Sample records for systemic inflammatory process

  1. [Cardiovascular disease and systemic inflammatory diseases].

    PubMed

    Cuende, José I; Pérez de Diego, Ignacio J; Godoy, Diego

    2016-01-01

    More than a century of research has shown that atherosclerosis is an inflammatory process more than an infiltrative or thrombogenic process. It has been demonstrated epidemiologically and by imaging techniques, that systemic inflammatory diseases (in particular, but not exclusively, rheumatoid arthritis and systemic lupus erythematosus) increase the atherosclerotic process, and has a demonstrated pathophysiological basis. Furthermore, treatments to control inflammatory diseases can modify the course of the atherosclerotic process. Although there are no specific scales for assessing cardiovascular risk in patients with these diseases, cardiovascular risk is high. A number of specific risk scales are being developed, that take into account specific factors such as the degree of inflammatory activity. Copyright © 2015 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  2. Activation and Resolution of Periodontal Inflammation and Its Systemic Impact

    PubMed Central

    Hasturk, Hatice; Kantarci, Alpdogan

    2015-01-01

    Inflammation is a highly organized event impacting upon organs, tissues and biological systems. Periodontal diseases are characterized by dysregulation or dysfunction of resolution pathways of inflammation resulting in a failure of healing and a dominant chronic, progressive, destructive and predominantly unresolved inflammation. The biological consequences of inflammatory processes may be independent of the etiological agents such as trauma, microbial organisms and stress. The impact of the inflammatory pathological process depends upon the affected tissues or organ system. Whilst mediators are similar, there is a tissue specificity for the inflammatory events. It is plausible that inflammatory processes in one organ could directly lead to pathologies in another organ or tissue. Communication between distant parts of the body and their inflammatory status is also mediated by common signaling mechanisms mediated via cells and soluble mediators. This review focuses on periodontal inflammation, its systemic associations and advances in therapeutic approaches based on mediators acting through orchestration of natural pathway to resolution of inflammation. We also discuss a new treatment concept where natural pathways of resolution of periodontal inflammation can be used to limit systemic inflammation and promote healing and regeneration. PMID:26252412

  3. [Inflammatory process in atherogenesis: new facts about old flame].

    PubMed

    Vucević, Danijela; Radak, Dorde; Radosavljević, Tatjana; Mladenović, Dusan; Milovanović, Ivan

    2012-01-01

    INTRODUCTION. Atherosclerosis is a progressive, multifactorial, diffuse, multisystemic, chronic, inflammatory disease, which is manifested by disorders of vascular, immune and metabolic system. Pathogenesis of this disease is not fully understood. Endothelial Dysfunction and Inflammatory Process. Endothelial dysfunction is recognized as the crucial step in atherogenesis. A lot of studies have confirmed the involvement of various mediators of inflammation in initial proatherogenic processes, such as the upregulation of adhesion molecules on endothelial cells, binding of low density lipoproteins to endothelium, activation of macrophages and proliferation of vascular smooth muscle cells. Fatty stain and Inflammatory Process. Fatty stain consists of foam cell accumulation. After foam cell formation, mediators of inflammation initiate a series ofintracellular events that include the induction of inflammatory cytokines. Thus, a vicious circle of inflammation, modification of lipoproteins and further inflammation can be maintained in the artery. Transitory Lesion and Inflammatory Process. In transitory lesion intensive phagocytosis of oxidized low density lipoproteins additionally activates monocytes and macrophages and consequently facilitates and exacerbates the inflammatory response. Fibrotic Plaque and Inflammatory Process. Inflammatory process, matrix-degrading metalloproteinases activity, platelets aggregation and smooth muscle cells proliferation play a central role in development of fibrotic plaque. Complex Lesion and Inflammatory Process. It has been shown that inflammation is closely related to the development of atherosclerotic plaque rupture. The contribution of inflammatory process has become increasingly meaningful in understanding the initiation, progression and clinical manifestations ofatherosclerosis.

  4. [Rheumatoid arthritis as a connective tissue disease].

    PubMed

    Targońska-Stępniak, Bożena

    2018-01-01

    The available data indicate that seropositive rheumatoid arthritis (RA) develops as a result of systemic, autoimmune reaction directed against a range of "self" peptides/proteins that have undergone specific forms of post-translational modification. The development and progress of autoimmunity may be triggered by non-specific, local inflammatory processes outside the joints, for example in the oral or respiratory mucous membrane. The disease occurs in genetically susceptible individuals under the influence of environmental risk factors that promote autoimmunity and consequently the inflammatory process. Smoking is particularly linked with RA pathogenesis. Synovitis of multiple, symmetrical, peripheral joints is the most typical feature of RA which results in irreversible damage to joints structure and as a consequence in disability of patients. However, the inflammatory process in the course of RA has a systemic, constitutional nature. Therefore, extra-articular symptoms with internal organ involvement may occur additionally to synovitis, what is an unfavorable prognostic factor. Extra-articular manifestations of RA are associated with the high disease activity both inflammatory and immunological. They occur in patients with severe form of the disease and contribute to a significant lifespan reduction. This is usually associated with progressive atherosclerosis and cardiovascular complications. The systemic inhibition of an abnormal immune system activity is the mainstay of the effective RA treatment. The currently used disease modifying antirheumatic drugs affect the activity and function of different constituents of the immune system, including B and T lymphocytes and the main pro-inflammatory cytokines, and contribute to autoimmune and inflammatory processes.

  5. Impact of antibiotics on the microcirculation in local and systemic inflammation.

    PubMed

    Al-Banna, N A; Pavlovic, D; Gründling, M; Zhou, J; Kelly, M; Whynot, S; Hung, O; Johnston, B; Issekutz, T B; Kern, H; Cerny, V; Lehmann, Ch

    2013-01-01

    The main function of antibiotics is related to their capacity to eliminate a microorganism. In addition to the antimicrobial function of antibiotics, they are known to have anti-inflammatory and vasomodulatory effects on the microcirculation. The ability of non-antimicrobial derivatives of antibiotics to control inflammation illustrates the distinct anti-microbial and anti-inflammatory roles of antibiotics. In this review, we discuss the impact of antibiotics on leukocyte recruitment and the state of the microcirculation. Literature reporting the effect of antibiotics in non-infectious inflammatory conditions is reviewed as well as the studies demonstrating the anti-inflammatory effects of antibiotics in animal models of infection. In addition, the effect of the antibiotics on the immune system is summarized in this review, in order to postulate some mechanisms of action for the proand anti-inflammatory contribution of antibiotics. Literature reported the effect of antibiotics on the production of cytokines, chemotaxis and recruitment of leukocytes, production of reactive oxygen species, process of phagocytosis and autophagy, and apoptosis of leukocytes. Yet, all antibiotics may not necessarily exert an anti-inflammatory effect on the microcirculation. Thus, we suggest a model for spectrum of anti-inflammatory and vasomodulatory effects of antibiotics in the microcirculation of animals in local and systemic inflammation. Although the literature suggests the ability of antibiotics to modulate leukocyte recruitment and microperfusion, the process and the mechanism of action are not fully characterized. Studying this process will expand the knowledge base that is required for the selection of antibiotic treatment based on its anti-inflammatory functions, which might be particularly important for critically ill patients.

  6. Molecular regulators of resolution of inflammation: potential therapeutic targets in the reproductive system.

    PubMed

    Hutchinson, James L; Rajagopal, Shalini P; Sales, Kurt J; Jabbour, Henry N

    2011-07-01

    Inflammatory processes are central to reproductive events including ovulation, menstruation, implantation and labour, while inflammatory dysregulation is a feature of numerous reproductive pathologies. In recent years, there has been much research into the endogenous mechanisms by which inflammatory reactions are terminated and tissue homoeostasis is restored, a process termed resolution. The identification and characterisation of naturally occurring pro-resolution mediators including lipoxins and annexin A1 has prompted a shift in the field of anti-inflammation whereby resolution is now observed as an active process, triggered as part of a normal inflammatory response. This review will address the process of resolution, discuss available evidence for expression of pro-resolution factors in the reproductive tract and explore possible roles for resolution in physiological reproductive processes and associated pathologies.

  7. Redox signaling in acute pancreatitis

    PubMed Central

    Pérez, Salvador; Pereda, Javier; Sabater, Luis; Sastre, Juan

    2015-01-01

    Acute pancreatitis is an inflammatory process of the pancreatic gland that eventually may lead to a severe systemic inflammatory response. A key event in pancreatic damage is the intracellular activation of NF-κB and zymogens, involving also calcium, cathepsins, pH disorders, autophagy, and cell death, particularly necrosis. This review focuses on the new role of redox signaling in acute pancreatitis. Oxidative stress and redox status are involved in the onset of acute pancreatitis and also in the development of the systemic inflammatory response, being glutathione depletion, xanthine oxidase activation, and thiol oxidation in proteins critical features of the disease in the pancreas. On the other hand, the release of extracellular hemoglobin into the circulation from the ascitic fluid in severe necrotizing pancreatitis enhances lipid peroxidation in plasma and the inflammatory infiltrate into the lung and up-regulates the HIF–VEGF pathway, contributing to the systemic inflammatory response. Therefore, redox signaling and oxidative stress contribute to the local and systemic inflammatory response during acute pancreatitis. PMID:25778551

  8. [Met-enkephalin in the cerebrospinal fluid as an indicator of central nervous system injury in meningitis and encephalitis].

    PubMed

    Cieśla, Andrzej; Pierzchała-Koziec, Krystyna; Mach, Tomasz; Garlicki, Aleksander; Bociaga-Jasik, Monika

    2005-05-01

    Assessment of met-enkephalin level in the cerebrospinal fluid (CSF) of patients with inflammatory process of the central nervous system (CNS) was performed to estimate the role of opioid system in viral and bacterial meningitis, and encephalitis. The met-enkephalin level, protein concentration and pleocytosis were analysed in the CSF of 53 patients with viral or bacterial meningitis, encephalitis, and in the control group of patients without inflammatory disease of the CNS. The biggest differences have been observed between the groups of patients with bacterial meningitis and those without inflammatory disease of the CNS, but they were statistically insignificant. There was a lack of correlation between met-enkephalin level and some factors of inflammatory process in CSF, such as pleocytosis and protein concentration. We have not revealed any correlation between etiological agent of CNS infection and opioid system of the brain. Despite the fact that, we observed in the study statistically insignificant changes, we suggest to continue investigations, including additional parameters which are characteristic for the CNS diseases.

  9. Parkinson's disease and systemic inflammation.

    PubMed

    Ferrari, Carina C; Tarelli, Rodolfo

    2011-02-22

    Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the "primed" microglia into an "active" state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease.

  10. Modeling human gastrointestinal inflammatory diseases using microphysiological culture systems.

    PubMed

    Hartman, Kira G; Bortner, James D; Falk, Gary W; Ginsberg, Gregory G; Jhala, Nirag; Yu, Jian; Martín, Martín G; Rustgi, Anil K; Lynch, John P

    2014-09-01

    Gastrointestinal illnesses are a significant health burden for the US population, with 40 million office visits each year for gastrointestinal complaints and nearly 250,000 deaths. Acute and chronic inflammations are a common element of many gastrointestinal diseases. Inflammatory processes may be initiated by a chemical injury (acid reflux in the esophagus), an infectious agent (Helicobacter pylori infection in the stomach), autoimmune processes (graft versus host disease after bone marrow transplantation), or idiopathic (as in the case of inflammatory bowel diseases). Inflammation in these settings can contribute to acute complaints (pain, bleeding, obstruction, and diarrhea) as well as chronic sequelae including strictures and cancer. Research into the pathophysiology of these conditions has been limited by the availability of primary human tissues or appropriate animal models that attempt to physiologically model the human disease. With the many recent advances in tissue engineering and primary human cell culture systems, it is conceivable that these approaches can be adapted to develop novel human ex vivo systems that incorporate many human cell types to recapitulate in vivo growth and differentiation in inflammatory microphysiological environments. Such an advance in technology would improve our understanding of human disease progression and enhance our ability to test for disease prevention strategies and novel therapeutics. We will review current models for the inflammatory and immunological aspects of Barrett's esophagus, acute graft versus host disease, and inflammatory bowel disease and explore recent advances in culture methodologies that make these novel microphysiological research systems possible. © 2014 by the Society for Experimental Biology and Medicine.

  11. Review article: mitogen-activated protein kinases in chronic intestinal inflammation - targeting ancient pathways to treat modern diseases.

    PubMed

    Waetzig, G H; Schreiber, S

    2003-07-01

    Conventional treatment of chronic inflammatory disorders, including inflammatory bowel diseases, employs broad-range anti-inflammatory drugs. In order to reduce the side-effects and increase the efficacy of treatment, several strategies have been developed in the last decade to interfere with intercellular and intracellular inflammatory signalling processes. The highly conserved mitogen-activated protein kinase pathways regulate most cellular processes, particularly defence mechanisms such as stress reactions and inflammation. In this review, we provide an overview of the current knowledge of the specificity and interconnection of mitogen-activated protein kinase pathways, their functions in the gut immune system and published and ongoing studies on the role of mitogen-activated protein kinases in inflammatory bowel disease. The development of mitogen-activated protein kinase inhibitors and their use for the therapy of inflammatory disorders is a paradigm of the successful bridging of the gap between basic research and clinical practice.

  12. Beta-glucan-depleted, glycopeptide-rich extracts from Brewer's and Baker's yeast (Saccharomyces cerevisiae) lower interferon-gamma production by stimulated human blood cells in vitro.

    PubMed

    Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E

    2016-04-15

    Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Neuroinflammation: The Devil is in the Details

    PubMed Central

    DiSabato, Damon; Quan, Ning; Godbout, Jonathan P.

    2016-01-01

    There is significant interest in understanding inflammatory responses within the brain and spinal cord. Inflammatory responses that are centralized within the brain and spinal cord are generally referred to as “neuroinflammatory”. Aspects of neuroinflammation vary within the context of disease, injury, infection or stress. The context, course, and duration of these inflammatory responses are all critical aspects in the understanding of these processes and their corresponding physiological, biochemical and behavioral consequences. Microglia, innate immune cells of the central nervous system (CNS), play key roles in mediating these neuroinflammatory responses. Because the connotation of neuroinflammation is inherently negative and maladaptive, the majority of research focus is on the pathological aspects of neuroinflammation. There are, however, several degrees of neuroinflammatory responses, some of which are positive. In many circumstances including CNS injury, there is a balance of inflammatory and intrinsic repair processes that influences functional recovery. In addition, there are several other examples where communication between the brain and immune system involves neuroinflammatory processes that are beneficial and adaptive. The purpose of this review is to distinguish different variations of neuroinflammation in a context-specific manner and detail both positive and negative aspects of neuroinflammatory processes. PMID:26990767

  14. Chronic Pain in Inflammatory Arthritis: Mechanisms, Metrology, and Emerging Targets—A Focus on the JAK-STAT Pathway

    PubMed Central

    Salaffi, Fausto; Giacobazzi, Giovanni

    2018-01-01

    Chronic pain is nowadays considered not only the mainstay symptom of rheumatic diseases but also “a disease itself.” Pain is a multidimensional phenomenon, and in inflammatory arthritis, it derives from multiple mechanisms, involving both synovitis (release of a great number of cytokines) and peripheral and central pain-processing mechanisms (sensitization). In the last years, the JAK-STAT pathway has been recognized as a pivotal component both in the inflammatory process and in pain amplification in the central nervous system. This paper provides a summary on pain in inflammatory arthritis, from pathogenesis to clinimetric instruments and treatment, with a focus on the JAK-STAT pathway. PMID:29623147

  15. Spontaneous ultra-weak photon emission in correlation to inflammatory metabolism and oxidative stress in a mouse model of collagen-induced arthritis.

    PubMed

    He, Min; van Wijk, Eduard; van Wietmarschen, Herman; Wang, Mei; Sun, Mengmeng; Koval, Slavik; van Wijk, Roeland; Hankemeier, Thomas; van der Greef, Jan

    2017-03-01

    The increasing prevalence of rheumatoid arthritis has driven the development of new approaches and technologies for investigating the pathophysiology of this devastating, chronic disease. From the perspective of systems biology, combining comprehensive personal data such as metabolomics profiling with ultra-weak photon emission (UPE) data may provide key information regarding the complex pathophysiology underlying rheumatoid arthritis. In this article, we integrated UPE with metabolomics-based technologies in order to investigate collagen-induced arthritis, a mouse model of rheumatoid arthritis, at the systems level, and we investigated the biological underpinnings of the complex dataset. Using correlation networks, we found that elevated inflammatory and ROS-mediated plasma metabolites are strongly correlated with a systematic reduction in amine metabolites, which is linked to muscle wasting in rheumatoid arthritis. We also found that increased UPE intensity is strongly linked to metabolic processes (with correlation co-efficiency |r| value >0.7), which may be associated with lipid oxidation that related to inflammatory and/or ROS-mediated processes. Together, these results indicate that UPE is correlated with metabolomics and may serve as a valuable tool for diagnosing chronic disease by integrating inflammatory signals at the systems level. Our correlation network analysis provides important and valuable information regarding the disease process from a system-wide perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Parkinson's Disease and Systemic Inflammation

    PubMed Central

    Ferrari, Carina C.; Tarelli, Rodolfo

    2011-01-01

    Peripheral inflammation triggers exacerbation in the central brain's ongoing damage in several neurodegenerative diseases. Systemic inflammatory stimulus induce a general response known as sickness behaviour, indicating that a peripheral stimulus can induce the synthesis of cytokines in the brain. In Parkinson's disease (PD), inflammation was mainly associated with microglia activation that can underlie the neurodegeneration of neurons in the substantia nigra (SN). Peripheral inflammation can transform the “primed” microglia into an “active” state, which can trigger stronger responses dealing with neurodegenerative processes. Numerous evidences show that systemic inflammatory processes exacerbate ongoing neurodegeneration in PD patient and animal models. Anti-inflammatory treatment in PD patients exerts a neuroprotective effect. In the present paper, we analyse the effect of peripheral infections in the etiology and progression in PD patients and animal models, suggesting that these peripheral immune challenges can exacerbate the symptoms in the disease. PMID:21403862

  17. Cerebrospinal Fluid Cytokine Expression Profile in Multiple Sclerosis and Chronic Inflammatory Demyelinating Polyneuropathy.

    PubMed

    Bonin, Serena; Zanotta, Nunzia; Sartori, Arianna; Bratina, Alessio; Manganotti, Paolo; Trevisan, Giusto; Comar, Manola

    2018-02-01

    Cerebrospinal fluid (CSF) analysis in patients with particular neurologic disorders is a powerful tool to evaluate specific central nervous system inflammatory markers for diagnostic needs, because CSF represents the specific immune micro-environment to the central nervous system. CSF samples from 49 patients with multiple sclerosis (MS), chronic inflammatory demyelinating polyneuropathy (CIDP), and non-inflammatory neurologic disorders (NIND) as controls were submitted to protein expression profiles of 47 inflammatory biomarkers by multiplex Luminex bead assay to investigate possible differences in the inflammatory process for MS and CIDP. Our results showed differences in CSF cytokine levels in MS and CIDP; in particular, IL12 (p40) was significantly highly expressed in MS in comparison with CIDP and NIND, while SDF-1α and SCGF-β were significantly highly expressed in CIDP cohort when compared to MS and NIND. IL-9, IL-13, and IL-17 had higher expression levels in NIND if compared with the other groups. Our study showed that, despite some common pathogenic mechanisms, central and peripheral nervous system demyelinating diseases, such as MS and CIDP, differ in some specific inflammatory soluble proteins in CSF, underlining differences in the immune response involved in those autoimmune diseases.

  18. Autophagy and kidney inflammation

    PubMed Central

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-01-01

    ABSTRACT Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases. PMID:28441075

  19. Autophagy and kidney inflammation.

    PubMed

    Kimura, Tomonori; Isaka, Yoshitaka; Yoshimori, Tamotsu

    2017-06-03

    Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.

  20. Inflammation in Alzheimer's disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors.

    PubMed

    Salminen, Antero; Ojala, Johanna; Kauppinen, Anu; Kaarniranta, Kai; Suuronen, Tiina

    2009-02-01

    The inflammatory process has a fundamental role in the pathogenesis of Alzheimer's disease (AD). Recent studies indicate that inflammation is not merely a bystander in neurodegeneration but a powerful pathogenetic force in the disease process. Increased production of amyloid-beta peptide species can activate the innate immunity system via pattern recognition receptors (PRRs) and evoke Alzheimer's pathology. We will focus on the role of innate immunity system of brain in the initiation and the propagation of inflammatory process in AD. We examine here in detail the significance of amyloid-beta oligomers and fibrils as danger-associated molecular patterns (DAMPs) in the activation of a wide array of PRRs in glial cells and neurons, such as Toll-like, NOD-like, formyl peptide, RAGE and scavenger receptors along with complement and pentraxin systems. We also characterize the signaling pathways triggered by different PRRs in evoking inflammatory responses. In addition, we will discuss whether AD pathology could be the outcome of chronic activation of the innate immunity defence in the brain of AD patients.

  1. Cross-talk between oxidative stress and pro-inflammatory cytokines in acute pancreatitis: a key role for protein phosphatases.

    PubMed

    Escobar, Javier; Pereda, Javier; Arduini, Alessandro; Sandoval, Juan; Sabater, Luis; Aparisi, Luis; López-Rodas, Gerardo; Sastre, Juan

    2009-01-01

    Acute pancreatitis is an acute inflammatory process localized in the pancreatic gland that frequently involves peripancreatic tissues. It is still under investigation why an episode of acute pancreatitis remains mild affecting only the pancreas or progresses to a severe form leading to multiple organ failure and death. Proinflammatory cytokines and oxidative stress play a pivotal role in the early pathophysiological events of the disease. Cytokines such as interleukin 1beta and tumor necrosis factor alpha initiate and propagate almost all consequences of the systemic inflammatory response syndrome. On the other hand, depletion of pancreatic glutathione is an early hallmark of acute pancreatitis and reactive oxygen species are also associated with the inflammatory process. Changes in thiol homestasis and redox signaling decisively contribute to amplification of the inflammatory cascade through mitogen activated protein kinase (MAP kinase) pathways. This review focuses on the relationship between oxidative stress, pro-inflammatory cytokines and MAP kinase/protein phosphatase pathways as major modulators of the inflammatory response in acute pancreatitis. Redox sensitive signal transduction mediated by inactivation of protein phosphatases, particularly protein tyrosin phosphatases, is highlighted.

  2. Immunity and Inflammation in Epilepsy

    PubMed Central

    Vezzani, Annamaria; Lang, Bethan; Aronica, Eleonora

    2016-01-01

    This review reports the available evidence on the activation of the innate and adaptive branches of the immune system and the related inflammatory processes in epileptic disorders and the putative pathogenic role of inflammatory processes developing in the brain, as indicated by evidence from experimental and clinical research. Indeed, there is increasing knowledge supporting a role of specific inflammatory mediators and immune cells in the generation and recurrence of epileptic seizures, as well as in the associated neuropathology and comorbidities. Major challenges in this field remain: a better understanding of the key inflammatory pathogenic pathways activated in chronic epilepsy and during epileptogenesis, and how to counteract them efficiently without altering the homeostatic tissue repair function of inflammation. The relevance of this information for developing novel therapies will be highlighted. PMID:26684336

  3. Toward Omics-Based, Systems Biomedicine, and Path and Drug Discovery Methodologies for Depression-Inflammation Research.

    PubMed

    Maes, Michael; Nowak, Gabriel; Caso, Javier R; Leza, Juan Carlos; Song, Cai; Kubera, Marta; Klein, Hans; Galecki, Piotr; Noto, Cristiano; Glaab, Enrico; Balling, Rudi; Berk, Michael

    2016-07-01

    Meta-analyses confirm that depression is accompanied by signs of inflammation including increased levels of acute phase proteins, e.g., C-reactive protein, and pro-inflammatory cytokines, e.g., interleukin-6. Supporting the translational significance of this, a meta-analysis showed that anti-inflammatory drugs may have antidepressant effects. Here, we argue that inflammation and depression research needs to get onto a new track. Firstly, the choice of inflammatory biomarkers in depression research was often too selective and did not consider the broader pathways. Secondly, although mild inflammatory responses are present in depression, other immune-related pathways cannot be disregarded as new drug targets, e.g., activation of cell-mediated immunity, oxidative and nitrosative stress (O&NS) pathways, autoimmune responses, bacterial translocation, and activation of the toll-like receptor and neuroprogressive pathways. Thirdly, anti-inflammatory treatments are sometimes used without full understanding of their effects on the broader pathways underpinning depression. Since many of the activated immune-inflammatory pathways in depression actually confer protection against an overzealous inflammatory response, targeting these pathways may result in unpredictable and unwanted results. Furthermore, this paper discusses the required improvements in research strategy, i.e., path and drug discovery processes, omics-based techniques, and systems biomedicine methodologies. Firstly, novel methods should be employed to examine the intracellular networks that control and modulate the immune, O&NS and neuroprogressive pathways using omics-based assays, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, immunoproteomics and metagenomics. Secondly, systems biomedicine analyses are essential to unravel the complex interactions between these cellular networks, pathways, and the multifactorial trigger factors and to delineate new drug targets in the cellular networks or pathways. Drug discovery processes should delineate new drugs targeting the intracellular networks and immune-related pathways.

  4. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals.

    PubMed

    Pietzner, Maik; Kaul, Anne; Henning, Ann-Kristin; Kastenmüller, Gabi; Artati, Anna; Lerch, Markus M; Adamski, Jerzy; Nauck, Matthias; Friedrich, Nele

    2017-11-30

    Inflammation occurs as an immediate protective response of the immune system to a harmful stimulus, whether locally confined or systemic. In contrast, a persisting, i.e., chronic, inflammatory state, even at a low-grade, is a well-known risk factor in the development of common diseases like diabetes or atherosclerosis. In clinical practice, laboratory markers like high-sensitivity C-reactive protein (hsCRP), white blood cell count (WBC), and fibrinogen, are used to reveal inflammatory processes. In order to gain a deeper insight regarding inflammation-related changes in metabolism, the present study assessed the metabolic patterns associated with alterations in inflammatory markers. Based on mass spectrometry and nuclear magnetic resonance spectroscopy we determined a comprehensive panel of 613 plasma and 587 urine metabolites among 925 apparently healthy individuals. Associations between inflammatory markers, namely hsCRP, WBC, and fibrinogen, and metabolite levels were tested by linear regression analyses controlling for common confounders. Additionally, we tested for a discriminative signature of an advanced inflammatory state using random forest analysis. HsCRP, WBC, and fibrinogen were significantly associated with 71, 20, and 19 plasma and 22, 3, and 16 urine metabolites, respectively. Identified metabolites were related to the bradykinin system, involved in oxidative stress (e.g., glutamine or pipecolate) or linked to the urea cycle (e.g., ornithine or citrulline). In particular, urine 3'-sialyllactose was found as a novel metabolite related to inflammation. Prediction of an advanced inflammatory state based solely on 10 metabolites was well feasible (median AUC: 0.83). Comprehensive metabolic profiling confirmed the far-reaching impact of inflammatory processes on human metabolism. The identified metabolites included not only those already described as immune-modulatory but also completely novel patterns. Moreover, the observed alterations provide molecular links to inflammation-associated diseases like diabetes or cardiovascular disorders.

  5. Gut-CNS-Axis as Possibility to Modulate Inflammatory Disease Activity-Implications for Multiple Sclerosis.

    PubMed

    Fleck, Ann-Katrin; Schuppan, Detlef; Wiendl, Heinz; Klotz, Luisa

    2017-07-14

    In the last decade the role of environmental factors as modulators of disease activity and progression has received increasing attention. In contrast to classical environmental modulators such as exposure to sun-light or fine dust pollution, nutrition is an ideal tool for a personalized human intervention. Various studies demonstrate a key role of dietary factors in autoimmune diseases including Inflammatory Bowel Disease (IBD), rheumatoid arthritis or inflammatory central nervous system (CNS) diseases such as Multiple Sclerosis (MS). In this review we discuss the connection between diet and inflammatory processes via the gut-CNS-axis. This axis describes a bi-directional communication system and comprises neuronal signaling, neuroendocrine pathways and modulation of immune responses. Therefore, the gut-CNS-axis represents an emerging target to modify CNS inflammatory activity ultimately opening new avenues for complementary and adjunctive treatment of autoimmune diseases such as MS.

  6. Involvement of cholinergic and adenosinergic systems on the branchial immune response of experimentally infected silver catfish with Streptococcus agalactiae.

    PubMed

    Baldissera, M D; Souza, C F; Doleski, P H; Moreira, K L S; da Veiga, M L; da Rocha, M I U M; Santos, R C V; Baldisserotto, B

    2018-01-01

    It has been recognized that the cholinergic and adenosinergic systems have an essential role in immune and inflammatory responses during bacterial fish pathogens, such as the enzymes acetylcholinesterase (AChE) and adenosine deaminase (ADA), which are responsible for catalysis of the anti-inflammatory molecules acetylcholine (ACh) and adenosine (Ado) respectively. Thus, the aim of this study was to investigate the involvement of the cholinergic and adenosinergic systems on the immune response and inflammatory process in gills of experimentally infected Rhamdia quelen with Streptococcus agalactiae. Acetylcholinesterase activity decreased, while ACh levels increased in gills of infected animals compared to uninfected animals. On the other hand, a significant increase in ADA activity with a concomitant decrease in Ado levels was observed in infected animals compared to uninfected animals. Based on this evidence, we concluded that infection by S. agalactiae in silver catfish alters the cholinergic and adenosinergic systems, suggesting the involvement of AChE and ADA activities on immune and inflammatory responses, regulating the ACh and Ado levels. In summary, the downregulation of AChE activity exerts an anti-inflammatory profile in an attempt to reduce or prevent the tissue damage, while the upregulation of ADA activity exerts a pro-inflammatory profile, contributing to disease pathophysiology. © 2017 John Wiley & Sons Ltd.

  7. [THE ROLE OF SYSTEM QUORUM SENSING UNDER CHRONIC UROGENITAL CHLAMYDIA INFECTION].

    PubMed

    2015-10-01

    It is established that system quorum sensing (QS) assure social behavior of bacteria in regulation of genes of virulence and generalization of inflectional inflammatory process under chronic urogenital chlamydia infection. The techniques of gas chromatography and mass-spectrometry were applied to detect molecular markers of generalization of infectious process under urogenital chlamydiasis--activators of QS microbes (lactones, quinolones, furan ethers). The developed diagnostic gas chromatography and mass-spectrometry criteria of indexation of molecular markers under chronic urogenital chlamydia infection have high level of diagnostic sensitivity, specificity and prognostic value of positive and negative result. The application of techniques of gas chromatography and mass-spectrometry permits enhancing effectiveness of diagnostic of chronic inflectional inflammatory diseases of urogenital system of chlamydia etiology with identification of prognostic criteria of generalization of infectious process and subsequent prescription of timely and appropriate therapy

  8. Rab7-a novel redox target that modulates inflammatory pain processing.

    PubMed

    Kallenborn-Gerhardt, Wiebke; Möser, Christine V; Lorenz, Jana E; Steger, Mirco; Heidler, Juliana; Scheving, Reynir; Petersen, Jonas; Kennel, Lea; Flauaus, Cathrin; Lu, Ruirui; Edinger, Aimee L; Tegeder, Irmgard; Geisslinger, Gerd; Heide, Heinrich; Wittig, Ilka; Schmidtko, Achim

    2017-07-01

    Chronic pain is accompanied by production of reactive oxygen species (ROS) in various cells that are important for nociceptive processing. Recent data indicate that ROS can trigger specific redox-dependent signaling processes, but the molecular targets of ROS signaling in the nociceptive system remain largely elusive. Here, we performed a proteome screen for pain-dependent redox regulation using an OxICAT approach, thereby identifying the small GTPase Rab7 as a redox-modified target during inflammatory pain in mice. Prevention of Rab7 oxidation by replacement of the redox-sensing thiols modulates its GTPase activity. Immunofluorescence studies revealed Rab7 expression to be enriched in central terminals of sensory neurons. Knockout mice lacking Rab7 in sensory neurons showed normal responses to noxious thermal and mechanical stimuli; however, their pain behavior during inflammatory pain and in response to ROS donors was reduced. The data suggest that redox-dependent changes in Rab7 activity modulate inflammatory pain sensitivity.

  9. Impact of anti-inflammatory nutrients on obesity-associated metabolic-inflammation from childhood through to adulthood.

