhibition of SIRT1 is involved in the activation of the mammalian target of rapamycin (mTOR) pathway and is implicated in decreased 5 Prime -AMP activated kinase (AMPK) activation, leading to the impairment of autophagy. The mTOR inhibitor, rapamycin, abolishes Sirtinol-induced inflammation and NF-{kappa}B activation associated with p62/Sqstm1 accumulation. In summary, SIRT1 inactivation induces inflammation through NF-{kappa}B activation and dysregulates autophagy via nutrient-sensing pathways such as the mTOR and AMPK pathways, in THP-1 cells.« less
Barnes, Jill N; Nualnim, Nantinee; Sugawara, Jun; Sommerlad, Shawn M; Renzi, Christopher P; Tanaka, Hirofumi
2011-11-01
Chronic systemic inflammation has been implicated in the pathogenesis of hypertension and cardiovascular disease. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by chronic inflammation and an increased risk for cardiovascular disease. Currently few studies have evaluated the potential cardiovascular benefits of exercise in SLE. It is unknown whether the favorable effect of habitual exercise on arterial stiffness observed in healthy adults can be extended to SLE. Therefore, as an initial step, we determined the association between habitual exercise, inflammatory markers, central arterial compliance, and aortic wave reflection in healthy adults and SLE patients. We studied 41 adults, aged 33 ± 11 years (15 healthy controls, 12 sedentary SLE, and 14 physically active SLE patients). Age, body mass index, and metabolic risk factors were not different between the three groups. Carotid arterial compliance was lower whereas augmentation index (AI) and inflammatory markers (C-reactive protein (CRP), interleukin (IL)-12, tumor necrosis factor-α (TNF-α)) were higher in sedentary SLE patients compared with healthy controls, but were not different between physically active SLE patients and healthy controls. Cardiac ejection fraction was lower in sedentary SLE than physically active SLE or healthy controls. In the pooled population, carotid arterial compliance was inversely associated with TNF-α (r = -0.38; P < 0.01), and AI was positively associated with both CRP (r = 0.33; P < 0.05) and intercellular adhesion molecule-1 (r = 0.28; P < 0.05). SLE-associated stiffening of the central artery and wave reflection were not observed in habitually exercising adults with SLE. Furthermore, greater arterial stiffness was associated with higher inflammatory markers, suggesting that need for studies on inflammation and SLE-associated arterial stiffening.
Peripheral inflammation in prodromal Alzheimer's and Lewy body dementias.
King, Eleanor; O'Brien, John Tiernan; Donaghy, Paul; Morris, Christopher; Barnett, Nicola; Olsen, Kirsty; Martin-Ruiz, Carmen; Taylor, John-Paul; Thomas, Alan J
2018-04-01
There is growing evidence for the role of systemic inflammation in Alzheimer's disease (AD) and other neurodegenerative diseases; however the systemic inflammatory profile in dementia with Lewy bodies (DLB) has never before been investigated. This study aimed to characterise systemic inflammatory mediators in established DLB and AD, as well as in their prodromal, mild cognitive impairment (MCI) phases. We obtained plasma samples from patients with DLB (n=37), AD (n=20), MCI with DLB profile (n=38), MCI with AD profile (n=20) and healthy control subjects (n=20). The following inflammatory biomarkers were measured using Roche cobas c702 and Meso Scale Discovery V-Plex Plus: high-sensitivity C-reactive protein, interferon-gamma, interleukin (IL)-10, IL-12p70, IL-13, IL-1beta, IL-2, IL-4, IL-6, IL-8 and tumour necrosis factor-alpha. We found significantly higher levels of IL-10, IL-1beta, IL-4 and IL-2 in both MCI groups (P<0.001), while there was no significant difference in inflammatory markers between dementia groups and controls. Furthermore, increased disease severity was associated with lower levels of IL-1beta, IL-2 and IL-4 (P<0.05). We have shown for the first time that in both DLB and AD, increased peripheral inflammation occurs early at the MCI disease stages. These data support a role for inflammation early in the disease process, and have important implications for the stage of disease where trials of anti-inflammatory medication should be focused. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Susceptibility to chronic inflammation: an update.
Nasef, Noha Ahmed; Mehta, Sunali; Ferguson, Lynnette R
2017-03-01
Chronic inflammation is defined by the persistence of inflammatory processes beyond their physiological function, resulting in tissue destruction. Chronic inflammation is implicated in the progression of many chronic diseases and plays a central role in chronic inflammatory and autoimmune disease. As such, this review aims to collate some of the latest research in relation to genetic and environmental susceptibilities to chronic inflammation. In the genetic section, we discuss some of the updates in cytokine research and current treatments that are being developed. We also discuss newly identified canonical and non-canonical genes associated with chronic inflammation. In the environmental section, we highlight some of the latest updates and evidence in relation to the role that infection, diet and stress play in promoting inflammation. The aim of this review is to provide an overview of the latest research to build on our current understanding of chronic inflammation. It highlights the complexity associated with chronic inflammation, as well as provides insights into potential new targets for therapies that could be used to treat chronic inflammation and consequently prevent disease progression.
Wohleb, Eric S.; McKim, Daniel B.; Sheridan, John F.; Godbout, Jonathan P.
2015-01-01
HIGHLIGHTS Psychological stress activates neuroendocrine pathways that alter immune responses.Stress-induced alterations in microglia phenotype and monocyte priming leads to aberrant peripheral and central inflammation.Elevated pro-inflammatory cytokine levels caused by microglia activation and recruitment of monocytes to the brain contribute to development and persistent anxiety-like behavior.Mechanisms that mediate interactions between microglia, endothelial cells, and macrophages and how these contribute to changes in behavior are discussed.Sensitization of microglia and re-distribution of primed monocytes are implicated in re-establishment of anxiety-like behavior. Psychological stress causes physiological, immunological, and behavioral alterations in humans and rodents that can be maladaptive and negatively affect quality of life. Several lines of evidence indicate that psychological stress disrupts key functional interactions between the immune system and brain that ultimately affects mood and behavior. For example, activation of microglia, the resident innate immune cells of the brain, has been implicated as a key regulator of mood and behavior in the context of prolonged exposure to psychological stress. Emerging evidence implicates a novel neuroimmune circuit involving microglia activation and sympathetic outflow to the peripheral immune system that further reinforces stress-related behaviors by facilitating the recruitment of inflammatory monocytes to the brain. Evidence from various rodent models, including repeated social defeat (RSD), revealed that trafficking of monocytes to the brain promoted the establishment of anxiety-like behaviors following prolonged stress exposure. In addition, new evidence implicates monocyte trafficking from the spleen to the brain as key regulator of recurring anxiety following exposure to prolonged stress. The purpose of this review is to discuss mechanisms that cause stress-induced monocyte re-distribution in the brain and how dynamic interactions between microglia, endothelial cells, and brain macrophages lead to maladaptive behavioral responses. PMID:25653581
Martin Jensen, M; Jia, Wanjian; Schults, Austin J; Ye, Xiangyang; Prestwich, Glenn D; Oottamasathien, Siam
2018-05-18
Interstitial cystitis (IC), also known as painful bladder syndrome (PBS), is a debilitating chronic condition that afflicts over 3 million women above the age of 18 in the U.S., and most patients fail to respond to current treatment options. Mast cells have previously been implicated as both a diagnostic and prognostic marker in IC/PBS. Patients with IC/PBS have been shown to have elevated levels of IL-33, a cytokine released in response to tissue insult, in their urine. We hypothesize that mast cell-mediated inflammation induced from IL-33 may play an important role in initiating pain and inflammation in IC/PBS. A human cathelicidin, LL-37, which is found at elevated levels in IC/PBS patients, was used to induce an IC/PBS-like state of inflammation and bladder pain in mast cell deficient C-kit (-/-) and wild type C57Bl/6 (WT) mice. Inflammation was quantified using myeloperoxidase (MPO) expression in bladder tissues measured via ELISA. Response rate to suprapubic stimulation from von Frey filaments was used to assess the relative pain and discomfort. Both types of mice increased IL-33 expression in response to LL-37 exposure. However, mast cell deficient mice demonstrated significantly lower levels of inflammation (p < 0.001) and reduced pain response (p < 0.001) compared to WT mice. These findings implicate an IL-33-mast cell dependent axis with a potential etiology of pain and inflammation in IC/PBS. Future therapeutics aimed at targeting the IL-33 - mast cell axis could potentially serve as useful targets for treating IC/PBS. Copyright © 2018. Published by Elsevier Ltd.
Cannabinoids mediate opposing effects on inflammation-induced intestinal permeability
Alhamoruni, A; Wright, KL; Larvin, M; O'Sullivan, SE
2012-01-01
BACKGROUND AND PURPOSE Activation of cannabinoid receptors decreases emesis, inflammation, gastric acid secretion and intestinal motility. The ability to modulate intestinal permeability in inflammation may be important in therapy aimed at maintaining epithelial barrier integrity. The aim of the present study was to determine whether cannabinoids modulate the increased permeability associated with inflammation in vitro. EXPERIMENTAL APPROACH Confluent Caco-2 cell monolayers were treated for 24 h with IFNγ and TNFα (10 ng·mL−1). Monolayer permeability was measured using transepithelial electrical resistance and flux measurements. Cannabinoids were applied either apically or basolaterally after inflammation was established. Potential mechanisms of action were investigated using antagonists for CB1, CB2, TRPV1, PPARγ and PPARα. A role for the endocannabinoid system was established using inhibitors of the synthesis and degradation of endocannabinoids. KEY RESULTS Δ9-Tetrahydrocannabinol (THC) and cannabidiol accelerated the recovery from cytokine-induced increased permeability; an effect sensitive to CB1 receptor antagonism. Anandamide and 2-arachidonylglycerol further increased permeability in the presence of cytokines; this effect was also sensitive to CB1 antagonism. No role for the CB2 receptor was identified in these studies. Co-application of THC, cannabidiol or a CB1 antagonist with the cytokines ameliorated their effect on permeability. Inhibiting the breakdown of endocannabinoids worsened, whereas inhibiting the synthesis of endocannabinoids attenuated, the increased permeability associated with inflammation. CONCLUSIONS AND IMPLICATIONS These findings suggest that locally produced endocannabinoids, acting via CB1 receptors play a role in mediating changes in permeability with inflammation, and that phytocannabinoids have therapeutic potential for reversing the disordered intestinal permeability associated with inflammation. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21745190
d'Avila, Joana Costa; Siqueira, Luciana Domett; Mazeraud, Aurélien; Azevedo, Estefania Pereira; Foguel, Debora; Castro-Faria-Neto, Hugo Caire; Sharshar, Tarek; Chrétien, Fabrice; Bozza, Fernando Augusto
2018-01-30
Microglia function is essential to maintain the brain homeostasis. Evidence shows that aged microglia are primed and show exaggerated response to acute inflammatory challenge. Systemic inflammation signals to the brain inducing changes that impact cognitive function. However, the mechanisms involved in age-related cognitive decline associated to episodic systemic inflammation are not completely understood. The aim of this study was to identify neuropathological features associated to age-related cognitive decline in a mouse model of episodic systemic inflammation. Young and aged Swiss mice were injected with low doses of LPS once a week for 6 weeks to induce episodic systemic inflammation. Sickness behavior, inflammatory markers, and neuroinflammation were assessed in different phases of systemic inflammation in young and aged mice. Behavior was evaluated long term after episodic systemic inflammation by open field, forced swimming, object recognition, and water maze tests. Episodic systemic inflammation induced systemic inflammation and sickness behavior mainly in aged mice. Systemic inflammation induced depressive-like behavior in both young and aged mice. Memory and learning were significantly affected in aged mice that presented lower exploratory activity and deficits in episodic and spatial memories, compared to aged controls and to young after episodic systemic inflammation. Systemic inflammation induced acute microglia activation in young mice that returned to base levels long term after episodic systemic inflammation. Aged mice presented dystrophic microglia in the hippocampus and entorhinal cortex at basal level and did not change morphology in the acute response to SI. Regardless of their dystrophic microglia, aged mice produced higher levels of pro-inflammatory (IL-1β and IL-6) as well as pro-resolution (IL-10 and IL-4) cytokines in the brain. Also, higher levels of Nox2 expression, oxidized proteins and lower antioxidant defenses were found in the aged brains compared to the young after episodic systemic inflammation. Our data show that aged mice have increased susceptibility to episodic systemic inflammation. Aged mice that showed cognitive impairments also presented higher oxidative stress and abnormal production of cytokines in their brains. These results indicate that a neuroinflammation and oxidative stress are pathophysiological mechanisms of age-related cognitive impairments.
Karki, Pratap; Birukova, Anna A.
2018-01-01
The maintenance of endothelial barrier integrity is absolutely essential to prevent the vascular leak associated with pneumonia, pulmonary edema resulting from inhalation of toxins, acute elevation to high altitude, traumatic and septic lung injury, acute lung injury (ALI), and its life-threatening complication, acute respiratory distress syndrome (ARDS). In addition to the long-known edemagenic and inflammatory agonists, emerging evidences suggest that factors of endothelial cell (EC) mechanical microenvironment such as blood flow, mechanical strain of the vessel, or extracellular matrix stiffness also play an essential role in the control of endothelial permeability and inflammation. Recent studies from our group and others have demonstrated that substrate stiffening causes endothelial barrier disruption and renders EC more susceptible to agonist-induced cytoskeletal rearrangement and inflammation. Further in vivo studies have provided direct evidence that proinflammatory stimuli increase lung microvascular stiffness which in turn exacerbates endothelial permeability and inflammation and perpetuates a vicious circle of lung inflammation. Accumulating evidence suggests a key role for RhoA GTPases signaling in stiffness-dependent mechanotransduction mechanisms defining EC permeability and inflammatory responses. Vascular stiffening is also known to be a key contributor to other cardiovascular diseases such as arterial pulmonary hypertension (PH), although the precise role of stiffness in the development and progression of PH remains to be elucidated. This review summarizes the current understanding of stiffness-dependent regulation of pulmonary EC permeability and inflammation, and discusses potential implication of pulmonary vascular stiffness alterations at macro- and microscale in development and modulation of ALI and PH. PMID:29714090
Tuberculosis in the elderly: Why inflammation matters.
Piergallini, Tucker J; Turner, Joanne
2018-05-01
Growing old is associated with an increase in the basal inflammatory state of an individual and susceptibility to many diseases, including infectious diseases. Evidence is growing to support the concept that inflammation and disease susceptibility in the elderly is linked. Our studies focus on the infectious disease tuberculosis (TB), which is caused by Mycobacterium tuberculosis (M.tb), a pathogen that infects approximately one fourth of the world's population. Aging is a major risk factor for developing TB, and inflammation has been strongly implicated. In this review we will discuss the relationship between inflammation in the lung and susceptibility to develop and succumb to TB in old age. Further understanding of the relationship between inflammation, age, and M.tb will lead to informed decisions about TB prevention and treatment strategies that are uniquely designed for the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.
Kanda, Atsuhiro; Ishida, Susumu
2018-03-25
The renin-angiotensin system (RAS), a crucial regulator of systemic blood pressure (circulatory RAS), plays distinct roles in pathological angiogenesis and inflammation in various organs (tissue RAS), such as diabetic microvascular complications. Using ocular clinical samples and animal disease models, we elucidated molecular mechanisms in which tissue RAS excites the expression of vascular endothelial growth factor (VEGF)-A responsible for retinal inflammation and angiogenesis, the two major pathological events in diabetic retinopathy (DR). Furthermore, we showed the involvement of (pro)renin receptor [(P)RR] in retinal RAS activation and its concurrent intracellular signal transduction (e.g., extracellular signal-regulated kinase); namely, the (P)RR-induced dual pathogenic bioactivity referred to as the receptor-associated prorenin system. Indeed, neovascular endothelial cells in the fibrovascular tissue collected from eyes with proliferative DR were immunoreactive for the receptor-associated prorenin system components including prorenin, (P)RR, phosphorylated extracellular signal-regulated kinase and VEGF-A. Protein levels of soluble (P)RR increased with its positive correlations with prorenin, renin enzymatic activity and VEGF in the vitreous of proliferative DR eyes, suggesting a close link between (P)RR and VEGF-A-driven angiogenic activity. Furthermore, we revealed an unsuspected, PAPS-independent role of (P)RR in glucose-induced oxidative stress. Recently, we developed an innovative single-strand ribonucleic acid interference molecule selectively targeting human and mouse (P)RR, and confirmed its efficacy in suppressing diabetes-induced retinal inflammation in mice. Our data using clinical samples and animal models suggested the significant implication of (P)RR in the pathogenesis of DR, and the potential usefulness of the ribonucleic acid interference molecule as a therapeutic agent to attenuate ocular inflammation and angiogenesis. © 2018 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.
Watson, Nathan; Ding, Bo; Zhu, Xiaoxia; Frisina, Robert D
2017-11-01
Chronic, low-grade inflammation, or inflammaging, is a crucial contributor to various age-related pathologies and natural processes in aging tissue, including the nervous system. Over the past two decades, much effort has been done to understand the mechanisms of inflammaging in disease models such as type II diabetes, cardiovascular disease, Alzheimer's disease, Parkinson's disease, and others. However, despite being the most prevalent neurodegenerative disorder, the number one communication disorder, and one of the top three chronic medical conditions of our aged population; little research has been conducted on the potential role of inflammation in age-related hearing loss (ARHL). Recently, it has been suggested that there is an inflammatory presence in the cochlea, perhaps involving diffusion processes of the blood-brain barrier as it relates to the inner ear. Recent research has found correlations between hearing loss and markers such as C-reactive protein, IL-6, and TNF-α indicating inflammatory status in human case-cohort studies. However, there have been very few reports of in vivo research investigating the role of chronic inflammation's in hearing loss in the aging cochlea. Future research directed at better understanding the mechanisms of inflammation in the cochlea as well as the natural changes acquired with aging may provide a better understanding of how this process can accelerate presbycusis. Animal model experimentation and pre-clinical studies designed to recognize and characterize cochlear inflammatory mechanisms may suggest novel treatment strategies for preventing or treating ARHL. In this review, we seek to summarize key research in chronic inflammation, discuss its implications for possible roles in ARHL, and finally suggest directions for future investigations. Copyright © 2017 Elsevier B.V. All rights reserved.
Curti, Maira Ladeia R.; Jacob, Patrícia; Borges, Maria Carolina; Rogero, Marcelo Macedo; Ferreira, Sandra Roberta G.
2011-01-01
Obesity is currently considered a serious public health issue due to its strong impact on health, economy, and quality of life. It is considered a chronic low-grade inflammation state and is directly involved in the genesis of metabolic disturbances, such as insulin resistance and dyslipidemia, which are well-known risk factors for cardiovascular disease. Furthermore, there is evidence that genetic variation that predisposes to inflammation and metabolic disturbances could interact with environmental factors, such as diet, modulating individual susceptibility to developing these conditions. This paper aims to review the possible interactions between diet and single-nucleotide polymorphisms (SNPs) in genes implicated on the inflammatory response, lipoprotein metabolism, and oxidative status. Therefore, the impact of genetic variants of the peroxisome proliferator-activated receptor-(PPAR-)gamma, tumor necrosis factor-(TNF-)alpha, interleukin (IL)-1, IL-6, apolipoprotein (Apo) A1, Apo A2, Apo A5, Apo E, glutathione peroxidases 1, 2, and 4, and selenoprotein P exposed to variations on diet composition is described. PMID:21773006
Effect of physical exercise on brain and lipid metabolism in mouse models of multiple sclerosis.
Houdebine, Léo; Gallelli, Cristina Anna; Rastelli, Marialetizia; Sampathkumar, Nirmal Kumar; Grenier, Julien
2017-10-01
Multiple sclerosis (MS) is a central nervous demyelinating disease characterized by cyclic loss and repair of myelin sheaths associated with chronic inflammation and neuronal loss. This degenerative pathology is accompanied by modified levels of oxysterols (oxidative derivatives of cholesterol, implicated in cholesterol metabolism), highlighted in the brain, blood and cerebrospinal fluid of MS patients. The pathological accumulation of such derivatives is thought to participate in the onset and progression of the disease through their implication in inflammation, oxidative stress, demyelination and neurodegeneration. In this context, physical exercise is envisaged as a complementary resource to ameliorate therapeutic strategies. Indeed, physical activity exerts beneficial effects on neuronal plasticity, decreases inflammation and oxidative stress and improves blood-brain integrity in extents that could be beneficial for brain health. The present review attempts to summarize the available data on the positive effect of physical exercise to highlight possible links between physical activity and modulation of cholesterol/oxysterol homeostasis in MS. Copyright © 2017 Elsevier B.V. All rights reserved.
Bench-to-bedside review: Toll-like receptors and their role in septic shock
Opal, Steven M; Huber, Christian E
2002-01-01
The Toll-like receptors (TLRs) are essential transmembrane signaling receptors of the innate immune system that alert the host to the presence of a microbial invader. The recent discovery of the TLRs has rapidly expanded our knowledge of molecular events that initiate host–pathogen interactions. These functional attributes of the cellular receptors provide insights into the nature of pattern recognition receptors that activate the human antimicrobial defense systems. The fundamental significance of the TLRs in the generation of systemic inflammation and the pathogenesis of septic shock is reviewed. The potential clinical implications of therapeutic modulation of these recently characterized receptors of innate immunity are also discussed. PMID:11983038
Meydan, Chanan; Bekenstein, Uriya; Soreq, Hermona
2018-01-01
Sepsis and metabolic syndrome (MetS) are both inflammation-related entities with high impact for human health and the consequences of concussions. Both represent imbalanced parasympathetic/cholinergic response to insulting triggers and variably uncontrolled inflammation that indicates shared upstream regulators, including short microRNAs (miRs) and long non-coding RNAs (lncRNAs). These may cross talk across multiple systems, leading to complex molecular and clinical outcomes. Notably, biomedical and RNA-sequencing based analyses both highlight new links between the acquired and inherited pathogenic, cardiac and inflammatory traits of sepsis/MetS. Those include the HOTAIR and MIAT lncRNAs and their targets, such as miR-122, -150, -155, -182, -197, -375, -608 and HLA-DRA. Implicating non-coding RNA regulators in sepsis and MetS may delineate novel high-value biomarkers and targets for intervention.
Inflaming the Brain: CRPS a model disease to understand Neuroimmune interactions in Chronic Pain
Linnman, C; Becerra, L; Borsook, D
2012-01-01
We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS. PMID:23188523
Inflaming the brain: CRPS a model disease to understand neuroimmune interactions in chronic pain.
Linnman, C; Becerra, L; Borsook, D
2013-06-01
We review current concepts in CRPS from a neuroimaging perspective and point out topics and potential mechanisms that are suitable to be investigated in the next step towards understanding the pathophysiology of CRPS. We have outlined functional aspects of the syndrome, from initiating lesion via inflammatory mechanisms to CNS change and associated sickness behavior, with current evidence for up-regulation of immunological factors in CRPS, neuroimaging of systemic inflammation, and neuroimaging findings in CRPS. The initiation, maintenances and CNS targets implicated in CRPS and in the neuro-inflammatory reflex are discussed in terms of CRPS symptoms and recent preclinical studies. Potential avenues for investigating CRPS with PET and fMRI are described, along with roles of inflammation, treatment and behavior in CRPS. It is our hope that this outline will provoke discussion and promote further empirical studies on the interactions between central and peripheral inflammatory pathways manifest in CRPS.
Corridoni, Daniele; Chapman, Thomas; Ambrose, Tim; Simmons, Alison
2018-01-01
Activation of the innate immune system through pattern-recognition receptor (PRR) signaling plays a pivotal role in the early induction of host defense following exposure to pathogens. Loss of intestinal innate immune regulation leading aberrant immune responses has been implicated in the pathogenesis of inflammatory bowel disease (IBD). The precise role of PRRs in gut inflammation is not well understood, but considering their role as bacterial sensors and their genetic association with IBD, they likely contribute to dysregulated immune responses to the commensal microbiota. The purpose of this review is to evaluate the emerging functions of PRRs including their functional cross-talk, how they respond to mitochondrial damage, induce mitophagy or autophagy, and influence adaptive immune responses by interacting with the antigen presentation machinery. The review also summarizes some of the recent attempts to harness these pathways for therapeutic approaches in intestinal inflammation. PMID:29515999
Close, Taylor E; Cepinskas, Gediminas; Omatsu, Tatsushi; Rose, Keeley L; Summers, Kelly; Patterson, Eric K; Fraser, Douglas D
2013-08-01
To determine if the DKA-induced inflammation in juvenile mice provokes activation and dysfunction of CVECs. DKA in juvenile mice was induced with administration of STZ and ALX. Blood from DKA mice was assessed for cytokines and soluble cell adhesion proteins, and either DKA plasma or exogenous compounds were applied to immortalized bEND3. DKA increased circulating levels of IL-6, IL-8(KC), MCP-1, IL-10, sE-selectin, sICAM-1, and sVCAM-1. Stimulation of bEND3 with DKA plasma caused cellular activation (increased ROS and activation of NF-κΒ), upregulation of a proadhesive phenotype (E-selectin, ICAM-1, and VCAM-1), and increased leukocyte-bEND3 interaction (leukocyte rolling/adhesion). TEER, a measure of bEND3 monolayer integrity, was decreased by DKA plasma. Activation and dysfunction of bEND3 with DKA plasma were suppressed by plasma heat treatment (56°C, 1 hour) and replicated with the application of DKA recombinant cytomix (IL-6, IL-8[KC], MCP-1, and IL-10), implicating circulating inflammatory protein(s) as mediators. Treatment of bEND3 with β-OH-butyrate, the main ketone elevated in DKA, failed to mimic the DKA plasma-induced activation and dysfunction of bEND3. DKA elicits systemic inflammation associated with CVEC activation and dysfunction, possibly contributing to DKA-associated intracranial microvascular complications. © 2013 John Wiley & Sons Ltd.
Liu, Siyu; Wang, Xiling; Pan, Lilong; Wu, Weijun; Yang, Di; Qin, Ming; Jia, Wanwan; Xiao, Chenxi; Long, Fen; Ge, Junbo; Liu, Xinhua; Zhu, YiZhun
2018-03-01
Overproduction of inflammatory mediators contributes to uncontrolled inflammation during endotoxin shock. Cystathionine-γ-lyase (CSE), an enzyme involved in hydrogen sulfide (H 2 S) biosynthesis, has potential anti-inflammatory activity in a variety of inflammatory diseases. Jumonji domain-containing protein 3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in macrophage activation, but its function in CSE-mediated anti-inflammatory activities remains unknown. In the present study CSE was found to be upregulated in macrophages and mouse lipopolysaccharide (LPS) challenge models. LPS stimulation also enhanced the activation of JMJD3 and decreased H3K27me3 levels. JMJD3 knockdown upregulated H3K27me3 levels and attenuated the LPS-mediated inflammatory response. CSE knockout amplified the inflammatory cascade by increasing JMJD3 expression in septic mice. Similarly, enhanced production of inflammatory mediators by macrophages was mitigated by CSE overexpression via inhibition of JMJD3 expression. This is the first report indicating that inflammation enhanced CSE/H 2 S system biosynthesis, that in turn attenuated the LPS-triggered inflammatory response by regulating JMJD3 expression. Thus, the CSE/H 2 S system represents an epigenetic-based modification mechanism to prevent uncontrolled inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Particulate Air pollution mediated effects on insulin resistance in mice are independent of CCR2.
Liu, Cuiqing; Xu, Xiaohua; Bai, Yuntao; Zhong, Jixin; Wang, Aixia; Sun, Lixian; Kong, Liya; Ying, Zhekang; Sun, Qinghua; Rajagopalan, Sanjay
2017-03-03
Chronic exposure to fine ambient particulate matter (PM 2.5 ) induces insulin resistance. CC-chemokine receptor 2 (CCR2) appears to be essential in diet-induced insulin resistance implicating an important role for systemic cellular inflammation in the process. We have previously suggested that CCR2 is important in PM 2.5 exposure-mediated inflammation leading to insulin resistance under high fat diet situation. The present study assessed the importance of CCR2 in PM 2.5 exposure-induced insulin resistance in the context of normal diet. C57BL/6 and CCR2 -/- mice were subjected to exposure to concentrated ambient PM 2.5 or filtered air for 6 months. In C57BL/6 mice, concentrated ambient PM 2.5 exposure induced whole-body insulin resistance, macrophage infiltration into the adipose tissue, and upregulation of phosphoenolpyruvate carboxykinase (PEPCK) in the liver. While CCR2 deficiency reduced adipose macrophage content in the PM 2.5 -exposed animals, it did not improve systemic insulin resistance. This lack of improvement in insulin resistance was paralleled by increased hepatic expression of genes in PEPCK and inflammation. CCR2 deletion failed to attenuate PM 2.5 exposure-induced insulin resistance in mice fed on normal diet. The present study indicates that PM 2.5 may dysregulate glucose metabolism directly without exerting proinflammatory effects.
Tahtouh, Muriel; Croq, Françoise; Lefebvre, Christophe; Pestel, Joël
2009-09-01
The complement system is well known as an enzyme cascade that helps to defend against infections. Indeed, this ancestral system bridges innate and adaptive immunity. Its implication in diseases of the central nervous system (CNS), has led to an increased number of studies. Complement activation in the CNS has been generally considered to contribute to tissue damage. However, recent studies suggest that complement may be neuroprotective, and can participate in maintenance and repair of the adult brain. Here, we will review this dual role of complement proteins and some of their functional interactions with part of the chemokine and cytokine network associated with the protection of CNS integrity.
Modulation of inflammation by interleukin-27
Bosmann, Markus; Ward, Peter A.
2013-01-01
A growing body of evidence suggests an essential role of the heterodimeric cytokine, IL-27, for regulating immunity. IL-27 is composed of two subunits (p28 and EBI3) and is classified as a member of the IL-12 family of cytokines. APCs have been recognized as a major cellular source of IL-27 following activation with microbial products or IFNs (types I and II). In this review, we describe the current knowledge of the implications of IL-27 during the pathogenesis of infectious and autoimmune diseases. Experimental studies have used genetically targeted IL-27RA−/− mice, EBI3−/− mice, and p28−/− mice or involved study designs with administration of bioengineered IL-27/IL-27RA homologs. Whereas many reports have described that IL-27 suppresses inflammation, we also review the current literature, suggesting promotion of inflammation by IL-27 in some settings. Recent advances have also been made in understanding the cross-talk of cleavage products of the complement system with IL-27-mediated immune responses. Additional data on IL-27 have been obtained recently by observational studies in human patients with acute and chronic inflammatory diseases. Collectively, the findings from the past decade identify IL-27 as a critical immunoregulatory cytokine, especially for T cells, whereas some controversy is fueled by results challenging the view of IL-27 as a classical silencer of inflammation. PMID:23904441
Ge, Qian; Brichard, Sonia; Yi, Xu; Li, QiFu
2014-01-01
Obesity is associated closely with the metabolic syndrome (MS). It is well known that obesity-induced chronic inflammation plays a fundamental role in the pathogenesis of MS. White adipose tissue (AT) is the primary site for the initiation and exacerbation of obesity-associated inflammation. Exploring the mechanisms of white AT inflammation and resetting the immunological balance in white AT could be crucial for the management of MS. Several prominent molecular mechanisms have been proposed to mediate inflammation in white AT, including hypoxia, endoplasmic reticulum stress, lipotoxicity, and metabolic endotoxemia. Recently, a growing body of evidence supports the role of miRNAs as a new important inflammatory mediator by regulating both the adaptive and innate immunity. This review will focus on the implication of miRNAs in white AT inflammation in obesity, and will also highlight the potential of miRNAs as targets for therapeutic intervention in MS as well as the challenges lying in miRNA-targeting therapeutics.
O'Mary, Hannah L; Aldayel, Abdulaziz M; Valdes, Solange A; Naguib, Youssef W; Li, Xu; Salvady, Karun; Cui, Zhengrong
2017-06-05
Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions.
2016-01-01
The global obesity epidemic, dubbed “globesity” by the World Health Organisation, is a pressing public health issue. The aetiology of obesity is multifactorial incorporating both genetic and environmental factors. Recently, epidemiological studies have observed an association between microbes and obesity. Obesity-promoting microbiome and resultant gut barrier disintegration have been implicated as key factors facilitating metabolic endotoxaemia. This is an influx of bacterial endotoxins into the systemic circulation, believed to underpin obesity pathogenesis. Adipocyte dysfunction and subsequent adipokine secretion characterised by low grade inflammation, were conventionally attributed to persistent hyperlipidaemia. They were thought of as pivotal in perpetuating obesity. It is now debated whether infection and endotoxaemia are also implicated in initiating and perpetuating low grade inflammation. The fact that obesity has a prevalence of over 600 million and serves as a risk factor for chronic diseases including cardiovascular disease and type 2 diabetes mellitus is testament to the importance of exploring the role of microbes in obesity pathobiology. It is on this basis that Massachusetts General Hospital is sponsoring the Faecal Microbiota Transplant for Obesity and Metabolism clinical trial, to study the impact of microbiome composition on weight. The association of microbes with obesity, namely, adenovirus infection and metabolic endotoxaemia, is reviewed. PMID:28004036
The Role of Extracellular Adenosine Triphosphate in Ischemic Organ Injury.
Zhao, Hailin; Kilgas, Susan; Alam, Azeem; Eguchi, Shiori; Ma, Daqing
2016-05-01
Ischemic tissue injury contributes to significant morbidity and mortality and is implicated in a range of pathologic conditions, including but not limited to myocardial infarction, ischemic stroke, and acute kidney injury. The associated reperfusion phase is responsible for the activation of the innate and adaptive immune system, further accentuating inflammation. Adenosine triphosphate molecule has been implicated in various ischemic conditions, including stroke and myocardial infarction. Adenosine triphosphate is a well-defined intracellular energy transfer and is commonly referred to as the body's "energy currency." However, Laboratory studies have demonstrated that extracellular adenosine triphosphate has the ability to initiate inflammation and is therefore referred to as a damage-associated molecular pattern. Purinergic receptors-dependent signaling, proinflammatory cytokine release, increased Ca influx into cells, and subsequent apoptosis have been shown to form a common underlying extracellular adenosine triphosphate molecular mechanism in ischemic organ injury. In this review, we aim to discuss the molecular mechanisms behind adenosine triphosphate-mediated ischemic tissue injury and evaluate the role of extracellular adenosine triphosphate in ischemic injury in specific organs, in order to provide a greater understanding of the pathophysiology of this complex process. We also appraise potential future therapeutic strategies to limit damage in various organs, including the heart, brain, kidneys, and lungs.
Enteric bacterial proteases in inflammatory bowel disease- pathophysiology and clinical implications
Carroll, Ian M; Maharshak, Nitsan
2013-01-01
Numerous reports have identified a dysbiosis in the intestinal microbiota in patients suffering from inflammatory bowel diseases (IBD), yet the mechanism(s) in which this complex microbial community initiates or perpetuates inflammation remains unclear. The purpose of this review is to present evidence for one such mechanism that implicates enteric microbial derived proteases in the pathogenesis of IBD. We highlight and discuss studies demonstrating that proteases and protease receptors are abundant in the digestive system. Additionally, we investigate studies demonstrating an association between increased luminal protease activity and activation of protease receptors, ultimately resulting in increased intestinal permeability and exacerbation of colitis in animal models as well as in human IBD. Proteases are essential for the normal functioning of bacteria and in some cases can serve as virulence factors for pathogenic bacteria. Although not classified as traditional virulence factors, proteases originating from commensal enteric bacteria also have a potential association with intestinal inflammation via increased enteric permeability. Reports of increased protease activity in stools from IBD patients support a possible mechanism for a dysbiotic enteric microbiota in IBD. A better understanding of these pathways and characterization of the enteric bacteria involved, their proteases, and protease receptors may pave the way for new therapeutic approaches for these diseases. PMID:24431894
Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases.
Ciechomska, Marzena; O'Reilly, Steven
2016-01-01
Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.
Mixed lineage kinases (MLKs): a role in dendritic cells, inflammation and immunity?
Handley, Matthew E; Rasaiyaah, Jane; Chain, Benjamin M; Katz, David R
2007-01-01
This review summarizes current knowledge about the mixed lineage kinases (MLKs) and explores their potential role in inflammation and immunity. MLKs were identified initially as signalling molecules in the nervous system. They were also shown to play a role in the cell cycle. Further studies documented three groups of MLKs, and showed that they may be activated via the c-Jun NH2 terminal kinase (JNK) pathway, and by Rho GTPases. The biochemistry of the MLKs has been investigated in considerable detail. Homodimerization and heterodimerization can occur, and both autophosphorylation and autoinhibition are seen. The interaction between MLKs and JNK interacting protein (JIP) scaffolds, and the resultant effects on mitogen activated protein kinases, have been identified. Clearly, there is some redundancy within the MLK pathway(s), since mice which lack the MLK3 molecule are not abnormal. However, using a combination of biochemical analysis and pharmacological inhibitors, several recent studies in vitro have suggested that MLKs are not only expressed in cells of the immune system (as well as in the nervous system), but also may be implicated selectively in the signalling pathway that follows on toll-like receptor ligation in innate sentinel cells, such as the dendritic cell. PMID:17408454
Viegas, Carla S. B.; Costa, Rúben M.; Santos, Lúcia; Videira, Paula A.; Silva, Zélia; Araújo, Nuna; Macedo, Anjos L.; Matos, António P.; Vermeer, Cees; Simes, Dina C.
2017-01-01
Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP) is a vitamin K dependent protein (VKDP) shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP) are synthesized and γ-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA) up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein γ-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNFα, IL-1β and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel molecular mediator linking inflammation and calcification events, with potential therapeutic application. PMID:28542410
Semini, Geo; Hildmann, Annette; Klein, Andreas; Lucka, Lothar; Schön, Margarete; Schön, Michael P; Shmanai, Vadim; Danker, Kerstin
2014-02-01
In cutaneous inflammatory diseases, such as psoriasis, atopic dermatitis and allergic contact dermatitis, skin-infiltrating T lymphocytes and dendritic cells modulate keratinocyte function via the secretion of pro-inflammatory cytokines. Keratinocytes then produce mediators that recruit and activate immune cells and amplify the inflammatory response. These pathophysiological tissue changes are caused by altered gene expression and the proliferation and maturation of dermal and epidermal cells. We recently demonstrated that the glycosidated phospholipid Ino-C2-PAF down-regulates a plethora of gene products associated with innate and acquired immune responses and inflammation in the HaCaT keratinocyte cell line. To further evaluate the influence of Ino-C2-PAF we established an in vitro 2D-model of epidermal inflammation. The induction of inflammation and the impact of Ino-C2-PAF were assessed in this system using a genome-wide microarray analysis. In addition, the expression of selected genes was validated using qRT-PCR and flow cytometry. Treatment of the keratinocytes with a mix of proinflammatory cytokines resulted in transcriptional effects on a variety of genes involved in cutaneous inflammation and immunity, while additional treatment with Ino-C2-PAF counteracted the induction of many of these genes. Remarkably, Ino-C2-PAF suppressed the expression of a group of targets that are implicated in antigen processing and presentation, including MHC molecules. Thus, it is conceivable that Ino-C2-PAF possess therapeutic potential for inflammatory skin disorders, such as psoriasis and allergic contact dermatitis. Copyright © 2013 Elsevier Inc. All rights reserved.
Hansen, G; Berry, G; DeKruyff, R H; Umetsu, D T
1999-01-01
Allergic asthma, which is present in as many as 10% of individuals in industrialized nations, is characterized by chronic airway inflammation and hyperreactivity induced by allergen-specific Th2 cells secreting interleukin-4 (IL-4) and IL-5. Because Th1 cells antagonize Th2 cell functions, it has been proposed that immune deviation toward Th1 can protect against asthma and allergies. Using an adoptive transfer system, we assessed the roles of Th1, Th2, and Th0 cells in a mouse model of asthma and examined the capacity of Th1 cells to counterbalance the proasthmatic effects of Th2 cells. Th1, Th2, and Th0 lines were generated from ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice and transferred into lymphocyte-deficient, OVA-treated severe combined immunodeficiency (SCID) mice. OVA-specific Th2 and Th0 cells induced significant airway hyperreactivity and inflammation. Surprisingly, Th1 cells did not attenuate Th2 cell-induced airway hyperreactivity and inflammation in either SCID mice or in OVA-immunized immunocompetent BALB/c mice, but rather caused severe airway inflammation. These results indicate that antigen-specific Th1 cells may not protect or prevent Th2-mediated allergic disease, but rather may cause acute lung pathology. These findings have significant implications with regard to current therapeutic goals in asthma and allergy and suggest that conversion of Th2-dominated allergic inflammatory responses into Th1-dominated responses may lead to further problems.
2013-01-01
Introduction Patients with rheumatoid arthritis (RA) are at an increased risk for cardiovascular disease (CVD). An early manifestation of CVD is endothelial dysfunction which can lead to functional and morphological vascular abnormalities. Classical CVD risk factors and inflammation are both implicated in causing endothelial dysfunction in RA. The objective of the present study was to examine the effect of baseline inflammation, cumulative inflammation, and classical CVD risk factors on the vasculature following a six-year follow-up period. Methods A total of 201 RA patients (155 females, median age (25th to 75th percentile): 61 years (53 to 67)) were examined at baseline (2006) for presence of classical CVD risk factors and determination of inflammation using C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). At follow-up (2012) patients underwent assessments of microvascular and macrovascular endothelium-dependent and endothelium-independent function, along with assessment of carotid atherosclerosis. The CRP and ESR were recorded from the baseline study visit to the follow-up visit for each patient to calculate cumulative inflammatory burden. Results Classical CVD risk factors, but not RA disease-related inflammation, predicted microvascular endothelium-dependent and endothelium-independent function, macrovascular endothelium-independent function and carotid atherosclerosis. These findings were similar in a sub-group of patients free from CVD, and not receiving non-steroidal anti-inflammatory drugs, cyclooxygenase 2 inhibitors or biologics. Cumulative inflammation was not associated with microvascular and macrovascular endothelial function, but a weak association was apparent between area under the curve for CRP and carotid atherosclerosis. Conclusions Classical CVD risk factors may be better long-term predictors of vascular function and morphology than systemic disease-related inflammation in patients with RA. Further studies are needed to confirm if assessments of vascular function and morphology are predictive of long-term CV outcomes in RA. PMID:24289091
Touil, Hanane; Kobert, Antonia; Lebeurrier, Nathalie; Rieger, Aja; Saikali, Philippe; Lambert, Caroline; Fawaz, Lama; Moore, Craig S; Prat, Alexandre; Gommerman, Jennifer; Antel, Jack P; Itoyama, Yasuto; Nakashima, Ichiro; Bar-Or, Amit
2018-04-19
The success of clinical trials of selective B cell depletion in patients with relapsing multiple sclerosis (MS) indicates B cells are important contributors to peripheral immune responses involved in the development of new relapses. Such B cell contribution to peripheral inflammation likely involves antibody-independent mechanisms. Of growing interest is the potential that B cells, within the MS central nervous system (CNS), may also contribute to the propagation of CNS-compartmentalized inflammation in progressive (non-relapsing) disease. B cells are known to persist in the inflamed MS CNS and are more recently described as concentrated in meningeal immune-cell aggregates, adjacent to the subpial cortical injury which has been associated with progressive disease. How B cells are fostered within the MS CNS and how they may contribute locally to the propagation of CNS-compartmentalized inflammation remain to be elucidated. We considered whether activated human astrocytes might contribute to B cell survival and function through soluble factors. B cells from healthy controls (HC) and untreated MS patients were exposed to primary human astrocytes that were either maintained under basal culture conditions (non-activated) or pre-activated with standard inflammatory signals. B cell exposure to astrocytes included direct co-culture, co-culture in transwells, or exposure to astrocyte-conditioned medium. Following the different exposures, B cell survival and expression of T cell co-stimulatory molecules were assessed by flow cytometry, as was the ability of differentially exposed B cells to induce activation of allogeneic T cells. Secreted factors from both non-activated and activated human astrocytes robustly supported human B cell survival. Soluble products of pre-activated astrocytes also induced B cell upregulation of antigen-presenting cell machinery, and these B cells, in turn, were more efficient activators of T cells. Astrocyte-soluble factors could support survival and activation of B cell subsets implicated in MS, including memory B cells from patients with both relapsing and progressive forms of disease. Our findings point to a potential mechanism whereby activated astrocytes in the inflamed MS CNS not only promote a B cell fostering environment, but also actively support the ability of B cells to contribute to the propagation of CNS-compartmentalized inflammation, now thought to play key roles in progressive disease.
Measelle, Jeffrey R; Ablow, Jennifer C
2018-02-01
Adversity early in life is associated with systemic inflammation by adolescence and beyond. At present, few studies have investigated the associations between different forms of adversity and inflammation during infancy, making it difficult to specify the origins of disease vulnerability. This study examined the association between multiple forms of early adversity - socioeconomic status disadvantage, familial stress, maternal depression, and security of attachment - and individual differences in a composite measure of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and tumor necrosis factor-alpha) and the inflammatory protein C-reactive protein that were collected via saliva when (n = 49) children were 17 months old. In addition to gauging the direct effects of adversity, we also tested the hypothesis that infants' attachment relationship with their mother might buffer infants against the immunologic effects of early adversity. Results show that familial stress, maternal depression, and security of attachment were directly associated with infant salivary inflammation and that attachment status moderated the effect of maternal depression. The findings suggest that exposure to certain forms of adversity very early in life may engender a pro-inflammatory phenotype with possible life-long implications for health.
Autophagy and its implication in human oral diseases.
Tan, Ya-Qin; Zhang, Jing; Zhou, Gang
2017-02-01
Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis.
Chronic peripheral inflammation, hippocampal neurogenesis, and behavior.
Chesnokova, Vera; Pechnick, Robert N; Wawrowsky, Kolja
2016-11-01
Adult hippocampal neurogenesis is involved in memory and learning, and disrupted neurogenesis is implicated in cognitive impairment and mood disorders, including anxiety and depression. Some long-term peripheral illnesses and metabolic disorders, as well as normal aging, create a state of chronic peripheral inflammation. These conditions are associated with behavioral disturbances linked to disrupted adult hippocampal neurogenesis, such as cognitive impairment, deficits in learning and memory, and depression and anxiety. Pro-inflammatory cytokines released in the periphery are involved in peripheral immune system-to-brain communication by activating resident microglia in the brain. Activated microglia reduce neurogenesis by suppressing neuronal stem cell proliferation, increasing apoptosis of neuronal progenitor cells, and decreasing survival of newly developing neurons and their integration into existing neuronal circuits. In this review, we summarize evolving evidence that the state of chronic peripheral inflammation reduces adult hippocampal neurogenesis, which, in turn, produces the behavioral disturbances observed in chronic inflammatory disorders. As there are no data available on neurogenesis in humans with chronic peripheral inflammatory disease, we focus on animal models and, in parallel, consider the evidence of cognitive disturbance and mood disorders in human patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Secreted Phospholipases A₂ from Animal Venoms in Pain and Analgesia.
Zambelli, Vanessa O; Picolo, Gisele; Fernandes, Carlos A H; Fontes, Marcos R M; Cury, Yara
2017-12-19
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A₂ (sPLA₂s). These PLA₂ belong to distinct PLA₂s groups. For example, snake venom sPLA₂s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA₂ belongs to group III of sPLA₂s. It is well known that PLA₂, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA₂s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA₂s from animal venoms, particularly snake venoms.
Modulation of antigen processing by haem-oxygenase 1. Implications on inflammation and tolerance.
Riquelme, Sebastián A; Carreño, Leandro J; Espinoza, Janyra A; Mackern-Oberti, Juan Pablo; Alvarez-Lobos, Manuel M; Riedel, Claudia A; Bueno, Susan M; Kalergis, Alexis M
2016-09-01
Haem-oxygenase-1 (HO-1) is an enzyme responsible for the degradation of haem that can suppress inflammation, through the production of carbon monoxide (CO). It has been shown in several experimental models that genetic and pharmacological induction of HO-1, as well as non-toxic administration of CO, can reduce inflammatory diseases, such as endotoxic shock, type 1 diabetes and graft rejection. Recently, it was shown that the HO-1/CO system can alter the function of antigen-presenting cells (APCs) and reduce T-cell priming, which can be beneficial during immune-driven inflammatory diseases. The molecular mechanisms by which the HO-1 and CO reduce both APC- and T-cell-driven immunity are just beginning to be elucidated. In this article we discuss recent findings related to the immune regulatory capacity of HO-1 and CO at the level of recognition of pathogen-associated molecular patterns and T-cell priming by APCs. Finally, we propose a possible regulatory role for HO-1 and CO over the recently described mitochondria-dependent immunity. These concepts could contribute to the design of new therapeutic tools for inflammation-based diseases. © 2016 John Wiley & Sons Ltd.
Autophagy and its implication in human oral diseases
Tan, Ya-Qin; Zhang, Jing; Zhou, Gang
2017-01-01
ABSTRACT Macroautophagy/autophagy is a conserved lysosomal degradation process essential for cell physiology and human health. By regulating apoptosis, inflammation, pathogen clearance, immune response and other cellular processes, autophagy acts as a modulator of pathogenesis and is a potential therapeutic target in diverse diseases. With regard to oral disease, autophagy can be problematic either when it is activated or impaired, because this process is involved in diverse functions, depending on the specific disease and its level of progression. In particular, activated autophagy functions as a cytoprotective mechanism under environmental stress conditions, which regulates tumor growth and mediates resistance to anticancer treatment in established tumors. During infections and inflammation, activated autophagy selectively delivers microbial antigens to the immune systems, and is therefore connected to the elimination of intracellular pathogens. Impaired autophagy contributes to oxidative stress, genomic instability, chronic tissue damage, inflammation and tumorigenesis, and is involved in aberrant bacterial clearance and immune priming. Hence, substantial progress in the study of autophagy provides new insights into the pathogenesis of oral diseases. This review outlines the mechanisms of autophagy, and highlights the emerging roles of this process in oral cancer, periapical lesions, periodontal diseases, and oral candidiasis. PMID:27764582
Aspirin reduces lipopolysaccharide-induced pulmonary inflammation in human models of ARDS.
Hamid, U; Krasnodembskaya, A; Fitzgerald, M; Shyamsundar, M; Kissenpfennig, A; Scott, C; Lefrancais, E; Looney, M R; Verghis, R; Scott, J; Simpson, A J; McNamee, J; McAuley, D F; O'Kane, C M
2017-11-01
Platelets play an active role in the pathogenesis of acute respiratory distress syndrome (ARDS). Animal and observational studies have shown aspirin's antiplatelet and immunomodulatory effects may be beneficial in ARDS. To test the hypothesis that aspirin reduces inflammation in clinically relevant human models that recapitulate pathophysiological mechanisms implicated in the development of ARDS. Healthy volunteers were randomised to receive placebo or aspirin 75 or 1200 mg (1:1:1) for seven days prior to lipopolysaccharide (LPS) inhalation, in a double-blind, placebo-controlled, allocation-concealed study. Bronchoalveolar lavage (BAL) was performed 6 hours after inhaling 50 µg of LPS. The primary outcome measure was BAL IL-8. Secondary outcome measures included markers of alveolar inflammation (BAL neutrophils, cytokines, neutrophil proteases), alveolar epithelial cell injury, systemic inflammation (neutrophils and plasma C-reactive protein (CRP)) and platelet activation (thromboxane B2, TXB2). Human lungs, perfused and ventilated ex vivo (EVLP) were randomised to placebo or 24 mg aspirin and injured with LPS. BAL was carried out 4 hours later. Inflammation was assessed by BAL differential cell counts and histological changes. In the healthy volunteer (n=33) model, data for the aspirin groups were combined. Aspirin did not reduce BAL IL-8. However, aspirin reduced pulmonary neutrophilia and tissue damaging neutrophil proteases (Matrix Metalloproteinase (MMP)-8/-9), reduced BAL concentrations of tumour necrosis factor α and reduced systemic and pulmonary TXB2. There was no difference between high-dose and low-dose aspirin. In the EVLP model, aspirin reduced BAL neutrophilia and alveolar injury as measured by histological damage. These are the first prospective human data indicating that aspirin inhibits pulmonary neutrophilic inflammation, at both low and high doses. Further clinical studies are indicated to assess the role of aspirin in the prevention and treatment of ARDS. NCT01659307 Results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
D’Orazio, Nicolantonio; Gammone, Maria Alessandra; Gemello, Eugenio; De Girolamo, Massimo; Cusenza, Salvatore; Riccioni, Graziano
2012-01-01
Inflammation is a hot topic in medical research, because it plays a key role in inflammatory diseases: rheumatoid arthritis (RA) and other forms of arthritis, diabetes, heart diseases, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, even cancer and many others. Over the past few decades, it was realized that the process of inflammation is virtually the same in different disorders, and a better understanding of inflammation may lead to better treatments for numerous diseases. Inflammation is the activation of the immune system in response to infection, irritation, or injury, with an influx of white blood cells, redness, heat, swelling, pain, and dysfunction of the organs involved. Although the pathophysiological basis of these conditions is not yet fully understood, reactive oxygen species (ROS) have often been implicated in their pathogenesis. In fact, in inflammatory diseases the antioxidant defense system is compromised, as evidenced by increased markers of oxidative stress, and decreased levels of protective antioxidant enzymes in patients with rheumatoid arthritis (RA). An enriched diet containing antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic substances, has been suggested to improve symptoms by reducing disease-related oxidative stress. In this respect, the marine world represents a largely untapped reserve of bioactive ingredients, and considerable potential exists for exploitation of these bioactives as functional food ingredients. Substances such as n-3 oils, carotenoids, vitamins, minerals and peptides provide a myriad of health benefits, including reduction of cardiovascular diseases, anticarcinogenic and anti-inflammatory activities. New marine bioactives are recently gaining attention, since they could be helpful in combating chronic inflammatory degenerative conditions. The aim of this review is to examine the published studies concerning the potential pharmacological properties and application of many marine bioactives against inflammatory diseases. PMID:22690145
Aeroallergen and food IgE sensitization and local and systemic inflammation in asthma.
Patelis, A; Janson, C; Borres, M P; Nordvall, L; Alving, K; Malinovschi, A
2014-03-01
We recently reported an independent association between IgE sensitization to food allergens and increased airway inflammation, assessed by fraction of exhaled nitric oxide (FeNO), in a population-based study (J Allergy Clin Immunol, 130, 2012, 397). Similar studies have not been performed in populations with asthma. The aim of the present study was to investigate the allergic sensitization profile in asthmatics and examine FeNO, airway responsiveness and blood eosinophilia in relation to type and degree of IgE sensitization. FeNO, airway responsiveness, blood eosinophil count (B-Eos) and IgE sensitization to food allergens and aeroallergens were determined in 408 subjects with asthma, aged 10-34 years. Asthmatics had higher prevalence of IgE sensitization against all allergens than controls (P < 0.001). Mite, pollen, furry animal, mould and food sensitizations were each associated with increased FeNO, airway responsiveness and B-Eos in asthmatics. IgE sensitization to mould, furry animals and food allergens was independently related to FeNO (all P < 0.05) after adjustment for age, sex, height, smoking history and medication. IgE sensitization to mould (P < 0.001) and furry animals (P = 0.02) was related to airway responsiveness in a similar model. Finally, IgE sensitization to mould (P = 0.001), furry animals (P < 0.001) and food allergens (P < 0.001) was independently related to B-Eos. Independent effects of IgE sensitization to aeroallergens (furry animals and mould) and food allergens were found on both local and systemic markers of inflammation in asthma. The finding regarding food IgE sensitization is novel, and a clinical implication might be that even food sensitization must be assessed to fully understand inflammation patterns in asthma. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Pietrzak, Max
2016-03-01
Adhesive capsulitis (AC) is very poorly understood, particularly it's underlying etiology. Obesity and metabolic syndrome, which are strongly associated with chronic low grade inflammation, are becoming increasingly understood to underlie a raft of morbid states including upper limb pain syndromes, diabetes (DM), cardiovascular disease (CVD), cancer and central nervous system dysfunction and degeneration. Notwithstanding age, two of the strongest established risk factors for AC are DM and CVD. The hypothesis argues that similar to DM and CVD, the inflammation and capsular fibrosis seen in AC is precipitated by metabolic syndrome and chronic low grade inflammation. These pathophysiological mechanisms are highly likely to be perpetuated by upregulation of pro-inflammatory cytokine production, sympathetic dominance of autonomic balance, and neuro-immune activation. The hypothesis predicts and describes how these processes may etiologically underpin and induce each sub-classification of AC. An improved understanding of the etiology of AC may lead to more accurate diagnosis, improved management, treatment outcomes, and reduce or prevent pain, disability and suffering associated with the disease. The paper follows on with a discussion of similarities between the pathophysiology of AC to general systemic inflammatory control mechanisms whereby connective tissue (CT) fibrosis is induced as a storage depot for leukocytes and chronic inflammatory cells. The potential role of hyaluronic acid (HA), the primary component of the extracellular matrix (ECM) and CT, in the pathophysiology of AC is also discussed with potential treatment implications. Lastly, a biochemical link between physical and mental health through the ECM is described and the concept of a periventricular-limbic central driver of CT dysfunction is introduced. Copyright © 2016 Elsevier Ltd. All rights reserved.