    PubMed

    Connaughton, Ruth M; McMorrow, Aoibheann M; McGillicuddy, Fiona C; Lithander, Fiona E; Roche, Helen M

    2016-05-01

    Obesity-related metabolic conditions such as insulin resistance (IR), type 2 diabetes and CVD share a number of pathological features, one of which is metabolic-inflammation. Metabolic-inflammation results from the infiltration of immune cells into the adipose tissue, driving a pro-inflammatory environment, which can induce IR. Furthermore, resolution of inflammation, an active process wherein the immune system counteracts pro-inflammatory states, may be dysregulated in obesity. Anti-inflammatory nutritional interventions have focused on attenuating this pro-inflammatory environment. Furthermore, with inherent variability among individuals, establishing at-risk populations who respond favourably to nutritional intervention strategies is important. This review will focus on chronic low-grade metabolic-inflammation, resolution of inflammation and the putative role anti-inflammatory nutrients have as a potential therapy. Finally, in the context of personalised nutrition, the approaches used in defining individuals who respond favourably to nutritional interventions will be highlighted. With increasing prevalence of obesity in younger people, age-dependent biological processes, preventative strategies and therapeutic options are important to help protect against development of obesity-associated co-morbidities.

  10. [Lymphoproliferative disease in patients with autoimmune and inflammatory diseases: significance of antigenic stimulation and inflammatory processes].

    PubMed

    Tvarůzková, Zuzana; Pavlová, Sárka; Doubek, Michael; Mayer, Jirí; Pospísilová, Sárka

    2011-01-01

    Evidence has been growing that the pathogenesis of lymphoproliferative disease involves immune processes deregulation. It is believed that antigens or immunological elements can trigger transformation of normal lymphocyte polyclonal population into monoclonal neoplastic disorder--lymphoproliferative disease. Extensive studies point to the link between malignant lymphoma development and autoimmune or inflammatory diseases--namely rheumatoid arthritis, Sjörgen's syndrome, coeliac disease, systemic lupus erythematosus or thyroiditis. Increased risk of lymphoproliferative disease development was also proved for some infections. These infections involve both viral (e.g. Epstein-Barr virus, HIV or hepatitis C virus) and bacterial agents (e.g. Helicobacter pylori, Borrelia burgdorferi). Besides various lymphomas, the links to autoimmune/inflammatory diseases have also been described in chronic lymphocytic leukaemia. Regarding clinical medicine, it is necessary to distinguish patients with autoimmune, inflammatory and infectious diseases who are at the increased risk of tumour development. New approaches must be found to lower this risk. Also, the relationship between autoimmune/inflammatory disease therapy and lymphoma development should be clarified. Although lymphomas associated with autoimmune and inflammatory diseases represent only a small proportion of all lymphomas, any new findings regarding these diseases can cast light on lymphoma pathogenesis as a whole.

  11. Conserved gene regulation during acute inflammation between zebrafish and mammals

    PubMed Central

    Forn-Cuní, G.; Varela, M.; Pereiro, P.; Novoa, B.; Figueras, A.

    2017-01-01

    Zebrafish (Danio rerio), largely used as a model for studying developmental processes, has also emerged as a valuable system for modelling human inflammatory diseases. However, in a context where even mice have been questioned as a valid model for these analysis, a systematic study evaluating the reproducibility of human and mammalian inflammatory diseases in zebrafish is still lacking. In this report, we characterize the transcriptomic regulation to lipopolysaccharide in adult zebrafish kidney, liver, and muscle tissues using microarrays and demonstrate how the zebrafish genomic responses can effectively reproduce the mammalian inflammatory process induced by acute endotoxin stress. We provide evidence that immune signaling pathways and single gene expression is well conserved throughout evolution and that the zebrafish and mammal acute genomic responses after lipopolysaccharide stimulation are highly correlated despite the differential susceptibility between species to that compound. Therefore, we formally confirm that zebrafish inflammatory models are suited to study the basic mechanisms of inflammation in human inflammatory diseases, with great translational impact potential. PMID:28157230

  12. Surgical inflammatory stress: the embryo takes hold of the reins again

    PubMed Central

    2013-01-01

    The surgical inflammatory response can be a type of high-grade acute stress response associated with an increasingly complex trophic functional system for using oxygen. This systemic neuro-immune-endocrine response seems to induce the re-expression of 2 extraembryonic-like functional axes, i.e. coelomic-amniotic and trophoblastic-yolk-sac-related, within injured tissues and organs, thus favoring their re-development. Accordingly, through the up-regulation of two systemic inflammatory phenotypes, i.e. neurogenic and immune-related, a gestational-like response using embryonic functions would be induced in the patient’s injured tissues and organs, which would therefore result in their repair. Here we establish a comparison between the pathophysiological mechanisms that are produced during the inflammatory response and the physiological mechanisms that are expressed during early embryonic development. In this way, surgical inflammation could be a high-grade stress response whose pathophysiological mechanisms would be based on the recapitulation of ontogenic and phylogenetic-related functions. Thus, the ultimate objective of surgical inflammation, as a gestational process, is creating new tissues/organs for repairing the injured ones. Since surgical inflammation and early embryonic development share common production mechanisms, the factors that hamper the wound healing reaction in surgical patients could be similar to those that impair the gestational process. PMID:23374964

  13. Theories of schizophrenia: a genetic-inflammatory-vascular synthesis

    PubMed Central

    Hanson, Daniel R; Gottesman, Irving I

    2005-01-01

    Background Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. Discussion A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. Summary A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons. PMID:15707482

  14. [Changes in the chromatin structure of lymphoid cells under the influence of low-intensity extremely high-frequency electromagnetic radiation against the background of inflammatory process].

    PubMed

    Gapeev, A B; Romanova, N A; Chemeris, N K

    2011-01-01

    Using the alkaline single cell gel electrophoresis technique (comet assay), changes in chromatin structure of peripheral blood leukocytes and peritoneal neutrophils have been studied in mice exposed to low-intensity extremely high-frequency electromagnetic radiation (42.2 GHz, 0.1 mW/cm2, 20 min at 1 h after induction of inflammation) against the background of the systemic inflammatory process. It was revealed that the exposure of mice with the developing inflammation leads to a pronounced decrease in the level of DNA damage to peripheral blood leukocytes and peritoneal neutrophils. It is supposed that the changes in the chromatin structure of lymphoid cells have a genoprotective character in the inflammatory process and can underlie the mechanisms of realization of antiinflammatory effects of the electromagnetic radiation.

  15. Is depression an inflammatory condition? A review of available evidence.

    PubMed

    Hashmi, Ali Madeeh; Butt, Zeeshan; Umair, Muhammad

    2013-07-01

    The current review examines the relationship between depression and the inflammatory immune response. Mood disorders are a significant cause of morbidity and the etiology of depression is still not clearly understood. Many studies have shown links between inflammatory cytokines and mood disorders, including elevated level of cytokines like tumour necrosis factor-alpha (TNF alpha), Interleukins (IL-1,IL-6) and others. Raised levels of cytokines have been shown to increase depressive behaviour in animal models, while many anti-depressants reverse this behaviour alongside reducing the Central Nervous System (CNS) inflammatory response and reduction in the amounts of inflammatory cytokines. Cytokines reduce neurogenesis, Brain Derived Neurotrophic Factor (BDNF) and neuronal plasticity in the CNS, while many anti-depressants have been shown to reverse these processes. The considerations of anti-depressants as anti-inflammatory agents, and implication of other anti-inflammatory therapeutics for the treatment of depression are pointed out.

  16. Novel insights for systemic inflammation in sepsis and hemorrhage.

    PubMed

    Cai, Bolin; Deitch, Edwin A; Ulloa, Luis

    2010-01-01

    The inflammatory responses in sepsis and hemorrhage remain a major cause of death. Clinically, it is generally accepted that shock in sepsis or hemorrhage differs in its mechanisms. However, the recognition of inflammatory cytokines as a common lethal pathway has become consent. Proinflammatory cytokines such as tumor necrosis factor (TNF) or high-mobility group box1 (HMGB1) are fanatically released and cause lethal multiorgan dysfunction. Inhibition of these cytokines can prevent the inflammatory responses and organ damage. In seeking potential anti-inflammatory strategies, we reported that ethyl pyruvate and alpha7 nicotinic acetylcholine receptor (alpha7nAChR) agonists effectively restrained cytokine production to provide therapeutic benefits in both experimental sepsis and hemorrhage. Here, we review the inflammatory responses and the anti-inflammatory strategies in experimental models of sepsis and hemorrhage, as they may have a consistent inflammatory pathway in spite of their different pathophysiological processes.

  17. Inflammatory fatigue and sickness behaviour - lessons for the diagnosis and management of chronic fatigue syndrome.

    PubMed

    Arnett, S V; Clark, I A

    2012-12-10

    Persistent and severe fatigue is a common part of the presentation of a diverse range of disease processes. There is a growing body of evidence indicating a common inflammatory pathophysiology underlying many conditions where fatigue is a primary patient concern, including chronic fatigue syndrome. This review explores current models of how inflammatory mediators act on the central nervous system to produce fatigue and sickness behaviour, and the commonality of these processes in conditions as diverse as surgical trauma, infection, various cancers, inflammatory bowel disease, connective tissue diseases and autoimmune diseases. We also discuss evidence indicating chronic fatigue syndrome may have important pathophysiological similarities with cytokine mediated sickness behaviour, and what lessons can be applied from sickness behaviour to chronic fatigue syndrome with regards to the diagnosis and management. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Cardiovascular and intestinal responses to oxidative and nitrosative stress during prolonged magnesium deficiency.

    PubMed

    Weglicki, William B; Chmielinska, Joanna J; Kramer, Jay H; Mak, I Tong

    2011-08-01

    In rodents with dietary magnesium deficiency (Mg deficiency), hypomagnesemia, occurs leading to a rise in circulating substance P from neuronal tissues to trigger systemic inflammatory stress in cardiac and intestinal tissues. Sustained elevations of substance P may result from impaired neutral endopeptidase (NEP) activity due to reactive oxygen and reactive nitrogen species. Associated increase in intestinal permeability includes infiltration of WBC and endotoxemia, which can further amplify the systemic inflammatory response that leads to impaired contractile function associated with up-regulation of the cardiac CD14 endotoxin receptor. The neurogenic signal transduction pathways that we have identified in the pro-oxidant/pro-inflammatory processes found with prolonged hypomagnesemia are described in this report.

  19. [The contribution of inflammatory process in pathogenesis and natural history of atrial fibrillation].

    PubMed

    Zyśko, Dorota; Gajek, Jacek; Mazurek, Walentyna

    2005-02-01

    The inflammatory process plays important role in pathogenesis of some cardiovascular diseases. Atrial fibrillation is atrial arrhythmia with rapid, asynchronous activation of atrial myocytes. The inflammatory process can be responsible for atrial electrical and anatomical remodeling and therefore shifts towards arrhythmia persistence. The presence of systemic inflammation may be assessed by means of C-reactive protein (CRP) measurement. Maximal concentration of CRP coincidences with the peak of paroxysmal atrial fibrillation occurrence in patients after cardiac surgery. In patients with sinus rhythm the concentration of CRP is a risk factor for this arrhythmia in long-term follow-up. In patients with atrial fibrillation mean CRP concentration is 2-fold higher comparing to control group. CRP concentration is higher in patients with chronic than paroxysmal form of this arrhythmia. High CRP level predicts worse results of direct current cardioversion and more frequent paroxysms of atrial fibrillation during follow-up. Besides of, the patients with echocardiographic signs of thromboembolic risk have higher CRP levels than control subjects. There is no data about the influence of anti-inflammatory therapy on atrial fibrillation or its recurrences.

  20. Source of Chronic Inflammation in Aging.

    PubMed

    Sanada, Fumihiro; Taniyama, Yoshiaki; Muratsu, Jun; Otsu, Rei; Shimizu, Hideo; Rakugi, Hiromi; Morishita, Ryuichi

    2018-01-01

    Aging is a complex process that results from a combination of environmental, genetic, and epigenetic factors. A chronic pro-inflammatory status is a pervasive feature of aging. This chronic low-grade inflammation occurring in the absence of overt infection has been defined as "inflammaging" and represents a significant risk factor for morbidity and mortality in the elderly. The low-grade inflammation persists even after reversing pro-inflammatory stimuli such as LDL cholesterol and the renin-angiotensin system (RAS). Recently, several possible sources of chronic low-grade inflammation observed during aging and age-related diseases have been proposed. Cell senescence and dysregulation of innate immunity is one such mechanism by which persistent prolonged inflammation occurs even after the initial stimulus has been removed. Additionally, the coagulation factor that activates inflammatory signaling beyond its role in the coagulation system has been identified. This signal could be a new source of chronic inflammation and cell senescence. Here, we summarized the factors and cellular pathways/processes that are known to regulate low-grade persistent inflammation in aging and age-related disease.

  1. Autophagy at the gut interface - mucosal responses to stress and the consequences for inflammatory bowel diseases

    PubMed Central

    Huett, Alan; Xavier, Ramnik J.

    2014-01-01

    Autophagy is a conserved homeostatic process by which cells degrade and recycle cytoplasmic contents and organelles. Recently autophagy has come to prominence as a factor in many disease states, including inflammatory bowel diseases. In this review we explore the recent discoveries in autophagy and how these relate to the special conditions experienced by the gut mucosa. We will pay particular attention to autophagy as an innate immune process and its role in the development and education of the adaptive immune system. PMID:19575363

  2. The protective arm of the renin-angiotensin system may counteract the intense inflammatory process in fetuses with posterior urethral valves.

    PubMed

    Rocha, Natalia P; Bastos, Fernando M; Vieira, Érica L M; Prestes, Thiago R R; Silveira, Katia D da; Teixeira, Mauro M; Simões E Silva, Ana Cristina

    2018-03-11

    Posterior urethral valve is the most common lower urinary tract obstruction in male children. A high percentage of patients with posterior urethral valve evolve to end-stage renal disease. Previous studies showed that cytokines, chemokines, and components of the renin-angiotensin system contribute to the renal damage in obstructive uropathies. The authors recently found that urine samples from fetuses with posterior urethral valve have increased levels of inflammatory molecules. The aim of this study was to measure renin-angiotensin system molecules and to investigate their correlation with previously detected inflammatory markers in the same urine samples of fetuses with posterior urethral valve. Urine samples from 24 fetuses with posterior urethral valve were collected and compared to those from 22 healthy male newborns at the same gestational age (controls). Renin-angiotensin system components levels were measured by enzyme-linked immunosorbent assay. Fetuses with posterior urethral valve presented increased urinary levels of angiotensin (Ang) I, Ang-(1-7) and angiotensin-converting enzyme 2 in comparison with controls. ACE levels were significantly reduced and Ang II levels were similar in fetuses with posterior urethral valve in comparison with controls. Increased urinary levels of angiotensin-converting enzyme 2 and of Ang-(1-7) in fetuses with posterior urethral valve could represent a regulatory response to the intense inflammatory process triggered by posterior urethral valve. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  3. Melanocortin signaling and anorexia in chronic disease states.

    PubMed

    Wisse, Brent E; Schwartz, Michael W; Cummings, David E

    2003-06-01

    Data from both rodent models and humans suggest that intact neuronal melanocortin signaling is essential to prevent obesity, as mutations that decrease the melanocortin signal within the brain induce hyperphagia and excess body fat accumulation. Melanocortins are also involved in the pathogenesis of disorders at the opposite end of the spectrum of energy homeostasis, the anorexia and weight loss associated with inflammatory and neoplastic disease processes. Studies using melanocortin antagonists (SHU9119 or agouti-related peptide) or genetic approaches (melanocortin-4 receptor null mice) suggest that intact melanocortin tone is required for anorexia and weight loss induced by injected lipopolysaccharide (an inflammatory gram-negative bacterial cell wall product) or by implantation of prostate or lung cancer cells. Although the precise mechanism whereby peripheral inflammatory/neoplastic factors activate the melanocortin system remains unknown, the proinflammatory cytokines (interleukin-1, interleukin-6, and tumor necrosis factor-alpha) that are produced in the hypothalamus of rodents during both inflammatory and neoplastic disease processes likely play a role. The data presented in this paper summarize findings that implicate neuronal melanocortin signaling in inflammatory anorexia.

  4. Etiology and pathogenesis of inflammatory bowel disease.

    PubMed

    Schmidt, C; Stallmach, A

    2005-06-01

    Despite of scientific efforts during the last decades, etiology and pathogenesis of the two major inflammatory bowel diseases, namely Crohn's disease and ulcerative colitis, remain rather unclear. According to the results of multiple studies it is accepted that the development of either disease is the result of an exaggerated or insufficiently suppressed immune response to a hitherto undefined luminal antigen, probably derived from the microbial flora. This inflammatory process leads to the well-known mucosal damage and therefore a further disturbance of the epithelial barrier function, resulting in an increased influx of bacteria into the intestinal wall, even further accelerating the inflammatory process. However, these immunological disturbances that have been investigated extensively during the past years have to be considered on the genetic background of the individual patient and the environmental factors the patient is exposed to. In this review we will attempt to summarize the current knowledge about risk factors for inflammatory bowel diseases, genetic and environmental factors of IBD and focus on the immunological alterations of innate and acquired immune system underlying Crohn's disease and ulcerative colitis.

  5. Inflammatory cells implicated in neoplasia development in idiopathic inflammatory bowel disease.

    PubMed

    Hashash, Jana G; Hartman, Douglas J

    2017-11-10

    The inflammatory mechanisms that lead to the clinical symptoms that are grouped under the term inflammatory bowel disease have not been fully characterized. Although a specific mechanism has not been identified, inflammatory bowel disease is believed to be related to an inability by the immune system to shut active inflammation within the intestine. Many contributing factors have been implicated in the disease process. Based on population studies, patients with inflammatory bowel disease have an increased risk for neoplastic development. Although no specific immune cell has been implicated in neoplastic development within this patient population, several immune cells have been implicated as possible etiologies in inflammatory bowel disease. In this review, we will review the clinical evidence about the risk for neoplastic development in inflammatory bowel disease and the current clinical guidelines to survey this patient population. We will also review the pathologic assessment of inflammation within this patient population as well the underlying immune cells and cytokines that have been implicated in the etiology of inflammatory bowel disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases

    PubMed Central

    Vegeto, Elisabetta; Benedusi, Valeria; Maggi, Adriana

    2008-01-01

    Recent studies highlight the prominent role played by estrogens in protecting the central nervous system (CNS) against the noxious consequences of a chronic inflammatory reaction. The neurodegenerative process of several CNS diseases, including Multiple Sclerosis, Alzheimer’s and Parkinson’s Diseases, is associated with the activation of microglia cells, which drive the resident inflammatory response. Chronically stimulated during neurodegeneration, microglia cells are thought to provide detrimental effects on surrounding neurons. The inhibitory activity of estrogens on neuroinflammation and specifically on microglia might thus be considered as a beneficial therapeutic opportunity for delaying the onset or progression of neurodegenerative diseases; in addition, understanding the peculiar activity of this female hormone on inflammatory signalling pathways will possibly lead to the development of selected anti-inflammatory molecules. This review summarises the evidence for the involvement of microglia in neuroinflammation and the anti-inflammatory activity played by estrogens specifically in microglia. PMID:18522863

  7. Sympathetic Nerve Hyperactivity in the Spleen: Causal for Nonpathogenic-Driven Chronic Immune-Mediated Inflammatory Diseases (IMIDs)?

    PubMed

    Bellinger, Denise L; Lorton, Dianne

    2018-04-13

    Immune-Mediated Inflammatory Diseases (IMIDs) is a descriptive term coined for an eclectic group of diseases or conditions that share common inflammatory pathways, and for which there is no definitive etiology. IMIDs affect the elderly most severely, with many older individuals having two or more IMIDs. These diseases include, but are not limited to, type-1 diabetes, obesity, hypertension, chronic pulmonary disease, coronary heart disease, inflammatory bowel disease, and autoimmunity, such as rheumatoid arthritis (RA), Sjőgren's syndrome, systemic lupus erythematosus, psoriasis, psoriatic arthritis, and multiple sclerosis. These diseases are ostensibly unrelated mechanistically, but increase in frequency with age and share chronic systemic inflammation, implicating major roles for the spleen. Chronic systemic and regional inflammation underlies the disease manifestations of IMIDs. Regional inflammation and immune dysfunction promotes targeted end organ tissue damage, whereas systemic inflammation increases morbidity and mortality by affecting multiple organ systems. Chronic inflammation and skewed dysregulated cell-mediated immune responses drive many of these age-related medical disorders. IMIDs are commonly autoimmune-mediated or suspected to be autoimmune diseases. Another shared feature is dysregulation of the autonomic nervous system and hypothalamic pituitary adrenal (HPA) axis. Here, we focus on dysautonomia. In many IMIDs, dysautonomia manifests as an imbalance in activity/reactivity of the sympathetic and parasympathetic divisions of the autonomic nervous system (ANS). These major autonomic pathways are essential for allostasis of the immune system, and regulating inflammatory processes and innate and adaptive immunity. Pathology in ANS is a hallmark and causal feature of all IMIDs. Chronic systemic inflammation comorbid with stress pathway dysregulation implicate neural-immune cross-talk in the etiology and pathophysiology of IMIDs. Using a rodent model of inflammatory arthritis as an IMID model, we report disease-specific maladaptive changes in β₂-adrenergic receptor (AR) signaling from protein kinase A (PKA) to mitogen activated protein kinase (MAPK) pathways in the spleen. Beta₂-AR signal "shutdown" in the spleen and switching from PKA to G-coupled protein receptor kinase (GRK) pathways in lymph node cells drives inflammation and disease advancement. Based on these findings and the existing literature in other IMIDs, we present and discuss relevant literature that support the hypothesis that unresolvable immune stimulation from chronic inflammation leads to a maladaptive disease-inducing and perpetuating sympathetic response in an attempt to maintain allostasis. Since the role of sympathetic dysfunction in IMIDs is best studied in RA and rodent models of RA, this IMID is the primary one used to evaluate data relevant to our hypothesis. Here, we review the relevant literature and discuss sympathetic dysfunction as a significant contributor to the pathophysiology of IMIDs, and then discuss a novel target for treatment. Based on our findings in inflammatory arthritis and our understanding of common inflammatory process that are used by the immune system across all IMIDs, novel strategies to restore SNS homeostasis are expected to provide safe, cost-effective approaches to treat IMIDs, lower comorbidities, and increase longevity.

  8. The role of trophic factors and inflammatory processes in physical activity-induced neuroprotection in Parkinson's disease.

    PubMed

    Pałasz, Ewelina; Bąk, Agnieszka; Gąsiorowska, Anna; Niewiadomska, Grażyna

    2017-01-04

    Glial cells and neurotrophins play an important role in maintaining homeostasis of the CNS. Disturbances of their function can lead to a number of nervous system diseases, including Parkinson's disease (PD). Current clinical studies provide evidence that moderate physical activity adapted to the health status of PD patients can support pharmacological treatment, slow down the onset of motor impairments, and extend the patients period of independence. Physical activity, by stimulating the production and release of endogenous trophic factors, prevents the neurodegeneration of dopaminergic neurons via inhibition of inflammatory processes and the reduction of oxidative stress. The aim of this study is to present the current state of knowledge for the anti-inflammatory and neuroprotective properties of physical activity as a supportive therapy in Parkinson's disease.

  9. Immune dysregulation and cognitive vulnerability in the aging brain: Interactions of microglia, IL-1β, BDNF and synaptic plasticity.

    PubMed

    Patterson, Susan L

    2015-09-01

    Older individuals often experience declines in cognitive function after events (e.g. infection, or injury) that trigger activation of the immune system. This occurs at least in part because aging sensitizes the response of microglia (the brain's resident immune cells) to signals triggered by an immune challenge. In the aging brain, microglia respond to these signals by producing more pro-inflammatory cytokines (e.g. interleukin-1beta or IL-1β) and producing them for longer than microglia in younger brains. This exaggerated inflammatory response can compromise processes critical for optimal cognitive functioning. Interleukin-1β is central to the inflammatory response and is a key mediator and modulator of an array of associated biological functions; thus its production and release is usually very tightly regulated. This review will focus on the impact of dysregulated production of IL-1β on hippocampus dependent-memory systems and associated synaptic plasticity processes. The neurotrophin brain-derived neurotrophic factor (BNDF) helps to protect neurons from damage caused by infection or injury, and it plays a critical role in many of the same memory and hippocampal plasticity processes compromised by dysregulated production of IL-1β. This suggests that an exaggerated brain inflammatory response, arising from aging and a secondary immune challenge, may erode the capacity to provide the BDNF needed for memory-related plasticity processes at hippocampal synapses. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Regulatory T cells in atherosclerosis: critical immune regulatory function and therapeutic potential.

    PubMed

    Spitz, Charlotte; Winkels, Holger; Bürger, Christina; Weber, Christian; Lutgens, Esther; Hansson, Göran K; Gerdes, Norbert

    2016-03-01

    Atherosclerosis is a chronic inflammatory disease that is mediated by innate and adaptive immune responses. The disease is characterized by sub-endothelial accumulation and modification of lipids in the artery wall triggering an inflammatory reaction which promotes lesion progression and eventual plaque rupture, thrombus formation, and the respective clinical sequelae such as myocardial infarction or stroke. During the past decade, T-cell-mediated immune responses, especially control of pro-inflammatory signals by regulatory T cells (Tregs), have increasingly attracted the interest of experimental and clinical researchers. By suppression of T cell proliferation and secretion of anti-inflammatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor-β, Tregs exert their atheroprotective properties. Atherosclerosis-prone, hyperlipidemic mice harbor systemically less Tregs compared to wild-type mice, suggesting an imbalance of immune cells which affects local and systemic inflammatory and potentially metabolic processes leading to atherogenesis. Restoring or increasing Treg frequency and enhancing their suppressive capacity by various modulations may pose a promising approach for treating inflammatory conditions such as cardiovascular diseases. In this review, we briefly summarize the immunological basics of atherosclerosis and introduce the role and contribution of different subsets of T cells. We then discuss experimental data and current knowledge pertaining to Tregs in atherosclerosis and perspectives on manipulating the adaptive immune system to alleviate atherosclerosis and cardiovascular disease.

  11. trans-Chalcone, a flavonoid precursor, inhibits UV-induced skin inflammation and oxidative stress in mice by targeting NADPH oxidase and cytokine production.

    PubMed

    Martinez, Renata M; Pinho-Ribeiro, Felipe A; Steffen, Vinicius S; Caviglione, Carla V; Fattori, Victor; Bussmann, Allan J C; Bottura, Carolina; Fonseca, Maria J V; Vignoli, Josiane A; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rubia

    2017-07-01

    trans-Chalcone is a plant flavonoid precursor, which lacks broad investigation on its biological activity in inflammatory processes. In the present study, anti-inflammatory and antioxidant mechanisms of systemic administration with trans-chalcone, a flavonoid precursor, on ultraviolet (UV) irradiation-induced skin inflammation and oxidative stress in hairless mice were investigated by the following parameters: skin edema, myeloperoxidase activity (neutrophil marker), matrix metalloproteinase-9 activity, reduced glutathione levels, catalase activity, lipid peroxidation products, superoxide anion production, gp 91phox (NADPH oxidase subunit) mRNA expression by quantitative PCR and cytokine production by ELISA. Systemic treatment with trans-chalcone inhibited skin inflammation by reducing skin edema and neutrophil recruitment, and also inhibited matrix metalloproteinase-9 activity. trans-Chalcone also inhibited oxidative stress, gp 91phox mRNA expression, and the production of a wide range of pro-inflammatory cytokines, while it did not affect anti-inflammatory cytokines induced by UV irradiation. However, trans-chalcone did not prevent oxidative stress in vitro, suggesting that its in vivo effect is more related to anti-inflammatory properties rather than a direct antioxidant effect. In conclusion, treatment with trans-chalcone inhibited UV-induced skin inflammation resulting in oxidative stress inhibition in vivo. Therefore, systemic supplementation with this compound may represent an important therapeutic approach in inflammatory skin diseases induced by UV irradiation.

  12. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery.

    PubMed

    Faraut, Brice; Boudjeltia, Karim Zouaoui; Vanhamme, Luc; Kerkhofs, Myriam

    2012-04-01

    In addition to its effects on cognitive function, compelling evidence links sleep loss to alterations in the neuroendocrine, immune and inflammatory systems with potential negative public-health ramifications. The evidence to suggest that shorter sleep is associated with detrimental health outcomes comes from both epidemiological and experimental sleep deprivation studies. This review will focus on the post-sleep deprivation and recovery changes in immune and inflammatory functions in well-controlled sleep restriction laboratory studies. The data obtained indicate non-specific activation of leukocyte populations and a state of low-level systemic inflammation after sleep loss. Furthermore, one night of recovery sleep does not allow full recovery of a number of these systemic immune and inflammatory markers. We will speculate on the mechanism(s) that link(s) sleep loss to these responses and to the progression of cardiovascular disease. The immune and inflammatory responses to chronic sleep restriction suggest that chronic exposure to reduced sleep (<6 h/day) and insufficient time for recovery sleep could have gradual deleterious effects, over years, on cardiovascular pathogenesis with a heightened risk in women and in night and shift workers. Finally, we will examine countermeasures, e.g., napping or sleep extension, which could improve the recovery processes, in terms of alertness and immune and inflammatory parameters, after sleep restriction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity

    PubMed Central

    Irwin, Michael R; Opp, Mark R

    2017-01-01

    Sleep disturbances including insomnia independently contribute to risk of inflammatory disorders and major depressive disorder. This review and overview provides an integrated understanding of the reciprocal relationships between sleep and the innate immune system and considers the role of sleep in the nocturnal regulation of the inflammatory biology dynamics; the impact of insomnia complaints, extremes of sleep duration, and experimental sleep deprivation on genomic, cellular, and systemic markers of inflammation; and the influence of sleep complaints and insomnia on inflammaging and molecular processes of cellular aging. Clinical implications of this research include discussion of the contribution of sleep disturbance to depression and especially inflammation-related depressive symptoms. Reciprocal action of inflammatory mediators on the homeostatic regulation of sleep continuity and sleep macrostructure, and the potential of interventions that target insomnia to reverse inflammation, are also reviewed. Together, interactions between sleep and inflammatory biology mechanisms underscore the implications of sleep disturbance for inflammatory disease risk, and provide a map to guide the development of treatments that modulate inflammation, improve sleep, and promote sleep health. PMID:27510422

  14. Anti-inflammatory activity of aqueous and alkaline extracts from mushrooms (Agaricus blazei Murill).

    PubMed

    Padilha, Marina M; Avila, Ana A L; Sousa, Pergentino J C; Cardoso, Luis Gustavo V; Perazzo, Fábio F; Carvalho, José Carlos T

    2009-04-01

    The effects of aqueous and alkaline extracts from Agaricus blazei Murill, an edible mushroom used as folk medicine in Brazil, Japan, and China to treat several illnesses, were investigated on the basis of the inflammatory process induced by different agents. Oral administration of A. blazei extracts marginally inhibited the edema induced by nystatin. In contrast, when complete Freund's adjuvant was used as the inflammatory stimulus, both extracts were able to inhibit this process significantly (P < .05, analysis of variance followed by Tukey-Kramer multiple comparison post hoc test), although it inhibited the granulomatous tissue induction moderately. These extracts were able to decrease the ulcer wounds induced by stress. Also, administration of extracts inhibited neutrophil migration to the exudates present in the peritoneal cavity after carrageenin injection. Therefore, it is possible that A. blazei extracts can be useful in inflammatory diseases because of activation of the immune system and its cells induced by the presence of polysaccharides such as beta-glucans.

  15. The impact of maternal obesity on inflammatory processes and consequences for later offspring health outcomes.

    PubMed

    Segovia, S A; Vickers, M H; Reynolds, C M

    2017-10-01

    Obesity is a global epidemic, affecting both developed and developing countries. The related metabolic consequences that arise from being overweight or obese are a paramount global health concern, and represent a significant burden on healthcare systems. Furthermore, being overweight or obese during pregnancy increases the risk of offspring developing obesity and other related metabolic complications in later life, which can therefore perpetuate a transgenerational cycle of obesity. Obesity is associated with a chronic state of low-grade metabolic inflammation. However, the role of maternal obesity-mediated alterations in inflammatory processes as a mechanism underpinning developmental programming in offspring is less understood. Further, the use of anti-inflammatory agents as an intervention strategy to ameliorate or reverse the impact of adverse developmental programming in the setting of maternal obesity has not been well studied. This review will discuss the impact of maternal obesity on key inflammatory pathways, impact on pregnancy and offspring outcomes, potential mechanisms and avenues for intervention.

  16. Study of Autophagy and Microangiopathy in Sural Nerves of Patients with Chronic Idiopathic Axonal Polyneuropathy

    PubMed Central

    Samuelsson, Kristin; Osman, Ayman A. M.; Angeria, Maria; Risling, Mårten; Mohseni, Simin; Press, Rayomand

    2016-01-01

    Twenty-five percent of polyneuropathies are idiopathic. Microangiopathy has been suggested to be a possible pathogenic cause of chronic idiopathic axonal polyneuropathy (CIAP). Dysfunction of the autophagy pathway has been implicated as a marker of neurodegeneration in the central nervous system, but the autophagy process is not explored in the peripheral nervous system. In the current study, we examined the presence of microangiopathy and autophagy-related structures in sural nerve biopsies of 10 patients with CIAP, 11 controls with inflammatory neuropathy and 10 controls without sensory polyneuropathy. We did not find any significant difference in endoneurial microangiopathic markers in patients with CIAP compared to normal controls, though we did find a correlation between basal lamina area thickness and age. Unexpectedly, we found a significantly larger basal lamina area thickness in patients with vasculitic neuropathy. Furthermore, we found a significantly higher density of endoneurial autophagy-related structures, particularly in patients with CIAP but also in patients with inflammatory neuropathy, compared to normal controls. It is unclear if the alteration in the autophagy pathway is a consequence or a cause of the neuropathy. Our results do not support the hypothesis that CIAP is primarily caused by a microangiopathic process in endoneurial blood vessels in peripheral nerves. The significantly higher density of autophagy structures in sural nerves obtained from patients with CIAP and inflammatory neuropathy vs. controls indicates the involvement of this pathway in neuropathy, particularly in CIAP, since the increase in density of autophagy-related structures was more pronounced in patients with CIAP than those with inflammatory neuropathy. To our knowledge this is the first report investigating signs of autophagy process in peripheral nerves in patients with CIAP and inflammatory neuropathy. PMID:27662650

  17. Administration of a leptin antagonist during the neonatal leptin surge induces alterations in the redox and inflammatory state in peripubertal /adolescent rats.

    PubMed

    Mela, Virginia; Hernandez, Oskarina; Hunsche, Caroline; Diaz, Francisca; Chowen, Julie A; De la Fuente, Mónica

    2017-10-15

    The importance of the neonatal leptin surge in rodents in neurodevelopmental processes has aroused curiosity in its implication in other physiological systems. Given the role of leptin in neuro-immune interactions, we hypothesized that the neonatal leptin surge could have an effect on the oxidative and inflammatory stress situations of both systems. We blocked the neonatal leptin surge by a leptin antagonist and measured several parameters of oxidative and inflammatory stress in the spleen, hypothalamus and adipose tissue of peripubertal/adolescent rats. The treated rats showed lower activity of several antioxidant enzymes in the spleen and their leukocytes released lower levels of mitogen-stimulated IL-10 and IL-13 and higher levels of TNF-alpha. In conclusion, the neonatal leptin surge may have a key role in the establishment of adequate redox and inflammatory states in the immune system, which is important for the generation of adequate immune responses and to obtain and maintain good health. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Links demystified: Periodontitis and cancer

    PubMed Central

    Pendyala, Gowri; Joshi, Saurabh; Chaudhari, Shantanu; Gandhage, Dhananjay

    2013-01-01

    Cancer is marked by the uncontrolled growth of cells, tissue invasion and metastasis to various organs via the circulatory and lymphatic systems. Recent data have expanded the concept that inflammation is a critical component of tumor progression. Many cancers arise from sites of infection, chronic irritation, and inflammation. The tumor microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival, and migration. Periodontal disease, a chronic inflammatory condition is characterized by an oral bacterial infection leading to inflammation within the supporting tissues of the teeth, which often leads to the destruction of the periodontal tissues and alveolar bone that support the teeth. This oral inflammation often has systemic effects leading to an increased concentration of circulating inflammatory markers with the severity of disease being correlated directly with levels of serum inflammatory markers. Periodontal infection has been linked to organ and systemic diseases. There is documented evidence of significant associations between cancer of the lung, kidney, pancreas, hematological and oral cancers, and periodontal disease. This articles reviews and summarizes the possible biological mechanisms involved between periodontal infection and cancer. PMID:24379856

  19. Links demystified: Periodontitis and cancer.

    PubMed

    Pendyala, Gowri; Joshi, Saurabh; Chaudhari, Shantanu; Gandhage, Dhananjay

    2013-11-01

    Cancer is marked by the uncontrolled growth of cells, tissue invasion and metastasis to various organs via the circulatory and lymphatic systems. Recent data have expanded the concept that inflammation is a critical component of tumor progression. Many cancers arise from sites of infection, chronic irritation, and inflammation. The tumor microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival, and migration. Periodontal disease, a chronic inflammatory condition is characterized by an oral bacterial infection leading to inflammation within the supporting tissues of the teeth, which often leads to the destruction of the periodontal tissues and alveolar bone that support the teeth. This oral inflammation often has systemic effects leading to an increased concentration of circulating inflammatory markers with the severity of disease being correlated directly with levels of serum inflammatory markers. Periodontal infection has been linked to organ and systemic diseases. There is documented evidence of significant associations between cancer of the lung, kidney, pancreas, hematological and oral cancers, and periodontal disease. This articles reviews and summarizes the possible biological mechanisms involved between periodontal infection and cancer.

  20. [Inflammasome and its role in immunological and inflammatory response at early stage of burns].

    PubMed

    Zhang, Fang; Li, Jiahui; Xia, Zhaofan

    2014-06-01

    Inflammasomes are large multi-protein complexes that serve as a platform for caspase-1 activation, and this process induces subsequent maturation and secretion of the proinflammatory cytokines IL-1β and IL-18, as well as pyroptosis. As an important component of the innate immune system, early activation of inflammasomes in a variety of immune cell subsets can mediate inflammatory response and immunological conditions after burn injury. Here, we review the current knowledge of inflammasomes and its role in immunological and inflammatory response at the early stage of burn injury.

  1. Type I IFNs Are Required to Promote Central Nervous System Immune Surveillance through the Recruitment of Inflammatory Monocytes upon Systemic Inflammation

    PubMed Central

    Peralta Ramos, Javier María; Bussi, Claudio; Gaviglio, Emilia Andrea; Arroyo, Daniela Soledad; Baez, Natalia Soledad; Rodriguez-Galan, Maria Cecilia; Iribarren, Pablo

    2017-01-01

    Brain-resident microglia and peripheral migratory leukocytes play essential roles in shaping the immune response in the central nervous system. These cells activate and migrate in response to chemokines produced during active immune responses and may contribute to the progression of neuroinflammation. Herein, we addressed the participation of type I–II interferons in the response displayed by microglia and inflammatory monocytes to comprehend the contribution of these cytokines in the establishment and development of a neuroinflammatory process. Following systemic lipopolysaccharide (LPS) challenge, we found glial reactivity and an active recruitment of CD45hi leukocytes close to CD31+ vascular endothelial cells in circumventricular organs. Isolated CD11b+ CD45hi Ly6Chi Ly6G−-primed inflammatory monocytes were able to induce T cell proliferation, unlike CD11b+ CD45lo microglia. Moreover, ex vivo re-stimulation with LPS exhibited an enhancement of T cell proliferative response promoted by inflammatory monocytes. These myeloid cells also proved to be recruited in a type I interferon-dependent fashion as opposed to neutrophils, unveiling a role of these cytokines in their trafficking. Together, our results compares the phenotypic and functional features between tissue-resident vs peripheral recruited cells in an inflamed microenvironment, identifying inflammatory monocytes as key sentinels in a LPS-induced murine model of neuroinflammation. PMID:29255461

  2. "TRP inflammation" relationship in cardiovascular system.

    PubMed

    Numata, Tomohiro; Takahashi, Kiriko; Inoue, Ryuji

    2016-05-01

    Despite considerable advances in the research and treatment, the precise relationship between inflammation and cardiovascular (CV) disease remains incompletely understood. Therefore, understanding the immunoinflammatory processes underlying the initiation, progression, and exacerbation of many cardiovascular diseases is of prime importance. The innate immune system has an ancient origin and is well conserved across species. Its activation occurs in response to pathogens or tissue injury. Recent studies suggest that altered ionic balance, and production of noxious gaseous mediators link to immune and inflammatory responses with altered ion channel expression and function. Among plausible candidates for this are transient receptor potential (TRP) channels that function as polymodal sensors and scaffolding proteins involved in many physiological and pathological processes. In this review, we will first focus on the relevance of TRP channel to both exogenous and endogenous factors related to innate immune response and transcription factors related to sustained inflammatory status. The emerging role of inflammasome to regulate innate immunity and its possible connection to TRP channels will also be discussed. Secondly, we will discuss about the linkage of TRP channels to inflammatory CV diseases, from a viewpoint of inflammation in a general sense which is not restricted to the innate immunity. These knowledge may serve to provide new insights into the pathogenesis of various inflammatory CV diseases and their novel therapeutic strategies.

  3. Models of Inflammation: Carrageenan- or Complete Freund's Adjuvant (CFA)-Induced Edema and Hypersensitivity in the Rat.

    PubMed

    McCarson, Kenneth E

    2015-09-01

    Animal models of inflammation are used to assess the production of inflammatory mediators at sites of inflammation, the processing of pain sensation at CNS sites, the anti-inflammatory properties of agents such as nonsteroidal anti-inflammatory drugs (NSAIDs), and the efficacy of putative analgesic compounds in reversing cutaneous hypersensitivity. Detailed in this unit are methods to elicit and measure carrageenan- and complete Freund's adjuvant (CFA)-induced cutaneous inflammation. Due to possible differences between the dorsal root sensory system and the trigeminal sensory system, injections into either the footpad or vibrissal pad are described. In this manner, cutaneous inflammation can be assessed in tissue innervated by the lumbar dorsal root ganglion neurons (footpad) or by the trigeminal ganglion neurons (vibrissal pad). Copyright © 2015 John Wiley & Sons, Inc.

  4. Social Support and Heart Failure: Differing Effects by Race

    DTIC Science & Technology

    2015-05-11

    responses. These compensatory physiologic responses include increased sympathetic nervous system activity, inflammation, and constriction of blood vessels... physiological differences between African Americans and Caucasians. For instance the process by which sodium is processed in the body may vary between...associated cardiovascular and inflammatory diseases (76). One important hormone at work in the cardiovascular system is aldosterone and it may have a

  5. Transcriptome analysis reveals mucin 4 to be highly associated with periodontitis and identifies pleckstrin as a link to systemic diseases

    PubMed Central

    Lundmark, Anna; Davanian, Haleh; Båge, Tove; Johannsen, Gunnar; Koro, Catalin; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2015-01-01

    The multifactorial chronic inflammatory disease periodontitis, which is characterized by destruction of tooth-supporting tissues, has also been implicated as a risk factor for various systemic diseases. Although periodontitis has been studied extensively, neither disease-specific biomarkers nor therapeutic targets have been identified, nor its link with systemic diseases. Here, we analyzed the global transcriptome of periodontitis and compared its gene expression profile with those of other inflammatory conditions, including cardiovascular disease (CVD), rheumatoid arthritis (RA), and ulcerative colitis (UC). Gingival biopsies from 62 patients with periodontitis and 62 healthy subjects were subjected to RNA sequencing. The up-regulated genes in periodontitis were related to inflammation, wounding and defense response, and apoptosis, whereas down-regulated genes were related to extracellular matrix organization and structural support. The most highly up-regulated gene was mucin 4 (MUC4), and its protein product was confirmed to be over-expressed in periodontitis. When comparing the expression profile of periodontitis with other inflammatory diseases, several gene ontology categories, including inflammatory response, cell death, cell motion, and homeostatic processes, were identified as common to all diseases. Only one gene, pleckstrin (PLEK), was significantly overexpressed in periodontitis, CVD, RA, and UC, implicating this gene as an important networking link between these chronic inflammatory diseases. PMID:26686060

  6. Protease-mediated Inflammation: An In Vitro Human Keratinocyte-based Screening Tool for Anti-inflammatory Drug Nanocarrier Systems

    NASA Astrophysics Data System (ADS)

    Frombach, Janna; Lohan, Silke B.; Lemm, Davina; Gruner, Paul; Hasler, Julia; Ahlberg, Sebastian; Blume-Peytavi, Ulrike; Unbehauen, Michael; Haag, Rainer; Meinke, Martina C.; Vogt, Annika

    2018-05-01

    Refined encapsulation approaches in dermatotherapy gain increased interest. There is need of reproducible in vitro systems representing disease features to screen drug delivery systems for preclinical assessment. Inflammatory human skin diseases are commonly accompanied by abnormal epidermal differentiation and barrier impairment. Serine proteases (SPs) and their inhibitors play a critical role in such dysfunctional differentiation. SPs also initiate cellular pathways via activation of protease-activated receptors, which contribute to inflammation. Thus, function and activity of SPs should be considered for the design of new therapies of such disorders. Herein, we established a novel simplified cell culture model, based on SP-mediated inflammation suitable to assess nanocarriers loaded with anti-inflammatory drugs. SP-mediated inflammation and the regulatory effect of free or encapsulated dexamethasone were determined by measuring interleukin-6 and interleukin-8 in culture medium of HaCaT (human adult low calcium temperature)-keratinocytes. Additionally, radical formation was analyzed by electron paramagnetic resonance spectroscopy. Cellular uptake of core-multishell nanocarriers was investigated by fluorescence microscopy. Cytotoxicity of all additives was determined by a viability assay. SP-Stimulation of keratinocytes resulted in increased radical production and release of inflammatory cytokines without affecting cell viability. Induced inflammation was successfully downregulated by addition of free or encapsulated dexamethasone. SP-addition can be used as inflammatory stimulus in cell culture to mimic effects of aberrant enzymatic activities found in skin of atopic dermatitis patients. The set-up is appropriate as a preliminary test to examine the effectiveness of new molecules or delivery-systems to counteract serine protease-mediated inflammatory processes prior to skin studies.

  7. Boswellia carterii liquisolid systems with promoted anti-inflammatory activity.

    PubMed

    Mostafa, Dina Mahmoud; Ammar, Nagwa Mohammed; Abd El-Alim, Sameh Hosam; Kassem, Ahmed Alaa; Hussein, Rehab Ali; Awad, Gamal; El-Awdan, Sally Abdul-Wanees

    2015-01-01

    Boswellia carterii (BC) Birdwood oleogum resin is an ancient remedy of inflammation processes known since Ancient Egyptian time. Of boswellic acids, 3-acetyl-11-keto-β-boswellic acid (AKBA) is the most potent anti-inflammatory active principle. Liquisolid systems of the biologically active fraction of BC oleogum resin were prepared for improving dissolution properties using low dose oral delivery to achieve enhanced anti-inflammatory activity, in comparison with the standard oral anti-inflammatory; Indomethacin. AKBA was assayed, employing an accurate and sensitive HPLC method. Detection was carried out at 210 nm using UV/Vis detector. A solubility study for the bioactive fraction was conducted. Microcrystalline cellulose and Aeroperl®300 Pharma were used as carrier and coating materials. Angle of slide, liquid load factor and Carr's flow index were estimated. Six systems were prepared using polyethylene glycol 400, solvent and two drug loading concentrations; 20 and 40 %. For each concentration, three carrier: coat ratios were dispensed; 20:1, 10:1, and 5:1. Dissolution study was performed and two systems were selected for characterization and in vivo evaluation by investigating upper GIT ulcerogenic effect and anti-inflammatory efficacy in rats. Results indicate absence of ulcers and significantly higher and prolonged anti-inflammatory efficacy for formulations F1 and F2, with carrier: coat ratio, 5:1 and drug loads of 20 and 40 %, respectively, compared with standard oral indomethacin. We conclude higher efficacy of BC bioactive fraction liquisolids compared with Indomethacin with greater safety on GIT, longer duration of action and hence better patient compliance.

  8. Systemic inflammatory mediators in post-traumatic complex regional pain syndrome (CRPS I) - longitudinal investigations and differences to control groups.

    PubMed

    Schinkel, Christian; Scherens, A; Köller, M; Roellecke, G; Muhr, G; Maier, C

    2009-03-17

    The Complex Regional Pain Syndrome I (CRPS I) is a disease that might affect an extremity after trauma or operation. The pathogenesis remains yet unclear. It has clinical signs of severe local inflammation as a result of an exaggerated inflammatory response but neurogenic dysregulation also contributes to it. Some studies investigated the role inflammatory mediators and cytokines; however, few longitudinal studies exist and control groups except healthy controls were not investigated yet. To get further insights into the role of systemic inflammatory mediators in CRPS I, we investigated a variety of pro-, anti-, or neuro-inflammatory mediators such as C-Reactive Protein (CRP), White Blood Cell Count (WBC), Interleukins 4, 6, 8, 10, 11, 12 (p70), Interferon gamma, Tumor-Necrosis-Factor alpha (TNF-a) and its soluble Receptors I/II, soluble Selectins (E,L,P), Substance-P (SP), and Calcitonin Gene-Related Peptide (CGRP) at different time points in venous blood from patients with acute (AC) and chronic (CC) CRPS I, patients with forearm fractures (FR), with neuralgia (NE), and from healthy volunteers (C). No significant changes for serum parameters investigated in CRPS compared to control groups were found except for CC/C (CGRP p = 0.007), FR/C (CGRP p = 0.048) and AC/CC (IL-12 p = 0.02; TNFRI/II p = 0.01; SP p = 0.049). High interindividual variations were observed. No intra- or interindividual correlation of parameters with clinical course (e.g. chronification) or outcome was detectable. Although clinically appearing as inflammation in acute stages, local rather than systemic inflammatory responses seem to be relevant in CRPS. Variable results from different studies might be explained by unpredictable intermittent release of mediators from local inflammatory processes into the blood combined with high interindividual variabilities. A clinically relevant difference to various control groups was not notable in this pilot study. Determination of systemic inflammatory parameters is not yet helpful in diagnostic and follow-up of CRPS I.

  9. Immune-regulating effects of exercise on cigarette smoke-induced inflammation

    PubMed Central

    Madani, Ashkan; Alack, Katharina; Richter, Manuel Jonas; Krüger, Karsten

    2018-01-01

    Long-term cigarette smoking (LTCS) represents an important risk factor for cardiac infarction and stroke and the central risk factor for the development of a bronchial carcinoma, smoking-associated interstitial lung fibrosis, and chronic obstructive pulmonary disease. The pathophysiologic development of these diseases is suggested to be promoted by chronic and progressive inflammation. Cigarette smoking induces repetitive inflammatory insults followed by a chronic and progressive activation of the immune system. In the pulmonary system of cigarette smokers, oxidative stress, cellular damage, and a chronic activation of pattern recognition receptors are described which are followed by the translocation of the NF-kB, the release of pro-inflammatory cytokines, chemokines, matrix metalloproteases, and damage-associated molecular patterns. In parallel, smoke pollutants cross directly through the alveolus–capillary interface and spread through the systemic bloodstream targeting different organs. Consequently, LTCS induces a systemic low-grade inflammation and increased oxidative stress in the vascular system. In blood, these processes promote an increased coagulation and endothelial dysfunction. In muscle tissue, inflammatory processes activate catabolic signaling pathways followed by muscle wasting and sarcopenia. In brain, several characteristics of neuroinflammation were described. Regular exercise training has been shown to be an effective nonpharmacological treatment strategy in smoke-induced pulmonary diseases. It is well established that exercise training exerts immune-regulating effects by activating anti-inflammatory signaling pathways. In this regard, the release of myokines from contracting skeletal muscle, the elevations of cortisol and adrenalin, the reduced expression of Toll-like receptors, and the increased mobilization of immune-regulating leukocyte subtypes might be of vital importance. Exercise training also increases the local and systemic antioxidative capacity and several compensatory mechanisms in tissues such as an increased anabolic signaling in muscle or an increased compliance of the vascular system. Accordingly, regular exercise training seems to protect long-term smokers against some important negative local and systemic consequences of smoking. Data suggest that it seems to be important to start exercise training as early as possible. PMID:29731655

  10. Inflammatory myofibroblastic bladder tumor in a patient with wolf-hirschhorn syndrome.

    PubMed

    Marte, Antonio; Indolfi, Paolo; Ficociello, Carmine; Russo, Daniela; Oreste, Matilde; Bottigliero, Gaetano; Gualdiero, Giovanna; Barone, Ciro; Vigliar, Elena; Indolfi, Cristiana; Casale, Fiorina

    2013-01-01

    Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm described in several tissues and organs including genitourinary system, lung, head, and neck. The etiology of IMT is contentious, and whether it is a postinflammatory process or a true neoplasm remains controversial. To our knowledge, we report the first reported case of IMT of urinary bladder in a pediatric patient with Wolf-Hirschhorn (WHS). We also review the literature about patients with associated neoplasia.

  11. Acute and Recurrent Pericarditis.

    PubMed

    Imazio, Massimo; Gaita, Fiorenzo

    2017-11-01

    Acute and recurrent pericarditis is the most common pericardial syndrome encountered in clinical practice either as an isolated process or as part of a systemic disease. The diagnosis is based on clinical evaluation, electrocardiogram, and echocardiography. The empiric therapy is based on nonsteroidal anti-inflammatory drugs plus colchicine as first choice, resorting to corticosteroids for specific indications (eg, systemic inflammatory disease on corticosteroids, pregnancy, renal failure, concomitant oral anticoagulants), for contraindications or failure of the first-line therapy. The most common complication is recurrence, occurring in up to 30% of cases after a first episode of pericarditis. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Omega-3 Fatty acids and inflammation: novel interactions reveal a new step in neutrophil recruitment.

    PubMed

    Tull, Samantha P; Yates, Clara M; Maskrey, Benjamin H; O'Donnell, Valerie B; Madden, Jackie; Grimble, Robert F; Calder, Philip C; Nash, Gerard B; Rainger, G Ed

    2009-08-01

    Inflammation is a physiological response to tissue trauma or infection, but leukocytes, which are the effector cells of the inflammatory process, have powerful tissue remodelling capabilities. Thus, to ensure their precise localisation, passage of leukocytes from the blood into inflamed tissue is tightly regulated. Recruitment of blood borne neutrophils to the tissue stroma occurs during early inflammation. In this process, peptide agonists of the chemokine family are assumed to provide a chemotactic stimulus capable of supporting the migration of neutrophils across vascular endothelial cells, through the basement membrane of the vessel wall, and out into the tissue stroma. Here, we show that, although an initial chemokine stimulus is essential for the recruitment of flowing neutrophils by endothelial cells stimulated with the inflammatory cytokine tumour necrosis factor-alpha, transit of the endothelial monolayer is regulated by an additional and downstream stimulus. This signal is supplied by the metabolism of the omega-6-polyunsaturated fatty acid (n-6-PUFA), arachidonic acid, into the eicosanoid prostaglandin-D(2) (PGD(2)) by cyclooxygenase (COX) enzymes. This new step in the neutrophil recruitment process was revealed when the dietary n-3-PUFA, eicosapentaenoic acid (EPA), was utilised as an alternative substrate for COX enzymes, leading to the generation of PGD(3). This alternative series eicosanoid inhibited the migration of neutrophils across endothelial cells by antagonising the PGD(2) receptor. Here, we describe a new step in the neutrophil recruitment process that relies upon a lipid-mediated signal to regulate the migration of neutrophils across endothelial cells. PGD(2) signalling is subordinate to the chemokine-mediated activation of neutrophils, but without the sequential delivery of this signal, neutrophils fail to penetrate the endothelial cell monolayer. Importantly, the ability of the dietary n-3-PUFA, EPA, to inhibit this process not only revealed an unsuspected level of regulation in the migration of inflammatory leukocytes, it also contributes to our understanding of the interactions of this bioactive lipid with the inflammatory system. Moreover, it indicates the potential for novel therapeutics that target the inflammatory system with greater affinity and/or specificity than supplementing the diet with n-3-PUFAs.

  13. Anti-aging effects of guanosine in glial cells.

    PubMed

    Souza, Débora Guerini; Bellaver, Bruna; Bobermin, Larissa Daniele; Souza, Diogo Onofre; Quincozes-Santos, André

    2016-12-01

    Guanosine, a guanine-based purine, has been shown to exert beneficial roles in in vitro and in vivo injury models of neural cells. Guanosine is released from astrocytes and modulates important astroglial functions, including glutamatergic metabolism, antioxidant, and anti-inflammatory activities. Astrocytes are crucial for regulating the neurotransmitter system and synaptic information processes, ionic homeostasis, energy metabolism, antioxidant defenses, and the inflammatory response. Aging is a natural process that induces numerous changes in the astrocyte functionality. Thus, the search for molecules able to reduce the glial dysfunction associated with aging may represent an approach for avoiding the onset of age-related neurological diseases. Hence, the aim of this study was to evaluate the anti-aging effects of guanosine, using primary astrocyte cultures from newborn, adult, and aged Wistar rats. Concomitantly, we evaluated the role of heme oxygenase 1 (HO-1) in guanosine-mediated glioprotection. We observed age-dependent changes in glutamate uptake, glutamine synthetase (GS) activity, the glutathione (GSH) system, pro-inflammatory cytokine (tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β)) release, and the transcriptional activity of nuclear factor kB (NFkB), which were prevented by guanosine in an HO-1-dependent manner. Our findings suggest guanosine to be a promising therapeutic agent able to provide glioprotection during the aging process. Thus, this study contributes to the understanding of the cellular and molecular mechanisms of guanosine in the aging process.

  14. Cognition and Emotions in Recurrent Depressive Disorders - The Role of Inflammation and the Kynurenine Pathway.

    PubMed

    Talarowska, Monika; Galecki, Piotr

    2016-01-01

    Separating emotions from cognition seems impossible in everyday experiences of a human being. Emotional processes have an impact on the ability of planning and solving problems, or decision-making skills. They are a valuable source of information about ourselves, our partners in interactions and the surrounding world. Recent years have shown that axial symptoms of depression are caused by emotion regulation disorders, dysfunctions in the reward system and deficits of cognitive processes. There is a few studies concerning a link between emotional and inflammatory processes in depression. The aim of this article is to present results of contemporary research studies over mutual connections between social cognition, cognitive processes and inflammatory factors significant for the aetiology of recurrent depressive disorders, with particular reference to the role of kynurenine pathways.

  15. A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis.

    PubMed

    Boiziau, Claudine; Nikolski, Macha; Mordelet, Elodie; Aussudre, Justine; Vargas-Sanchez, Karina; Petry, Klaus G

    2018-06-01

    Multiple sclerosis is characterized by inflammatory lesions dispersed throughout the central nervous system (CNS) leading to severe neurological handicap. Demyelination, axonal damage, and blood brain barrier alterations are hallmarks of this pathology, whose precise processes are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) rat model that mimics many features of human multiple sclerosis, the phage display strategy was applied to select peptide ligands targeting inflammatory sites in CNS. Due to the large diversity of sequences after phage display selection, a bioinformatics procedure called "PepTeam" designed to identify peptides mimicking naturally occurring proteins was used, with the goal to predict peptides that were not background noise. We identified a circular peptide CLSTASNSC called "Ph48" as an efficient binder of inflammatory regions of EAE CNS sections including small inflammatory lesions of both white and gray matter. Tested on human brain endothelial cells hCMEC/D3, Ph48 was able to bind efficiently when these cells were activated with IL1β to mimic inflammatory conditions. The peptide is therefore a candidate for further analyses of the molecular alterations in inflammatory lesions.

  16. Understanding Resolvin Signaling Pathways to Improve Oral Health

    PubMed Central

    Keinan, David; Leigh, Noel J.; Nelson, Joel W.; De Oleo, Laura; Baker, Olga J.

    2013-01-01

    The discovery of resolvins has been a major breakthrough for understanding the processes involved in resolution of inflammation. Resolvins belong to a family of novel lipid mediators that possess dual anti-inflammatory and pro-resolution actions. Specifically, they protect healthy tissue during immune-inflammatory responses to infection or injury, thereby aiding inflammation resolution and promoting tissue healing. One of the major concerns in modern medicine is the management and treatment of oral diseases, as they are related to systemic outcomes impacting the quality of life of many patients. This review summarizes known signaling pathways utilized by resolvins to regulate inflammatory responses associated with the oral cavity. PMID:23528855

  17. Neuroinflammation: the devil is in the details.

    PubMed

    DiSabato, Damon J; Quan, Ning; Godbout, Jonathan P

    2016-10-01

    There is significant interest in understanding inflammatory responses within the brain and spinal cord. Inflammatory responses that are centralized within the brain and spinal cord are generally referred to as 'neuroinflammatory'. Aspects of neuroinflammation vary within the context of disease, injury, infection, or stress. The context, course, and duration of these inflammatory responses are all critical aspects in the understanding of these processes and their corresponding physiological, biochemical, and behavioral consequences. Microglia, innate immune cells of the CNS, play key roles in mediating these neuroinflammatory responses. Because the connotation of neuroinflammation is inherently negative and maladaptive, the majority of research focus is on the pathological aspects of neuroinflammation. There are, however, several degrees of neuroinflammatory responses, some of which are positive. In many circumstances including CNS injury, there is a balance of inflammatory and intrinsic repair processes that influences functional recovery. In addition, there are several other examples where communication between the brain and immune system involves neuroinflammatory processes that are beneficial and adaptive. The purpose of this review is to distinguish different variations of neuroinflammation in a context-specific manner and detail both positive and negative aspects of neuroinflammatory processes. In this review, we will use brain and spinal cord injury, stress, aging, and other inflammatory events to illustrate the potential harm and benefits inherent to neuroinflammation. Context, course, and duration of the inflammation are highly important to the interpretation of these events, and we aim to provide insight into this by detailing several commonly studied insults. This article is part of the 60th anniversary supplemental issue. © 2016 International Society for Neurochemistry.

  18. Inflammation in aging part 1: physiology and immunological mechanisms.

    PubMed

    Hunt, Katherine J; Walsh, Bronagh M; Voegeli, David; Roberts, Helen C

    2010-01-01

    During the aging process, remodeling of several body systems occurs, and these changes can have a startling effect upon the immune system. The reduction in sex steroids and growth hormones and declines in vitamin D concentration that accompany the aging process are associated with increases in the baseline levels of inflammatory proteins. At the same time, inflammation arising from atherosclerosis and other chronic diseases further contributes to the inflammatory milieu and effects a state of chronic inflammation. This chronic inflammation, or ''inflammaging'' as it has been termed, seems to be associated with a host of adverse effects contributing to many of the health problems that increase morbidity and decrease both quality of life and the ability to maintain independence in old age. For nurses to be truly informed when caring for older people and to ensure that they have a detailed understanding of the complexities of older people's health needs, they must have a knowledge of the physiological and immunological changes with age. This is the first of a two-part article on inflammatory processes in aging. These age-related changes are presented here, including an examination of the impact of genetic and lifestyle factors. The effect of these changes on the health of the individual and implications for practice are described in Part 2.

  19. Smart Prosthetic Hand Technology - Phase 2

    DTIC Science & Technology

    2011-05-01

    identification and estimation, hand motion estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The...Smart Prosthetics, Bio- Robotics , Intelligent EMG Signal Processing, Embedded Systems and Intelligent Control, Inflammatory Responses of Cells, Toxicity...estimation, intelligent embedded systems and control, robotic hand and biocompatibility and signaling. The developed identification algorithm using a new

  20. Hfe Deficiency Impairs Pulmonary Neutrophil Recruitment in Response to Inflammation

    PubMed Central

    Benesova, Karolina; Vujić Spasić, Maja; Schaefer, Sebastian M.; Stolte, Jens; Baehr-Ivacevic, Tomi; Waldow, Katharina; Zhou, Zhe; Klingmueller, Ursula; Benes, Vladimir; Mall, Marcus A.; Muckenthaler, Martina U.