Relaxin-2 in Cardiometabolic Diseases: Mechanisms of Action and Future Perspectives
Feijóo-Bandín, Sandra; Aragón-Herrera, Alana; Rodríguez-Penas, Diego; Portolés, Manuel; Roselló-Lletí, Esther; Rivera, Miguel; González-Juanatey, José R.; Lago, Francisca
2017-01-01
Despite the great effort of the medical community during the last decades, cardiovascular diseases remain the leading cause of death worldwide, increasing their prevalence every year mainly due to our new way of life. In the last years, the study of new hormones implicated in the regulation of energy metabolism and inflammation has raised a great interest among the scientific community regarding their implications in the development of cardiometabolic diseases. In this review, we will summarize the main actions of relaxin, a pleiotropic hormone that was previously suggested to improve acute heart failure and that participates in both metabolism and inflammation regulation at cardiovascular level, and will discuss its potential as future therapeutic target to prevent/reduce cardiovascular diseases. PMID:28868039
Ringel-Scaia, Veronica M.; McDaniel, Dylan K.; Allen, Irving C.
2017-01-01
Recent advances have revealed significant insight into Inflammatory bowel disease (IBD) pathobiology. Ulcerative colitis and Crohn's disease, the chronic relapsing clinical manifestations of IBD, are complex disorders with genetic and environmental influences. These diseases are associated with the dysregulation of immune tolerance, excessive Inflammation, and damage to the epithelial cell barrier. Increasing evidence indicates that pattern recognition receptors, including Toll-like receptors (TLRs) and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs), function to maintain immune system homeostasis, modulate the gastrointestinal microbiome, and promote proper intestinal epithelial cell regeneration and repair. New insights have revealed that NLR family members are essential components in maintaining this immune system homeostasis. To date, the vast majority of studies associated with NLRs have focused on family members that form a multiprotein signaling platform called the Inflammasome. These signaling complexes are responsible for the cleavage and activation of the potent pleotropic cytokines IL-1β and IL-18, and they facilitate a unique form of cell death defined as pyroptosis. In this review, we summarize the current paradigms associated with NLR Inflammasome maintenance of immune system homeostasis in the gastrointestinal system. New concepts related to canonical and noncanonical Inflammasome signaling, as well as the implications of classical and alternative Inflammasomes in IBD pathogenesis, are also reviewed. PMID:28322135
Primiano, Michael J; Lefker, Bruce A; Bowman, Michael R; Bree, Andrea G; Hubeau, Cedric; Bonin, Paul D; Mangan, Matthew; Dower, Ken; Monks, Brian G; Cushing, Leah; Wang, Stephen; Guzova, Julia; Jiao, Aiping; Lin, Lih-Ling; Latz, Eicke; Hepworth, David; Hall, J Perry
2016-09-15
A critical component of innate immune response to infection and tissue damage is the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome, and this pathway and its activation products have been implicated in the pathophysiology of a variety of diseases. NLRP3 inflammasome activation leads to the cleavage of pro-IL-1β and pro-IL-18, as well as the subsequent release of biologically active IL-1β, IL-18, and other soluble mediators of inflammation. In this study, we further define the pharmacology of the previously reported NLRP3 inflammasome-selective, IL-1β processing inhibitor CP-456,773 (also known as MCC950), and we demonstrate its efficacy in two in vivo models of inflammation. Specifically, we show that in human and mouse innate immune cells CP-456,773 is an inhibitor of the cellular release of IL-1β, IL-1α, and IL-18, that CP-456,773 prevents inflammasome activation induced by disease-relevant soluble and crystalline NLRP3 stimuli, and that CP-456,773 inhibits R848- and imiquimod-induced IL-1β release. In mice, CP-456,773 demonstrates potent inhibition of the release of proinflammatory cytokines following acute i.p. challenge with LPS plus ATP in a manner that is proportional to the free/unbound concentrations of the drug, thereby establishing an in vivo pharmacokinetic/pharmacodynamic model for CP-456,773. Furthermore, CP-456,773 reduces ear swelling in an imiquimod cream-induced mouse model of skin inflammation, and it reduces airway inflammation in mice following acute challenge with house dust mite extract. These data implicate the NLRP3 inflammasome in the pathogenesis of dermal and airway inflammation, and they highlight the utility of CP-456,773 for interrogating the contribution of the NLRP3 inflammasome and its outputs in preclinical models of inflammation and disease. Copyright © 2016 by The American Association of Immunologists, Inc.
Adissu, Hibret A; McKerlie, Colin; Di Grappa, Marco; Waterhouse, Paul; Xu, Qiang; Fang, Hui; Khokha, Rama; Wood, Geoffrey A
2015-12-01
Altered expression and activity of proteases is implicated in inflammation and cancer progression. An important negative regulator of protease activity is TIMP3 (tissue inhibitor of metalloproteinase 3). TIMP3 expression is lacking in many cancers including advanced prostate cancer, and this may facilitate invasion and metastasis by allowing unrestrained protease activity. To investigate the role of TIMP3 in prostate cancer progression, we crossed TIMP3-deficient mice (Timp3(-/-)) to mice with prostate-specific deletion of the tumor suppressor Pten (Pten(-/-)), a well-established mouse model of prostate cancer. Tumor growth and progression were compared between Pten(-/-), Timp3(-/-) and control (Pten(-/-), Timp3(+/+)) mice at 16 weeks of age by histopathology and markers of proliferation, vascularity, and tumor invasion. Metalloproteinase activity within the tumors was assessed by gelatin zymography. Inflammatory infiltrates were assessed by immunohistochemistry for macrophages and lymphocytes whereas expression of cytokines and other inflammatory mediators was assessed by quantitative real time PCR and multiplex ELISA. Increased tumor growth, proliferation index, increased microvascular density, and invasion was observed in Pten(-/-), Timp3(-/-) prostate tumors compared to Pten(-/-), Timp3(+/+) tumors. Tumor cell invasion in Pten(-/-), Timp3(-/-) mice was associated with increased expression of matrix metalloprotease (MMP)-9 and activation of MMP-2. There was markedly increased inflammatory cell infiltration into the TIMP3-deficient prostate tumors along with increased expression of monocyte chemoattractant protein-1, cyclooxygenase-2, TNF-α, and interleukin-1β; all of which are implicated in inflammation and cancer. This study provides important insights into the role of altered protease activity in promoting prostate cancer invasion and implicates prostate inflammation as an important promoting factor in prostate cancer progression. © 2015 Wiley Periodicals, Inc.
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies
Hardaway, Aimalie L; Podgorski, Izabela
2013-01-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies. PMID:23795967
IL-1β, RAGE and FABP4: targeting the dynamic trio in metabolic inflammation and related pathologies.
Hardaway, Aimalie L; Podgorski, Izabela
2013-06-01
Within the past decade, inflammatory and lipid mediators, such as IL-1β, FABP4 and RAGE, have emerged as important contributors to metabolic dysfunction. As growing experimental and clinical evidence continues to tie obesity-induced chronic inflammation with dysregulated lipid, insulin signaling and related pathologies, IL-1β, FABP4 and RAGE each are being independently implicated as culprits in these events. There are also convincing data that molecular pathways driven by these molecules are interconnected in exacerbating metabolic consequences of obesity. This article highlights the roles of IL-1β, FABP4 and RAGE in normal physiology as well as focusing specifically on their contribution to inflammation, insulin resistance, atherosclerosis, Type 2 diabetes and cancer. Studies implicating the interconnection between these pathways, current and emerging therapeutics, and their use as potential biomarkers are also discussed. Evidence of impact of IL-1β, FABP4 and RAGE pathways on severity of metabolic dysfunction underlines the strong links between inflammatory events, lipid metabolism and insulin regulation, and offers new intriguing approaches for future therapies of obesity-driven pathologies.
Role of inflammation in cardiopulmonary health effects of PM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, Ken; Mills, Nicholas; MacNee, William
2005-09-01
The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause anmore » imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia.« less
Microbial imbalance and intestinal pathologies: connections and contributions
Yang, Ye; Jobin, Christian
2014-01-01
Microbiome analysis has identified a state of microbial imbalance (dysbiosis) in patients with chronic intestinal inflammation and colorectal cancer. The bacterial phylum Proteobacteria is often overrepresented in these individuals, with Escherichia coli being the most prevalent species. It is clear that a complex interplay between the host, bacteria and bacterial genes is implicated in the development of these intestinal diseases. Understanding the basic elements of these interactions could have important implications for disease detection and management. Recent studies have revealed that E. coli utilizes a complex arsenal of virulence factors to colonize and persist in the intestine. Some of these virulence factors, such as the genotoxin colibactin, were found to promote colorectal cancer in experimental models. In this Review, we summarize key features of the dysbiotic states associated with chronic intestinal inflammation and colorectal cancer, and discuss how the dysregulated interplay between host and bacteria could favor the emergence of E. coli with pathological traits implicated in these pathologies. PMID:25256712
Goldman, Alyssa W.; Burmeister, Yvonne; Cesnulevicius, Konstantin; Herbert, Martha; Kane, Mary; Lescheid, David; McCaffrey, Timothy; Schultz, Myron; Seilheimer, Bernd; Smit, Alta; St. Laurent, Georges; Berman, Brian
2015-01-01
Bioregulatory systems medicine (BrSM) is a paradigm that aims to advance current medical practices. The basic scientific and clinical tenets of this approach embrace an interconnected picture of human health, supported largely by recent advances in systems biology and genomics, and focus on the implications of multi-scale interconnectivity for improving therapeutic approaches to disease. This article introduces the formal incorporation of these scientific and clinical elements into a cohesive theoretical model of the BrSM approach. The authors review this integrated body of knowledge and discuss how the emergent conceptual model offers the medical field a new avenue for extending the armamentarium of current treatment and healthcare, with the ultimate goal of improving population health. PMID:26347656
Eseonu, Onyedikachi I; De Bari, Cosimo
2015-02-01
Mesenchymal stem cells (MSCs) are multipotent cells with the capacity to undergo chondrogenic differentiation. Systemically administered MSCs have been shown to preferentially accumulate at sites of tissue damage and inflammation, thus MSC-based therapy holds great promise for the treatment of inflammatory diseases such as RA. Modulation of MSC homing may allow targeted delivery of systemically administered MSCs to damaged articular cartilage, where they can suppress immune-mediated cartilage destruction and contribute to cartilage repair via a combination of chondrogenic differentiation and paracrine stimulation of intrinsic residual repair. To harness the potential of MSC homing, a thorough understanding of the mechanism is key. This review discusses current knowledge of the mechanism of MSC homing to injured/inflamed tissue and its implications for targeted MSC-based therapy in arthritis. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
O’Mary, Hannah L.; Aldayel, Abdulaziz M.; Valdes, Solange A.; Naguib, Youssef W.; Li, Xu; Salvady, Karun; Cui, Zhengrong
2017-01-01
Inflammation is implicated in a host of chronic illnesses. Within these inflamed tissues, the pH of the microenvironment is decreased and immune cells, particularly macrophages, infiltrate the area. Additionally, the vascular integrity of these sites is altered with increased fenestrations between endothelial cells. These distinctive properties may be exploited to enhance targeted delivery of anti-inflammatory therapies. Using a mouse model of chronic inflammation, we previously showed that acid-sensitive sheddable PEGylation increases the distribution and retention of nanoparticles in chronic inflammation sites. Here we demonstrated that surface modification of the acid-sensitive sheddable PEGylated nanoparticles with mannose, a ligand to mannose receptors present in chronic inflammation sites, significantly increases the targeted delivery of the nanoparticles to these areas. Furthermore, we showed that the acid-sensitive sheddable PEGylated, mannose-modified nanoparticles are able to significantly increase the delivery of betamethasone-21-acetate (BA), a model anti-inflammatory compound, to chronic inflammation sites as compared to free BA. These results highlight the ability to engineer formulations to target chronic inflammation sites by exploiting the microenvironment of these regions. PMID:28463518
Lee, Keehoon; Pletcher, Steven D; Lynch, Susan V; Goldberg, Andrew N; Cope, Emily K
2018-01-01
Recent studies leveraging next-generation sequencing and functional approaches to understand the human microbiota have demonstrated the presence of diverse, niche-specific microbial communities at nearly every mucosal surface. These microbes contribute to the development and function of physiologic and immunological features that are key to host health status. Not surprisingly, several chronic inflammatory diseases have been attributed to dysbiosis of microbiota composition or function, including chronic rhinosinusitis (CRS). CRS is a heterogeneous disease characterized by inflammation of the sinonasal cavity and mucosal microbiota dysbiosis. Inflammatory phenotypes and bacterial community compositions vary considerably across individuals with CRS, complicating current studies that seek to address causality of a dysbiotic microbiome as a driver or initiator of persistent sinonasal inflammation. Murine models have provided some experimental evidence that alterations in local microbial communities and microbially-produced metabolites influence health status. In this perspective, we will discuss the clinical implications of distinct microbial compositions and community-level functions in CRS and how mucosal microbiota relate to the diverse inflammatory endotypes that are frequently observed. We will also describe specific microbial interactions that can deterministically shape the pattern of co-colonizers and the resulting metabolic products that drive or exacerbate host inflammation. These findings are discussed in the context of CRS-associated inflammation and in other chronic inflammatory diseases that share features observed in CRS. An improved understanding of CRS patient stratification offers the opportunity to personalize therapeutic regimens and to design novel treatments aimed at manipulation of the disease-associated microbiota to restore sinus health.
Update on bacterial pathogenesis in BRD.
Confer, Anthony W
2009-12-01
Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Mycoplasma bovis and Arcanobacterium pyogenes are all frequently implicated in bovine respiratory disease (BRD). M. haemolytica is considered the most important of the group. These bacteria are commensals in the nasopharynx and establish infection in the lungs of cattle that are subjected to a variety of stresses. Factors that permit adherence to and proliferation in the lungs and factors that cause tissue destruction and inflammation have been identified as having major roles in pathogenesis. These virulence factors include protein adhesins, capsular polysaccharide, outer membrane proteins, iron-binding proteins, lipopolysacharide or lipooligosaccharide, enzymes and toxins. These bacterial products function to evade the immune system, damage the immune system and induce a severe inflammatory response.
Melatonin: Buffering the Immune System
Carrillo-Vico, Antonio; Lardone, Patricia J.; Álvarez-Sánchez, Nuria; Rodríguez-Rodríguez, Ana; Guerrero, Juan M.
2013-01-01
Melatonin modulates a wide range of physiological functions with pleiotropic effects on the immune system. Despite the large number of reports implicating melatonin as an immunomodulatory compound, it still remains unclear how melatonin regulates immunity. While some authors argue that melatonin is an immunostimulant, many studies have also described anti-inflammatory properties. The data reviewed in this paper support the idea of melatonin as an immune buffer, acting as a stimulant under basal or immunosuppressive conditions or as an anti-inflammatory compound in the presence of exacerbated immune responses, such as acute inflammation. The clinical relevance of the multiple functions of melatonin under different immune conditions, such as infection, autoimmunity, vaccination and immunosenescence, is also reviewed. PMID:23609496
Wernstedt Asterholm, Ingrid; Kim-Muller, Ja Young; Rutkowski, Joseph M; Crewe, Clair; Tao, Caroline; Scherer, Philipp E
2016-09-01
Resistin, and its closely related homologs, the resistin-like molecules (RELMs) have been implicated in metabolic dysregulation, inflammation, and cancer. Specifically, RELMβ, expressed predominantly in the goblet cells in the colon, is released both apically and basolaterally, and is hence found in both the intestinal lumen in the mucosal layer as well as in the circulation. RELMβ has been linked to both the pathogenesis of colon cancer and type 2 diabetes. RELMβ plays a complex role in immune system regulation, and the impact of loss of function of RELMβ on colon cancer and metabolic regulation has not been fully elucidated. We therefore tested whether Retnlβ (mouse ortholog of human RETNLβ) null mice have an enhanced or reduced susceptibility for colon cancer as well as metabolic dysfunction. We found that the lack of RELMβ leads to increased colonic expression of T helper cell type-2 cytokines and IL-17, associated with a reduced ability to maintain intestinal homeostasis. This defect leads to an enhanced susceptibility to the development of inflammation, colorectal cancer, and glucose intolerance. In conclusion, the phenotype of the Retnlβ null mice unravels new aspects of inflammation-mediated diseases and strengthens the notion that a proper intestinal barrier function is essential to sustain a healthy phenotype. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
GM-CSF primes cardiac inflammation in a mouse model of Kawasaki disease
McKenzie, Brent S.
2016-01-01
Kawasaki disease (KD) is the leading cause of pediatric heart disease in developed countries. KD patients develop cardiac inflammation, characterized by an early infiltrate of neutrophils and monocytes that precipitates coronary arteritis. Although the early inflammatory processes are linked to cardiac pathology, the factors that regulate cardiac inflammation and immune cell recruitment to the heart remain obscure. In this study, using a mouse model of KD (induced by a cell wall Candida albicans water-soluble fraction [CAWS]), we identify an essential role for granulocyte/macrophage colony-stimulating factor (GM-CSF) in orchestrating these events. GM-CSF is rapidly produced by cardiac fibroblasts after CAWS challenge, precipitating cardiac inflammation. Mechanistically, GM-CSF acts upon the local macrophage compartment, driving the expression of inflammatory cytokines and chemokines, whereas therapeutically, GM-CSF blockade markedly reduces cardiac disease. Our findings describe a novel role for GM-CSF as an essential initiating cytokine in cardiac inflammation and implicate GM-CSF as a potential target for therapeutic intervention in KD. PMID:27595596
VEGF signaling mediates bladder neuroplasticity and inflammation in response to BCG
2011-01-01
Background This work tests the hypothesis that increased levels of vascular endothelial growth factor (VEGF) observed during bladder inflammation modulates nerve plasticity. Methods Chronic inflammation was induced by intravesical instillations of Bacillus Calmette-Guérin (BCG) into the urinary bladder and the density of nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) or pan-neuronal marker PGP9.5 was used to quantify alterations in peripheral nerve plasticity. Some mice were treated with B20, a VEGF neutralizing antibody to reduce the participation of VEGF. Additional mice were treated systemically with antibodies engineered to specifically block the binding of VEGF to NRP1 (anti-NRP1B) and NRP2 (NRP2B), or the binding of semaphorins to NRP1 (anti-NRP1 A) to diminish activity of axon guidance molecules such as neuropilins (NRPs) and semaphorins (SEMAs). To confirm that VEGF is capable of inducing inflammation and neuronal plasticity, another group of mice was instilled with recombinant VEGF165 or VEGF121 into the urinary bladder. Results The major finding of this work was that chronic BCG instillation resulted in inflammation and an overwhelming increase in both PGP9.5 and TRPV1 immunoreactivity, primarily in the sub-urothelium of the urinary bladder. Treatment of mice with anti-VEGF neutralizing antibody (B20) abolished the effect of BCG on inflammation and nerve density. NRP1A and NRP1B antibodies, known to reduce BCG-induced inflammation, failed to block BCG-induced increase in nerve fibers. However, the NRP2B antibody dramatically potentiated the effects of BCG in increasing PGP9.5-, TRPV1-, substance P (SP)-, and calcitonin gene-related peptide (CGRP)-immunoreactivity (IR). Finally, instillation of VEGF121 or VEGF165 into the mouse bladder recapitulated the effects of BCG and resulted in a significant inflammation and increase in nerve density. Conclusions For the first time, evidence is being presented supporting that chronic BCG instillation into the mouse bladder promotes a significant increase in peripheral nerve density that was mimicked by VEGF instillation. Effects of BCG were abolished by pre-treatment with neutralizing VEGF antibody. The present results implicate the VEGF pathway as a key modulator of inflammation and nerve plasticity, introduces a new animal model for investigation of VEGF-induced nerve plasticity, and suggests putative mechanisms underlying this phenomenon. PMID:22059553
Activation and Resolution of Periodontal Inflammation and Its Systemic Impact
Hasturk, Hatice; Kantarci, Alpdogan
2015-01-01
Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation resulting in a failure of healing and a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the affected tissues or organ system. Whilst mediators are similar, there is a tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathway to resolution of inflammation. We also discuss a new treatment concept where natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration. PMID:26252412
Kakinuma, Yuki; Kimura, Takuya
2017-01-01
Liver resident macrophages designated Kupffer cells (KCs) form the largest subpopulation of tissue macrophages. KCs are involved in the pathogenesis of liver inflammation. However, the role of KCs in the systemic inflammation is still elusive. In this study, we examined whether KCs are involved in not only intrahepatic inflammation but also extrahepatic systemic inflammation. Administration of clodronate liposomes resulted in the KC deletion and in the suppression of liver injury in T cell-mediated hepatitis by ConA as a local acute inflammation model, while the treatment did not influence dextran sulfate sodium- (DSS-) induced colitis featured by weight loss, intestinal shrink, and pathological observation as an ectopic local acute inflammation model. In contrast, KC deletion inhibited collagen-induced arthritis as a model of extrahepatic, systemic chronical inflammation. KC deleted mice showed weaker arthritic scores, less joint swelling, and more joint space compared to arthritis-induced control mice. These results strongly suggest that KCs are involved in not only intrahepatic inflammatory response but also systemic (especially) chronic inflammation. PMID:28804705
Kakinuma, Yuki; Kimura, Takuya; Watanabe, Yoshifumi
2017-01-01
Liver resident macrophages designated Kupffer cells (KCs) form the largest subpopulation of tissue macrophages. KCs are involved in the pathogenesis of liver inflammation. However, the role of KCs in the systemic inflammation is still elusive. In this study, we examined whether KCs are involved in not only intrahepatic inflammation but also extrahepatic systemic inflammation. Administration of clodronate liposomes resulted in the KC deletion and in the suppression of liver injury in T cell-mediated hepatitis by ConA as a local acute inflammation model, while the treatment did not influence dextran sulfate sodium- (DSS-) induced colitis featured by weight loss, intestinal shrink, and pathological observation as an ectopic local acute inflammation model. In contrast, KC deletion inhibited collagen-induced arthritis as a model of extrahepatic, systemic chronical inflammation. KC deleted mice showed weaker arthritic scores, less joint swelling, and more joint space compared to arthritis-induced control mice. These results strongly suggest that KCs are involved in not only intrahepatic inflammatory response but also systemic (especially) chronic inflammation.
Dry eye disease: an immune-mediated ocular surface disorder
Stevenson, William; Chauhan, Sunil K.; Dana, Reza
2013-01-01
Dry eye disease is a multifactorial disorder of the tears and ocular surface characterized by symptoms of dryness and irritation. Although the pathogenesis of dry eye disease is not fully understood, it is recognized that inflammation has a prominent role in the development and propagation of this debilitating condition. Factors that adversely affect tear film stability and osmolarity can induce ocular surface damage and initiate an inflammatory cascade that generates innate and adaptive immune responses. These immunoinflammatory responses lead to further ocular surface damage and the development of a self-perpetuating inflammatory cycle. Herein, we review the fundamental links between inflammation and dry eye disease and discuss the clinical implications of inflammation in disease management. PMID:22232476
Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies
Brydges, Susannah D.; Broderick, Lori; McGeough, Matthew D.; Pena, Carla A.; Mueller, James L.; Hoffman, Hal M.
2013-01-01
The inflammasome is a cytoplasmic multiprotein complex that promotes proinflammatory cytokine maturation in response to host- and pathogen-derived signals. Missense mutations in cryopyrin (NLRP3) result in a hyperactive inflammasome that drives overproduction of the proinflammatory cytokines IL-1β and IL-18, leading to the cryopyrin-associated periodic syndromes (CAPS) disease spectrum. Mouse lines harboring CAPS-associated mutations in Nlrp3 have elevated levels of IL-1β and IL-18 and closely mimic human disease. To examine the role of inflammasome-driven IL-18 in murine CAPS, we bred Nlrp3 mutations onto an Il18r-null background. Deletion of Il18r resulted in partial phenotypic rescue that abolished skin and visceral disease in young mice and normalized serum cytokines to a greater extent than breeding to Il1r-null mice. Significant systemic inflammation developed in aging Nlrp3 mutant Il18r-null mice, indicating that IL-1 and IL-18 drive pathology at different stages of the disease process. Ongoing inflammation in double-cytokine knockout CAPS mice implicated a role for caspase-1–mediated pyroptosis and confirmed that CAPS is inflammasome dependent. Our results have important implications for patients with CAPS and residual disease, emphasizing the need to explore other NLRP3-mediated pathways and the potential for inflammasome-targeted therapy. PMID:24084736
Exploring Black-White Differences in the Relationship Between Inflammation and Timing of Menopause.
Nowakowski, Alexandra C H; Graves, Katelyn Y
2017-06-01
Understanding the biosocial context of menopausal timing offers insight into social and health inequalities. Prior research on inflammatory chronic conditions suggests that inflammation may predict how early women experience menopause. We explore the ability of black race to moderate the overall relationship between chronic inflammation and timing of menopause. We use data from the National Social Life, Health, and Aging Project on inflammation, age of last menstruation, and race as well as relevant social and medical covariates. We conduct event history modeling to predict age at menopause by inflammatory biomarker levels. Using interaction analysis, we investigate whether being black may shape the overall relationship between inflammation status and menopause timing. Our analyses find no significant statistical interactions between black race and inflammation in predicting menopausal onset. However, we do identify independent correlational relationships between inflammation and black race (r = 0.136) and between menopausal timing and black race (r = -0.129) as well as inflammation (r = -0.138) that emerge as significant in corresponding regression models. We conclude that race probably does not moderate associations between inflammation and menopause. Yet, we also note that the original parameter estimate for black race's impact on menopausal onset (HR = 1.29, p < 0.05) becomes non-significant in a model that includes inflammation (HR = 1.06, p < 0.01). To translate our findings into policy and practice implications, we present alternate conceptualizations of black-white disparity in the inflammation-menopause relationship and recommend future research using mediation modeling.
Zhou, Rong-Yi; Wang, Jiao-Jiao; Sun, Ji-Chao; You, Yue; Ying, Jing-Nang; Han, Xin-Min
2017-10-01
Attention deficit hyperactivity disorder (ADHD) is a common behavioral disorder. Previous research has indicated that genetic factors, family education, environment and dietary habits are associated with ADHD. It has been determined that in China many children with ADHD also have allergic rhinitis or asthma. These children are more susceptible to the common cold or upper respiratory infections compared with normal healthy children. Additionally, the common cold or an upper respiratory infection may lead to disease recurrence or worsen the symptoms in these children. Previous studies have determined that ADHD may have a close association with allergic disease. Based on the clinically observed phenomenon and previous studies, it was hypothesized that ADHD is a high inflammation and immune‑associated disease. Therefore, the authors designed clinical and animal experiments to test this hypothesis in the future. Immune system disorders may be a novel part of the etiology of ADHD. The current report may have implications for future clinical practice.
Suarez, Guadalupe Veronica; Vecchione, Maria Belen; Angerami, Matias Tomas; Sued, Omar; Bruttomesso, Andrea Claudia; Bottasso, Oscar Adelmo
2015-01-01
Worldwide, around 14 million individuals are coinfected with both tuberculosis (TB) and human immunodeficiency virus (HIV). In coinfected individuals, both pathogens weaken immunological system synergistically through mechanisms that are not fully understood. During both HIV and TB infections, there is a chronic state of inflammation associated to dramatic changes in immune cytokine and endocrine hormone levels. Despite this, the relevance of immunoendocrine interaction on both the orchestration of an effective immune response against both pathogens and the control of the chronic inflammation induced during HIV, TB, or both infections is still controversial. The present study reviews immunoendocrine interactions occurring during HIV and TB infections. We also expose our own findings on immunoendocrine cross talk in HIV-TB coinfection. Finally, we evaluate the use of adrenal hormones and their derivatives in immune-therapy and discuss the use of some of these compounds like the adjuvant for the prevention and treatment of TB in HIV patients. PMID:26075241
Suarez, Guadalupe Veronica; Vecchione, Maria Belen; Angerami, Matias Tomas; Sued, Omar; Bruttomesso, Andrea Claudia; Bottasso, Oscar Adelmo; Quiroga, Maria Florencia
2015-01-01
Worldwide, around 14 million individuals are coinfected with both tuberculosis (TB) and human immunodeficiency virus (HIV). In coinfected individuals, both pathogens weaken immunological system synergistically through mechanisms that are not fully understood. During both HIV and TB infections, there is a chronic state of inflammation associated to dramatic changes in immune cytokine and endocrine hormone levels. Despite this, the relevance of immunoendocrine interaction on both the orchestration of an effective immune response against both pathogens and the control of the chronic inflammation induced during HIV, TB, or both infections is still controversial. The present study reviews immunoendocrine interactions occurring during HIV and TB infections. We also expose our own findings on immunoendocrine cross talk in HIV-TB coinfection. Finally, we evaluate the use of adrenal hormones and their derivatives in immune-therapy and discuss the use of some of these compounds like the adjuvant for the prevention and treatment of TB in HIV patients.
Galic, Sandra; Sachithanandan, Nirupa; Kay, Thomas W; Steinberg, Gregory R
2014-07-15
Overactivation of immune pathways in obesity is an important cause of insulin resistance and thus new approaches aimed to limit inflammation or its consequences may be effective for treating Type 2 diabetes. The SOCS (suppressors of cytokine signalling) are a family of proteins that play an essential role in mediating inflammatory responses in both immune cells and metabolic organs such as the liver, adipose tissue and skeletal muscle. In the present review we discuss the role of SOCS1 and SOCS3 in controlling immune cells such as macrophages and T-cells and the impact this can have on systemic inflammation and insulin resistance. We also dissect the mechanisms by which SOCS (1-7) regulate insulin signalling in different tissues including their impact on the insulin receptor and insulin receptor substrates. Lastly, we discuss the important findings from SOCS whole-body and tissue-specific null mice, which implicate an important role for these proteins in controlling insulin action and glucose homoeostasis in obesity.
Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma
Rastogi, Deepa; Suzuki, Masako; Greally, John M.
2013-01-01
While DNA methylation plays a role in T-helper (Th) cell maturation, its potential dysregulation in the non-atopic Th1-polarized systemic inflammation observed in obesity-associated asthma is unknown. We studied DNA methylation epigenome-wide in peripheral blood mononuclear cells (PBMCs) from 8 obese asthmatic pre-adolescent children and compared it to methylation in PBMCs from 8 children with asthma alone, obesity alone and healthy controls. Differentially methylated loci implicated certain biologically relevant molecules and pathways. PBMCs from obese asthmatic children had distinctive DNA methylation patterns, with decreased promoter methylation of CCL5, IL2RA and TBX21, genes encoding proteins linked with Th1 polarization, and increased promoter methylation of FCER2, a low-affinity receptor for IgE, and of TGFB1, inhibitor of Th cell activation. T-cell signaling and macrophage activation were the two primary pathways that were selectively hypomethylated in obese asthmatics. These findings suggest that dysregulated DNA methylation is associated with non-atopic inflammation observed in pediatric obesity-associated asthma. PMID:23857381
Dodds, K N; Beckett, E A H; Evans, S F; Grace, P M; Watkins, L R; Hutchinson, M R
2016-01-01
In the central nervous system, bidirectional signaling between glial cells and neurons (‘neuroimmune communication') facilitates the development of persistent pain. Spinal glia can contribute to heightened pain states by a prolonged release of neurokine signals that sensitize adjacent centrally projecting neurons. Although many persistent pain conditions are disproportionately common in females, whether specific neuroimmune mechanisms lead to this increased susceptibility remains unclear. This review summarizes the major known contributions of glia and neuroimmune interactions in pain, which has been determined principally in male rodents and in the context of somatic pain conditions. It is then postulated that studying neuroimmune interactions involved in pain attributed to visceral diseases common to females may offer a more suitable avenue for investigating unique mechanisms involved in female pain. Further, we discuss the potential for primed spinal glia and subsequent neurogenic inflammation as a contributing factor in the development of peripheral inflammation, therefore, representing a predisposing factor for females in developing a high percentage of such persistent pain conditions. PMID:27622932
NRF2-regulation in brain health and disease: implication of cerebral inflammation
Sandberg, Mats; Patil, Jaspal; D’Angelo, Barbara; Weber, Stephen G; Mallard, Carina
2014-01-01
The nuclear factor erythroid 2 related factor 2 (NRF2) is a key regulator of endogenous inducible defense systems in the body. Under physiological conditions NRF2 is mainly located in the cytoplasm. However, in response to oxidative stress, NRF2 translocates to the nucleus and binds to specific DNA sites termed “anti-oxidant response elements” or “electrophile response elements” to initiate transcription of cytoprotective genes. Acute oxidative stress to the brain, such as stroke and traumatic brain injury is increased in animals that are deficient in NRF2. Insufficient NRF2 activation in humans has been linked to chronic diseases such as Parkinson’s disease, Alzheimer’s disease and amyotrophic lateral sclerosis. New findings have also linked activation of the NRF2 system to anti-inflammatory effects via interactions with NF-κB. Here we review literature on cellular mechanisms of NRF2 regulation, how to maintain and restore NRF2 function and the relationship between NRF2 regulation and brain damage. We bring forward the hypothesis that inflammation via prolonged activation of key kinases (p38 and GSK-3β) and activation of histone deacetylases gives rise to dysregulation of the NRF2 system in the brain, which contributes to oxidative stress and injury. PMID:24262633
Inflammation, Self-Regulation, and Health: An Immunologic Model of Self-Regulatory Failure.
Shields, Grant S; Moons, Wesley G; Slavich, George M
2017-07-01
Self-regulation is a fundamental human process that refers to multiple complex methods by which individuals pursue goals in the face of distractions. Whereas superior self-regulation predicts better academic achievement, relationship quality, financial and career success, and lifespan health, poor self-regulation increases a person's risk for negative outcomes in each of these domains and can ultimately presage early mortality. Given its centrality to understanding the human condition, a large body of research has examined cognitive, emotional, and behavioral aspects of self-regulation. In contrast, relatively little attention has been paid to specific biologic processes that may underlie self-regulation. We address this latter issue in the present review by examining the growing body of research showing that components of the immune system involved in inflammation can alter neural, cognitive, and motivational processes that lead to impaired self-regulation and poor health. Based on these findings, we propose an integrated, multilevel model that describes how inflammation may cause widespread biobehavioral alterations that promote self-regulatory failure. This immunologic model of self-regulatory failure has implications for understanding how biological and behavioral factors interact to influence self-regulation. The model also suggests new ways of reducing disease risk and enhancing human potential by targeting inflammatory processes that affect self-regulation.
The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review.
Ceribelli, Angela; De Santis, Maria; Isailovic, Natasa; Gershwin, M Eric; Selmi, Carlo
2017-02-01
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Secreted Phospholipases A2 from Animal Venoms in Pain and Analgesia
Zambelli, Vanessa O.; Picolo, Gisele; Fernandes, Carlos A. H.
2017-01-01
Animal venoms comprise a complex mixture of components that affect several biological systems. Based on the high selectivity for their molecular targets, these components are also a rich source of potential therapeutic agents. Among the main components of animal venoms are the secreted phospholipases A2 (sPLA2s). These PLA2 belong to distinct PLA2s groups. For example, snake venom sPLA2s from Elapidae and Viperidae families, the most important families when considering envenomation, belong, respectively, to the IA and IIA/IIB groups, whereas bee venom PLA2 belongs to group III of sPLA2s. It is well known that PLA2, due to its hydrolytic activity on phospholipids, takes part in many pathophysiological processes, including inflammation and pain. Therefore, secreted PLA2s obtained from animal venoms have been widely used as tools to (a) modulate inflammation and pain, uncovering molecular targets that are implicated in the control of inflammatory (including painful) and neurodegenerative diseases; (b) shed light on the pathophysiology of inflammation and pain observed in human envenomation by poisonous animals; and, (c) characterize molecular mechanisms involved in inflammatory diseases. The present review summarizes the knowledge on the nociceptive and antinociceptive actions of sPLA2s from animal venoms, particularly snake venoms. PMID:29311537
Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease
Foster, Meika; Samman, Samir
2012-01-01
In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057
Bleau, Christian; Karelis, Antony D; St-Pierre, David H; Lamontagne, Lucie
2015-09-01
Obesity is associated with a systemic chronic low-grade inflammation that contributes to the development of metabolic disorders such as cardiovascular diseases and type 2 diabetes. However, the etiology of this obesity-related pro-inflammatory process remains unclear. Most studies have focused on adipose tissue dysfunctions and/or insulin resistance in skeletal muscle cells as well as changes in adipokine profile and macrophage recruitment as potential sources of inflammation. However, low-grade systemic inflammation probably involves a complex network of signals interconnecting several organs. Recent evidences have suggested that disturbances in the composition of the gut microbial flora and alterations in levels of gut peptides following the ingestion of a high-fat diet may be a cause of low-grade systemic inflammation that may even precede and predispose to obesity, metabolic disorders or type 2 diabetes. This hypothesis is appealing because the gastrointestinal system is first exposed to nutrients and may thereby represent the first link in the chain of events leading to the development of obesity-associated systemic inflammation. Therefore, the present review will summarize the latest advances interconnecting intestinal mucosal bacteria-mediated inflammation, adipose tissue and skeletal muscle in a coordinated circuitry favouring the onset of a high-fat diet-related systemic low-grade inflammation preceding obesity and predisposing to metabolic disorders and/or type 2 diabetes. A particular emphasis will be given to high-fat diet-induced alterations of gut homeostasis as an early initiator event of mucosal inflammation and adverse consequences contributing to the promotion of extended systemic inflammation, especially in adipose and muscular tissues. Copyright © 2014 John Wiley & Sons, Ltd.
Biomarkers Predict Prognosis of Esophageal Cancer Patients | Center for Cancer Research
New treatment strategies are needed to improve outcomes for patients with esophageal cancer. With five-year survival rates less than 25 percent, this is one of the deadliest forms of cancer. There are two main types of esophageal cancer—squamous cell carcinoma and adenocarcinoma. Esophageal adenocarcinoma is frequently preceded by Barrett’s esophagus, a chronic inflammatory condition caused by gastroesophageal reflux. It is known that communication between tumor cells and the immune system can alter the behavior of tumor cells, and chronic inflammation has been implicated in several types of human cancers, including cancer of the esophagus.
Mechanistic and clinical insights at the scleroderma-cancer interface
Shah, Ami A.; Casciola-Rosen, Livia
2017-01-01
Emerging data suggest tantalizing links between cancer and systemic inflammatory rheumatic syndromes. In scleroderma, patients may have an increased risk of cancer secondary to chronic inflammation and damage from the disease, malignant transformation promoted by immunosuppressive therapies, a shared susceptibility to both cancer and autoimmunity, or a common inciting exposure. However, it is increasingly recognized that a subset of patients develop cancer around the time that scleroderma clinically manifests, raising the question of cancer-induced autoimmunity. In this review, we discuss data suggesting a mechanistic link between cancer and the development of scleroderma, and the clinical implications of these findings. PMID:29264402
Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing
Pradhan, Leena; Nabzdyk, Christoph; Andersen, Nicholas D; LoGerfo, Frank W; Veves, Aristidis
2013-01-01
This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization are essential phases of wound healing. The link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30–50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. The bidirectional connection between the nervous and the immune systems and the role it plays in wound healing has emerged as one of the focal features of the wound healing dogma. The mediators of this connection include neuropeptides and the cytokines released from different cells including immune and cutaneous cells. Therefore, to develop successful wound healing therapies, it is vital to understand in depth the signaling pathways in the neuro-immune axis and their implication in diabetic wound healing. PMID:19138453
Atrial fibrillation: effects beyond the atrium?
Wijesurendra, Rohan S; Casadei, Barbara
2015-03-01
Atrial fibrillation (AF) is the most common sustained clinical arrhythmia and is associated with significant morbidity, mostly secondary to heart failure and stroke, and an estimated two-fold increase in premature death. Efforts to increase our understanding of AF and its complications have focused on unravelling the mechanisms of electrical and structural remodelling of the atrial myocardium. Yet, it is increasingly recognized that AF is more than an atrial disease, being associated with systemic inflammation, endothelial dysfunction, and adverse effects on the structure and function of the left ventricular myocardium that may be prognostically important. Here, we review the molecular and in vivo evidence that underpins current knowledge regarding the effects of human or experimental AF on the ventricular myocardium. Potential mechanisms are explored including diffuse ventricular fibrosis, focal myocardial scarring, and impaired myocardial perfusion and perfusion reserve. The complex relationship between AF, systemic inflammation, as well as endothelial/microvascular dysfunction and the effects of AF on ventricular calcium handling and oxidative stress are also addressed. Finally, consideration is given to the clinical implications of these observations and concepts, with particular reference to rate vs. rhythm control. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Importance of Apolipoprotein A-I in Multiple Sclerosis.
Gardner, Lidia A; Levin, Michael C
2015-01-01
Jean-Martin Charcot has first described multiple sclerosis (MS) as a disease of the central nervous system (CNS) over a century ago. MS remains incurable today, and treatment options are limited to disease modifying drugs. Over the years, significant advances in understanding disease pathology have been made in autoimmune and neurodegenerative components. Despite the fact that brain is the most lipid rich organ in human body, the importance of lipid metabolism has not been extensively studied in this disorder. In MS, the CNS is under attack by a person's own immune system. Autoantigens and autoantibodies are known to cause devastation of myelin through up regulation of T-cells and cytokines, which penetrate through the blood-brain barrier to cause inflammation and myelin destruction. The anti-inflammatory role of high-density lipoproteins (HDLs) has been implicated in a plethora of biological processes: vasodilation, immunity to infection, oxidation, inflammation, and apoptosis. However, it is not known what role HDL plays in neurological function and myelin repair in MS. Understanding of lipid metabolism in the CNS and in the periphery might unveil new therapeutic targets and explain the partial success of some existing MS therapies.
Bone marrow-CNS connections: Implications in the pathogenesis of diabetic retinopathy
Douglas, Yellowlees; Bhatwadekar, Ashay D.; Shaw, Lynn C.; Carnegie, Debra; Caballero, Sergio; Li, Quihong; Calzi, Sergio Li; Raizada, Mohan K.; Stitt, Alan W.; Grant, Maria B.
2013-01-01
Diabetic retinopathy is the fourth most common cause of blindness in adults. Current therapies, including anti-VEGF therapy, have partial efficacy in arresting the progression of proliferative diabetic retinopathy and diabetic macular edema. This review provides an overview of a novel, innovative approach to viewing diabetic retinopathy as the result of an inflammatory cycle that affects the bone marrow (BM) and the central and sympathetic nervous systems. Diabetes associated inflammation may be the result of BM neuropathy which skews haematopoiesis towards generation of increased inflammatory cells but also reduced production of endothelial progenitor cells responsible for maintaining healthy endothelial function and renewal. The resulting systemic inflammation further impacts the hypothalamus, promoting insulin resistance and diabetes, and initiates an inflammatory cascade that adversely impacts both macrovascular and microvascular complications, including diabetic retinopathy (DR). This review examines the idea of using anti-inflammatory agents that cross not only the blood-retinal barrier to enter the retina but also have the capability to target the central nervous system and cross the blood-brain barrier to reduce neuroinflammation. This neuroinflammation in key sympathetic centers serves to not only perpetuate BM pathology but promote insulin resistance which is characteristic of type 2 diabetic patients (T2D) but is also seen in T1D. A case series of morbidly obese T2D patients with retinopathy and neuropathy treated with minocycline, a well-tolerated antibiotic that crosses both the blood-retina and blood-brain barrier is presented. Our results indicates that minocycine shows promise for improving visual acuity, reducing pain from peripheral neuropathy, promoting weight loss and improving blood pressure control and we postulate that these observed beneficial effects are due to a reduction of chronic inflammation. PMID:22609081
Innate immune recognition and inflammation in Neisseria meningitidis infection.
Johswich, Kay
2017-03-01
Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[T-lymphocytes--do they control rheumatic immune responses?].
Wagner, U; Schulze-Koops, H
2005-09-01
T cells, in particular CD4(+) T cells, have been implicated in mediating many aspects of rheumatoid inflammation. In rheumatoid arthritis (RA), CD4(+) T cells display various functional abnormalities in the synovium as well as in the peripheral circulation. Current evidence suggests, however, that the role of CD4(+) T cells in the development of rheumatoid inflammation exceeds that of activated pro-inflammatory effector T cells that drive the chronic autoimmune response. Subsets of CD4(+) T cells with regulatory capacity, such as CD25(+) Tregs, have been identified in mice and man, and recent observations suggest that in RA, the function of these regulatory T cells is severely impaired. Thus, in RA, defective regulatory immune mechanisms might allow the breakdown of peripheral tolerance, following which the detrimental CD4(+) T-cell-driven immune response evolves and proceeds to chronic inflammation. Here, we review the functional abnormalities and the contribution of different T-cell subsets to rheumatoid inflammation.
Rossignol, D A; Frye, R E
2012-01-01
Recent studies have implicated physiological and metabolic abnormalities in autism spectrum disorders (ASD) and other psychiatric disorders, particularly immune dysregulation or inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures (‘four major areas'). The aim of this study was to determine trends in the literature on these topics with respect to ASD. A comprehensive literature search from 1971 to 2010 was performed in these four major areas in ASD with three objectives. First, publications were divided by several criteria, including whether or not they implicated an association between the physiological abnormality and ASD. A large percentage of publications implicated an association between ASD and immune dysregulation/inflammation (416 out of 437 publications, 95%), oxidative stress (all 115), mitochondrial dysfunction (145 of 153, 95%) and toxicant exposures (170 of 190, 89%). Second, the strength of evidence for publications in each area was computed using a validated scale. The strongest evidence was for immune dysregulation/inflammation and oxidative stress, followed by toxicant exposures and mitochondrial dysfunction. In all areas, at least 45% of the publications were rated as providing strong evidence for an association between the physiological abnormalities and ASD. Third, the time trends in the four major areas were compared with trends in neuroimaging, neuropathology, theory of mind and genetics (‘four comparison areas'). The number of publications per 5-year block in all eight areas was calculated in order to identify significant changes in trends. Prior to 1986, only 12 publications were identified in the four major areas and 51 in the four comparison areas (42 for genetics). For each 5-year period, the total number of publications in the eight combined areas increased progressively. Most publications (552 of 895, 62%) in the four major areas were published in the last 5 years (2006–2010). Evaluation of trends between the four major areas and the four comparison areas demonstrated that the largest relative growth was in immune dysregulation/inflammation, oxidative stress, toxicant exposures, genetics and neuroimaging. Research on mitochondrial dysfunction started growing in the last 5 years. Theory of mind and neuropathology research has declined in recent years. Although most publications implicated an association between the four major areas and ASD, publication bias may have led to an overestimation of this association. Further research into these physiological areas may provide insight into general or subset-specific processes that could contribute to the development of ASD and other psychiatric disorders. PMID:22143005
Jeong, Jae Seok; Lee, Kyung Bae; Kim, So Ri; Kim, Dong Im; Park, Hae Jin; Lee, Hern-Ku; Kim, Hyung Jin; Cho, Seong Ho; Kolliputi, Narasaiah; Kim, Soon Ha; Lee, Yong Chul
2018-04-05
Respiratory fungal exposure is known to be associated with severe allergic lung inflammation. Airway epithelium is an essential controller of allergic inflammation. An innate immune recognition receptor, nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome, and phosphoinositide 3 kinase (PI3K)-δ in airway epithelium are involved in various inflammatory processes. We investigated the role of NLRP3 inflammasome in fungi-induced allergic lung inflammation and examined the regulatory mechanism of NLRP3 inflammasome, focusing on PI3K-δ in airway epithelium. We used two in vivo models induced by exposure to Aspergillus fumigatus ( Af ) and Alternaria alternata ( Aa ), as well as an Af -exposed in vitro system. We also checked NLRP3 expression in lung tissues from patients with allergic bronchopulmonary aspergillosis (ABPA). Assembly/activation of NLRP3 inflammasome was increased in the lung of Af -exposed mice. Elevation of NLRP3 inflammasome assembly/activation was observed in Af -stimulated murine and human epithelial cells. Similarly, pulmonary expression of NLRP3 in patients with ABPA was increased. Importantly, neutralisation of NLRP3 inflammasome derived IL-1β alleviated pathophysiological features of Af -induced allergic inflammation. Furthermore, PI3K-δ blockade improved Af -induced allergic inflammation through modulation of NLRP3 inflammasome, especially in epithelial cells. This modulatory role of PI3K-δ was mediated through the regulation of mitochondrial reactive oxygen species (mtROS) generation. NLRP3 inflammasome was also implicated in Aa -induced eosinophilic allergic inflammation, which was improved by PI3K-δ blockade. These findings demonstrate that fungi-induced assembly/activation of NLRP3 inflammasome in airway epithelium may be modulated by PI3K-δ, which is mediated partly through the regulation of mtROS generation. Inhibition of PI3K-δ may have potential for treating fungi-induced severe allergic lung inflammation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Phua, Terri; Sng, Ming Keat; Tan, Eddie Han Pin; Chee, Dickson Shao Liang; Li, Yinliang; Wee, Jonathan Wei Kiat; Teo, Ziqiang; Chan, Jeremy Soon Kiat; Lim, Maegan Miang Kee; Tan, Chek Kun; Zhu, Pengcheng; Arulampalam, Velmurugesan; Tan, Nguan Soon
2017-01-01
Many gastrointestinal diseases exhibit a protracted and aggravated inflammatory response that can lead to hypercytokinaemia, culminating in extensive tissue damage. Recently, angiopoietin-like 4 (ANGPTL4) has been implicated in many inflammation-associated diseases. However, how ANGPTL4 regulates colonic inflammation remains unclear. Herein, we show that ANGPTL4 deficiency in mice (ANGPTL4−/−) exacerbated colonic inflammation induced by dextran sulfate sodium (DSS) or stearic acid. Microbiota was similar between the two genotypes prior DSS challenge. A microarray gene expression profile of the colon from DSS-treated ANGPTL4−/− mice was enriched for genes involved in leukocyte migration and infiltration, and showed a close association to inflamed ulcerative colitis (UC), whereas the profile from ANGPTL4+/+ littermates resembled that of non-inflamed UC biopsies. Bone marrow transplantation demonstrates the intrinsic role of colonic ANGPTL4 in regulating leukocyte infiltration during DSS-induced inflammation. Using immortalized human colon epithelial cells, we revealed that the ANGPTL4-mediated upregulation of tristetraprolin expression operates through CREB and NF-κB transcription factors, which in turn, regulates the stability of chemokines. Together, our findings suggest that ANGPTL4 protects against acute colonic inflammation and that its absence exacerbates the severity of inflammation. Our findings emphasize the importance of ANGPTL4 as a novel target for therapy in regulating and attenuating inflammation. PMID:28287161
Kessenbrock, Kai; Fröhlich, Leopold; Sixt, Michael; Lämmermann, Tim; Pfister, Heiko; Bateman, Andrew; Belaaouaj, Azzaq; Ring, Johannes; Ollert, Markus; Fässler, Reinhard; Jenne, Dieter E.
2008-01-01
Neutrophil granulocytes form the body’s first line of antibacterial defense, but they also contribute to tissue injury and noninfectious, chronic inflammation. Proteinase 3 (PR3) and neutrophil elastase (NE) are 2 abundant neutrophil serine proteases implicated in antimicrobial defense with overlapping and potentially redundant substrate specificity. Here, we unraveled a cooperative role for PR3 and NE in neutrophil activation and noninfectious inflammation in vivo, which we believe to be novel. Mice lacking both PR3 and NE demonstrated strongly diminished immune complex–mediated (IC-mediated) neutrophil infiltration in vivo as well as reduced activation of isolated neutrophils by ICs in vitro. In contrast, in mice lacking just NE, neutrophil recruitment to ICs was only marginally impaired. The defects in mice lacking both PR3 and NE were directly linked to the accumulation of antiinflammatory progranulin (PGRN). Both PR3 and NE cleaved PGRN in vitro and during neutrophil activation and inflammation in vivo. Local administration of recombinant PGRN potently inhibited neutrophilic inflammation in vivo, demonstrating that PGRN represents a crucial inflammation-suppressing mediator. We conclude that PR3 and NE enhance neutrophil-dependent inflammation by eliminating the local antiinflammatory activity of PGRN. Our results support the use of serine protease inhibitors as antiinflammatory agents. PMID:18568075
Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K
2017-02-01
Obesity-induced low-grade inflammation (metaflammation) impairs insulin receptor signaling. This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, inhibitor of NF-kB kinase complex β (IKKβ), AMP-activated protein kinase, protein kinase C, Rho-associated coiled-coil containing protein kinase, and RNA-activated protein kinase. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in type 2 diabetes mellitus (T2-DM). Identifying the specific protein kinases involved in obesity-induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity-induced T2-DM.
The Role of Dopamine in Inflammation-Associated Depression: Mechanisms and Therapeutic Implications.
Felger, Jennifer C
Studies investigating the impact of a variety of inflammatory stimuli on the brain and behavior have consistently reported evidence that inflammatory cytokines affect the basal ganglia and dopamine to mediate depressive symptoms related to motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal responses to hedonic reward, decreased dopamine and dopamine metabolites in cerebrospinal fluid, and decreased availability of striatal dopamine, all of which correlate with symptoms of anhedonia, fatigue, and psychomotor retardation. Similar relationships between alterations in dopamine-relevant corticostriatal reward circuitry and symptoms of anhedonia and psychomotor slowing have also been observed in patients with major depression who exhibit increased peripheral cytokines and other inflammatory markers, such as C-reactive protein. Of note, these inflammation-associated depressive symptoms are often difficult to treat in patients with medical illnesses or major depression. Furthermore, a wealth of literature suggests that inflammation can decrease dopamine synthesis, packaging, and release, thus sabotaging or circumventing the efficacy of standard antidepressant treatments. Herein, the mechanisms by which inflammation and cytokines affect dopamine neurotransmission are discussed, which may provide novel insights into treatment of inflammation-related behavioral symptoms that contribute to an inflammatory malaise.