    2012-01-01

    Regulation of iron homeostasis and the inflammatory response are tightly linked to protect the host from infection. Here we investigate how imbalanced systemic iron homeostasis in a murine disease model of hereditary hemochromatosis (Hfe−/− mice) affects the inflammatory responses of the lung. We induced acute pulmonary inflammation in Hfe−/− and wild-type mice by intratracheal instillation of 20 µg of lipopolysaccharide (LPS) and analyzed local and systemic inflammatory responses and iron-related parameters. We show that in Hfe−/− mice neutrophil recruitment to the bronchoalveolar space is attenuated compared to wild-type mice although circulating neutrophil numbers in the bloodstream were elevated to similar levels in Hfe−/− and wild-type mice. The underlying molecular mechanisms are likely multifactorial and include elevated systemic iron levels, alveolar macrophage iron deficiency and/or hitherto unexplored functions of Hfe in resident pulmonary cell types. As a consequence, pulmonary cytokine expression is out of balance and neutrophils fail to be recruited efficiently to the bronchoalveolar compartment, a process required to protect the host from infections. In conclusion, our findings suggest a novel role for Hfe and/or imbalanced iron homeostasis in the regulation of the inflammatory response in the lung and hereditary hemochromatosis. PMID:22745741

  1. Inflammatory Myofibroblastic Bladder Tumor in a Patient with Wolf-Hirschhorn Syndrome

    PubMed Central

    Marte, Antonio; Indolfi, Paolo; Ficociello, Carmine; Oreste, Matilde; Bottigliero, Gaetano; Gualdiero, Giovanna; Barone, Ciro; Vigliar, Elena; Indolfi, Cristiana; Casale, Fiorina

    2013-01-01

    Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm described in several tissues and organs including genitourinary system, lung, head, and neck. The etiology of IMT is contentious, and whether it is a postinflammatory process or a true neoplasm remains controversial. To our knowledge, we report the first reported case of IMT of urinary bladder in a pediatric patient with Wolf-Hirschhorn (WHS). We also review the literature about patients with associated neoplasia. PMID:24024066

  2. Influence of Physical Activity and Nutrition on Obesity-Related Immune Function

    PubMed Central

    Zourdos, Michael C.; Jo, Edward; Ormsbee, Michael J.

    2013-01-01

    Research examining immune function during obesity suggests that excessive adiposity is linked to impaired immune responses leading to pathology. The deleterious effects of obesity on immunity have been associated with the systemic proinflammatory profile generated by the secretory molecules derived from adipose cells. These include inflammatory peptides, such as TNF-α, CRP, and IL-6. Consequently, obesity is now characterized as a state of chronic low-grade systemic inflammation, a condition considerably linked to the development of comorbidity. Given the critical role of adipose tissue in the inflammatory process, especially in obese individuals, it becomes an important clinical objective to identify lifestyle factors that may affect the obesity-immune system relationship. For instance, stress, physical activity, and nutrition have each shown to be a significant lifestyle factor influencing the inflammatory profile associated with the state of obesity. Therefore, the purpose of this review is to comprehensively evaluate the impact of lifestyle factors, in particular psychological stress, physical activity, and nutrition, on obesity-related immune function with specific focus on inflammation. PMID:24324381

  3. In vivo antinociceptive and anti-inflammatory activities of dried and fermented processed virgin coconut oil.

    PubMed

    Zakaria, Z A; Somchit, M N; Mat Jais, A M; Teh, L K; Salleh, M Z; Long, K

    2011-01-01

    The present study was carried out to investigate the antinociceptive and anti-inflammatory activities of virgin coconut oil (VCO) produced by the Malaysian Agriculture Research and Development Institute (MARDI) using various in vivo models. Two types of VCOs, produced via standard drying (VCOA) and fermentation (VCOB) processes were used in this study. Both VCOA and VCOB were serially diluted using 1% Tween 80 to concentrations (v/v) of 10, 50 and 100%. Antinociceptive and anti- inflammatory activities of both VCOs were examined using various in vivo model systems. The antinociceptive activity of the VCOs were compared to those of 1% Tween 80 (used as a negative control), morphine (5 mg/kg) and/or acetylsalicylic acid (100 mg/kg). Both VCOA and VCOB exhibited significant (p < 0.05) dose-dependent antinociceptive activity in the acetic acid-induced writhing test. Both VCOs also exerted significant (p < 0.05) antinociceptive activity in both phases of the formalin and hot-plate tests. Interestingly, the VCOs exhibited anti-inflammatory activity in an acute (carrageenan-induced paw edema test), but not in a chronic (cotton-pellet-induced granuloma test) model of inflammation. The MARDI-produced VCOs possessed antinociceptive and anti-inflammatory activities. Further studies are needed to confirm these observations. Copyright © 2011 S. Karger AG, Basel.

  4. Endoplasmic Reticulum Stress Mediates the Anti-Inflammatory Effect of Ethyl Pyruvate in Endothelial Cells

    PubMed Central

    Yi, Wei; Yang, Yang; Zhao, Dajun; Yang, Honggang; Geng, Ting; Xing, Jianzhou; Zhang, Yu; Tan, Songtao; Yi, Dinghua

    2014-01-01

    Ethyl pyruvate (EP) is a simple aliphatic ester of the metabolic intermediate pyruvate that has been demonstrated to be a potent anti-inflammatory agent in a variety of in vivo and in vitro model systems. However, the protective effects and mechanisms underlying the actions of EP against endothelial cell (EC) inflammatory injury are not fully understood. Previous studies have confirmed that endoplasmic reticulum stress (ERS) plays an important role in regulating the pathological process of EC inflammation. In this study, our aim was to explore the effects of EP on tumor necrosis factor-α (TNF-α)-induced inflammatory injury in human umbilical vein endothelial cells (HUVECs) and to explore the role of ERS in this process. TNF-α treatment not only significantly increased the adhesion of monocytes to HUVECs and inflammatory cytokine (sICAM1, sE-selectin, MCP-1 and IL-8) production in cell culture supernatants but it also increased ICAM and MMP9 protein expression in HUVECs. TNF-α also effectively increased the ERS-related molecules in HUVECs (GRP78, ATF4, caspase12 and p-PERK). EP treatment effectively reversed the effects of the TNF-α-induced adhesion of monocytes on HUVECs, inflammatory cytokines and ERS-related molecules. Furthermore, thapsigargin (THA, an ERS inducer) attenuated the protective effects of EP against TNF-α-induced inflammatory injury and ERS. The PERK siRNA treatment not only inhibited ERS-related molecules but also mimicked the protective effects of EP to decrease TNF-α-induced inflammatory injury. In summary, we have demonstrated for the first time that EP can effectively reduce vascular endothelial inflammation and that this effect at least in part depends on the attenuation of ERS. PMID:25470819

  5. Endocan and the respiratory system: a review.

    PubMed

    Kechagia, Maria; Papassotiriou, Ioannis; Gourgoulianis, Konstantinos I

    2016-01-01

    Endocan, formerly called endothelial cell-specific molecule 1, is an endothelial cell-associated proteoglycan that is preferentially expressed by renal and pulmonary endothelium. It is upregulated by proangiogenic molecules as well as by pro-inflammatory cytokines, and since it reflects endothelial activation and dysfunction, it is regarded as a novel tissue and blood-based relevant biomarker. As such, it is increasingly being researched and evaluated in a wide spectrum of healthy and disease pathophysiological processes. Here, we review the present scientific knowledge on endocan, with emphasis on the evidence that underlines its possible clinical value as a prognostic marker in several malignant, inflammatory and obstructive disorders of the respiratory system.

  6. Pathways leading to an immunological disease: systemic lupus erythematosus

    PubMed Central

    Zharkova, Olga; Celhar, Teja; Cravens, Petra D.; Satterthwaite, Anne B.; Fairhurst, Anna-Marie

    2017-01-01

    Abstract SLE is a chronic autoimmune disease caused by perturbations of the immune system. The clinical presentation is heterogeneous, largely because of the multiple genetic and environmental factors that contribute to disease initiation and progression. Over the last 60 years, there have been a number of significant leaps in our understanding of the immunological mechanisms driving disease processes. We now know that multiple leucocyte subsets, together with inflammatory cytokines, chemokines and regulatory mediators that are normally involved in host protection from invading pathogens, contribute to the inflammatory events leading to tissue destruction and organ failure. In this broad overview, we discuss the main pathways involved in SLE and highlight new findings. We describe the immunological changes that characterize this form of autoimmunity. The major leucocytes that are essential for disease progression are discussed, together with key mediators that propagate the immune response and drive the inflammatory response in SLE. PMID:28375453

  7. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  8. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota.

    PubMed

    Sun, M; He, C; Cong, Y; Liu, Z

    2015-09-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.

  9. Epithelioid inflammatory myofibroblastic sarcoma: a case report

    PubMed Central

    Clevenger, Jessica A.; Masters, Gregory A.; Bauer, Thomas L.; Nam, Brian T.

    2015-01-01

    Inflammatory myofibroblastic tumor (IMT) of the lung is a rare malignancy with few cases reported in the literature. Histologically, it is composed by spindle cells and an infiltrate of inflammatory cells. Children and young, non-smoking adults constitute the majority of cases, the clinical behavior ranges from a benign entity to a malignant process with rapid recurrence and metastatic progression. We present a case of epithelioid inflammatory myofibroblastic sarcoma (EIMS) of the pleura, a malignant variant of IMT, which was initially treated with debulking surgical resection followed by systemic chemotherapy. The tumor was found to have an anaplastic lymphoma kinase (ALK) gene rearrangement. An ALK directed tyrosine kinase inhibitor was used with an impressive response, the patient remains in remission nearly 1 year after presentation. The pathogenesis, pathologic findings, clinical behavior and imaging of pulmonary EIMS are discussed. PMID:26623133

  10. Systemic Inflammation: Methodological Approaches to Identification of the Common Pathological Process.

    PubMed

    Zotova, N V; Chereshnev, V A; Gusev, E Yu

    2016-01-01

    We defined Systemic inflammation (SI) as a "typical, multi-syndrome, phase-specific pathological process, developing from systemic damage and characterized by the total inflammatory reactivity of endotheliocytes, plasma and blood cell factors, connective tissue and, at the final stage, by microcirculatory disorders in vital organs and tissues." The goal of the work: to determine methodological approaches and particular methodical solutions for the problem of identification of SI as a common pathological process. SI can be defined by the presence in plasma of systemic proinflammatory cell stress products-cytokines and other inflammatory mediators, and also by the complexity of other processes signs. We have developed 2 scales: 1) The Reactivity Level scale (RL)-from 0 to 5 points: 0-normal level; RL-5 confirms systemic nature of inflammatory mediator release, and RL- 2-4 defines different degrees of event probability. 2) The SI scale, considering additional criteria along with RL, addresses more integral criteria of SI: the presence of ≥ 5 points according to the SI scale proves the high probability of SI developing. To calculate the RL scale, concentrations of 4 cytokines (IL-6, IL-8, IL-10, TNF-α) and C-reactive protein in plasma were examined. Additional criteria of the SI scale were the following: D-dimers>500ng/ml, cortisol>1380 or <100nmol/l, troponin I≥0.2ng/ml and/or myoglobin≥800ng/ml. 422 patients were included in the study with different septic (n-207) and aseptic (n-215) pathologies. In 190 cases (of 422) there were signs of SI (lethality 38.4%, n-73). In only 5 of 78 cases, lethality was not confirmed by the presence of SI. SI was registered in 100% of cases with septic shock (n-31). There were not significant differences between AU-ROC of CR, SI scale and SOFA to predict death in patients with sepsis and trauma.

  11. Mismatch in epitope specificities between IFNγ inflamed and uninflamed conditions leads to escape from T lymphocyte killing in melanoma.

    PubMed

    Woods, Katherine; Knights, Ashley J; Anaka, Matthew; Schittenhelm, Ralf B; Purcell, Anthony W; Behren, Andreas; Cebon, Jonathan

    2016-01-01

    A current focus in cancer treatment is to broaden responses to immunotherapy. One reason these therapies may prove inadequate is that T lymphocytes fail to recognize the tumor due to differences in immunogenic epitopes presented by the cancer cells under inflammatory or non-inflammatory conditions. The antigen processing machinery of the cell, the proteasome, cleaves proteins into peptide epitopes for presentation on MHC complexes. Immunoproteasomes in inflammatory melanomas, and in antigen presenting cells of the immune system, are enzymatically different to standard proteasomes expressed by tumors with no inflammation. This corresponds to alterations in protein cleavage between proteasome subtypes, and a disparate repertoire of MHC-presented epitopes. We assessed steady state and IFNγ-induced immunoproteasome expression in melanoma cells. Using epitope specific T-lymphocyte clones, we studied processing and presentation of three NY-ESO-1 HLA-Cw3 restricted epitopes by melanoma cell lines. Our experimental model allowed comparison of the processing of three distinct epitopes from a single antigen presented on the same HLA complex. We further investigated processing of these epitopes by direct inhibition, or siRNA mediated knockdown, of the immunoproteasome catalytic subunit LMP7. Our data demonstrated a profound difference in the way in which immunogenic T-lymphocyte epitopes are presented by melanoma cells under IFNγ inflammatory versus non-inflammatory conditions. These alterations led to significant changes in the ability of T-lymphocytes to recognize and target melanoma cells. Our results illustrate a little-studied mechanism of immune escape by tumor cells which, with appropriate understanding and treatment, may be reversible. These data have implications for the design of cancer vaccines and adoptive T cell therapies.

  12. The potential interactions between polyunsaturated fatty acids and colonic inflammatory processes

    PubMed Central

    Mills, SC; Windsor, AC; Knight, SC

    2005-01-01

    n-3 Polyunsaturated fatty acids (PUFAs) are recognized as having an anti-inflammatory effect, which is initiated and propagated via a number of mechanisms involving the cells of the immune system. These include: eicosanoid profiles, membrane fluidity and lipid rafts, signal transduction, gene expression and antigen presentation. The wide-range of mechanisms of action of n-3 PUFAs offer a number of potential therapeutic tools with which to treat inflammatory diseases. In this review we discuss the molecular, animal model and clinical evidence for manipulation of the immune profile by n-3 PUFAs with respect to inflammatory bowel disease. In addition to providing a potential therapy for inflammatory bowel disease there is also recent evidence that abnormalities in fatty acid profiles, both in the plasma phospholipid membrane and in perinodal adipose tissue, may be a key component in the multi-factorial aetiology of inflammatory bowel disease. Such abnormalities are likely to be the result of a genetic susceptibility to the changing ratios of n-3 : n-6 fatty acids in the western diet. Evidence that the fatty acid components of perinodal adipose are fuelling the pro- or anti-inflammatory bias of the immune response is also reviewed. PMID:16232207

  13. [Multicentric inflammatory pseudotumor with asynchronic presentation in meninges, liver, spleen and lymph nodes in a patient with seronegative spondiloarthropathy. Case report and review of the literature].

    PubMed

    Vicuña-González, R M; Rivera-Salgado, M I; García-Velarde, P M Pasquel; de León-Bojorge, B; Ortiz-Hidalgo, C

    Inflammatory pseudotumor is a reactive process in which the etiology and pathogenesis are not well defined, that can be found in any location. The cases with central nervous system affection have been described in meninges, brain, choroid plexus and cranial and spinal nerves. Multicentric cases, synchronous and asynchronous have been described. A 45 years-old woman with a rheumatologic disease (a seronegative spondiloarthropathy) who developed an inflammatory pseudotumor in spleen, liver and abdominal lymph nodes in 1995, associated to fever of unknown origin, six years later she presented with an inflammatory pseudotumor of the meninges in the convexity of the right frontoparietal region, with fever, malaise, and increase of globular sedimentation rate, microcytic hypochromic anemia and thrombocytosis. The clinicopathologic features of this lesion are revised, including the different theories in regard to the etiology and pathogenesis, and the role of cytokines produced by inflammatory cells in the tumor.

  14. Is periodontitis a comorbidity of COPD or can associations be explained by shared risk factors/behaviors?

    PubMed Central

    Hobbins, Stephanie; Chapple, Iain LC; Sapey, Elizabeth; Stockley, Robert A

    2017-01-01

    COPD is recognized as having a series of comorbidities potentially related to common inflammatory processes. Periodontitis is one of the most common human inflammatory diseases and has previously been associated with COPD in numerous observational studies. As periodontitis and COPD are both chronic, progressive conditions characterized by neutrophilic inflammation with subsequent proteolytic destruction of connective tissue, it has been proposed that they share common pathophysiological processes. The mechanisms proposed to link COPD and periodontitis include mechanical aspiration of oral contents into the respiratory tree, overspill of locally produced inflammatory mediators into the systemic circulation or oral or lung-derived bacteremia activating an acute-phase response and also reactive oxygen species (ROS) and cytokine release by systemic neutrophils at distant sites. Studies of systemic neutrophils in COPD and chronic periodontitis describe altered cellular functions that would predispose to inflammation and tissue destruction both in the lung and in the mouth, again potentially connecting these conditions. However, COPD and periodontitis also share risk factors such as age, chronic tobacco smoke exposure, and social deprivation that are not always considered in observational and interventional studies. Furthermore, studies reporting associations have often utilized differing definitions of both COPD and periodontitis. This article reviews the current available evidence supporting the hypothesis that COPD and inflammatory periodontal disease (periodontitis) could be pathologically associated, including a review of shared inflammatory mechanisms. It highlights the potential limitations of previous studies, in particular, the lack of uniformly applied case definitions for both COPD and periodontitis and poor recognition of shared risk factors. Understanding associations between these conditions may inform why patients with COPD suffer such a burden of comorbid illness and new therapeutic strategies for both the diseases. However, further research is needed to clarify factors that may be directly causal as opposed to confounding relationships. PMID:28496317

  15. Is periodontitis a comorbidity of COPD or can associations be explained by shared risk factors/behaviors?

    PubMed

    Hobbins, Stephanie; Chapple, Iain Lc; Sapey, Elizabeth; Stockley, Robert A

    2017-01-01

    COPD is recognized as having a series of comorbidities potentially related to common inflammatory processes. Periodontitis is one of the most common human inflammatory diseases and has previously been associated with COPD in numerous observational studies. As periodontitis and COPD are both chronic, progressive conditions characterized by neutrophilic inflammation with subsequent proteolytic destruction of connective tissue, it has been proposed that they share common pathophysiological processes. The mechanisms proposed to link COPD and periodontitis include mechanical aspiration of oral contents into the respiratory tree, overspill of locally produced inflammatory mediators into the systemic circulation or oral or lung-derived bacteremia activating an acute-phase response and also reactive oxygen species (ROS) and cytokine release by systemic neutrophils at distant sites. Studies of systemic neutrophils in COPD and chronic periodontitis describe altered cellular functions that would predispose to inflammation and tissue destruction both in the lung and in the mouth, again potentially connecting these conditions. However, COPD and periodontitis also share risk factors such as age, chronic tobacco smoke exposure, and social deprivation that are not always considered in observational and interventional studies. Furthermore, studies reporting associations have often utilized differing definitions of both COPD and periodontitis. This article reviews the current available evidence supporting the hypothesis that COPD and inflammatory periodontal disease (periodontitis) could be pathologically associated, including a review of shared inflammatory mechanisms. It highlights the potential limitations of previous studies, in particular, the lack of uniformly applied case definitions for both COPD and periodontitis and poor recognition of shared risk factors. Understanding associations between these conditions may inform why patients with COPD suffer such a burden of comorbid illness and new therapeutic strategies for both the diseases. However, further research is needed to clarify factors that may be directly causal as opposed to confounding relationships.

  16. 9 CFR 381.86 - Inflammatory processes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Inflammatory processes. 381.86 Section 381.86 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE... Carcasses and Parts § 381.86 Inflammatory processes. Any organ or other part of a carcass which is affected...

  17. Macrophages and depression - a misalliance or well-arranged marriage?

    PubMed

    Roman, Adam; Kreiner, Grzegorz; Nalepa, Irena

    2013-01-01

    Depression is a severe medical condition with multiple manifestations and diverse, largely unknown etiologies. The immune system, particularly macrophages, plays an important role in the pathology of the illness. Macrophages represent a heterogeneous population of immune cells that is dispersed throughout the body. The central nervous system is populated by several types of macrophages, including microglia, perivascular cells, meningeal and choroid plexus macrophages and pericytes. These cells occupy different brain compartments and have various functions. Under basal conditions, brain macrophages support the proper function of neural cells, organize and preserve the neuronal network and maintain homeostasis. As cells of the innate immune system, they recognize and react to any disturbances in homeostasis, eliminating pathogens or damaged cells, terminating inflammation and proceeding to initiate tissue reconstruction. Disturbances in these processes result in diverse pathologies. In particular, tissue stress or malfunction, both in the brain and in the periphery, produce sustained inflammatory states, which may cause depression. Excessive release of proinflammatory mediators is responsible for alterations of neurotransmitter systems and the occurrence of depressive symptoms. Almost all antidepressive drugs target monoamine or serotonin neurotransmission and also have anti-inflammatory or immunosuppressive properties. In addition, non-pharmacological treatments, such as electroconvulsive shock, can also exert anti-inflammatory effects. Recent studies have shown that antidepressive therapies can affect the functional properties of peripheral and brain macrophages and skew them toward the anti-inflammatory M2 phenotype. Because macrophages can affect outcome of inflammatory diseases, alleviate sickness behavior and improve cognitive function, it is possible that the effects of antidepressive treatments may be, at least in part, mediated by changes in macrophage activity.

  18. Inflammatory pathways in children with insufficient or disordered sleep.

    PubMed

    Kim, Jinkwan; Hakim, Fahed; Kheirandish-Gozal, Leila; Gozal, David

    2011-09-30

    Sleep is not only an essential physiological function, but also serves important roles in promoting growth, maturation, and overall health of children and adolescents. There is increasing interest regarding the impact of sleep and its disorders on the regulation of inflammatory processes and end-organ morbidities, particularly in the context of metabolic and cardiovascular diseases (CVD) and their complications. Obstructive sleep apnea syndrome (OSAS) is an increasingly common health problem in children, and in the last decade, the emergence of increasing obesity rates has further led to remarkable increases in the prevalence of OSAS, along with more prominent neurocognitive, behavioral, cardiovascular and metabolic morbidities. Although the underlying mechanisms leading to OSAS-induced morbidities are likely multi-factorial, and remain to be fully elucidated, activation of inflammatory pathways by OSAS has emerged as an important pathophysiological component of the end-organ injury associated with this disorder. To this effect, it would appear that OSAS could be viewed as a chronic, low-grade inflammatory disorder. Furthermore, the concurrent presence of obesity and OSAS poses a theoretically increased risk of OSAS-related complications. In this review, we will critically review the current state of research regarding the impact of insufficient and disrupted sleep and OSAS on the immune processes and inflammatory pathways that underlie childhood OSAS as a distinctive systemic inflammatory condition in children, and will explore potential interactions between OSAS and obesity. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Inflammatory responses and intestinal injury development during acute Trypanosoma cruzi infection are associated with the parasite load.

    PubMed

    Vazquez, Bruna Perez; Vazquez, Thaís Perez; Miguel, Camila Botelho; Rodrigues, Wellington Francisco; Mendes, Maria Tays; de Oliveira, Carlo José Freire; Chica, Javier Emílio Lazo

    2015-04-03

    Chagas disease is caused by the protozoan Trypanosoma cruzi and is characterized by cardiac, gastrointestinal, and nervous system disorders. Although much about the pathophysiological process of Chagas disease is already known, the influence of the parasite burden on the inflammatory process and disease progression remains uncertain. We used an acute experimental disease model to evaluate the effect of T. cruzi on intestinal lesions and assessed correlations between parasite load and inflammation and intestinal injury at 7 and 14 days post-infection. Low (3 × 10(2)), medium (3 × 10(3)), and high (3 × 10(4)) parasite loads were generated by infecting C57BL/6 mice with "Y"-strain trypomastigotes. Statistical analysis was performed using analysis of variance with Tukey's multiple comparison post-test, Kruskal-Wallis test with Dunn's multiple comparison, χ2 test and Spearman correlation. High parasite load-bearing mice more rapidly and strongly developed parasitemia. Increased colon width, inflammatory infiltration, myositis, periganglionitis, ganglionitis, pro-inflammatory cytokines (e.g., TNF-α, INF-γ, IL-2, IL-17, IL-6), and intestinal amastigote nests were more pronounced in high parasite load-bearing animals. These results were remarkable because a positive correlation was observed between parasite load, inflammatory infiltrate, amastigote nests, and investigated cytokines. These experimental data support the idea that the parasite load considerably influences the T. cruzi-induced intestinal inflammatory response and contributes to the development of the digestive form of the disease.

  20. Maternal inflammation modulates infant immune response patterns to viral lung challenge in a murine model.

    PubMed

    Gleditsch, Dorothy D; Shornick, Laurie P; Van Steenwinckel, Juliette; Gressens, Pierre; Weisert, Ryan P; Koenig, Joyce M

    2014-07-01

    Chorioamnionitis, an inflammatory gestational disorder, commonly precedes preterm delivery. Preterm infants may be at particular risk for inflammation-related morbidity related to infection, although the pathogenic mechanisms are unclear. We hypothesized that maternal inflammation modulates immune programming to drive postnatal inflammatory processes. We used a novel combined murine model to treat late gestation dams with low-dose lipopolysaccharide (LPS) and to secondarily challenge exposed neonates or weanlings with Sendai virus (SeV) lung infection. Multiple organs were analyzed to characterize age-specific postnatal immune and inflammatory responses. Maternal LPS treatment enhanced innate immune populations in the lungs, livers, and/or spleens of exposed neonates or weanlings. Secondary lung SeV infection variably affected neutrophil, macrophage, and dendritic cell proportions in multiple organs of exposed pups. Neonatal lung infection induced brain interleukin (IL)-4 expression, although this response was muted in LPS-exposed pups. Adaptive immune cells, including lung, lymph node, and thymic lymphocytes and lung CD4 cells expressing FoxP3, interferon (IFN)-γ, or IL-17, were variably prominent in LPS-exposed pups. Maternal inflammation modifies postnatal immunity and augments systemic inflammatory responses to viral lung infection in an age-specific manner. We speculate that inflammatory modulation of the developing immune system contributes to chronic morbidity and mortality in preterm infants.

  1. Biofeedback in the treatment of heart failure.

    PubMed

    McKee, Michael G; Moravec, Christine S

    2010-07-01

    Biofeedback training can be used to reduce activation of the sympathetic nervous system (SNS) and increase activation of the parasympathetic nervous system (PNS). It is well established that hyperactivation of the SNS contributes to disease progression in chronic heart failure. It has been postulated that underactivation of the PNS may also play a role in heart failure pathophysiology. In addition to autonomic imbalance, a chronic inflammatory process is now recognized as being involved in heart failure progression, and recent work has established that activation of the inflammatory process may be attenuated by vagal nerve stimulation. By interfering with both autonomic imbalance and the inflammatory process, biofeedback-assisted stress management may be an effective treatment for patients with heart failure by improving clinical status and quality of life. Recent studies have suggested that biofeedback and stress management have a positive impact in patients with chronic heart failure, and patients with higher perceived control over their disease have been shown to have better quality of life. Our ongoing study of biofeedback-assisted stress management in the treatment of end-stage heart failure will also examine biologic end points in treated patients at the time of heart transplant, in order to assess the effects of biofeedback training on the cellular and molecular components of the failing heart. We hypothesize that the effects of biofeedback training will extend to remodeling the failing human heart, in addition to improving quality of life.

  2. An index of the ratio of inflammatory to antiviral cell types mediates the effects of social adversity and age on chronic illness.

    PubMed

    Simons, Ronald L; Lei, Man-Kit; Beach, Steven R H; Barr, Ashley B; Cutrona, Carolyn E; Gibbons, Frederick X; Philibert, Robert A

    2017-07-01

    It is assumed that both social stress and chronological age increase the risk of chronic illness, in part, through their effect on systemic inflammation. Unfortunately, observational studies usually employ single-marker measures of inflammation (e.g., Interleukin-6, C-reactive protein) that preclude strong tests for mediational effects. The present study investigated the extent to which the effects of socioeconomic disadvantage and age on onset of chronic illness is mediated by dominance of the innate (inflammatory) over the acquired (antiviral) components of the immune system. We assessed inflammation using the ratio of inflammatory to antiviral cell types (ITACT Ratio). This approach provided a stronger test of evolutionary arguments regarding the effect of social stress on chronic inflammation than is the case with cytokine measures, and afforded an opportunity to replicate findings obtained utilizing mRNA. We used structural equation modeling and longitudinal data from a sample of 100 middle-age African American women to perform our analyses. Dominance of inflammatory over antiviral cell activity was associated with each of the eight illnesses included in our chronic illness measure. Both socioeconomic disadvantage and age were also associated with inflammatory dominance. Pursuant to the central focus of the study, the effects of socioeconomic adversity and age on increased illness were mediated by our measure of inflammatory dominance. The indirect effect of these variables through inflammatory cell profile was significant, with neither socioeconomic disadvantage nor age showing a significant association with illness once the impact of inflammatory cell profile was taken into account. First, the analysis provides preliminary validation of a new measure of inflammation that is calculated based on the ratio of inflammatory to antiviral white blood cells. Second, our results support the hypothesis that socioeconomic disadvantage and chronological age increase risk for chronic illness in part through their effect on inflammatory processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Malignant transformation of oral lichen planus by a chronic inflammatory process. Use of topical corticosteroids to prevent this progression?

    PubMed

    Otero-Rey, Eva Maria; Suarez-Alen, Fatima; Peñamaria-Mallon, Manuel; Lopez-Lopez, Jose; Blanco-Carrion, Andres

    2014-11-01

    Oral lichen planus is a potentially malignant disorder with a capacity, although low, for malignant transformation. Of all the factors related to the process of malignant transformation, it is believed that the chronic inflammatory process plays a key role in the development of oral cancer. This inflammatory process is capable of providing a microenvironment based on different inflammatory cells and molecules that affect cellular growth, proliferation and differentiation. The objectives of our study are: to review the available evidence about the possible relationship between the chronic inflammatory process present in oral lichen planus and its malignant transformation, to discuss the potential therapeutic implications derived from this relationship and to study the role that topical corticosteroids play in the control of oral lichen planus inflammation and its possible progression to malignant transformation. The maintenance of a minimum dose of topical corticosteroids could prevent the inflammatory progression of oral lichen planus to oral cancer.

  4. Tuning constitutive and pathological inflammation in the gut via the interaction of dietary nitrate and polyphenols with host microbiome.

    PubMed

    Rocha, Bárbara S; Nunes, Carla; Laranjinha, João

    2016-12-01

    Chronic inflammation is currently recognized as a critical process in modern-era epidemics such as diabetes, obesity and neurodegeneration. However, little attention is paid to the constitutive inflammatory pathways that operate in the gut and that are mandatory for local welfare and the prevention of such multi-organic diseases. Hence, the digestive system, while posing as a barrier between the external environment and the host, is crucial for the balance between constitutive and pathological inflammatory events. Gut microbiome, a recently discovered organ, is now known to govern the interaction between exogenous agents and the host with ensued impact on local and systemic homeostasis. Whereas gut microbiota may be modulated by a myriad of factors, diet constitutes one of its major determinants. Thus, dietary compounds that influence microbial flora may thereby impact on inflammatory pathways. One such example is the redox environment in the gut lumen which is highly dependent on the local generation of nitric oxide along the nitrate-nitrite-nitric oxide pathway and that is further enhanced by simultaneous consumption of polyphenols. In this paper, different pathways encompassing the interaction of dietary nitrate and polyphenols with gut microbiota will be presented and discussed in connection with local and systemic inflammatory events. Furthermore, it will be discussed how these interactive cycles (nitrate-polyphenols-microbiome) may pose as novel strategies to tackle inflammatory diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [Socioeconomic status and inflammatory biomarkers of cardiovascular diseases: How do education, occupation and income operate?].

    PubMed

    Rosenbach, F; Richter, M; Pförtner, T-K

    2015-05-01

    In light of the consistent SES gradient in cardiovascular diseases, current research is focusing on possible pathways through which the socioeconomic status (SES) may impact health. Inflammatory processes play a critical role in the development of cardiovascular diseases and are associated with stress. Therefore, they might be one psychobiological pathway explaining how the SES gets under the skin. Considering the different meanings of education, occupation and income, this article gives an overview of the association between inflammatory biomarkers and socioeconomic status. There is high evidence for associations between indicators of SES - education, occupation and income - and inflammatory biomarkers. Possible pathways are health status, health behavior and psychobiological processes as a result of increased exposure to psychosocial stress. The SES gradient in cardiovascular diseases reflects behavioral as well as physiological pathways and systemic inflammation seems to be involved. Low SES is associated with an increased exposure to adverse circumstances of life, which can trigger biological responses and result in an increased risk of cardiovascular diseases. Medical history taking in cardiology should focus on socio-structural exposures and thereby reflect the different meanings of education, occupation and income.

  6. Parallels in Immunometabolic Adipose Tissue Dysfunction with Ageing and Obesity

    PubMed Central

    Trim, William; Turner, James E.; Thompson, Dylan

    2018-01-01

    Ageing, like obesity, is often associated with alterations in metabolic and inflammatory processes resulting in morbidity from diseases characterised by poor metabolic control, insulin insensitivity, and inflammation. Ageing populations also exhibit a decline in immune competence referred to as immunosenescence, which contributes to, or might be driven by chronic, low-grade inflammation termed “inflammageing”. In recent years, animal and human studies have started to uncover a role for immune cells within the stromal fraction of adipose tissue in driving the health complications that come with obesity, but relatively little work has been conducted in the context of immunometabolic adipose function in ageing. It is now clear that aberrant immune function within adipose tissue in obesity—including an accumulation of pro-inflammatory immune cell populations—plays a major role in the development of systemic chronic, low-grade inflammation, and limiting the function of adipocytes leading to an impaired fat handling capacity. As a consequence, these changes increase the chance of multiorgan dysfunction and disease onset. Considering the important role of the immune system in obesity-associated metabolic and inflammatory diseases, it is critically important to further understand the interplay between immunological processes and adipose tissue function, establishing whether this interaction contributes to age-associated immunometabolic dysfunction and inflammation. Therefore, the aim of this article is to summarise how the interaction between adipose tissue and the immune system changes with ageing, likely contributing to the age-associated increase in inflammatory activity and loss of metabolic control. To understand the potential mechanisms involved, parallels will be drawn to the current knowledge derived from investigations in obesity. We also highlight gaps in research and propose potential future directions based on the current evidence. PMID:29479350

  7. Airborne nitro-PAHs induce Nrf2/ARE defense system against oxidative stress and promote inflammatory process by activating PI3K/Akt pathway in A549 cells.

    PubMed

    Shang, Yu; Zhou, Qian; Wang, Tiantian; Jiang, Yuting; Zhong, Yufang; Qian, Guangren; Zhu, Tong; Qiu, Xinghua; An, Jing

    2017-10-01

    Ambient particulate matter (PM) is a worldwide health issue of concern. However, limited information is available regarding the toxic contributions of the nitro-derivatives of polycyclic aromatic hydrocarbons (nitro-PAHs). This study intend to examine whether 1-nitropyrene (1-NP) and 3-nitrofluoranthene (3-NF) could activate the nuclear factor-erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) antioxidant defense system, and whether the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway participates in regulating pro-inflammatory responses in A549 cells. Firstly, 1-NP and 3-NF concentration-dependently induced cellular apoptosis, reactive oxygen species (ROS) generation, DNA damage, S phase cell cycle arrest and differential expression of related cytokine genes. Secondly, 1-NP and 3-NF activated the Nrf2/ARE defense system, as evidenced by increased protein expression levels and nuclear translocation of transcription factor Nrf2, elevated Nrf2/ARE binding activity, up-regulated expression of the target gene heme oxygenase-1 (HO-1). Significantly increased protein expression of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) and phosphorylation level of Akt indicated that the PI3K/Akt pathway was activated during pro-inflammatory process. Further, both PI3K inhibitor (LY294002) and Akt inhibitor (MK-2206) reversed the elevated TNF-α expression to control level. Our results suggested that Nrf2/ARE pathway activation might cause an initiation step in cellular protection against oxidative stress caused by nitro-PAHs, and the PI3K/Akt pathway participated in regulating inflammatory responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Inhibition of plasma kallikrein-kinin system to alleviate renal injury and arthritis symptoms in rats with adjuvant-induced arthritis.

    PubMed

    Zhu, Jie; Wang, Hui; Chen, Jingyu; Wei, Wei

    2018-04-01

    Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Impairment of kidney functions in RA was observed. However, the mechanism of kidney injury of RA has not been clear. Plasma kallikrein-kinin system (KKS) was involved in inflammatory processes in kidney disease. This study aimed to explore the role of plasma KKS in immune reactions and kidney injury of RA. The paw of AA rats appeared to be swelling and redness, the arthritis index was significantly increased on the 18, 21 and 24 d after injection and secondary inflammation in multi-sites was observed. Kidney dysfunction accompanied with inflammatory cell infiltration, tubular epithelial cell mitochondrial swelling and vacuolar degeneration, renal glomerular foot process fusions and glomerular basement membrane thickening were observed in AA rats. The expressions of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (Kim-1) in kidney of AA rats were increased. In addition, expressions of BK, PK, B1R and B2R in the renal tissue of AA rats were up-regulated. Pro-inflammatory cytokines IL-2, IFN-γ and TNF-α were increased and anti-inflammatory cytokines IL-4 and IL-10 were low in kidney. Plasma kallikrein (PK) inhibitor PKSI-527 attenuated arthritis signs and renal damage, and inhibited BK, PK, B1R and B2R expressions. The protein expressions of P38, p-P38 and p-JNK and IFN-γ and TNF-α were inhibited by PKSI-527. These findings demonstrate that plasma KKS activation contributed to the renal injury of AA rats through MAPK signaling pathway. Plasma KKS might be a potential target for RA therapy.

  9. Interaction of the Human Contact System with Pathogens-An Update.

    PubMed

    Oehmcke-Hecht, Sonja; Köhler, Juliane

    2018-01-01

    The name human contact system is related to its mode of action, as "contact" with artificial negatively charged surfaces triggers its activation. Today, it is generally believed that the contact system is an inflammatory response mechanism not only against artificial material but also against misfolded proteins and foreign organisms. Upon activation, the contact system is involved in at least two distinct (patho)physiologic processes: i . the trigger of the intrinsic coagulation via factor XI and ii . the cleavage of high molecular weight kininogen with release of bradykinin and antimicrobial peptides (AMPs). Bradykinin is involved in the regulation of inflammatory processes, vascular permeability, and blood pressure. Due to the release of AMPs, the contact system is regarded as a branch of the innate immune defense against microorganisms. There is an increasing list of pathogens that interact with contact factors, in addition to bacteria also fungi and viruses bind and activate the system. In spite of that, pathogens have developed their own mechanisms to activate the contact system, resulting in manipulation of this host immune response. In this up-to-date review, we summarize present research on the interaction of pathogens with the human contact system, focusing particularly on bacterial and viral mechanisms that trigger inflammation via contact system activation.

  10. Overlapping gene expression profiles indicative of antigen processing and the interferon pathway characterize inflammatory fibrotic skin diseases.

    PubMed

    Limpers, Annelies; van Royen-Kerkhof, Annet; van Roon, Joel A G; Radstake, Timothy R D J; Broen, Jasper C A

    2014-02-01

    Inflammatory fibrotic disorders have been of high interest both for dermatologists and rheumatologists. Although the phenotypic end stage of this group of diseases is ultimately the same, namely fibrosis, patients present with different clinical features and are often treated with distinct therapeutic modalities. This review addresses whether there is evidence for different underlying molecular pathways in the various inflammatory fibrotic diseases such as localized scleroderma, pediatric lichen sclerosus, adult lichen sclerosus, eosinophilic fasciitis and systemic sclerosis. To investigate this, a large number of gene expression microarray studies performed on skin or fibroblasts from patients with these aforementioned diseases were described, (re-)analysed, and compared. As suspected by the heterogeneous phenotype, most diseases showed unique gene expression features. Intriguingly, a clear overlap was observed between adult and pediatric lichen sclerosus and localized scleroderma, in antigen processing and the interferon pathway. Delineating the cause and consequence of these pathways may generate novel tools to better characterize and more effectively treat these patients.

  11. Gut-central nervous system axis is a target for nutritional therapies.

    PubMed

    Pimentel, Gustavo D; Micheletti, Thayana O; Pace, Fernanda; Rosa, José C; Santos, Ronaldo V T; Lira, Fabio S

    2012-04-10

    Historically, in the 1950s, the chemist Linus Pauling established a relationship between decreased longevity and obesity. At this time, with the advent of studies involving the mechanisms that modulate appetite control, some researchers observed that the hypothalamus is the "appetite centre" and that peripheral tissues have important roles in the modulation of gut inflammatory processes and levels of hormones that control food intake. Likewise, the advances of physiological and molecular mechanisms for patients with obesity, type 2 diabetes mellitus, inflammatory bowel diseases, bariatric surgery and anorexia-associated diseases has been greatly appreciated by nutritionists. Therefore, this review highlights the relationship between the gut-central nervous system axis and targets for nutritional therapies.

  12. Cannabinoids inhibit neurodegeneration in models of multiple sclerosis.

    PubMed

    Pryce, Gareth; Ahmed, Zubair; Hankey, Deborah J R; Jackson, Samuel J; Croxford, J Ludovic; Pocock, Jennifer M; Ledent, Catherine; Petzold, Axel; Thompson, Alan J; Giovannoni, Gavin; Cuzner, M Louise; Baker, David

    2003-10-01

    Multiple sclerosis is increasingly being recognized as a neurodegenerative disease that is triggered by inflammatory attack of the CNS. As yet there is no satisfactory treatment. Using experimental allergic encephalo myelitis (EAE), an animal model of multiple sclerosis, we demonstrate that the cannabinoid system is neuroprotective during EAE. Mice deficient in the cannabinoid receptor CB1 tolerate inflammatory and excitotoxic insults poorly and develop substantial neurodegeneration following immune attack in EAE. In addition, exogenous CB1 agonists can provide significant neuroprotection from the consequences of inflammatory CNS disease in an experimental allergic uveitis model. Therefore, in addition to symptom management, cannabis may also slow the neurodegenerative processes that ultimately lead to chronic disability in multiple sclerosis and probably other diseases.

  13. The Role of Mitophagy in Innate Immunity

    PubMed Central

    Gkikas, Ilias; Palikaras, Konstantinos; Tavernarakis, Nektarios

    2018-01-01

    Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.

  14. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases

    PubMed Central

    Lee, Sewon; Park, Yoonjung; Zuidema, Mozow Yusof; Hannink, Mark; Zhang, Cuihua

    2011-01-01

    Excessive oxidative stress and low-grade chronic inflammation are major pathophysiological factors contributing to the development of cardiovascular diseases (CVD) such as hypertension, diabetes and atherosclerosis. Accumulating evidence suggests that a compromised anti-oxidant system can lead to excessive oxidative stress in cardiovascular related organs, resulting in cell damage and death. In addition, increased circulating levels of pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and C-reactive protein, are closely related to morbidity and mortality of cardiovascular complications. Emerging evidence suggests that interventions including nutrition, pharmacology and exercise may activate expression of cellular anti-oxidant systems via the nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 signaling pathway and play a role in preventing inflammatory processes in CVD. The focus of the present review is to summarize recent evidence showing the role of these anti-oxidant and anti-inflammatory interventions in cardiovascular disease. We believe that these findings may prompt new effective pathogenesis-oriented interventions, based on the exercise-induced protection from disease in the cardiovascular system, aimed at targeting oxidant stress and inflammation. PMID:21286214

  15. Idiopathic granulomatous lobular mastitis.

    PubMed

    Pereira, Frederick A; Mudgil, Adarsh V; Macias, Edgar S; Karsif, Karen

    2012-02-01

    Idiopathic granulomatous lobular mastitis (IGLM) is a rare breast condition with prominent skin findings. It is typically seen in young parous women. Painful breast masses, draining sinuses, scarring, and breast atrophy are the main clinical manifestations. IGLM can resemble a variety of other inflammatory and neoplastic processes of the breast. It is thought to result from obstruction and rupture of breast lobules. Extravasated breast secretions then induce an inflammatory reaction. Corynebacteria have also been implicated in the pathogenesis. Treatment is surgical, but systemic corticosteroids, methotrexate, and antibiotics also play a role. © 2012 The International Society of Dermatology.

  16. The cAMP Pathway as Therapeutic Target in Autoimmune and Inflammatory Diseases

    PubMed Central

    Raker, Verena Katharina; Becker, Christian; Steinbrink, Kerstin

    2016-01-01

    Nucleotide signaling molecules contribute to the regulation of cellular pathways. In the immune system, cyclic adenosine monophosphate (cAMP) is well established as a potent regulator of innate and adaptive immune cell functions. Therapeutic strategies to interrupt or enhance cAMP generation or effects have immunoregulatory potential in autoimmune and inflammatory disorders. Here, we provide an overview of the cyclic AMP axis and its role as a regulator of immune functions and discuss the clinical and translational relevance of interventions with these processes. PMID:27065076

  17. Inflammation and cancer

    PubMed Central

    Coussens, Lisa M.; Werb, Zena

    2009-01-01

    Recent data have expanded the concept that inflammation is a critical component of tumour progression. Many cancers arise from sites of infection, chronic irritation and inflammation. It is now becoming clear that the tumour microenvironment, which is largely orchestrated by inflammatory cells, is an indispensable participant in the neoplastic process, fostering proliferation, survival and migration. In addition, tumour cells have co-opted some of the signalling molecules of the innate immune system, such as selectins, chemokines and their receptors for invasion, migration and metastasis. These insights are fostering new anti-inflammatory therapeutic approaches to cancer development. PMID:12490959

  18. The micronutrient genomics project: a community-driven knowledge base for micronutrient research

    USDA-ARS?s Scientific Manuscript database

    Micronutrients influence multiple metabolic pathways including oxidative and inflammatory processes. Optimum micronutrient supply is important for the maintenance of homeostasis in metabolism and, ultimately, for maintaining good health. With advances in systems biology and genomics technologies, it...

  19. Inhibition of Group IIA Secretory Phospholipase A2 and its Inflammatory Reactions in Mice by Ethanolic Extract of Andrographis paniculata, a Well-known Medicinal Food

    PubMed Central

    Kishore, V.; Yarla, N. S.; Zameer, F.; Nagendra Prasad, M. N.; Santosh, M. S.; More, S. S.; Rao, D. G.; Dhananjaya, Bhadrapura Lakkappa

    2016-01-01

    Andrographis paniculata Nees is an important medicinal plant found in the tropical regions of the world, which has been traditionally used in Indian and Chinese medicinal systems. It is also used as medicinal food. A. paniculata is found to exhibit anti-inflammatory activities; however, its inhibitory potential on inflammatory Group IIA phospholipases A2 (PLA2) and its associated inflammatory reactions are not clearly understood. The aim of the present study is to evaluate the inhibitory/neutralizing potential of ethanolic extract of A. paniculata on the isolated inflammatory PLA2 (VRV-PL-VIIIa) from Daboii rusellii pulchella (belonging to Group IIA inflammatory secretory PLA2 [sPLA2]) and its associated edema-induced activities in Swiss albino mice. A. paniculata extract dose dependently inhibited the Group IIA sPLA2 enzymatic activity with an IC50 value of 10.3 ± 0.5 μg/ml. Further, the extract dose dependently inhibited the edema formation, when co-injected with enzyme indicating that a strong correlation exists between lipolytic and pro-inflammatory activities of the enzyme. In conclusion, results of this study shows that the ethanolic extract of A. paniculata effectively inhibits Group IIA sPLA2 and its associated inflammatory activities, which substantiate its anti-inflammatory properties. The results of the present study warranted further studies to develop bioactive compound (s) in ethanolic extract of A. paniculata as potent therapeutic agent (s) for inflammatory diseases. SUMMARY This study emphasis the anti-inflammatory effect of A. paniculata by inhibiting the inflammatory Group IIA sPLA2 and its associated inflammatory activities such as edema. It was found that there is a strong correlation between lipolytic activity and pro-inflammatory activity inhibition. Therefore, the study suggests that the extract processes potent anti-inflammatory agents, which could be developed as a potential therapeutic agent against inflammatory and related diseases. PMID:27365993

  20. Oxidative Burst of Circulating Neutrophils Following Traumatic Brain Injury in Human

    PubMed Central

    Liao, Yiliu; Liu, Peng; Guo, Fangyuan; Zhang, Zhi-Yuan; Zhang, Zhiren

    2013-01-01

    Besides secondary injury at the lesional site, Traumatic brain injury (TBI) can cause a systemic inflammatory response, which may cause damage to initially unaffected organs and potentially further exacerbate the original injury. Here we investigated plasma levels of important inflammatory mediators, oxidative activity of circulating leukocytes, particularly focusing on neutrophils, from TBI subjects and control subjects with general trauma from 6 hours to 2 weeks following injury, comparing with values from uninjured subjects. We observed increased plasma level of inflammatory cytokines/molecules TNF-α, IL-6 and CRP, dramatically increased circulating leukocyte counts and elevated expression of TNF-α and iNOS in circulating leukocytes from TBI patients, which suggests a systemic inflammatory response following TBI. Our data further showed increased free radical production in leukocyte homogenates and elevated expression of key oxidative enzymes iNOS, COX-2 and NADPH oxidase (gp91phox) in circulating leukocytes, indicating an intense induction of oxidative burst following TBI, which is significantly greater than that in control subjects with general trauma. Furthermore, flow cytometry assay proved neutrophils as the largest population in circulation after TBI and showed significantly up-regulated oxidative activity and suppressed phagocytosis rate for circulating neutrophils following brain trauma. It suggests that the highly activated neutrophils might play an important role in the secondary damage, even outside the injured brain. Taken together, the potent systemic inflammatory response induced by TBI, especially the intensively increase oxidative activity of circulating leukocytes, mainly neutrophils, may lead to a systemic damage, dysfunction/damage of bystander tissues/organs and even further exacerbate secondary local damage. Controlling these pathophysiological processes may be a promising therapeutic strategy and will protect unaffected organs and the injured brain from the secondary damage. PMID:23894384

  1. [Cervugid ovules in cervico-vaginal infections and cervix uteri precancerous conditions treatment].

    PubMed

    Zanoschi, Ch; Anton, C; Anton, E; Costăchescu, Gh; Teleman, S; Costăchescu, G; Ciupilan, I; Cărăuleanu, M; Cărăuleanu, A; Leica, V; Pânzaru, C; Grigore, M; Merticaru, I; Huianu, O; Huianu, L; Chifan, M

    2004-01-01

    This medicine was authorized by the National Drug Agency (ANM, Bucureşti) in 2001. To evaluate the effectiveness and the tolerance to Cervugid-ovules, a preparation that combines the polyvalent local antiinflammatory action of chloramphenicol, metronidazole and nystatin with the effect of hydrocortisone acetate, an unspecific anti-inflammatory agent; they all are embedded in a Lipex-403, semisynthetic fat. The evaluation of 500 patients ages between 15 and 85 years with genital infections, registered in the files of "Cl. II Obst. and Gynecology" of the Cuza-Vodă Hospital from Iaşi has been studied. We studied the subjective manifestations (local discomfort and pelvic pains, local burning and dryness,vulvovaginal itching and dyspareunia) and objective manifestations (vaginal and cervical secretion, the cytotest performed and colored though the Papanicolaou method and reported in the Bethesda system). Healing of the subjective symptoms in 98%, healing of the leukorrhea--as a main objective symptom--in 95%; The Bethesda system cytotest was one of the inflammatory type in the most of the cases and there wew found in 85 cases: 6 ASCUS, 41 LSIL, and 37 HSIL. The use of Cervugid had a healing response in most of the cases when used in acute and chronic cervico-vaginal inflammatory processes. Cervugid may be considered as an important agent in the treatment of the precancerous affections af the cervix uteri on the following reasons: zhe cure of the infections caused by chlamydia, involved in the etiology of cervical neoplasms, the cure of the HPV infection under episome form, classified in the Bethesda system within the ASCUS, AGUS or LSIL classes. When the cytotest was in the HSIL class, a conization in the LLETZ method was performed. Cervugid is conceived for those three main categories of pathogenic factors related to the etiology of cervico-vaginitis: microbia germs, protozoa and mycosis. In addition, it is active on chlamydia and mycoplasms, always sensitive to chloramphenicol therapy. That is why Cervugid with in local administration is indicated in the microbial, trichomoniasis and mycotic vaginitis caused by one category of pathogenic agents or by associated forms, in cervicitis, in the pelvic inflammatory processes (pelvic congestion, metritis, adnexitis, and inflammatory processes associated with benign or malignant tumors of the genital apparatus). The results obtained proved that Cervugid is highly effective medicine.

  2. [Acute non-traumatic myelopathy in children and adolescents].

    PubMed

    Arroyo, Hugo A

    2013-09-06

    The term 'acute myelopathies'--referred to a spinal cord dysfunction--represent a heterogeneous group of disorders with distinct etiologies, clinical and radiologic features, and prognoses. The objective of this review is to discuss the non-traumatic acute myelopathies. Acute myelopathy can be due to several causes as infective agents or inflammatory processes, such as in acute myelitis, compressive lesions, vascular lesions, etc. The clinical presentation is often dramatic with tetraparesis or paraparesis, sensory disturbances and bladder and/or bowel dysfunction. History and physical examination are used to localize the lesion to the root or specific level of the cord, which can guide imaging. Different syndromes are recognized: complete transverse lesion, central grey matter syndrome, anterior horn syndrome, anterior spinal artery syndrome, etc). The first priority is to rule out a compressive lesion. If a myelopathy is suspected, a gadolinium-enhanced MRI of the spinal cord should be obtained as soon as possible. If there is no structural lesion such as epidural blood or a spinal mass, then the presence or absence of spinal cord inflammation should be documented with a lumbar puncture. The absence of pleocytosis would lead to consideration of non inflammatory causes of myelopathy such as arteriovenous malformations, fibrocartilaginous embolism, or possibly early inflammatory myelopathy. In the presence of an inflammatory process (defined by gadolinium enhancement, cerebrospinal fluid pleocytosis, or elevated cerebrospinal fluid immunoglobulin index), one should determine whether there is an inflammatory or an infectious cause. Different virus, bacterias, parasites and fungi have to be considered as autoimmune and inflammatory diseases that involve the central nervous system.

  3. Surgical meshes coated with mesenchymal stem cells provide an anti-inflammatory environment by a M2 macrophage polarization.

    PubMed

    Blázquez, Rebeca; Sánchez-Margallo, Francisco Miguel; Álvarez, Verónica; Usón, Alejandra; Casado, Javier G

    2016-02-01

    Surgical meshes are widely used in clinics to reinforce soft tissue's defects, and to give support to prolapsed organs. However, the implantation of surgical meshes is commonly related with an inflammatory response being difficult to eradicate without removing the mesh. Here we hypothesize that the combined use of surgical meshes and mesenchymal stem cells (MSCs) could be a useful tool to reduce the inflammatory reaction secondary to mesh implantation. In vitro determinations of viability, metabolic activity and immunomodulation assays were performed on MSCs-coated meshes. Magnetic resonance imaging, evaluation by laparoscopic optical system and histology were performed for safety assessment. Finally, flow cytometry and qRT-PCR were used to elucidate the mechanism of action of MSCs-coated meshes. Our results demonstrate the feasibility to obtain MSCs-coated surgical meshes and their cryopreservability to be used as an 'off the shelf' product. These biological meshes fulfill the safety aspects as non-adverse effects were observed when compared to controls. Moreover, both in vitro and in vivo studies demonstrated that, local immunomodulation of implanted meshes is mediated by a macrophage polarization towards an anti-inflammatory phenotype. In conclusion, the combined usage of surgical meshes with MSCs fulfills the safety requirements for a future clinical application, providing an anti-inflammatory environment that could reduce the inflammatory processes commonly observed after surgical mesh implantation. Surgical meshes are medical devices widely used in clinics to resolve hernias and organs' prolapses, among other disorders. However, the implantation of surgical meshes is commonly related with an inflammatory response being difficult to eradicate without removing the mesh, causing pain and discomfort in the patient. Previously, the anti-inflammatory, immunomodulatory and pro-regenerative ability of mesenchymal stem cells (MSCs) have been described. To our knowledge, this is the first report where the anti-inflammatory and pro-regenerative ability of MSCs have been successfully applied in combination with surgical meshes, reducing the inflammatory processes commonly observed after mesh implantation. Moreover, our in vitro and in vivo results highlight the safety and efficacy of these bioactive meshes as a 'ready to use' medical product. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Host response mechanisms in periodontal diseases

    PubMed Central

    SILVA, Nora; ABUSLEME, Loreto; BRAVO, Denisse; DUTZAN, Nicolás; GARCIA-SESNICH, Jocelyn; VERNAL, Rolando; HERNÁNDEZ, Marcela; GAMONAL, Jorge

    2015-01-01

    Periodontal diseases usually refer to common inflammatory disorders known as gingivitis and periodontitis, which are caused by a pathogenic microbiota in the subgingival biofilm, including Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola that trigger innate, inflammatory, and adaptive immune responses. These processes result in the destruction of the tissues surrounding and supporting the teeth, and eventually in tissue, bone and finally, tooth loss. The innate immune response constitutes a homeostatic system, which is the first line of defense, and is able to recognize invading microorganisms as non-self, triggering immune responses to eliminate them. In addition to the innate immunity, adaptive immunity cells and characteristic cytokines have been described as important players in the periodontal disease pathogenesis scenario, with a special attention to CD4+ T-cells (T-helper cells). Interestingly, the T cell-mediated adaptive immunity development is highly dependent on innate immunity-associated antigen presenting cells, which after antigen capture undergo into a maturation process and migrate towards the lymph nodes, where they produce distinct patterns of cytokines that will contribute to the subsequent polarization and activation of specific T CD4+ lymphocytes. Skeletal homeostasis depends on a dynamic balance between the activities of the bone-forming osteoblasts (OBLs) and bone-resorbing osteoclasts (OCLs). This balance is tightly controlled by various regulatory systems, such as the endocrine system, and is influenced by the immune system, an osteoimmunological regulation depending on lymphocyte- and macrophage-derived cytokines. All these cytokines and inflammatory mediators are capable of acting alone or in concert, to stimulate periodontal breakdown and collagen destruction via tissue-derived matrix metalloproteinases, a characterization of the progression of periodontitis as a stage that presents a significantly host immune and inflammatory response to the microbial challenge that determine of susceptibility to develop the destructive/progressive periodontitis under the influence of multiple behavioral, environmental and genetic factors. PMID:26221929

  5. [Oxidative stress in patients with type I diabetes mellitus and persistent coxsackie virus B infection as the reason of dysfunction of the immune system].

    PubMed

    Hyrin, V V

    2009-01-01

    A chronic inflammatory process takes place in patients with diabetes mellitus type 1. Numerous disorders of the immune status and complications testify the present of this process. The presence of chronic inflammation at diabetes mellitus enhances free radical reactions which are accompanied by oxidative stress.

  6. Pathways leading to an immunological disease: systemic lupus erythematosus.

    PubMed

    Zharkova, Olga; Celhar, Teja; Cravens, Petra D; Satterthwaite, Anne B; Fairhurst, Anna-Marie; Davis, Laurie S

    2017-04-01

    SLE is a chronic autoimmune disease caused by perturbations of the immune system. The clinical presentation is heterogeneous, largely because of the multiple genetic and environmental factors that contribute to disease initiation and progression. Over the last 60 years, there have been a number of significant leaps in our understanding of the immunological mechanisms driving disease processes. We now know that multiple leucocyte subsets, together with inflammatory cytokines, chemokines and regulatory mediators that are normally involved in host protection from invading pathogens, contribute to the inflammatory events leading to tissue destruction and organ failure. In this broad overview, we discuss the main pathways involved in SLE and highlight new findings. We describe the immunological changes that characterize this form of autoimmunity. The major leucocytes that are essential for disease progression are discussed, together with key mediators that propagate the immune response and drive the inflammatory response in SLE. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology.

  7. Effect of thoracic epidural block on infection-induced inflammatory response: A randomized controlled trial.

    PubMed

    Tyagi, Asha; Bansal, Anuradha; Das, Shukla; Sethi, Ashok Kumar; Kakkar, Aanchal

    2017-04-01

    Epidural block decreases inflammation and oxidative stress in experimental models of sepsis as well as after surgery. There is, however, no clinical evidence evaluating its effect on infection-induced inflammatory process. The present trial evaluated the effect of thoracic epidural block (TEB) on systemic inflammatory response in patients with small intestinal perforation peritonitis. Outcome measures included systemic levels of interleukin (IL)-6, IL-10, procalcitonin, and C-reactive protein and postoperative Sepsis-Related Organ Failure Assessment scores. Sixty adult patients undergoing emergency abdominal laparotomy without any contraindication to TEB were randomized to receive general anesthesia alone or in combination with the TEB, which was continued for 48 hours postoperatively (n = 30 each). Use of TEB was associated with a statistically insignificant trend of preservation of anti-inflammatory response depicted by higher levels of IL-10 and lack of alteration in proinflammatory IL-6, along with appreciably lower procalcitonin levels, decreased incidence of raised C-reactive protein levels, and better postoperative SOFA score (P > .05). It resulted in significantly better postoperative respiratory function and faster return of bowel motility (P < .05). Although the sample size is too small for conclusive statement, none of the patients developed epidural abscess. Thoracic epidural block showed a trend toward better preservation of anti-inflammatory response and clinical recovery that, however, failed to achieve statistical significance (P > .05). Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Safety Assessment of Commonly Used Nanoparticles in Biomedical Applications: Impact on Inflammatory Processes

    NASA Astrophysics Data System (ADS)

    Alnasser, Yossef

    Nanotechnology offers great promise in the biomedical field. Current knowledge of nanoparticles' (NPs) safety and possible mechanisms of various particle types' toxicity is insufficient. The role of particle properties and the route of particles administration in toxic reactions remain unexplored. In this thesis, we aimed to inspect the interrelationship between particle size, chemical composition and toxicological effects of four candidate NPs for drug delivery systems: gold (Au), chitosan, silica, and poly (lactide-co-glycolide) (PLGA). Mice model was combined with in vitro study to explore NPs' safety. We investigated mice survival, weight, behavior, and pro-inflammatory changes. NF-kappaB induction was assessed in vitro using the Luciferase Assay System. As observed in mice, Au NPs had a higher toxicity profile at a shorter duration than the other NPs. This was significantly in concordance with pro-inflammatory changes which may be the key routes of Au NPs toxicity. Although silica NPs induced NF-kappaB, they were less toxic to the mice than Au NPs and did not lead to the pro-inflammatory changes. Chitosan NPs were toxic to the mice but failed to cause significant NF-kappaB induction and pro-inflammatory changes. These findings indicate that chitosan NPs might not have the same pathophysiologic mechanism as the Au NPs. Comparative analysis in this model demonstrated that PLGA NPs is the safest drug delivery candidate to be administered subcutaneously.

  9. Integrating microRNAs into a system biology approach to acute lung injury.

    PubMed

    Zhou, Tong; Garcia, Joe G N; Zhang, Wei

    2011-04-01

    Acute lung injury (ALI), including the ventilator-induced lung injury (VILI) and the more severe acute respiratory distress syndrome (ARDS), are common and complex inflammatory lung diseases potentially affected by various genetic and nongenetic factors. Using the candidate gene approach, genetic variants associated with immune response and inflammatory pathways have been identified and implicated in ALI. Because gene expression is an intermediate phenotype that resides between the DNA sequence variation and the higher level cellular or whole-body phenotypes, the illustration of gene expression regulatory networks potentially could enhance understanding of disease susceptibility and the development of inflammatory lung syndromes. MicroRNAs (miRNAs) have emerged as a novel class of gene regulators that play critical roles in complex diseases including ALI. Comparisons of global miRNA profiles in animal models of ALI and VILI identified several miRNAs (eg, miR-146a and miR-155) previously implicated in immune response and inflammatory pathways. Therefore, via regulation of target genes in these biological processes and pathways, miRNAs potentially contribute to the development of ALI. Although this line of inquiry exists at a nascent stage, miRNAs have the potential to be critical components of a comprehensive model for inflammatory lung disease built by a systems biology approach that integrates genetic, genomic, proteomic, epigenetic as well as environmental stimuli information. Given their particularly recognized role in regulation of immune and inflammatory responses, miRNAs also serve as novel therapeutic targets and biomarkers for ALI/ARDS or VILI, thus facilitating the realization of personalized medicine for individuals with acute inflammatory lung disease. Copyright © 2011 Mosby, Inc. All rights reserved.

  10. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation.

    PubMed

    Arpaia, Nicholas; Campbell, Clarissa; Fan, Xiying; Dikiy, Stanislav; van der Veeken, Joris; deRoos, Paul; Liu, Hui; Cross, Justin R; Pfeffer, Klaus; Coffer, Paul J; Rudensky, Alexander Y

    2013-12-19

    Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.

  11. CELECOXIB ATTENUATES SYSTEMIC LIPOPOLYSACCHARIDE-INDUCED BRAIN INFLAMMATION AND WHITE MATTER INJURY IN THE NEONATAL RATS

    PubMed Central

    FAN, L.-W.; KAIZAKI, A.; TIEN, L.-T.; PANG, Y.; TANAKA, S.; NUMAZAWA, S.; BHATT, A. J.; CAI, Z.