León-Pedroza, José Israel; González-Tapia, Luis Alonso; del Olmo-Gil, Esteban; Castellanos-Rodríguez, Diana; Escobedo, Galileo; González-Chávez, Antonio
2015-01-01
Systemic inflammation is characterised by high circulating levels of inflammatory cytokines and increased macrophage infiltration in peripheral tissues. Most importantly, this inflammatory state does not involve damage or loss of function of the infiltrated tissue, which is a distinctive feature of the low-grade systemic inflammation. The term "meta-inflammation" has also been used to refer to the low-grade systemic inflammation due to its strong relationship with the development of cardio-metabolic diseases in obesity. A review is presented on the recent clinical and experimental evidence concerning the role of adipose tissue inflammation as a key mediator of low-grade systemic inflammation. Furthermore, the main molecular mechanisms involved in the inflammatory polarization of macrophages with the ability to infiltrate both the adipose tissue and the vascular endothelium via activation of toll-like receptors by metabolic damage-associated molecular patterns, such as advanced glycation-end products and oxidized lipoproteins, is discussed. Finally, a review is made of the pathogenic mechanisms through which the low-grade systemic inflammation contributes to develop insulin resistance, dyslipidaemia, atherogenesis, type 2 diabetes, and hypertension in obese individuals. A better understanding of the molecular mechanisms of low-grade systemic inflammation in promoting cardio-metabolic diseases is necessary, in order to further design novel anti-inflammatory therapies that take into consideration clinical data, as well as the circulating levels of cytokines, immune cells, and metabolic damage-associated molecular patterns in each patient. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Nitrative and Oxidative Stress in Toxicology and Disease
Roberts, Ruth A.; Laskin, Debra L.; Smith, Charles V.; Robertson, Fredika M.; Allen, Erin M. G.; Doorn, Jonathan A.; Slikker, William
2009-01-01
Persistent inflammation and the generation of reactive oxygen and nitrogen species play pivotal roles in tissue injury during disease pathogenesis and as a reaction to toxicant exposures. The associated oxidative and nitrative stress promote diverse pathologic reactions including neurodegenerative disorders, atherosclerosis, chronic inflammation, cancer, and premature labor and stillbirth. These effects occur via sustained inflammation, cellular proliferation and cytotoxicity and via induction of a proangiogenic environment. For example, exposure to the ubiquitous air pollutant ozone leads to generation of reactive oxygen and nitrogen species in lung macrophages that play a key role in subsequent tissue damage. Similarly, studies indicate that genes involved in regulating oxidative stress are altered by anesthetic treatment resulting in brain injury, most notable during development. In addition to a role in tissue injury in the brain, inflammation, and oxidative stress are implicated in Parkinson's disease, a neurodegenerative disease characterized by the loss of dopamine neurons. Recent data suggest a mechanistic link between oxidative stress and elevated levels of 3,4-dihydroxyphenylacetaldehyde, a neurotoxin endogenous to dopamine neurons. These findings have significant implications for development of therapeutics and identification of novel biomarkers for Parkinson's disease pathogenesis. Oxidative and nitrative stress is also thought to play a role in creating the proinflammatory microenvironment associated with the aggressive phenotype of inflammatory breast cancer. An understanding of fundamental concepts of oxidative and nitrative stress can underpin a rational plan of treatment for diseases and toxicities associated with excessive production of reactive oxygen and nitrogen species. PMID:19656995
Activation of an IL-6:STAT3-dependent Transcriptome in Pediatric-onset Inflammatory Bowel Disease
Carey, Rebecca; Jurickova, Ingrid; Ballard, Edgar; Bonkowski, Erin; Han, Xiaonan; Xu, Huan; Denson, Lee A.
2008-01-01
Background: While activation of the IL-6-dependent transcription factor signal transducer and activator of transcription 3 (STAT3) has been implicated in the pathogenesis of inflammatory bowel disease (IBD), a direct effect on mucosal gene expression and inflammation has not been shown. We hypothesized that a proinflammatory IL-6:STAT3-dependent biological network would be up regulated in pediatric-onset IBD patients, and would be associated with the severity of mucosal inflammation. Methods: Patients with pediatric-onset IBD were enrolled at diagnosis and during therapy. Serum cytokine analysis was performed using Bioplex. STAT3 phosphorylation (pSTAT3) in peripheral blood leukocytes (PBLs) was assessed by flow cytometry. Immunohistochemistry of colonic mucosa was used to localize pSTAT3 and STAT3 target genes. Microarray analysis was used to determine RNA expression profiles from colon biopsies. Results: Circulating IL-6 was upregulated in active IBD patients at diagnosis and during therapy. STAT3 activation was increased in PB granulocytes, IL-6-stimulated CD3+/CD4+ lymphocytes, and affected colon biopsies of IBD patients. The frequency of pSTAT3+PB granulocytes and colon epithelial and lamina propria cells was highly correlated with the degree of mucosal inflammation. Microarray and Ingenuity Systems bioinformatics analysis identified IL-6:STAT3-dependent biological networks upregulated in IBD patients which control leukocyte recruitment, HLA expression, angiogenesis, and tissue remodeling. Conclusions: A proinflammatory IL6:STAT3 biologic network is upregulated in active pediatric IBD patients at diagnosis and during therapy. Specific targeting of this network may be effective in reducing mucosal inflammation. PMID:18069684
Impact of inflammation on male fertility.
Sarkar, Oli; Bahrainwala, Jamila; Chandrasekaran, Sambamurthy; Kothari, Shiva; Mathur, Premendu P; Agarwal, Ashok
2011-01-01
The male uro-genital tract is susceptible to gram-negative bacterial infections that produce a state of inflammation, particularly in the testis and epididymis. Development of germline stem cells into motile spermatozoa takes place in these organs and thus any impairment therein has a direct effect on male fertility. A number of factors are known to impair male fertility including environmental and chemical factors, lifestyle, and infections. The last is a little-known and poorly understood cause of male sub-/infertility. The presence of the pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF- alpha), interleukin-1alpha (IL-1alpha) and interleukin-1beta (IL-1beta) in the male uro-genital tract following bacterial infections suggests that such infections could have cytokine-mediated anti-fertility effects. Furthermore, inflammation has been associated with elevated levels of reactive oxygen species and oxidative stress both of which affect male fertility. The present article summarizes the effects of inflammation on the testis, epididymis and spermatozoa. We review the correlations between inflammation and oxidative stress vis-à-vis spermatogenesis and discuss the implications of infections on male fertility/infertility and assisted reproductive technologies for the male.
[ENT inflammation and importance of fenspiride].
Jankowski, R
2002-09-01
PERSISTENT INFLAMMATION: Inflammation may persist despite the eviction of the aggressive agent because of the disruption of the regulator mechanisms. In such patients, drugs such as fenspiride can be effective at several levels, from onset of inflammation, in an attempt to control its progression. INHIBITION OF NEUROPHIL MIGRATION: Could be a very interesting propriety for controlling inflammation of the human respiratory mucosa. CONTROL OF FREE RADICALS: In certain cases, clearance of free oxygen radicals by cells implicated in the inflammatory process may be overrun. Fenespiride can limit the production of free radicals, probably at the level of the producing cells. ACTION ON THE ARACHIDONIC ACID CASCADE: The mechanism and site of action of fenspiride remains to be clarified. It does not act like conventional antiinflammatory drugs by inhibiting cyclo-oxygenase. ANTIHISTAMINE ACTIVITY: Fenspiride has a certain antihistamine activity, basically by blocking H1 receptors. This action should be tested in subjects with nonspecific nasal hyperreactivity. OTHER PROPERTIES: Fenspiride also has an alpha-1-adrenolytic activity and an inhibitor effect on cyclic AMP, two properties which could have an impact on inflammatory diseases of the upper airways.
Gusev, E Yu; Chereshnev, V A
2013-01-01
Theoretical and methodological approaches to description of systemic inflammation as general pathological process are discussed. It is shown, that there is a need of integration of wide range of types of researches to develop a model of systemic inflammation.
Nadeem, Ahmed; Ahmad, Sheikh F; Al-Harbi, Naif O; Fardan, Ali S; El-Sherbeeny, Ahmed M; Ibrahim, Khalid E; Attia, Sabry M
2017-09-01
Psoriasis has been shown to be associated with an increased prevalence of comorbid major depression. IL-17A plays an important role in both depression and psoriasis. IL-17A has been shown to be elevated in systemic circulation of psoriatic patients. IL-17A released from different immune cells during psoriasis may be responsible for the development of neuropsychiatric symptoms associated with depression. Therefore, this study explored the association of systemic IL-17A with depression. The present study utilized imiquimod model of psoriatic inflammation as well as IL-17A administration in mice to investigate the effect of IL-17A on depression-like behavior. Psoriatic inflammation led to enhanced IL-17A expression in peripheral immune cells of both innate and adaptive origin. This was associated with increased NFκB/p38MAPK signaling and inflammatory mediators in different brain regions, and depression-like symptoms (as reflected by sucrose preference and tail suspension tests). The role of IL-17A was further confirmed by administering it alone for ten days, followed by assessment of the same parameters. IL-17A administration produced effects similar to psoriasis-like inflammation on neurobehavior and NFκB/p38MAPK pathways. Moreover, both NFκB and p38MAPK inhibitors led to attenuation in IL-17A associated with depression-like behavior via reduction in inflammatory mediators, such as MCP-1, iNOS, IL-6, and CXCL-2. Furthermore, anti-IL17A antibody also led to a reduction in imiquimod-induced depression-like symptoms, as well as NFκB/p38MAPK signaling. The present study shows that IL-17A plays an important role in comorbid depression associated with psoriatic inflammation, where both NFκB and p38MAPK pathways play significant roles via upregulation of inflammatory mediators in the brain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Markov, Dmitrii D; Yatsenko, Ksenia A; Inozemtseva, Lyudmila S; Grivennikov, Igor A; Myasoedov, Nikolai F; Dolotov, Oleg V
2017-08-01
Emerging evidence implicates impaired self-regulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammation as important and closely related components of the pathophysiology of major depression. Antidepressants show anti-inflammatory effects and are suggested to enhance glucocorticoid feedback inhibition of the HPA axis. HPA axis activity is also negatively self-regulated by the adrenocorticotropic hormone (ACTH), a potent anti-inflammatory peptide activating five subtypes of melanocortin receptors (MCRs). There are indications that ACTH-mediated feedback can be activated by noncorticotropic N-terminal ACTH fragments such as a potent anti-inflammatory MC1/3/4/5R agonist α-melanocyte-stimulating hormone (α-MSH), corresponding to ACTH(1-13), and a MC3/5R agonist ACTH(4-10). We investigated whether intraperitoneal administration of rats with these peptides affects anhedonia, which is a core symptom of depression. Inflammation-related anhedonia was induced by a single intraperitoneal administration of a low dose (0.025mg/kg) of lipopolysaccharide (LPS). Stress-related anhedonia was induced by the chronic unpredictable stress (CUS) procedure. The sucrose preference test was used to detect anhedonia. We found that ACTH(4-10) pretreatment decreased LPS-induced increase in serum corticosterone and tumor necrosis factor (TNF)-α, and a MC3/4R antagonist SHU9119 blocked this effect. Both α-MSH and ACTH(4-10) alleviated LPS-induced anhedonia. In the CUS model, these peptides reduced anhedonia and normalized body weight gain. The data indicate that systemic α-MSH and ACTH(4-10) produce an antidepressant-like effect on anhedonia induced by stress or inflammation, the stimuli that trigger the release of ACTH and α-MSH into the bloodstream. The results suggest a counterbalancing role of circulating melanocortins in depression and point to a new approach for antidepressant treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Systemic inflammatory response following acute myocardial infarction
Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min
2015-01-01
Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856
Inflammatory and immunological aspects of dental pulp repair
Goldberg, Michel; Farges, Jean-Christophe; Lacerda-Pinheiro, Sally; Six, Ngampis; Jegat, Nadège; Decup, Frank; Septier, Dominique; Carrouel, Florence; Durand, Stéphanie; Chaussain-Miller, Catherine; DenBesten, Pamela; Veis, Arthur; Poliard, Anne
2010-01-01
The repair of dental pulp by direct capping with calcium hydroxide or by implantation of bioactive extracellular matrix (ECM) molecules implies a cascade of four steps: a moderate inflammation, the commitment of adult reserve stem cells, their proliferation and terminal differentiation. The link between the initial inflammation and cell commitment is not yet well established but appears as a potential key factor in the reparative process. Either the release of cytokines due to inflammatory events activates resident stem (progenitor) cells, or inflammatory cells or pulp fibroblasts undergo a phenotypic conversion into osteoblast/odontoblast-like progenitors implicated in reparative dentin formation. Activation of antigen-presenting dendritic cells by mild inflammatory processes may also promote osteoblast/odontoblast-like differentiation and expression of ECM molecules implicated in mineralization. Recognition of bacteria by specific odontoblast and fibroblast membrane receptors triggers an inflammatory and immune response within the pulp tissue that would also modulate the repair process. PMID:18602009
Jaremka, Lisa M; Lindgren, Monica E; Kiecolt-Glaser, Janice K
2013-04-01
Stress and depression consistently elevate inflammation and are often experienced simultaneously, which is exemplified by people in troubled relationships. Troubled relationships also elevate inflammation, which may be partially explained by their ability to engender high levels of stress and depression. People who are stressed, depressed, or in troubled relationships are also at greater risk for health problems than their less distressed counterparts. Inflammation, a risk factor for a variety of age-related diseases including cardiovascular disease, Type II diabetes, metabolic syndrome, and frailty, may be one key mechanistic pathway linking distress to poor health. Obesity may further broaden the health implications of stress and depression; people who are stressed or depressed are often overweight, and adipose tissue is a major source of proinflammatory cytokines. Stress, depression, and troubled relationships may have synergistic inflammatory effects: loneliness, subclinical depression, and major depression enhance inflammatory responses to an acute stressful event. The relationship between distress and inflammation is bidirectional; depression enhances inflammation and inflammation promotes depression. Interesting questions emerge from this literature. For instance, some stressors may be more potent than others and thus may be more strongly linked to inflammation. In addition, it is possible that psychological and interpersonal resources may buffer the negative inflammatory effects of stress. Understanding the links among stress, depression, troubled relationships, and inflammation is an exciting area of research that may provide mechanistic insight into the links between distress and poor health. © 2013 Wiley Periodicals, Inc.
Deng, Yong-Qiong; Zhao, Hong; Ma, An-Lin; Zhou, Ji-Yuan; Xie, Shi-Bin; Zhang, Xu-Qing; Zhang, Da-Zhi; Xie, Qing; Zhang, Guo; Shang, Jia; Cheng, Jun; Zhao, Wei-Feng; Zou, Zhi-Qiang; Zhang, Ming-Xiang; Wang, Gui-Qiang
2015-11-01
Previous studies of small cohorts have implicated several circulating cytokines with progression of chronic hepatitis B (CHB). However, to date there have been no reliable biomarkers for assessing histological liver damage in CHB patients with normal or mildly elevated alanine aminotransferase (ALT). The aim of the present study was to investigate the association between circulating cytokines and histological liver damage in a large cohort. Also, this study was designed to assess the utility of circulating cytokines in diagnosing liver inflammation and fibrosis in CHB patients with ALT less than 2 times the upper limit of normal range (ULN). A total of 227 CHB patients were prospectively enrolled. All patients underwent liver biopsy and staging by Ishak system. Patients with at least moderate inflammation showed significantly higher levels of CXCL-11, CXCL-10, and interleukin (IL)-2 receptor (R) than patients with less than moderate inflammation (P < 0.001). Patients with significant fibrosis had higher levels of IL-8 (P = 0.027), transforming growth factor alpha (TGF-α) (P = 0.011), IL-2R (P = 0.002), and CXCL-11 (P = 0.032) than the group without significant fibrosis. In addition, 31.8% and 29.1% of 151 patients with ALT < 2 × ULN had at least moderate inflammation and significant fibrosis, respectively. Multivariate analysis demonstrated that CXCL-11 was independently associated with at least moderate inflammation, and TGF-α and IL-2R independently correlated with significant fibrosis in patients with ALT < 2 × ULN. Based on certain cytokines and clinical parameters, an inflammation-index and fib-index were developed, which showed areas under the receiver operating characteristics curve (AUROC) of 0.75 (95% CI 0.66-0.84) for at least moderate inflammation and 0.82 (95% CI 0.75-0.90) for significant fibrosis, correspondingly. Compared to existing scores, fib-index was significantly superior to aspartate aminotransferase (AST) to platelet ratio index (APRI) and FIB-4 score for significant fibrosis. In conclusion, CXCL-11 was independently associated with at least moderate inflammation, whereas IL-2R and TGF-α were independent indicators of significant fibrosis in both, total CHB patients and patients with normal or mildly elevated ALT. An IL-2R and TGF-α based score (fib-index) was superior to APRI and FIB-4 for the diagnosis of significant fibrosis in patients with normal or mildly elevated ALT.
Imbernon, Monica; Sanchez-Rebordelo, Estrella; Romero-Picó, Amparo; Kalló, Imre; Chee, Melissa J; Porteiro, Begoña; Al-Massadi, Omar; Contreras, Cristina; Fernø, Johan; Senra, Ana; Gallego, Rosalia; Folgueira, Cintia; Seoane, Luisa M; van Gestel, Margriet; Adan, Roger A; Liposits, Zsolt; Dieguez, Carlos; López, Miguel; Nogueiras, Ruben
2016-10-01
The opioid system is widely known to modulate the brain reward system and thus affect the behavior of humans and other animals, including feeding. We hypothesized that the hypothalamic opioid system might also control energy metabolism in peripheral tissues. Mice lacking the kappa opioid receptor (κOR) and adenoviral vectors overexpressing or silencing κOR were stereotaxically delivered in the lateral hypothalamic area (LHA) of rats. Vagal denervation was performed to assess its effect on liver metabolism. Endoplasmic reticulum (ER) stress was inhibited by pharmacological (tauroursodeoxycholic acid) and genetic (overexpression of the chaperone glucose-regulated protein 78 kDa) approaches. The peripheral effects on lipid metabolism were assessed by histological techniques and western blot. We show that in the LHA κOR directly controls hepatic lipid metabolism through the parasympathetic nervous system, independent of changes in food intake and body weight. κOR colocalizes with melanin concentrating hormone receptor 1 (MCH-R1) in the LHA, and genetic disruption of κOR reduced melanin concentrating hormone-induced liver steatosis. The functional relevance of these findings was given by the fact that silencing of κOR in the LHA attenuated both methionine choline-deficient, diet-induced and choline-deficient, high-fat diet-induced ER stress, inflammation, steatohepatitis, and fibrosis, whereas overexpression of κOR in this area promoted liver steatosis. Overexpression of glucose-regulated protein 78 kDa in the liver abolished hypothalamic κOR-induced steatosis by reducing hepatic ER stress. This study reveals a novel hypothalamic-parasympathetic circuit modulating hepatic function through inflammation and ER stress independent of changes in food intake or body weight; these findings might have implications for the clinical use of opioid receptor antagonists. (Hepatology 2016;64:1086-1104). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.
Huang, Chunxia; Irwin, Michael Garnet; Wong, Gordon Tin Chun; Chang, Raymond Chuen Chung
2018-05-17
Systemic inflammation induces neuroinflammation and cellular changes such as tau phosphorylation to impair cognitive function, including learning and memory. This study uses a single model, laparotomy without any pathogen, to characterize these changes and their responses to anti-inflammatory treatment in the intermediate term. In a two-part experiment, wild-type C57BL/6N mice (male, 3 month old, 25 ± 2 g) were subjected to sevoflurane anesthesia alone or to a laparotomy. Cognitive performance, systemic and neuroinflammatory responses, and tau phosphorylation were evaluated on postoperative days (POD) 1, 3, and 14. The effect of perioperative ibuprofen intervention (60 mg/kg) on these changes was then assessed. Mice in the laparotomy group displayed memory impairment up to POD 14 with initial high levels of inflammatory cytokines in the liver, frontal cortex (IL-1β, IL-6, and TNF-α), and hippocampus (IL-1β and IL-8). On POD 14, although most circulating and resident cytokine levels returned to normal, a significant number of microglia and astrocytes remained activated in the frontal cortex and microglia in the hippocampus, as well as abnormal tau phosphorylation in these two brain regions. Perioperative ibuprofen improved cognitive performance, attenuated systemic inflammation and glial activation, and suppressed the abnormal tau phosphorylation both in the frontal cortex and hippocampus. Our results suggest that (1) cognitive dysfunction is associated with an unbalanced pro-inflammatory and anti-inflammatory response, tauopathy, and gliosis; (2) cognitive dysfunction, gliosis, and tauopathy following laparotomy can persist well beyond the immediate postoperative period; and (3) anti-inflammatory drugs can act rapidly to attenuate inflammatory responses in the brain and negatively modulate neuropathological changes to improve cognition. These findings may have implications for the duration of therapeutic strategies aimed at curtaining cognitive dysfunction following surgery.
Renal dopaminergic system: Pathophysiological implications and clinical perspectives
Choi, Marcelo Roberto; Kouyoumdzian, Nicolás Martín; Rukavina Mikusic, Natalia Lucía; Kravetz, María Cecilia; Rosón, María Inés; Rodríguez Fermepin, Martín; Fernández, Belisario Enrique
2015-01-01
Fluid homeostasis, blood pressure and redox balance in the kidney are regulated by an intricate interaction between local and systemic anti-natriuretic and natriuretic systems. Intrarenal dopamine plays a central role on this interactive network. By activating specific receptors, dopamine promotes sodium excretion and stimulates anti-oxidant and anti-inflammatory pathways. Different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome, hypertension and renal inflammation, can be associated with impaired action of renal dopamine including alteration in biosynthesis, dopamine receptor expression and signal transduction. Given its properties on the regulation of renal blood flow and sodium excretion, exogenous dopamine has been postulated as a potential therapeutic strategy to prevent renal failure in critically ill patients. The aim of this review is to update and discuss on the most recent findings about renal dopaminergic system and its role in several diseases involving the kidneys and the potential use of dopamine as a nephroprotective agent. PMID:25949933
Regulation of diet-induced adipose tissue and systemic inflammation by salicylates and pioglitazone.
Kim, Myung-Sunny; Yamamoto, Yasuhiko; Kim, Kyungjin; Kamei, Nozomu; Shimada, Takeshi; Liu, Libin; Moore, Kristin; Woo, Ju Rang; Shoelson, Steven E; Lee, Jongsoon
2013-01-01
It is increasingly accepted that chronic inflammation participates in obesity-induced insulin resistance and type 2 diabetes (T2D). Salicylates and thiazolidinediones (TZDs) both have anti-inflammatory and anti-hyperglycemic properties. The present study compared the effects of these drugs on obesity-induced inflammation in adipose tissue (AT) and AT macrophages (ATMs), as well as the metabolic and immunological phenotypes of the animal models. Both drugs improved high fat diet (HFD)-induced insulin resistance. However, salicylates did not affect AT and ATM inflammation, whereas Pioglitazone improved these parameters. Interestingly, HFD and the drug treatments all modulated systemic inflammation as assessed by changes in circulating immune cell numbers and activation states. HFD increased the numbers of circulating white blood cells, neutrophils, and a pro-inflammatory monocyte subpopulation (Ly6C(hi)), whereas salicylates and Pioglitazone normalized these cell numbers. The drug treatments also decreased circulating lymphocyte numbers. These data suggest that obesity induces systemic inflammation by regulating circulating immune cell phenotypes and that anti-diabetic interventions suppress systemic inflammation by normalizing circulating immune phenotypes.
Francischetti, Ivo M B; Oliveira, Carlo J; Ostera, Graciela R; Yager, Stephanie B; Debierre-Grockiego, Françoise; Carregaro, Vanessa; Jaramillo-Gutierrez, Giovanna; Hume, Jen C C; Jiang, Lubin; Moretz, Samuel E; Lin, Christina K; Ribeiro, José M C; Long, Carole A; Vickers, Brandi K; Schwarz, Ralph T; Seydel, Karl B; Iacobelli, Massimo; Ackerman, Hans C; Srinivasan, Prakash; Gomes, Regis B; Wang, Xunde; Monteiro, Robson Q; Kotsyfakis, Michail; Sá-Nunes, Anderson; Waisberg, Michael
2012-03-01
The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria. DF blocks tissue factor expression by ECs incubated with parasitized red blood cells and attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces tissue factor expression in ECs and cytokine production by dendritic cells. Notably, dendritic cells, known to modulate coagulation and inflammation systemically, were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor ligand-dependent dendritic cells activation by a mechanism that is blocked by adenosine receptor antagonist (8-p-sulfophenyltheophylline) but not reproduced by synthetic poly-A, -C, -T, and -G. These results imply that aptameric sequences and adenosine receptor mediate dendritic cells responses to the drug. DF also prevents rosetting formation, red blood cells invasion by P. falciparum and abolishes oocysts development in Anopheles gambiae. In a murine model of cerebral malaria, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. Therapeutic use of DF in malaria is proposed.
Kulas, Joshua A; Hettwer, Jordan V; Sohrabi, Mona; Melvin, Justine E; Manocha, Gunjan D; Puig, Kendra L; Gorr, Matthew W; Tanwar, Vineeta; McDonald, Michael P; Wold, Loren E; Combs, Colin K
2018-05-22
Environmental exposure to air pollution has been linked to a number of health problems including organ rejection, lung damage and inflammation. While the deleterious effects of air pollution in adult animals are well documented, the long-term consequences of particulate matter (PM) exposure during animal development are uncertain. In this study we tested the hypothesis that environmental exposure to PM 2.5 μm in diameter in utero promotes long term inflammation and neurodegeneration. We evaluated the behavior of PM exposed animals using several tests and observed deficits in spatial memory without robust changes in anxiety-like behavior. We then examined how this affects the brains of adult animals by examining proteins implicated in neurodegeneration, synapse formation and inflammation by western blot, ELISA and immunohistochemistry. These tests revealed significantly increased levels of COX2 protein in PM2.5 exposed animal brains in addition to changes in synaptophysin and Arg1 proteins. Exposure to PM2.5 also increased the immunoreactivity for GFAP, a marker of activated astrocytes. Cytokine concentrations in the brain and spleen were also altered by PM2.5 exposure. These findings indicate that in utero exposure to particulate matter has long term consequences which may affect the development of both the brain and the immune system in addition to promoting inflammatory change in adult animals. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Lam, Yan Y; Ha, Connie W Y; Hoffmann, Jenny M A; Oscarsson, Jan; Dinudom, Anuwat; Mather, Thomas J; Cook, David I; Hunt, Nicholas H; Caterson, Ian D; Holmes, Andrew J; Storlien, Len H
2015-07-01
To distinguish the effects of dietary fat profile on gut parameters and their relationships with metabolic changes and to determine the capacity of n-3 fatty acids to modify gut variables in the context of diet-induced metabolic dysfunctions. Mice received control or high-fat diets emphasizing saturated (HFD-sat), n-6 (HFD-n6), or n-3 (HFD-n3) fatty acids for 8 weeks. In another cohort, mice that were maintained on HFD-sat received n-3-rich fish oil or resolvin D1 supplementation. HFD-sat and HFD-n6 induced similar weight gain, but only HFD-sat increased index of insulin resistance (HOMA-IR), colonic permeability, and mesenteric fat inflammation. Hydrogen sulfide-producing bacteria were one of the major groups driving the diet-specific changes in gut microbiome, with the overall microbial profile being associated with changes in body weight, HOMA-IR, and gut permeability. In mice maintained on HFD-sat, fish oil and resolvin D1 restored barrier function and reduced inflammation in the colon but were unable to normalize HOMA-IR. Different dietary fat profiles led to distinct intestinal and metabolic outcomes that are independent of obesity. Interventions targeting inflammation successfully restored gut health but did not reverse systemic aspects of diet-induced metabolic dysfunction, implicating separation between gut dysfunctions and disease-initiating and/or -maintaining processes. © 2015 The Obesity Society.
Stress-Related Immune Markers in Depression: Implications for Treatment
Hughes, Martina M.; Connor, Thomas J.
2016-01-01
Major depression is a serious psychiatric disorder; however, the precise biological basis of depression still remains elusive. A large body of evidence implicates a dysregulated endocrine and inflammatory response system in the pathogenesis of depression. Despite this, given the heterogeneity of depression, not all depressed patients exhibit dysregulation of the inflammatory and endocrine systems. Evidence suggests that inflammation is associated with depression in certain subgroups of patients and that those who have experienced stressful life events such as childhood trauma or bereavement may be at greater risk of developing depression. Consequently, prolonged exposure to stress is thought to be a key trigger for the onset of a depressive episode. This review assesses the relationship between stress and the immune system, with a particular interest in the mechanisms by which stress impacts immune function, and how altered immune functioning, in turn, may lead to a feed forward cascade of multiple systems dysregulation and the subsequent manifestation of depressive symptomology. The identification of stress-related immune markers and potential avenues for advances in therapeutic intervention is vital. Changes in specific biological markers may be used to characterize or differentiate depressive subtypes or specific symptoms and may predict treatment response, in turn facilitating a more effective, targeted, and fast-acting approach to treatment. PMID:26775294
Kang, Dong Woo; Min, Gyesik; Park, Do Yoon; Hong, Ki Whan
2010-01-01
Rebamipide a gastroprotective drug, is clinically used for the treatment of gastric ulcers and gastritis, but its actions on gastric cancer are not clearly understood. Phospholipase D (PLD) is overexpressed in various types of cancer tissues and has been implicated as a critical factor in inflammation and carcinogenesis. However, whether rebamipide is involved in the regulation of PLD in gastric cancer cells is not known. In this study, we showed that rebamipide significantly suppressed the expression of both PLD1 and PLD2 at a transcriptional level in AGS and MKN-1 gastric cancer cells. Downregulation of PLD expression by rebamipide inhibited its enzymatic activity. In addition, rebamipide inhibited the transactivation of nuclear factor kappa B (NFκB), which increased PLD1 expression. Rebamipide or PLD knockdown significantly suppressed the expression of genes involved in inflammation and proliferation and inhibited the proliferation of gastric cancer cells. In conclusion, rebamipide-induced downregulation of PLD may contribute to the inhibition of inflammation and proliferation in gastric cancer. PMID:20625243
S100-alarmins: potential therapeutic targets for arthritis.
Austermann, Judith; Zenker, Stefanie; Roth, Johannes
2017-07-01
In arthritis, inflammatory processes are triggered by numerous factors that are released from joint tissues, promoting joint destruction and pathological progression. During inflammation, a novel family of pro-inflammatory molecules called alarmins is released, amplifying inflammation and joint damage. Areas covered: With regard to the role of the alarmins S100A8 and S100A9 in the pathogenesis of arthritis, recent advances and the future prospects in terms of therapeutic implications are considered. Expert opinion: There is still an urgent need for novel treatment strategies addressing the local mechanisms of joint inflammation and tissue destruction, offering promising therapeutic alternatives. S100A8 and S100A9, which are the most up-regulated alarmins during arthritis, are endogenous triggers of inflammation, defining these proteins as promising targets for local suppression of arthritis. In murine models, the blockade of S100A8/S100A9 ameliorates inflammatory processes, including arthritis, and there are several lines of evidence that S100-alarmins may already be targeted in therapeutic approaches in man.
Mincle suppresses Toll-like receptor 4 activation.
Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George
2016-07-01
Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.
Cholinesterases as biomarkers for parasympathetic dysfunction and inflammation-related disease.
Shenhar-Tsarfaty, Shani; Berliner, Shlomo; Bornstein, Natan M; Soreq, Hermona
2014-07-01
Accumulating evidence suggests parasympathetic dysfunction and elevated inflammation as underlying processes in multiple peripheral and neurological diseases. Acetylcholine, the main parasympathetic neurotransmitter and inflammation regulator, is hydrolyzed by the two closely homologous enzymes, acetylcholinesterase and butyrylcholinesterase (AChE and BChE, respectively), which are also expressed in the serum. Here, we consider the potential value of both enzymes as possible biomarkers in diseases associated with parasympathetic malfunctioning. We cover the modulations of cholinesterase activities in inflammation-related events as well as by cholinesterase-targeted microRNAs. We further discuss epigenetic control over cholinesterase gene expression and the impact of single-nucleotide polymorphisms on the corresponding physiological and pathological processes. In particular, we focus on measurements of circulation cholinesterases as a readily quantifiable readout for changes in the sympathetic/parasympathetic balance and the implications of changes in this readout in health and disease. Taken together, this cumulative know-how calls for expanding the use of cholinesterase activity measurements for both basic research and as a clinical assessment tool.
McGaughey, C; Jensen, J L
1983-03-01
Tumor initiation by topical application of 7,12-dimethylbenz[a]anthracene (DMBA) in dimethyl sulfoxide (DMSO) followed by topical application of retinyl acetate (RA), ethylphenylpropiolate, or acetic acid in DMSO at inflammatory and hyperplasiogenic dose regimens caused the rapid promotion of fibrovascular polyps with dysplastic epithelium in hamster cheek pouch. Such lesions did not occur in control animals initiated with DMBA followed by application of DMSO only, where inflammation was also minimal. At the dose regimen employed, RA caused obvious cytotoxicity and tissue destruction. With EPP and AA, there was no histological evidence of tissue destruction. At dose regimens resulting in minimal inflammation and no apparent cytotoxicity, RA promoted almost no polyps, but a higher yield of other tumor types. Thus, inflammation and/or hyperplasia apparently exerted a strong polyp-promoting and progressive influence. This and other differences between the tumorigenic responses of hamster-pouch mucosa and mouse skin suggest that the former supplement the latter in carcinogenic risk assessment.
Angiopoietin–Tie signalling in the cardiovascular and lymphatic systems
Eklund, Lauri; Kangas, Jaakko; Saharinen, Pipsa
2016-01-01
Endothelial cells that form the inner layer of blood and lymphatic vessels are important regulators of vascular functions and centrally involved in the pathogenesis of vascular diseases. In addition to the vascular endothelial growth factor (VEGF) receptor pathway, the angiopoietin (Ang)–Tie system is a second endothelial cell specific ligand–receptor signalling system necessary for embryonic cardiovascular and lymphatic development. The Ang–Tie system also regulates postnatal angiogenesis, vessel remodelling, vascular permeability and inflammation to maintain vascular homoeostasis in adult physiology. This system is implicated in numerous diseases where the vasculature has an important contribution, such as cancer, sepsis, diabetes, atherosclerosis and ocular diseases. Furthermore, mutations in the TIE2 signalling pathway cause defects in vascular morphogenesis, resulting in venous malformations and primary congenital glaucoma. Here, we review recent advances in the understanding of the Ang–Tie signalling system, including cross-talk with the vascular endothelial protein tyrosine phosphatase (VE-PTP) and the integrin cell adhesion receptors, focusing on the Ang–Tie system in vascular development and pathogenesis of vascular diseases. PMID:27941161
2011-01-01
Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and experimental studies have brought increasing evidence for activation of the innate immune system in contributing to the pathogenesis of trauma-induced sequelae and adverse outcome. As the "first line of defense", the complement system represents a potent effector arm of innate immunity, and has been implicated in mediating the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen elimination and immediate response to danger signals, complement activation may exert detrimental effects after trauma, in terms of mounting an "innocent bystander" attack on host tissue. Posttraumatic ischemia/reperfusion injuries represent the classic entity of complement-mediated tissue damage, adding to the "antigenic load" by exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately contribute to remote organ injury and death. Numerous experimental models have been designed in recent years with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present review provides an overview on the current understanding of the cellular and molecular mechanisms of complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may provide the rationale for a "bench-to-bedside" approach in the design of future pharmacological strategies. PMID:22129197
Nandipati, Kalyana C; Subramanian, Saravanan; Agrawal, Devendra K
2016-01-01
Obesity induced low-grade inflammation (metaflammation) impairs insulin receptor signaling (IRS). This has been implicated in the development of insulin resistance. Insulin signaling in the target tissues is mediated by stress kinases such as p38 mitogen-activated protein kinase (MAPK), c-Jun NH2-terminal kinase (JNK), inhibitor of NF-kB kinase complex beta (IKKβ), AMP activated protein kinase (AMPK), protein kinase C (PKC), Rho associated coiled-coil containing protein kinase (ROCK) and RNA-activated protein kinase (PKR), etc. Most of these kinases phosphorylate several key regulators in glucose homeostasis. The phosphorylation of serine residues in the insulin receptor (IR) and IRS-1 molecule results in diminished enzymatic activity in the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. This has been one of the key mechanisms observed in the tissues that are implicated in insulin resistance especially in Type II Diabetes Mellitus (T2-DM). Identifying the specific protein kinases involved in obesity induced chronic inflammation may help in developing the targeted drug therapies to minimize the insulin resistance. This review is focused on the protein kinases involved in the inflammatory cascade and molecular mechanisms and their downstream targets with special reference to obesity induced T2-DM. PMID:27868170
Canonical Nlrp3 inflammasome links systemic low grade inflammation to functional decline in aging
Youm, Yun-Hee; Grant, Ryan W.; McCabe, Laura R.; Albarado, Diana C.; Nguyen, Kim Yen; Ravussin, Anthony; Pistell, Paul; Newman, Susan; Carter, Renee; Laque, Amanda; Münzberg, Heike; Rosen, Clifford J.; Ingram, Donald K.; Salbaum, J. Michael; Dixit, Vishwa Deep
2014-01-01
SUMMARY Despite a wealth of clinical data showing an association between inflammation and degenerative disorders in elderly, the immune sensors that causally link systemic inflammation to aging remain unclear. Here we detail a mechanism that the Nlrp3 inflammasome controls systemic low grade age-related ‘sterile’ inflammation in both periphery and brain independently of the non-canonical caspase-11 inflammasome. Ablation of Nlrp3 inflammasome protected mice from age-related increases in the innate immune activation, alterations in CNS transcriptome and astrogliosis. Consistent with the hypothesis that systemic low grade inflammation promotes age-related degenerative changes, the deficient Nlrp3 inflammasome mediated caspase-1 activity improved glycemic control and attenuated bone loss and thymic demise. Notably, IL-1 mediated only Nlrp3 inflammasome dependent improvement in cognitive function and motor performance in aged mice. These studies reveal Nlrp3 inflammasome as an upstream target that controls age-related inflammation and offer innovative therapeutic strategy to lower Nlrp3 activity to delay multiple age-related chronic diseases. PMID:24093676
Co-morbidities of COPD in primary care: frequency, relation to COPD, and treatment consequences.
van der Molen, Thys
2010-12-01
In the Western world, chronic obstructive pulmonary disease (COPD) is predominantly caused by long-term smoking, which results in pulmonary inflammation that is often associated with systemic inflammation. A number of co-morbid conditions, such as cardiovascular disease, muscle wasting, type 2 diabetes and asthma, may coexist with COPD; these and other co-morbidities not directly related to COPD are major causes of excess morbidity and mortality. This review sets out to explore the most frequent co-morbidities in COPD and their implications for treatment. Review of the literature on co-morbidities of COPD. Co-morbidities are frequent, but often remain undiagnosed in the COPD patient. In order to provide the best possible care for people with COPD, the physician should be aware of all potential co-morbidities that may arise, and the critical role that effective management of these co-morbidities can play in improving patient outcomes. Increased awareness of the potential co-morbidities of COPD, although potentially adding to the general practitioner's work burden, may provide insights into this difficult disease state and possibly improve each individual's prospects for effective management.
Tetrahydrobiopterin in Cardiovascular Health and Disease
Bendall, Jennifer K.; Douglas, Gillian; McNeill, Eileen; Channon, Keith M.
2014-01-01
Abstract Tetrahydrobiopterin (BH4) functions as a cofactor for several important enzyme systems, and considerable evidence implicates BH4 as a key regulator of endothelial nitric oxide synthase (eNOS) in the setting of cardiovascular health and disease. BH4 bioavailability is determined by a balance of enzymatic de novo synthesis and recycling, versus degradation in the setting of oxidative stress. Augmenting vascular BH4 levels by pharmacological supplementation has been shown in experimental studies to enhance NO bioavailability. However, it has become more apparent that the role of BH4 in other enzymatic pathways, including other NOS isoforms and the aromatic amino acid hydroxylases, may have a bearing on important aspects of vascular homeostasis, inflammation, and cardiac function. This article reviews the role of BH4 in cardiovascular development and homeostasis, as well as in pathophysiological processes such as endothelial and vascular dysfunction, atherosclerosis, inflammation, and cardiac hypertrophy. We discuss the therapeutic potential of BH4 in cardiovascular disease states and attempt to address how this modulator of intracellular NO-redox balance may ultimately provide a powerful new treatment for many cardiovascular diseases. Antioxid. Redox Signal. 20, 3040–3077. PMID:24294830
Novel Directions for Diabetes Mellitus Drug Discovery
Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui
2012-01-01
Introduction Diabetes mellitus impacts almost 200 million individuals worldwide and leads to debilitating complications. New avenues of drug discovery must target the underlying cellular processes of oxidative stress, apoptosis, autophagy, and inflammation that can mediate multi-system pathology during diabetes mellitus. Areas Covered We examine novel directions for drug discovery that involve the β-nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide, the cytokine erythropoietin, the NAD+-dependent protein histone deacetylase SIRT1, the serine/threonine-protein kinase mammalian target of rapamycin (mTOR), and the wingless pathway. Implications for the targeting of these pathways that oversee gluconeogenic genes, insulin signaling and resistance, fatty acid beta-oxidation, inflammation, and cellular survival are presented. Expert Opinion Nicotinamide, erythropoietin, and the downstram pathways of SIRT1, mTOR, forkhead transcription factors, and wingless signaling offer exciting prospects for novel directions of drug discovery for the treatment of metabolic disorders. Future investigations must dissect the complex relationship and fine modulation of these pathways for the successful translation of robust reparative and regenerative strategies against diabetes mellitus and the complications of this disorder. PMID:23092114
Targeting sortilin in immune cells reduces proinflammatory cytokines and atherosclerosis
Mortensen, Martin B.; Kjolby, Mads; Gunnersen, Stine; Larsen, Jakob V.; Palmfeldt, Johan; Falk, Erling; Nykjaer, Anders; Bentzon, Jacob F.
2014-01-01
Genome-wide association studies have identified a link between genetic variation at the human chromosomal locus 1p13.3 and coronary artery disease. The gene encoding sortilin (SORT1) has been implicated as the causative gene within the locus, as sortilin regulates hepatic lipoprotein metabolism. Here we demonstrated that sortilin also directly affects atherogenesis, independent of its regulatory role in lipoprotein metabolism. In a mouse model of atherosclerosis, deletion of Sort1 did not alter plasma cholesterol levels, but reduced the development of both early and late atherosclerotic lesions. We determined that sortilin is a high-affinity receptor for the proinflammatory cytokines IL-6 and IFN-γ. Moreover, macrophages and Th1 cells (both of which mediate atherosclerotic plaque formation) lacking sortilin had reduced secretion of IL-6 and IFN-γ, but not of other measured cytokines. Transfer of sortilin-deficient BM into irradiated atherosclerotic mice reduced atherosclerosis and systemic markers of inflammation. Together, these data demonstrate that sortilin influences cytokine secretion and that targeting sortilin in immune cells attenuates inflammation and reduces atherosclerosis. PMID:25401472
Vegetable dust and airway disease: inflammatory mechanisms.
Cooper, J A; Buck, M G; Gee, J B
1986-01-01
Exposure to cotton or grain dust causes an obstructive bronchitis in certain subjects, mechanisms of which are poorly understood. A difficulty encountered in discerning mechanisms of this airway disease is the lack of knowledge of the active components of these dusts. Clinical features suggest common but not exact mechanisms of the airway disease associated with these vegetable dusts. Human and animal studies show evidence of acellular and cellular inflammatory mechanisms of the bronchoconstriction and inflammation associated with these disorders. Potential cellular sources include alveolar macrophages, polymorphonuclear leukocytes, mast cells, basophils, eosinophils and lymphocytes. Acellular origins include the complement and humoral antibody systems, both of which have been implicated, although their pathogenic role in grain or cotton dust disorders is uncertain. In this review we critically address potential inflammatory mechanisms of airway alterations resulting from cotton or grain dust exposure. General mechanisms of bronchoconstriction are first presented, then specific studies dealing with either of the two dusts are discussed. We believe this area of research may be fruitful in dissecting mechanisms of bronchoconstriction and airway inflammation, especially as more human studies are undertaken. PMID:3519205
Water-soluble phenol TS-13 combats acute but not chronic inflammation.
Menshchikova, Elena; Tkachev, Victor; Lemza, Anna; Sharkova, Tatyana; Kandalintseva, Natalya; Vavilin, Valentin; Safronova, Olga; Zenkov, Nikolay
2014-09-01
This study was conducted to evaluate the effect of the synthetic water-soluble phenolic antioxidant TS-13 (sodium 3-(4'-methoxyphenyl)propyl thiosulfonate), an inducer of the redox-dependent Keap1/Nrf2/ARE signaling system, in experimental models of acute and chronic inflammation. Acute local inflammation was induced by intraplantar carrageenan injection into rat hind paws, and acute systemic inflammation was modeled by intravenous zymosan injection (in rats) or LPS-induced endotoxic shock (in mice). Chronic inflammation was investigated in rat models of air pouch and collagen-induced arthritis. The effects of TS-13 treatment were estimated by changes in the intensity of inflammation (paw edema, liver infiltration, animal survival, exudation, and clinical score of arthritis) and by the effects on reactive oxygen species (ROS) generation by leukocytes from peripheral blood and inflammatory exudates. We found the significant increase in expression of mRNA, content of protein and activity of a well-characterized Nrf2 target enzyme glutathione S-transferase P1, as well as nuclear extract protein binding to the ARE consensus sequence in liver of mice fed with diet containing TS-13. TS-13 markedly attenuated carrageenan-induced paw edema, reduced blood granulocyte number and volume density of liver infiltrates in the systemic zymosan-induced inflammation model, and increased mice survival after lipopolysaccharide-induced septic shock. However, TS-13 administration did not influence cell and protein exudation into air pouches and suppressed clinical manifestation of collagen-induced polyarthritis only at early stages. Nevertheless, TS-13 inhibited the generation of ROS by leukocytes in all inflammation models. The data suggest that the anti-inflammatory effects of Keap1/Nrf2/ARE system are more prominent against acute innate-mediated inflammation than chronic immune inflammation. This narrows the potential therapeutic efficacy of ARE inducers in inflammation treatment.
Impaired autophagy in macrophages promotes inflammatory eye disease.
Santeford, Andrea; Wiley, Luke A; Park, Sunmin; Bamba, Sonya; Nakamura, Rei; Gdoura, Abdelaziz; Ferguson, Thomas A; Rao, P Kumar; Guan, Jun-Lin; Saitoh, Tatsuya; Akira, Shizuo; Xavier, Ramnik; Virgin, Herbert W; Apte, Rajendra S
2016-10-02
Autophagy is critical for maintaining cellular homeostasis. Organs such as the eye and brain are immunologically privileged. Here, we demonstrate that autophagy is essential for maintaining ocular immune privilege. Deletion of multiple autophagy genes in macrophages leads to an inflammation-mediated eye disease called uveitis that can cause blindness. Loss of autophagy activates inflammasome-mediated IL1B secretion that increases disease severity. Inhibition of caspase activity by gene deletion or pharmacological means completely reverses the disease phenotype. Of interest, experimental uveitis was also increased in a model of Crohn disease, a systemic autoimmune disease in which patients often develop uveitis, offering a potential mechanistic link between macrophage autophagy and systemic disease. These findings directly implicate the homeostatic process of autophagy in blinding eye disease and identify novel pathways for therapeutic intervention in uveitis.
2015-10-01
Lung Inflammation, Uric Acid, Chronic Obstructive Pulmonary Disease, Mononuclear Phagocyte , Monosodium Urate, XOR WT, XOR KO, Wistar Kyoto, Pulmonary...0451 Annual Report (Year 1) 4 Mononuclear Phagocyte XOR Activity and Superoxide Generation Were Reduced by
Samelko, Lauryn; Landgraeber, Stefan; McAllister, Kyron; Jacobs, Joshua; Hallab, Nadim James
2016-01-01
Cobalt alloy debris has been implicated as causative in the early failure of some designs of current total joint implants. The ability of implant debris to cause excessive inflammation via danger signaling (NLRP3 inflammasome) vs. pathogen associated pattern recognition receptors (e.g. Toll-like receptors; TLRs) remains controversial. Recently, specific non-conserved histidines on human TLR4 have been shown activated by cobalt and nickel ions in solution. However, whether this TLR activation is directly or indirectly an effect of metals or secondary endogenous alarmins (danger-associated molecular patterns, DAMPs) elicited by danger signaling, remains unknown and contentious. Our study indicates that in both a human macrophage cell line (THP-1) and primary human macrophages, as well as an in vivo murine model of inflammatory osteolysis, that Cobalt-alloy particle induced NLRP3 inflammasome danger signaling inflammatory responses were highly dominant relative to TLR4 activation, as measured respectively by IL-1β or TNF-α, IL-6, IL-10, tissue histology and quantitative bone loss measurement. Despite the lack of metal binding histidines H456 and H458 in murine TLR4, murine calvaria challenge with Cobalt alloy particles induced significant macrophage driven in vivo inflammation and bone loss inflammatory osteolysis, whereas LPS calvaria challenge alone did not. Additionally, no significant increase (p<0.05) in inflammation and inflammatory bone loss by LPS co-challenge with Cobalt vs. Cobalt alone was evident, even at high levels of LPS (i.e. levels commiserate with hematogenous levels in fatal sepsis, >500pg/mL). Therefore, not only do the results of this investigation support Cobalt alloy danger signaling induced inflammation, but under normal homeostasis low levels of hematogenous PAMPs (<2pg/mL) from Gram-negative bacteria, seem to have negligible contribution to the danger signaling responses elicited by Cobalt alloy metal implant debris. This suggests the unique nature of Cobalt alloy particle bioreactivity is strong enough to illicit danger signaling that secondarily activate concomitant TLR activation, and may in part explain Cobalt particulate associated inflammatory and toxicity-like reactions of specific orthopedic implants. PMID:27467577
DeBoer, Mark D; Scarlett, Jarrad M; Levasseur, Peter R; Grant, Wilmon F; Marks, Daniel L
2009-02-01
Inflammation-associated cachexia is associated with multiple chronic diseases and involves activation of appetite regulating centers in the arcuate nucleus of the hypothalamus (ARH). The nucleus of the solitary tract (NTS) in the brainstem has also been implicated as an important nucleus involved in appetite regulation. We set out to determine whether the NTS may be involved in inflammation-associated anorexia by injecting IL-1 beta into the 4th ventricle and assessing food intake and NTS neuronal activation. Injection of IL-1 beta produced a decrease in food intake at 3 and 12h after injection which was ameliorated at the 12h time point by a sub-threshold dose of agouti-related peptide (AgRP). Investigation into neuron types in the NTS revealed that IL-1 beta injection was associated with an increase in c-Fos activity in NTS neurons expressing tyrosine hydroxylase (TH). Additionally, injection of IL-1 beta into the 4th ventricle did not produce c-Fos activation of neurons expressing pro-opiomelanocortin (POMC) in the ARH, cells known to be involved in producing anorexia in response to systemic inflammation. Double-label in situ hybridization revealed that TH neurons did not express IL-1 receptor I (IL1-RI) transcript, demonstrating that c-Fos activation of TH neurons in this setting was not via direct stimulation of IL-1 beta on TH neurons themselves. We conclude that IL-1 beta injection into the 4th ventricle produces anorexia and is accompanied by an increase in activation in TH neurons in the NTS. This provides evidence that the brainstem may be an important mediator of anorexia in the setting of inflammation.
Wang, Diping; Warner, Gina M; Yin, Ping; Knudsen, Bruce E; Cheng, Jingfei; Butters, Kim A; Lien, Karen R; Gray, Catherine E; Garovic, Vesna D; Lerman, Lilach O; Textor, Stephen C; Nath, Karl A; Simari, Robert D; Grande, Joseph P
2013-04-01
Renal artery stenosis (RAS) is an important cause of chronic renal dysfunction. Recent studies have underscored a critical role for CCL2 (MCP-1)-mediated inflammation in the progression of chronic renal damage in RAS and other chronic renal diseases. In vitro studies have implicated p38 MAPK as a critical intermediate for the production of CCL2. However, a potential role of p38 signaling in the development and progression of chronic renal disease in RAS has not been previously defined. We sought to test the hypothesis that inhibition of p38 MAPK ameliorates chronic renal injury in mice with RAS. We established a murine RAS model by placing a cuff on the right renal artery and treated mice with the p38 inhibitor SB203580 or vehicle for 2 wk. In mice treated with vehicle, the cuffed kidney developed interstitial fibrosis, tubular atrophy, and interstitial inflammation. In mice treated with SB203580, the RAS-induced renal atrophy was reduced (70% vs. 39%, P < 0.05). SB203580 also reduced interstitial inflammation and extracellular matrix deposition but had no effect on the development of hypertension. SB203580 partially blocked the induction of CCL2, CCL7 (MCP-3), CC chemokine receptor 2 (CCR2), and collagen 4 mRNA expression in the cuffed kidneys. In vitro, blockade of p38 hindered both TNF-α and TGF-β-induced CCL2 upregulation. Based on these observations, we conclude that p38 MAPK plays a critical role in the induction of CCL2/CCL7/CCR2 system and the development of interstitial inflammation in RAS.
Migale, Roberta; MacIntyre, David A; Cacciatore, Stefano; Lee, Yun S; Hagberg, Henrik; Herbert, Bronwen R; Johnson, Mark R; Peebles, Donald; Waddington, Simon N; Bennett, Phillip R
2016-06-13
Preterm birth is now recognized as the primary cause of infant mortality worldwide. Interplay between hormonal and inflammatory signaling in the uterus modulates the onset of contractions; however, the relative contribution of each remains unclear. In this study we aimed to characterize temporal transcriptome changes in the uterus preceding term labor and preterm labor (PTL) induced by progesterone withdrawal or inflammation in the mouse and compare these findings with human data. Myometrium was collected at multiple time points during gestation and labor from three murine models of parturition: (1) term gestation; (2) PTL induced by RU486; and (3) PTL induced by lipopolysaccharide (LPS). RNA was extracted and cDNA libraries were prepared and sequenced using the Illumina HiSeq 2000 system. Resulting RNA-Seq data were analyzed using multivariate modeling approaches as well as pathway and causal network analyses and compared against human myometrial transcriptome data. We identified a core set of temporal myometrial gene changes associated with term labor and PTL in the mouse induced by either inflammation or progesterone withdrawal. Progesterone withdrawal initiated labor without inflammatory gene activation, yet LPS activation of uterine inflammation was sufficient to override the repressive effects of progesterone and induce a laboring phenotype. Comparison of human and mouse uterine transcriptomic datasets revealed that human labor more closely resembles inflammation-induced PTL in the mouse. Labor in the mouse can be achieved through inflammatory gene activation yet these changes are not a requisite for labor itself. Human labor more closely resembles LPS-induced PTL in the mouse, supporting an essential role for inflammatory mediators in human "functional progesterone withdrawal." This improved understanding of inflammatory and progesterone influence on the uterine transcriptome has important implications for the development of PTL prevention strategies.
Hygiene and other early childhood influences on the subsequent function of the immune system.
Rook, Graham A W; Lowry, Christopher A; Raison, Charles L
2015-08-18
The immune system influences brain development and function. Hygiene and other early childhood influences impact the subsequent function of the immune system during adulthood, with consequences for vulnerability to neurodevelopmental and psychiatric disorders. Inflammatory events during pregnancy can act directly to cause developmental problems in the central nervous system (CNS) that have been implicated in schizophrenia and autism. The immune system also acts indirectly by "farming" the intestinal microbiota, which then influences brain development and function via the multiple pathways that constitute the gut-brain axis. The gut microbiota also regulates the immune system. Regulation of the immune system is crucial because inflammatory states in pregnancy need to be limited, and throughout life inflammation needs to be terminated completely when not required; for example, persistently raised levels of background inflammation during adulthood (in the presence or absence of a clinically apparent inflammatory stimulus) correlate with an increased risk of depression. A number of factors in the perinatal period, notably immigration from rural low-income to rich developed settings, caesarean delivery, breastfeeding and antibiotic abuse have profound effects on the microbiota and on immunoregulation during early life that persist into adulthood. Many aspects of the modern western environment deprive the infant of the immunoregulatory organisms with which humans co-evolved, while encouraging exposure to non-immunoregulatory organisms, associated with more recently evolved "crowd" infections. Finally, there are complex interactions between perinatal psychosocial stressors, the microbiota, and the immune system that have significant additional effects on both physical and psychiatric wellbeing in subsequent adulthood. This article is part of a Special Issue entitled Neuroimmunology in Health And Disease. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Kim, Seoyoun; Ferraro, Kenneth F.
2014-01-01
Purpose of the Study: The study investigates whether productive activities by older adults reduce bodily inflammation, as indicated by C-reactive protein (CRP), a biomeasure associated with the risk of cardiovascular diseases. Design and Methods: The study uses a representative survey of adults aged 57–85 from the National Social Life, Health, and Aging Project (N = 1,790). Linear regression models were used to analyze the effects of multiple roles (employment, volunteering, attending meetings, and caregiving) and the frequency of activity within each role on log values of CRP concentration (mg/L) drawn from assayed blood samples. Results: Number of roles for productive activities was associated with lower levels of CRP net of chronic conditions, lifestyle factors, and socioeconomic resources. When specific types of activity were examined, volunteering manifested the strongest association with lower levels of inflammation, particularly in the 70+ group. There was no evidence that frequent engagement in volunteer activity was associated with heightened inflammation. Implications: Productive activities—and frequent volunteering in particular—may protect individuals from inflammation that is associated with increased risk of hypertension and cardiovascular disease. PMID:23969258
Kalupahana, Nishan S.; Claycombe, Kate J.; Moustaid-Moussa, Naima
2011-01-01
Obesity is associated with the metabolic syndrome, a significant risk factor for developing type 2 diabetes and cardiovascular diseases. Chronic low-grade inflammation occurring in the adipose tissue of obese individuals is causally linked to the pathogenesis of insulin resistance and the metabolic syndrome. Although the exact trigger of this inflammatory process is unknown, adipose tissue hypoxia, endoplasmic reticular stress, and saturated fatty acid–mediated activation of innate immune processes have been identified as important processes in these disorders. Furthermore, macrophages and T lymphocytes have important roles in orchestrating this immune process. Although energy restriction leading to weight loss is the primary dietary intervention to reverse these obesity-associated metabolic disorders, other interventions targeted at alleviating adipose tissue inflammation have not been explored in detail. In this regard, (n-3) PUFA of marine origin both prevent and reverse high-fat-diet–induced adipose tissue inflammation and insulin resistance in rodents. We provide an update on the pathogenesis of adipose tissue inflammation and insulin resistance in obesity and discuss potential mechanisms by which (n-3) PUFA prevent and reverse these changes and the implications in human health. PMID:22332072
The role of inflammation in preterm birth--focus on periodontitis.
Klebanoff, M; Searle, K
2006-12-01
It is universally accepted that acute inflammation is responsible for a substantial fraction of preterm births, particularly early cases. Much of this inflammation is caused by intrauterine infection. There is also evidence that infection and perhaps inflammation remote from the genitourinary tract can trigger preterm labour. Several studies have suggested that periodontitis during pregnancy increases the risk of preterm birth. Periodontitis may cause preterm birth by causing low-grade bacteraemia, which lodges in the decidua, chorion and amnion or by releasing endotoxin into the maternal circulation, which triggers intrauterine inflammation and preterm birth. Alternatively, it may release cytokines and other inflammatory products, which then trigger preterm labour. It is also conceivable that periodontitis might serve as a marker for other unhealthy behaviours, or immune hyperresponsiveness and that hyperresponsiveness to low-grade intrauterine infection itself might cause preterm birth. Currently, there are few data available to distinguish these possibilities. Such distinctions are important since they have clear implications for whether treatment of periodontitis might reduce the incidence of preterm birth. Several clinical trials of treatment of periodontitis are continuing, but until their results are known there is currently little evidence that treatment of periodontitis during pregnancy reduces the incidence of preterm birth.
Tsunekawa, Taku; Banno, Ryoichi; Mizoguchi, Akira; Sugiyama, Mariko; Tominaga, Takashi; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Sugimura, Yoshihisa; Arima, Hiroshi
2017-02-01
Protein tyrosine phosphatase 1B (PTP1B) regulates leptin signaling in hypothalamic neurons via the JAK2-STAT3 pathway. PTP1B has also been implicated in the regulation of inflammation in the periphery. However, the role of PTP1B in hypothalamic inflammation, which is induced by a high-fat diet (HFD), remains to be elucidated. Here, we showed that STAT3 phosphorylation (p-STAT3) was increased in microglia in the hypothalamic arcuate nucleus of PTP1B knock-out mice (KO) on a HFD, accompanied by decreased Tnf and increased Il10 mRNA expression in the hypothalamus compared to wild-type mice (WT). In hypothalamic organotypic cultures, incubation with TNFα led to increased p-STAT3, accompanied by decreased Tnf and increased Il10 mRNA expression, in KO compared to WT. Incubation with p-STAT3 inhibitors or microglial depletion eliminated the differences in inflammation between genotypes. These data indicate an important role of JAK2-STAT3 signaling negatively regulated by PTP1B in microglia, which attenuates hypothalamic inflammation under HFD conditions. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?
Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel
2015-01-01
The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically.
Is Pulp Inflammation a Prerequisite for Pulp Healing and Regeneration?
Goldberg, Michel; Njeh, Akram; Uzunoglu, Emel
2015-01-01
The importance of inflammation has been underestimated in pulpal healing, and in the past, it has been considered only as an undesirable effect. Associated with moderate inflammation, necrosis includes pyroptosis, apoptosis, and nemosis. There are now evidences that inflammation is a prerequisite for pulp healing, with series of events ahead of regeneration. Immunocompetent cells are recruited in the apical part. They slide along the root and migrate toward the crown. Due to the high alkalinity of the capping agent, pulp cells display mild inflammation, proliferate, and increase in number and size and initiate mineralization. Pulp fibroblasts become odontoblast-like cells producing type I collagen, alkaline phosphatase, and SPARC/osteonectin. Molecules of the SIBLING family, matrix metalloproteinases, and vascular and nerve mediators are also implicated in the formation of a reparative dentinal bridge, osteo/orthodentin closing the pulp exposure. Beneath a calciotraumatic line, a thin layer identified as reactionary dentin underlines the periphery of the pulp chamber. Inflammatory and/or noninflammatory processes contribute to produce a reparative dentinal bridge closing the pulp exposure, with minute canaliculi and large tunnel defects. Depending on the form and severity of the inflammatory and noninflammatory processes, and according to the capping agent, pulp reactions are induced specifically. PMID:26538825
Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox.
Eapen, Mathew Suji; Myers, Stephen; Walters, Eugene Haydn; Sohal, Sukhwinder Singh
2017-10-01
Chronic obstructive pulmonary disease (COPD) is primarily an airway condition, which mainly affects cigarette smokers and presents with shortness of breath that is progressive and poorly reversible. In COPD research, there has been a long held belief that airway disease progression is due to inflammation. Although this may be true in the airway lumen with innate immunity activated by the effect of smoke or secondary to infection, the accurate picture of inflammatory cells in the airway wall, where the pathophysiological COPD remodeling occurs, is uncertain and debatable. Areas covered: The current review provides a comprehensive literature survey of the changes in the main inflammatory cells in human COPD patients and focuses on contrarian views that affect the prevailing dogma on inflammation. The review also delves into the role of oxidative stress and inflammasomes in modulating the immune response in COPD. Further, the effects of inflammation in affecting the epithelium, fibroblasts, and airway remodeling are discussed. Expert commentary: Inflammation as a driving force for airway wall damage and remodelling in early COPD is at the very least 'oversimplified' and is likely to be misleading. This has serious implications for rational thinking about the illness, including pathogenesis and designing therapy.
Airway inflammation in cystic fibrosis: molecular mechanisms and clinical implications.
Cohen-Cymberknoh, Malena; Kerem, Eitan; Ferkol, Thomas; Elizur, Arnon
2013-12-01
Airway epithelial cells and immune cells participate in the inflammatory process responsible for much of the pathology found in the lung of patients with cystic fibrosis (CF). Intense bronchial neutrophilic inflammation and release of proteases and oxygen radicals perpetuate the vicious cycle and progressively damage the airways. In vitro studies suggest that CF transmembrane conductance regulator (CFTR)-deficient airway epithelial cells display signalling abnormalities and aberrant intracellular processes which lead to transcription of inflammatory mediators. Several transcription factors, especially nuclear factor-κB, are activated. In addition, the accumulation of abnormally processed CFTR in the endoplasmic reticulum results in unfolded protein responses that trigger 'cell stress' and apoptosis leading to dysregulation of the epithelial cells and innate immune function in the lung, resulting in exaggerated and ineffective airway inflammation. Measuring airway inflammation is crucial for initiating treatment and monitoring its effect. No inflammatory biomarker predictive for the clinical course of CF lung disease is currently known, although neutrophil elastase seems to correlate with lung function decline. CF animal models mimicking human lung disease may provide an important insight into the pathogenesis of lung inflammation in CF and identify new therapeutic targets.
Inoue, Ken-Ichiro; Takano, Hirohisa; Sakurai, Miho; Oda, Toshio; Tamura, Hiroshi; Yanagisawa, Rie; Shimada, Akinori; Yoshikawa, Toshikazu
2006-11-01
Pulmonary exposure to diesel exhaust particles (DEP) enhances lung inflammation related to bacterial endotoxin (lipopolysaccharide [LPS]) in mice. Severe lung inflammation can reportedly induce coagulatory abnormalities and systemic inflammation. This study examined the effects of components of DEP on lung inflammation, pulmonary permeability, coagulatory changes, systemic inflammatory response, and lung-to-systemic translocation of LPS in a murine model of lung inflammation. ICR mice were divided into six experimental groups that intratracheally received vehicle, LPS (2.5 mg/kg), organic chemicals in DEP (DEP-OC; 4 mg/kg) extracted with dicloromethane), residual carbonaceous nuclei of DEP (washed DEP: 4 mg/kg), DEP-OC + LPS, or washed DEP + LPS. Both DEP components exacerbated lung inflammation, vascular permeability, and the increased fibrinogen and E-selectin levels induced by LPS. With overall trends, the exacerbation was more prominent with washed DEP than with DEP-OC. Washed DEP + LPS significantly decreased activated protein C and antithrombin-III and elevated circulatory levels of interleukin (IL)-6, keratinocyte chemoattractant (KC), and LPS as compared with LPS alone, whereas DEP-OC + LPS elevated IL-6, KC, and LPS without significance. These results show that DEP components, especially washed DEP, amplify the effects if LPS on the respiratory system and suggest that they contribute to the adverse health effects of particulate air pollution on the sensitive populations with predisposing vascular and/or pulmonary diseases, including ischemic vascular diseases and respiratory infection.
Inflammation, aging, and adiposity: implications for physical therapists.
Addison, Odessa; LaStayo, Paul C; Dibble, Leland E; Marcus, Robin L
2012-01-01
Physical therapists treat older individuals, characterized as both a needy and expanding population. Frailty, a predisability condition with links to chronic inflammatory conditions, is estimated to affect 7% of individuals older than 60 years and 40% of people older than 80 years. Chronic inflammation is one of the most important physiologic correlates of the frailty syndrome and high levels of proinflammatory cytokines, related to both aging and increasing adiposity in older individuals are related to an increased risk of mortality, sarcopenia, reduced muscle strength and decreased mobility. The purpose of this narrative review is to inform the physical therapist of the effects of aging and increasing adiposity on chronic inflammation and the association of inflammation with muscle loss, strength, and mobility impairments in older adults; and to review the current evidence to provide clinical recommendations on physical activity and exercise regimes that may mitigate chronic inflammation in older adults. As physical therapists help manage and treat an increasingly older population, understanding how the inflammatory milieu changes with aging and increasing adiposity and how these changes can be impacted by physical therapists via exercise and physical activity is critical. Exercise is a potent preventive intervention strategy and countermeasure for chronic inflammation and adiposity. Exercise can also benefit the frail older individual by combating the negative effects of chronic inflammation and optimally balancing the production of pro and anti-inflammatory cytokines. In addition to providing an anti-inflammatory environment within muscle to mitigate the effects of chronic inflammation, exercise has the added benefit of improving muscle mass and function and decreasing adiposity in older adults.
Nilson, Ashley N.; English, Kelsey C.; Gerson, Julia E.; Barton Whittle, T.; Nicolas Crain, C.; Xue, Judy; Sengupta, Urmi; Castillo-Carranza, Diana L.; Zhang, Wenbo; Gupta, Praveena; Kayed, Rakez
2016-01-01
It is well-established that inflammation plays an important role in Alzheimer’s disease (AD) and frontotemporal lobar dementia (FTLD). Inflammation and synapse loss occur in disease prior to the formation of larger aggregates, but the contribution of tau to inflammation has not yet been thoroughly investigated. Tau pathologically aggregates to form large fibrillar structures known as tangles. However, evidence suggests that smaller soluble aggregates, called oligomers, are the most toxic species and form prior to tangles. Furthermore, tau oligomers can spread to neighboring cells and between anatomically connected brain regions. In addition, recent evidence suggests that inspecting the retina may be a window to brain pathology. We hypothesized that there is a relationship between tau oligomers and inflammation, which are hallmarks of early disease. We conducted immunofluorescence and biochemical analyses on tauopathy mice, FTLD, and AD subjects. We showed that oligomers co-localize with astrocytes, microglia, and HMGB1, a pro-inflammatory cytokine. Additionally, we show that tau oligomers are present in the retina and are associated with inflammatory cells suggesting that the retina may be a valid non-invasive biomarker for brain pathology. These results suggest that there may be a toxic relationship between tau oligomers and inflammation. Therefore, the ability of tau oligomers to spread may initiate a feed-forward cycle in which tau oligomers induce inflammation, leading to neuronal damage, and thus more inflammation. Further mechanistic studies are warranted in order to understand this relationship, which may have critical implications for improving the treatment of tauopathies. PMID:27716675
Sutcliffe, Siobhan; Nevin, Remington L; Pakpahan, Ratna; Elliott, Debra J; Langston, Marvin E; De Marzo, Angelo M; Gaydos, Charlotte A; Isaacs, William B; Nelson, William G; Sokoll, Lori J; Walsh, Patrick C; Zenilman, Jonathan M; Cersovsky, Steven B; Platz, Elizabeth A
2016-05-01
Although Epstein-Barr virus has been detected in prostate tissue, no associations have been observed with prostate cancer in the few studies conducted to date. One possible reason for these null findings may be use of cumulative exposure measures that do not inform the timing of infection, i.e., childhood versus adolescence/early adulthood when infection is more likely to manifest as infectious mononucleosis (IM). We sought to determine the influence of young adult-onset IM on the prostate by measuring prostate-specific antigen (PSA) as a marker of prostate inflammation/damage among U.S. military members. We defined IM cases as men diagnosed with IM from 1998 to 2003 (n = 55) and controls as men without an IM diagnosis (n = 255). We selected two archived serum specimens for each participant, the first collected after diagnosis for cases and one randomly selected from 1998 to 2003 for controls (index), as well as the preceding specimen (preindex). PSA was measured in each specimen. To explore the specificity of our findings for prostate as opposed to systemic inflammation, we performed a post hoc comparison of other infectious disease cases without genitourinary involvement (n = 90) and controls (n = 220). We found that IM cases were more likely to have a large PSA rise than controls (≥ 20 ng/mL: 19.7% versus 8.8%, p = 0.027; ≥ 40% rise: 25.7% versus 9.4%, p = 0.0021), as were other infectious disease cases (25.7% versus 14.0%, p = 0.020; 27.7% versus 18.0%, p = 0.092). These findings suggest that, in addition to rising because of prostate infection, PSA may also rise because of systemic inflammation, which could have implications for PSA interpretation in older men. © 2015 UICC.
Schick, Martin Alexander; Wunder, Christian; Wollborn, Jakob; Roewer, Norbert; Waschke, Jens; Germer, Christoph-Thomas; Schlegel, Nicolas
2012-06-01
In sepsis and systemic inflammation, increased microvascular permeability and consecutive breakdown of microcirculatory flow significantly contribute to organ failure and death. Evidence points to a critical role of cAMP levels in endothelial cells to maintain capillary endothelial barrier properties in acute inflammation. However, approaches to verify this observation in systemic models are rare. Therefore we tested here whether systemic application of the phosphodiesterase-4-inhibitors (PD-4-Is) rolipram or roflumilast to increase endothelial cAMP was effective to attenuate capillary leakage and breakdown of microcirculatory flow in severe lipopolysaccharide (LPS)-induced systemic inflammation in rats. Measurements of cAMP in mesenteric microvessels demonstrated significant LPS-induced loss of cAMP levels which was blocked by application of rolipram. Increased endothelial cAMP by application of either PD-4-I rolipram or roflumilast led to stabilization of endothelial barrier properties as revealed by measurements of extravasated FITC-albumin in postcapillary mesenteric venules. Accordingly, microcirculatory flow in mesenteric venules was significantly increased following PD-4-I treatment and blood gas analyses indicated improved metabolism. Furthermore application of PD-4-I after manifestation of LPS-induced systemic inflammation and capillary leakage therapeutically stabilized endothelial barrier properties as revealed by significantly reduced volume resuscitation for haemodynamic stabilization. Accordingly microcirculation was significantly improved following treatment with PD-4-Is. Our results demonstrate that inflammation-derived loss of endothelial cAMP contributes to capillary leakage which was blocked by systemic PD-4-I treatment. Therefore these data suggest a highly clinically relevant and applicable approach to stabilize capillary leakage in sepsis and systemic inflammation.
Parainflammation, chronic inflammation and age-related macular degeneration
Chen, Mei; Xu, Heping
2016-01-01
Inflammation is an adaptive response of the immune system to noxious insults to maintain homeostasis and restore functionality. The retina is considered an immune privileged tissue due to its unique anatomical and physiological properties. During aging, the retina suffers from a low-grade chronic oxidative insult, which sustains for decades and increases in level with advancing age. As a result, the retinal innate immune system, particularly microglia and the complement system, undergo low levels of activation (para-inflammation). In many cases, this para-inflammatory response can maintain homeostasis in the healthy aging eye. However, in patients with age-related macular degeneration (AMD), this para-inflammatory response becomes dysregulated and contributes to macular damage. Factors contributing to the dysregulation of age-related retinal para-inflammation include genetic predisposition, environmental risk factors and old age. Dysregulated para-inflammation (chronic inflammation) in AMD damages the blood retina barrier (BRB), resulting in the breach of retinal immune privilege leading to the development of retinal lesions. This review discusses the basic principles of retinal innate immune responses to endogenous chronic insults in normal aging and in AMD, and explores the difference between beneficial para-inflammation and the detrimental chronic inflammation in the context of AMD. PMID:26292978
Tran, Ha T; Liong, Stella; Lim, Ratana; Barker, Gillian; Lappas, Martha
2017-01-01
Gestational diabetes mellitus (GDM), which complicates up to 20% of all pregnancies, is associated with low-grade maternal inflammation and peripheral insulin resistance. Sterile inflammation and infection are key mediators of this inflammation and peripheral insulin resistance. Resveratrol, a stilbene-type phytophenol, has been implicated to exert beneficial properties including potent anti-inflammatory and antidiabetic effects in non-pregnant humans and experimental animal models of GDM. However, studies showing the effects of resveratrol on inflammation and insulin resistance associated with GDM in human tissues have been limited. In this study, human placenta, adipose (omental and subcutaneous) tissue and skeletal muscle were stimulated with pro-inflammatory cytokines TNF-α and IL-1β, the bacterial product lipopolysaccharide (LPS) and the synthetic viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) to induce a GDM-like model. Treatment with resveratrol significantly reduced the expression and secretion of pro-inflammatory cytokines IL-6, IL-1α, IL-1β and pro-inflammatory chemokines IL-8 and MCP-1 in human placenta and omental and subcutaneous adipose tissue. Resveratrol also significantly restored the defects in the insulin signalling pathway and glucose uptake induced by TNF-α, LPS and poly(I:C). Collectively, these findings suggest that resveratrol reduces inflammation and insulin resistance induced by chemical and microbial products. Resveratrol may be a useful preventative therapeutic for pregnancies complicated by inflammation and insulin resistance, like GDM.
Autophagy and kidney inflammation
Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu
2017-01-01
ABSTRACT Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases. PMID:28441075
Autophagy and kidney inflammation.
Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu
2017-06-03
Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.
TSLP: A Key Regulator of Asthma Pathogenesis.
West, Erin E; Kashyap, Mohit; Leonard, Warren J
2012-12-01
Asthma is a complex disorder of the airways that is characterized by T helper type 2 (Th2) inflammation. The pleiotrophic cytokine TSLP has emerged as an important player involved in orchestrating the inflammation seen in asthma and other atopic diseases. Early research elucidated the role of TSLP on CD4 + T cells, and recent work has revealed the impact of TSLP on multiple cell types. Furthermore, TSLP plays an important role in the sequential progression of atopic dermatitis to asthma, clarifying the key role of TSLP in the pathogenesis of asthma, a finding with therapeutic implications.
Identification of quinazoline based inhibitors of IRAK4 for the treatment of inflammation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Graham F.; Altman, Michael D.; Andresen, Brian
Interleukin-1 receptor associated kinase 4 (IRAK4) has been implicated in IL-1R and TLR based signaling. Therefore selective inhibition of the kinase activity of this protein represents an attractive target for the treatment of inflammatory diseases. Medicinal chemistry optimization of high throughput screening (HTS) hits with the help of structure based drug design led to the identification of orally-bioavailable quinazoline based IRAK4 inhibitors with excellent pharmacokinetic profile and kinase selectivity. These highly selective IRAK4 compounds show activity in vivo via oral dosing in a TLR7 driven model of inflammation.
Akaeda, H; Nagai, K; Okuda, Y; Shinoto, M; Okuda, H
1981-06-01
In usual medical consultation, we have been met a lot of female patients suffering from disturbances of autonomic nervous system such as headache, shoulder-ache and so on. Experiments were designed to elucidate whether or not these disturbances of autonomic nervous system were induced by inflammation and accelerated by stimulant diets. Functions of autonomic nervous system were examined by lipolysis in rat epididymal adipose tissue which was partly controlled by sympathetic nervous system. It was found that free fatty acid release from the epididymal adipose tissue was considerably elevated by inflammation which was formed in abdominal wall or in abdominal cavity or oral administration of stimulant diets such as red pepper and white pepper, and that such elevation of lipolysis was significantly reduced by resection of the autonomic nerve. These results indicated that the inflammation and the stimulant diets induced excitement of sympathetic nerve which controlled the epididymal adipose tissue. Experiments were now in progress to clarify relationship between such excitement of sympathetic nervous system induced by the inflammation or by the stimulant diet and irregular complaints due to disturbances of autonomic nervous system.
MECHANISMS INVOLVED IN THE ASSOCIATION BETWEEN PERIDONTAL DISEASES AND CARDIOVASCULAR DISEASE
Teles, Ricardo; Wang, Cun-Yu
2012-01-01
It is now well accepted that besides the cholesterol associated mechanisms of atherogenesis, inflammation plays a crucial role in all stages of the development of the atherosclerotic lesion. This “inflammation hypothesis” raises the possibility that, through systemic elevations of pro-inflammatory cytokines, periodontal diseases might also contribute to systemic inflammation and, therefore, to atherogenesis. In fact, there is evidence that periodontal diseases are associated with higher systemic levels of high-sensitivity C-reactive protein and a low grade systemic inflammation. This phenomenon has been explained based on mechanisms associated with either the infectious or the inflammatory nature of periodontal diseases. The purposes of this article are to review (1) the evidence suggesting a role for oral bacterial species, particularly periodontal pathogens, in atherogenesis; (2) the potential mechanisms explaining an etiological role for oral bacteria in atherosclerosis; (3) the evidence suggesting that periodontal infections are accompanied by a heightened state of systemic inflammation; (4) the potential sources of systemic inflammatory biomarkers associated with periodontal diseases; and (5) the effects of periodontal therapy on systemic inflammatory biomarkers and cardiovascular risk. PMID:21223455
Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction
Lee, Seung Eun; Park, Yong Seek
2013-01-01
Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction. PMID:23819013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barani, Igor J.; Benedict, Stanley H.; Lin, Peck-Sun
Advances in basic neuroscience related to neural stem cells and their malignant counterparts are challenging traditional models of central nervous system tumorigenesis and intrinsic brain repair. Neurogenesis persists into adulthood predominantly in two neurogenic centers: subventricular zone and subgranular zone. Subventricular zone is situated adjacent to lateral ventricles and subgranular zone is confined to the dentate gyrus of the hippocampus. Neural stem cells not only self-renew and differentiate along multiple lineages in these regions, but also contribute to intrinsic brain plasticity and repair. Ionizing radiation can depopulate these exquisitely sensitive regions directly or impair in situ neurogenesis by indirect, dose-dependentmore » and inflammation-mediated mechanisms, even at doses <2 Gy. This review discusses the fundamental neural stem cell concepts within the framework of cumulative clinical experience with the treatment of central nervous system malignancies using conventional radiotherapy.« less
Sinikumpu, Suvi-Päivikki; Huilaja, Laura; Auvinen, Juha; Jokelainen, Jari; Puukka, Katri; Ruokonen, Aimo; Timonen, Markku; Tasanen, Kaisa
2018-01-12
Low grade inflammation is associated with many noncommunicable diseases. The association between skin diseases in general and systemic inflammation has not previously been studied at the population level. A whole-body investigation on 1,930 adults belonging to Northern Finland Birth Cohort 1966 was performed and high sensitive C-reactive protein (CRP) level was measured as a marker of low grade inflammation in order to determine the association between low grade inflammation and skin diseases in an unselected adult population. After adjustment for confounding factors the following skin disorders were associated with low grade inflammation in multinomial logistic regression analysis: atopic eczema (OR 2.2, 95% CI 1.2-3.9), onychomycosis (OR 2.0, 1.2-3.2) and rosacea (OR 1.7, 1.1-2.5). After additionally adjusting for body mass index and systemic diseases, the risks for atopic eczema (OR 2.4, 1.3-4.6) and onychomycosis (OR 1.9, 1.1-3.1) remained statistically significant. In conclusion, low grade inflammation is present in several skin diseases.
CD-163 correlated with symptoms (pain or discomfort) of prostatic inflammation.
Yamamichi, Fukashi; Shigemura, Katsumi; Arakawa, Soichi; Tanaka, Kazushi; Fujisawa, Masato
2015-01-01
The purpose of this study is to identify significant immune-system related for symptom of patients with prostatic inflammation in order to investigate the etiology of prostatic inflammation which may relate to potentially chronic prostatitis (CP). We investigated the expression of immune system-related biomarkers such as Interleukin (IL) -6 (humoral immunity), CD-3 (T-lymphocyte), and CD-163 (macrophage) in prostate biopsy (PBx) specimens from patients with prostatic inflammation (without cancer) which had been neither clinically diagnosed benign prostatic hyperplasia nor chronic prostatitis. We examined the correlation between these markers' expressions and the symptom scores using the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI), International Prostate Symptom Score (IPSS)/quality of life (QOL) which are the index for lower urinary tract symptoms (LUTS). Our results showed CD-163 (macrophage) reflected pain or discomfort on NIH-CPSI scores (P=0.0389 and r=0.3307) in the patients with prostatic inflammation; however, the control patients had no significant correlation between symptom scores and those immune-related markers' expression. These results suggest that pain or discomfort related to macrophages in the relationship between immune-system and the symptom of prostatic inflammation. In conclusion, CD-163, related to immune-system (macrophage), correlated with symptoms (pain or discomfort) of prostatic inflammation and might represent a significant immune-system related biomarker for pain or LUTS score in potentially CP.
Environmental Mycobiome Modifiers of Inflammation and Fibrosis in Systemic Sclerosis
2015-10-01
COVER&PAGE& ) ) Award)Number:)W81XWH&14&1&0224) ) ) TITLE:)Environmental Mycobiome Modifiers of Inflammation and Fibrosis in Systemic Sclerosis ...Inflammation and Fibrosis in Systemic Sclerosis 5a.&CONTRACT&NUMBER& ) ) ) ) 5b.&GRANT&NUMBER& W81XWH-14-1-0224) ) 5c.&PROGRAM&ELEMENT&NUMBER& ) 6... Sclerosis )(SSc),)a)progressive)fibrotic)disease)characterized)by)skin)fibrosis)and)damage) to) internal) organs.) ) While) a) wide) range) of
IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle
Dagdeviren, Sezin; Jung, Dae Young; Friedline, Randall H.; Noh, Hye Lim; Kim, Jong Hun; Patel, Payal R.; Tsitsilianos, Nicholas; Inashima, Kunikazu; Tran, Duy A.; Hu, Xiaodi; Loubato, Marilia M.; Craige, Siobhan M.; Kwon, Jung Yeon; Lee, Ki Won; Kim, Jason K.
2017-01-01
Altered energy balance and insulin resistance are important characteristics of aging. Skeletal muscle is a major site of glucose disposal, and the role of aging-associated inflammation in skeletal muscle insulin resistance remains unclear. To investigate, we examined glucose metabolism in 18-mo-old transgenic mice with muscle-specific overexpression of IL-10 (MIL10) and in wild-type mice during hyperinsulinemic–euglycemic clamping. Despite similar fat mass and energy balance, MIL10 mice were protected from aging-associated insulin resistance with significant increases in glucose infusion rates, whole-body glucose turnover, and skeletal muscle glucose uptake (∼60%; P < 0.05), as compared to age-matched WT mice. This protective effect was associated with decreased muscle inflammation, but no changes in adipose tissue inflammation in aging MIL10 mice. These results demonstrate the importance of skeletal muscle inflammation in aging-mediated insulin resistance, and our findings further implicate a potential therapeutic role of anti-inflammatory cytokine in the treatment of aging-mediated insulin resistance.—Dagdeviren, S., Jung, D. Y., Friedline, R. H., Noh, H. L., Kim, J. H., Patel, P. R., Tsitsilianos, N., Inashima, K., Tran, D. A., Hu, X., Loubato, M. M., Craige, S. M., Kwon, J. Y., Lee, K. W., Kim, J. K. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. PMID:27811060
Nadeem, Ahmed; Al-Harbi, Naif O; Ansari, Mushtaq A; Al-Harbi, Mohammed M; El-Sherbeeny, Ahmed M; Zoheir, Khairy M A; Attia, Sabry M; Hafez, Mohamed M; Al-Shabanah, Othman A; Ahmad, Sheikh F
2017-01-15
Psoriasis is an autoimmune inflammatory skin disease characterized by activated IL-23/STAT3/Th17 axis. Recently psoriatic inflammation has been shown to be associated with asthma. However, no study has previously explored how psoriatic inflammation affects airway inflammation. Therefore, this study investigated the effect of imiquimod (IMQ)-induced psoriatic inflammation on cockroach extract (CE)-induced airway inflammation in murine models. Mice were subjected to topical and intranasal administration of IMQ and CE to develop psoriatic and airway inflammation respectively. Various analyses in lung/spleen related to inflammation, Th17/Th2/Th1 cell immune responses, and their signature cytokines/transcription factors were carried out. Psoriatic inflammation in allergic mice was associated with increased airway inflammation with concurrent increase in Th2/Th17 cells/signature cytokines/transcription factors. Splenic CD4+ T and CD11c+ dendritic cells in psoriatic mice had increased STAT3/RORC and IL-23 mRNA expression respectively. This led us to explore the effect of systemic IL-23/STAT3 signaling on airway inflammation. Topical application of STA-21, a small molecule STAT3 inhibitor significantly reduced airway inflammation in allergic mice having psoriatic inflammation. On the other hand, adoptive transfer of IL-23-treated splenic CD4+ T cells from allergic mice into naive recipient mice produced mixed neutrophilic/eosinophilic airway inflammation similar to allergic mice with psoriatic inflammation. Our data suggest that systemic IL-23/STAT3 axis is responsible for enhanced airway inflammation during psoriasis. The current study also suggests that only anti-asthma therapy may not be sufficient to alleviate airway inflammatory burden in asthmatics with psoriasis. Copyright © 2016 Elsevier Inc. All rights reserved.
Ulcerative Colitis and Crohn's Disease: Implications for College Health Programs
ERIC Educational Resources Information Center
Gelphi, A. P.
1977-01-01
The author reviews clinical patterns of inflammatory bowel disorders, establishes a perspective for recognizing ulcerative colitis, ulcerative proctitis, and Crohn's disease in relation to other bowel inflammations, and suggests some epidemiologic strategies for studying etiology, pathogenesis, and natural history of the diseases. (MJB)
Progress in the synthesis of 1-O-methylchlorogenic acid
USDA-ARS?s Scientific Manuscript database
Antioxidant properties of phenolic compounds have been implicated in the slowing or prevention of a variety of human diseases such as hypertention, inflammation, and cancer. Investigation of the antioxidant behavior of plant phenolics remains an important area of investigation in human food and heal...
Geronikolou, Styliani A; Pavlopoulou, Athanasia; Cokkinos, Dennis; Chrousos, George
2017-01-01
Obesity is a chronic disease of increasing prevalence reaching epidemic proportions. Genetic defects as well as epigenetic effects contribute to the obesity phenotype. Investigating gene (e.g. MC4R defects)-environment (behavior, infectious agents, stress) interactions is a relative new field of great research interest. In this study, we have made an effort to create an interactome (henceforth referred to as "obesidome"), where extrinsic stressors response, intrinsic predisposition, immunity response to inflammation and autonomous nervous system implications are integrated. These pathways are presented in one interactome network for the first time. In our study, obesity-related genes/gene products were found to form a complex interactions network.
Angiotensins as therapeutic targets beyond heart disease.
Passos-Silva, Danielle Gomes; Brandan, Enrique; Santos, Robson Augusto Souza
2015-05-01
The renin-angiotensin system (RAS) plays a pivotal role in cardiovascular and hydro-electrolyte homeostasis. Blockade of the RAS as a therapeutic strategy for treating hypertension and related cardiovascular diseases is well established. However, actions of the RAS go far beyond the targets initially described. In this regard, the recent identification of novel components of the RAS, including angiotensin-(1-7) [Ang-(1-7)], Ang-(1-9), and alamandine, have opened new possibilities for interfering with the development and manifestations of cardiovascular and non-cardiovascular diseases. In this article, we briefly review novel targets for angiotensins and its therapeutic implications in diverse areas, including cancer, inflammation, and glaucoma. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clinical features and pathophysiology of Complex Regional Pain Syndrome – current state of the art
Marinus, Johan; Moseley, G. Lorimer; Birklein, Frank; Baron, Ralf; Maihöfner, Christian; Kingery, Wade S.; van Hilten, Jacobus J.
2017-01-01
That a minor injury can trigger a complex regional pain syndrome (CRPS) - multiple system dysfunction, severe and often chronic pain and disability - has fascinated scientists and perplexed clinicians for decades. However, substantial advances across several medical disciplines have recently increased our understanding of CRPS. Compelling evidence implicates biological pathways that underlie aberrant inflammation, vasomotor dysfunction, and maladaptive neuroplasticity in the clinical features of CRPS. Collectively, the evidence points to CRPS being a multifactorial disorder that is associated with an aberrant host response to tissue injury. Varying susceptibility to perturbed regulation of any of the underlying biological pathways probably accounts for the clinical heterogeneity of CRPS. PMID:21683929
Harnessing dendritic cells in inflammatory skin diseases
Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O.
2011-01-01
The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. PMID:21295490
Barron, Henry; Hafizi, Sina; Mizrahi, Romina
2017-01-01
Psychotic disorders are heterogeneous and complex, involving many putative causal factors interacting along the course of disease development. Many of the factors implicated in the pathogenesis of psychosis also appear to be involved in disease onset and subsequent neuroprogression. Herein, we highlight the pertinent literature implicating inflammation and oxidative stress in the pathogenesis of psychosis, and the potential contribution of N-methyl-D-aspartate receptors (NMDARs). We also emphasize the role of peripubertal social stress in psychosis, and the ways in which hippocampal dysfunction can mediate dysregulation of the hypothalamic-pituitary-adrenal axis and cortisol release. Finally, we propose a model wherein inflammation and oxidative stress act as a first hit, producing altered parvalbumin interneuron development, NMDAR hypofunction, microglial priming, and sensitivity to a second hit of peripubertal social stress. With a greater understanding of how these factors interact, it may be possible to detect, prevent, and treat psychosis more effectively. © 2017 S. Karger AG, Basel.
Skin diseases associated with Malassezia yeasts: facts and controversies.
Gaitanis, Georgios; Velegraki, Aristea; Mayser, Peter; Bassukas, Ioannis D
2013-01-01
The implication of the yeast genus Malassezia in skin diseases has been characterized by controversy, since the first description of the fungal nature of pityriasis versicolor in 1846 by Eichstedt. This is underscored by the existence of Malassezia yeasts as commensal but also by their implication in diseases with distinct absence of inflammation despite the heavy fungal load (pityriasis versicolor) or with characteristic inflammation (eg, seborrheic dermatitis, atopic dermatitis, folliculitis, or psoriasis). The description of 14 Malassezia species and subsequent worldwide epidemiologic studies did not reveal pathogenic species but rather disease-associated subtypes within species. Emerging evidence demonstrates that the interaction of Malassezia yeasts with the skin is multifaceted and entails constituents of the fungal wall (melanin, lipid cover), enzymes (lipases, phospholipases), and metabolic products (indoles), as well as the cellular components of the epidermis (keratinocytes, dendritic cells, and melanocytes). Understanding the complexity of their interactions will highlight the controversies on the clinical presentation of Malassezia-associated diseases and unravel the complexity of skin homeostatic mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.
Implication of novel thiazolo-thiophene derivative (MCD-KV-10) for management of asthma.
Patil, Dhiraj; Dash, Ranjeet Prasad; Thakur, Sandeep Kumar; Pandya, Amit N; Venkatesh, P; Vasu, Kamala K; Nivsarkar, Manish
2015-04-01
Asthma is multifaceted disease where many targets contribute towards its development and progression. Among these, adenosine receptor subtypes play a major role. MCD-KV-10, a novel thiazolo-thiophene was designed and evaluated pre-clinically for its implication in management of asthma. This compound showed good affinity and selectivity towards A(2A)/A3 adenosine receptor (AR) subtypes. Furthermore, MCD-KV-10 was evaluated for in vitro lipoxygenase inhibition activity; in vivo mast cell stabilization potential and in vivo anti-asthmatic activity was done in ovalbumin-induced airway inflammation model in guinea pigs. The compound showed good (>57%) inhibition of lipoxygenase enzyme and also effectively protected mast cell degranulation (>63%). The compound showed good anti-asthmatic activity as inferred from the in vivo studies. These results indicate that MCD-KV-10 has an inhibitory effect on airway inflammation. Though, we have identified a potential candidate for management of asthma, further mechanistic studies are needed.
Antimicrobial aspects of inflammatory resolution in the mucosa: A role for pro-resolving mediators1
Campbell, Eric L.; Serhan, Charles N.; Colgan, Sean P.
2011-01-01
Mucosal surfaces function as selectively permeable barriers between the host and the outside world. Given their close proximity to microbial antigens, mucosal surfaces have evolved sophisticated mechanisms for maintaining homeostasis and preventing excessive acute inflammatory reactions. The role attributed to epithelial cells was historically limited to serving as a selective barrier, in recent years numerous findings implicate an active role of the epithelium with pro-resolving mediators in the maintenance of immunological equilibrium. In this brief review, we highlight new evidence that the epithelium actively contributes to coordination and resolution of inflammation, principally through the generation of anti-inflammatory and pro-resolution lipid mediators. These autacoids, derived from ω-6 and ω-3 polyunsaturated fatty acids, are implicated in the initiation, progression and resolution of acute inflammation and display specific, epithelial-directed actions focused on mucosalhomeostasis. We also summarize present knowledge of mechanisms for resolution via regulation of epithelial-derived antimicrobial peptides in response to pro-resolving lipid mediators. PMID:21934099
MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis
Menachery, Vineet D.; Mitchell, Hugh D.; Cockrell, Adam S.; Gralinski, Lisa E.; Yount, Boyd L.; Graham, Rachel L.; McAnarney, Eileen T.; Douglas, Madeline G.; Scobey, Trevor; Beall, Anne; Dinnon, Kenneth; Kocher, Jacob F.; Hale, Andrew E.; Stratton, Kelly G.; Waters, Katrina M.
2017-01-01
ABSTRACT While dispensable for viral replication, coronavirus (CoV) accessory open reading frame (ORF) proteins often play critical roles during infection and pathogenesis. Utilizing a previously generated mutant, we demonstrate that the absence of all four Middle East respiratory syndrome CoV (MERS-CoV) accessory ORFs (deletion of ORF3, -4a, -4b, and -5 [dORF3-5]) has major implications for viral replication and pathogenesis. Importantly, attenuation of the dORF3-5 mutant is primarily driven by dysregulated host responses, including disrupted cell processes, augmented interferon (IFN) pathway activation, and robust inflammation. In vitro replication attenuation also extends to in vivo models, allowing use of dORF3-5 as a live attenuated vaccine platform. Finally, examination of ORF5 implicates a partial role in modulation of NF-κB-mediated inflammation. Together, the results demonstrate the importance of MERS-CoV accessory ORFs for pathogenesis and highlight them as potential targets for surveillance and therapeutic treatments moving forward. PMID:28830941
Role of the immune system in cardiac tissue damage and repair following myocardial infarction.
Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya
2017-09-01
The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.
Lundmark, Anna; Davanian, Haleh; Båge, Tove; Johannsen, Gunnar; Koro, Catalin; Lundeberg, Joakim; Yucel-Lindberg, Tülay
2015-01-01
The multifactorial chronic inflammatory disease periodontitis, which is characterized by destruction of tooth-supporting tissues, has also been implicated as a risk factor for various systemic diseases. Although periodontitis has been studied extensively, neither disease-specific biomarkers nor therapeutic targets have been identified, nor its link with systemic diseases. Here, we analyzed the global transcriptome of periodontitis and compared its gene expression profile with those of other inflammatory conditions, including cardiovascular disease (CVD), rheumatoid arthritis (RA), and ulcerative colitis (UC). Gingival biopsies from 62 patients with periodontitis and 62 healthy subjects were subjected to RNA sequencing. The up-regulated genes in periodontitis were related to inflammation, wounding and defense response, and apoptosis, whereas down-regulated genes were related to extracellular matrix organization and structural support. The most highly up-regulated gene was mucin 4 (MUC4), and its protein product was confirmed to be over-expressed in periodontitis. When comparing the expression profile of periodontitis with other inflammatory diseases, several gene ontology categories, including inflammatory response, cell death, cell motion, and homeostatic processes, were identified as common to all diseases. Only one gene, pleckstrin (PLEK), was significantly overexpressed in periodontitis, CVD, RA, and UC, implicating this gene as an important networking link between these chronic inflammatory diseases. PMID:26686060
Distinct role of IL-1β in instigating disease in Sharpincpdm mice
Gurung, Prajwal; Sharma, Bhesh Raj; Kanneganti, Thirumala-Devi
2016-01-01
Mice deficient in SHARPIN (Sharpincpdm mice), a member of linear ubiquitin chain assembly complex (LUBAC), develop severe dermatitis associated with systemic inflammation. Previous studies have demonstrated that components of the TNF-signaling pathway, NLRP3 inflammasome and IL-1R signaling are required to provoke skin inflammation in Sharpincpdm mice. However, whether IL-1α or IL-1β, both of which signals through IL-1R, instigates skin inflammation and systemic disease is not known. Here, we have performed extensive cellular analysis of pre-diseased and diseased Sharpincpdm mice and demonstrated that cellular dysregulation precedes skin inflammation. Furthermore, we demonstrate a specific role for IL-1β, but not IL-1α, in instigating dermatitis in Sharpincpdm mice. Our results altogether demonstrate distinct roles of SHARPIN in initiating systemic inflammation and dermatitis. Furthermore, skin inflammation in Sharpincpdm mice is specifically modulated by IL-1β, highlighting the importance of specific targeted therapies in the IL-1 signaling blockade. PMID:27892465
Ulinastatin activates haem oxygenase 1 antioxidant pathway and attenuates allergic inflammation
Song, Dongmei; Song, Geng; Niu, Yinghao; Song, Wei; Wang, Jiantao; Yu, Lei; Yang, Jianwang; Lv, Xin; Steinberg, Harry; Liu, Shu Fang; Wang, Baoshan
2014-01-01
Background and Purpose Ulinastatin (UTI), a serine protease inhibitor, was recently found to have an anti-inflammatory action. However, the mechanisms mediating this anti-inflammatory effect are not well understood. This study tested the hypothesis that UTI suppresses allergic inflammation by inducing the expression of haem oxygenase 1 (HO1). Experimental Approach Control mice and mice sensitized (on days 1, 9 and 14) and challenged (on days 21 to 27) with ovalbumin (OVA) were treated with UTI. The effects of UTI on basal expression of HO1 and that induced by OVA challenge were examined. The involvement of UTI-induced HO1 expression in anti-inflammatory and antioxidant effects of UTI was also evaluated. Key Results UTI markedly increased basal HO1 protein expression in lungs of control mice in a time- and dose-dependent manner, and augmented HO1 protein expression induced by OVA. The up-regulation of HO1 mediated by UTI in sensitized and OVA-challenged mice was associated with reduced airway inflammation, alleviated tissue injury, reduced oxidant stress and enhanced antioxidant enzyme activities. Inhibition of HO1 activity using HO1 inhibitor, zinc protoporphyrin, attenuated inhibitory effects of UTI on inflammation and oxidant stress, and its stimulant effects on antioxidant enzyme activities. Mechanistic analysis showed that UTI increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2), stimulated Nrf2 DNA binding activity and concomitantly up-regulated HO1 mRNA expression. Conclusions and Implications UTI is a potent and naturally occurring inducer of HO1 expression. HO1 up-regulation contributes significantly to the anti-inflammatory and organ-protective effects of UTI, which has important research and therapeutic implications. PMID:24835359
Das, Amitava; Ganesh, Kasturi; Khanna, Savita; Sen, Chandan K.; Roy, Sashwati
2014-01-01
SUMMARY At an injury-site, efficient clearance of apoptotic cells by wound macrophages or efferocytosis is a pre-requisite for the timely resolution of inflammation. Emerging evidence indicates that miR-21 may regulate the inflammatory response. In this work, we sought to elucidate the significance of miR-21 in the regulation of efferocytosis mediated suppression of innate immune response, a key process implicated in resolving inflammation following injury. An increased expression of inducible miR-21 was noted in post-efferocytotic peripheral blood monocyte-derived macrophages (MDM). Such induction of miR-21 was associated with silencing of its target genes PTEN and PDCD4. Successful efferocytosis of apoptotic cells by MDM resulted in the suppression of LPS-induced NF-κB activation and TNFα expression. Interestingly, bolstering of miR-21 levels alone using miR mimic resulted in significant suppression of LPS-induced TNFα expression and NFκB activation. We report that efferocytosis-induced miR-21, by silencing PTEN and GSK3β, tempers LPS-induced inflammatory response. Macrophage efferocytosis is known to trigger the release of anti-inflammatory cytokine IL-10. This study demonstrates that following successful efferocytosis, miR-21 induction in macrophages silence PDCD4 favoring cJun-AP1 activity which in turn results in elevated production of anti-inflammatory IL-10. In summary, this work provides direct evidence implicating miRNA in the process of turning-on an anti-inflammatory phenotype in the post-efferocytotic macrophage. Elevated macrophage miR-21 promotes efferocytosis and silences target genes PTEN and PDCD4 which in turn accounts for a net anti-inflammatory phenotype. Findings of this study highlight the significance of miRNAs in the resolution of wound inflammation. PMID:24391209
Peripheral inflammation is associated with remote global gene expression changes in the brain
2014-01-01
Background Although the central nervous system (CNS) was once considered an immunologically privileged site, in recent years it has become increasingly evident that cross talk between the immune system and the CNS does occur. As a result, patients with chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease or psoriasis, are often further burdened with neuropsychiatric symptoms, such as depression, anxiety and fatigue. Despite the recent advances in our understanding of neuroimmune communication pathways, the precise effect of peripheral immune activation on neural circuitry remains unclear. Utilizing transcriptomics in a well-characterized murine model of systemic inflammation, we have started to investigate the molecular mechanisms by which inflammation originating in the periphery can induce transcriptional modulation in the brain. Methods Several different systemic and tissue-specific models of peripheral toll-like-receptor-(TLR)-driven (lipopolysaccharide (LPS), lipoteichoic acid and Imiquimod) and sterile (tumour necrosis factor (TNF) and 12-O-tetradecanoylphorbol-13-acetate (TPA)) inflammation were induced in C57BL/6 mice. Whole brain transcriptional profiles were assessed and compared 48 hours after intraperitoneal injection of lipopolysaccharide or vehicle, using Affymetrix GeneChip microarrays. Target gene induction, identified by microarray analysis, was validated independently using qPCR. Expression of the same panel of target genes was then investigated in a number of sterile and other TLR-dependent models of peripheral inflammation. Results Microarray analysis of whole brains collected 48 hr after LPS challenge revealed increased transcription of a range of interferon-stimulated genes (ISGs) in the brain. In addition to acute LPS challenge, ISGs were induced in the brain following both chronic LPS-induced systemic inflammation and Imiquimod-induced skin inflammation. Unique to the brain, this transcriptional response is indicative of peripherally triggered, interferon-mediated CNS inflammation. Similar models of sterile inflammation and lipoteichoic-acid-induced systemic inflammation did not share the capacity to trigger ISG induction in the brain. Conclusions These data highlight ISG induction in the brain as being a consequence of a TLR-induced type I interferon response. As considerable evidence links type I interferons to psychiatric disorders, we hypothesize that interferon production in the brain could represent an important mechanism, linking peripheral TLR-induced inflammation with behavioural changes. PMID:24708794
You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J
2013-04-01
Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.
McDade, Thomas W; Borja, Judith B; Largado, Fe; Adair, Linda S; Kuzawa, Christopher W
2016-02-01
Rates of overweight and obesity are on the rise globally, and excess adipose tissue may contribute to elevations in inflammation during pregnancy, leading to pregnancy complications and adverse birth outcomes. The purpose of this study was to evaluate adiposity and inflammation in young women as predictors of inflammation in the third trimester of pregnancy in a community-based sample of healthy women. Female participants (24-30 y) in a prospective observational cohort study (Cebu Longitudinal Health and Nutrition Survey) were contacted between 2009 and 2014 to identify new pregnancies. A total of 309 women provided data from 409 pregnancies. An in-home interview was scheduled for the third trimester to collect pregnancy information, anthropometric measurements, and a blood sample. Circulating C-reactive protein (CRP) was measured with a high-sensitivity immunoassay. Data collected from assessments in 2005 and 2009 were used to assess body mass index (BMI) and CRP in young adulthood, before pregnancy. Robust regression models were implemented to evaluate BMI and CRP in young adulthood as predictors of pregnancy CRP. Pre-pregnancy BMI was a stronger predictor of third-trimester circulating CRP than BMI in the third trimester. No association was found between pregnancy weight gain and CRP. Pre-pregnancy CRP was a significant predictor of CRP in pregnancy, independent of BMI. Levels of overweight/obesity and inflammation in young adulthood, before pregnancy, are important predictors of inflammation in the third trimester of pregnancy. These results may have implications for addressing the growing concern about the contribution of obesity to adverse birth outcomes, and they suggest that factors that influence the regulation of inflammation, before pregnancy and independent of adiposity, may be important in shaping the inflammatory response to pregnancy. © 2016 American Society for Nutrition.
Panzner, P; Malkusová, I; Vachová, M; Liška, M; Brodská, P; Růžičková, O; Malý, M
2015-01-01
Nasal inflammation in allergic rhinitis enhances bronchial Th2 driven inflammation and development of asthma. We assessed bronchial inflammation induced by natural allergen exposure during pollen season in patients with pollinosis with or without asthma to show the intensity of inflammation in asthma and rhinitis and possible persistence of inflammation in periods without allergen exposure. Sputum was induced in 52 patients with seasonal allergic rhinitis without asthma, 38 patients with seasonal allergic rhinitis and seasonal asthma and 23 healthy volunteers. Sampling was performed 6-8 weeks before the expected beginning of symptoms, during symptomatic period and 6-8 weeks after the end of symptoms. Sputum ECP was measured by means of chemi-luminiscent immunometric assay and sputum cell counts were assessed by classical staining and immunocytochemistry. Sputum eosinophils were on the whole higher in both asthma and rhinitis compared to controls (p<0.001, p=0.003). The rise of eosinophils during pollen season compared with values out of pollen season was significant in asthma (classical staining) (p=0.014) and slightly apparent in rhinitis (immunocytochemistry) (p=0.073). The seasonal rise of sputum ECP was observed only in rhinitis (p=0.006). Inflammation of the lower airway in patients with allergic rhinitis with and without asthma has been confirmed by means of both sputum eosinophil count and sputum ECP level. Persistent inflammation of lower airway in periods without allergen exposure was proven in seasonal asthma. This may have implications for the therapy of seasonal allergic rhinitis with and without asthma in terms of promoting long-term anti-inflammatory treatment. Copyright © 2013 SEICAP. Published by Elsevier Espana. All rights reserved.
DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases.
Ligthart, Symen; Marzi, Carola; Aslibekyan, Stella; Mendelson, Michael M; Conneely, Karen N; Tanaka, Toshiko; Colicino, Elena; Waite, Lindsay L; Joehanes, Roby; Guan, Weihua; Brody, Jennifer A; Elks, Cathy; Marioni, Riccardo; Jhun, Min A; Agha, Golareh; Bressler, Jan; Ward-Caviness, Cavin K; Chen, Brian H; Huan, Tianxiao; Bakulski, Kelly; Salfati, Elias L; Fiorito, Giovanni; Wahl, Simone; Schramm, Katharina; Sha, Jin; Hernandez, Dena G; Just, Allan C; Smith, Jennifer A; Sotoodehnia, Nona; Pilling, Luke C; Pankow, James S; Tsao, Phil S; Liu, Chunyu; Zhao, Wei; Guarrera, Simonetta; Michopoulos, Vasiliki J; Smith, Alicia K; Peters, Marjolein J; Melzer, David; Vokonas, Pantel; Fornage, Myriam; Prokisch, Holger; Bis, Joshua C; Chu, Audrey Y; Herder, Christian; Grallert, Harald; Yao, Chen; Shah, Sonia; McRae, Allan F; Lin, Honghuang; Horvath, Steve; Fallin, Daniele; Hofman, Albert; Wareham, Nicholas J; Wiggins, Kerri L; Feinberg, Andrew P; Starr, John M; Visscher, Peter M; Murabito, Joanne M; Kardia, Sharon L R; Absher, Devin M; Binder, Elisabeth B; Singleton, Andrew B; Bandinelli, Stefania; Peters, Annette; Waldenberger, Melanie; Matullo, Giuseppe; Schwartz, Joel D; Demerath, Ellen W; Uitterlinden, André G; van Meurs, Joyce B J; Franco, Oscar H; Chen, Yii-Der Ida; Levy, Daniel; Turner, Stephen T; Deary, Ian J; Ressler, Kerry J; Dupuis, Josée; Ferrucci, Luigi; Ong, Ken K; Assimes, Themistocles L; Boerwinkle, Eric; Koenig, Wolfgang; Arnett, Donna K; Baccarelli, Andrea A; Benjamin, Emelia J; Dehghan, Abbas
2016-12-12
Chronic low-grade inflammation reflects a subclinical immune response implicated in the pathogenesis of complex diseases. Identifying genetic loci where DNA methylation is associated with chronic low-grade inflammation may reveal novel pathways or therapeutic targets for inflammation. We performed a meta-analysis of epigenome-wide association studies (EWAS) of serum C-reactive protein (CRP), which is a sensitive marker of low-grade inflammation, in a large European population (n = 8863) and trans-ethnic replication in African Americans (n = 4111). We found differential methylation at 218 CpG sites to be associated with CRP (P < 1.15 × 10 -7 ) in the discovery panel of European ancestry and replicated (P < 2.29 × 10 -4 ) 58 CpG sites (45 unique loci) among African Americans. To further characterize the molecular and clinical relevance of the findings, we examined the association with gene expression, genetic sequence variants, and clinical outcomes. DNA methylation at nine (16%) CpG sites was associated with whole blood gene expression in cis (P < 8.47 × 10 -5 ), ten (17%) CpG sites were associated with a nearby genetic variant (P < 2.50 × 10 -3 ), and 51 (88%) were also associated with at least one related cardiometabolic entity (P < 9.58 × 10 -5 ). An additive weighted score of replicated CpG sites accounted for up to 6% inter-individual variation (R2) of age-adjusted and sex-adjusted CRP, independent of known CRP-related genetic variants. We have completed an EWAS of chronic low-grade inflammation and identified many novel genetic loci underlying inflammation that may serve as targets for the development of novel therapeutic interventions for inflammation.
RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation.