    2013-01-01

    Lipopolysaccharide (LPS)-induced white matter injury in the neonatal rat brain is associated with inflammatory processes. Cyclooxygenase-2 (COX-2) can be induced by inflammatory stimuli, such as cytokines and pro-inflammatory molecules, suggesting that COX-2 may be considered as the target for anti-inflammation. The objective of the present study was to examine whether celecoxib, a selective COX-2 inhibitor, can reduce systemic LPS-induced brain inflammation and brain damage. Intraperitoneal (i.p.) injection of LPS (2 mg/kg) was performed in postnatal day 5 (P5) of Sprague-Dawley rat pups and celecoxib (20 mg/kg) or vehicle was administered i.p. 5 min after LPS injection. The body weight and wire hanging maneuver test were performed 24 hr after the LPS exposure, and brain injury was examined after these tests. Systemic LPS exposure resulted in an impairment of behavioral performance and acute brain injury, as indicated by apoptotic death of oligodendrocytes (OLs) and loss of OL immunoreactivity in the neonatal rat brain. Treatments with celecoxib significantly reduced systemic LPS-induced neurobehavioral disturbance and brain damage. Celecoxib administration significantly attenuated systemic LPS-induced increments in the number of activated microglia and astrocytes, concentrations of IL-1β and TNFα, and protein levels of phosphorylated-p38 MAPK in the neonatal rat brain. The protection of celecoxib was also associated with a reduction of systemic LPS-induced COX-2+ cells which were double labeled with GFAP+ (astrocyte) cells. The overall results suggest that celecoxib was capable of attenuating the brain injury and neurobehavioral disturbance induced by systemic LPS exposure, and the protective effects are associated with its anti-inflammatory properties. PMID:23485816

  12. Chronic Interpersonal Stress Predicts Activation of Pro- and Anti- Inflammatory Signaling Pathways Six Months Later

    PubMed Central

    Miller, Gregory; Rohleder, Nicolas; Cole, Steve W.

    2009-01-01

    OBJECTIVE Chronic interpersonal difficulties have a detrimental influence on mental and physical health, but little is known about the mechanisms underlying this phenomenon. METHODS 103 healthy young women (mean age = 17) were administered a structured interview to assess the degree of chronic interpersonal stress in their lives. At the same time blood was drawn to measure systemic inflammation, the expression of signaling molecules that regulate immune activation, and leukocyte production of the cytokine interleukin-6 following ex vivo stimulation with lipopolysaccharide. All of the immunologic assessments were repeated six months later. RESULTS To the extent subjects were high in chronic interpersonal stress at baseline, their leukocytes displayed greater increases in mRNA for the pro-inflammatory transcription factor nuclear factor-kappa B (NF-κB) over the next six months. They also showed larger increases in mRNA for inhibitor of kappaB, a molecule that sequesters NF-κB in the cytoplasm and minimizes its pro-inflammatory activities. Chronic interpersonal stress at baseline was unrelated to changes in biomarkers of systemic inflammation, but was associated with increasingly pronounced interleukin-6 responses to lipopolysaccharide. These associations were independent of demographics, lifestyle variables, and depressive symptoms. CONCLUSIONS These findings suggest that chronic interpersonal difficulties accentuate expression of pro- and anti-inflammatory signaling molecules. While this process does not result in systemic inflammation under quiescent conditions, it does accentuate leukocytes’ inflammatory response to microbial challenge. These dynamics may underlie the excess morbidity associated with social stress, particularly in inflammation-sensitive diseases like depression and atherosclerosis. PMID:19073750

  13. Peripheral inflammation in prodromal Alzheimer’s and Lewy body dementias

    PubMed Central

    King, Eleanor; O’Brien, John Tiernan; Donaghy, Paul; Morris, Christopher; Barnett, Nicola; Olsen, Kirsty; Martin-Ruiz, Carmen; Taylor, John-Paul; Thomas, Alan J

    2018-01-01

    Objectives There is growing evidence for the role of systemic inflammation in Alzheimer’s disease (AD) and other neurodegenerative diseases; however the systemic inflammatory profile in dementia with Lewy bodies (DLB) has never before been investigated. This study aimed to characterise systemic inflammatory mediators in established DLB and AD, as well as in their prodromal, mild cognitive impairment (MCI) phases. Methods We obtained plasma samples from patients with DLB (n=37), AD (n=20), MCI with DLB profile (n=38), MCI with AD profile (n=20) and healthy control subjects (n=20). The following inflammatory biomarkers were measured using Roche cobas c702 and Meso Scale Discovery V-Plex Plus: high-sensitivity C-reactive protein, interferon-gamma, interleukin (IL)-10, IL-12p70, IL-13, IL-1beta, IL-2, IL-4, IL-6, IL-8 and tumour necrosis factor-alpha. Results We found significantly higher levels of IL-10, IL-1beta, IL-4 and IL-2 in both MCI groups (P<0.001), while there was no significant difference in inflammatory markers between dementia groups and controls. Furthermore, increased disease severity was associated with lower levels of IL-1beta, IL-2 and IL-4 (P<0.05). Interpretation We have shown for the first time that in both DLB and AD, increased peripheral inflammation occurs early at the MCI disease stages. These data support a role for inflammation early in the disease process, and have important implications for the stage of disease where trials of anti-inflammatory medication should be focused. PMID:29248892

  14. Outcomes of neuropsychiatric events in systemic lupus erythematosus based on clinical phenotypes; prospective data from the Leiden NP SLE cohort.

    PubMed

    Magro-Checa, C; Beaart-van de Voorde, L J J; Middelkoop, H A M; Dane, M L; van der Wee, N J; van Buchem, M A; Huizinga, T W J; Steup-Beekman, G M

    2017-04-01

    Objective The objective of this study was to assess whether clinical and patient's reported outcomes are associated with a different pathophysiological origin of neuropsychiatric events presenting in systemic lupus erythematosus. Methods A total of 232 neuropsychiatric events presenting in 131 systemic lupus erythematosus patients were included. Neuropsychiatric systemic lupus erythematosus diagnosis was established per event by multidisciplinary evaluation. All neuropsychiatric events were divided according to a suspected underlying pathophysiological process into one of the following: non-neuropsychiatric systemic lupus erythematosus related, inflammatory and ischaemic neuropsychiatric systemic lupus erythematosus. The clinical outcome of all neuropsychiatric events was determined by a physician-completed four-point Likert scale. Health-related quality of life was measured with the subscales of the patient-generated Short Form 36 (SF-36) health survey questionnaire. The change between scores at paired visits of all domain scores, mental component summary (SF-36 MCS) and physical component summary (SF-36 PCS) scores were retrospectively calculated and used as patient-reported outcome. The association among these outcomes and the different origin of neuropsychiatric events was obtained using multiple logistic regression analysis. Results The clinical status of 26.8% non-neuropsychiatric systemic lupus erythematosus events, 15.8% ischaemic neuropsychiatric systemic lupus erythematosus and 51.6% inflammatory neuropsychiatric systemic lupus erythematosus improved after re-assessment. Almost all SF-36 domains had a positive change at re-assessment in all groups independently of the origin of neuropsychiatric events. Neuropsychiatric systemic lupus erythematosus ( B = 0.502; p < 0.001) and especially inflammatory neuropsychiatric systemic lupus erythematosus ( B = 0.827; p < 0.001) had better clinical outcome, with change in disease activity being the only important predictor. The change in SF-36 MCS was also independently associated with neuropsychiatric systemic lupus erythematosus ( B = 5.783; p < 0.05) and inflammatory neuropsychiatric systemic lupus erythematosus ( B = 11.133; p < 0.001). Disease duration and change in disease activity were the only predictors in both cases. The change in SF-36 PCS was only negatively associated with age. Conclusion Inflammatory neuropsychiatric systemic lupus erythematosus events have better clinical outcome and meaningful improvement in SF-36 MCS than ischaemic neuropsychiatric systemic lupus erythematosus or non-neuropsychiatric systemic lupus erythematosus.

  15. Proteomic and Metabolomic Analyses Reveal Contrasting Anti-Inflammatory Effects of an Extract of Mucor Racemosus Secondary Metabolites Compared to Dexamethasone.

    PubMed

    Meier, Samuel M; Muqaku, Besnik; Ullmann, Ronald; Bileck, Andrea; Kreutz, Dominique; Mader, Johanna C; Knasmüller, Siegfried; Gerner, Christopher

    2015-01-01

    Classical drug assays are often confined to single molecules and targeting single pathways. However, it is also desirable to investigate the effects of complex mixtures on complex systems such as living cells including the natural multitude of signalling pathways. Evidence based on herbal medicine has motivated us to investigate potential beneficial health effects of Mucor racemosus (M rac) extracts. Secondary metabolites of M rac were collected using a good-manufacturing process (GMP) approved production line and a validated manufacturing process, in order to obtain a stable product termed SyCircue (National Drug Code USA: 10424-102). Toxicological studies confirmed that this product does not contain mycotoxins and is non-genotoxic. Potential effects on inflammatory processes were investigated by treating stimulated cells with M rac extracts and the effects were compared to the standard anti-inflammatory drug dexamethasone on the levels of the proteome and metabolome. Using 2D-PAGE, slight anti-inflammatory effects were observed in primary white blood mononuclear cells, which were more pronounced in primary human umbilical vein endothelial cells (HUVECs). Proteome profiling based on nLC-MS/MS analysis of tryptic digests revealed inhibitory effects of M rac extracts on pro-inflammatory cytoplasmic mediators and secreted cytokines and chemokines in these endothelial cells. This finding was confirmed using targeted proteomics, here treatment of stimulated cells with M rac extracts down-regulated the secretion of IL-6, IL-8, CXCL5 and GROA significantly. Finally, the modulating effects of M rac on HUVECs were also confirmed on the level of the metabolome. Several metabolites displayed significant concentration changes upon treatment of inflammatory activated HUVECs with the M rac extract, including spermine and lysophosphatidylcholine acyl C18:0 and sphingomyelin C26:1, while the bulk of measured metabolites remained unaffected. Interestingly, the effects of M rac treatment on lipids were orthogonal to the effect of dexamethasone underlining differences in the overall mode of action.

  16. Perinatal stress and early life programming of lung structure and function

    PubMed Central

    Wright, Rosalind J.

    2010-01-01

    Exposure to environmental toxins during critical periods of prenatal and/or postnatal development may alter the normal course of lung morphogenesis and maturation, potentially resulting in changes that affect both structure and function of the respiratory system. Moreover, these early effects may persist into adult life magnifying the potential public health impact. Aberrant or excessive pro-inflammatory immune responses, occurring both locally and systemically, that result in inflammatory damage to the airway are a central determinant of lung structure-function changes throughout life. Disruption of neuroendocrine function in early development, specifically the hypothalamic-pituitary-adrenal (HPA) axis, may alter functional status of the immune system. Autonomic nervous system (ANS) function (sympathovagal imbalance) is another integral component of airway function and immunity in childhood. This overview discusses the evidence linking psychological factors to alterations in these interrelated physiological processes that may, in turn, influence childhood lung function and identifies gaps in our understanding. PMID:20080145

  17. Diabetes mellitus, periapical inflammation and endodontic treatment outcome.

    PubMed

    Segura-Egea, J-J; Castellanos-Cosano, L; Machuca, G; López-López, J; Martín-González, J; Velasco-Ortega, E; Sánchez-Domínguez, B; López-Frías, F-J

    2012-03-01

    The possible connection between chronic oral inflammatory processes, such as apical periodontitis and periodontal disease (PD), and systemic health is one of the most interesting aspects faced by the medical and dental scientific community. Chronic apical periodontitis shares important characteristics with PD: 1) both are chronic infections of the oral cavity, 2) the Gram-negative anaerobic microbiota found in both diseases is comparable, and 3) in both infectious processes increased local levels of inflammatory mediators may have an impact on systemic levels. One of the systemic disorders linked to PD is diabetes mellitus (DM); is therefore plausible to assume that chronic apical periodontitis and endodontic treatment are also associated with DM. The status of knowledge regarding the relationship between DM and endodontics is reviewed. Upon review, we conclude that there are data in the literature that associate DM with a higher prevalence of periapical lesions, greater size of the osteolityc lesions, greater likelihood of asymptomatic infections and worse prognosis for root filled teeth. The results of some studies suggest that periapical disease may contribute to diabetic metabolic dyscontrol.

  18. Diabetes mellitus, periapical inflammation and endodontic treatment outcome

    PubMed Central

    Castellanos-Cosano, Lizett; Machuca, Guillermo; López-López, Jose; Martín-González, Jenifer; Velasco-Ortega, Eugenio; Sánchez-Domínguez, Benito; López-Frías, Francisco J.

    2012-01-01

    The possible connection between chronic oral inflammatory processes, such as apical periodontitis and periodontal disease (PD), and systemic health is one of the most interesting aspects faced by the medical and dental scientific community. Chronic apical periodontitis shares important characteristics with PD: 1) both are chronic infections of the oral cavity, 2) the Gram-negative anaerobic microbiota found in both diseases is comparable, and 3) in both infectious processes increased local levels of inflammatory mediators may have an impact on systemic levels. One of the systemic disorders linked to PD is diabetes mellitus (DM); is therefore plausible to assume that chronic apical periodontitis and endodontic treatment are also associated with DM. The status of knowledge regarding the relationship between DM and endodontics is reviewed. Upon review, we conclude that there are data in the literature that associate DM with a higher prevalence of periapical lesions, greater size of the osteolityc lesions, greater likelihood of asymptomatic infections and worse prognosis for root filled teeth. The results of some studies suggest that periapical disease may contribute to diabetic metabolic dyscontrol. Key words: Apical periodontitis, diabetes mellitus, endodontics, root canal treatment. PMID:22143698

  19. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis.

    PubMed

    Cattaneo, Annamaria; Macchi, Flavia; Plazzotta, Giona; Veronica, Begni; Bocchio-Chiavetto, Luisella; Riva, Marco Andrea; Pariante, Carmine Maria

    2015-01-01

    During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder (MDD). Indeed, several are the evidences linking alterations in the inflammatory system to Major Depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation. However, it is still not clear whether inflammation represents a cause or whether other factors related to depression result in these immunological effects. Regardless, exposure to early life stressful events, which represent a vulnerability factor for the development of psychiatric disorders, act through the modulation of inflammatory responses, but also of neuroplastic mechanisms over the entire life span. Indeed, early life stressful events can cause, possibly through epigenetic changes that persist over time, up to adulthood. Such alterations may concur to increase the vulnerability to develop psychopathologies. In this review we will discuss the role of inflammation and neuronal plasticity as relevant processes underlying depression development. Moreover, we will discuss the role of epigenetics in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal plasticity, thus contributing to the long-lasting negative effects of stressful life events early in life and the consequent enhanced risk for depression. Finally we will provide an overview on the potential role of inflammatory system to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of Major Depression.

  20. Molecular inflammation as an underlying mechanism of the aging process and age-related diseases.

    PubMed

    Chung, H Y; Lee, E K; Choi, Y J; Kim, J M; Kim, D H; Zou, Y; Kim, C H; Lee, J; Kim, H S; Kim, N D; Jung, J H; Yu, B P

    2011-07-01

    Aging is a biological process characterized by time-dependent functional declines that are influenced by changes in redox status and by oxidative stress-induced inflammatory reactions. An organism's pro-inflammatory status may underlie the aging process and age-related diseases. In this review, we explore the molecular basis of low-grade, unresolved, subclinical inflammation as a major risk factor for exacerbating the aging process and age-related diseases. We focus on the redox-sensitive transcription factors, NF-κB and FOXO, which play essential roles in the expression of pro-inflammatory mediators and anti-oxidant enzymes, respectively. Major players in molecular inflammation are discussed with respect to the age-related up-regulation of pro-inflammatory cytokines and adhesion molecules, cyclo-oxygenase-2, lipoxygenase, and inducible nitric oxide synthase. The molecular inflammation hypothesis proposed by our laboratory is briefly described to give further molecular insights into the intricate interplay among redox balance, pro-inflammatory gene activation, and chronic age-related inflammatory diseases. The final section discusses calorie restriction as an aging-retarding intervention that also exhibits extraordinarily effective anti-inflammatory activity by modulating GSH redox, NF-κB, SIRT1, PPARs, and FOXOs.

  1. A flame burning within.

    PubMed

    Ferrucci, Luigi; Ble, Alessandro; Bandinelli, Stefania; Lauretani, Fulvio; Suthers, Kristen; Guralnik, Jack M

    2004-06-01

    Inflammation is a human being's primary defense against threats to homeostasis that are encountered every day. Especially in old age, when regulatory mechanisms responsible for inflammatory responses may be ineffective or damaged, the result can be adverse pathological conditions, and an increased risk of morbidity and mortality. The inflammation response is a plastic network composed of redundant signaling among several different mediators. These mediators have a reciprocal relationship with other biological sub-systems, including hormone regulation, the autonomic nervous system, and oxidative/anti-oxidant balance. Studying this complex architecture requires parallel and multiple research strategies from epidemiological to biochemical level, from observational studies to innovative intervention approaches. Given that the inflammatory response is a critical age-related process, understanding its regulatory action is essential in avoiding hazardous consequences in old age.

  2. Role of Proangiogenic Factors in Immunopathogenesis of Multiple Sclerosis.

    PubMed

    Hamid, Kabir Magaji; Mirshafiey, Abbas

    2016-02-01

    Angiogenesis is a complex and balanced process in which new blood vessels form from preexisting ones by sprouting, splitting, growth and remodeling. This phenomenon plays a vital role in many physiological and pathological processes. However, the disturbance in physiological process can play a role in pathogenesis of some chronic inflammatory diseases, including multiple sclerosis (MS) in human and its animal model. Although the relation between abnormal blood vessels and MS lesions was established in previous studies, but the role of pathological angiogenesis remains unclear. In this study, the link between proangiogenic factors and multiple sclerosis pathogenesis was examined by conducting a systemic review. Thus we searched the English medical literature via PubMed, ISI web of knowledge, Medline and virtual health library (VHL) databases. In this review, we describe direct and indirect roles of some proangiogenic factors in MS pathogenesis and report the association of these factors with pathological and inflammatory angiogenesis.

  3. Bidirectional Prospective Associations Between Cardiac Autonomic Activity and Inflammatory Markers.

    PubMed

    Hu, Mandy Xian; Lamers, Femke; Neijts, Melanie; Willemsen, Gonneke; de Geus, Eco J C; Penninx, Brenda W J H

    2018-06-01

    Autonomic nervous system (ANS) imbalance has been cross-sectionally associated with inflammatory processes. Longitudinal studies are needed to shed light on the nature of this relationship. We examined cross-sectional and bidirectional prospective associations between cardiac autonomic measures and inflammatory markers. Analyses were conducted with baseline (n = 2823), 2-year (n = 2099), and 6-year (n = 1774) data from the Netherlands Study of Depression and Anxiety. To compare the pattern of results, prospective analyses with ANS (during sleep, leisure time, and work) and inflammation were conducted in two data sets from the Netherlands Twin Register measured for 4.9 years (n = 356) and 5.4 years (n = 472). Autonomic nervous system measures were heart rate (HR) and respiratory sinus arrhythmia (RSA). Inflammatory markers were C-reactive protein (CRP) and interleukin (IL)-6. The Netherlands Study of Depression and Anxiety results showed that higher HR and lower RSA were cross-sectionally significantly associated with higher inflammatory levels. Higher HR predicted higher levels of CRP (B = .065, p < .001) and IL-6 (B = .036, p = .014) at follow-up. Higher CRP levels predicted lower RSA (B = -.024, p = .048) at follow-up. The Netherlands Twin Register results confirmed that higher HR was associated with higher CRP and IL-6 levels 4.9 years later. Higher IL-6 levels predicted higher HR and lower RSA at follow-up. Autonomic imbalance is associated with higher levels of inflammation. Independent data from two studies converge in evidence that higher HR predicts subsequent higher levels of CRP and IL-6. Inflammatory markers may also predict future ANS activity, but evidence for this was less consistent.

  4. Inflammasomes link vascular disease with neuroinflammation and brain disorders

    PubMed Central

    Lénárt, Nikolett; Brough, David

    2016-01-01

    The role of inflammation in neurological disorders is increasingly recognised. Inflammatory processes are associated with the aetiology and clinical progression of migraine, psychiatric conditions, epilepsy, cerebrovascular diseases, dementia and neurodegeneration, such as seen in Alzheimer’s or Parkinson’s disease. Both central and systemic inflammatory actions have been linked with the development of brain diseases, suggesting that complex neuro-immune interactions could contribute to pathological changes in the brain across multiple temporal and spatial scales. However, the mechanisms through which inflammation impacts on neurological disease are improperly defined. To develop effective therapeutic approaches, it is imperative to understand how detrimental inflammatory processes could be blocked selectively, or controlled for prolonged periods, without compromising essential immune defence mechanisms. Increasing evidence indicates that common risk factors for brain disorders, such as atherosclerosis, diabetes, hypertension, obesity or infection involve the activation of NLRP3, NLRP1, NLRC4 or AIM2 inflammasomes, which are also associated with various neurological diseases. This review focuses on the mechanisms whereby inflammasomes, which integrate diverse inflammatory signals in response to pathogen-driven stimuli, tissue injury or metabolic alterations in multiple cell types and different organs of the body, could functionally link vascular- and neurological diseases and hence represent a promising therapeutic target. PMID:27486046

  5. The central role of hypothalamic inflammation in the acute illness response and cachexia.

    PubMed

    Burfeind, Kevin G; Michaelis, Katherine A; Marks, Daniel L

    2016-06-01

    When challenged with a variety of inflammatory threats, multiple systems across the body undergo physiological responses to promote defense and survival. The constellation of fever, anorexia, and fatigue is known as the acute illness response, and represents an adaptive behavioral and physiological reaction to stimuli such as infection. On the other end of the spectrum, cachexia is a deadly and clinically challenging syndrome involving anorexia, fatigue, and muscle wasting. Both of these processes are governed by inflammatory mediators including cytokines, chemokines, and immune cells. Though the effects of cachexia can be partially explained by direct effects of disease processes on wasting tissues, a growing body of evidence shows the central nervous system (CNS) also plays an essential mechanistic role in cachexia. In the context of inflammatory stress, the hypothalamus integrates signals from peripheral systems, which it translates into neuroendocrine perturbations, altered neuronal signaling, and global metabolic derangements. Therefore, we will discuss how hypothalamic inflammation is an essential driver of both the acute illness response and cachexia, and why this organ is uniquely equipped to generate and maintain chronic inflammation. First, we will focus on the role of the hypothalamus in acute responses to dietary and infectious stimuli. Next, we will discuss the role of cytokines in driving homeostatic disequilibrium, resulting in muscle wasting, anorexia, and weight loss. Finally, we will address mechanisms and mediators of chronic hypothalamic inflammation, including endothelial cells, chemokines, and peripheral leukocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. The Innate Immune System in Acute and Chronic Wounds

    PubMed Central

    MacLeod, Amanda S.; Mansbridge, Jonathan N.

    2016-01-01

    Significance: This review article provides an overview of the critical roles of the innate immune system to wound healing. It explores aspects of dysregulation of individual innate immune elements known to compromise wound repair and promote nonhealing wounds. Understanding the key mechanisms whereby wound healing fails will provide seed concepts for the development of new therapeutic approaches. Recent Advances: Our understanding of the complex interactions of the innate immune system in wound healing has significantly improved, particularly in our understanding of the role of antimicrobials and peptides and the nature of the switch from inflammatory to reparative processes. This takes place against an emerging understanding of the relationship between human cells and commensal bacteria in the skin. Critical Issues: It is well established and accepted that early local inflammatory mediators in the wound bed function as an immunological vehicle to facilitate immune cell infiltration and microbial clearance upon injury to the skin barrier. Both impaired and excessive innate immune responses can promote nonhealing wounds. It appears that the switch from the inflammatory to the proliferative phase is tightly regulated and mediated, at least in part, by a change in macrophages. Defining the factors that initiate the switch in such macrophage phenotypes and functions is the subject of multiple investigations. Future Directions: The review highlights processes that may be useful targets for further investigation, particularly the switch from M1 to M2 macrophages that appears to be critical as dysregulation of this switch occurs during defective wound healing. PMID:26862464

  7. In Sickness and in Health: The Co-Regulation of Inflammation and Social Behavior

    PubMed Central

    Eisenberger, Naomi I; Moieni, Mona; Inagaki, Tristen K; Muscatell, Keely A; Irwin, Michael R

    2017-01-01

    Although it has commonly been assumed that the immune system and the processes that govern social behavior are separate, non-communicating entities, research over the past several decades suggests otherwise. Considerable evidence now shows that inflammatory processes and social behavior are actually powerful regulators of one another. This review first summarizes evidence that inflammatory processes regulate social behavior, leading to characteristic changes that may help an individual navigate the social environment during times of sickness. Specifically, this review shows that inflammation: (1) increases threat-related neural sensitivity to negative social experiences (eg, rejection, negative social feedback), presumably to enhance sensitivity to threats to well-being or safety in order to avoid them and (2) enhances reward-related neural sensitivity to positive social experiences (eg, viewing close others and receiving positive social feedback), presumably to increase approach-related motivation towards others who might provide support and care during sickness. Next, this review summarizes evidence showing that social behavior also regulates aspects of inflammatory activity, preparing the body for situations in which wounding and infection may be more likely (social isolation). Here, we review research showing: (1) that exposure to social stressors increases proinflammatory activity, (2) that individuals who are more socially isolated (ie, lonely) show increased proinflammatory activity, and (3) that individuals who are more socially isolated show increased proinflammatory activity in response to an inflammatory challenge or social stressor. The implications of the co-regulation of inflammation and social behavior are discussed. PMID:27480575

  8. Targeting congestion in allergic rhinitis: the importance of intranasal corticosteroids.

    PubMed

    Marple, Bradley F

    2008-01-01

    The cardinal nasal symptoms of allergic rhinitis (AR) are sustained by an underlying inflammatory process. Congestion is one of the most prominent and distressing symptoms for patients and is strongly associated with a broadly deteriorated quality of life and significant losses in productivity. The purpose of this study was to explore the role of intranasal corticosteroids (INSs) in down-regulating the inflammatory response to allergen and their clinical efficacy on AR symptoms, particularly congestion. AR is characterized by an influx of inflammatory cells and mediators into the nasal mucosa after antigen exposure. The response is biphasic, encompassing an early and a late phase. Antigen exposure has a priming effect, decreasing the threshold for subsequent allergic reaction on rechallenge and increasing the responsiveness of the nasal mucosa. INSs are a mainstay of therapy for AR and the most effective intervention for nasal congestion and other nasal symptoms, with established superiority to antihistamines, decongestants, and leukotriene antagonists. In addition to symptom relief, INSs suppress numerous stages of the inflammatory cascade, inhibiting the influx of inflammatory cells and mediators. Topical nasal corticosteroids have a low incidence of local adverse effects, negligible systemic absorption, and excellent safety. Congestion is one of the most bothersome symptoms of AR. INS therapy improves AR symptoms, with particular efficacy in relieving congestion, by attenuating nasal hyperresponsiveness. Pretreatment with INSs has been shown to relieve early and late-phase clinical symptoms of AR. Modification of the disease process results in significant relief of symptoms and leads to fewer disease exacerbations.

  9. Co-Designing a Collaborative Chronic Care Network (C3N) for Inflammatory Bowel Disease: Development of Methods

    PubMed Central

    Dellal, George; Peterson, Laura E; Provost, Lloyd; Gloor, Peter A; Fore, David Livingstone; Margolis, Peter A

    2018-01-01

    Background Our health care system fails to deliver necessary results, and incremental system improvements will not deliver needed change. Learning health systems (LHSs) are seen as a means to accelerate outcomes, improve care delivery, and further clinical research; yet, few such systems exist. We describe the process of codesigning, with all relevant stakeholders, an approach for creating a collaborative chronic care network (C3N), a peer-produced networked LHS. Objective The objective of this study was to report the methods used, with a diverse group of stakeholders, to translate the idea of a C3N to a set of actionable next steps. Methods The setting was ImproveCareNow, an improvement network for pediatric inflammatory bowel disease. In collaboration with patients and families, clinicians, researchers, social scientists, technologists, and designers, C3N leaders used a modified idealized design process to develop a design for a C3N. Results Over 100 people participated in the design process that resulted in (1) an overall concept design for the ImproveCareNow C3N, (2) a logic model for bringing about this system, and (3) 13 potential innovations likely to increase awareness and agency, make it easier to collect and share information, and to enhance collaboration that could be tested collectively to bring about the C3N. Conclusions We demonstrate methods that resulted in a design that has the potential to transform the chronic care system into an LHS. PMID:29472173

  10. Stepwise approach to myopathy in systemic disease.

    PubMed

    Chawla, Jasvinder

    2011-01-01

    Muscle diseases can constitute a large variety of both acquired and hereditary disorders. Myopathies in systemic disease results from several different disease processes including endocrine, inflammatory, paraneoplastic, infectious, drug- and toxin-induced, critical illness myopathy, metabolic, and myopathies with other systemic disorders. Patients with systemic myopathies often present acutely or sub acutely. On the other hand, familial myopathies or dystrophies generally present in a chronic fashion with exceptions of metabolic myopathies where symptoms on occasion can be precipitated acutely. Most of the inflammatory myopathies can have a chance association with malignant lesions; the incidence appears to be specifically increased only in patients with dermatomyositis. In dealing with myopathies associated with systemic illnesses, the focus will be on the acquired causes. Management is beyond the scope of this chapter. Prognosis is based upon the underlying cause and, most of the time, carries a good prognosis. In order to approach a patient with suspected myopathy from systemic disease, a stepwise approach is utilized.

  11. Development of anti-inflammatory drugs - the research and development process.

    PubMed

    Knowles, Richard Graham

    2014-01-01

    The research and development process for novel drugs to treat inflammatory diseases is described, and several current issues and debates relevant to this are raised: the decline in productivity, attrition, challenges and trends in developing anti-inflammatory drugs, the poor clinical predictivity of experimental models of inflammatory diseases, heterogeneity within inflammatory diseases, 'improving on the Beatles' in treating inflammation, and the relationships between big pharma and biotechs. The pharmaceutical research and development community is responding to these challenges in multiple ways which it is hoped will lead to the discovery and development of a new generation of anti-inflammatory medicines. © 2013 Nordic Pharmacological Society. Published by John Wiley & Sons Ltd.

  12. Gla-rich protein function as an anti-inflammatory agent in monocytes/macrophages: Implications for calcification-related chronic inflammatory diseases

    PubMed Central

    Viegas, Carla S. B.; Costa, Rúben M.; Santos, Lúcia; Videira, Paula A.; Silva, Zélia; Araújo, Nuna; Macedo, Anjos L.; Matos, António P.; Vermeer, Cees; Simes, Dina C.

    2017-01-01

    Calcification-related chronic inflammatory diseases are multifactorial pathological processes, involving a complex interplay between inflammation and calcification events in a positive feed-back loop driving disease progression. Gla-rich protein (GRP) is a vitamin K dependent protein (VKDP) shown to function as a calcification inhibitor in cardiovascular and articular tissues, and proposed as an anti-inflammatory agent in chondrocytes and synoviocytes, acting as a new crosstalk factor between these two interconnected events in osteoarthritis. However, a possible function of GRP in the immune system has never been studied. Here we focused our investigation in the involvement of GRP in the cell inflammatory response mechanisms, using a combination of freshly isolated human leucocytes and undifferentiated/differentiated THP-1 cell line. Our results demonstrate that VKDPs such as GRP and matrix gla protein (MGP) are synthesized and γ-carboxylated in the majority of human immune system cells either involved in innate or adaptive immune responses. Stimulation of THP-1 monocytes/macrophages with LPS or hydroxyapatite (HA) up-regulated GRP expression, and treatments with GRP or GRP-coated basic calcium phosphate crystals resulted in the down-regulation of mediators of inflammation and inflammatory cytokines, independently of the protein γ-carboxylation status. Moreover, overexpression of GRP in THP-1 cells rescued the inflammation induced by LPS and HA, by down-regulation of the proinflammatory cytokines TNFα, IL-1β and NFkB. Interestingly, GRP was detected at protein and mRNA levels in extracellular vesicles released by macrophages, which may act as vehicles for extracellular trafficking and release. Our data indicate GRP as an endogenous mediator of inflammatory responses acting as an anti-inflammatory agent in monocytes/macrophages. We propose that in a context of chronic inflammation and calcification-related pathologies, GRP might act as a novel molecular mediator linking inflammation and calcification events, with potential therapeutic application. PMID:28542410

  13. Inflammation in the pathophysiology of essential hypertension.

    PubMed

    Montecucco, Fabrizio; Pende, Aldo; Quercioli, Alessandra; Mach, François

    2011-01-01

    In spite of the huge amount of research recently performed in this area, the pathogenesis of human hypertension remains elusive. Thus, hypertension has to be defined as "essential" for the majority of patients with high blood pressure. Given the lack of animal models useful to investigate essential hypertension, we analyze and discuss both clinical and basic research studies indicating that essential hypertension should be considered as a potential multifactorial inflammatory disease. The pathophysiology of essential hypertension might result from interactions between genetic and environmental factors. Morphological abnormalities in the renal parenchyma and arteries have also been shown to determine hypertension. Inflammatory processes might induce renal vasoconstriction, ischemia and injury that can sustain systemic hypertension. Arterial and tubulointerstitial infiltration of inflammatory cells in response to renal damage might further increase renal and vascular alterations through the production of oxidants and other soluble inflammatory mediators. The present review gives an update regarding the latest research on the possible direct role of inflammation in the pathophysiology of essential hypertension.