Lin, Juan; Kumari, Snehlata; Kim, Chun; Van, Trieu-My; Wachsmuth, Laurens; Polykratis, Apostolos; Pasparakis, Manolis
2016-12-01
Receptor-interacting protein kinase 1 (RIPK1) regulates cell death and inflammation through kinase-dependent and -independent functions. RIPK1 kinase activity induces caspase-8-dependent apoptosis and RIPK3 and mixed lineage kinase like (MLKL)-dependent necroptosis. In addition, RIPK1 inhibits apoptosis and necroptosis through kinase-independent functions, which are important for late embryonic development and the prevention of inflammation in epithelial barriers. The mechanism by which RIPK1 counteracts RIPK3-MLKL-mediated necroptosis has remained unknown. Here we show that RIPK1 prevents skin inflammation by inhibiting activation of RIPK3-MLKL-dependent necroptosis mediated by Z-DNA binding protein 1 (ZBP1, also known as DAI or DLM1). ZBP1 deficiency inhibited keratinocyte necroptosis and skin inflammation in mice with epidermis-specific RIPK1 knockout. Moreover, mutation of the conserved RIP homotypic interaction motif (RHIM) of endogenous mouse RIPK1 (RIPK1 mRHIM ) caused perinatal lethality that was prevented by RIPK3, MLKL or ZBP1 deficiency. Furthermore, mice expressing only RIPK1 mRHIM in keratinocytes developed skin inflammation that was abrogated by MLKL or ZBP1 deficiency. Mechanistically, ZBP1 interacted strongly with phosphorylated RIPK3 in cells expressing RIPK1 mRHIM , suggesting that the RIPK1 RHIM prevents ZBP1 from binding and activating RIPK3. Collectively, these results show that RIPK1 prevents perinatal death as well as skin inflammation in adult mice by inhibiting ZBP1-induced necroptosis. Furthermore, these findings identify ZBP1 as a critical mediator of inflammation beyond its previously known role in antiviral defence and suggest that ZBP1 might be implicated in the pathogenesis of necroptosis-associated inflammatory diseases.
Polycystic ovary syndrome and chronic inflammation: pharmacotherapeutic implications.
Sirmans, Susan Maureen; Weidman-Evans, Emily; Everton, Victoria; Thompson, Daniel
2012-03-01
To examine the relationship between polycystic ovary syndrome (PCOS), cardiovascular risk factors, cardiovascular disease (CVD), and chronic inflammation and analyze data regarding pharmacologic therapies that are recommended to reduce CVD risk in PCOS and the impact of those therapies on chronic inflammation. A search of MEDLINE (1950-October 2011) was conducted to identify clinical studies pertaining to the identification and treatment of CVD and chronic low-grade inflammation in PCOS. Search terms included polycystic ovary syndrome, cardiovascular disease, inflammation, metformin, thiazolidinedione, and statin. Bibliographies of these studies and review articles were also examined. English-language clinical studies evaluating the effect of metformin, thiazolidinediones, and statins on inflammatory markers, endothelial function, adhesion molecules, fibrinolysis, cytokines, and adipokines in PCOS were included. Women with PCOS have an increased prevalence of many cardiovascular risk factors including obesity, android fat distribution, insulin resistance, impaired glucose tolerance, diabetes, dyslipidemia, hypertension, and metabolic syndrome. Markers of chronic low-grade inflammation, which are associated with an increased risk of CVD, are also elevated in PCOS. Clinical guidelines recommend the use of insulin sensitizers and statins to prevent CVD in some patients with PCOS. Current literature indicates that each of these medication classes has beneficial effects on inflammation, as well. Although there are currently no studies to determine whether these treatments decrease CVD in PCOS, it can be hypothesized that drugs impacting chronic inflammation may reduce cardiovascular risk. Some studies show that metformin, thiazolidinediones, and statins have beneficial effects on inflammatory markers in PCOS; however, the data are inconsistent. There is insufficient information to recommend any pharmacologic therapies for their antiinflammatory effects in PCOS in the absence of other indications such as diabetes and dyslipidemia.
In Sickness and in Health: The Co-Regulation of Inflammation and Social Behavior
Eisenberger, Naomi I; Moieni, Mona; Inagaki, Tristen K; Muscatell, Keely A; Irwin, Michael R
2017-01-01
Although it has commonly been assumed that the immune system and the processes that govern social behavior are separate, non-communicating entities, research over the past several decades suggests otherwise. Considerable evidence now shows that inflammatory processes and social behavior are actually powerful regulators of one another. This review first summarizes evidence that inflammatory processes regulate social behavior, leading to characteristic changes that may help an individual navigate the social environment during times of sickness. Specifically, this review shows that inflammation: (1) increases threat-related neural sensitivity to negative social experiences (eg, rejection, negative social feedback), presumably to enhance sensitivity to threats to well-being or safety in order to avoid them and (2) enhances reward-related neural sensitivity to positive social experiences (eg, viewing close others and receiving positive social feedback), presumably to increase approach-related motivation towards others who might provide support and care during sickness. Next, this review summarizes evidence showing that social behavior also regulates aspects of inflammatory activity, preparing the body for situations in which wounding and infection may be more likely (social isolation). Here, we review research showing: (1) that exposure to social stressors increases proinflammatory activity, (2) that individuals who are more socially isolated (ie, lonely) show increased proinflammatory activity, and (3) that individuals who are more socially isolated show increased proinflammatory activity in response to an inflammatory challenge or social stressor. The implications of the co-regulation of inflammation and social behavior are discussed. PMID:27480575
Shanmugam, Nanda Kumar N; Trebicka, Estela; Fu, Ling-Lin; Shi, Hai Ning; Cherayil, Bobby J
2014-08-01
States of chronic inflammation such as inflammatory bowel disease are often associated with dysregulated iron metabolism and the consequent development of an anemia that is caused by maldistribution of iron. Abnormally elevated expression of the hormone hepcidin, the central regulator of systemic iron homeostasis, has been implicated in these abnormalities. However, the mechanisms that regulate hepcidin expression in conditions such as inflammatory bowel disease are not completely understood. To clarify this issue, we studied hepcidin expression in mouse models of colitis. We found that dextran sulfate sodium-induced colitis inhibited hepcidin expression in wild-type mice but upregulated it in IL-10-deficient animals. We identified two mechanisms contributing to this difference. Firstly, erythropoietic activity, as indicated by serum erythropoietin concentrations and splenic erythropoiesis, was higher in the wild-type mice, and pharmacologic inhibition of erythropoiesis prevented colitis-associated hepcidin downregulation in these animals. Secondly, the IL-10 knockout mice had higher expression of multiple inflammatory genes in the liver, including several controlled by STAT3, a key regulator of hepcidin. The results of cohousing and fecal transplantation experiments indicated that the microbiota was involved in modulating the expression of hepcidin and other STAT3-dependent hepatic genes in the context of intestinal inflammation. Our observations thus demonstrate the importance of erythropoietic activity and the microbiota in influencing hepcidin expression during colitis and provide insight into the dysregulated iron homeostasis seen in inflammatory diseases. Copyright © 2014 by The American Association of Immunologists, Inc.
Panchatcharam, Manikandan; Salous, Abdel K; Brandon, Jason; Miriyala, Sumitra; Wheeler, Jessica; Patil, Pooja; Sunkara, Manjula; Morris, Andrew J; Escalante-Alcalde, Diana; Smyth, Susan S
2014-04-01
Lipid phosphate phosphatase 3 (LPP3), encoded by the PPAP2B gene, is an integral membrane enzyme that dephosphorylates, and thereby terminates, the G-protein-coupled receptor-mediated signaling actions of lysophosphatidic acid (LPA) and sphingosine-1-phosphate. LPP3 is essential for normal vascular development in mice, and a common PPAP2B polymorphism is associated with increased risk of coronary artery disease in humans. Herein, we investigate the function of endothelial LPP3 to understand its role in the development and human disease. We developed mouse models with selective LPP3 deficiency in endothelial and hematopoietic cells. Tyrosine kinase Tek promoter-mediated inactivation of Ppap2b resulted in embryonic lethality because of vascular defects. LPP3 deficiency in adult mice, achieved using a tamoxifen-inducible Cre transgene under the control of the Tyrosine kinase Tek promoter, enhanced local and systemic inflammatory responses. Endothelial, but not hematopoietic, cell LPP3 deficiency led to significant increases in vascular permeability at baseline and enhanced sensitivity to inflammation-induced vascular leak. Endothelial barrier function was restored by pharmacological or genetic inhibition of either LPA production by the circulating lysophospholipase D autotaxin or of G-protein-coupled receptor-dependent LPA signaling. Our results identify a role for the autotaxin/LPA-signaling nexus as a mediator of endothelial permeability in inflammation and demonstrate that LPP3 limits these effects. These findings have implications for therapeutic targets to maintain vascular barrier function in inflammatory states.
Lewis, Joshua B; Bodine, Jared S; Gassman, Jason R; Muñoz, Samuel Arce; Milner, Dallin C; Dunaway, Todd M; Egbert, Kaleb M; Monson, Troy D; Broberg, Dallin S; Arroyo, Juan A; Reynolds, Paul R
2018-04-25
Claudin-6 (Cldn6) is a tetraspanin transmembrane protein that contributes to tight junctional complexes and has been implicated in the maintenance of lung epithelial barriers. In the present study, we tested the hypothesis that genetic up-regulation of Cldn-6 influences inflammation in mice exposed to short-term environmental diesel particulate matter (DPM). Mice were subjected to ten exposures of nebulized DPM (PM2.5) over a period of 20 days via a nose-only inhalation system (Scireq, Montreal, Canada). Using real-time RT-PCR, we discovered that the Cldn6 gene was up-regulated in control mice exposed to DPM and in lung-specific transgenic mice that up-regulate Cldn-6 (Cldn-6 TG). Interestingly, DPM did not further enhance Cldn-6 expression in Cldn-6 TG mice. DPM caused increased cell diapedesis into bronchoalveolar lavage fluid (BALF) from control mice; however, Cldn-6 TG mice had less total cells and PMNs in BALF following DPM exposure. Because Cldn-6 TG mice had diminished cell diapedesis, other inflammatory intermediates were screened to characterize the impact of increased Cldn-6 on inflammatory signaling. Cytokines that mediate inflammatory responses including TNF-α and IL-1β were differentially regulated in Cldn6 TG mice and controls following DPM exposure. These results demonstrate that epithelial barriers organized by Cldn-6 mediate, at least in part, diesel-induced inflammation. Further work may show that Cldn-6 is a key target in understanding pulmonary epithelial gateways exacerbated by environmental pollution.
Francischetti, Ivo M. B.; Oliveira, Carlo J.; Ostera, Graciela R.; Yager, Stephanie B.; Debierre-Grockiego, Françoise; Carregaro, Vanessa; Jaramillo-Gutierrez, Giovanna; Hume, Jen C.; Jiang, Lubin; Moretz, Samuel E.; Lin, Christina K.; Ribeiro, José M.C.; Long, Carole A.; Vickers, Brandy K.; Schwarz, Ralph T.; Seydel, Karl B.; Iacobelli, Massimo; Ackerman, Hans C.; Srinivasan, Prakash; Gomes, Regis B.; Wang, Xunde; Monteiro, Robson Q.; Kotsyfakis, Michail; Sá-Nunes, Anderson; Waisberg, Michael
2011-01-01
Objectives The coagulation-inflammation cycle has been implicated as a critical component in malaria pathogenesis. Defibrotide (DF), a mixture of DNA aptamers, displays anticoagulant, anti-inflammatory, and endothelial cell (EC)-protective activities and has been successfully used to treat comatose children with veno-occlusive disease. DF was investigated here as a drug to treat cerebral malaria (CM). Methods and Results DF blocks tissue factor (TF) expression by ECs incubated with parasitized red blood cells (pRBCs), attenuates prothrombinase activity, platelet aggregation, and complement activation. In contrast, it does not affect nitric oxide bioavailability. We also demonstrated that Plasmodium falciparum glycosylphosphatidylinositol (Pf-GPI) induces TF expression in ECs and cytokine production by dendritic cells (DCs). Notably, DCs – known to modulate coagulation and inflammation systemically – were identified as a novel target for DF. Accordingly, DF inhibits Toll-like receptor (TLR) ligand-dependent DCs activation by a mechanism that is blocked by adenosine receptor (AR) antagonist (8-p-sulfophenyltheophylline), but not reproduced by synthetic poly-A,-C,-T,-G. These results imply that aptameric sequences and AR mediate DCs responses to the drug. DF also prevents rosetting formation, RBC invasion by P. falciparum and abolishes oocysts formation in Anopheles gambiae. In a murine model of CM, DF affected parasitemia, decreased IFN-γ levels, and ameliorated clinical score (day 5) with a trend for increased survival. Conclusions Therapeutic use of DF in malaria is proposed. PMID:22116094
Seo, Yu-Mi; Kang, Hyun-Mi; Lee, Sung-Churl; Yu, Jae-Won; Kil, Hong-Ryang; Rhim, Jung-Woo; Han, Ji-Whan; Lee, Kyung-Yil
2018-05-01
This study aimed to analyse laboratory values according to fever duration, and evaluate the relationship across these values during the acute phase of Kawasaki disease (KD) to aid in the early diagnosis for early-presenting KD and incomplete KD patients. Clinical and laboratory data of patients with KD (n=615) were evaluated according to duration of fever at presentation, and were compared between patients with and without coronary artery lesions (CALs). For evaluation of the relationships across laboratory indices, patients with a fever duration of 5 days or 6 days were used (n=204). The mean fever duration was 6.6±2.3 days, and the proportions of patients with CALs was 19.3% (n=114). C-reactive proteins (CRPs) and neutrophil differential values were highest and hemoglobin, albumin, and lymphocyte differential values were lowest in the 6-day group. Patients with CALs had longer total fever duration, higher CRP and neutrophil differential values and lower hemoglobin and albumin values compared to patients without CALs. CRP, albumin, neutrophil differential, and hemoglobin values at the peak inflammation stage of KD showed positive or negative correlations each other. The severity of systemic inflammation in KD was reflected in the laboratory values including CRP, neutrophil differential, albumin, and hemoglobin. Observing changes in these laboratory parameters by repeated examinations prior to the peak of inflammation in acute KD may aid in diagnosis of early-presenting KD patients.
Increase in chemokine CXCL1 by ERβ ligand treatment is a key mediator in promoting axon myelination.
Karim, Hawra; Kim, Sung Hoon; Lapato, Andrew S; Yasui, Norio; Katzenellenbogen, John A; Tiwari-Woodruff, Seema K
2018-06-12
Estrogen receptor β (ERβ) ligands promote remyelination in mouse models of multiple sclerosis. Recent work using experimental autoimmune encephalomyelitis (EAE) has shown that ERβ ligands induce axon remyelination, but impact peripheral inflammation to varying degrees. To identify if ERβ ligands initiate a common immune mechanism in remyelination, central and peripheral immunity and pathology in mice given ERβ ligands at peak EAE were assessed. All ERβ ligands induced differential expression of cytokines and chemokines, but increased levels of CXCL1 in the periphery and in astrocytes. Oligodendrocyte CXCR2 binds CXCL1 and has been implicated in normal myelination. In addition, despite extensive immune cell accumulation in the CNS, all ERβ ligands promoted extensive remyelination in mice at peak EAE. This finding highlights a component of the mechanism by which ERβ ligands mediate remyelination. Hence, interplay between the immune system and central nervous system may be responsible for the remyelinating effects of ERβ ligands. Our findings of potential neuroprotective benefits arising from the presence of CXCL1 could have implications for improved therapies for multiple sclerosis. Copyright © 2018 the Author(s). Published by PNAS.
Natural Compounds and Neuroprotection: Mechanisms of Action and Novel Delivery Systems.
Bagli, Eleni; Goussia, Anna; Moschos, Marilita M; Agnantis, Niki; Kitsos, Georgios
Neurodegeneration characterizes pathologic conditions, ranging from Alzheimer's disease to glaucoma, with devastating social and economic effects. It is a complex process implicating a series of molecular and cellular events, such as oxidative stress, mitochondrial dysfunction, protein misfolding, excitotoxicity and inflammation. Natural compounds, because of their broad spectrum of pharmacological and biological activities, could be possible candidates for the management of such multifactorial morbidities. However, their therapeutic potential against neurodegenerative diseases has been hampered by their poor bioavailability and subsequent insufficient delivery to the brain. This article provides an overview of the molecular mechanisms through which natural compounds exert their neuroprotective effects, as well as the development of novel natural compound-loaded delivery systems that could improve their neuroavailability. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Christian, Lisa M.
2011-01-01
It is well-established that psychological stress promotes immune dysregulation in nonpregnant humans and animals. Stress promotes inflammation, impairs antibody responses to vaccination, slows wound healing, and suppresses cell-mediated immune function. Importantly, the immune system changes substantially to support healthy pregnancy, with attenuation of inflammatory responses and impairment of cell-mediated immunity. This adaptation is postulated to protect the fetus from rejection by the maternal immune system. Thus, stress-induced immune dysregulation during pregnancy has unique implications for both maternal and fetal health, particularly preterm birth. However, very limited research has examined stress-immune relationships in pregnancy. The application of psychoneuroimmunology research models to the perinatal period holds great promise for elucidating biological pathways by which stress may affect adverse pregnancy outcomes, maternal health, and fetal development. PMID:21787802
Guard, B C; Suchodolski, J S
2016-06-01
Recent molecular studies have revealed a complex microbiota in the dog intestine. Convincing evidence has been reported linking changes in microbial communities to acute and chronic gastrointestinal inflammation, especially in canine inflammatory bowel disease (IBD). The most common microbial changes observed in intestinal inflammation are decreases in the bacterial phyla Firmicutes (i.e., Lachnospiraceae, Ruminococcaceae, and ) and Bacteroidetes, with concurrent increases in Proteobacteria (i.e., ). Due to the important role of microbial-derived metabolites for host health, it is important to elucidate the metabolic consequences of gastrointestinal dysbiosis and physiological pathways implicated in specific disease phenotypes. Metagenomic studies have used shotgun sequencing of DNA as well as phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) to characterize functional changes in the bacterial metagenome in gastrointestinal disease. Furthermore, wide-scale and untargeted measurements of metabolic products derived by the host and the microbiota in intestinal samples allow a better understanding of the functional alterations that occur in gastrointestinal disease. For example, changes in bile acid metabolism and tryptophan catabolism recently have been reported in humans and dogs. Also, metabolites associated with the pentose phosphate pathway were significantly altered in chronic gastrointestinal inflammation and indicate the presence of oxidative stress in dogs with IBD. This review focuses on the advancements made in canine metagenomics and metabolomics and their implications in understanding gastrointestinal disease as well as the development of better treatment approaches.
Anderson, George; Maes, Michael
2014-02-01
Increased depression, somatization, gut inflammation and wider peripheral inflammation are all associated with the early stages of Parkinson's disease (PD). Classically such concurrent conditions have been viewed as "comorbidities", driven by high levels of stress in a still poorly understood and treated disorder. Here we review the data on how oxidative and nitrosative stress in association with immuno-inflammatory responses, drives alteration in tryptophan catabolites, including kynurenine, kynurenic acid and quinolinic acid that drive not only the 'comorbidities" of PD but also important processes in the etiology and course of PD per se. The induction of indoleamine 2,3-dioxygenase, leading to the driving of tryptophan into neuroregulatory tryptophan catabolite products and away from serotonin and melatonin production, has significant implications for understanding the role of nicotine, melatonin, and caffeine in regulating PD susceptibility. Tryptophan catabolite pathway activation will also regulate blood-brain barrier permeability, glia and mast cell reactivity as well as wider innate and adaptive immune cell responses, all relevant to the course of PD. As such, the "comorbidities" of PD such as depression, somatization and peripheral inflammatory disorders can all be conceptualized as being an intricate part of the biological underpinnings of both the etiology and course of PD. As a consequence, the data reviewed here has treatment implications; relevant to both the course of PD and in the management of L-DOPA induced dyskinesias.
USDA-ARS?s Scientific Manuscript database
Phytosterols are implicated in the development of parenteral nutrition–associated liver disease. A newly proposed mechanism for phytosterol-mediated parenteral nutrition–associated liver disease is through phytosterol-facilitated hepatic proinflammatory cytokine release following exposure to intesti...
Karrasch, T; Obermeier, F; Straub, R H
2014-06-01
Acute and chronic intestinal inflammation stimulates innate and adaptive immune systems, thereby increasing energy demand of activated immune cells. Energy regulation by systemically released mediators is of critical importance for homeostasis. We wanted to find out how systemic metabolic mediators are affected during intestinal inflammation. A total of 123 patients suffering from Crohn's disease (CD), 76 patients with ulcerative colitis (UC), and 21 healthy controls were recruited. Patients receiving systemic steroids or therapy regimens including biologicals (anti-TNF) were excluded from the study. Serum levels of IL-6, CRP, insulin, glucose, free fatty acid, and RBP-4 were measured by ELISA and RIA. Intestinal inflammation was accompanied by elevated systemic inflammatory para-meters such as IL-6 and CRP in UC and CD and, concomitantly, with elevated insulin levels and increased insulin/glucose ratio in patients with UC. This indicates insulin resistance in liver, muscle, and fat. In addition, intestinal inflammation was associated with elevated levels of circulating free fatty acids in UC and CD, indicating an activation of the organism's appeal for energy-rich substrates (energy appeal reaction). RBP-4 serum levels were also high in acute and chronic intestinal inflammation in UC and CD, which can support insulin resistance. The organism's "energy appeal reaction" in response to acute and chronic inflammation provides free energy in the circulation, which is needed by inflammatory cells. A major mechanism of the redirection program is insulin resistance. New therapeutic strategies might be developed in the future, directly impacting on the storage and utilization of energy-rich fuels. © Georg Thieme Verlag KG Stuttgart · New York.
Retinol Binding Protein 4 in Relation to Diet, Inflammation, Immunity, and Cardiovascular Diseases12
Zabetian-Targhi, Fateme; Mahmoudi, Mohammad J; Rezaei, Nima; Mahmoudi, Maryam
2015-01-01
Retinol binding protein 4 (RBP4), previously called retinol binding protein (RBP), is considered a specific carrier of retinol in the blood. It is also an adipokine that has been implicated in the pathophysiology of insulin resistance. RBP4 seems to be correlated with cardiometabolic markers in inflammatory chronic diseases, including obesity, type 2 diabetes, metabolic syndrome, and cardiovascular diseases (CVDs). It has recently been suggested that inflammation produced by RBP4 induces insulin resistance and CVD. The clinical relevance of this hypothesis is discussed in this review. Knowledge concerning the association of RBP4 with inflammation markers, oxidative stress, and CVDs as well as concerning the role of diet and antioxidants in decreasing RBP4 concentrations are discussed. Special attention is given to methodologies used in previously published studies and covariates that should be controlled when planning new studies on this adipokine. PMID:26567199
A Review of Experimental Evidence Linking Neurotoxic Organophosphorus Compounds and Inflammation
Banks, Christopher N.; Lein, Pamela J.
2012-01-01
Organophosphorus (OP) nerve agents and pesticides inhibit acetylcholinesterase (AChE), and this is thought to be a primary mechanism mediating the neurotoxicity of these compounds. However, a number of observations suggest that mechanisms other than or in addition to AChE inhibition contribute to OP neurotoxicity. There is significant experimental evidence that acute OP intoxication elicits a robust inflammatory response, and emerging evidence suggests that chronic repeated low-level OP exposure also upregulates inflammatory mediators. A critical question that is just beginning to be addressed experimentally is the pathophysiologic relevance of inflammation in either acute or chronic OP intoxication. The goal of this article is to provide a brief review of the current status of our knowledge linking inflammation to OP intoxication, and to discuss the implications of these findings in the context of therapeutic and diagnostic approaches to OP neurotoxicity. PMID:22342984
Fischer, Tamás
2015-03-01
The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.
The, FO; Cailotto, C; van der Vliet, J; de Jonge, WJ; Bennink, RJ; Buijs, RM; Boeckxstaens, GE
2011-01-01
BACKGROUND AND PURPOSE Electrical stimulation of the vagus nerve reduces intestinal inflammation following mechanical handling, thereby shortening post-operative ileus in mice. Previous studies in a sepsis model showed that this cholinergic anti-inflammatory pathway can be activated pharmacologically by central administration of semapimod, an inhibitor of p38 mitogen-activated protein kinase. We therefore evaluated the effect of intracerebroventricular (i.c.v.) semapimod on intestinal inflammation and post-operative ileus in mice. EXPERIMENTAL APPROACH Mice underwent a laparotomy or intestinal manipulation 1 h after i.c.v. pre-treatment with semapimod (1 µg·kg−1) or saline. Drugs were administered through a cannula placed in the left lateral ventricle 1 week prior to experimentation. Twenty-four hours after surgery, gastric emptying was measured using scintigraphy, and the degree of intestinal inflammation was assessed. Finally, activation of brain regions was assessed using quantitative immunohistochemistry for c-fos. KEY RESULTS Intestinal manipulation induced inflammation of the manipulated intestine and significantly delayed gastric emptying, 24 h after surgery in saline-treated animals. Semapimod significantly reduced this inflammation and improved gastric emptying. Vagotomy enhanced the inflammatory response induced by intestinal manipulation and abolished the anti-inflammatory effect of semapimod. Semapimod but not saline induced a significant increase in c-fos expression in the paraventricular nucleus, the nucleus of the solitary tract and the dorsal motor nucleus of the vagus nerve. CONCLUSIONS AND IMPLICATIONS Our findings show that i.c.v. semapimod reduces manipulation-induced intestinal inflammation and prevented post-operative ileus. This anti-inflammatory effect depends on central activation of the vagus nerve. PMID:21371006
Floudas, Achilleas; Saunders, Sean P.; Moran, Tara; Schwartz, Christian; Hams, Emily; Fitzgerald, Denise C.; Johnston, James A.; Ogg, Graham S.; McKenzie, Andrew N.; Walsh, Patrick T.; Fallon, Padraic G.
2017-01-01
Atopic dermatitis (AD) is a common inflammatory skin disease affecting up to 20% of children and 3% of adults worldwide and is associated with dysregulation of the skin barrier. While type 2 responses are implicated in AD, emerging evidence indicates potential role for the IL-17A signalling axis in AD pathogenesis. In this study we show that in the filaggrin mutant mouse model of spontaneous AD, IL-17RA deficiency (Il17ra-/-) resulted in severe exacerbation of skin inflammation. Interestingly, Il17ra-/- mice without the filaggrin mutation also developed spontaneous progressive skin inflammation with eosinophilia, increased levels of thymic stromal lymphopoietin (TSLP) and IL-5 in the skin. Il17ra-/- mice have a defective skin barrier with altered filaggrin expression. The barrier dysregulation and spontaneous skin inflammation in Il17ra-/- mice was dependent on TSLP, but not the other alarmins IL-25 and IL-33. The associated skin inflammation was mediated by IL-5 expressing pathogenic effector (pe) Th2 cells and was independent of TCRγδ T cells and IL-22. An absence of IL-17RA in non-hematopoietic cells, but not in the hematopoietic cells, was required for the development of spontaneous skin inflammation. Skin microbiome dysbiosis developed in the absence of IL-17RA, with antibiotic intervention resulting in significant amelioration of skin inflammation and reductions in skin infiltrating peTh2 cells and TSLP. This study describes a previously unappreciated protective role for IL-17RA signalling in regulation of the skin barrier and maintenance of skin immune homeostasis. PMID:28615416
Watanabe, Yasuharu; Nagai, Yoshinori; Takatsu, Kiyoshi
2013-09-23
Obesity-associated chronic tissue inflammation is a key contributing factor to type 2 diabetes mellitus, and a number of studies have clearly demonstrated that the immune system and metabolism are highly integrated. Recent advances in deciphering the various immune cells and signaling networks that link the immune and metabolic systems have contributed to our understanding of the pathogenesis of obesity-associated inflammation. Other recent studies have suggested that pattern recognition receptors in the innate immune system recognize various kinds of endogenous and exogenous ligands, and have a crucial role in initiating or promoting obesity-associated chronic inflammation. Importantly, these mediators act on insulin target cells or on insulin-producing cells impairing insulin sensitivity and its secretion. Here, we discuss how various pattern recognition receptors in the immune system underlie the etiology of obesity-associated inflammation and insulin resistance, with a particular focus on the TLR (Toll-like receptor) family protein Radioprotective 105 (RP105)/myeloid differentiation protein-1 (MD-1).
Activation of satellite glial cells in trigeminal ganglion following dental injury and inflammation.
Liu, Haichao; Zhao, Lei; Gu, Wenzhen; Liu, Qin; Gao, Zhixiong; Zhu, Xiao; Wu, Zhi; He, Hongwen; Huang, Fang; Fan, Wenguo
2018-06-01
Satellite glial cells (SGCs), a peripheral neuroglial cell, surround neurons and form a complete envelope around individual sensory neurons in the trigeminal ganglia (TG), which may be involved in modulating neurons in inflammation. The purpose of this study was to determine the effect of dental injury and inflammation on SGCs in the TG. Pulp exposure (PX) was performed on the first maxillary molar of 28 rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Specimens were collected at 1, 3, 7, 14, 21 and 28 days after PX and stained immunohistochemically for glial fibrillary acid protein (GFAP), a marker of SGCs activation, in the TG. We observed that GFAP-immunoreactivity (IR) SGCs enclosed FG-labeled neurons increased in a time-dependent manner after PX. The neurons surrounded by GFAP-IR SGCs were mainly small and medium in size. The GFAP-IR SGCs encircled neurons increased significantly in the maxillary nerve region of the TG at 7-28 days following PX. The results show that dental injury and inflammation induced SGCs activation in the TG. It indicates that activation of SGCs might be implicated in the peripheral mechanisms of pain following dental injury and inflammation.
Role of Modulator of Inflammation Cyclooxygenase-2 in Gammaherpesvirus Mediated Tumorigenesis
Gandhi, Jaya; Khera, Lohit; Gaur, Nivedita; Paul, Catherine; Kaul, Rajeev
2017-01-01
Chronic inflammation is recognized as a threat factor for cancer progression. Release of inflammatory molecules generates microenvironment which is highly favorable for development of tumor, cancer progression and metastasis. In cases of latent viral infections, generation of such a microenvironment is one of the major predisposing factors related to virus mediated tumorigenesis. Among various inflammatory mediators implicated in pathological process associated with cancer, the cyclooxygenase (COX) and its downstream effector molecules are of greater significance. Though the role of infectious agents in causing inflammation leading to transformation of cells has been more or less well established, however, the mechanism by which inflammation in itself modulates the events in life cycle of infectious agent is not very much clear. This is specifically important for gammaherpesviruses infections where viral life cycle is characterized by prolonged periods of latency when the virus remains hidden, immunologically undetectable and expresses only a very limited set of genes. Therefore, it is important to understand the mechanisms for role of inflammation in virus life cycle and tumorigenesis. This review is an attempt to summarize the latest findings highlighting the significance of COX-2 and its downstream signaling effectors role in life cycle events of gammaherpesviruses leading to progression of cancer. PMID:28400769
Infection, inflammation and exercise in cystic fibrosis
2013-01-01
Regular exercise is positively associated with health. It has also been suggested to exert anti-inflammatory effects. In healthy subjects, a single exercise session results in immune cell activation, which is characterized by production of immune modulatory peptides (e.g. IL-6, IL-8), a leukocytosis and enhanced immune cell functions. Upon cessation of exercise, immune activation is followed by a tolerizing phase, characterized by a reduced responsiveness of immune cells. Regular exercise of moderate intensity and duration has been shown to exert anti-inflammatory effects and is associated with a reduced disease incidence and viral infection susceptibility. Specific exercise programs may therefore be used to modify the course of chronic inflammatory and infectious diseases such as cystic fibrosis (CF). Patients with CF suffer from severe and chronic pulmonary infections and inflammation, leading to obstructive and restrictive pulmonary disease, exercise intolerance and muscle cachexia. Inflammation is characterized by a hyper-inflammatory phenotype. Patients are encouraged to engage in exercise programs to maintain physical fitness, quality of life, pulmonary function and health. In this review, we present an overview of available literature describing the association between regular exercise, inflammation and infection susceptibility and discuss the implications of these observations for prevention and treatment of inflammation and infection susceptibility in patients with CF. PMID:23497303
Cell and molecular mechanisms behind diet-induced hypothalamic inflammation and obesity.
Ávalos, Yenniffer; Kerr, Bredford; Maliqueo, Manuel; Dorfman, Mauricio
2018-04-12
Diet-induced obesity (DIO) is associated with chronic, low-grade inflammation in the hypothalamus, a key regulator of energy homeostasis. Current studies have revealed the involvement of different cell types as well as cell and molecular mechanisms that contribute to diet-induced hypothalamic inflammation (DIHI) and DIO. Since the discovery that high-fat diet and saturated fatty acids (SFAs) increase the expression of hypothalamic cytokines prior to weight gain, research has focused on understanding the cellular and molecular mechanisms underlying these changes, and what the role of inflammation in the obesity pathogenesis. Recent studies have proposed that the inhibition of proinflammatory pathways in microglia and astrocytes is sufficient to protect against DIHI and prevent obesity. In addition, impairment of intracellular and epigenetic mechanisms, such as hypothalamic autophagy and changes in the methylation pattern of certain genes, have been implicated in susceptibility to DIHI and DIO. Interestingly, a sexual dimorphism has been found during DIO in hypothalamic inflammation, glial activation and metabolic diseases, and recent data support an important role of sex steroids in DIHI. These new exciting findings uncover novel obesity pathogenic mechanisms and provide targets to develop therapeutic approaches. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Bastin, Anthony J; Davies, Nathan; Lim, Eric; Quinlan, Greg J; Griffiths, Mark J
2016-01-01
N-acetylcysteine has been used to treat a variety of lung diseases, where is it thought to have an antioxidant effect. In a randomized placebo-controlled double-blind study, the effect of N-acetylcysteine on systemic inflammation and oxidative damage was examined in patients undergoing lung resection, a human model of acute lung injury. Eligible adults were randomized to receive preoperative infusion of N-acetylcysteine (240 mg/kg over 12 h) or placebo. Plasma thiols, interleukin-6, 8-isoprostane, ischaemia-modified albumin, red blood cell glutathione and exhaled breath condensate pH were measured pre- and post-operatively as markers of local and systemic inflammation and oxidative stress. Patients undergoing lung resection and one-lung ventilation exhibited significant postoperative inflammation and oxidative damage. Postoperative plasma thiol concentration was significantly higher in the N-acetylcysteine-treated group. However, there was no significant difference in any of the measured biomarkers of inflammation or oxidative damage, or in clinical outcomes, between N-acetylcysteine and placebo groups. Preoperative administration of N-acetylcysteine did not attenuate postoperative systemic or pulmonary inflammation or oxidative damage after lung resection. NCT00655928 at ClinicalTrials.gov. © 2015 Asian Pacific Society of Respirology.
N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit
Huang, Feiruo
2015-01-01
Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits. PMID:26339623
N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit.
Wang, Yue; Huang, Feiruo
2015-01-01
Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits.
Chronic Inflammation: Accelerator of Biological Aging.
Fougère, Bertrand; Boulanger, Eric; Nourhashémi, Fati; Guyonnet, Sophie; Cesari, Matteo
2017-09-01
Biological aging is characterized by a chronic low-grade inflammation level. This chronic phenomenon has been named "inflamm-aging" and is a highly significant risk factor for morbidity and mortality in the older persons. The most common theories of inflamm-aging include redox stress, mitochondrial dysfunction, glycation, deregulation of the immune system, hormonal changes, epigenetic modifications, and dysfunction telomere attrition. Inflamm-aging plays a role in the initiation and progression of age-related diseases such as type II diabetes, Alzheimer's disease, cardiovascular disease, frailty, sarcopenia, osteoporosis, and cancer. This review will cover the identification of pathways that control age-related inflammation across multiple systems and its potential causal role in contributing to adverse health outcomes. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Choli-Papadopoulou, Theodora; Kottakis, Filippos; Papadopoulos, Georgios; Pendas, Stefanos
2011-06-07
Helicobacter pylori (H. pylori) infection is among the most common human infections and the major risk factor for peptic ulcer disease and gastric cancer. Within this work we present the implication of C-terminal region of H. pylori neutrophil activating protein in the stimulation of neutrophil activation as well as the evidence that the C-terminal region of H. pylori activating protein is indispensable for neutrophil adhesion to endothelial cells, a step necessary to H. pylori inflammation. In addition we show that arabino galactan proteins derived from chios mastic gum, the natural resin of the plant Pistacia lentiscus var. Chia inhibit neutrophil activation in vitro.
Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension.
Rabinovitch, Marlene; Guignabert, Christophe; Humbert, Marc; Nicolls, Mark R
2014-06-20
This review summarizes an expanding body of knowledge indicating that failure to resolve inflammation and altered immune processes underlie the development of pulmonary arterial hypertension. The chemokines and cytokines implicated in pulmonary arterial hypertension that could form a biomarker platform are discussed. Pre-clinical studies that provide the basis for dysregulated immunity in animal models of the disease are reviewed. In addition, we present therapies that target inflammatory/immune mechanisms that are currently enrolling patients, and discuss others in development. We show how genetic and metabolic abnormalities are inextricably linked to dysregulated immunity and adverse remodeling in the pulmonary arteries. © 2014 American Heart Association, Inc.
Al-Harbi, Naif O; Nadeem, A; Al-Harbi, Mohamed M; Imam, F; Al-Shabanah, Othman A; Ahmad, Sheikh F; Sayed-Ahmed, Mohamed M; Bahashwan, Saleh A
2015-05-01
Oxidant-antioxidant imbalance plays an important role in repeated cycles of airway inflammation observed in asthma. It is when reactive oxygen species (ROS) overwhelm antioxidant defenses that a severe inflammatory state becomes apparent and may impact vasculature. Several studies have shown an association between airway inflammation and cardiovascular complications; however so far none has investigated the link between airway oxidative stress and systemic/vascular oxidative stress in a murine model of asthma. Therefore, this study investigated the contribution of oxidative stress encountered in asthmatic airways in modulation of vascular/systemic oxidant-antioxidant balance. Rats were sensitized intraperitoneally with ovalbumin (OVA) in the presence of aluminum hydroxide followed by several intranasal (i.n.) challenges with OVA. Rats were then assessed for airway and vascular inflammation, oxidative stress (ROS, lipid peroxides) and antioxidants measured as total antioxidant capacity (TAC) and thiol content. Challenge with OVA led to increased airway inflammation and oxidative stress with a concomitant increase in vascular inflammation and oxidative stress. Oxidative stress in the vasculature was significantly inhibited by antioxidant treatment, N-acetyl cysteine; whereas hydrogen peroxide (H2O2) inhalation worsened it. Therefore, our study shows that oxidative airway inflammation is associated with vascular/systemic oxidative stress which might predispose these patients to increased cardiovascular risk. Copyright © 2015 Elsevier B.V. All rights reserved.
Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto
2015-10-01
Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
STAT3 in the Systemic Inflammation of Cancer Cachexia
Zimmers, Teresa A.; Fishel, Melissa L.; Bonetto, Andrea
2016-01-01
Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both contributory and protective functions for STAT3 in other organs during cachexia. Finally, STAT3 contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia in cancer and evidence for targeting STAT3 for anti-cachexia therapies. PMID:26860754
Manuzak, Jennifer A; Gott, Toni M; Kirkwood, Jay S; Coronado, Ernesto; Hensley-McBain, Tiffany; Miller, Charlene; Cheu, Ryan K; Collier, Ann C; Funderburg, Nicholas T; Martin, Jeffery N; Wu, Michael C; Isoherranen, Nina; Hunt, Peter W; Klatt, Nichole R
2018-06-01
Cannabis is a widely used drug in the United States, and the frequency of cannabis use in the human immunodeficiency virus (HIV)-infected population is disproportionately high. Previous human and macaque studies suggest that cannabis may have an impact on plasma viral load; however, the relationship between cannabis use and HIV-associated systemic inflammation and immune activation has not been well defined. The impact of cannabis use on peripheral immune cell frequency, activation, and function was assessed in 198 HIV-infected, antiretroviral-treated individuals by flow cytometry. Individuals were categorized into heavy, medium, or occasional cannabis users or noncannabis users based on the amount of the cannabis metabolite 11-nor-carboxy-tetrahydrocannabinol (THC-COOH) detected in plasma by mass spectrometry. Heavy cannabis users had decreased frequencies of human leukocyte antigen (HLA)-DR+CD38+CD4+ and CD8+ T-cell frequencies, compared to frequencies of these cells in non-cannabis-using individuals. Heavy cannabis users had decreased frequencies of intermediate and nonclassical monocyte subsets, as well as decreased frequencies of interleukin 23- and tumor necrosis factor-α-producing antigen-presenting cells. While the clinical implications are unclear, our findings suggest that cannabis use is associated with a potentially beneficial reduction in systemic inflammation and immune activation in the context of antiretroviral-treated HIV infection.
PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petriello, Michael C.; University of Kentucky Superfund Research Center, Lexington, KY 40536; Han, Sung Gu
2014-06-01
Environmental toxicants such as polychlorinated biphenyls (PCBs) have been implicated in the promotion of multiple inflammatory disorders including cardiovascular disease, but information regarding mechanisms of toxicity and cross-talk between relevant cell signaling pathways is lacking. To examine the hypothesis that cross-talk between membrane domains called caveolae and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathways alters PCB-induced inflammation, caveolin-1 was silenced in vascular endothelial cells, resulting in a decreased PCB-induced inflammatory response. Cav-1 silencing (siRNA treatment) also increased levels of Nrf2-ARE transcriptional binding, resulting in higher mRNA levels of the antioxidant genes glutathione s-transferase and NADPH dehydrogenase quinone-1 in both vehiclemore » and PCB-treated systems. Along with this upregulated antioxidant response, Cav-1 siRNA treated cells exhibited decreased mRNA levels of the Nrf2 inhibitory protein Keap1 in both vehicle and PCB-treated samples. Silencing Cav-1 also decreased protein levels of Nrf2 inhibitory proteins Keap1 and Fyn kinase, especially in PCB-treated cells. Further, endothelial cells from wildtype and Cav-1 −/− mice were isolated and treated with PCB to better elucidate the role of functional caveolae in PCB-induced endothelial inflammation. Cav-1 −/− endothelial cells were protected from PCB-induced cellular dysfunction as evidenced by decreased vascular cell adhesion molecule (VCAM-1) protein induction. Compared to wildtype cells, Cav-1 −/− endothelial cells also allowed for a more effective antioxidant response, as observed by higher levels of the antioxidant genes. These data demonstrate novel cross-talk mechanisms between Cav-1 and Nrf2 and implicate the reduction of Cav-1 as a protective mechanism for PCB-induced cellular dysfunction and inflammation. - Highlights: • Reduction of caveolin-1 protein protects against polychlorinated biphenyl toxicity. • Decreasing caveolin-1 levels increases the Nrf2 antioxidant response. • Reducing caveolin-1 levels decreases expression of Nrf2 inhibitory proteins. • Caveolin-1/Nrf2 cross-talk is evident in mouse, human, and porcine endothelial cells.« less
Auger, Jean-Philippe; Santinón, Agustina; Roy, David; Mossman, Karen; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo
2017-01-01
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis, with exacerbated inflammation being a hallmark of the infection. However, serotype 2 strains are genotypically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies: the virulent ST1 (Eurasia), highly virulent ST7 (responsible for the human outbreaks in China), and intermediate virulent ST25 (North America) are the most important worldwide. Even though type I interferons (IFNs) are traditionally associated with important antiviral functions, recent studies have demonstrated that they may also play an important role during infections with extracellular bacteria. Upregulation of IFN-β levels was previously observed in mice following infection with this pathogen. Consequently, the implication of IFN-β in the S. suis serotype 2 pathogenesis, which has always been considered a strict extracellular bacterium, was evaluated using strains of varying virulence. This study demonstrates that intermediate virulent strains are significantly more susceptible to phagocytosis than virulent strains. Hence, subsequent localization of these strains within the phagosome results in recognition of bacterial nucleic acids by Toll-like receptors 7 and 9, leading to activation of the interferon regulatory factors 1, 3, and 7 and production of IFN-β. Type I IFN, whose implication depends on the virulence level of the S. suis strain, is involved in host defense by participating in the modulation of systemic inflammation, which is responsible for the clearance of blood bacterial burden. As such, when induced by intermediate, and to a lesser extent, virulent S. suis strains, type I IFN plays a beneficial role in host survival. The highly virulent ST7 strain, however, hastily induces a septic shock that cannot be controlled by type I IFN, leading to rapid death of the host. A better understanding of the underlying mechanisms involved in the control of inflammation and subsequent bacterial burden could help to develop control measures for this important porcine and zoonotic agent. PMID:28894449
Critical role for CCAAT/Enhancer-binding protein beta in immune complex-induced acute lung injury
USDA-ARS?s Scientific Manuscript database
Although inflammation plays a central role in the pathogenesis of acute lung injury (ALI), the molecular mechanisms underlying inflammatory responses in ALI are poorly understood, and therapeutic options remain limited. The CCAAT/enhancer-binding protein (C/EBP) gamma and -gamma have been implicated...
USDA-ARS?s Scientific Manuscript database
Polyphenols possess anti-oxidant and anti-inflammatory properties. Oxidative stress (OS) and inflammation have been implicated in the pathogenesis of cytotoxic brain edema in cerebral ischemia. In addition, OS and pro-inflammatory cytokines also damage the endothelial cells and the neurovascular uni...
USDA-ARS?s Scientific Manuscript database
Obesity is associated with a chronic low grade inflammation characterized by high level of pro-inflammatory cytokines and mediators implicated in disrupted metabolic homeostasis. Parasitic nematode infection induces a polarized Th2 cytokine response and has been shown to modulate immune-based pathol...
Source of Chronic Inflammation in Aging.
Sanada, Fumihiro; Taniyama, Yoshiaki; Muratsu, Jun; Otsu, Rei; Shimizu, Hideo; Rakugi, Hiromi; Morishita, Ryuichi
2018-01-01
Aging is a complex process that results from a combination of environmental, genetic, and epigenetic factors. A chronic pro-inflammatory status is a pervasive feature of aging. This chronic low-grade inflammation occurring in the absence of overt infection has been defined as "inflammaging" and represents a significant risk factor for morbidity and mortality in the elderly. The low-grade inflammation persists even after reversing pro-inflammatory stimuli such as LDL cholesterol and the renin-angiotensin system (RAS). Recently, several possible sources of chronic low-grade inflammation observed during aging and age-related diseases have been proposed. Cell senescence and dysregulation of innate immunity is one such mechanism by which persistent prolonged inflammation occurs even after the initial stimulus has been removed. Additionally, the coagulation factor that activates inflammatory signaling beyond its role in the coagulation system has been identified. This signal could be a new source of chronic inflammation and cell senescence. Here, we summarized the factors and cellular pathways/processes that are known to regulate low-grade persistent inflammation in aging and age-related disease.
Proteinase-Activated Receptor 2 May Drive Cancer Progression by Facilitating TGF-β Signaling.
Ungefroren, Hendrik; Witte, David; Rauch, Bernhard H; Settmacher, Utz; Lehnert, Hendrik; Gieseler, Frank; Kaufmann, Roland
2017-11-22
The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-β (TGF-β) signaling to promote TGF-β1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-β responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-β signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-β signaling-promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-β signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection.
Proteinase-Activated Receptor 2 May Drive Cancer Progression by Facilitating TGF-β Signaling
Ungefroren, Hendrik; Witte, David; Settmacher, Utz; Lehnert, Hendrik; Kaufmann, Roland
2017-01-01
The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-β (TGF-β) signaling to promote TGF-β1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-β responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-β signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-β signaling–promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-β signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection. PMID:29165389
Mazzeo, A T; Fanelli, V; Mascia, L
2013-03-01
The maintenance of brain homeostasis against multiple internal and external challenges occurring during the acute phase of acute brain injury may be influenced by critical care management, especially in its respiratory, hemodynamic and metabolic components. The occurrence of acute lung injury represents the most frequent extracranial complication after brain injury and deserves special attention in daily practice as optimal ventilatory strategy for patients with acute brain and lung injury are potentially in conflict. Protecting the lung while protecting the brain is thus a new target in the modern neurointensive care. This article discusses the essentials of brain-lung crosstalk and focuses on how mechanical ventilation may exert an active role in the process of maintaining or treatening brain homeostasis after acute brain injury, highlighting the following points: 1) the role of inflammation as common pathomechanism of both acute lung and brain injury; 2) the recognition of ventilatory induced lung injury as determinant of systemic inflammation affecting distal organs, included the brain; 3) the possible implication of protective mechanical ventilation strategy on the patient with an acute brain injury as an undiscovered area of research in both experimental and clinical settings.
Basic biology and role of interleukin-17 in immunity and inflammation
Zenobia, Camille; Hajishengallis, George
2014-01-01
Interleukin-17 (IL-17, also known as IL-17A) is a key cytokine that links T cell activation to neutrophil mobilization and activation. As such, IL-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of IL-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of IL-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, IL-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis, and other diseases involving bone immunopathology. Systemic treatments with anti-IL-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis, although their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered IL-17 blockers, are required to conclusively implicate IL-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease. PMID:26252407
Ophthalmological implications of the chronic infections with the hepatitis C Virus.
Anisia-Iuliana, Alexa; Alina, Cantermir; Elena, Ciuntu Roxana; Dorin, Chiseliţă
2015-01-01
Objectives. Report of a clinical case reuniting the dry eye syndrome in a severe form, the Mooren's ulcer and necrotizing anterior scleritis with inflammation, with bilateral affectation in the context of chronic infection with the hepatitis C virus. Methods. A female patient aged 66 diagnosed with chronic hepatitis with HCV, with ophthalmological antecedents of Mooren's ulcer and severe form of dry eye syndrome in both eyes, comes to the emergency unit with hypopyon corneal ulcer in the right eye, shortly afterwards developing necrotizing anterior scleritis with inflammation. The patient is administered treatment for chronic hepatitis C, following which the ARN-HCV viremia decreases without ocular exacerbations. When the viremia level increases again, two lesions indicating necrotizing anterior scleritis are observed in the left eye. The evolution is favourable with topical and systemic treatment with corticosteroids. Complicated cataract is surgically treated in the right eye and vitreous humour is collected during surgery. Results. Visual acuity increases in the right eye after the surgery, while antibodies-HCV are identified in the vitreous humour. Conclusions. Chronic infection with hepatitis C virus displays multiple extra-hepatic manifestations and the ophthalmological ones require a multidisciplinary approach from both the chronic diseases practitioner and the ophthalmologist.
Ophthalmological implications of the chronic infections with the hepatitis C Virus
Anisia-Iuliana, Alexa; Alina, Cantermir; Elena, Ciuntu Roxana; Dorin, Chiseliţă
2015-01-01
Objectives. Report of a clinical case reuniting the dry eye syndrome in a severe form, the Mooren’s ulcer and necrotizing anterior scleritis with inflammation, with bilateral affectation in the context of chronic infection with the hepatitis C virus. Methods. A female patient aged 66 diagnosed with chronic hepatitis with HCV, with ophthalmological antecedents of Mooren’s ulcer and severe form of dry eye syndrome in both eyes, comes to the emergency unit with hypopyon corneal ulcer in the right eye, shortly afterwards developing necrotizing anterior scleritis with inflammation. The patient is administered treatment for chronic hepatitis C, following which the ARN-HCV viremia decreases without ocular exacerbations. When the viremia level increases again, two lesions indicating necrotizing anterior scleritis are observed in the left eye. The evolution is favourable with topical and systemic treatment with corticosteroids. Complicated cataract is surgically treated in the right eye and vitreous humour is collected during surgery. Results. Visual acuity increases in the right eye after the surgery, while antibodies-HCV are identified in the vitreous humour. Conclusions. Chronic infection with hepatitis C virus displays multiple extra-hepatic manifestations and the ophthalmological ones require a multidisciplinary approach from both the chronic diseases practitioner and the ophthalmologist. PMID:29450318
Robust shifts in S100a9 expression with aging: a novel mechanism for chronic inflammation.
Swindell, William R; Johnston, Andrew; Xing, Xianying; Little, Andrew; Robichaud, Patrick; Voorhees, John J; Fisher, Gary; Gudjonsson, Johann E
2013-01-01
The S100a8 and S100a9 genes encode a pro-inflammatory protein (calgranulin) that has been implicated in multiple diseases. However, involvement of S100a8/a9 in the basic mechanisms of intrinsic aging has not been established. In this study, we show that shifts in the abundance of S100a8 and S100a9 mRNA are a robust feature of aging in mammalian tissues, involving a range of cell types including the central nervous system. To identify transcription factors that control S100a9 expression, we performed a large-scale transcriptome analysis of 62 mouse and human cell types. We identified cell type-specific trends, as well as robust associations linking S100a9 coexpression to elevated frequency of ETS family motifs, and in particular, to motifs recognized by the transcription factor SPI/PU.1. Sparse occurrence of SATB1 motifs was also a strong predictor of S100a9 coexpression. These findings offer support for a novel mechanism by which a SPI1/PU.1-S100a9 axis sustains chronic inflammation during aging.
Dickson, Robert P; Singer, Benjamin H; Newstead, Michael W; Falkowski, Nicole R; Erb-Downward, John R; Standiford, Theodore J; Huffnagle, Gary B
2016-07-18
Sepsis and the acute respiratory distress syndrome (ARDS) are major causes of mortality without targeted therapies. Although many experimental and clinical observations have implicated gut microbiota in the pathogenesis of these diseases, culture-based studies have failed to demonstrate translocation of bacteria to the lungs in critically ill patients. Here, we report culture-independent evidence that the lung microbiome is enriched with gut bacteria both in a murine model of sepsis and in humans with established ARDS. Following experimental sepsis, lung communities were dominated by viable gut-associated bacteria. Ecological analysis identified the lower gastrointestinal tract, rather than the upper respiratory tract, as the likely source community of post-sepsis lung bacteria. In bronchoalveolar lavage fluid from humans with ARDS, gut-specific bacteria (Bacteroides spp.) were common and abundant, undetected by culture and correlated with the intensity of systemic inflammation. Alveolar TNF-α, a key mediator of alveolar inflammation in ARDS, was significantly correlated with altered lung microbiota. Our results demonstrate that the lung microbiome is enriched with gut-associated bacteria in sepsis and ARDS, potentially representing a shared mechanism of pathogenesis in these common and lethal diseases.
Robinson, D; Humbert, M; Buhl, R; Cruz, A A; Inoue, H; Korom, S; Hanania, N A; Nair, P
2017-02-01
Asthma is a complex respiratory disorder characterized by marked heterogeneity in individual patient disease triggers and response to therapy. Several asthma phenotypes have now been identified, each defined by a unique interaction between genetic and environmental factors, including inflammatory, clinical and trigger-related phenotypes. Endotypes further describe the functional or pathophysiologic mechanisms underlying the patient's disease. type 2-driven asthma is an emerging nomenclature for a common subtype of asthma and is characterized by the release of signature cytokines IL-4, IL-5 and IL-13 from cells of both the innate and adaptive immune systems. A number of well-recognized biomarkers have been linked to mechanisms involved in type 2 airway inflammation, including fractional exhaled nitric oxide, serum IgE, periostin, and blood and sputum eosinophils. These type 2 cytokines are targets for pharmaceutical intervention, and a number of therapeutic options are under clinical investigation for the management of patients with uncontrolled severe asthma. Anticipating and understanding the heterogeneity of asthma and subsequent improved characterization of different phenotypes and endotypes must guide the selection of treatment to meet individual patients' needs. © 2017 The Authors. Clinical & Experimental Allergy Published by John Wiley & Sons Ltd.
Mast Cells Synthesize, Store, and Release Nerve Growth Factor
NASA Astrophysics Data System (ADS)
Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.
1994-04-01
Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.