  14. Inflammation in sickle cell disease.

    PubMed

    Conran, Nicola; Belcher, John D

    2018-01-01

    The primary β-globin gene mutation that causes sickle cell disease (SCD) has significant pathophysiological consequences that result in hemolytic events and the induction of the inflammatory processes that ultimately lead to vaso-occlusion. In addition to their role in the initiation of the acute painful vaso-occlusive episodes that are characteristic of SCD, inflammatory processes are also key components of many of the complications of the disease including autosplenectomy, acute chest syndrome, pulmonary hypertension, leg ulcers, nephropathy and stroke. We, herein, discuss the events that trigger inflammation in the disease, as well as the mechanisms, inflammatory molecules and cells that propagate these inflammatory processes. Given the central role that inflammation plays in SCD pathophysiology, many of the therapeutic approaches currently under pre-clinical and clinical development for the treatment of SCD endeavor to counter aspects or specific molecules of these inflammatory processes and it is possible that, in the future, we will see anti-inflammatory drugs being used either together with, or in place of, hydroxyurea in those SCD patients for whom hematopoietic stem cell transplants and evolving gene therapies are not a viable option.

  15. How does the social "get under the gums"? The role of socio-economic position in the oral-systemic health link.

    PubMed

    Gomaa, Noha; Nicolau, Belinda; Siddiqi, Arjumand; Tenenbaum, Howard; Glogauer, Michael; Quiñonez, Carlos

    2017-09-14

    To evaluate the extent of association between systemic inflammation and periodontal disease in American adults, and to assess whether socio-economic position mediated this relationship. We used data from the National Health and Nutrition Examination Survey (NHANES IV) (2001-2010). Systemic inflammation was defined by individual and aggregate (cumulative inflammatory load) biomarkers (C-reactive protein, white blood cell counts, neutrophil counts, and neutrophil:lymphocyte ratio). Loss of attachment and bleeding on probing were used to define periodontal disease. Poverty:income ratio and education were indicators of socio-economic position. Covariates included age, sex, ethnicity, smoking, alcohol, and attendance for dental treatment. Univariate and multivariable logistic regressions were constructed to assess the relationships of interest. In a total of 2296 respondents, biomarkers of systemic inflammation and cumulative inflammatory load were significantly associated with periodontal disease after adjusting for age, sex, and behavioural factors. Socio-economic position attenuated the association between markers of systemic inflammation and periodontal disease in the fully adjusted model. Socio-economic position partly explains how systemic inflammation and periodontal disease are coupled, and may thus have a significant role in the mechanisms linking oral and non-oral health conditions. It is of critical importance that the social and living conditions are taken into account when considering prevention and treatment strategies for inflammatory diseases, given what appears to be their impactful effect on disease processes.

  16. Autoinflammatory bone diseases.

    PubMed

    Stern, Sara M; Ferguson, Polly J

    2013-11-01

    Autoinflammatory bone disease is a new branch of autoinflammatory diseases caused by seemingly unprovoked activation of the innate immune system leading to an osseous inflammatory process. The inflammatory bone lesions in these disorders are characterized by chronic inflammation that is typically culture negative with no demonstrable organism on histopathology. The most common autoinflammatory bone diseases in childhood include chronic nonbacterial osteomyelitis (CNO), synovitis, acne, pustulosis, hyperostosis, osteitis syndrome, Majeed syndrome, deficiency of interleukin-1 receptor antagonist, and cherubism. In this article, the authors focus on CNO and summarize the distinct genetic autoinflammatory bone syndromes. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Examining the controllability of sepsis using genetic algorithms on an agent-based model of systemic inflammation.

    PubMed

    Cockrell, Robert Chase; An, Gary

    2018-02-01

    Sepsis, a manifestation of the body's inflammatory response to injury and infection, has a mortality rate of between 28%-50% and affects approximately 1 million patients annually in the United States. Currently, there are no therapies targeting the cellular/molecular processes driving sepsis that have demonstrated the ability to control this disease process in the clinical setting. We propose that this is in great part due to the considerable heterogeneity of the clinical trajectories that constitute clinical "sepsis," and that determining how this system can be controlled back into a state of health requires the application of concepts drawn from the field of dynamical systems. In this work, we consider the human immune system to be a random dynamical system, and investigate its potential controllability using an agent-based model of the innate immune response (the Innate Immune Response ABM or IIRABM) as a surrogate, proxy system. Simulation experiments with the IIRABM provide an explanation as to why single/limited cytokine perturbations at a single, or small number of, time points is unlikely to significantly improve the mortality rate of sepsis. We then use genetic algorithms (GA) to explore and characterize multi-targeted control strategies for the random dynamical immune system that guide it from a persistent, non-recovering inflammatory state (functionally equivalent to the clinical states of systemic inflammatory response syndrome (SIRS) or sepsis) to a state of health. We train the GA on a single parameter set with multiple stochastic replicates, and show that while the calculated results show good generalizability, more advanced strategies are needed to achieve the goal of adaptive personalized medicine. This work evaluating the extent of interventions needed to control a simplified surrogate model of sepsis provides insight into the scope of the clinical challenge, and can serve as a guide on the path towards true "precision control" of sepsis.

  18. Acute hemolytic vascular inflammatory processes are prevented by nitric oxide replacement or a single dose of hydroxyurea.

    PubMed

    Almeida, Camila Bononi; Souza, Lucas Eduardo Botelho; Leonardo, Flavia Costa; Costa, Fabio Trindade Maranhão; Werneck, Claudio C; Covas, Dimas Tadeu; Costa, Fernando Ferreira; Conran, Nicola

    2015-08-06

    Hemolysis and consequent release of cell-free hemoglobin (CFHb) impair vascular nitric oxide (NO) bioavailability and cause oxidative and inflammatory processes. Hydroxyurea (HU), a common therapy for sickle cell disease (SCD), induces fetal Hb production and can act as an NO donor. We evaluated the acute inflammatory effects of intravenous water-induced hemolysis in C57BL/6 mice and determined the abilities of an NO donor, diethylamine NONOate (DEANO), and a single dose of HU to modulate this inflammation. Intravenous water induced acute hemolysis in C57BL/6 mice, attaining plasma Hb levels comparable to those observed in chimeric SCD mice. This hemolysis resulted in significant and rapid systemic inflammation and vascular leukocyte recruitment within 15 minutes, accompanied by NO metabolite generation. Administration of another potent NO scavenger (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) to C57BL/6 mice induced similar alterations in leukocyte recruitment, whereas hemin-induced inflammation occurred over a longer time frame. Importantly, the acute inflammatory effects of water-induced hemolysis were abolished by the simultaneous administration of DEANO or HU, without altering CFHb, in an NO pathway-mediated manner. In vitro, HU partially reversed the Hb-mediated induction of endothelial proinflammatory cytokine secretion and adhesion molecule expression. In summary, pathophysiological levels of hemolysis trigger an immediate inflammatory response, possibly mediated by vascular NO consumption. HU presents beneficial anti-inflammatory effects by inhibiting rapid-onset hemolytic inflammation via an NO-dependent mechanism, independently of fetal Hb elevation. Data provide novel insights into mechanisms of hemolytic inflammation and further support perspectives for the use of HU as an acute treatment for SCD and other hemolytic disorders. © 2015 by The American Society of Hematology.

  19. The Microbiome and Complement Activation: A Mechanistic Model for Preterm Birth

    PubMed Central

    Dunn, Alexis B.; Dunlop, Anne L.; Hogue, Carol J.; Miller, Andrew; Corwin, Elizabeth J.

    2018-01-01

    Preterm Birth (PTB, < 37 completed weeks' gestation) is one of the leading obstetrical problems in the United States affecting approximately 1 of every 9 births. Even more concerning are the persistent racial disparities in PTB with particularly high rates in African Americans. There are several recognized pathophysiologic pathways to PTB, including infection and/or exaggerated systemic or local inflammation. Intrauterine infection is a causal factor linked to PTB, thought to result most commonly from inflammatory processes triggered by microbial invasion of bacteria ascending from the vaginal microbiome. Trials to treat various infections have shown limited efficacy in reducing PTB risk, suggesting that other complex mechanisms, including those associated with inflammation, may be involved in the relationship between microbes, infection, and PTB. A key mediator of the inflammatory response, and recently shown to be associated with PTB, is the complement system, an innate defense mechanism involved in both normal physiologic processes that occur during pregnancy implantation, as well as processes that promote the elimination of pathogenic microbes. The purpose of this paper is to present a mechanistic model of inflammation-associated PTB, which hypothesizes a relationship between the microbiome and dysregulation of the complement system. Exploring the relationships between the microbial environment and complement biomarkers may elucidate a potentially modifiable biological pathway to preterm birth. PMID:28073296

  20. C-Terminal Clipping of Chemokine CCL1/I-309 Enhances CCR8-Mediated Intracellular Calcium Release and Anti-Apoptotic Activity

    PubMed Central

    Denis, Catherine; Deiteren, Kathleen; Mortier, Anneleen; Tounsi, Amel; Fransen, Erik; Proost, Paul; Renauld, Jean-Christophe; Lambeir, Anne-Marie

    2012-01-01

    Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system. PMID:22479563

  1. Inflammatory bowel disease: An archetype disorder of outer environment sensor systems

    PubMed Central

    Actis, Giovanni C; Rosina, Floriano

    2013-01-01

    The pathogenesis of the two inflammatory bowel diseases (IBDs) phenotypes ulcerative colitis (UC) and Crohn’s disease (CD) has remained elusive, thus frustrating attempts at defining a cure. IBD often presents as a complex inflammatory process wherein colon lesions (UC) or widespread ulceration and fissure (CD) might be accompanied by ancillary extra-intestinal manifestations involving the eye, skin, joints or liver, but also by full-blown “autoimmune” disorders from psoriasis and multiple sclerosis to rheumatoid arthritis; attempts at unraveling a link or a hierarchical order in these entities have proven almost fruitless. More recently, the input of genetics has suggested that the IBDs might be multi-organ inflammatory processes, elicited by a large number of low-penetrance susceptibility genes, with environmental factors needed to induce full-blown disease. At a noteworthy exception to this rule, the description of the nucleotide-oligomerization domain (NOD) gene mutations in CD came at the beginning of the 2000s: the NOD-LRR are part of a highly conserved microbial sensor system which respond to bacterial peptidoglycans by mounting an inflammatory response. At least in Caucasian patients, the prevalently loss-of-function mutation of NOD permitted to unexpectedly define CD as an immune deficiency state, and upon its recent description in apparently unrelated disorders such as the Blau syndrome (a granulomatous pediatric syndrome), and perhaps in psoriasis and chronic obstructive pulmonary disorders, has contributed to revolutionize our view of IBD and CD in particular. The latter affection, together with psoriasis and chronic pulmonary disease can now be included into a newly identified category named “barrier organ disease”, wherein a barrier organ is defined as a large mucosal or epithelial surface with an abundant metagenomic microbial population and an underneath reactive tissue, the whole structure being in contact with the outer environment and capable to react to it. Personalized treatments and empowerment of research across different disease phenotypes should be the advantages of this novel mindset. PMID:23919214

  2. Epigenetic Modulation as a Therapeutic Prospect for Treatment of Autoimmune Rheumatic Diseases.

    PubMed

    Ciechomska, Marzena; O'Reilly, Steven

    2016-01-01

    Systemic inflammatory rheumatic diseases are considered as autoimmune diseases, meaning that the balance between recognition of pathogens and avoidance of self-attack is impaired and the immune system attacks and destroys its own healthy tissue. Treatment with conventional Disease Modifying Antirheumatic Drugs (DMARDs) and/or Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) is often associated with various adverse reactions due to unspecific and toxic properties of those drugs. Although biologic drugs have largely improved the outcome in many patients, such drugs still pose significant problems and fail to provide a solution to all patients. Therefore, development of more effective treatments and improvements in early diagnosis of rheumatic diseases are badly needed in order to increase patient's functioning and quality of life. The reversible nature of epigenetic mechanisms offers a new class of drugs that modulate the immune system and inflammation. In fact, epigenetic drugs are already in use in some types of cancer or cardiovascular diseases. Therefore, epigenetic-based therapeutics that control autoimmunity and chronic inflammatory process have broad implications for the pathogenesis, diagnosis, and management of rheumatic diseases. This review summarises the latest information about potential therapeutic application of epigenetic modification in targeting immune abnormalities and inflammation of rheumatic diseases.

  3. Receptor binding sites for substance P in surgical specimens obtained from patients with ulcerative colitis and Crohn disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mantyh, C.R.; Gates, T.S.; Zimmerman, R.P.

    1988-05-01

    Several lines of evidence indicate that tachykinin neuropeptides (substance P (SP), substance K (SK), and neuromedin K (NK)) play a role in regulating the inflammatory and immune responses. To test this hypothesis in a human inflammatory disease, quantitative receptor autoradiography was used to examine possible abnormalities in tachykinin binding sites in surgical specimens from patients with inflammatory bowel disease. In all cases, specimens were processed for quantitative receptor autoradiography by using /sup 125/I-labeled Bolton-Hunter conjugates of NK, SK, and SP. In colon tissue obtained from ulcerative colitis and Crohn disease patients, very high concentrations of SP receptor binding sites aremore » expressed by arterioles and venules located in the submucosa, muscalairs mucosa, external circular muscle, external longitudinal muscle, and serosa, in contrast to control patients. These results demonstrate that receptor binding sites for SP, but not SK or NK, are ectopically expressed in high concentrations by cells involved in mediating inflammatory and immune responses. These data suggest that SP may be involved in the pathophysiology of inflammatory bowel disease and might provide some insight into the interaction between the nervous system and the regulation of inflammation and the immune response in human inflammatory disease.« less

  4. Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity.

    PubMed

    Taguchi, Kazuaki; Nagao, Saori; Maeda, Hitoshi; Yanagisawa, Hiroki; Sakai, Hiromi; Yamasaki, Keishi; Wakayama, Tomohiko; Watanabe, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2018-11-01

    Macrophages play a central role in various inflammatory disorders and are broadly divided into two subpopulations, M1 and M2 macrophage. In the healing process in acute inflammatory disorders, shifting the production of M1 macrophages to M2 macrophages is desirable, because M1 macrophages secrete pro-inflammatory cytokines, whilst the M2 variety secrete anti-inflammatory cytokines. Previous findings indicate that when macrophages are treated with carbon monoxide (CO), the secretion of anti-inflammatory cytokine is increased and the expression of pro-inflammatory cytokines is inhibited, indicating that CO may have a potential to modulate the production of macrophages toward the M2-like phenotype. In this study, we examined the issue of whether CO targeting macrophages using a nanotechnology-based CO donor, namely CO-bound hemoglobin vesicles (CO-HbV), modulates their polarization and show therapeutic effects against inflammatory disorders. The results showed that the CO-HbV treatment polarized a macrophage cell line toward an M2-like phenotype. Furthermore, in an in vivo study using acute pancreatitis model mice as a model of an inflammatory disease, a CO-HbV treatment also tended to polarize macrophages toward an M2-like phenotype and inhibited neutrophil infiltration in the pancreas, resulting in a significant inflammation. In addition to the suppression of acute pancreatitis, CO-HbV diminished a subsequent pancreatitis-associated acute lung injury. This could be due to the inhibition of the systemic inflammation, neutrophil infiltration in the lungs and the production of HMGB-1. These findings suggest that CO-HbV exerts superior anti-inflammatory effects against inflammatory disorders via the regulation of macrophage and neutrophil activity.

  5. The Onset of Type 2 Diabetes: Proposal for a Multi-Scale Model

    PubMed Central

    Tieri, Paolo; De Graaf, Albert; Franceschi, Claudio; Liò, Pietro; Van Ommen, Ben; Mazzà, Claudia; Tuchel, Alexander; Bernaschi, Massimo; Samson, Clare; Colombo, Teresa; Castellani, Gastone C; Capri, Miriam; Garagnani, Paolo; Salvioli, Stefano; Nguyen, Viet Anh; Bobeldijk-Pastorova, Ivana; Krishnan, Shaji; Cappozzo, Aurelio; Sacchetti, Massimo; Morettini, Micaela; Ernst, Marc

    2013-01-01

    Background Type 2 diabetes mellitus (T2D) is a common age-related disease, and is a major health concern, particularly in developed countries where the population is aging, including Europe. The multi-scale immune system simulator for the onset of type 2 diabetes (MISSION-T2D) is a European Union-funded project that aims to develop and validate an integrated, multilevel, and patient-specific model, incorporating genetic, metabolic, and nutritional data for the simulation and prediction of metabolic and inflammatory processes in the onset and progression of T2D. The project will ultimately provide a tool for diagnosis and clinical decision making that can estimate the risk of developing T2D and predict its progression in response to possible therapies. Recent data showed that T2D and its complications, specifically in the heart, kidney, retina, and feet, should be considered a systemic disease that is sustained by a pervasive, metabolically-driven state of inflammation. Accordingly, there is an urgent need (1) to understand the complex mechanisms underpinning the onset of this disease, and (2) to identify early patient-specific diagnostic parameters and related inflammatory indicators. Objective We aim to accomplish this mission by setting up a multi-scale model to study the systemic interactions of the biological mechanisms involved in response to a variety of nutritional and metabolic stimuli and stressors. Methods Specifically, we will be studying the biological mechanisms of immunological/inflammatory processes, energy intake/expenditure ratio, and cell cycle rate. The overall architecture of the model will exploit an already established immune system simulator as well as several discrete and continuous mathematical methods for modeling of the processes critically involved in the onset and progression of T2D. We aim to validate the predictions of our models using actual biological and clinical data. Results This study was initiated in March 2013 and is expected to be completed by February 2016. Conclusions MISSION-T2D aims to pave the way for translating validated multilevel immune-metabolic models into the clinical setting of T2D. This approach will eventually generate predictive biomarkers for this disease from the integration of clinical data with metabolic, nutritional, immune/inflammatory, genetic, and gut microbiota profiles. Eventually, it should prove possible to translate these into cost-effective and mobile-based diagnostic tools. PMID:24176906

  6. Alpha-1-antitrypsin ameliorates inflammation and neurodegeneration in the diabetic mouse retina.

    PubMed

    Ortiz, Gustavo; Lopez, Emiliano S; Salica, Juan P; Potilinski, Constanza; Fernández Acquier, Mariano; Chuluyan, Eduardo; Gallo, Juan E

    2018-05-18

    Diabetic retinopathy (DR) is the most common cause of blindness in the working age population. Early events of DR are accompanied by neurodegeneration of the inner retina resulting in ganglion cell loss. These findings together with reduced retinal thickness are observed within the first weeks of experimental DR. Besides, an inflammatory process is triggered in DR in which the innate immune response plays a relevant role. Alpha 1 antitrypsin (AAT), an inhibitor of serine proteases, has shown anti-inflammatory properties in several diseases. We aimed at evaluating the use of AAT to prevent the early changes induced by DR. Diabetic AAT-treated mice showed a delay on ganglion cell loss and retinal thinning. These animals showed a markedly reduced inflammatory status. AAT was able to preserve systemic and retinal TNF-α level similar to that of control mice. Furthermore, retinal macrophages found in the AAT-treated diabetic mouse exhibited M2 profile (F4/80 + CD206 + ) together with an anti-inflammatory microenvironment. We thus demonstrated that AAT-treated mice show less retinal neurodegenerative changes and have reduced levels of systemic and retinal TNF-α. Our results contribute to shed light on the use of AAT as a possible therapeutic option in DR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Pulmonary Remodeling in Equine Asthma: What Do We Know about Mediators of Inflammation in the Horse?

    PubMed Central

    Gehlen, Heidrun

    2016-01-01

    Equine inflammatory airway disease (IAD) and recurrent airway obstruction (RAO) represent a spectrum of chronic inflammatory disease of the airways in horses resembling human asthma in many aspects. Therefore, both are now described as severity grades of equine asthma. Increasing evidence in horses and humans suggests that local pulmonary inflammation is influenced by systemic inflammatory processes and the other way around. Inflammation, coagulation, and fibrinolysis as well as extracellular remodeling show close interactions. Cytology of bronchoalveolar lavage fluid and tracheal wash is commonly used to evaluate the severity of local inflammation in the lung. Other mediators of inflammation, like interleukins involved in the chemotaxis of neutrophils, have been studied. Chronic obstructive pneumopathies lead to remodeling of bronchial walls and lung parenchyma, ultimately causing fibrosis. Matrix metalloproteinases (MMPs) are discussed as the most important proteolytic enzymes during remodeling in human medicine and increasing evidence exists for the horse as well. A systemic involvement has been shown for severe equine asthma by increased acute phase proteins like serum amyloid A and haptoglobin in peripheral blood during exacerbation. Studies focusing on these and further possible inflammatory markers for chronic respiratory disease in the horse are discussed in this review of the literature. PMID:28053371

  8. Oxidative Stress in the Local and Systemic Events of Apical Periodontitis

    PubMed Central

    Hernández-Ríos, Patricia; Pussinen, Pirkko J.; Vernal, Rolando; Hernández, Marcela

    2017-01-01

    Oxidative stress is involved in the pathogenesis of a variety of inflammatory disorders. Apical periodontitis (AP) usually results in the formation of an osteolytic apical lesion (AL) caused by the immune response to endodontic infection. Reactive oxygen species (ROS) produced by phagocytic cells in response to bacterial challenge represent an important host defense mechanism, but disturbed redox balance results in tissue injury. This mini review focuses on the role of oxidative stress in the local and associated systemic events in chronic apical periodontitis. During endodontic infection, ligation of Toll-like receptors (TLRs) on phagocytes' surface triggers activation, phagocytosis, synthesis of ROS, activation of humoral and cellular responses, and production of inflammatory mediators, such as, cytokines and matrix metalloproteinases (MMPs). The increment in ROS perturbs the normal redox balance and shifts cells into a state of oxidative stress. ROS induce molecular damage and disturbed redox signaling, that result in the loss of bone homeostasis, increased pro-inflammatory mediators, and MMP overexpression and activation, leading to apical tissue breakdown. On the other hand, oxidative stress has been strongly involved in the pathogenesis of atherosclerosis, where a chronic inflammatory process develops in the arterial wall. Chronic AP is associated with an increased risk of cardiovascular diseases (CVD) and especially atherogenesis. The potential mechanisms linking these diseases are also discussed. PMID:29163211

  9. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both.

    PubMed

    Koschmieder, S; Mughal, T I; Hasselbalch, H C; Barosi, G; Valent, P; Kiladjian, J-J; Jeryczynski, G; Gisslinger, H; Jutzi, J S; Pahl, H L; Hehlmann, R; Maria Vannucchi, A; Cervantes, F; Silver, R T; Barbui, T

    2016-05-01

    The Philadelphia-negative myeloproliferative neoplasms (MPNs) are clonal disorders involving hematopoietic stem and progenitor cells and are associated with myeloproliferation, splenomegaly and constitutional symptoms. Similar signs and symptoms can also be found in patients with chronic inflammatory diseases, and inflammatory processes have been found to play an important role in the pathogenesis and progression of MPNs. Signal transduction pathways involving JAK1, JAK2, STAT3 and STAT5 are causally involved in driving both the malignant cells and the inflammatory process. Moreover, anti-inflammatory and immune-modulating drugs have been used successfully in the treatment of MPNs. However, to date, many unresoved issues remain. These include the role of somatic mutations that are present in addition to JAK2V617F, CALR and MPL W515 mutations, the interdependency of malignant and nonmalignant cells and the means to eradicate MPN-initiating and -maintaining cells. It is imperative for successful therapeutic approaches to define whether the malignant clone or the inflammatory cells or both should be targeted. The present review will cover three aspects of the role of inflammation in MPNs: inflammatory states as important differential diagnoses in cases of suspected MPN (that is, in the absence of a clonal marker), the role of inflammation in MPN pathogenesis and progression and the use of anti-inflammatory drugs for MPNs. The findings emphasize the need to separate the inflammatory processes from the malignancy in order to improve our understanding of the pathogenesis, diagnosis and treatment of patients with Philadelphia-negative MPNs.

  10. Role of Systemic Markers in Periodontal Diseases: A Possible Inflammatory Burden and Risk Factor for Cardiovascular Diseases?

    PubMed Central

    Kalburgi, V; Sravya, L; Warad, S; Vijayalaxmi, K; Sejal, P; Hazeil, DJ

    2014-01-01

    Background: Periodontitis is a local inflammatory process mediating destruction of periodontium triggered by bacterial insult leading to systemic inflammatory mayhem in the host. Epidemiologically, it has been modestly associated with cardiovascular diseases (CVD) with elevated acute-phase reactant C-reactive protein (CRP) and rheological variables such as total leukocyte count and differential leukocyte count (TLC and DLC), which are potential predictors of CVD. Aim: The aim of this study was to investigate the serum CRP level, leukocyte count in chronic periodontitis patients and their relation to the severity of chronic periodontitis. Subjects and Methods: This cross-sectional study comprised 30 subjects, of which 20 were diagnosed as chronic periodontitis based on the Gingival index, probing depth and clinical attachment levels and 10 healthy subjects as controls. Following, which peripheral blood samples were drawn and serum CRP, TLC and DLC were quantified using the turbidimetric immunoassay. Data was analyzed using Intercooled Stata 9.2 version, (Stata corporation, LP, USA) ANOVA, Mann Whitney U test and Newman-Keuls post hoc procedures. P values less than) 0.05 were considered as significant Results: The mean serum CRP levels were statistically significant (P < 0.05) in severe and moderate periodontitis subjects when compared with healthy controls. Leukocytes were significantly elevated in severe periodontitis compared with moderate periodontitis and controls; this finding was primarily explained by the increase in number of neutrophils. Conclusion: The increased serum CRP levels and neutrophils in chronic periodontitis subjects suggest an addition to the inflammatory burden of the individual potentially striking toward an increasing risk for cardiovascular events. Further research is needed to determine the specificity of these markers and their role in the inflammatory burden of one's systemic health. PMID:24971214

  11. Peripheral inflammation in prodromal Alzheimer's and Lewy body dementias.

    PubMed

    King, Eleanor; O'Brien, John Tiernan; Donaghy, Paul; Morris, Christopher; Barnett, Nicola; Olsen, Kirsty; Martin-Ruiz, Carmen; Taylor, John-Paul; Thomas, Alan J

    2018-04-01

    There is growing evidence for the role of systemic inflammation in Alzheimer's disease (AD) and other neurodegenerative diseases; however the systemic inflammatory profile in dementia with Lewy bodies (DLB) has never before been investigated. This study aimed to characterise systemic inflammatory mediators in established DLB and AD, as well as in their prodromal, mild cognitive impairment (MCI) phases. We obtained plasma samples from patients with DLB (n=37), AD (n=20), MCI with DLB profile (n=38), MCI with AD profile (n=20) and healthy control subjects (n=20). The following inflammatory biomarkers were measured using Roche cobas c702 and Meso Scale Discovery V-Plex Plus: high-sensitivity C-reactive protein, interferon-gamma, interleukin (IL)-10, IL-12p70, IL-13, IL-1beta, IL-2, IL-4, IL-6, IL-8 and tumour necrosis factor-alpha. We found significantly higher levels of IL-10, IL-1beta, IL-4 and IL-2 in both MCI groups (P<0.001), while there was no significant difference in inflammatory markers between dementia groups and controls. Furthermore, increased disease severity was associated with lower levels of IL-1beta, IL-2 and IL-4 (P<0.05). We have shown for the first time that in both DLB and AD, increased peripheral inflammation occurs early at the MCI disease stages. These data support a role for inflammation early in the disease process, and have important implications for the stage of disease where trials of anti-inflammatory medication should be focused. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. A parasitic helminth-derived peptide that targets the macrophage lysosome is a novel therapeutic option for autoimmune disease.

    PubMed

    Alvarado, Raquel; O'Brien, Bronwyn; Tanaka, Akane; Dalton, John P; Donnelly, Sheila

    2015-02-01

    Parasitic worms (helminths) reside in their mammalian hosts for many years. This is attributable, in part, to their ability to skew the host's immune system away from pro-inflammatory responses and towards anti-inflammatory or regulatory responses. This immune modulatory ability ensures helminth longevity within the host, while simultaneously minimises tissue destruction for the host. The molecules that the parasite releases clearly exert potent immune-modulatory actions, which could be exploited clinically, for example in the prophylactic and therapeutic treatment of pro-inflammatory and autoimmune diseases. We have identified a novel family of immune-modulatory proteins, termed helminth defence molecules (HDMs), which are secreted by several medically important helminth parasites. These HDMs share biochemical and structural characteristics with mammalian cathelicidin-like host defence peptides (HDPs), which are significant components of the innate immune system. Like their mammalian counterparts, parasite HDMs block the activation of macrophages via toll like receptor (TLR) 4 signalling, however HDMs are significantly less cytotoxic than HDPs. HDMs can traverse the cell membrane of macrophages and enter the endolysosomal system where they reduce the acidification of lysosomal compartments by inhibiting vacuolar (v)-ATPase activity. In doing this, HDMs can modulate critical cellular functions, such as cytokine secretion and antigen processing/presentation. Here, we review the role of macrophages, specifically their lysosomal mediated activities, in the initiation and perpetuation of pro-inflammatory immune responses. We also discuss the potential of helminth defence molecules (HDMs) as therapeutics to counteract the pro-inflammatory responses underlying autoimmune disease. Given the current lack of effective, non-cytotoxic treatment options to limit the progression of autoimmune pathologies, HDMs open novel treatment avenues. Crown Copyright © 2014. Published by Elsevier GmbH. All rights reserved.

  13. Increase of oxidation and inflammation in nervous and immune systems with aging and anxiety.

    PubMed

    Vida, Carmen; González, Eva M; De la Fuente, Mónica

    2014-01-01

    According to the oxidation-inflammation theory of aging, chronic oxidative stress and inflammatory stress situations (with higher levels of oxidant and inflammatory compounds and lower antioxidant and anti-inflammatory defenses) are the basis of the agerelated impairment of organism functions, including those of the nervous and immune systems, as well as of the neuroimmune communication, which explains the altered homeostasis and the resulting increase of morbidity and mortality. Overproduction of oxidant compounds can induce an inflammatory response, since oxidants are inflammation effectors. Thus, oxidation and inflammation are interlinked processes and have many feedback loops. However, the nature of their potential interactions, mainly in the brain and immune cells, and their key involvement in aging remain unclear. Moreover, in the context of the neuroimmune communication, it has been described that an oxidative-inflammatory situation occurs in subjects with anxiety, and this situation contributes to an immunosenescence, alteration of survival responses and shorter life span. As an example of this, a model of premature aging in mice, in which animals show a poor response to stress and high levels of anxiety, an oxidative stress in their immune cells and tissues, as well as a premature immunosenescence and a shorter life expectancy, will be commented in the present review. This model supports the hypothesis that anxiety can be a situation of chronic oxidative stress and inflammation, especially in brain and immune cells, and this accelerates the rate of aging.