Jagadish, Puralae Channabasavaiah; Latha, Kotehal Parameshwarappa; Mudgal, Jayesh; Nampurath, Gopalan Kutty
2016-12-24
The rhizomes of an acaulescent perennial herb, Kaempferia galanga Linn (Family: Zingiberaceae), used as traditional ayurvedic herb to get relief from indigestion, swelling, pain, high blood pressure and dyslipidemia. To prepare and characterize various extracts of Kaempferia galanga (K. galanga) for their comparative evaluation for the identification of the most efficacious extract and its possible pharmacological implication in acute and chronic inflammatory paradigm. Dried and powdered rhizome of K. galanga was subjected to alcoholic extraction as well as successive extractions with various solvents. After phytochemical characterization, all the extracts were standardized for the presence of ethyl-p-methoxycinnamate. The extracts, and the isolated compound, were tested against carrageenan-induced acute inflammation in rats. The most promising extract was tested against adjuvant-induced chronic inflammation in rats. Further, local myeloperoxidase (MPO) levels were investigated to establish the possible mechanism of action. Among the extracts, petroleum ether extract (SKG-1) and crude alcoholic extract (KG) had the maximum quantity of ethyl-p-methoxycinnamate. SKG-1 (300mg/kg) was found effective against acute inflammation in rats. Further, SKG-1 (100mg/kg) reversed the inflammation and elevated MPO levels found in the chronic model. The results suggest that among all the extracts of K. galanga, SKG-1 effectively suppresses the progression of acute and chronic inflammation in rats by inhibition of neutrophil infiltration. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umikawa, Masato, E-mail: umikawa@med.u-ryukyu.ac.jp; Umikawa, Asako; Asato, Tsuyoshi
Monocytes and macrophages are important effectors and regulators of inflammation, and both their differentiation and activation are regulated strictly in response to environmental cues. Angiopoietin-like protein 2 (Angptl2) is a multifaceted protein, displaying many physiological and pathological functions in inflammation, angiogenesis, hematopoiesis, and tumor development. Although recent studies implicate Angptl2 in chronic inflammation, the mechanisms of inflammation caused by Angptl2 remain unclear. The purpose of the present study was to elucidate the role of Angptl2 in inflammation by understanding the effects of Angptl2 on monocytes/macrophages. We showed that Angptl2 directly activates resident murine peritoneal monocytes and macrophages and induces amore » drastic upregulation of the transcription of several inflammatory genes including nitric oxide synthase 2 and prostaglandin-endoperoxide synthase 2, and several proinflammatory cytokine genes such as interleukin (IL)-1β, IL-6, TNFα, and CSF2, along with activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. Concordantly, proinflammatory cytokines IL-1β, IL-6, TNFα, and GM-CSF, were rapidly elevated from murine peritoneal monocytes and macrophages. These results demonstrate a novel role for Angptl2 in inflammation via the direct activation of peritoneal monocytes and macrophages. - Highlights: • Angptl2 directly activates resident murine peritoneal monocytes and macrophages. • Angptl2 induces a drastic upregulation of expression of inflammatory genes. • Angptl2 induces activation of ERK, JNK, p38, and nuclear factor kappa B signaling pathways. • Angptl2 does not activate bone marrow derived macrophages or macrophage cell lines.« less
The Emerging Role of Vitamin B6 in Inflammation and Carcinogenesis.
Bird, Ranjana P
Vitamin B6 serves as a coenzyme catalyzing more than 150 enzymes regulating metabolism and synthesis of proteins, carbohydrates, lipids, heme, and important bioactive metabolites. For several years vitamin B6 and its vitamers (B6) were recognized as antioxidant and antiinflammatory and in modulating immunity and gene expression. During the last 10 years, there were growing reports implicating B6 in inflammation and inflammation-related chronic illnesses including cancer. It is unclear if the deficiency of B6 or additional intake of B6, above the current requirement, should be the focus. Whether the current recommended daily intake for B6 is adequate should be revisited, since B6 is important to human health beyond its role as a coenzyme and its status is affected by many factors including but not limited to age, obesity, and inflammation associated with chronic illnesses. A link between inflammation B6 status and carcinogenesis is not yet completely understood. B6-mediated synthesis of H 2 S, a gasotransmitter, and taurine in health and disease, especially in maintaining mitochondrial integrity and biogenesis and inflammation, remains an important area to be explored. Recent developments in the molecular role of B6 and its direct interaction with inflammasomes, and nuclear receptor corepressor and coactivator, receptor-interacting protein 140, provide a strong impetus to further explore the multifaceted role of B6 in carcinogenesis and human health. © 2018 Elsevier Inc. All rights reserved.
Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation.
Iyengar, Neil M; Gucalp, Ayca; Dannenberg, Andrew J; Hudis, Clifford A
2016-12-10
Purpose There is growing evidence that inflammation is a central and reversible mechanism through which obesity promotes cancer risk and progression. Methods We review recent findings regarding obesity-associated alterations in the microenvironment and the local and systemic mechanisms through which these changes support tumor growth. Results Locally, hyperadiposity is associated with altered adipose tissue function, adipocyte death, and chronic low-grade inflammation. Most individuals who are obese harbor inflamed adipose tissue, which resembles chronically injured tissue, with immune cell infiltration and remodeling. Within this distinctly altered local environment, several pathophysiologic changes are found that may promote breast and other cancers. Consistently, adipose tissue inflammation is associated with a worse prognosis in patients with breast and tongue cancers. Systemically, the metabolic syndrome, including dyslipidemia and insulin resistance, occurs in the setting of adipose inflammation and operates in concert with local mechanisms to sustain the inflamed microenvironment and promote tumor growth. Importantly, adipose inflammation and its protumor consequences can be found in some individuals who are not considered to be obese or overweight by body mass index. Conclusion The tumor-promoting effects of obesity occur at the local level via adipose inflammation and associated alterations in the microenvironment, as well as systemically via circulating metabolic and inflammatory mediators associated with adipose inflammation. Accurately characterizing the obese state and identifying patients at increased risk for cancer development and progression will likely require more precise assessments than body mass index alone. Biomarkers of adipose tissue inflammation would help to identify high-risk populations. Moreover, adipose inflammation is a reversible process and represents a novel therapeutic target that warrants further study to break the obesity-cancer link.
NASA Astrophysics Data System (ADS)
La Porta, Caterina A. M.; Zapperi, Stefano
2016-07-01
The process of inflammation tries to protect the body after an injury due to biological causes such as the presence of pathogens or chemicals, or to physical processes such as burns or cuts. The biological rationale for this process has the main goal of eliminating the cause of the injury and then repairing the damaged tissues. We can distinguish two kinds of inflammations: acute and chronic. In acute inflammation, a series of events involving the local vascular systems, the immune system and various cells within the injured tissue work together to eradicate the harmful stimuli. If the inflammation does not resolve the problem, it can evolve into a chronic inflammation, where the type of cells involved changes and there is a simultaneous destruction and healing of the tissue from the inflammation process.
Korkmaz, Mukadder; Korkmaz, Hakan; Küçüker, Fatma; Ayyıldız, Sema Nur; Çankaya, Soner
2015-02-13
Obstructive sleep apnea syndrome (OSAS) is characterized by cyclic episodes of hypoxemia and reoxygenation. It has been suggested that OSAS is associated with chronic inflammation within the microvasculature. This low-grade inflammation may play a role in the pathophysiology of OSAS-related comorbidities. Evaluation of the inflammatory markers may predict the degree of the systemic inflammation and this may be a prognostic factor for future adverse events such as cardiovascular risks. Proinflammatory cytokines have been extensively studied in sleep-disordered breathing. Neutrophil-to-lymphocyte ratio is a recently described indicator of systemic inflammation, but it has not been studied in OSAS patients. In this study we aimed to evaluate the easily measurable parameters of systemic inflammation in these patients. We conducted this study to examine the association among OSAS and C- reactive protein, erythrocyte sedimentation rate, and neutrophil-to-lymphocyte ratio. OSAS patients who underwent overnight polysomnography were studied retrospectively. They were divided into 4 groups: control, mild, moderate, and severe OSAS patients. Blood test results and inflammatory markers were compared between the groups. One-way ANOVA and Kruskall-Wallis H test were used for statistical analysis. A total of 147 patients were included in the study. No differences in evaluated inflammatory markers were observed among the 4 groups. Evaluation of the OSAS-related systemic inflammation is not likely to be possible by CRP, ESR, or neutrophil-to-lymphocyte ratio measurements. These markers do not seem to be associated with the degree of the upper airway obstruction.
Madan, Juliette C
2016-04-01
The gastrointestinal microbiome plays a critical role in nutrition and metabolic and immune functions in infants and young children and has implications for lifelong health. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) mutations in CF result in viscous mucous production, frequent exposure to antibiotics, and atypical colonization patterns, resulting in an evolving dysbiosis of the gastrointestinal and respiratory microsystems; dysbiosis in CF results in systemic inflammation, chronic infection, and dysregulation of immune function. Dysbiosis in both the respiratory system and gut contributes to undernutrition, growth failure, and long-term respiratory and systemic morbidity in infants and children with CF. Understanding the role that the gut and respiratory microbiome plays in health or disease progression in CF will afford opportunities to better identify interventions to affect clinical changes. Summary was done of the pertinent literature in CF and the study of the microbiome and probiotics. New studies have identified bacteria in the respiratory tract in CF that are typically members of the intestinal microbiota, and enteral exposures to breast milk and probiotics are associated with prolonged periods of respiratory stability in CF. Understanding the complex interactions between the CFTR mutations, microbial colonization, and mucosal and systemic immunity is of major importance to inform new treatment strategies (such as restoring a healthier microbiome with probiotics or dietary interventions) to improve nutritional status and immune competence and to decrease morbidity and mortality in CF. Copyright © 2016. Published by Elsevier Inc.
Fowke, Jay H; Koyama, Tatsuki; Fadare, Oluwole; Clark, Peter E
2016-01-01
BPH is a common disease associated with age and obesity. However, the biological pathways between obesity and BPH are unknown. Our objective was to investigate biomarkers of systemic and prostate tissue inflammation as potential mediators of the obesity and BPH association. Participants included 191 men without prostate cancer at prostate biopsy. Trained staff measured weight, height, waist and hip circumferences, and body composition by bioelectric impedance analysis. Systemic inflammation was estimated by serum IL-6, IL-1β, IL-8, and TNF-α; and by urinary prostaglandin E2 metabolite (PGE-M), F2-isoprostane (F2iP), and F2-isoprostane metabolite (F2iP-M) levels. Prostate tissue was scored for grade, aggressiveness, extent, and location of inflammatory regions, and also stained for CD3 and CD20 positive lymphocytes. Analyses investigated the association between multiple body composition scales, systemic inflammation, and prostate tissue inflammation against BPH outcomes, including prostate size at ultrasound and LUTS severity by the AUA-symptom index (AUA-SI). Prostate size was significantly associated with all obesity measures. For example, prostate volume was 5.5 to 9.0 mls larger comparing men in the 25th vs. 75th percentile of % body fat, fat mass (kg) or lean mass (kg). However, prostate size was not associated with proinflammatory cytokines, PGE-M, F2iP, F2iP-M, prostate tissue inflammation scores or immune cell infiltration. In contrast, the severity of prostate tissue inflammation was significantly associated with LUTS, such that there was a 7 point difference in AUA-SI between men with mild vs. severe inflammation (p = 0.004). Additionally, men with a greater waist-hip ratio (WHR) were significantly more likely to have severe prostate tissue inflammation (p = 0.02), and a high WHR was significantly associated with moderate/severe LUTS (OR = 2.56, p = 0.03) among those participants with prostate tissue inflammation. The WHR, an estimate of centralized obesity, was associated with the severity of inflammatory regions in prostate tissue and with LUTS severity among men with inflammation. Our results suggest centralized obesity advances prostate tissue inflammation to increase LUTS severity. Clinically targeting centralized fat deposition may reduce LUTS severity. Mechanistically, the lack of a clear relationship between systemic inflammatory or oxidative stress markers in blood or urine with prostate size or LUTS suggests pathways other than systemic inflammatory signaling may link body adiposity to BPH outcomes.
Breast cancer-associated metastasis is significantly increased in a model of autoimmune arthritis
Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku
2009-01-01
Introduction Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. Methods To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. Results We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute to the increased metastasis. Treatment with anti-IL17 + celecoxib, an anti-inflammatory drug completely abrogated the development of metastasis and significantly reduced the primary tumor burden. Conclusions The data clearly has important clinical implications for patients diagnosed with metastatic breast cancer, especially with regards to the prognosis and treatment options. PMID:19643025
Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis.
Das Roy, Lopamudra; Pathangey, Latha B; Tinder, Teresa L; Schettini, Jorge L; Gruber, Helen E; Mukherjee, Pinku
2009-01-01
Sites of chronic inflammation are often associated with the establishment and growth of various malignancies including breast cancer. A common inflammatory condition in humans is autoimmune arthritis (AA) that causes inflammation and deformity of the joints. Other systemic effects associated with arthritis include increased cellular infiltration and inflammation of the lungs. Several studies have reported statistically significant risk ratios between AA and breast cancer. Despite this knowledge, available for a decade, it has never been questioned if the site of chronic inflammation linked to AA creates a milieu that attracts tumor cells to home and grow in the inflamed bones and lungs which are frequent sites of breast cancer metastasis. To determine if chronic inflammation induced by autoimmune arthritis contributes to increased breast cancer-associated metastasis, we generated mammary gland tumors in SKG mice that were genetically prone to develop AA. Two breast cancer cell lines, one highly metastatic (4T1) and the other non-metastatic (TUBO) were used to generate the tumors in the mammary fat pad. Lung and bone metastasis and the associated inflammatory milieu were evaluated in the arthritic versus the non-arthritic mice. We report a three-fold increase in lung metastasis and a significant increase in the incidence of bone metastasis in the pro-arthritic and arthritic mice compared to non-arthritic control mice. We also report that the metastatic breast cancer cells augment the severity of arthritis resulting in a vicious cycle that increases both bone destruction and metastasis. Enhanced neutrophilic and granulocytic infiltration in lungs and bone of the pro-arthritic and arthritic mice and subsequent increase in circulating levels of proinflammatory cytokines, such as macrophage colony stimulating factor (M-CSF), interleukin-17 (IL-17), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), and tumor necrosis factor-alpha (TNF-alpha) may contribute to the increased metastasis. Treatment with anti-IL17 + celecoxib, an anti-inflammatory drug completely abrogated the development of metastasis and significantly reduced the primary tumor burden. The data clearly has important clinical implications for patients diagnosed with metastatic breast cancer, especially with regards to the prognosis and treatment options.
Neurobiology of Inflammation-Associated Anorexia
Gautron, Laurent; Layé, Sophie
2009-01-01
Compelling data demonstrate that inflammation-associated anorexia directly results from the action of pro-inflammatory factors, primarily cytokines and prostaglandins E2, on the nervous system. For instance, the aforementioned pro-inflammatory factors can stimulate the activity of peripheral sensory neurons, and induce their own de novo synthesis and release into the brain parenchyma and cerebrospinal fluid. Ultimately, it results in the mobilization of a specific neural circuit that shuts down appetite. The present article describes the different cell groups and neurotransmitters involved in inflammation-associated anorexia and examines how they interact with neural systems regulating feeding such as the melanocortin system. A better understanding of the neurobiological mechanisms underlying inflammation-associated anorexia will help to develop appetite stimulants for cancer and AIDS patients. PMID:20582290
Murray-Kolb, Laura E.; Scharf, Rebecca J.; Pendergast, Laura L.; Lang, Dennis R.; Kolling, Glynis L.; Guerrant, Richard L.
2016-01-01
The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut–derived low-grade systemic inflammation may have profound consequences on the gut–liver–brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development. PMID:27142301
Langdon, Kristopher D; Maclellan, Crystal L; Corbett, Dale
2010-08-01
The incidence of infection among stroke patients is alarmingly high and both acute and delayed infections increase morbidity and mortality. Experimental studies support the acute clinical data, but little attention has focused on delayed systemic infections. Here, we investigated the effects of prolonged systemic inflammation either before or 24-h after ischemia. Systemic inflammation was induced by injecting rats with three separate doses of lipopolysaccharide (LPS; 50 mug/kg, i.p.) with core temperature monitoring for 48-h after middle cerebral artery occlusion (MCAo). Lipopolysaccharide injected before MCAo increased injury by approximately 30%, whereas delayed injection increased injury by approximately 85% (30-day survival). Proinflammatory cytokines assessed repeatedly for 72 h were significantly and persistently elevated with inflammation. This was accompanied by increases in microglia/macrophage and infiltrating leukocyte numbers in delayed LPS-treated animals. Behavioral assessments at 7 and 30 days revealed approximately 15% deficit in hindlimb function in animals treated with LPS 24-h after ischemia. Clearly, delayed and prolonged postischemic systemic inflammation has devastating effects on stroke outcome, in the absence of a prolonged febrile response. These findings, together with corroborative clinical data, emphasize the importance of early intervention to counteract the deleterious consequences of stroke-associated inflammation and infection.
Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William
2007-01-01
Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.
Siponen, Taina; Yli-Tuomi, Tarja; Aurela, Minna; Dufva, Hilkka; Hillamo, Risto; Hirvonen, Maija-Riitta; Huttunen, Kati; Pekkanen, Juha; Pennanen, Arto; Salonen, Iiris; Tiittanen, Pekka; Salonen, Raimo O; Lanki, Timo
2015-01-01
Objective To compare short-term effects of fine particles (PM2.5; aerodynamic diameter <2.5 µm) from different sources on the blood levels of markers of systemic inflammation. Methods We followed a panel of 52 ischaemic heart disease patients from 15 November 2005 to 21 April 2006 with clinic visits in every second week in the city of Kotka, Finland, and determined nine inflammatory markers from blood samples. In addition, we monitored outdoor air pollution at a fixed site during the study period and conducted a source apportionment of PM2.5 using the Environmental Protection Agency's model EPA PMF 3.0. We then analysed associations between levels of source-specific PM2.5 and markers of systemic inflammation using linear mixed models. Results We identified five source categories: regional and long-range transport (LRT), traffic, biomass combustion, sea salt, and pulp industry. We found most evidence for the relation of air pollution and inflammation in LRT, traffic and biomass combustion; the most relevant inflammation markers were C-reactive protein, interleukin-12 and myeloperoxidase. Sea salt was not positively associated with any of the inflammatory markers. Conclusions Results suggest that PM2.5 from several sources, such as biomass combustion and traffic, are promoters of systemic inflammation, a risk factor for cardiovascular diseases. PMID:25479755
Consolim-Colombo, Fernanda M.; Sangaleti, Carine T.; Morais, Tercio L.; Lopes, Heno F.; Motta, Josiane M.; Irigoyen, Maria C.; Bortoloto, Luiz A.; Harris, Yael Tobi; Olofsson, Peder S.; MacKay, Meggan; Barnaby, Douglas P.; Roth, Jesse; Tracey, Kevin J.; Pavlov, Valentin A.
2017-01-01
BACKGROUND. Metabolic syndrome (MetS) is an obesity-driven condition of pandemic proportions that increases the risk of type 2 diabetes and cardiovascular disease. Pathophysiological mechanisms are poorly understood, though inflammation has been implicated in MetS pathogenesis. The aim of this study was to assess the effects of galantamine, a centrally acting acetylcholinesterase inhibitor with antiinflammatory properties, on markers of inflammation implicated in insulin resistance and cardiovascular risk, and other metabolic and cardiovascular indices in subjects with MetS. METHODS. In this randomized, double-blind, placebo-controlled trial, subjects with MetS (30 per group) received oral galantamine 8 mg daily for 4 weeks, followed by 16 mg daily for 8 weeks or placebo. The primary outcome was inflammation assessed through plasma levels of cytokines and adipokines associated with MetS. Secondary endpoints included body weight, fat tissue depots, plasma glucose, insulin, homeostasis model assessment of insulin resistance (HOMA-IR), cholesterol (total, HDL, LDL), triglycerides, BP, heart rate, and heart rate variability (HRV). RESULTS. Galantamine resulted in lower plasma levels of proinflammatory molecules TNF (–2.57 pg/ml [95% CI –4.96 to –0.19]; P = 0.035) and leptin (–12.02 ng/ml [95% CI –17.71 to –6.33]; P < 0.0001), and higher levels of the antiinflammatory molecules adiponectin (2.71 μg/ml [95% CI 1.93 to 3.49]; P < 0.0001) and IL-10 (1.32 pg/ml, [95% CI 0.29 to 2.38]; P = 0.002) as compared with placebo. Galantamine also significantly lowered plasma insulin and HOMA-IR values, and altered HRV. CONCLUSION. Low-dose galantamine alleviates inflammation and insulin resistance in MetS subjects. These findings support further study of galantamine in MetS therapy. TRIAL REGISTRATION. ClinicalTrials.gov, number NCT02283242. FUNDING. Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil, and the NIH. PMID:28724799
Harnessing dendritic cells in inflammatory skin diseases.
Chu, Chung-Ching; Di Meglio, Paola; Nestle, Frank O
2011-02-01
The skin immune system harbors a complex network of dendritic cells (DCs). Recent studies highlight a diverse functional specialization of skin DC subsets. In addition to generating cellular and humoral immunity against pathogens, skin DCs are involved in tolerogenic mechanisms to ensure the maintenance of immune homeostasis, as well as in pathogenesis of chronic inflammation in the skin when excessive immune responses are initiated and unrestrained. Harnessing DCs by directly targeting DC-derived molecules or selectively modulate DC subsets is a convincing strategy to tackle inflammatory skin diseases. In this review we discuss recent advances underlining the functional specialization of skin DCs and discuss the potential implication for future DC-based therapeutic strategies. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gut microbiota and obesity: role in aetiology and potential therapeutic target.
Moran, Carthage P; Shanahan, Fergus
2014-08-01
Obesity is epidemic; chronic energy surplus is clearly important in obesity development but other factors are at play. Indigenous gut microbiota are implicated in the aetiopathogenesis of obesity and obesity-related disorders. Evidence from murine models initially suggested a role for the gut microbiota in weight regulation and the microbiota has been shown to contribute to the low grade inflammation that characterises obesity. The microbiota and its metabolites mediate some of the alterations of the microbiota-gut-brain axis, the endocannabinoid system, and bile acid metabolism, found in obesity-related disorders. Modulation of the gut microbiota is an attractive proposition for prevention or treatment of obesity, particularly as traditional measures have been sub-optimal. Copyright © 2014 Elsevier Ltd. All rights reserved.
Obesity Reduces Cognitive and Motor Functions across the Lifespan
Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.
2016-01-01
Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095
Obesity Reduces Cognitive and Motor Functions across the Lifespan.
Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H
2016-01-01
Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.
Peerzada, Habibullah; Ghandi, Jay A.; Guimaraes, Allan J.; Nosanchuk, Joshua D.; Martinez, Luis R.
2013-01-01
Methamphetamine (METH) is a potent and highly addictive central nervous system (CNS) stimulant. Additionally, METH adversely impacts immunological responses, which might contribute to the higher rate and more rapid progression of certain infections in drug abusers. However no studies have shown the impact of METH on inflammation within specific organs, cellular participation and cytokine production. Using a murine model of METH administration, we demonstrated that METH modifies, with variable degrees, leukocyte recruitment and alters cellular mediators in the lungs, liver, spleen and kidneys of mice. Our findings demonstrate the pleotropic effects of METH on the immune response within diverse tissues. These alterations have profound implications on tissue homeostasis and the capacity of the host to respond to diverse insults, including invading pathogens. PMID:23518444
Systemic Inflammation after Third Molar Removal: A Case-Control Study.
Graziani, F; D'Aiuto, F; Gennai, S; Petrini, M; Nisi, M; Cirigliano, N; Landini, L; Bruno, R M; Taddei, S; Ghiadoni, L
2017-12-01
Third molar extraction is one of the most frequent interventions in dentistry. Nevertheless, there is scarce evidence on the host response of individuals with impacted or semi-impacted third molars and the possible effects of surgical removal. A case-control study of 40 patients was designed to evaluate 1) the differences in biomarkers of systemic inflammation, vascular function, and metabolism (high-sensitive C-reactive protein, lipids, fibrinogen, oxidative stress, and endothelial function analysis) and 2) the acute and short-term effects of surgical removal in patients with bilateral impacted or semi-impacted third molars compared to controls with no third molars. Patients undergoing third molar extraction exhibited greater levels of systemic inflammation, oxidative stress, and triglycerides than controls. Raised white blood cell counts as well as peaks of serum levels of C-reactive protein and fibrinogen were noticed in the first postoperative week. Three months after the extraction, all markers returned to baseline values. Malondialdehyde, an indicator of oxidative stress indicator, was significantly reduced after third molar removal. Semi-impacted or impacted third molars are associated with higher systemic inflammation, and their removal may represent a useful human model to study acute inflammation and determine beneficial systemic effects ( ClinicalTrials.gov NCT03048175).
Liu, Yin; Chen, Yulong; Zhang, Jinlong; Liu, Yulan; Zhang, Yanjie; Su, Zhiguang
2017-08-25
Adipose tissue inflammation has been linked to metabolic diseases such as obesity and type 2 diabetes. However, the molecules that mediate inflammation in adipose tissue have not been addressed. Although retinoic acid receptor-related orphan receptor α (RORα) is known to be involved in the regulation of inflammatory response in some tissues, its role is largely unknown in adipose tissue. Conversely, it is known that endoplasmic reticulum (ER) stress and unfolding protein response (UPR) signaling affect the inflammatory response in obese adipose tissue, but whether RORα regulates these processes remains unknown. In this study, we investigate the link between RORα and adipose tissue inflammation. We showed that the inflammatory response in macrophages or 3T3-L1 adipocytes stimulated by lipopolysaccharide, as well as adipose tissue in obese mice, markedly increased the expression of RORα. Adenovirus-mediated overexpression of RORα or treatment with the RORα-specific agonist SR1078 enhanced the expression of inflammatory cytokines and increased the number of infiltrated macrophages into adipose tissue. Furthermore, SR1078 up-regulated the mRNA expression of ER stress response genes and enhanced phosphorylations of two of the three mediators of major UPR signaling pathways, PERK and IRE1α. Finally, we found that alleviation of ER stress using a chemical chaperone followed by the suppression of RORα induced inflammation in adipose tissue. Our data suggest that RORα-induced ER stress response potentially contributes to the adipose tissue inflammation that can be mitigated by treatment with chemical chaperones. The relationships established here between RORα expression, inflammation, and UPR signaling may have implications for therapeutic targeting of obesity-related metabolic diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Huang, Mingcheng; Zeng, Shan; Zou, Yaoyao; Shi, Maohua; Qiu, Qian; Xiao, Youjun; Chen, Guoqiang; Yang, Xiuyan; Liang, Liuqin
2016-01-01
Background and Purpose There is increasing evidence indicating that bromodomain and extra‐terminal domain (BET) proteins play a critical role in the regulation of immune and inflammatory responses; however, their contribution to vascular inflammation has not yet been elucidated. In this study, we investigated the effect of inhibiting BET bromodomain on vascular inflammation and the underlying mechanisms. Experimental Approach HUVECs were isolated from fresh umbilical cords. JQ1, a specific BET bromodomain inhibitor, and Brd shRNA were used to evaluate the regulation of the BET proteins in vascular inflammation. Leukocyte adhesion to HUVECs was measure by an adhesion assay. Western blot or immunohistochemical analysis was used to detect the protein expression. Real‐time PCR was used to evaluate mRNA expression. Leukocyte accumulation in vivo was determined by an acute lung inflammation model. Key Results BET bromodomain inhibition suppressed the expression of adhesion molecules induced by TNF‐α‐ or LPS, including ICAM‐1, VCAM‐1 and E‐selectin, and inhibited leukocyte adhesion to activated HUVEC monolayers. Treatment with JQ1 also attenuated the LPS‐induced accumulation of leukocytes and expression of endothelial adhesion molecules in the acute lung inflammation model in vivo. Furthermore, BET bromodomain inhibition reduced the activity of p38 and JNK MAPKs and NF‐κB in TNF‐α‐stimulated HUVECs. TNF‐α‐induced NF‐κB activation was also blocked by inhibitors of p38 (SB203580) or JNK (SP600125). Conclusions and Implications BET bromodomain is important for regulating endothelial inflammation. Strategies targeting endothelial BET bromodomain may provide a new therapeutic approach for controlling inflammatory‐related diseases. PMID:27774624
Pruimboom, Leo; Raison, Charles L; Muskiet, Frits A J
2015-01-01
In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health.
Hyperglycemia: a bad signature on the vascular system
Costantino, Sarah; Paneni, Francesco
2015-01-01
Experimental work has clearly demonstrated that hyperglycemia is able to derail molecular pathways favouring oxidative stress, inflammation and endothelial dysfunction. Consistently, pooled analyses from prospective studies provide strong evidence that glycemic markers, namely glycated haemoglobin (HbA1c), predict cardiovascular risk, with an increase of about 18% in risk for each 1% absolute increase in HbA1c concentration, regardless of classical risk factors. Although the importance of hyperglycemic burden on cardiovascular phenotype, normalization of blood glucose levels in patients with long-standing hyperglycemia does not seem to reduce macrovascular complications. These data suggest that hyperglycemia may exert long-lasting detrimental effects on the cardiovascular system. This emerging phenomenon is defined metabolic or hyperglycemic memory to indicate a long-term persistence of hyperglycemic stress, even after blood glucose normalization. Here, we discuss clinical evidence and potential molecular mechanisms implicated in metabolic memory and, hence, diabetes-related cardiovascular complications. PMID:26543827
Obesity and Cancer Metabolism: A Perspective on Interacting Tumor-Intrinsic and Extrinsic Factors.
Doerstling, Steven S; O'Flanagan, Ciara H; Hursting, Stephen D
2017-01-01
Obesity is associated with increased risk and poor prognosis of many types of cancers. Several obesity-related host factors involved in systemic metabolism can influence tumor initiation, progression, and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes. Such host factors include systemic metabolic regulators including insulin, insulin-like growth factor 1, adipokines, inflammation-related molecules, and steroid hormones, as well as the cellular and structural components of the tumor microenvironment, particularly adipose tissue. These secreted and structural host factors are extrinsic to, and interact with, the intrinsic metabolic characteristics of cancer cells to influence their growth and spread. This review will focus on the interplay of these tumor cell-intrinsic and extrinsic factors in the context of energy balance, with the objective of identifying new intervention targets for preventing obesity-associated cancer.
Pharmacologic overview of Withania somnifera, the Indian Ginseng.
Dar, Nawab John; Hamid, Abid; Ahmad, Muzamil
2015-12-01
Withania somnifera, also called 'Indian ginseng', is an important medicinal plant of the Indian subcontinent. It is widely used, singly or in combination, with other herbs against many ailments in Indian Systems of Medicine since time immemorial. Withania somnifera contains a spectrum of diverse phytochemicals enabling it to have a broad range of biological implications. In preclinical studies, it has shown anti-microbial, anti-inflammatory, anti-tumor, anti-stress, neuroprotective, cardioprotective, and anti-diabetic properties. Additionally, it has demonstrated the ability to reduce reactive oxygen species, modulate mitochondrial function, regulate apoptosis, and reduce inflammation and enhance endothelial function. In view of these pharmacologic properties, W. somnifera is a potential drug candidate to treat various clinical conditions, particularly related to the nervous system. In this review, we summarize the pharmacologic characteristics and discuss the mechanisms of action and potential therapeutic applications of the plant and its active constituents.
Neuroinflammation in pulmonary hypertension: concept, facts, and relevance.
Hilzendeger, Aline M; Shenoy, Vinayak; Raizada, Mohan K; Katovich, Michael J
2014-09-01
Pulmonary hypertension (PH) is a progressive lung disease characterized by elevated pressure in the lung vasculature, resulting in right-sided heart failure and premature death. The pathogenesis of PH is complex and multifactorial, involving a dysregulated autonomic nervous system and immune response. Inflammatory mechanisms have been linked to the development and progression of PH; however, these are usually restricted to systemic and/or local lung tissue. Inflammation within the CNS, often referred to as neuroinflammation involves activation of the microglia, the innate immune cells that are found specifically in the brain and spinal cord. Microglial activation results in the release of several cytokines and chemokines that trigger neuroinflammation, and has been implicated in the pathogenesis of several disease conditions such as Alzheimer's, Parkinson's, hypertension, atherosclerosis, and metabolic disorders. In this review, we introduce the concept of neuroinflammation in the context of PH, and discuss possible strategies that could be developed for PH therapy based on this concept.
Huai, Jisen; Firat, Elke; Nil, Ahmed; Million, Daniele; Gaedicke, Simone; Kanzler, Benoit; Freudenberg, Marina; van Endert, Peter; Kohler, Gabriele; Pahl, Heike L.; Aichele, Peter; Eichmann, Klaus; Niedermann, Gabriele
2008-01-01
The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8+ T cells. This coincides with up-regulation of p53 and dysregulation of NF-κB. Prominent degenerative alterations at the organismic level were a decreased lifespan and symptoms characteristic of immunohematopoietic senescence. These symptoms include accelerated thymic involution, lymphopenia, impaired proliferative T cell responses, extramedullary hematopoiesis, and inflammation. Thus, TPPII is important for maintaining normal cellular and systemic physiology, which may be relevant for potential therapeutic applications of TPPII inhibitors. PMID:18362329
Jung, Christian; Drummer, Karl; Oelzner, Peter; Figulla, Hans R; Boettcher, Joachim; Franz, Marcus; Betge, Stefan; Foerster, Martin; Wolf, Gunter; Pfeil, Alexander
2015-01-01
Systemic sclerosis (SSc) is a systemic, autoimmune connective tissue disease characterized by vasculopathy and microvascular changes. Fluorescence Optical Imaging (FOI) is a technique used to assess inflammation in patients with arthritis; in this study FOI is used to quantify inflammation in the hand. Endothelial Microparticle (EMP) can reflect damage or activation of the endothelium but also actively modulate processes of inflammation, coagulation and vascular function. The aim of the present study was to quantify EMP and FOI, to determine an association between these microparticles and inflammation and to endothelial function. EMP were quantified in plasma samples of 25 patients (24 female, 1 male, age: 41 ± 9 years) with SSc using flow cytometry. EMP was defined as CD31+/CD42- MP, and CD62+ MP. Perivascular inflammation was assessed using fluorescence optical imaging (FOI) of the hand. Macrovascular endothelial function was non-invasively estimated using the Endopat system. Plasma levels of CD31+/CD42- EMP and CD62+ EMP were lower in patients with SSc compared to controls (both p < 0.05). An impaired endothelial function with an increased hyperemia index was observed. A strong association could be demonstrated between CD62+ EMP and perivascular soft tissue inflammation as assessed by the FOI global score (Spearman, p = 0.002, r = 0.61). EMP indicate molecular vascular damage in SSc; in this study a strong association between EMP and perivascular inflammation as quantified by FOI is demonstrated. Consequently EMP, using FOI, may be a potential marker benefitting the diagnosis and therapy monitoring of patients with SSc with associated Raynaud's phenomenon.
Carvalho, Sophia; Ferrini, Maria; Herritt, Lou; Holian, Andrij; Jaffar, Zeina; Roberts, Kevan
2018-01-01
Multi-walled carbon nanotubes (MWCNT) have been reported to promote lung inflammation and fibrosis. The commercial demand for nanoparticle-based materials has expanded rapidly and as demand for nanomaterials grows, so does the urgency of establishing an appreciation of the degree of health risk associated with their increased production and exposure. In this study, we examined whether MWCNT inhalation elicited pulmonary eosinophilic inflammation and influenced the development of allergic airway inflammatory responses. Our data revealed that instillation of FA21 MWCNT into the airways of mice resulted in a rapid increase, within 24 h, in the number of eosinophils present in the lungs. The inflammatory response elicited was also associated with an increase in the level of cysteinyl leukotrienes (cysLTs) present in the bronchoalveolar lavage fluid. CysLTs were implicated in the airway inflammatory response since pharmacological inhibition of their biosynthesis using the 5-lipoxygenase inhibitor Zileuton resulted in a marked reduction in the severity of inflammation observed. Moreover, FA21 MWCNT entering the airways of mice suffering from house dust mite (HDM)-elicited allergic lung inflammation markedly exacerbated the intensity of the airway inflammation. This response was characterized by a pulmonary eosinophilia, lymphocyte infiltration, and raised cysLT levels. The severity of pulmonary inflammation caused by either inhalation of MWCNT alone or in conjunction with HDM allergen correlated with the level of nickel present in the material, since preparations that contained higher levels of nickel (FA21, 5.54% Ni by weight) were extremely effective at eliciting or exacerbating inflammatory or allergic responses while preparations containing lower amounts of nickel (FA04, 2.54% Ni by weight) failed to initiate or exacerbate pulmonary inflammation. In summary, instillation of high nickel MWCNT into the lungs promoted eosinophilic inflammation and caused an intense exacerbation of pre-existing allergic airway inflammation by facilitating cysLT biosynthesis. These findings suggest that exposure to airborne MWCNT is likely to have adverse inflammatory effects in individuals suffering from atopic asthma and, in this context, further investigation of the therapeutic effects of pharmacological agents that block leukotriene synthesis is warranted.
Network-based characterization of inflammation biomarkers, phytochemicals and disease
USDA-ARS?s Scientific Manuscript database
Chronic inflammation is often a major contributor to the onset and progression of cardiometabolic dysfunction. Whether through effects on the inflammatory response system or independent of inflammation, plant-derived polyphenols comprise a micro-nutrient class important in cardiovascular disease and...
Markert, Agnieszka; Baumann, Ralf; Gerhards, Benjamin; Gube, Monika; Kossack, Veronika; Kraus, Thomas; Brand, Peter
2016-02-01
Recently, it has been shown that exposure to welding fumes containing both zinc and copper leads to asymptomatic systemic inflammation in humans as shown by an increase of blood C-reactive protein. In the present study, it was investigated which metal is responsible for this effect. Fifteen healthy male subjects were exposed under controlled conditions to welding fumes containing either zinc, or copper, or copper and zinc. For each exposure blood C-reactive protein increased. Copper- and zinc-containing welding fumes are able to induce systemic inflammation.
McCarson, Kenneth E
2015-09-01
Animal models of inflammation are used to assess the production of inflammatory mediators at sites of inflammation, the processing of pain sensation at CNS sites, the anti-inflammatory properties of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs), and the efficacy of putative analgesic compounds in reversing cutaneous hypersensitivity. Detailed in this unit are methods to elicit and measure carrageenan- and complete Freund's adjuvant (CFA)-induced cutaneous inflammation. Due to possible differences between the dorsal root sensory system and the trigeminal sensory system, injections into either the footpad or vibrissal pad are described. In this manner, cutaneous inflammation can be assessed in tissue innervated by the lumbar dorsal root ganglion neurons (footpad) or by the trigeminal ganglion neurons (vibrissal pad). Copyright © 2015 John Wiley & Sons, Inc.
Rush, Gavin; O'Donovan, Aoife; Nagle, Laura; Conway, Catherine; McCrohan, AnnMaria; O'Farrelly, Cliona; Lucey, James V; Malone, Kevin M
2016-11-15
Immune system dysfunction is implicated in the pathophysiology of major depression, and is hypothesized to normalize with successful treatment. We aimed to investigate immune dysfunction in melancholic depression and its response to ECT. 55 melancholic depressed patients and 26 controls participated. 33 patients (60%) were referred for ECT. Blood samples were taken at baseline, one hour after the first ECT session, and 48h after ECT series completion. At baseline, melancholic depressed patients had significantly higher levels of the pro-inflammatory cytokine IL-6, and lower levels of the regulatory cytokine TGF-β than controls. A significant surge in IL-6 levels was observed one hour after the first ECT session, but neither IL-6 nor TGF-β levels normalized after completion of ECT series. Seventy per cent (n=23) of ECT recipients showed clinical response and 42% (n=10) reached remission. Neither IL-6 nor TGF-β changes correlated with clinical improvement following ECT. No significant changes in IL-10, TNF-α and CRP levels were found in relation to melancholia or response to ECT. As a naturalistic study, some potential confounders could not be eliminated or controlled, including medication use. Melancholic depressed patients demonstrated a peripheral increase in IL-6 and reduction in TGF-β, which did not normalize despite clinical response to ECT. These findings may be consistent with emerging hypotheses of the role of inflammation in mediating neurotrophin expression. The implications of chronic inflammation in the melancholic depressed population for future medical health, particularly cardiovascular risk, are largely unknown and warrant further investigation. Copyright © 2016 Elsevier B.V. All rights reserved.
CARBONYL CONTENT OF DIESEL EXHAUST FROM TWO SOURCES AND POSSIBLE IMPLICATIONS FOR CELL RESPONSES
Diesel exhaust is known to cause health effects including increases in lung inflammation and altered immunological parameters. The diesel exhausts used in our studies were collected into ice-cooled PBS from a diesel engine running at idle speed (DE2A) or at full load (DE5A). P...
Alkaline Phosphatase, an Unconventional Immune Protein.
Rader, Bethany A
2017-01-01
Recent years have seen an increase in the number of studies focusing on alkaline phosphatases (APs), revealing an expanding complexity of function of these enzymes. Of the four human AP (hAP) proteins, most is known about tissue non-specific AP (TNAP) and intestinal AP (IAP). This review highlights current understanding of TNAP and IAP in relation to human health and disease. TNAP plays a role in multiple processes, including bone mineralization, vitamin B6 metabolism, and neurogenesis, is the genetic cause of hypophosphatasia, influences inflammation through regulation of purinergic signaling, and has been implicated in Alzheimer's disease. IAP regulates fatty acid absorption and has been implicated in the regulation of diet-induced obesity and metabolic syndrome. IAP and TNAP can dephosphorylate bacterial-derived lipopolysaccharide, and IAP has been identified as a potential regulator of the composition of the intestinal microbiome, an evolutionarily conserved function. Endogenous and recombinant bovine APs and recombinant hAPs are currently being explored for their potential as pharmacological agents to treat AP-associated diseases and mitigate multiple sources of inflammation. Continued research on these versatile proteins will undoubtedly provide insight into human pathophysiology, biochemistry, and the human holobiont.
Shimoura, Noriko; Nagai, Hiroshi; Fujiwara, Susumu; Jimbo, Haruki; Yoshimoto, Takayuki; Nishigori, Chikako
2017-05-01
The interleukin (IL)-23/IL-17 axis is strongly implicated in the pathogenesis of psoriasis. Previous studies showed that IL-18 was elevated in early active and progressive plaque-type psoriatic lesions and that serum or plasma levels of IL-18 correlated with the Psoriasis Area and Severity Index. However, the mechanism whereby IL-18 affects disease severity remains unknown. In this study, we investigated the effects of IL-18 on a psoriasis-like skin inflammation model induced by recombinant mouse IL-23. We found that IL-18, cooperatively with IL-23, induced prominent inflammation and enhanced psoriasis-like epidermal hyperplasia. In the skin of mice treated with IL-23 plus IL-18, the expression of interferon-γ was significantly upregulated and that of chemokine (C-X-C motif) ligand 9 (CXCL9) was synergistically increased. Histologically, strong positive signals of CXCL9 were observed around the infiltrating inflammatory cells. The current results suggest that IL-18 might synergize with IL-23 to induce a T helper 1 immune reaction, without inhibiting the IL-23/IL-17 axis, and thus may aggravate psoriatic inflammation.
Anti-inflammatory activity of soy and tea in prostate cancer prevention
Hsu, Anna; Bray, Tammy M; Ho, Emily
2014-01-01
Prostate cancer is the leading cancer-related cause of death for men in the USA. Prostate cancer risk is significantly lower in Asian countries compared with the USA, which has prompted interest in the potential chemo-preventive action of soyand green teathat are more predominant in Asian diets. It has been proposed that chronic inflammation is a major risk factor of prostate cancer, acting as both an initiator and promoter. Specifically, the nuclear factor-kappa B (NF-κB) pathway has been implicated as an important mediator between chronic inflammation, cell proliferation and prostate cancer. Dietary factors that inhibit inflammation and NF-κB may serve as effective chemo-preventive agents. Recent studies have demonstrated that soy and green tea have anti-inflammatory properties, and may have the potential to block the inflammatory response during cancer progression. This minireview discusses the relationship between chronic inflammation and prostate cancer, emphasizing on the significance of NF-κB, and further explores the anti-inflammatory effects of soy and green tea. Finally, we propose that dietary strategies that incorporate these bioactive food components as whole foods may be a more effective means to target pathways that contribute to prostate cancer development. PMID:20511670
Exploring the cross talk between ER stress and inflammation in age-related macular degeneration.
Kheitan, Samira; Minuchehr, Zarrin; Soheili, Zahra-Soheila
2017-01-01
Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.
Exploring the cross talk between ER stress and inflammation in age-related macular degeneration
Kheitan, Samira; Soheili, Zahra-Soheila
2017-01-01
Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments. PMID:28742151
Mohamed, Nadia R; Abdelhalim, Mervat M; Khadrawy, Yasser A; Elmegeed, Gamal A; Abdel-Salam, Omar M E
2012-11-01
Oxidative stress and inflammation have been implicated in several neurodegenerative and developmental brain disorders. The present work was devoted to the design and synthesis of novel steroid derivatives bearing promising heterocyclic moiety that would act to reduce neuro-inflammation and oxidative stress in brain. The novel heterocyclic steroids were synthesized and their chemical structures were confirmed by studying their analytical and spectral data. The tested compounds were assayed in the model of neuro-inflammation produced in rats by cerebral lipopolysaccharide injection. The intracerebral administration of bacterial endotoxin resulted in cerebral inflammatory state evidenced by increased malondialdehyde (MDA), decreased reduced glutathione (GSH) level, increased nitric oxide as well as increased acetylcholinesterase (AChE) activity in the brain. Compounds 6, 10, 8b and 13a markedly increased reduced glutathione. Malondialadehyde and nitric oxide levels were reduced to normal values after treatment with all tested compounds. AChE activity was normalized by compound 8b and reduced to below normal values by compounds 10 and 14a. These results are exciting in that these agents might be useful candidates in treatment of cerebral inflammation. Copyright © 2012 Elsevier Inc. All rights reserved.
Buczek, E; Denslow, A; Mateuszuk, L; Proniewski, B; Wojcik, T; Sitek, B; Fedorowicz, A; Jasztal, A; Kus, E; Chmura-Skirlinska, A; Gurbiel, R; Wietrzyk, J; Chlopicki, S
2018-05-22
Patients with cancer develop endothelial dysfunction and subsequently display a higher risk of cardiovascular events. The aim of the present work was to examine changes in nitric oxide (NO)- and prostacyclin (PGI 2 )-dependent endothelial function in the systemic conduit artery (aorta), in relation to the formation of lung metastases and to local and systemic inflammation in a murine orthotopic model of metastatic breast cancer. BALB/c female mice were orthotopically inoculated with 4T1 breast cancer cells. Development of lung metastases, lung inflammation, changes in blood count, systemic inflammatory response (e.g. SAA, SAP and IL-6), as well as changes in NO- and PGI 2 -dependent endothelial function in the aorta, were examined 2, 4, 5 and 6 weeks following cancer cell transplantation. As early as 2 weeks following transplantation of breast cancer cells, in the early metastatic stage, lungs displayed histopathological signs of inflammation, NO production was impaired and nitrosylhemoglobin concentration in plasma was decreased. After 4 to 6 weeks, along with metastatic development, progressive leukocytosis and systemic inflammation (as seen through increased SAA, SAP, haptoglobin and IL-6 plasma concentrations) were observed. Six weeks following cancer cell inoculation, but not earlier, endothelial dysfunction in aorta was detected; this involved a decrease in basal NO production and a decrease in NO-dependent vasodilatation, that was associated with a compensatory increase in cyclooxygenase-2 (COX-2)- derived PGI 2 production. In 4 T1 metastatic breast cancer in mice early pulmonary metastasis was correlated with lung inflammation, with an early decrease in pulmonary as well as systemic NO availability. Late metastasis was associated with robust, cancer-related, systemic inflammation and impairment of NO-dependent endothelial function in the aorta that was associated with compensatory upregulation of the COX-2-derived PGI 2 pathway.
Bajaj, Amoha; John-Henderson, Neha A; Cundiff, Jenny M; Marsland, Anna L; Manuck, Stephen B; Kamarck, Thomas W
2016-11-01
Systemic inflammation is thought to be a biological mediator between social relationship quality and premature mortality. Empirical work has yielded mixed support for an association of social relationship variables with systemic inflammation, perhaps due to methodological limitations. To date, research in this literature has focused on global perceptions of social relationships, with limited attention to the covariance of characteristics of daily social interactions with inflammation. Here, we examine whether daily interactions, as assessed by ecological momentary assessment (EMA), associate with peripheral markers of inflammation among midlife and older adults. Global social support and integration were measured using the Interpersonal Support Evaluation List (ISEL) and the Social Network Index (SNI), respectively, in older adults from the Pittsburgh Healthy Heart Project (PHHP), and in middle-aged adults from the Adult Health and Behavior Project-II (AHAB-II). Using time-sampled EMA, we assessed the proportion of the day spent in positive and negative social interactions. Systemic markers of inflammation were interleukin (IL)-6 and C-reactive protein (CRP). Global measures of support and integration did not associate with inflammation in either sample. In older adults, relative frequency of total positive interactions, those with close others (i.e. spouse, friends, family), and those with coworkers predicted lower concentrations of IL-6 in fully adjusted models, accounting for age, sex, race, education, BMI, smoking and alcohol. In middle-aged adults, relative frequency of positive interactions with close others was also inversely associated with IL-6 level and relative frequency of negative marital interactions was unexpectedly inversely associated with CRP level. Characteristics of daily social interactions among midlife and older adults associate with markers of systemic inflammation that are known to predict risk for cardiovascular disease. Ambulatory measures may better capture health-relevant social processes in daily life than retrospective, global self-report measures. Published by Elsevier Inc.
Survey of less-inflammable hydraulic fluids for aircraft
NASA Technical Reports Server (NTRS)
Drake, Wray V; Drell, I L
1950-01-01
A survey of current information on civil and military development of less-inflammable hydraulic fluids for aircraft is presented. Types of less-inflammable fluid reported include: glycol derivative, water base, silicone, ester, and halogenated compound. Specification requirements, physical and chemical properties, hydraulic-system test results, and advantages and disadvantages of various hydraulic fluids are discussed. For completely satisfactory service, some modification of currently available fluids or of present hydraulic-system parts still appears necessary.
Maier, Barbara B; Hladik, Anastasiya; Lakovits, Karin; Korosec, Ana; Martins, Rui; Kral, Julia B; Mesteri, Ildiko; Strobl, Birgit; Müller, Mathias; Kalinke, Ulrich; Merad, Miriam; Knapp, Sylvia
2016-09-01
Protecting the integrity of the lung epithelial barrier is essential to ensure respiration and proper oxygenation in patients suffering from various types of lung inflammation. Type I interferon (IFN-I) has been associated with pulmonary epithelial barrier function, however, the mechanisms and involved cell types remain unknown. We aimed to investigate the importance of IFN-I with respect to its epithelial barrier strengthening function to better understand immune-modulating effects in the lung with potential medical implications. Using a mouse model of pneumococcal pneumonia, we revealed that IFN-I selectively protects alveolar epithelial type II cells (AECII) from inflammation-induced cell death. Mechanistically, signaling via the IFN-I receptor on AECII is sufficient to promote AECII survival. The net effects of IFN-I are barrier protection, together with diminished tissue damage, inflammation, and bacterial loads. Importantly, we found that the protective role of IFN-I can also apply to sterile acute lung injury, in which loss of IFN-I signaling leads to a significant reduction in barrier function caused by AECII cell death. Our data suggest that IFN-I is an important mediator in lung inflammation that plays a protective role by antagonizing inflammation-associated cell obstruction, thereby strengthening the integrity of the epithelial barrier. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Contributions of transferrin to acute inflammation in the goldfish, C. auratus.
Trites, M J; Barreda, D R
2017-02-01
Transferrin is an evolutionary conserved protein that in addition to having a critical role in iron transport also has been shown to have a crucial role in host defence, by depriving iron from invading pathogens. Recently cleaved transferrin products was shown to activate macrophages in vitro. We now use an in vivo model of self-resolving peritonitis in goldfish, coupled with gene expression and protein analysis to evaluate the contributions of cleaved transferrin to acute inflammation. We show, for the first time, that cleaved transferrin products are produced in vivo early during an acute inflammatory response. These cleaved transferrin fragments were produced during pathogen-induced, but not sterile, inflammation. Both macrophages and neutrophils were able to contribute to transferrin cleavage. However, only macrophages contributed to this innate process through inducible expression of transferrin. The appearance of transferrin cleavage products in vivo correlated with the influx of leukocytes but did not necessarily correlate the induction of robust respiratory burst and nitric oxide responses. Overall, this study adds to a growing body of work highlighting the role of transferrin as an immune regulator during acute inflammation. Given the significant conservation of this and related molecules, these findings have potentially broad implications for host defences and inflammation control across evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ma, Weiwei; Wu, Mengnan; Zhou, Siyan; Tao, Ye; Xie, Zuolei; Zhong, Yi
2018-05-20
Emerging evidence suggests that neuro-inflammation begins early and drives the pathogenesis of Alzheimer's disease (AD), and anti-inflammatory therapies are under clinical development. However, several anti-inflammatory compounds failed to improve memory in clinical trials, indicating that reducing inflammation alone might not be enough. On the other hand, neuro-inflammation is implicated in a number of mental disorders which share the same therapeutic targets. Based on these observations, we screened a batch of genes related with mental disorder and neuro-inflammation in a classical olfactory conditioning in an amyloid beta (Aβ) overexpression fly model. A Smoothened (SMO) mutant was identified as a genetic modifier of Aβ toxicity in 3-min memory and downregulation of SMO rescued Aβ-induced 3-min and 1-h memory deficiency. Also, Aβ activated innate inflammatory response in fly by increasing the expression of antimicrobial peptides, which were alleviated by downregulating SMO. Furthermore, pharmaceutical administration of a SMO antagonist LDE rescued Aβ-induced upregulation of SMO in astrocytes of mouse hippocampus, improved memory in Morris water maze (MWM), and reduced expression of astrocyte secreting pro-inflammatory factors IL-1β, TNFα and the microglia marker IBA-1 in an APP/PS1 transgenic mouse model. Our study suggests that SMO is an important conserved modulator of Aβ toxicity in both fly and mouse models of AD. Copyright © 2018. Published by Elsevier Ltd.
Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu
2016-01-01
Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA2 six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA2 treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA2 treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA2 on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA2 in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA2 are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA2 in radiation pneumonitis and fibrosis treatments. PMID:27144583
Mindfulness May Be Helpful for People with Ulcerative Colitis
... the course of ulcerative colitis disease, markers of systemic or mucosal inflammation, or any psychological assessment except ... MBSR’s impact on areas such as disease course, systemic inflammation, stress response, and active (rather than inactive) ...
Org, Elin; Mehrabian, Margarete; Lusis, Aldons J.
2015-01-01
Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. PMID:26071662
Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.
Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve
2006-09-18
Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.
Systemic inflammation, heart rate variability and air pollution in a cohort of senior adults.
Luttmann-Gibson, Heike; Suh, Helen H; Coull, Brent A; Dockery, Douglas W; Sarnat, Stefanie Ebelt; Schwartz, Joel; Stone, Peter H; Gold, Diane R
2010-09-01
Short-term elevation of ambient particulate air pollution has been associated with autonomic dysfunction and increased systemic inflammation, but the interconnections between these pathways are not well understood. We examined the association between inflammation and autonomic dysfunction and effect modification of inflammation on the association between air pollution and heart rate variability (HRV) in elderly subjects. 25 elderly subjects in Steubenville, Ohio, were followed up to 24 times with repeated 30-min ECG Holter monitoring (545 observations). C-reactive protein (CRP), fibrinogen, interleukin-6 (IL-6), soluble inter-cellular adhesion molecule 1 (sICAM-1), and white blood cell and platelet counts were measured in peripheral blood samples collected in the first month of the study. Increased systemic inflammation was defined for subjects within the upper 20% of the distribution for each marker. A central ambient monitoring station provided daily fine particle (PM(2.5)) and sulphate (SO(4)(2-)) data. Linear mixed models were used to identify associations between inflammatory markers and HRV and to assess effect modification of the association between air pollution and HRV due to inflammatory status. A 5.8 mg/l elevation in CRP was associated with decreases of between -8% and -33% for time and frequency domain HRV outcomes. A 5.1 microg/m(3) increase in SO(4)(2-) on the day before the health assessment was associated with a decrease of -6.7% in the SD of normal RR intervals (SDNN) (95% CI -11.8% to -1.3%) in subjects with elevated CRP, but not in subjects with lower CRP (p value interaction=0.04), with similar findings for PM(2.5). Increased systemic inflammation is associated with autonomic dysfunction in the elderly. Air pollution effects on reduced SDNN are stronger in subjects with elevated systemic inflammation.
Current insights into the innate immune system dysfunction in irritable bowel syndrome.
Lazaridis, Nikolaos; Germanidis, Georgios
2018-01-01
Irritable bowel syndrome (IBS) is a functional bowel disorder associated with abdominal pain and alterations in bowel habits. The presence of IBS greatly impairs patients' quality of life and imposes a high economic burden on the community; thus, there is intense pressure to reveal its elusive pathogenesis. Many etiological mechanisms have been implicated, but the pathophysiology of the syndrome remains unclear. As a result, novel drug development has been slow and no pharmacological intervention is universally accepted. A growing evidence implicates the role of low-grade inflammation and innate immune system dysfunction, although contradictory results have frequently been presented. Mast cells (MC), eosinophils and other key immune cells together with their mediators seem to play an important role, at least in subgroups of IBS patients. Cytokine imbalance in the systematic circulation and in the intestinal mucosa may also characterize IBS presentation. Toll-like receptors and their emerging role in pathogen recognition have also been highlighted recently, as dysregulation has been reported to occur in patients with IBS. This review summarizes the current knowledge regarding the involvement of any immunological alteration in the development of IBS. There is substantial evidence to support innate immune system dysfunction in several IBS phenotypes, but additional studies are required to better clarify the underlying pathogenetic pathways. IBS heterogeneity could potentially be attributed to multiple causes that lead to different disease phenotypes, thus explaining the variability found between study results.
Mouriaux, F; Coffin-Pichonnet, S; Robert, P-Y; Abad, S; Martin-Silva, N
2014-12-01
Orbital inflammation is a generic term encompassing inflammatory pathologies affecting all structures within the orbit : anterior (involvement up to the posterior aspect of the globe), diffuse (involvement of intra- and/or extraconal fat), apical (involvement of the posterior orbit), myositis (involvement of only the extraocular muscles), dacryoadenitis (involvement of the lacrimal gland). We distinguish between specific inflammation and non-specific inflammation, commonly referred to as idiopathic inflammation. Specific orbital inflammation corresponds to a secondary localization of a "generalized" disease (systemic or auto-immune). Idiopathic orbital inflammation corresponds to uniquely orbital inflammation without generalized disease, and thus an unknown etiology. At the top of the differential diagnosis for specific or idiopathic orbital inflammation are malignant tumors, represented most commonly in the adult by lympho-proliferative syndromes and metastases. Treatment of specific orbital inflammation begins with treatment of the underlying disease. For idiopathic orbital inflammation, treatment (most often corticosteroids) is indicated above all in cases of visual loss due to optic neuropathy, in the presence of pain or oculomotor palsy. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
DeBoer, Mark D.; Scarlett, Jarrad M.; Levasseur, Peter R.; Grant, Wilmon F.; Marks, Daniel L.
2010-01-01
Inflammation-associated cachexia is associated with multiple chronic diseases and involves activation of appetite regulating centers in the arcuate nucleus of the hypothalamus (ARH). The nucleus of the solitary tract (NTS) in the brainstem has also been implicated as an important nucleus involved in appetite regulation. We set out to determine whether the NTS may be involved in inflammation-associated anorexia by injecting IL-1β into the 4th ventricle and assessing food intake and NTS neuronal activation. Injection of IL-1β produced a decrease in food intake at 3 and 12 h after injection which was ameliorated at the 12 h time point by a sub-threshold dose of agouti-related peptide (AgRP). Investigation into neuron types in the NTS revealed that IL-1β injection was associated with an increase in c-Fos activity in NTS neurons expressing tyrosine hydroxylase (TH). Additionally, injection of IL-1β into the 4th ventricle did not produce c-Fos activation of neurons expressing pro-opiomelanocortin (POMC) in the ARH, cells known to be involved in producing anorexia in response to systemic inflammation. Double-label in situ hybridization revealed that TH neurons did not express IL-1 receptor I (IL1-RI) transcript, demonstrating that c-Fos activation of TH neurons in this setting was not via direct stimulation of IL-1β on TH neurons themselves. We conclude that IL-1β injection into the 4th ventricle produces anorexia and is accompanied by an increase in activation in TH neurons in the NTS. This provides evidence that the brainstem may be an important mediator of anorexia in the setting of inflammation. PMID:19028534
Friedbichler, Katrin; Themanns, Madeleine; Mueller, Kristina M; Schlederer, Michaela; Kornfeld, Jan-Wilhelm; Terracciano, Luigi M; Kozlov, Andrey V; Haindl, Susanne; Kenner, Lukas; Kolbe, Thomas; Mueller, Mathias; Snibson, Kenneth J; Heim, Markus H; Moriggl, Richard
2012-03-01
Persistently high levels of growth hormone (GH) can cause liver cancer. GH activates multiple signal-transduction pathways, among them janus kinase (JAK) 2-signal transducer and activator of transcription (STAT) 5 (signal transducer and activator of transcription 5). Both hyperactivation and deletion of STAT5 in hepatocytes have been implicated in the development of hepatocellular carcinoma (HCC); nevertheless, the role of STAT5 in the development of HCC as a result of high GH levels remains enigmatic. Thus, we crossed a mouse model of gigantism and inflammatory liver cancer caused by hyperactivated GH signaling (GH(tg) ) to mice with hepatic deletion of STAT5 (STAT5(Δhep) ). Unlike GH(tg) mice, GH(tg) STAT5(Δhep) animals did not display gigantism. Moreover, the premature mortality, which was associated with chronic inflammation, as well as the pathologic alterations of hepatocytes observed in GH(tg) mice, were not observed in GH(tg) animals lacking STAT5. Strikingly, loss of hepatic STAT5 proteins led to enhanced HCC development in GH(tg) mice. Despite reduced chronic inflammation, GH(tg) STAT5(Δhep) mice displayed earlier and more advanced HCC than GH(tg) animals. This may be attributed to the combination of increased peripheral lipolysis, hepatic lipid synthesis, loss of hepatoprotective mediators accompanied by aberrant activation of tumor-promoting c-JUN and STAT3 signaling cascades, and accumulation of DNA damage secondary to loss of cell-cycle control. Thus, HCC was never observed in STAT5(Δhep) mice. As a result of their hepatoprotective functions, STAT5 proteins prevent progressive fatty liver disease and the formation of aggressive HCC in the setting of hyperactivated GH signaling. At the same time, they play a key role in controlling systemic inflammation and regulating organ and body size. Copyright © 2011 American Association for the Study of Liver Diseases.
Ang, Seah-Fang; Moochhala, Shabbir M.; MacAry, Paul A.; Bhatia, Madhav
2011-01-01
Hydrogen sulfide (H2S) has been shown to induce transient receptor potential vanilloid 1 (TRPV1)-mediated neurogenic inflammation in polymicrobial sepsis. However, endogenous neural factors that modulate this event and the molecular mechanism by which this occurs remain unclear. Therefore, this study tested the hypothesis that whether substance P (SP) is one important neural element that implicates in H2S-induced neurogenic inflammation in sepsis in a TRPV1-dependent manner, and if so, whether H2S regulates this response through activation of the extracellular signal-regulated kinase-nuclear factor-κB (ERK-NF-κB) pathway. Male Swiss mice were subjected to cecal ligation and puncture (CLP)-induced sepsis and treated with TRPV1 antagonist capsazepine 30 minutes before CLP. DL-propargylglycine (PAG), an inhibitor of H2S formation, was administrated 1 hour before or 1 hour after sepsis, whereas sodium hydrosulfide (NaHS), an H2S donor, was given at the same time as CLP. Capsazepine significantly attenuated H2S-induced SP production, inflammatory cytokines, chemokines, and adhesion molecules levels, and protected against lung and liver dysfunction in sepsis. In the absence of H2S, capsazepine caused no significant changes to the PAG-mediated attenuation of lung and plasma SP levels, sepsis-associated systemic inflammatory response and multiple organ dysfunction. In addition, capsazepine greatly inhibited phosphorylation of ERK1/2 and inhibitory κBα, concurrent with suppression of NF-κB activation even in the presence of NaHS. Furthermore, capsazepine had no effect on PAG-mediated abrogation of these levels in sepsis. Taken together, the present findings show that H2S regulates TRPV1-mediated neurogenic inflammation in polymicrobial sepsis through enhancement of SP production and activation of the ERK-NF-κB pathway. PMID:21931742
Pattern-Recognition Receptors and Gastric Cancer
Castaño-Rodríguez, Natalia; Kaakoush, Nadeem O.; Mitchell, Hazel M.
2014-01-01
Chronic inflammation has been associated with an increased risk of several human malignancies, a classic example being gastric adenocarcinoma (GC). Development of GC is known to result from infection of the gastric mucosa by Helicobacter pylori, which initially induces acute inflammation and, in a subset of patients, progresses over time to chronic inflammation, gastric atrophy, intestinal metaplasia, dysplasia, and finally intestinal-type GC. Germ-line encoded receptors known as pattern-recognition receptors (PRRs) are critical for generating mature pro-inflammatory cytokines that are crucial for both Th1 and Th2 responses. Given that H. pylori is initially targeted by PRRs, it is conceivable that dysfunction within genes of this arm of the immune system could modulate the host response against H. pylori infection, and subsequently influence the emergence of GC. Current evidence suggests that Toll-like receptors (TLRs) (TLR2, TLR3, TLR4, TLR5, and TLR9), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2, and NLRP3), a C-type lectin receptor (DC-SIGN), and retinoic acid-inducible gene (RIG)-I-like receptors (RIG-I and MDA-5), are involved in both the recognition of H. pylori and gastric carcinogenesis. In addition, polymorphisms in genes involved in the TLR (TLR1, TLR2, TLR4, TLR5, TLR9, and CD14) and NLR (NOD1, NOD2, NLRP3, NLRP12, NLRX1, CASP1, ASC, and CARD8) signaling pathways have been shown to modulate the risk of H. pylori infection, gastric precancerous lesions, and/or GC. Further, the modulation of PRRs has been suggested to suppress H. pylori-induced inflammation and enhance GC cell apoptosis, highlighting their potential relevance in GC therapeutics. In this review, we present current advances in our understanding of the role of the TLR and NLR signaling pathways in the pathogenesis of GC, address the involvement of other recently identified PRRs in GC, and discuss the potential implications of PRRs in GC immunotherapy. PMID:25101079
Tabor, Caroline M; Shaw, Catherine A; Robertson, Sarah; Miller, Mark R; Duffin, Rodger; Donaldson, Ken; Newby, David E; Hadoke, Patrick W F
2016-02-09
Accelerated thrombus formation induced by exposure to combustion-derived air pollution has been linked to alterations in endogenous fibrinolysis and platelet activation in response to pulmonary and systemic inflammation. We hypothesised that mechanisms independent of inflammation contribute to accelerated thrombus formation following exposure to diesel exhaust particles (DEP). Thrombosis in rats was assessed 2, 6 and 24 h after administration of DEP, carbon black (CB; control carbon nanoparticle), DQ12 quartz microparticles (to induce pulmonary inflammation) or saline (vehicle) by either intra-tracheal instillation (0.5 mg, except Quartz; 0.125 mg) or intravenous injection (0.5 mg/kg). Thrombogenicity was assessed by carotid artery occlusion, fibrinolytic variables and platelet-monocyte aggregates. Measures of inflammation were determined in plasma and bronchoalveolar lavage fluid. Tissue plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI)-1 were measured following direct in vitro exposure of human umbilical vein endothelial cells (HUVECs) to DEP (10-150 μg/mL). Instillation of DEP reduced the time to thrombotic occlusion in vivo, coinciding with the peak of DEP-induced pulmonary inflammation (6 h). CB and DQ12 produced greater inflammation than DEP but did not alter time to thrombotic occlusion. Intravenous DEP produced an earlier (2 h) acceleration of thrombosis (as did CB) without pulmonary or systemic inflammation. DEP inhibited t-PA and PAI-1 release from HUVECs, and reduced the t-PA/PAI-1 ratio in vivo; similar effects in vivo were seen with CB and DQ12. DEP, but not CB or DQ12, increased platelet-monocyte aggregates. DEP accelerates arterial thrombus formation through increased platelet activation. This effect is dissociated from pulmonary and systemic inflammation and from impaired fibrinolytic function.
Role of substance P in the cardiovascular system.
Mistrova, Eliska; Kruzliak, Peter; Chottova Dvorakova, Magdalena
2016-08-01
This article provides an overview of the structure and function of substance P signalling system and its involvement in the cardiovascular regulation. Substance P is an undecapeptide originating from TAC1 gen and belonging to the tachykinin family. The biological actions of substance P are mainly mediated through neurokinin receptor 1 since substance P is the ligand with the highest affinity to neurokinin receptor 1. Substance P is widely distributed within the central and peripheral nervous systems as well as in the cardiovascular system. Substance P is involved in the regulation of heart frequency, blood pressure and in the stretching of vessels. Substance P plays an important role in ischemia and reperfusion and cardiovascular response to stress. Additionally, it has been also implicated in angiogenesis, pain transmission and inflammation. The substance P/neurokinin receptor 1 receptor system is involved in the molecular bases of many human pathological processes. Antagonists of neurokinin receptor 1 receptor could provide clinical solutions for a variety of diseases. Neurokinin receptor 1 antagonists are already used in the prevention of chemotherapy induced nausea and vomiting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Connor, Thomas J; Starr, Neasa; O'Sullivan, Joan B; Harkin, Andrew
2008-08-15
Inflammation-mediated dysregulation of the kynurenine pathway has been implicated as a contributor to a number of major brain disorders. Consequently, we examined the impact of a systemic inflammatory challenge on kynurenine pathway enzyme expression in rat brain. Indoleamine 2,3-dioxygenase (IDO) expression was induced in cortex and hippocampus following systemic lipopolysaccharide (LPS) administration. Whilst IDO expression was paralleled by increased circulating interferon (IFN)-gamma concentrations, IFN-gamma expression in the brain was only modestly altered following LPS administration. In contrast, induction of IDO was associated with increased central tumour necrosis factor (TNF)-alpha and interleukin (IL)-6 expression. Similarly, in cultured glial cells LPS-induced IDO expression was accompanied by increased TNF-alpha and IL-6 expression, whereas IFN-gamma was not detectable. These findings indicate that IFN-gamma is not required for LPS-induced IDO expression in brain. A robust increase in kynurenine-3-monooxygenase (KMO) expression was observed in rat brain 24h post LPS, without any change in kynurenine aminotransferase II (KAT II) expression. In addition, we report that constitutive expression of KAT II is approximately 8-fold higher than KMO in cortex and 20-fold higher in hippocampus. Similarly, in glial cells constitutive expression of KAT II was approximately 16-fold higher than KMO, and expression of KMO but not KAT II was induced by LPS. These data are the first to demonstrate that a systemic inflammatory challenge stimulates KMO expression in brain; a situation that is likely to favour kynurenine metabolism in a neurotoxic direction. However, our observation that expression of KAT II is much higher than KMO in rat brain is likely to counteract potential neurotoxicity that could arise from KMO induction following an acute inflammation.
Yida, Zhang; Imam, Mustapha Umar; Ismail, Maznah; Ismail, Norsharina; Ideris, Aini; Abdullah, Maizaton Atmadini
2015-10-24
Serum sialic acid levels are positively correlated with coronary artery disease and inflammation. Although sialic acid is a non-specific marker, it is considered sensitive likely due to its influence in sialylation of glycoprotein structures all over the body. We hypothesized that dietary supplementation with N-acetylneuraminic acid (Neu5Ac), a type of sialic acid, will have profound effects on high fat diet- (HFD-) induced inflammation and oxidative stress in view of the widespread incorporation of sialic acid into glycoprotein structures in the body. HFD-fed rats with or without simvastatin or Neu5Ac (50 and 400 mg/kg/day) were followed up for 12 weeks. Lipid profiles, and markers of inflammation (C-reactive protein, interleukin-6, and tumor necrosis factor alpha), insulin resistance (serum insulin and adiponectin, oral glucose tolerance test and homeostatic model of insulin resistance) and oxidative stress (total antioxidant status and thiobarbituric acid reactive species) in the serum and liver were determined, while mRNA levels of hepatic antioxidant and inflammation genes were also quantified. Serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatinine and uric acid were also assessed. HFD feeding caused hyperlipidemia and insulin resistance, and worsened liver and kidney functions. HFD feeding also potentiated inflammation and oxidative stress, partly through modulation of hepatic gene expression, while Neu5Ac especially at higher doses and simvastatin attenuated HFD-induced changes, although Neu5Ac showed better outcomes. Based on the present results, we surmised that Neu5Ac can prevent HFD-induced inflammation and oxidative stress, and may in fact be useful in the prevention of hyperlipidemia-associated inflammation and oxidative stress. However, the translational implications of these findings can only be determined after long-term effects are established. Hence, the use of Neu5Ac on obesity-related diseases requires additional attention.
Brain Morphology Links Systemic Inflammation to Cognitive Function in Midlife Adults
Marsland, Anna L.; Gianaros, Peter J.; Kuan, Dora C-H.; Sheu, Lei K.; Krajina, Katarina; Manuck, Stephen B.
2015-01-01
Background Inflammation is linked to cognitive decline in midlife, but the neural basis for this link is unclear. One possibility is that inflammation associates with adverse changes in brain morphology, which accelerates cognitive aging and later dementia risk. Clear evidence is lacking, however, regarding whether inflammation relates to cognition in midlife via changes in brain morphology. Accordingly, the current study examines whether associations of inflammation with cognitive function are mediated by variation in cortical gray matter volume among midlife adults. Methods Plasma levels of interleukin (IL)-6 and C-reactive protein (CRP), relatively stable markers of peripheral systemic inflammation, were assessed in 408 community volunteers aged 30–54 years. All participants underwent structural neuroimaging to assess global and regional brain morphology and completed neuropsychological tests sensitive to early changes in cognitive function. Measurements of brain morphology (regional tissue volumes and cortical thickness and surface area) were derived using Freesurfer. Results Higher peripheral inflammation was associated with poorer spatial reasoning, short term memory, verbal proficiency, learning and memory, and executive function, as well as lower cortical gray and white matter volumes, hippocampal volume and cortical surface area. Mediation models with age, sex and intracranial volume as covariates showed cortical gray matter volume to partially mediate the association of inflammation with cognitive performance. Exploratory analyses of body mass suggested that adiposity may be a source of the inflammation linking brain morphology to cognition. Conclusions Inflammation and adiposity might relate to cognitive decline via influences on brain morphology. PMID:25882911
Adenosine-dependent phrenic motor facilitation is inflammation resistant
Agosto-Marlin, Ibis M.; Nichols, Nicole L.
2016-01-01
Phrenic motor facilitation (pMF), a form of respiratory plasticity, can be elicited by acute intermittent hypoxia (i.e., phrenic long-term facilitation, pLTF) or direct application of drugs to the cervical spinal cord. Moderate acute intermittent hypoxia (mAIH; 3 × 5-min episodes of 35–50 mmHg arterial Po2, 5-min normoxic intervals) induces pLTF by a serotonin-dependent mechanism; mAIH-induced pLTF is abolished by mild systemic inflammation induced by a low dose of lipopolysaccharide (LPS; 100 μg/kg ip). In contrast, severe acute intermittent hypoxia (sAIH; 3 × 5-min episodes of 25–30 mmHg arterial Po2, 5-min normoxic intervals) elicits pLTF by a distinct, adenosine-dependent mechanism. Since it is not known if systemic LPS blocks the mechanism giving rise to sAIH-induced pLTF, we tested the hypothesis that sAIH-induced pLTF and adenosine 2A (A2A) receptor-induced pMF are insensitive to mild systemic inflammation elicited by the same low dose of LPS. In agreement with our hypothesis, neither sAIH-induced pLTF nor cervical intrathecal A2A receptor agonist (CGS-21680; 200 μM, 10 μl × 3)-induced pMF were affected 24 h post-LPS. Pretreatment with intrathecal A2A receptor antagonist injections (MSX-3; 10 μM, 12 μl) blocked sAIH-induced pLTF 24 h post LPS, confirming that pLTF was adenosine dependent. Our results give insights concerning the differential impact of systemic inflammation and the functional significance of multiple cascades capable of giving rise to phrenic motor plasticity. The relative resistance of adenosine-dependent pMF to inflammation suggests that it provides a “backup” system in animals lacking serotonin-dependent pMF due to ongoing inflammation associated with systemic infections and/or neural injury. NEW & NOTEWORTHY This study gives novel insights concerning how a mild systemic inflammation impacts phrenic motor plasticity (pMF), particularly adenosine-dependent pMF. We suggest that since this adenosine-dependent pathway is insensitive to systemic inflammation, it represents an alternative or “backup” mechanism of pMF when other mechanisms are suppressed. PMID:27927784
Myeloid-related protein 14 promotes inflammation and injury in meningitis.
Wache, Christina; Klein, Matthias; Ostergaard, Christian; Angele, Barbara; Häcker, Hans; Pfister, Hans-Walter; Pruenster, Monika; Sperandio, Markus; Leanderson, Tomas; Roth, Johannes; Vogl, Thomas; Koedel, Uwe
2015-07-15
Neutrophilic inflammation often persists for days despite effective antibiotic treatment and contributes to brain damage in bacterial meningitis. We propose here that myeloid-related protein 14 (MRP14), an abundant cytosolic protein in myeloid cells, acts as an endogenous danger signal, driving inflammation and aggravating tissue injury. The release pattern of MRP14 was analyzed in human and murine cerebrospinal fluid (CSF), as well as in isolated neutrophils. Its functional role was assessed in a mouse meningitis model, using MRP14-deficient mice. We detected large quantities of MRP14 in CSF specimens from patients and mice with pneumococcal meningitis. Immunohistochemical analyses and a cell-depletion approach indicated neutrophils as the major source of MRP14. In a meningitis model, MRP14-deficient mice showed a better resolution of inflammation during antibiotic therapy, which was accompanied by reduced disease severity. Intrathecal administration of MRP14 before infection reverted the phenotype of MRP14-deficient mice back to wild type. Moreover, intrathecal injection of MRP14 alone was sufficient to induce meningitis in a Toll-like receptor 4 (TLR4)-CXCL2-dependent manner. Finally, treatment with the MRP14 antagonist paquinimod reduced inflammation and disease severity significantly, reaching levels comparable to those achieved after genetic depletion of MRP14. The present study implicates MRP14 as an essential propagator of inflammation and potential therapeutic target in pneumococcal meningitis. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Affective reactivity to daily stressors is associated with elevated inflammation.
Sin, Nancy L; Graham-Engeland, Jennifer E; Ong, Anthony D; Almeida, David M
2015-12-01
Inflammation increases the risk of chronic diseases, but the links between emotional responses to daily events and inflammation are unknown. We examined individual differences in affective reactivity to daily stressors (i.e., changes in positive and negative affect in response to stressors) as predictors of inflammatory markers interleukin-6 (IL-6) and C-reactive protein (CRP). A cross-sectional sample of 872 adults from the National Study of Daily Experiences (substudy of Midlife in the United States II) reported daily stressors and affect during telephone interviews for 8 days. Blood samples were obtained at a separate clinic visit and assayed for inflammatory markers. Multilevel models estimated trait affective reactivity slopes for each participant, which were inputted into regression models to predict inflammation. People who experienced greater decreases in positive affect on days when stressors occurred (i.e., positive affect reactivity) had elevated log IL-6, independent of demographic, physical, psychological, and behavioral factors (B = 1.12, SE = 0.45, p = .01). Heightened negative affect reactivity was associated with higher log CRP among women (p = .03) but not men (p = .57); health behaviors accounted for this association in women. Adults who fail to maintain positive affect when faced with minor stressors in everyday life appear to have elevated levels of IL-6, a marker of inflammation. Women who experience increased negative affect when faced with minor stressors may be at particular risk of elevated inflammation. These findings add to growing evidence regarding the health implications of affective reactivity to daily stressors. (c) 2015 APA, all rights reserved).
Beaver, Laura M.; Stemmy, Erik J.; Schwartz, Arnold M.; Damsker, Jesse M.; Constant, Stephanie L.; Ceryak, Susan M.; Patierno, Steven R.
2009-01-01
Background Chronic inflammation is implicated in the development of several human cancers, including lung cancer. Certain particulate hexavalent chromium [Cr(VI)] compounds are well-documented human respiratory carcinogens that release genotoxic soluble chromate and are associated with fibrosis, fibrosarcomas, adenocarcinomas, and squamous cell carcinomas of the lung. Despite this, little is known about the pathologic injury and immune responses after repetitive exposure to particulate chromates. Objectives In this study we investigated the lung injury, inflammation, proliferation, and survival signaling responses after repetitive exposure to particulate chromate. Methods BALB/c mice were repetitively treated with particulate basic zinc chromate or saline using an intranasal exposure regimen. We assessed lungs for Cr(VI)-induced changes by bronchoalveolar lavage, histologic examination, and immunohistochemistry. Results Single exposure to Cr(VI) resulted in inflammation of lung tissue that persists for up to 21 days. Repetitive Cr(VI) exposure induced a neutrophilic inflammatory airway response 24 hr after each treatment. Neutrophils were subsequently replaced by increasing numbers of macrophages by 5 days after treatment. Repetitive Cr(VI) exposure induced chronic peribronchial inflammation with alveolar and interstitial pneumonitis dominated by lymphocytes and macrophages. Moreover, chronic toxic mucosal injury was observed and accompanied by increased airway pro-matrix metalloprotease-9. Injury and inflammation correlated with airways becoming immunoreactive for phosphorylation of the survival signaling protein Akt and the proliferation marker Ki-67. We observed a reactive proliferative response in epithelial cells lining airways of chromate-exposed animals. Conclusions These data illustrate that repetitive exposure to particulate chromate induces chronic injury and an inflammatory microenvironment that may promote Cr(VI) carcinogenesis. PMID:20049209
Affective reactivity to daily stressors is associated with elevated inflammation
Sin, Nancy L.; Graham-Engeland, Jennifer E.; Ong, Anthony D.; Almeida, David M.
2015-01-01
Objective Inflammation increases the risk of chronic diseases, but the links between emotional responses to daily events and inflammation are unknown. We examined individual differences in affective reactivity to daily stressors (i.e., changes in positive and negative affect in response to stressors) as predictors of inflammatory markers interleukin-6 (IL-6) and C-reactive protein (CRP). Methods A cross-sectional sample of 872 adults from the National Study of Daily Experiences (sub-study of Midlife in the United States II) reported daily stressors and affect during telephone interviews for 8 days. Blood samples were obtained at a separate clinic visit and assayed for inflammatory markers. Multilevel models estimated trait affective reactivity slopes for each participant, which were inputted into regression models to predict inflammation. Results People who experienced greater decreases in positive affect on days when stressors occurred (i.e, positive affect reactivity) had elevated log IL-6, independent of demographic, physical, psychological, and behavioral factors (B = 1.12, SE = 0.45, p = 0.01). Heightened negative affect reactivity was associated with higher log CRP among women (p = 0.03) but not men (p = 0.57); health behaviors accounted for this association in women. Conclusions Adults who fail to maintain positive affect when faced with minor stressors in everyday life appear to have elevated levels of IL-6, a marker of inflammation. Women who experience increased negative affect when faced with minor stressors may be at particular risk of elevated inflammation. These findings add to growing evidence regarding the health implications of affective reactivity to daily stressors. PMID:26030309
Mira, Juan C; Gentile, Lori F; Mathias, Brittany J; Efron, Philip A; Brakenridge, Scott C; Mohr, Alicia M; Moore, Frederick A; Moldawer, Lyle L
2017-02-01
To provide an appraisal of the evolving paradigms in the pathophysiology of sepsis and propose the evolution of a new phenotype of critically ill patients, its potential underlying mechanism, and its implications for the future of sepsis management and research. Literature search using PubMed, MEDLINE, EMBASE, and Google Scholar. Sepsis remains one of the most debilitating and expensive illnesses, and its prevalence is not declining. What is changing is our definition(s), its clinical course, and how we manage the septic patient. Once thought to be predominantly a syndrome of over exuberant inflammation, sepsis is now recognized as a syndrome of aberrant host protective immunity. Earlier recognition and compliance with treatment bundles has fortunately led to a decline in multiple organ failure and in-hospital mortality. Unfortunately, more and more sepsis patients, especially the aged, are suffering chronic critical illness, rarely fully recover, and often experience an indolent death. Patients with chronic critical illness often exhibit "a persistent inflammation-immunosuppression and catabolism syndrome," and it is proposed here that this state of persisting inflammation, immunosuppression and catabolism contributes to many of these adverse clinical outcomes. The underlying cause of inflammation-immunosuppression and catabolism syndrome is currently unknown, but there is increasing evidence that altered myelopoiesis, reduced effector T-cell function, and expansion of immature myeloid-derived suppressor cells are all contributory. Although newer therapeutic interventions are targeting the inflammatory, the immunosuppressive, and the protein catabolic responses individually, successful treatment of the septic patient with chronic critical illness and persistent inflammation-immunosuppression and catabolism syndrome may require a more complementary approach.
Ish-Shalom, Eliran; Meirow, Yaron; Sade-Feldman, Moshe; Kanterman, Julia; Wang, Lynn; Mizrahi, Olga; Klieger, Yair; Baniyash, Michal
2016-01-01
Chronic inflammation is associated with immunosuppression and downregulated expression of the TCR CD247. In searching for new biomarkers that could validate the impaired host immune status under chronic inflammatory conditions, we discovered that sorting nexin 9 (SNX9), a protein that participates in early stages of clathrin-mediated endocytosis, is downregulated as well under such conditions. SNX9 expression was affected earlier than CD247 by the generated harmful environment, suggesting that it is a potential marker sensing the generated immunosuppressive condition. We found that myeloid-derived suppressor cells, which are elevated in the course of chronic inflammation, are responsible for the observed SNX9 reduced expression. Moreover, SNX9 downregulation is reversible, as its expression levels return to normal and immune functions are restored when the inflammatory response and/or myeloid-derived suppressor cells are neutralized. SNX9 downregulation was detected in numerous mouse models for pathologies characterized by chronic inflammation such as chronic infection (Leishmania donovani), cancer (melanoma and colorectal carcinoma), and an autoimmune disease (rheumatoid arthritis). Interestingly, reduced levels of SNX9 were also observed in blood samples from colorectal cancer patients, emphasizing the feasibility of its use as a diagnostic and prognostic biomarker sensing the host's immune status and inflammatory stage. Our new discovery of SNX9 as being regulated by chronic inflammation and its association with immunosuppression, in addition to the CD247 regulation under such conditions, show the global impact of chronic inflammation and the generated immune environment on different cellular pathways in a diverse spectrum of diseases. Copyright © 2015 by The American Association of Immunologists, Inc.
RNA-Seq analysis reveals new evidence for inflammation-related changes in aged kidney
Park, Daeui; Kim, Byoung-Chul; Kim, Chul-Hong; Choi, Yeon Ja; Jeong, Hyoung Oh; Kim, Mi Eun; Lee, Jun Sik; Park, Min Hi; Chung, Ki Wung; Kim, Dae Hyun; Lee, Jaewon; Im, Dong-Soon; Yoon, Seokjoo; Lee, Sunghoon; Yu, Byung Pal; Bhak, Jong; Chung, Hae Young
2016-01-01
Age-related dysregulated inflammation plays an essential role as a major risk factor underlying the pathophysiological aging process. To better understand how inflammatory processes are related to aging at the molecular level, we sequenced the transcriptome of young and aged rat kidney using RNA-Seq to detect known genes, novel genes, and alternative splicing events that are differentially expressed. By comparing young (6 months of age) and old (25 months of age) rats, we detected 722 up-regulated genes and 111 down-regulated genes. In the aged rats, we found 32 novel genes and 107 alternatively spliced genes. Notably, 6.6% of the up-regulated genes were related to inflammation (P < 2.2 × 10−16, Fisher exact t-test); 15.6% were novel genes with functional protein domains (P = 1.4 × 10−5); and 6.5% were genes showing alternative splicing events (P = 3.3 × 10−4). Based on the results of pathway analysis, we detected the involvement of inflammation-related pathways such as cytokines (P = 4.4 × 10−16), which were found up-regulated in the aged rats. Furthermore, an up-regulated inflammatory gene analysis identified the involvement of transcription factors, such as STAT4, EGR1, and FOSL1, which regulate cancer as well as inflammation in aging processes. Thus, RNA changes in these pathways support their involvement in the pro-inflammatory status during aging. We propose that whole RNA-Seq is a useful tool to identify novel genes and alternative splicing events by documenting broadly implicated inflammation-related genes involved in aging processes. PMID:27153548
Huang, Zijing; Zhou, Tian; Sun, Xiaowei; Zheng, Yingfeng; Cheng, Bing; Li, Mei; Liu, Xialin; He, Chang
2018-01-01
Inflammation has emerged to be a critical mechanism responsible for neural damage and neurodegenerative diseases. Microglia, the resident innate immune cells in retina, are implicated as principal components of the immunological insult to retinal neural cells. The involvement of microglia in retinal inflammation is complex and here we propose for the first time that necroptosis in microglia triggers neuroinflammation and exacerbates retinal neural damage and degeneration. We found microglia experienced receptor-interacting protein kinase 1 (RIP1)- and RIP3-dependent necroptosis not only in the retinal degenerative rd1 mice, but also in the acute retinal neural injury mice. The necroptotic microglia released various pro-inflammatory cytokines and chemokines, such as tumor necrosis factor-α and chemokine (C-C motif) ligand 2, which orchestrated the retinal inflammation. Importantly, necroptosis blockade using necrostatin-1 could suppress microglia-mediated inflammation, rescue retinal degeneration or prevent neural injury in vivo. Meanwhile, cultured microglia underwent RIP1/3-mediated necroptosis and the necroptotic microglia produced large amounts of pro-inflammatory cytokines in response to lipopolysaccharide or oxidative stress in vitro. Mechanically, TLR4 deficiency ameliorated microglia necroptosis with decreased expression levels of machinery molecules RIP1 and RIP3, and suppressed retinal inflammation, suggesting that TLR4 signaling was required in microglia necroptosis-mediated inflammation. Thus, we proposed that microglia experienced necroptosis through TLR4 activation, promoting an inflammatory response that serves to exacerbate considerable neural damage and degeneration. Necroptosis blockade therefore emerged as a novel therapeutic strategy for tempering microglia-mediated neuroinflammation and ameliorating neural injury and neurodegenerative diseases.
Huang, Zijing; Zhou, Tian; Sun, Xiaowei; Zheng, Yingfeng; Cheng, Bing; Li, Mei; Liu, Xialin; He, Chang
2018-01-01
Inflammation has emerged to be a critical mechanism responsible for neural damage and neurodegenerative diseases. Microglia, the resident innate immune cells in retina, are implicated as principal components of the immunological insult to retinal neural cells. The involvement of microglia in retinal inflammation is complex and here we propose for the first time that necroptosis in microglia triggers neuroinflammation and exacerbates retinal neural damage and degeneration. We found microglia experienced receptor-interacting protein kinase 1 (RIP1)- and RIP3-dependent necroptosis not only in the retinal degenerative rd1 mice, but also in the acute retinal neural injury mice. The necroptotic microglia released various pro-inflammatory cytokines and chemokines, such as tumor necrosis factor-α and chemokine (C-C motif) ligand 2, which orchestrated the retinal inflammation. Importantly, necroptosis blockade using necrostatin-1 could suppress microglia-mediated inflammation, rescue retinal degeneration or prevent neural injury in vivo. Meanwhile, cultured microglia underwent RIP1/3-mediated necroptosis and the necroptotic microglia produced large amounts of pro-inflammatory cytokines in response to lipopolysaccharide or oxidative stress in vitro. Mechanically, TLR4 deficiency ameliorated microglia necroptosis with decreased expression levels of machinery molecules RIP1 and RIP3, and suppressed retinal inflammation, suggesting that TLR4 signaling was required in microglia necroptosis-mediated inflammation. Thus, we proposed that microglia experienced necroptosis through TLR4 activation, promoting an inflammatory response that serves to exacerbate considerable neural damage and degeneration. Necroptosis blockade therefore emerged as a novel therapeutic strategy for tempering microglia-mediated neuroinflammation and ameliorating neural injury and neurodegenerative diseases. PMID:28885615
Oral inflammation and infection, and chronic medical diseases: implications for the elderly.
Scannapieco, Frank A; Cantos, Albert
2016-10-01
Oral diseases, such as caries and periodontitis, not only have local effects on the dentition and on tooth-supporting tissues but also may impact a number of systemic conditions. Emerging evidence suggests that poor oral health influences the initiation and/or progression of diseases such as atherosclerosis (with sequelae including myocardial infarction and stoke), diabetes mellitus and neurodegenerative diseases (such as Alzheimer's disease, rheumatoid arthritis and others). Aspiration of oropharyngeal (including periodontal) bacteria causes pneumonia, especially in hospitalized patients and the elderly, and may influence the course of chronic obstructive pulmonary disease. This article addresses several pertinent aspects related to the medical implications of periodontal disease in the elderly. There is moderate evidence that improved oral hygiene may help prevent aspiration pneumonia in high-risk patients. For other medical conditions, because of the absence of well-designed randomized clinical trials in elderly patients, no specific guidance can be provided regarding oral hygiene or periodontal interventions that enhance the medical management of older adults. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rom, Slava; Zuluaga-Ramirez, Viviana; Reichenbach, Nancy L; Erickson, Michelle A; Winfield, Malika; Gajghate, Sachin; Christofidou-Solomidou, Melpo; Jordan-Sciutto, Kelly L; Persidsky, Yuri
2018-01-27
Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models. We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple group comparisons were performed by one-way analysis of variance with Dunnet's post hoc tests. We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of aseptic encephalitis (intracerebral TNFα injection) and prevented enhanced BBB permeability during systemic inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFα, or IL-1β in BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion and migration) and prevented the cytoskeleton changes in primary human monocytes activated by relevant inflammatory stimuli. This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism by which SDG mediates these effects, the ability of SDG to exert a multi-functional response reducing oxidative stress, inflammation, and BBB permeability makes it an exciting potential therapeutic for neuroinflammatory diseases. SDG can serve as an anti-inflammatory and barrier-protective agent in neuroinflammation.
Guo, Shuhong; Nighot, Meghali; Al-Sadi, Rana; Alhmoud, Tarik; Nighot, Prashant; Ma, Thomas Y.
2015-01-01
Gut-derived bacterial lipopolysaccharides (LPS) play an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor of necrotizing enterocolitis (NEC) and inflammatory bowel disease (IBD). The defective intestinal tight junction (TJ) barrier has been shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, cause an increase in intestinal tight junction permeability (TJP) via a TLR-4 dependent process; however the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal TJ barrier using an in-vitro and in-vivo model system. LPS caused a TLR-4 dependent activation of membrane-associated adaptor protein FAK in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and –independent pathways. SiRNA silencing of MyD88 prevented LPS-induced increase in TJP. LPS caused a MyD88-dependent activation of IRAK4. TLR-4, FAK and MyD88 were co-localized. SiRNA silencing of TLR-4 inhibited TLR-4 associated FAK activation; and FAK knockdown prevented MyD88 activation. In-vivo studies also confirmed that LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented LPS-induced increase in intestinal permeability. Additionally, high dose LPS-induced intestinal inflammation was also dependent on TLR-4/FAK/MyD88 signal-transduction axis. Our data show for the first time that LPS-induced increase in intestinal TJP and intestinal inflammation was regulated by TLR-4 dependent activation of FAK-MyD88-IRAK4 signaling pathway. PMID:26466961
Chaudhary, Kapil; Promsote, Wanwisa; Ananth, Sudha; Veeranan-Karmegam, Rajalakshmi; Tawfik, Amany; Arjunan, Pachiappan; Martin, Pamela; Smith, Sylvia B; Thangaraju, Muthusamy; Kisselev, Oleg; Ganapathy, Vadivel; Gnana-Prakasam, Jaya P
2018-02-14
Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Increased iron accumulation is associated with several degenerative diseases. However, there are no reports on the status of retinal iron or its implications in the pathogenesis of DR. In the present study, we found that retinas of type-1 and type-2 mouse models of diabetes have increased iron accumulation compared to non-diabetic retinas. We found similar iron accumulation in postmortem retinal samples from human diabetic patients. Further, we induced diabetes in HFE knockout (KO) mice model of genetic iron overload to understand the role of iron in the pathogenesis of DR. We found increased neuronal cell death, vascular alterations and loss of retinal barrier integrity in diabetic HFE KO mice compared to diabetic wildtype mice. Diabetic HFE KO mouse retinas also exhibited increased expression of inflammation and oxidative stress markers. Severity in the pathogenesis of DR in HFE KO mice was accompanied by increase in retinal renin expression mediated by G-protein-coupled succinate receptor GPR91. In light of previous reports implicating retinal renin-angiotensin system in DR pathogenesis, our results reveal a novel relationship between diabetes, iron and renin-angiotensin system, thereby unraveling new therapeutic targets for the treatment of DR.
Zou, Kun; Li, Zhao; Zhang, Yong; Zhang, Hao-Yue; Li, Bo; Zhu, Wei-Liang; Shi, Ji-Ye; Jia, Qi; Li, Yi-Ming
2017-02-01
It has been widely recognized that inflammation, particularly chronic inflammation, can increase the risk of cancer and that the simultaneous treatment of inflammation and cancer may produce excellent therapeutic effects. Berberine, an alkaloid isolated from Rhizoma coptidis, has broad applications, particularly as an antibacterial agent in the clinic with a long history. Over the past decade, many reports have demonstrated that this natural product and its derivatives have high activity against both cancer and inflammation. In this review, we summarize the advances in studing berberine and its derivatives as anti-inflammatory and anti-tumor agents in the digestive system; we also discuss their structure-activity relationship. These data should be useful for the development of this natural product as novel anticancer drugs with anti-inflammation activity.
Zou, Kun; Li, Zhao; Zhang, Yong; Zhang, Hao-yue; Li, Bo; Zhu, Wei-liang; Shi, Ji-ye; Jia, Qi; Li, Yi-ming
2017-01-01
It has been widely recognized that inflammation, particularly chronic inflammation, can increase the risk of cancer and that the simultaneous treatment of inflammation and cancer may produce excellent therapeutic effects. Berberine, an alkaloid isolated from Rhizoma coptidis, has broad applications, particularly as an antibacterial agent in the clinic with a long history. Over the past decade, many reports have demonstrated that this natural product and its derivatives have high activity against both cancer and inflammation. In this review, we summarize the advances in studing berberine and its derivatives as anti-inflammatory and anti-tumor agents in the digestive system; we also discuss their structure-activity relationship. These data should be useful for the development of this natural product as novel anticancer drugs with anti-inflammation activity. PMID:27917872
Nejm, Mariana Bocca; Haidar, André Abou; Hirata, Aparecida Emiko; Oyama, Lila Missae; de Almeida, Antonio-Carlos Guimarães; Cysneiros, Roberta Monterazzo; Cavalheiro, Esper Abrão; Scorza, Carla Alessandra; Scorza, Fulvio Alexandre
2017-01-01
Sudden unexpected death in epilepsy (SUDEP) is a major cause of premature death related to epilepsy. The causes of SUDEP remain unknown, but cardiac arrhythmias and asphyxia have been suggested as a major mechanism of this event. Inflammation has been implicated in the pathogenesis of both epilepsy and ventricular arrhythmia, with interleukin-6 (IL-6) being recognized as a crucial orchestrator of inflammatory states. Our group previously reported that levels of IL-6 were increased in the hearts of epileptic rats. In this scenario, anti-inflammatory actions are among the beneficial effects of fish oil dietary supplementation. This investigation revealed that elevated levels of IL-6 in the heart were markedly reduced in epileptic rats that were treated in the long-term with fish oil, suggesting protective anti-inflammatory actions against dangerously high levels of IL-6. Based on these findings, our results suggest beneficial effects of long-term intake of fish oil in reducing the inflammation associated with chronic epilepsy. PMID:28649227
Sutin, Angelina R; Rust, George; Robinson, Eric; Daly, Michael; Terracciano, Antonio
2017-12-01
Self-perceived overweight and weight discrimination are associated with inflammation in adulthood. We test whether there is an intergenerational association of parent perception of child overweight on higher levels of child c-reactive protein (CRP), a marker of inflammation implicated in stress. Data were from the National Health and Nutrition Examination Survey 2005-2014 (N=4988). Parents reported their perception of their child's weight; CRP was assayed from children's blood samples. Children whose parents perceived them as overweight had higher CRP levels than children who were perceived about the right weight; perceived underweight was also associated with higher CRP (F(2,4977)=9.23, p<.001). These associations were independent of the child's objective weight status and waist circumference and held when the sample was limited to children with objective overweight and obesity. These results suggest an intergenerational transfer of the psychological perception of body weight from parents to the inflammatory health of their child. Copyright © 2017 Elsevier B.V. All rights reserved.
Vimentin regulates activation of the NLRP3 inflammasome
NASA Astrophysics Data System (ADS)
Dos Santos, Gimena; Rogel, Micah R.; Baker, Margaret A.; Troken, James R.; Urich, Daniela; Morales-Nebreda, Luisa; Sennello, Joseph A.; Kutuzov, Mikhail A.; Sitikov, Albert; Davis, Jennifer M.; Lam, Anna P.; Cheresh, Paul; Kamp, David; Shumaker, Dale K.; Budinger, G. R. Scott; Ridge, Karen M.
2015-03-01
Activation of the NLRP3 inflammasome and subsequent maturation of IL-1β have been implicated in acute lung injury (ALI), resulting in inflammation and fibrosis. We investigated the role of vimentin, a type III intermediate filament, in this process using three well-characterized murine models of ALI known to require NLRP3 inflammasome activation. We demonstrate that central pathophysiologic events in ALI (inflammation, IL-1β levels, endothelial and alveolar epithelial barrier permeability, remodelling and fibrosis) are attenuated in the lungs of Vim-/- mice challenged with LPS, bleomycin and asbestos. Bone marrow chimeric mice lacking vimentin have reduced IL-1β levels and attenuated lung injury and fibrosis following bleomycin exposure. Furthermore, decreased active caspase-1 and IL-1β levels are observed in vitro in Vim-/- and vimentin-knockdown macrophages. Importantly, we show direct protein-protein interaction between NLRP3 and vimentin. This study provides insights into lung inflammation and fibrosis and suggests that vimentin may be a key regulator of the NLRP3 inflammasome.
Inflammatory stress and sarcomagenesis: a vicious interplay.
Radons, Jürgen
2014-01-01
Chronic inflammation represents one of the hallmarks of cancer, but its role in sarcomagenesis has long been overlooked. Sarcomas are a rare and heterogeneous group of tumors of mesenchymal origin accounting for less than 1 % of cancers in adults but 21 % of cancers in the pediatric population. Sarcomas are associated with bad prognosis, and their management requires a multidisciplinary team approach. Several lines of evidence indicate that inflammation has been implicated in sarcomagenesis leading to the activation of the key transcription factors HIF-1, NF- κB, and STAT-3 involved in a complex inflammatory network. In the past years, an increasing number of new targets have been identified in the treatment of sarcomas leading to the development of new drugs that aim to interrupt the vicious connection between inflammation and sarcomagenesis. This article makes a brief overview of preclinical and clinical evidence of the molecular pathways involved in the inflammatory stress response in sarcomagenesis and the most targeted therapies.
Pruimboom, Leo; Raison, Charles L.; Muskiet, Frits A. J.
2015-01-01
In recent years, it has become clear that chronic systemic low-grade inflammation is at the root of many, if not all, typically Western diseases associated with the metabolic syndrome. While much focus has been given to sedentary lifestyle as a cause of chronic inflammation, it is less often appreciated that chronic inflammation may also promote a sedentary lifestyle, which in turn causes chronic inflammation. Given that even minor increases in chronic inflammation reduce brain volume in otherwise healthy individuals, the bidirectional relationship between inflammation and sedentary behaviour may explain why humans have lost brain volume in the last 30,000 years and also intelligence in the last 30 years. We review evidence that lack of physical activity induces chronic low-grade inflammation and, consequently, an energy conflict between the selfish immune system and the selfish brain. Although the notion that increased physical activity would improve health in the modern world is widespread, here we provide a novel perspective on this truism by providing evidence that recovery of normal human behaviour, such as spontaneous physical activity, would calm proinflammatory activity, thereby allocating more energy to the brain and other organs, and by doing so would improve human health. PMID:26074674
Fritz, Michael; Klawonn, Anna M.; Nilsson, Anna; Singh, Anand Kumar; Zajdel, Joanna; Björk Wilhelms, Daniel; Lazarus, Michael; Löfberg, Andreas; Jaarola, Maarit; Örtegren Kugelberg, Unn; Billiar, Timothy R.; Hackam, David J.; Sodhi, Chhinder P.; Breyer, Matthew D.; Jakobsson, Johan; Schwaninger, Markus; Schütz, Günther; Rodriguez Parkitna, Jan; Saper, Clifford B.; Blomqvist, Anders; Engblom, David
2015-01-01
Systemic inflammation causes malaise and general feelings of discomfort. This fundamental aspect of the sickness response reduces the quality of life for people suffering from chronic inflammatory diseases and is a nuisance during mild infections like common colds or the flu. To investigate how inflammation is perceived as unpleasant and causes negative affect, we used a behavioral test in which mice avoid an environment that they have learned to associate with inflammation-induced discomfort. Using a combination of cell-type–specific gene deletions, pharmacology, and chemogenetics, we found that systemic inflammation triggered aversion through MyD88-dependent activation of the brain endothelium followed by COX1-mediated cerebral prostaglandin E2 (PGE2) synthesis. Further, we showed that inflammation-induced PGE2 targeted EP1 receptors on striatal dopamine D1 receptor–expressing neurons and that this signaling sequence induced aversion through GABA-mediated inhibition of dopaminergic cells. Finally, we demonstrated that inflammation-induced aversion was not an indirect consequence of fever or anorexia but that it constituted an independent inflammatory symptom triggered by a unique molecular mechanism. Collectively, these findings demonstrate that PGE2-mediated modulation of the dopaminergic motivational circuitry is a key mechanism underlying the negative affect induced by inflammation. PMID:26690700
Burks, Tyesha N; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J; Foster, D Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D; Abadir, Peter M
2015-05-20
Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT(1)R, AT(2)R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT(1)R:AT(2)R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT(1)R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently.
Burks, Tyesha N.; Marx, Ruth; Powell, Laura; Rucker, Jasma; Bedja, Djahida; Heacock, Elisa; Smith, Barbara J.; Foster, D. Brian; Kass, David; O'Rourke, Brian; Walston, Jeremy D.; Abadir, Peter M.
2015-01-01
Although the effects of aging and inflammation on the health of the cardiac muscle are well documented, the combined effects of aging and chronic inflammation on cardiac muscle are largely unknown. The renin-angiotensin system (RAS) has been linked independently to both aging and inflammation, but is understudied in the context of their collective effect. Thus, we investigated localized cardiac angiotensin II type I and type II receptors (AT1R, AT2R), downstream effectors, and phenotypic outcomes using mouse models of the combination of aging and inflammation and compared it to a model of aging and a model of inflammation. We show molecular distinction in the combined effect of aging and inflammation as compared to each independently. The combination maintained an increased AT1R:AT2R and expression of Nox2 and exhibited the lowest activity of antioxidants. Despite signaling pathway differences, the combined effect shared phenotypic similarities with aging including oxidative damage, fibrosis, and hypertrophy. These phenotypic similarities have dubbed inflammatory conditions as premature aging, but they are, in fact, molecularly distinct. Moreover, treatment with an AT1R blocker, losartan, selectively reversed the signaling changes and ameliorated adverse phenotypic effects in the combination of aging and inflammation as well as each independently. PMID:26221650
Persistent inflammation and recovery after intensive care: A systematic review.
Griffith, David M; Vale, Matthew E; Campbell, Christine; Lewis, Steff; Walsh, Timothy S
2016-06-01
Physical weakness is common after critical illness; however, it is not clear how best to treat it. Inflammation characterizes critical illness, is associated with loss of muscle mass during critical illness, and potentially modifies post-intensive care unit (ICU) recovery. We sought to identify published reports on the prevalence of systemic inflammation after critical illness and its association with physical recovery. This is a systematic review of the literature from MEDLINE, EMBASE, CINAHL, CPCI-SSH, and CPCI-S from January 1982 to December 2011. From 7433 references, 207 full-text articles were reviewed, 57 were eligible, and 22 were included. Inflammation was present in most patients at ICU discharge according to C-reactive protein concentration (range, 70%-100%), procalcitonin (range, 89%-100%), tumor necrosis factor α (100%), and systemic inflammatory response syndrome criteria (range, 92%-95%). Fewer patients had elevated myeloperoxidase concentrations (range, 0%-56%). At hospital discharge, 9 (90%) of 10 chronic obstructive pulmonary disease patients had elevated C-reactive protein. No studies tested the association between inflammation and physical recovery. Inflammation is present in most patients at ICU discharge, but little is known or has been investigated about persistent inflammation after this time point. No studies have explored the relationship between persistent inflammation and physical recovery. Further research is proposed. Copyright © 2016 Elsevier Inc. All rights reserved.
Immunotoxicity and environment: immunodysregulation and systemic inflammation in children.
Calderón-Garcidueñas, Lilian; Macías-Parra, Mercedes; Hoffmann, Hans J; Valencia-Salazar, Gildardo; Henríquez-Roldán, Carlos; Osnaya, Norma; Monte, Ofelia Camacho-Del; Barragán-Mejía, Gerardo; Villarreal-Calderon, Rodolfo; Romero, Lina; Granada-Macías, Margarita; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Maronpot, Robert R
2009-02-01
Environmental pollutants, chemicals, and drugs have an impact on children's immune system development. Mexico City (MC) children exposed to significant concentrations of air pollutants exhibit chronic respiratory inflammation, systemic inflammation, neuroinflammation, and cognitive deficits. We tested the hypothesis that exposure to severe air pollution plays a role in the immune responses of asymptomatic, apparently healthy children. Blood measurements for markers of immune function, inflammatory mediators, and molecules interacting with the lipopolysaccharide recognition complex were obtained from two cohorts of matched children (aged 9.7 +/- 1.2 years) from southwest Mexico City (SWMC) (n = 66) and from a control city (n = 93) with criteria pollutant levels below current standards. MC children exhibited significant decreases in the numbers of natural killer cells (p = .003) and increased numbers of mCD14+ monocytes (p < .001) and CD8+ cells (p = .02). Lower concentrations of interferon gamma (p = .009) and granulocyte-macrophage colony-stimulating factor (p < .001), an endotoxin tolerance-like state, systemic inflammation, and an anti-inflammatory response were also present in the highly exposed children. C-reactive protein and the prostaglandin E metabolite levels were positively correlated with twenty-four- and forty-eight-hour cumulative concentrations of PM(2.5). Exposure to urban air pollution is associated with immunodysregulation and systemic inflammation in children and is a major health threat.
Periodontal treatment reduces chronic systemic inflammation in peritoneal dialysis patients.
Siribamrungwong, Monchai; Yothasamutr, Kasemsuk; Puangpanngam, Kutchaporn
2014-06-01
Chronic systemic inflammation, a non traditional risk factor of cardiovascular diseases, is associated with increasing mortality in chronic kidney disease, especially peritoneal dialysis patients. Periodontitis is a potential treatable source of systemic inflammation in peritoneal dialysis patients. Clinical periodontal status was evaluated in 32 stable chronic peritoneal dialysis patients by plaque index and periodontal disease index. Hematologic, blood chemical, nutritional, and dialysis-related data as well as highly sensitive C-reactive protein were analyzed before and after periodontal treatment. At baseline, high sensitive C-reactive protein positively correlated with the clinical periodontal status (plaque index; r = 0.57, P < 0.01, periodontal disease index; r = 0.56, P < 0.01). After completion of periodontal therapy, clinical periodontal indexes were significantly lower and high sensitivity C-reactive protein significantly decreased from 2.93 to 2.21 mg/L. Moreover, blood urea nitrogen increased from 47.33 to 51.8 mg/dL, reflecting nutritional status improvement. Erythropoietin dosage requirement decreased from 8000 to 6000 units/week while hemoglobin level was stable. Periodontitis is an important source of chronic systemic inflammation in peritoneal dialysis patients. Treatment of periodontal diseases can improve systemic inflammation, nutritional status and erythropoietin responsiveness in peritoneal dialysis patients. © 2013 The Authors. Therapeutic Apheresis and Dialysis © 2013 International Society for Apheresis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Som D.; Katiyar, Santosh K., E-mail: skatiyar@uab.ed; Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294
Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm{sup 2}) on alternate days for 1 month. The mice were thenmore » euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E{sub 2} production, proinflammatory cytokines (i.e., tumor necrosis factor-alpha, interleukin-1beta, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser{sup 473}) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-kappaB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.« less
[Atherosclerosis, chronic inflammation and oxidative stress in CKD].
Leoni, Marco; Gorini, Antonio
2017-03-01
Chronic low-grade inflammation is emerging as the pathophysiological mechanism underlying of the several chronic degenerative diseases. Atherosclerosis, inflammation and oxidative stress are some of the issues that arise from the general context of chronic inflammation. In this manuscript we analyzed the role of the immune system, metabolism and inflammation's molecular mediators in order to show an overview about only apparently different problems. Finally, we proposed some possible solutions to improve the survival and quality of life of patient with chronic kidney disease. Copyright by Società Italiana di Nefrologia SIN, Rome, Italy.
A multiscale modeling approach to inflammation: A case study in human endotoxemia
NASA Astrophysics Data System (ADS)
Scheff, Jeremy D.; Mavroudis, Panteleimon D.; Foteinou, Panagiota T.; An, Gary; Calvano, Steve E.; Doyle, John; Dick, Thomas E.; Lowry, Stephen F.; Vodovotz, Yoram; Androulakis, Ioannis P.
2013-07-01
Inflammation is a critical component in the body's response to injury. A dysregulated inflammatory response, in which either the injury is not repaired or the inflammatory response does not appropriately self-regulate and end, is associated with a wide range of inflammatory diseases such as sepsis. Clinical management of sepsis is a significant problem, but progress in this area has been slow. This may be due to the inherent nonlinearities and complexities in the interacting multiscale pathways that are activated in response to systemic inflammation, motivating the application of systems biology techniques to better understand the inflammatory response. Here, we review our past work on a multiscale modeling approach applied to human endotoxemia, a model of systemic inflammation, consisting of a system of compartmentalized differential equations operating at different time scales and through a discrete model linking inflammatory mediators with changing patterns in the beating of the heart, which has been correlated with outcome and severity of inflammatory disease despite unclear mechanistic underpinnings. Working towards unraveling the relationship between inflammation and heart rate variability (HRV) may enable greater understanding of clinical observations as well as novel therapeutic targets.
Parkinson's disease and systemic inflammation.
Ferrari, Carina C; Tarelli, Rodolfo
2011-02-22
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the "primed" microglia into an "active" state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease.
The Neuroprotective Effect of Erythropoietin in Rat Hippocampus in an Endotoxic Shock Model.
Ramírez-Jirano, Luis Javier; Zenteno-Savín, Tania; Gaxiola-Robles, Ramón; Ramos-González, Elsy Janeth; Torres-Mendoza, Blanca Miriam; Bitzer-Quintero, Oscar Kurt
2016-01-01
Sepsis is characterized by an early systemic inflammation in response to infection. In the brain, inflammation is associated with expression of pro-inflammatory cytokines (e.g. tumor necrosis factor-α, interleukin-1β and interleukin-6, among others) that may induce an overproduction of reactive oxygen and nitrogen species. The constitutive expression of cytokines in the brain is low, but may be induced by various stimuli, including lipopolysaccharide, which causes neuronal damage. Erythropoietin, among other effects, acts as a multifunctional neurotrophic factor implicated in neurogenesis, angiogenesis, vascular permeability, and immune regulation in the central nervous system. In an experimental model of endotoxic shock, we studied the neuroprotective capacity of erythropoietin in the rat hippocampus and compared with melatonin, a neurohormone with an important antioxidant and immunomodulatory effect. In 21-day-old male Wistar rats divided into eight groups, we administered by intraperitoneal injection lipopolysaccharide, erythropoietin, melatonin, or combinations thereof. The hippocampus was dissected and morphological (histological analysis) and biochemical (cytokine levels) studies were conducted. The number of dead neuronal cells in histological sections in groups treated with lipopolysaccharide was higher compared to the erythropoietin group. There was a greater decrease (70%) in interleukin-1β concentrations in rats with endotoxic shock that received erythropoietin compared to the lipopolysaccharide group. The neuronal cell loss caused by endotoxic shock and interleukin-1β levels were reduced by the administration of the hematopoietic cytokine erythropoietin in this experimental model.
Fundamentals of neurogastroenterology: basic science.
Grundy, David; Al-Chaer, Elie D; Aziz, Qasim; Collins, Stephen M; Ke, Meiyun; Taché, Yvette; Wood, Jackie D
2006-04-01
The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.
Tofacitinib ameliorates murine lupus and its associated vascular dysfunction
Furumoto, Yasuko; Smith, Carolyne K.; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R.; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L.; Trier, Anna M.; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T.; O'Shea, John J.
2016-01-01
Objectives Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. To date, no drug targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a Janus kinase (JAK) inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and on its associated vascular pathology remains to be characterized. Methods MRL/lpr lupus-prone mice received tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum autoantibody levels and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular trap (NET) release, endothelium-dependent vasorelaxation and endothelial differentiation were compared in treated and untreated mice. Results Treatment with tofacitinib led to significant improvement in measures of disease activity including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of pro-inflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated NET formation and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective as both preventive and therapeutic strategies. Conclusions Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. PMID:27429362
Tofacitinib Ameliorates Murine Lupus and Its Associated Vascular Dysfunction.
Furumoto, Yasuko; Smith, Carolyne K; Blanco, Luz; Zhao, Wenpu; Brooks, Stephen R; Thacker, Seth G; Abdalrahman, Zarzour; Sciumè, Giuseppe; Tsai, Wanxia L; Trier, Anna M; Nunez, Leti; Mast, Laurel; Hoffmann, Victoria; Remaley, Alan T; O'Shea, John J; Kaplan, Mariana J; Gadina, Massimo
2017-01-01
Dysregulation of innate and adaptive immune responses contributes to the pathogenesis of systemic lupus erythematosus (SLE) and its associated premature vascular damage. No drug to date targets both systemic inflammatory disease and the cardiovascular complications of SLE. Tofacitinib is a JAK inhibitor that blocks signaling downstream of multiple cytokines implicated in lupus pathogenesis. While clinical trials have shown that tofacitinib exhibits significant clinical efficacy in various autoimmune diseases, its role in SLE and the associated vascular pathology remains to be characterized. MRL/lpr lupus-prone mice were administered tofacitinib or vehicle by gavage for 6 weeks (therapeutic arm) or 8 weeks (preventive arm). Nephritis, skin inflammation, serum levels of autoantibodies and cytokines, mononuclear cell phenotype and gene expression, neutrophil extracellular traps (NETs) release, endothelium-dependent vasorelaxation, and endothelial differentiation were compared in treated and untreated mice. Treatment with tofacitinib led to significant improvement in measures of disease activity, including nephritis, skin inflammation, and autoantibody production. In addition, tofacitinib treatment reduced serum levels of proinflammatory cytokines and interferon responses in splenocytes and kidney tissue. Tofacitinib also modulated the formation of NETs and significantly increased endothelium-dependent vasorelaxation and endothelial differentiation. The drug was effective in both preventive and therapeutic strategies. Tofacitinib modulates the innate and adaptive immune responses, ameliorates murine lupus, and improves vascular function. These results indicate that JAK inhibitors have the potential to be beneficial in SLE and its associated vascular damage. © 2016, American College of Rheumatology.
STAT3 in the systemic inflammation of cancer cachexia.
Zimmers, Teresa A; Fishel, Melissa L; Bonetto, Andrea
2016-06-01
Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dopkins, Nicholas; Nagarkatti, Prakash S; Nagarkatti, Mitzi
2018-06-01
The importance of the gut microbiome in the regulation of non-infectious diseases has earned unprecedented interest from biomedical researchers. Widespread use of next-generation sequencing techniques has prepared a foundation for further research by correlating the presence of specific bacterial species with the onset or severity of a disease state, heralding paradigm-shifting results. This review covers the mechanisms through which a dysbiotic gut microbiota contributes to the pathological symptoms in an autoimmune neurodegenerative disorder, multiple sclerosis (MS). Although the central nervous system (CNS) is protected by the blood-brain barrier (BBB), it is unclear how gut dysbiosis can trigger potential immunological changes in the CNS in the presence of the BBB. This review focuses on the immunoregulatory functionality of microbial metabolites, which can cross the BBB and mediate their effects directly on immune cells within the CNS and/or indirectly through modulating the response of peripheral T cells to stimulate or inhibit pro-inflammatory chemokines and cytokines, which in turn regulate the autoimmune response in the CNS. Although more research is clearly needed to directly link the changes in gut microbiome with neuroinflammation, focusing research on microbiota that produce beneficial metabolites with the ability to attenuate chronic inflammation systemically as well as in the CNS, can offer novel preventive and therapeutic modalities against a wide array of inflammatory and autoimmune diseases. © 2018 John Wiley & Sons Ltd.
Gomaa, Noha; Nicolau, Belinda; Siddiqi, Arjumand; Tenenbaum, Howard; Glogauer, Michael; Quiñonez, Carlos
2017-09-14
To evaluate the extent of association between systemic inflammation and periodontal disease in American adults, and to assess whether socio-economic position mediated this relationship. We used data from the National Health and Nutrition Examination Survey (NHANES IV) (2001-2010). Systemic inflammation was defined by individual and aggregate (cumulative inflammatory load) biomarkers (C-reactive protein, white blood cell counts, neutrophil counts, and neutrophil:lymphocyte ratio). Loss of attachment and bleeding on probing were used to define periodontal disease. Poverty:income ratio and education were indicators of socio-economic position. Covariates included age, sex, ethnicity, smoking, alcohol, and attendance for dental treatment. Univariate and multivariable logistic regressions were constructed to assess the relationships of interest. In a total of 2296 respondents, biomarkers of systemic inflammation and cumulative inflammatory load were significantly associated with periodontal disease after adjusting for age, sex, and behavioural factors. Socio-economic position attenuated the association between markers of systemic inflammation and periodontal disease in the fully adjusted model. Socio-economic position partly explains how systemic inflammation and periodontal disease are coupled, and may thus have a significant role in the mechanisms linking oral and non-oral health conditions. It is of critical importance that the social and living conditions are taken into account when considering prevention and treatment strategies for inflammatory diseases, given what appears to be their impactful effect on disease processes.
Role of Wnt signaling during inflammation and sepsis: A review of the literature.
Houschyar, Khosrow Siamak; Chelliah, Malcolm P; Rein, Susanne; Maan, Zeshaan N; Weissenberg, Kristian; Duscher, Dominik; Branski, Ludwik K; Siemers, Frank
2018-05-01
Despite the development of modern intensive care and new antimicrobial agents, the mortality of patients with severe sepsis and septic shock remains high. Systemic inflammation is a consequence of activation of the innate immune system. It is characterized by the intravascular release of proinflammatory cytokines and other vasoactive mediators, with concurrent activation of innate immune cells. The Wnt signaling pathway plays a critical role in the development of multicellular organisms. Abnormal Wnt signaling has been associated with many human diseases, ranging from inflammation and degenerative diseases to cancer. This article reviews the accumulating evidence that the Wnt signaling pathway plays a distinct role in inflammation and sepsis.
SerpinB2 is critical to Th2 immunity against enteric nematode infection
USDA-ARS?s Scientific Manuscript database
SerpinB2, a member of the serine protease inhibitor family, is expressed by macrophages and up-regulated significantly by inflammation. Recent studies implicated a role for SerpinB2 in the control of Th1 and Th2 immune responses, but the mechanisms of these effects are unknown. In the current study...
USDA-ARS?s Scientific Manuscript database
Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. However, it is not known whether maternal undernutrition increases ATM phenotypic expression in F1 offspring. Us...
Microglia and Inflammation: Impact on Developmental Brain Injuries
ERIC Educational Resources Information Center
Chew, Li-Jin; Takanohashi, Asako; Bell, Michael
2006-01-01
Inflammation during the perinatal period has become a recognized risk factor for developmental brain injuries over the past decade or more. To fully understand the relationship between inflammation and brain development, a comprehensive knowledge about the immune system within the brain is essential. Microglia are resident immune cells within the…
Airflow obstruction, atherosclerosis and cardiovascular risk factors in the AGES Reykjavik study.
Gudmundsson, Gunnar; Margretardottir, Olof Birna; Sigurdsson, Martin Ingi; Harris, Tamara B; Launer, Lenore J; Sigurdsson, Sigurdur; Olafsson, Orn; Aspelund, Thor; Gudnason, Vilmundur
2016-09-01
Airflow limitation, i.e. reduced forced expiratory volume in 1-s (FEV1), is associated with increased prevalence of atherosclerosis, however, causal mechanisms remain elusive. The objective of the study was to determine if the association between airflow obstruction and markers of atherosclerosis is mediated by systemic inflammation. 1154 subjects from the longitudinal AGES Reykjavik study were included. Population characteristics, systemic inflammation markers from blood (white blood cell counts (WBC) and level of C-reactive protein (CRP)) were compared between patients with and without airflow limitation defined by reduced FEV1 on spirometry. Atherosclerosis burden was quantified by measurements of coronary artery calcium, aortic arch and distal aortic calcification in addition to carotid intimal media thickness (CIMT). Subjects were split into four groups according to smoking status and whether airflow limitation was present. There was a higher overall burden of atherosclerosis in ever-smokers compared to never-smokers, and in individuals with airflow obstruction compared to individuals without airflow obstruction. After adjusting for population characteristics, Framingham cardiovascular risk factors and markers of systemic inflammation (WBC and CRP), there was a significantly increased aortic arch and distal aorta calcification and higher CIMT measurement in individuals with airflow obstruction compared to individuals without airflow obstruction. After adjusting for population characteristics, Framingham cardiovascular risk factors and markers of systemic inflammation (WBC and CRP), there was a significantly increased aortic arch and distal aorta calcification and higher CIMT measurement in individuals with airflow obstruction compared to individuals without airflow obstruction. Systemic inflammation (WBC and CRP) does not appear to mediate the association between airflow limitation and atherosclerosis. Only airflow limitation and not systemic inflammation (WBC and CRP) appears to be an independent predictor of atherosclerosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Subramanian, Savitha; Han, Chang Yeop; Chiba, Tsuyoshi; McMillen, Timothy S.; Wang, Shari A.; Haw, Antonio; Kirk, Elizabeth A.; O’Brien, Kevin D.; Chait, Alan
2009-01-01
Objective Chronic systemic inflammation accompanies obesity and predicts development of cardiovascular disease. Dietary cholesterol has been shown to increase inflammation and atherosclerosis in LDL receptor-deficient (LDLR-/-) mice. This study was undertaken to determine whether dietary cholesterol and obesity have additive effects on inflammation and atherosclerosis. Methods and Results LDLR-/- mice were fed chow, high fat, high carbohydrate (diabetogenic) diet without (DD) or with added cholesterol (DDC) for 24 weeks. Effects on adipose tissue, inflammatory markers and atherosclerosis were studied. Despite similar weight gain between DD and DDC groups, addition of dietary cholesterol increased insulin resistance relative to DD. Adipocyte hypertrophy, macrophage accumulation and local inflammation were observed in intra-abdominal adipose tissue in DD and DDC, but were significantly higher in the DDC group. Circulating levels of the inflammatory protein serum amyloid A (SAA) were 4.4-fold higher in DD animals and 15-fold higher in DDC animals than controls, suggesting chronic systemic inflammation. Hepatic SAA mRNA levels were similarly elevated. Atherosclerosis was increased in the DD-fed animals and further increased in the DDC group. Conclusions Obesity-induced macrophage accumulation in adipose tissue is exacerbated by dietary cholesterol. These local inflammatory changes in adipose tissue are associated with insulin resistance, systemic inflammation and increased atherosclerosis in this mouse model. PMID:18239153
Regulation of alveolar macrophage death in acute lung inflammation.
Fan, Erica K Y; Fan, Jie
2018-03-27
Acute lung injury (ALI) and its severe form, known as acute respiratory distress syndrome (ARDS), are caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis, trauma, and major surgery. The reciprocal influences between pulmonary and systemic inflammation augments the inflammatory process in the lung and promotes the development of ALI. Emerging evidence has revealed that alveolar macrophage (AM) death plays important roles in the progression of lung inflammation through its influence on other immune cell populations in the lung. Cell death and tissue inflammation form a positive feedback cycle, ultimately leading to exaggerated inflammation and development of disease. Pharmacological manipulation of AM death signals may serve as a logical therapeutic strategy for ALI/ARDS. This review will focus on recent advances in the regulation and underlying mechanisms of AM death as well as the influence of AM death on the development of ALI.
Eisenhut, Michael; Wallace, Helen
2011-04-01
Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.
The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes
2013-01-01
Diets high in wholegrains are associated with a 20-30% reduction in risk of developing type-2 diabetes (T2D), which is attributed to a variety of wholegrain components, notably dietary fibre, vitamins, minerals and phytochemicals. Most phytochemicals function as antioxidants in vitro and have the potential to mitigate oxidative stress and inflammation which are implicated in the pathogenesis of T2D. In this review we compare the content and bioavailability of phytochemicals in wheat, barley, rice, rye and oat varieties and critically evaluate the evidence for wholegrain cereals and cereal fractions increasing plasma phytochemical concentrations and reducing oxidative stress and inflammation in humans. Phytochemical content varies considerably within and among the major cereal varieties. Differences in genetics and agro-climatic conditions explain much of the variation. For a number of the major phytochemicals, such as phenolics and flavanoids, their content in grains may be high but because these compounds are tightly bound to the cell wall matrix, their bioavailability is often limited. Clinical trials show that postprandial plasma phenolic concentrations are increased after consumption of wholegrain wheat or wheat bran however the magnitude of the response is usually modest and transient. Whether this is sufficient to bolster antioxidant defences and translates into improved health outcomes is still uncertain. Increased phytochemical bioavailability may be achieved through bio-processing of grains but the improvements so far are small and have not yet led to changes in clinical or physiological markers associated with reduced risk of T2D. Furthermore, the effect of wholegrain cereals and cereal fractions on biomarkers of oxidative stress or strengthening antioxidant defence in healthy individuals is generally small or nonexistent, whereas biomarkers of systemic inflammation tend to be reduced in people consuming high intakes of wholegrains. Future dietary intervention studies seeking to establish a direct role of phytochemicals in mediating the metabolic health benefits of wholegrains, and their potential for mitigating disease progression, should consider using varieties that deliver the highest possible levels of bioavailable phytochemicals in the context of whole foods and diets. Both postprandial and prolonged responses in systemic phytochemical concentrations and markers of inflammation and oxidative stress should be assessed along with changes related to health outcomes in healthy individuals as well as those with metabolic disease. PMID:23679924
NASA Astrophysics Data System (ADS)
McMasters, James F.
Inflammation is the underlying cause of several severe diseases including cardiovascular disease and osteoarthritis. Peripheral artery disease (PAD) is characterized by atherosclerotic occlusions within the peripheral vasculature. Current treatment for severe PAD involves mechanical widening of the artery via percutaneous transluminal angioplasty. Unfortunately, deployment of the balloon damages the endothelial layer, exposing the underlying collagenous matrix. Circulating platelets can bind to this collagen and become activated, releasing proinflammatory cytokines that promote proliferation of local smooth muscle cells. These proliferating cells eventually reocclude the vessel, resulting in restenosis and necessitating the need for a second procedure to reopen the vessel. Current treatments for moderate osteoarthritis include local injection of anti-inflammatory compounds such as glucocorticoids. Unfortunately, prolonged treatment carries with it significant side effects including osteoporosis, and cardiovascular complications. Our lab has developed an anti-inflammatory cell-penetrating peptide that inhibits mitogen-activated protein kinase activated protein kinase 2 (MK2). MK2 is implicated in the inflammatory cascade of atherosclerosis and osteoarthritis, making it a potentially effective strategy for reducing inflammation in both disease states. Unfortunately, these peptides are untargeted and quickly degraded in the presence of serum proteases, making the development of an effective delivery system of paramount importance. The overall goal of the research presented here is to detail the development of a poly(N-isopropylacrylamide) nanoparticle that is able to effectively load and release anti-inflammatory peptides for the treatment of these inflammatory diseases. In this dissertation, I will discuss the development of a collagen-binding nanoparticle that is able to inhibit platelet binding following angioplasty, thereby halting the initial inflammatory cascade. Additionally, these particles demonstrate the ability to reduce inflammation by through the loading and release of MK2-inhibiting cell-penetrating peptides. Additionally, I will cover the development of a hollow nanoparticle system that is designed to load increased quantities of these anti-inflammatory peptides for the treatment of osteoarthritis. This particle demonstrated increased macrophage uptake and prolonged drug release, resulting in a progressive inhibition of osteoarthritic inflammation over 8 days. The results presented here advance our understanding of these nanoparticle platforms, and suggest that they may serve at effective platforms for the treatment of restenosis following angioplasty, as well as osteoarthritis.
Complement Involvement in Periodontitis: Molecular Mechanisms and Rational Therapeutic Approaches.
Hajishengallis, George; Maekawa, Tomoki; Abe, Toshiharu; Hajishengallis, Evlambia; Lambris, John D
2015-01-01
The complement system is a network of interacting fluid-phase and cell surface-associated molecules that trigger, amplify, and regulate immune and inflammatory signaling pathways. Dysregulation of this finely balanced network can destabilize host-microbe homeostasis and cause inflammatory tissue damage. Evidence from clinical and animal model-based studies suggests that complement is implicated in the pathogenesis of periodontitis, a polymicrobial community-induced chronic inflammatory disease that destroys the tooth-supporting tissues. This review discusses molecular mechanisms of complement involvement in the dysbiotic transformation of the periodontal microbiome and the resulting destructive inflammation, culminating in loss of periodontal bone support. These mechanistic studies have additionally identified potential therapeutic targets. In this regard, interventional studies in preclinical models have provided proof-of-concept for using complement inhibitors for the treatment of human periodontitis.
Senthamaraikannan, Paranthaman; Presicce, Pietro; Rueda, Cesar M; Maneenil, Gunlawadee; Schmidt, Augusto F; Miller, Lisa A; Waites, Ken B; Jobe, Alan H; Kallapur, Suhas G; Chougnet, Claire A
2016-11-15
Although Ureaplasma species are the most common organisms associated with prematurity, their effects on the maternal and fetal immune system remain poorly characterized. Rhesus macaque dams at approximately 80% gestation were injected intra-amniotically with 10 7 colony-forming units of Ureaplasma parvum or saline (control). Fetuses were delivered surgically 3 or 7 days later. We performed comprehensive assessments of inflammation and immune effects in multiple fetal and maternal tissues. Although U. parvum grew well in amniotic fluid, there was minimal chorioamnionitis. U. parvum colonized the fetal lung, but fetal systemic microbial invasion was limited. Fetal lung inflammation was mild, with elevations in CXCL8, tumor necrosis factor (TNF) α, and CCL2 levels in alveolar washes at day 7. Inflammation was not detected in the fetal brain. Significantly, U. parvum decreased regulatory T cells (Tregs) and activated interferon γ production in these Tregs in the fetus. It was detected in uterine tissue by day 7 and induced mild inflammation and increased expression of connexin 43, a gap junction protein involved with labor. U. parvum colonized the amniotic fluid and caused uterine inflammation, but without overt chorioamnionitis. It caused mild fetal lung inflammation but had a more profound effect on the fetal immune system, decreasing Tregs and polarizing them toward a T-helper 1 phenotype. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
An Inflammation-Centric View of Neurological Disease: Beyond the Neuron
Skaper, Stephen D.; Facci, Laura; Zusso, Morena; Giusti, Pietro
2018-01-01
Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation. PMID:29618972
Effects of a bacterial lipopolysaccharide on the reproductive functions of rabbit does.
Brecchia, G; Menchetti, L; Cardinali, R; Castellini, C; Polisca, A; Zerani, M; Maranesi, M; Boiti, C
2014-06-30
Systemic and local infections and inflammations are known to cause infertility in humans and animals. However, the mechanisms by which infection/inflammation induces infertility are only partially known. The objectives of this study were: (i) to provide models of systemic (acute) and local (sub-acute) inflammation by intra-peritoneal injection or intra-cervical deposition of lipopolysaccharide (LPS) in the rabbit and (ii) to assess their effects on uterine tissues and sperm transport in the genital tract of rabbit does. Intra-peritoneal administration of different doses of LPS induced systemic effects such as fever, anorexia and changes in white blood cells (WBC) count. In our study, LPS inoculation (100μg/kg) produced an inflammation-like status that lasted for about 3 days, with minimal distress for the animals. Intra-peritoneal administration of LPS 60h before artificial insemination induced a rapid increase of IL-1β concentrations. The intra-cervical inoculation of LPS did not show any systemic effects, as confirmed by the lack of changes in body temperature, feed intake and WBC count. Histological examination of uterine tissues showed an endometritis-like inflammation status in LPS-treated does, more severe in those inoculated intra-cervically. The number of spermatozoa recovered from uterine horns and oviducts of intra-cervically treated does was less than that retrieved from intra-peritoneally treated animals and controls. These results suggest (i) that sub-acute or acute inflammation may cause infertility by compromising the uterine environment and/or impairing sperm transport and (ii) that the LPS-induced -infection/inflammation experimental model is useful for studying the mechanisms involved in reproductive dysfunctions in the rabbit. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of acute moderate exercise on induced inflammation and arterial function in older adults.
Ranadive, Sushant Mohan; Kappus, Rebecca Marie; Cook, Marc D; Yan, Huimin; Lane, Abbi Danielle; Woods, Jeffrey A; Wilund, Kenneth R; Iwamoto, Gary; Vanar, Vishwas; Tandon, Rudhir; Fernhall, Bo
2014-04-01
Acute inflammation reduces flow-mediated vasodilatation and increases arterial stiffness in young healthy individuals. However, this response has not been studied in older adults. The aim of this study, therefore, was to evaluate the effect of acute induced systemic inflammation on endothelial function and wave reflection in older adults. Furthermore, an acute bout of moderate-intensity aerobic exercise can be anti-inflammatory. Taken together, we tested the hypothesis that acute moderate-intensity endurance exercise, immediately preceding induced inflammation, would be protective against the negative effects of acute systemic inflammation on vascular function. Fifty-nine healthy volunteers between 55 and 75 years of age were randomized to an exercise or a control group. Both groups received a vaccine (induced inflammation) and sham (saline) injection in a counterbalanced crossover design. Inflammatory markers, endothelial function (flow-mediated vasodilatation) and measures of wave reflection and arterial stiffness were evaluated at baseline and at 24 and 48 h after injections. There were no significant differences in endothelial function and arterial stiffness between the exercise and control group after induced inflammation. The groups were then analysed together, and we found significant differences in the inflammatory markers 24 and 48 h after induction of acute inflammation compared with sham injection. However, flow-mediated vasodilatation, augmentation index normalized for heart rate (AIx75) and β-stiffness did not change significantly. Our results suggest that acute inflammation induced by influenza vaccination did not affect endothelial function in older adults.
Kuzma, Jessica N; Cromer, Gail; Hagman, Derek K; Breymeyer, Kara L; Roth, Christian L; Foster-Schubert, Karen E; Holte, Sarah E; Weigle, David S; Kratz, Mario
2016-08-01
Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Excessive amounts of fructose, HFCS, and glucose from SSBs consumed over 8 d did not differentially affect low-grade chronic systemic inflammation in normal-weight to obese adults. This trial was registered at clinicaltrials.gov as NCT01424306. © 2016 American Society for Nutrition.
Cromer, Gail; Breymeyer, Kara L; Roth, Christian L; Weigle, David S
2016-01-01
Background: Sugar-sweetened beverage (SSB) consumption and low-grade chronic inflammation are both independently associated with type 2 diabetes and cardiovascular disease. Fructose, a major component of SSBs, may acutely trigger inflammation, which may be one link between SSB consumption and cardiometabolic disease. Objective: We sought to determine whether beverages sweetened with fructose, high-fructose corn syrup (HFCS), and glucose differentially influence systemic inflammation [fasting plasma C-reactive protein and interleukin-6 (IL-6) as primary endpoints] acutely and before major changes in body weight. Secondary endpoints included adipose tissue inflammation, intestinal permeability, and plasma fetuin-A as potential mechanistic links between fructose intake and low-grade inflammation. Design: We conducted a randomized, controlled, double-blind, crossover design dietary intervention (the Diet and Systemic Inflammation Study) in 24 normal-weight to obese adults without fructose malabsorption. Participants drank 4 servings/d of fructose-, glucose-, or HFCS-sweetened beverages accounting for 25% of estimated calorie requirements while consuming a standardized diet ad libitum for three 8-d periods. Results: Subjects consumed 116% of their estimated calorie requirement while drinking the beverages with no difference in total energy intake or body weight between groups as reported previously. Fasting plasma concentrations of C-reactive protein and IL-6 did not differ significantly at the end of the 3 diet periods. We did not detect a consistent differential effect of the diets on measures of adipose tissue inflammation except for adiponectin gene expression in adipose tissue (P = 0.005), which was lowest after the glucose phase. We also did not detect consistent evidence of a differential impact of these sugars on measures of intestinal permeability (lactulose:mannitol test, plasma zonulin, and plasma lipopolysaccharide-binding protein). Conclusion: Excessive amounts of fructose, HFCS, and glucose from SSBs consumed over 8 d did not differentially affect low-grade chronic systemic inflammation in normal-weight to obese adults. This trial was registered at clinicaltrials.gov as NCT01424306. PMID:27357093
Chemiexcitation and Its Implications for Disease.
Brash, Douglas E; Goncalves, Leticia C P; Bechara, Etelvino J H
2018-06-01
Quantum mechanics rarely extends to molecular medicine. Recently, the pigment melanin was found to be susceptible to chemiexcitation, in which an electron is chemically excited to a high-energy molecular orbital. In invertebrates, chemiexcitation causes bioluminescence; in mammals, a higher-energy process involving melanin transfers energy to DNA without photons, creating the lethal and mutagenic cyclobutane pyrimidine dimer that can cause melanoma. This process is initiated by NO and O 2 - radicals, the formation of which can be triggered by ultraviolet light or inflammation. Several chronic diseases share two properties: inflammation generates these radicals across the tissue, and the diseased cells lie near melanin. We propose that chemiexcitation may be an upstream event in numerous human diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.
Org, Elin; Mehrabian, Margarete; Lusis, Aldons J
2015-08-01
Recent studies have convincingly linked gut microbiota to traits relevant to atherosclerosis, such as insulin resistance, dyslipidemia and inflammation, and have revealed novel disease pathways involving microbe-derived metabolites. These results have important implications for understanding how environmental and genetic factors act together to influence cardiovascular disease (CVD) risk. Thus, dietary constituents are not only absorbed and metabolized by the host but they also perturb the gut microbiota, which in turn influence host metabolism and inflammation. It also appears that host genetics helps to shape the gut microbiota community. Here, we discuss challenges in understanding these interactions and the role they play in CVD. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Developing models for cachexia and their implications in drug discovery.
Konishi, Masaaki; Ebner, Nicole; von Haehling, Stephan; Anker, Stefan D; Springer, Jochen
2015-07-01
Cachexia is a complex metabolic syndrome associated with underlying illness and characterized by loss of muscle with or without loss of fat mass. Systemic inflammation plays a central role in its pathophysiology. As millions of patients are in a cachectic state of chronic disease, cachexia is one of the major causes of death worldwide. Difficulties in the recruitment and follow-up of clinical trials mean that well-characterized animal models are of great importance in developing cachexia therapies. However, some of the widely used animal models have limitations in procedural reproducibility or in recapitulating in the cachectic phenotype, which has warranted the development of novel models for cachexia. This review focuses on some of the currently developing rodent models designed to mimic each co-morbidity in cachexia. Through developing cancer models, researchers have been seeking more targets for intervention. In cardiac cachexia, technical issues have been overcome by transgenic models. Furthermore, the development of new animal models has enabled the elucidation of the roles of inflammation, anabolism/catabolism in muscle/fat tissue and anorexia on cachexia. As metabolic and inflammatory pathways in cachexia may compromise cardiac muscle, the analysis of cardiac function/tissue in non-cardiac cachexia may be a useful component of cachexia assessment common to different underlying diseases and pave the way for novel drug discovery.
Syed, Adnan K; Reed, Tamra J; Clark, Kaitlyn L; Boles, Blaise R; Kahlenberg, J Michelle
2015-09-01
Staphylococcus aureus is a human commensal that colonizes the skin. While it is normally innocuous, it has strong associations with atopic dermatitis pathogenesis and has become the leading cause of skin and soft tissue infections in the United States. The factors that dictate the role of S. aureus in disease are still being determined. In this work, we utilized primary keratinocyte culture and an epidermal murine colonization model to investigate the role of S. aureus phenol-soluble modulins (PSMs) in proinflammatory cytokine release and inflammation induction. We demonstrated that many species of Staphylococcus are capable of causing release of interleukin 18 (IL-18) from keratinocytes and that S. aureus PSMs are necessary and sufficient to stimulate IL-18 release from keratinocytes independently of caspase 1. Further, after 7 days of epicutaneous exposure to wild-type S. aureus, but not S. aureus Δpsm, we saw dramatic changes in gross pathology, as well as systemic release of proinflammatory cytokines. This work demonstrates the importance of PSM peptides in S. aureus-mediated inflammatory cytokine release from keratinocytes in vitro and in vivo and further implicates PSMs as important contributors to pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Therapy of Pelizaeus-Merzbacher disease in mice by feeding a cholesterol-enriched diet.
Saher, Gesine; Rudolphi, Fabian; Corthals, Kristina; Ruhwedel, Torben; Schmidt, Karl-Friedrich; Löwel, Siegrid; Dibaj, Payam; Barrette, Benoit; Möbius, Wiebke; Nave, Klaus-Armin
2012-07-01
Duplication of PLP1 (proteolipid protein gene 1) and the subsequent overexpression of the myelin protein PLP (also known as DM20) in oligodendrocytes is the most frequent cause of Pelizaeus-Merzbacher disease (PMD), a fatal leukodystrophy without therapeutic options. PLP binds cholesterol and is contained within membrane lipid raft microdomains. Cholesterol availability is the rate-limiting factor of central nervous system myelin synthesis. Transgenic mice with extra copies of the Plp1 gene are accurate models of PMD. Dysmyelination followed by demyelination, secondary inflammation and axon damage contribute to the severe motor impairment in these mice. The finding that in Plp1-transgenic oligodendrocytes, PLP and cholesterol accumulate in late endosomes and lysosomes (endo/lysosomes), prompted us to further investigate the role of cholesterol in PMD. Here we show that cholesterol itself promotes normal PLP trafficking and that dietary cholesterol influences PMD pathology. In a preclinical trial, PMD mice were fed a cholesterol-enriched diet. This restored oligodendrocyte numbers and ameliorated intracellular PLP accumulation. Moreover, myelin content increased, inflammation and gliosis were reduced and motor defects improved. Even after onset of clinical symptoms, cholesterol treatment prevented disease progression. Dietary cholesterol did not reduce Plp1 overexpression but facilitated incorporation of PLP into myelin membranes. These findings may have implications for therapeutic interventions in patients with PMD.
Air pollution, inflammation and preterm birth: a potential mechanistic link.
Vadillo-Ortega, Felipe; Osornio-Vargas, Alvaro; Buxton, Miatta A; Sánchez, Brisa N; Rojas-Bracho, Leonora; Viveros-Alcaráz, Martin; Castillo-Castrejón, Marisol; Beltrán-Montoya, Jorge; Brown, Daniel G; O'Neill, Marie S
2014-02-01
Preterm birth is a public health issue of global significance, which may result in mortality during the perinatal period or may lead to major health and financial consequences due to lifelong impacts. Even though several risk factors for preterm birth have been identified, prevention efforts have failed to halt the increasing rates of preterm birth. Epidemiological studies have identified air pollution as an emerging potential risk factor for preterm birth. However, many studies were limited by study design and inadequate exposure assessment. Due to the ubiquitous nature of ambient air pollution and the potential public health significance of any role in causing preterm birth, a novel focus investigating possible causal mechanisms influenced by air pollution is therefore a global health priority. We hypothesize that air pollution may act together with other biological factors to induce systemic inflammation and influence the duration of pregnancy. Evaluation and testing of this hypothesis is currently being conducted in a prospective cohort study in Mexico City and will provide an understanding of the pathways that mediate the effects of air pollution on preterm birth. The important public health implication is that crucial steps in this mechanistic pathway can potentially be acted on early in pregnancy to reduce the risk of preterm birth. Copyright © 2013 Elsevier Ltd. All rights reserved.
AIR POLLUTION, INFLAMMATION AND PRETERM BIRTH: A POTENTIAL MECHANISTIC LINK
Vadillo-Ortega, Felipe; Osornio-Vargas, Alvaro; Buxton, Miatta A.; Sánchez, Brisa N.; Rojas-Bracho, Leonora; Viveros-Alcaráz, Martin; Castillo-Castrejón, Marisol; Beltrán-Montoya, Jorge; Brown, Daniel G.; O´Neill, Marie S.
2014-01-01
Preterm birth is a public health issue of global significance, which may result in mortality during the perinatal period or may lead to major health and financial consequences due to lifelong impacts. Even though several risk factors for preterm birth have been identified, prevention efforts have failed to halt the increasing rates of preterm birth. Epidemiological studies have identified air pollution as an emerging potential risk factor for preterm birth. However, many studies were limited by study design and inadequate exposure assessment. Due to the ubiquitous nature of ambient air pollution and the potential public health significance of any role in causing preterm birth, a novel focus investigating possible causal mechanisms influenced by air pollution is therefore a global health priority. We hypothesize that air pollution may act together with other biological factors to induce systemic inflammation and influence the duration of pregnancy. Evaluation and testing of this hypothesis is currently being conducted in a prospective cohort study in Mexico City and will provide an understanding of the pathways that mediate the effects of air pollution on preterm birth. The important public health implication is that crucial steps in this mechanistic pathway can potentially be acted on early in pregnancy to reduce the risk of preterm birth. PMID:24382337
Reproducibility of a novel model of murine asthma-like pulmonary inflammation
MCKINLEY, L; KIM, J; BOLGOS, G L; SIDDIQUI, J; REMICK, D G
2004-01-01
Sensitization to cockroach allergens (CRA) has been implicated as a major cause of asthma, especially among inner-city populations. Endotoxin from Gram-negative bacteria has also been investigated for its role in attenuating or exacerbating the asthmatic response. We have created a novel model utilizing house dust extract (HDE) containing high levels of both CRA and endotoxin to induce pulmonary inflammation (PI) and airway hyperresponsiveness (AHR). A potential drawback of this model is that the HDE is in limited supply and preparation of new HDE will not contain the exact components of the HDE used to define our model system. The present study involved testing HDEs collected from various homes for their ability to cause PI and AHR. Dust collected from five homes was extracted in phosphate buffered saline overnight. The levels of CRA and endotoxin in the supernatants varied from 7·1 to 49·5 mg/ml of CRA and 1·7–6 µg/ml of endotoxin in the HDEs. Following immunization and two pulmonary exposures to HDE all five HDEs induced AHR, PI and plasma IgE levels substantially higher than normal mice. This study shows that HDE containing high levels of cockroach allergens and endotoxin collected from different sources can induce an asthma-like response in our murine model. PMID:15086384
[The immune system and the eye].
Faber, Carsten; Nissen, Mogens Holst
2008-09-15
The special relationship between the eye and the immune system rests on a number of anatomical, physiological and immunological mechanisms. These mechanisms prevent the delicate structures of the eye from potentially damaging immunogenic inflammation while protecting against pathogens. Rather than inflammation, antigen induces a form of systemic and antigen-specific immunological tolerance. Owing to its systemic nature, this tolerance may be utilised to achieve successful treatment of immunological disorders.
Block, Linda; Jörneberg, Per; Björklund, Ulrika; Westerlund, Anna; Biber, Björn; Hansson, Elisabeth
2013-01-01
Bupivacaine is a widely used, local anesthetic agent that blocks voltage-gated Na+ channels when used for neuro-axial blockades. Much lower concentrations of bupivacaine than in normal clinical use, < 10−8 m, evoked Ca2+ transients in astrocytes from rat cerebral cortex, that were inositol trisphosphate receptor-dependent. We investigated whether bupivacaine exerts an influence on the Ca2+ signaling and interleukin-1β (IL-1β) secretion in inflammation-reactive astrocytes when used at ultralow concentrations, < 10−8 m. Furthermore, we wanted to determine if bupivacaine interacts with the opioid-, 5-hydroxytryptamine- (5-HT) and glutamate-receptor systems. With respect to the μ-opioid- and 5-HT-receptor systems, bupivacaine restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. With respect to the glutamate-receptor system, bupivacaine, in combination with an ultralow concentration of the μ-opioid receptor antagonist naloxone and μ-opioid receptor agonists, restored the inflammation-reactive astrocytes to their normal non-inflammatory levels. Ultralow concentrations of bupivacaine attenuated the inflammation-induced upregulation of IL-1β secretion. The results indicate that bupivacaine interacts with the opioid-, 5-HT- and glutamate-receptor systems by affecting Ca2+ signaling and IL-1β release in inflammation-reactive astrocytes. These results suggest that bupivacaine may be used at ultralow concentrations as an anti-inflammatory drug, either alone or in combination with opioid agonists and ultralow concentrations of an opioid antagonist. PMID:24083665
Barker-Haliski, Melissa L; Löscher, Wolfgang; White, H Steve; Galanopoulou, Aristea S
2017-07-01
Animal models have provided a wealth of information on mechanisms of epileptogenesis and comorbidogenesis, and have significantly advanced our ability to investigate the potential of new therapies. Processes implicating brain inflammation have been increasingly observed in epilepsy research. Herein we discuss the progress on animal models of epilepsy and comorbidities that inform us on the potential role of inflammation in epileptogenesis and comorbidity pathogenesis in rodent models of West syndrome and the Theiler's murine encephalomyelitis virus (TMEV) mouse model of viral encephalitis-induced epilepsy. Rat models of infantile spasms were generated in rat pups after right intracerebral injections of proinflammatory compounds (lipopolysaccharides with or without doxorubicin, or cytokines) and were longitudinally monitored for epileptic spasms and neurodevelopmental and cognitive deficits. Anti-inflammatory treatments were tested after the onset of spasms. The TMEV mouse model was induced with intracerebral administration of TMEV and prospective monitoring for handling-induced seizures or seizure susceptibility, as well as long-term evaluations of behavioral comorbidities of epilepsy. Inflammatory processes are evident in both models and are implicated in the pathogenesis of the observed seizures and comorbidities. A common feature of these models, based on the data so far available, is their pharmacoresistant profile. The presented data support the role of inflammatory pathways in epileptogenesis and comorbidities in two distinct epilepsy models. Pharmacoresistance is a common feature of both inflammation-based models. Utilization of these models may facilitate the identification of age-specific, syndrome- or etiology-specific therapies for the epilepsies and attendant comorbidities, including the drug-resistant forms. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Cady, Ryan J.; Durham, Paul L.
2010-01-01
Activation of trigeminal nerves and release of neuropeptides that promote inflammation are implicated in the underlying pathology of migraine and temporomandibular joint (TMJ) disorders. The overall response of trigeminal nerves to peripheral inflammatory stimuli involves a balance between enzymes that promote inflammation, kinases, and those that restore homeostasis, phosphatases. The goal of this study was to determine the effects of a cocoa-enriched diet on the expression of key inflammatory proteins in trigeminal ganglion neurons under basal and inflammatory conditions. Rats were fed a control diet or an isocaloric diet enriched in cocoa for 14 days prior to an injection of noxious stimuli to cause acute or chronic excitation of trigeminal neurons. In animals fed a cocoa-enriched diet, basal levels of the mitogen-activated kinase (MAP) phosphatases MKP-1 and MKP-3 were elevated in neurons. Importantly, the stimulatory effects of acute or chronic peripheral inflammation on neuronal expression of the MAPK p38 and extracellular signal-regulated kinases (ERK) were significantly repressed in response to cocoa. Similarly, dietary cocoa significantly suppressed basal neuronal expression of calcitonin gene-related peptide (CGRP) as well as stimulated levels of the inducible form of nitric oxide synthase (iNOS), proteins implicated in the underlying pathology of migraine and TMJ disorders. To our knowledge, this is first evidence that a dietary supplement can cause upregulation of MKP, and that cocoa can prevent inflammatory responses in trigeminal ganglion neurons. Furthermore, our data provide evidence that cocoa contains biologically active compounds that would be beneficial in the treatment of migraine and TMJ disorders. PMID:20138852
Frey, Benjamin; Hehlgans, Stephanie; Rödel, Franz; Gaipl, Udo S
2015-11-28
Inflammation is a homeostatic mechanism aiming to maintain tissue integrity. The underlying immunological mechanisms and the interrelationship between ionizing radiation and inflammation are complex and multifactorial on cellular and chemical levels. On the one hand, radiation with single doses exceeding 1 Gy might initiate inflammatory reactions and thereby impact on tumor development. On the other hand, radiation is capable of attenuating an established inflammatory process, which is clinically used for the treatment of inflammatory and degenerative diseases with low-dose radiotherapy (single dose <1 Gy). At higher doses, ionizing radiation, especially in combination with additional immune stimulation, fosters the induction of immunogenic forms of tumor cell death and shifts the tumor microenvironment as well as the infiltration of immune cells from an anti- to a pro-inflammatory state. Distinct tumor infiltrating immune cells predict the response to radiochemotherapy in a multitude of tumor entities. While a high tumor infiltration of these adaptive immune cells mostly predicts a favorable disease outcome, a high infiltration of tumor-associated macrophages predicts an unfavorable response. Pro-inflammatory events should dominate over anti-inflammatory ones in this scenario. This review focuses on how ionizing radiation modulates inflammatory events in benign inflammatory and in malign diseases. A special focus is set on the role of tumor infiltrating lymphocytes and macrophages as biomarkers to predict treatment response and anti-tumor immunity and on mechanisms implicated in the anti-inflammatory effects of low-dose radiation therapy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Moderate glucose supply reduces hemolysis during systemic inflammation
Jägers, Johannes; Brauckmann, Stephan; Kirsch, Michael; Effenberger-Neidnicht, Katharina
2018-01-01
Background Systemic inflammation alters energy metabolism. A sufficient glucose level, however, is most important for erythrocytes, since erythrocytes rely on glucose as sole source of energy. Damage to erythrocytes leads to hemolysis. Both disorders of glucose metabolism and hemolysis are associated with an increased risk of death. The objective of the study was to investigate the impact of intravenous glucose on hemolysis during systemic inflammation. Materials and methods Systemic inflammation was accomplished in male Wistar rats by continuous lipopolysaccharide (LPS) infusion (1 mg LPS/kg and h, 300 min). Sham control group rats received Ringer’s solution. Glucose was supplied moderately (70 mg glucose/kg and h) or excessively (210 mg glucose/kg and h) during systemic inflammation. Vital parameters (eg, systemic blood pressure) as well as blood and plasma parameters (eg, concentrations of glucose, lactate and cell-free hemoglobin, and activity of lactate dehydrogenase) were measured hourly. Clot formation was analyzed by thromboelastometry. Results Continuous infusion of LPS led to a so-called post-aggression syndrome with disturbed electrolyte homeostasis (hypocalcemia, hyperkalemia, and hypernatremia), changes in hemodynamics (tachycardia and hypertension), and a catabolic metabolism (early hyperglycemia, late hypoglycemia, and lactate formation). It induced severe tissue injury (significant increases in plasma concentrations of transaminases and lactate dehydrogenase), alterations in blood coagulation (disturbed clot formation), and massive hemolysis. Both moderate and excessive glucose supply reduced LPS-induced increase in systemic blood pressure. Excessive but not moderate glucose supply increased blood glucose level and enhanced tissue injury. Glucose supply did not reduce LPS-induced alterations in coagulation, but significantly reduced hemolysis induced by LPS. Conclusion Intravenous glucose infusion can diminish LPS-related changes in hemodynamics, glucose metabolism, and, more interestingly, LPS-induced hemolysis. Since cell-free hemoglobin is known to be a predictor for patient’s survival, a reduction of hemolysis by 35% only by the addition of a small amount of glucose is another step to minimize mortality during systemic inflammation. PMID:29559805
Majewski, Sebastian; Pietrzak, Anna; Tworek, Damian; Szewczyk, Karolina; Kumor-Kisielewska, Anna; Kurmanowska, Zofia; Górski, Paweł; Zalewska-Janowska, Anna; Piotrowski, Wojciech Jerzy
2017-01-01
The systemic (extrapulmonary) effects and comorbidities of chronic obstructive pulmonary disease (COPD) contribute substantially to its burden. The supposed link between COPD and its systemic effects on distal organs could be due to the low-grade systemic inflammation. The aim of this study was to investigate whether the systemic inflammation may influence the skin condition in COPD patients. Forty patients with confirmed diagnosis of COPD and a control group consisting of 30 healthy smokers and 20 healthy never-smokers were studied. Transepidermal water loss, stratum corneum hydration, skin sebum content, melanin index, erythema index, and skin temperature were measured with worldwide-acknowledged biophysical measuring methods at the volar forearm of all participants using a multifunctional skin physiology monitor. Biomarkers of systemic inflammation, including high-sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), were measured in serum using commercially available enzyme-linked immunosorbent assays. There were significant differences between COPD patients and healthy never-smokers in skin temperature, melanin index, sebum content, and hydration level ( P <0.05), but not for transepidermal water loss and erythema index. No significant difference was noted between COPD patients and smokers in any of the biophysical properties of the skin measured. The mean levels of hsCRP and IL-6 in serum were significantly higher in COPD patients and healthy smokers in comparison with healthy never-smokers. There were significant correlations between skin temperature and serum hsCRP ( R =0.40; P =0.02) as well as skin temperature and serum IL-6 ( R =0.49; P =0.005) in smokers. Stratum corneum hydration correlated significantly with serum TNF-α ( R =0.37; P =0.01) in COPD patients. Differences noted in several skin biophysical properties and biomarkers of systemic inflammation between COPD patients, smokers, and healthy never-smokers may suggest a possible link between smoking-driven, low-grade systemic inflammation, and the overall skin condition.
Parkinson's Disease and Systemic Inflammation
Ferrari, Carina C.; Tarelli, Rodolfo
2011-01-01
Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease. PMID:21403862
Chen, Shiou-Lan; Lee, Sheng-Yu; Chang, Yun-Hsuan; Chen, Shih-Heng; Chu, Chun-Hsieh; Tzeng, Nian-Sheng; Lee, I-Hui; Chen, Po-See; Yeh, Tzung Lieh; Huang, San-Yuan; Yang, Yen-Kuang; Lu, Ru-Band; Hong, Jau-Shyong
2013-01-01
Objectives Increasing evidence suggests that inflammation contributes to the etiology and progression of schizophrenia. Molecules that initiate inflammation, such as virus- and toxin-induced cytokines, are implicated in neuronal degeneration and schizophrenia-like behavior. Using therapeutic agents with anti-inflammatory or neurotrophic effects may be beneficial for treating schizophrenia. Methods One hundred healthy controls and 95 Han Chinese patients with schizophrenia were tested in this double-blind study. Their PANSS scores, plasma interleukin (IL)-1β, TNF-α and brain-derived neurotrophic factor (BDNF) levels were measured before and after pharmacological treatment. Results Pretreatment, plasma levels of IL-1β and TNF-α were significantly higher in patients with schizophrenia than in controls, but plasma BDNF levels were significantly lower. Patients were treated with the atypical antipsychotic risperidone (Risp) only or with Risp+add-on dextromethorphan (DM). PANSS scores and plasma IL-1β levels significantly decreased, but plasma TNF-α and BDNF levels significantly increased after 11 weeks of Risp treatment. Patients in the Risp+DM group showed a greater and earlier reduction of symptoms than did those in the Risp-only group. Moreover, Risp+DM treatment attenuated Risp-induced plasma increases in TNF-α. Conclusion Patients with schizophrenia had a high level of peripheral inflammation and a low level of peripheral BDNF. Long-term Risp treatment attenuated inflammation and potentiated the neurotrophic function but also produced a certain degree of toxicity. Risp+DM was more beneficial and less toxic than Risp-only treatment. PMID:22730040
Mai, Jietang; Wang, Hong; Yang#, Xiao-Feng
2010-01-01
Interleukin-17 (IL-17)-secreting T helper 17 cells (Th17) are a recently identified CD4+ T helper subset that has been implicated in various inflammatory and autoimmune diseases. Th17, along with CD4+CD25high Foxp3+ regulatory T cells (Tregs) and other newly emergent T helper subsets, Th9 and Tfh, have expanded the Th1-Th2 paradigm. Although this newly proposed six-subset paradigm significantly improved our understanding on the differentiation of CD4+ T helper cell subsets and the regulation of T helper cells in inflammation and autoimmunity, many questions remain to be answered. In this overview, we will briefly review the following issues: a) Old Th1-Th2 paradigm versus new multi-subset paradigm; b) Structural features of IL-17 family cytokines; c) Th17 cells; d) Effects of IL-17 on various cell types and tissues; e) IL-17 receptor and signaling pathways; f) Th17-mediated inflammations; and g) Protective mechanisms of IL-17 in infections. Lastly, we will look into the interaction of Th17 and Treg in autoimmune diseases and inflammation: Th17 cells interplay with Tregs. Regulation of autoimmunity and inflammation lies in the interplays of the different T helper subsets, therefore, better understanding of these subsets’ interactions with one another would greatly improve our approaches in developing therapy to combat inflammatory and autoimmune diseases. PMID:20515737
Kwon, Oh Sung; Tanner, Ruth E; Barrows, Katherine M; Runtsch, Marah; Symons, J David; Jalili, Thunder; Bikman, Benjamin T; McClain, Donald A; O'Connell, Ryan M; Drummond, Micah J
2015-07-01
Physical inactivity in older adults is a risk factor for developing glucose intolerance and impaired skeletal muscle function. Elevated inflammation and ceramide biosynthesis have been implicated in metabolic disruption and are linked to Toll-like receptor (TLR)/myeloid differentiation primary response 88 (MyD88) signaling. We hypothesize that a physical inactivity stimulus, capable of inducing glucose intolerance, would increase skeletal muscle inflammation and ceramide biosynthesis signaling and that this response would be regulated by the TLR/MyD88 pathway. Therefore, we subjected wild-type (WT) and MyD88(-/-) mice to hindlimb unloading (HU) for 14 days or an ambulatory control period. We observed impaired glucose uptake, muscle insulin signaling (p-Akt), and increased markers of NF-κB signaling (p-IκBα), inflammation (p-JNK, IL-6), TLR4, and the rate-limiting enzyme of ceramide biosynthesis, SPT2, with HU WT (P < 0.05), but not in HU MyD88(-/-) mice. Concurrently, we found that 5 days of bed rest in older adults resulted in whole body glucose dysregulation, impaired skeletal muscle insulin signaling, and upregulation of muscle IL-6 and SPT2 (P < 0.05). Post-bed rest TLR4 abundance was tightly correlated with impaired postprandial insulin and glucose levels. In conclusion, MyD88 signaling is necessary for the increased inflammation, ceramide biosynthesis signaling, and compromised metabolic function that accompanies physical inactivity. Copyright © 2015 the American Physiological Society.