  14. Air Travel, Circadian Rhythms/Hormones, and Autoimmunity.

    PubMed

    Torres-Ruiz, J; Sulli, A; Cutolo, M; Shoenfeld, Y

    2017-08-01

    Biological rhythms are fundamental for homeostasis and have recently been involved in the regulatory processes of various organs and systems. Circadian cycle proteins and hormones have a direct effect on the inflammatory response and have shown pro- or anti-inflammatory effects in animal models of autoimmune diseases. The cells of the immune system have their own circadian rhythm, and the light-dark cycle directly influences the inflammatory response. On the other hand, patients with autoimmune diseases characteristically have sleep disorders and fatigue, and in certain disease, such as rheumatoid arthritis (RA), a frank periodicity in the signs and symptoms is recognized. The joint symptoms predominate in the morning, and apparently, subjects with RA have relative adrenal insufficiency, with a cortisol peak unable to control the late night load of pro-inflammatory cytokines. Transatlantic flights represent a challenge in the adjustment of biological rhythms, since they imply sleep deprivation, time zone changes, and potential difficulties for drug administration. In patients with autoimmune diseases, the use of DMARDs and prednisone at night is probably best suited to lessen morning symptoms. It is also essential to sleep during the trip to improve adaptation to the new time zone and to avoid, as far as possible, works involving flexible or nocturnal shifts. The study of proteins and hormones related to biological rhythms will demonstrate new pathophysiological pathways of autoimmune diseases, which will emphasize the use of general measures for sleep respect and methods for drug administration at key daily times to optimize their anti-inflammatory and immune modulatory effects.

  15. The role of oxidative, inflammatory and neuroendocrinological systems during exercise stress in athletes: implications of antioxidant supplementation on physiological adaptation during intensified physical training.

    PubMed

    Slattery, Katie; Bentley, David; Coutts, Aaron J

    2015-04-01

    During periods of intensified physical training, reactive oxygen species (ROS) release may exceed the protective capacity of the antioxidant system and lead to dysregulation within the inflammatory and neuroendocrinological systems. Consequently, the efficacy of exogenous antioxidant supplementation to maintain the oxidative balance in states of exercise stress has been widely investigated. The aim of this review was to (1) collate the findings of prior research on the effect of intensive physical training on oxidant-antioxidant balance; (2) summarise the influence of antioxidant supplementation on the reduction-oxidation signalling pathways involved in physiological adaptation; and (3) provide a synopsis on the interactions between the oxidative, inflammatory and neuroendocrinological response to exercise stimuli. Based on prior research, it is evident that ROS are an underlying aetiology in the adaptive process; however, the impact of antioxidant supplementation on physiological adaptation remains unclear. Equivocal results have been reported on the impact of antioxidant supplementation on exercise-induced gene expression. Further research is required to establish whether the interference of antioxidant supplementation consistently observed in animal-based and in vivo research extends to a practical sports setting. Moreover, the varied results reported within the literature may be due to the hormetic response of oxidative, inflammatory and neuroendocrinological systems to an exercise stimulus. The collective findings suggest that intensified physical training places substantial stress on the body, which can manifest as an adaptive or maladaptive physiological response. Additional research is required to determine the efficacy of antioxidant supplementation to minimise exercise-stress during intensive training and promote an adaptive state.

  16. [EBOLA HEMORRHAGIC FEVER; ETIOLOGY, EPIDEMIOLOGY, PATHOGENESIS, AND CLINICAL SYMPTOMS].

    PubMed

    Zhdanov, K W; Zakharenko, S M; Kovalenko, A N; Semenov, A V; Fusin, A Ya

    2015-01-01

    The data on the prevalence of disease caused by Ebola virus, biological features of its pathogen, character of the epidemiological process, pathogenesis and clinical symptoms are presented. The disease is characterized by suppression of protective immunological mechanisms and systemic inflammatory reaction accounting for the lesions of vascular endothelium, hemostatic and immune systems. It eventually leads to polyorgan insufficiency and severe shock. Lethality amounts to 50%.

  17. Early environments and the ecology of inflammation

    PubMed Central

    McDade, Thomas W.

    2012-01-01

    Recent research has implicated inflammatory processes in the pathophysiology of a wide range of chronic degenerative diseases, although inflammation has long been recognized as a critical line of defense against infectious disease. However, current scientific understandings of the links between chronic low-grade inflammation and diseases of aging are based primarily on research in high-income nations with low levels of infectious disease and high levels of overweight/obesity. From a comparative and historical point of view, this epidemiological situation is relatively unique, and it may not capture the full range of ecological variation necessary to understand the processes that shape the development of inflammatory phenotypes. The human immune system is characterized by substantial developmental plasticity, and a comparative, developmental, ecological framework is proposed to cast light on the complex associations among early environments, regulation of inflammation, and disease. Recent studies in the Philippines and lowland Ecuador reveal low levels of chronic inflammation, despite higher burdens of infectious disease, and point to nutritional and microbial exposures in infancy as important determinants of inflammation in adulthood. By shaping the regulation of inflammation, early environments moderate responses to inflammatory stimuli later in life, with implications for the association between inflammation and chronic diseases. Attention to the eco-logics of inflammation may point to promising directions for future research, enriching our understanding of this important physiological system and informing approaches to the prevention and treatment of disease. PMID:23045646

  18. Herpes Simplex Virus Type 1 and Other Pathogens are Key Causative Factors in Sporadic Alzheimer’s Disease

    PubMed Central

    Harris, Steven A.; Harris, Elizabeth A.

    2015-01-01

    Abstract This review focuses on research in epidemiology, neuropathology, molecular biology, and genetics regarding the hypothesis that pathogens interact with susceptibility genes and are causative in sporadic Alzheimer’s disease (AD). Sporadic AD is a complex multifactorial neurodegenerative disease with evidence indicating coexisting multi-pathogen and inflammatory etiologies. There are significant associations between AD and various pathogens, including Herpes simplex virus type 1 (HSV-1), Cytomegalovirus, and other Herpesviridae, Chlamydophila pneumoniae, spirochetes, Helicobacter pylori, and various periodontal pathogens. These pathogens are able to evade destruction by the host immune system, leading to persistent infection. Bacterial and viral DNA and RNA and bacterial ligands increase the expression of pro-inflammatory molecules and activate the innate and adaptive immune systems. Evidence demonstrates that pathogens directly and indirectly induce AD pathology, including amyloid-β (Aβ) accumulation, phosphorylation of tau protein, neuronal injury, and apoptosis. Chronic brain infection with HSV-1, Chlamydophila pneumoniae, and spirochetes results in complex processes that interact to cause a vicious cycle of uncontrolled neuroinflammation and neurodegeneration. Infections such as Cytomegalovirus, Helicobacter pylori, and periodontal pathogens induce production of systemic pro-inflammatory cytokines that may cross the blood-brain barrier to promote neurodegeneration. Pathogen-induced inflammation and central nervous system accumulation of Aβ damages the blood-brain barrier, which contributes to the pathophysiology of AD. Apolipoprotein E4 (ApoE4) enhances brain infiltration by pathogens including HSV-1 and Chlamydophila pneumoniae. ApoE4 is also associated with an increased pro-inflammatory response by the immune system. Potential antimicrobial treatments for AD are discussed, including the rationale for antiviral and antibiotic clinical trials. PMID:26401998

  19. A systems biology approach identifies molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

    PubMed

    Turan, Nil; Kalko, Susana; Stincone, Anna; Clarke, Kim; Sabah, Ayesha; Howlett, Katherine; Curnow, S John; Rodriguez, Diego A; Cascante, Marta; O'Neill, Laura; Egginton, Stuart; Roca, Josep; Falciani, Francesco

    2011-09-01

    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.

  20. Chemokine Signaling in Allergic Contact Dermatitis: Toward Targeted Therapies.

    PubMed

    Smith, Jeffrey S; Rajagopal, Sudarshan; Atwater, Amber Reck

    2018-06-22

    Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel ACD therapies and other inflammatory diseases.

  1. Sex, the aging immune system, and chronic disease.

    PubMed

    Gubbels Bupp, Melanie R

    2015-04-01

    The immune systems of men and women differ in significant ways, especially after puberty. In particular, females are generally more prone to autoimmunity, but experience lower rates of infections and chronic inflammatory disease. Sex hormones, genes encoded on the sex chromosomes, and gender-specific behaviors likely contribute to these differences. The aging process is associated with changes in the composition and function of the immune system and these changes may occur at an accelerated rate in men as compared to women. Moreover, after the age of menopause, the incidence of chronic inflammatory disease in women approaches or exceeds that observed in males. At the same time, the incidence of autoimmunity in post-menopausal women is decreased or equivalent to the rates observed in similarly-aged men. Additional studies addressing the influence of sex on the pathogenesis of chronic and autoimmune diseases in the aged are warranted. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Stress-evoked sterile inflammation, danger associated molecular patterns (DAMPs), microbial associated molecular patterns (MAMPs) and the inflammasome.

    PubMed

    Fleshner, Monika

    2013-01-01

    Since the inception of the field of psychoneuroimmunolology research, there has been an appreciation that the physiological response to stressors includes modulation of immune function. Investigators initially focused on the effect of stress on cellular migration and immunosuppression and the resultant decreases in tumor surveillance, anti-viral T cell immunity and antigen-specific antibody responses. More recently, it has become clear that exposure to stressors also potentiate innate immune processes. Stressor exposure, for example, can change the activation status of myeloid lineage cells such as monocytes, macrophages, neutrophils, and microglia, leading to a primed state. In addition, stressor exposure increases the synthesis and release of a vast cadre' of inflammatory proteins both in the blood and within tissues (i.e., spleen, liver, adipose, vasculature and brain). The mechanisms for stress-evoked innate immune 'arousal' remain unknown. The goals of this presidential address are the following: (1) offer a personalized, brief overview of stress and immunity with a focus on 'aroused' innate immunity; (2) describe sterile inflammatory processes and the role of the inflammasome; and (3) suggest that these same processes likely contribute to primed myeloid cells and inflammatory protein responses (systemic and tissue) produced by stress in the absence of pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Diet and Inflammation: Possible Effects on Immunity, Chronic Diseases, and Life Span.

    PubMed

    Ricordi, Camillo; Garcia-Contreras, Marta; Farnetti, Sara

    2015-01-01

    Chronic inflammation negatively impacts all physiological functions, causing an array of degenerative conditions including diabetes; cancer; cardiovascular, osteo-articular, and neurodegenerative diseases; autoimmunity disorders; and aging. In particular, there is a growing knowledge of the role that gene transcription factors play in the inflammatory process. Obesity, metabolic syndrome, and diabetes represent multifactorial conditions resulting from improper balances of hormones and gene expression. In addition, these conditions have a strong inflammatory component that can potentially be impacted by the diet. It can reduce pro-inflammatory eicosanoids that can alter hormonal signaling cascades to the modulation of the innate immune system and gene transcription factors. Working knowledge of the impact of how nutrients, especially dietary fatty acids and polyphenols, can impact these various molecular targets makes it possible to develop a general outline of an anti-inflammatory diet that offers a unique, nonpharmacological approach in treating obesity, metabolic syndrome, and diabetes. Several important bioactive dietary components can exert their effect through selected inflammatory pathways that can affect metabolic and genetic changes. In fact, dietary components that can modulate glucose and insulin levels, as well as any other mediator that can activate nuclear factor-kB, can also trigger inflammation through common pathway master switches.

  4. Neutrophil Apoptosis: Relevance to the Innate Immune Response and Inflammatory Disease

    PubMed Central

    Fox, Sarah; Leitch, Andrew E.; Duffin, Rodger; Haslett, Christopher; Rossi, Adriano G.

    2010-01-01

    Neutrophils are the most abundant cell type involved in the innate immune response. They are rapidly recruited to sites of injury or infection where they engulf and kill invading microorganisms. Neutrophil apoptosis, the process of programmed cell death that prevents the release of neutrophil histotoxic contents, is tightly regulated and limits the destructive capacity of neutrophil products to surrounding tissue. The subsequent recognition and phagocytosis of apoptotic cells by phagocytic cells such as macrophages is central to the successful resolution of an inflammatory response and it is increasingly apparent that the dying neutrophil itself exerts an anti-inflammatory effect through modulation of surrounding cell responses, particularly macrophage inflammatory cytokine release. Apoptosis may be delayed, induced or enhanced by micro-organisms dependent on their immune evasion strategies and the health of the host they encounter. There is now an established field of research aimed at understanding the regulation of apoptosis and its potential as a target for therapeutic intervention in inflammatory and infective diseases. This review focuses on the physiological regulation of neutrophil apoptosis with respect to the innate immune system and highlights recent advances in mechanistic understanding of apoptotic pathways and their therapeutic manipulation in appropriate and excessive innate immune responses. PMID:20375550

  5. Cell autonomous expression of inflammatory genes in biologically aged fibroblasts associated with elevated NF-kappaB activity.

    PubMed

    Kriete, Andres; Mayo, Kelli L; Yalamanchili, Nirupama; Beggs, William; Bender, Patrick; Kari, Csaba; Rodeck, Ulrich

    2008-07-16

    Chronic inflammation is a well-known corollary of the aging process and is believed to significantly contribute to morbidity and mortality of many age-associated chronic diseases. However, the mechanisms that cause age-associated inflammatory changes are not well understood. Particularly, the contribution of cell stress responses to age-associated inflammation in 'non-inflammatory' cells remains poorly defined. The present cross-sectional study focused on differences in molecular signatures indicative of inflammatory states associated with biological aging of human fibroblasts from donors aged 22 to 92 years. Gene expression profiling revealed elevated steady-state transcript levels consistent with a chronic inflammatory state in fibroblast cell-strains obtained from older donors. We also observed enhanced NF-kappaB DNA binding activity in a subset of strains, and the NF-kappaB profile correlated with mRNA expression levels characteristic of inflammatory processes, which include transcripts coding for cytokines, chemokines, components of the complement cascade and MHC molecules. This intrinsic low-grade inflammatory state, as it relates to aging, occurs in cultured cells irrespective of the presence of other cell types or the in vivo context. Our results are consistent with the view that constitutive activation of inflammatory pathways is a phenomenon prevalent in aged fibroblasts. It is possibly part of a cellular survival process in response to compromised mitochondrial function. Importantly, the inflammatory gene expression signature described here is cell autonomous, i.e. occurs in the absence of prototypical immune or pro-inflammatory cells, growth factors, or other inflammatory mediators.

  6. Inflammatory markers in relation to body composition, physical activity and assessment of nutritional status of the adolescents.

    PubMed

    Neves Miranda, Valter Paulo; Gouveia Peluzio, Maria do Carmo; Rodrigues de Faria, Eliana; Castro Franceschini, Sylvia do Carmo; Eloiza Priore, Silvia

    2015-05-01

    The evaluation of inflammatory markers during adolescence can monitor different stages and manifestation of chronic diseases in adulthood. The control of the subclinical inflammation process through changes in lifestyle, especially in the practice of physical activity and dietary education can mitigate the effects of risk factors that trigger the process of atherosclerosis. To do a critical review regarding inflammatory markers as a risk factor of cardiovascular disease in relation to body composition, physical activity and assessment of nutritional status of adolescents. A literature review was performed in the following electronic databases: PUBMED, SCIELO and CONCHRANE COLLECTION. The following associated terms were used "inflammation AND cardiovascular diseases AND nutritional status OR body composition OR physical activity". There were topics created for the discussion of subjects: obesity and risk factors for cardiovascular disease during adolescence; expression of inflammatory markers in adolescence; development of cardiovascular disease with inflammatory markers, and finally, inflammatory markers, physical activity and nutritional evaluation. It was observed that the inflammatory markers may manifest in adolescence and be related to risk factors for cardiovascular diseases. Physical activity and nutritional evaluation featured as non-pharmacological measures to control the incidence of inflammatory markers and cardiovascular risk factor. Intervention studies may clarify how the adoption of a more proper lifestyle can influence the inflammatory process. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. DYSMICROBISM, INFLAMMATORY BOWEL DISEASE AND THYROIDITIS: ANALYSIS OF THE LITERATURE.

    PubMed

    Tomasello, G; Tralongo, P; Amoroso, F; Damiani, P; Sinagra, E; Noto, M; Arculeo, V M; Jurjus Zein, R; Saad, W; Jurjus, A; Gerbino, A; Leone, A

    2015-01-01

    The human body is colonized by a large number of microbes that are collectively referred to as the microbiota. They interact with the hosting organism and some do contribute to the physiological maintenance of the general good health thru regulation of some metabolic processes while some others are essential for the synthesis of vitamins and short-chain fatty acids. The abnormal variation, in the quality and/or quantity of individual bacterial species residing in the gastro-intestinal tract, is called “dysmicrobism”. The immune system of the host will respond to these changes at the intestinal mucosa level which could lead to Inflammatory Bowel Diseases (IBD). This inflammatory immune response could subsequently extend to other organs and systems outside the digestive tract such as the thyroid, culminating in thyroiditis. The goal of the present study is to review and analyze data reported in the literature about thyroiditis associated with inflammatory bowel diseases such as Ulcerative Colitis (UC) and Crohn’s Disease (CD). It was reported that similarities of some molecular bacterial components with molecular components of the host are considered among the factors causing IBD through an autoimmune reaction which could involve other non-immune cell types. The axis dysmicrobism-IBD-autoimmune reaction will be investigated as a possible etiopathogenic mechanism to Autoimmune Thyroiditis. If such is the case, then the employment of specific probiotic strains may represent a useful approach to moderate the immune system.

  8. Ageing and inflammation in the male reproductive tract.

    PubMed

    Frungieri, M B; Calandra, R S; Bartke, A; Matzkin, M E

    2018-05-08

    Ageing is usually characterised by a mild chronic proinflammatory state. Despite the tight association between both processes, the phenomenon has recently been termed inflammageing. Inflammation in the male reproductive tract is frequently linked with bacterial or virus infections but also with a broad range of noninfectious processes. Prostatitis, epididymitis and orchitis, among others, can lead to infertility. However, in spite of the inflammation theory of disease, chronic inflammation in male urogenital system does not always cause symptoms. With advancing age, inflammatory processes are commonly observed in the male reproductive tract. Nevertheless, the incidence of inflammation in reproductive organs and ducts varies greatly among elderly men. Inflammageing is considered a predictor of pathogenesis and the development of age-related diseases. This article briefly summarises the current state of knowledge on inflammageing in the male reproductive tract. Yet, the precise aetiology of inflammageing in the male urogenital system, and its potential contribution not only to infertility but most importantly to adverse health outcomes remains almost unknown. Thus, further investigations are required to elucidate the precise cross-links between inflammation and male reproductive senescence, and to establish the impact of anti-inflammatory drug treatments on elder men's general health status. © 2018 Blackwell Verlag GmbH.

  9. An Inflammation-Centric View of Neurological Disease: Beyond the Neuron

    PubMed Central

    Skaper, Stephen D.; Facci, Laura; Zusso, Morena; Giusti, Pietro

    2018-01-01

    Inflammation is a complex biological response fundamental to how the body deals with injury and infection to eliminate the initial cause of cell injury and effect repair. Unlike a normally beneficial acute inflammatory response, chronic inflammation can lead to tissue damage and ultimately its destruction, and often results from an inappropriate immune response. Inflammation in the nervous system (“neuroinflammation”), especially when prolonged, can be particularly injurious. While inflammation per se may not cause disease, it contributes importantly to disease pathogenesis across both the peripheral (neuropathic pain, fibromyalgia) and central [e.g., Alzheimer disease, Parkinson disease, multiple sclerosis, motor neuron disease, ischemia and traumatic brain injury, depression, and autism spectrum disorder] nervous systems. The existence of extensive lines of communication between the nervous system and immune system represents a fundamental principle underlying neuroinflammation. Immune cell-derived inflammatory molecules are critical for regulation of host responses to inflammation. Although these mediators can originate from various non-neuronal cells, important sources in the above neuropathologies appear to be microglia and mast cells, together with astrocytes and possibly also oligodendrocytes. Understanding neuroinflammation also requires an appreciation that non-neuronal cell—cell interactions, between both glia and mast cells and glia themselves, are an integral part of the inflammation process. Within this context the mast cell occupies a key niche in orchestrating the inflammatory process, from initiation to prolongation. This review will describe the current state of knowledge concerning the biology of neuroinflammation, emphasizing mast cell-glia and glia-glia interactions, then conclude with a consideration of how a cell's endogenous mechanisms might be leveraged to provide a therapeutic strategy to target neuroinflammation. PMID:29618972

  10. Pulpo-dentin complex response after direct capping with self-etch adhesive systems.

    PubMed

    Nowicka, Alicja; Parafiniuk, Miroslaw; Lipski, Mariusz; Lichota, Damian; Buczkowska-Radlinska, Jadwiga

    2012-01-01

    The purpose of the present study was to evaluate morphologically the response of feline teeth pulp to direct pulp capping with two different self-etch adhesive systems. Twenty-four cavities in feline teeth were mechanically exposed and assigned to one of two experimental groups: AdheSE + Tetric Ceram (the ASE group), or Adper Prompt L-Pop + Filtek Supreme (the APLP group). There was also a control group Dycal Ca(OH)(2) liner + Amalgam (the CH group eight teeth), and six teeth were used as an intact control group. The animals were sacrificed after 40 days. The teeth were removed and processed for standard histological evaluation, using a scoring system for inflammatory cell response, pulp tissue disorganisation, reparative tissue formation, and the presence of bacteria. Statistical analysis revealed no significant differences between the ASE and APLP self-etching resin systems during the observation period. The majority of the specimens presented inflammatory pulp response with tissue disorganisation and a lack of dentinal bridge formation. CH capping resulted in a significantly smaller inflammatory pulp response and a considerably higher incidence of reparative dentin formation. ASE and APLP were comparably effective as direct pulp capping materials, but their application resulted in significantly greater pulp tissue damage than CH capping. Further in vivo human studies are necessary to determine which adhesive resin systems should be clinically used for direct pulp capping without incurring severe damage to the pulpal tissue.

  11. Impact of the cardiovascular system-associated adipose tissue on atherosclerotic pathology.

    PubMed

    Chistiakov, Dimitry A; Grechko, Andrey V; Myasoedova, Veronika A; Melnichenko, Alexandra A; Orekhov, Alexander N

    2017-08-01

    Cardiac obesity makes an important contribution to the pathogenesis of cardiovascular disease. One of the important pathways of this contribution is the inflammatory process that takes place in the adipose tissue. In this review, we consider the role of the cardiovascular system-associated fat in atherosclerotic cardiovascular pathology and a non-atherosclerotic cause of coronary artery disease, such as atrial fibrillation. Cardiovascular system-associated fat not only serves as the energy store, but also releases adipokines that control local and systemic metabolism, heart/vascular function and vessel tone, and a number of vasodilating and anti-inflammatory substances. Adipokine appears to play an important protective role in cardiovascular system. Under chronic inflammation conditions, the repertoire of signaling molecules secreted by cardiac fat can be altered, leading to a higher amount of pro-inflammatory messengers, vasoconstrictors, profibrotic modulators. This further aggravates cardiovascular inflammation and leads to hypertension, induction of the pathological tissue remodeling and cardiac fibrosis. Contemporary imaging techniques showed that epicardial fat thickness correlates with the visceral fat mass, which is an established risk factor and predictor of cardiovascular disease in obese subjects. However, this correlation is no longer present after adjustment for other covariates. Nevertheless, recent studies showed that pericardial fat volume and epicardial fat thickness can probably serve as a better indicator for atrial fibrillation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Marine Bioactives: Pharmacological Properties and Potential Applications against Inflammatory Diseases

    PubMed Central

    D’Orazio, Nicolantonio; Gammone, Maria Alessandra; Gemello, Eugenio; De Girolamo, Massimo; Cusenza, Salvatore; Riccioni, Graziano

    2012-01-01

    Inflammation is a hot topic in medical research, because it plays a key role in inflammatory diseases: rheumatoid arthritis (RA) and other forms of arthritis, diabetes, heart diseases, irritable bowel syndrome, Alzheimer’s disease, Parkinson’s disease, allergies, asthma, even cancer and many others. Over the past few decades, it was realized that the process of inflammation is virtually the same in different disorders, and a better understanding of inflammation may lead to better treatments for numerous diseases. Inflammation is the activation of the immune system in response to infection, irritation, or injury, with an influx of white blood cells, redness, heat, swelling, pain, and dysfunction of the organs involved. Although the pathophysiological basis of these conditions is not yet fully understood, reactive oxygen species (ROS) have often been implicated in their pathogenesis. In fact, in inflammatory diseases the antioxidant defense system is compromised, as evidenced by increased markers of oxidative stress, and decreased levels of protective antioxidant enzymes in patients with rheumatoid arthritis (RA). An enriched diet containing antioxidants, such as vitamin E, vitamin C, β-carotene and phenolic substances, has been suggested to improve symptoms by reducing disease-related oxidative stress. In this respect, the marine world represents a largely untapped reserve of bioactive ingredients, and considerable potential exists for exploitation of these bioactives as functional food ingredients. Substances such as n-3 oils, carotenoids, vitamins, minerals and peptides provide a myriad of health benefits, including reduction of cardiovascular diseases, anticarcinogenic and anti-inflammatory activities. New marine bioactives are recently gaining attention, since they could be helpful in combating chronic inflammatory degenerative conditions. The aim of this review is to examine the published studies concerning the potential pharmacological properties and application of many marine bioactives against inflammatory diseases. PMID:22690145

  13. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo.

    PubMed

    Kolter, Marise; Ott, Melanie; Hauer, Christian; Reimold, Isolde; Fricker, Gert

    2015-01-10

    Therapy of diseases of the central nervous system is a major challenge since drugs have to overcome the blood-brain barrier (BBB). A powerful strategy to enhance cerebral drug concentration is administration of drug-loaded poly(n-butylcyano-acrylate) (PBCA) nanoparticles coated with polysorbate 80 (PS80). This study evaluates the toxicity of PBCA-nanoparticles at the BBB, representing the target organ, the inflammatory response in human whole blood, as the site of administration and in a rat model in vivo. PBCA-nanoparticles were prepared by a mini-emulsion method and characterized concerning size, surface charge, shape and PS80-adsorption. The influence on metabolic activity, cell viability and integrity of the BBB was analyzed in an in vitro model of the BBB. In ex vivo experiments in human whole blood the release of 12 inflammatory cytokines was investigated. In addition, the inflammatory response was studied in vivo in rats and complemented with the analysis of different organ toxicity parameters. PBCA-nanoparticles showed time- and concentration-dependent effects on metabolic activity, cell viability and BBB integrity. No cell death or loss of metabolic activity was observed for nanoparticle-concentrations ≤500μg/ml up to 3h of treatment. Within 12 tested inflammatory cytokines, only interleukin-8 displayed a significant release after nanoparticle exposure in human blood. No severe inflammatory processes or organ damages were identified in rats in vivo. Thus, PBCA-nanoparticles are a promising drug delivery system to overcome the BBB since they showed hardly any cytotoxic or inflammatory effect at therapeutic concentrations and incubation times. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Aging of the Immune System. Mechanisms and Therapeutic Targets.

    PubMed

    Weyand, Cornelia M; Goronzy, Jörg J

    2016-12-01

    Beginning with the sixth decade of life, the human immune system undergoes dramatic aging-related changes, which continuously progress to a state of immunosenescence. The aging immune system loses the ability to protect against infections and cancer and fails to support appropriate wound healing. Vaccine responses are typically impaired in older individuals. Conversely, inflammatory responses mediated by the innate immune system gain in intensity and duration, rendering older individuals susceptible to tissue-damaging immunity and inflammatory disease. Immune system aging functions as an accelerator for other age-related pathologies. It occurs prematurely in some clinical conditions, most prominently in patients with the autoimmune syndrome rheumatoid arthritis (RA); and such patients serve as an informative model system to study molecular mechanisms of immune aging. T cells from patients with RA are prone to differentiate into proinflammatory effector cells, sustaining chronic-persistent inflammatory lesions in the joints and many other organ systems. RA T cells have several hallmarks of cellular aging; most importantly, they accumulate damaged DNA. Because of deficiency of the DNA repair kinase ataxia telangiectasia mutated, RA T cells carry a higher burden of DNA double-strand breaks, triggering cell-indigenous stress signals that shift the cell's survival potential and differentiation pattern. Immune aging in RA T cells is also associated with metabolic reprogramming; specifically, with reduced glycolytic flux and diminished ATP production. Chronic energy stress affects the longevity and the functional differentiation of older T cells. Altered metabolic patterns provide opportunities to therapeutically target the immune aging process through metabolic interference.

  15. The developing immune system - from foetus to toddler.

    PubMed

    Ygberg, Sofia; Nilsson, Anna

    2012-02-01

    During foetal development, neonatal period and childhood, the immune system is constantly maturing. In the foetus, infection responsiveness is low and associates with spontaneous abortion. During the neonatal period, the infection response shifts towards a more pro-inflammatory response. The immune system of the newborn acquires adaptive features as a result of exposure to microbes. The development of the human immune system is a continuous process where both accelerated and retarded development is deleterious. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  16. The systemic inflammatory response syndrome.

    PubMed

    Robertson, Charles M; Coopersmith, Craig M

    2006-04-01

    The systemic inflammatory response syndrome (SIRS) is the body's response to an infectious or noninfectious insult. Although the definition of SIRS refers to it as an "inflammatory" response, it actually has pro- and anti-inflammatory components. This review outlines the pathophysiology of SIRS and highlights potential targets for future therapeutic intervention in patients with this complex entity.

  17. Multidimensional preparative liquid chromatography to isolate flavonoids from bergamot juice and evaluation of their anti-inflammatory potential.

    PubMed

    Russo, Marina; Dugo, Paola; Marzocco, Stefania; Inferrera, Veronica; Mondello, Luigi

    2015-12-01

    Important objectives of a high-performance liquid chromatography preparative process are: purity of products isolated, yield, and throughput. The multidimensional preparative liquid chromatography method used in this work was developed mainly to increase the throughput; moreover purity and yield are increased thanks to the automated collection of the molecules based on the intensity of a signal generated from the mass spectrometer detector, in this way only a specific product can be targeted. This preparative system allowed, in few analyses both in the first and second dimensions, the isolation of eight pure compounds present at very different concentration in the original sample with high purity (>95%) and yield, which showed how the system is efficient and versatile. Pure molecules were used to validate the analytical method and to test the anti-inflammatory and antiproliferative potential of flavonoids. The contemporary presence, in bergamot juice, of all the flavonoids together increases the anti-inflammatory effect with respect to the single compound alone. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia.

    PubMed

    Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto

    2015-10-01

    Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Evolutionary medicine and bone loss in chronic inflammatory diseases – a theory of inflammation-related osteopenia

    PubMed Central

    Straub, Rainer H.; Cutolo, Maurizio; Pacifici, Roberto

    2015-01-01

    Objective Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflammaging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an “accident of inflammation”. Methods Extensive literature search in PubMed central. Results Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. Conclusions The article highlights the complexity of interwoven pathways of osteopenia. PMID:26044543

  20. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    PubMed

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  1. Integrative Structural Biomechanical Concepts of Ankylosing Spondylitis

    PubMed Central

    Masi, Alfonse T.; Nair, Kalyani; Andonian, Brian J.; Prus, Kristina M.; Kelly, Joseph; Sanchez, Jose R.; Henderson, Jacqueline

    2011-01-01

    Ankylosing spondylitis (AS) is not fully explained by inflammatory processes. Clinical, epidemiological, genetic, and course of disease features indicate additional host-related risk processes and predispositions. Collectively, the pattern of predisposition to onset in adolescent and young adult ages, male preponderance, and widely varied severity of AS is unique among rheumatic diseases. However, this pattern could reflect biomechanical and structural differences between the sexes, naturally occurring musculoskeletal changes over life cycles, and a population polymorphism. During juvenile development, the body is more flexible and weaker than during adolescent maturation and young adulthood, when strengthening and stiffening considerably increase. During middle and later ages, the musculoskeletal system again weakens. The novel concept of an innate axial myofascial hypertonicity reflects basic mechanobiological principles in human function, tissue reactivity, and pathology. However, these processes have been little studied and require critical testing. The proposed physical mechanisms likely interact with recognized immunobiological pathways. The structural biomechanical processes and tissue reactions might possibly precede initiation of other AS-related pathways. Research in the combined structural mechanobiology and immunobiology processes promises to improve understanding of the initiation and perpetuation of AS than prevailing concepts. The combined processes might better explain characteristic enthesopathic and inflammatory processes in AS. PMID:22216409

  2. Allergic rhinitis and inflammatory airway disease: interactions within the unified airspace.

    PubMed

    Marple, Bradley F

    2010-01-01

    Allergic rhinitis (AR), the most common chronic allergic condition in outpatient medicine, is associated with immense health care costs and socioeconomic consequences. AR's impact may be partly from interacting of respiratory conditions via allergic inflammation. This study was designed to review potential interactive mechanisms of AR and associated conditions and consider the relevance of a bidirectional "unified airway" respiratory inflammation model on diagnosis and treatment of inflammatory airway disease. MEDLINE was searched for pathophysiology and pathophysiological and epidemiologic links between AR and diseases of the sinuses, lungs, middle ear, and nasopharynx. Allergic-related inflammatory responses or neural and systemic processes fostering inflammatory changes distant from initial allergen provocation may link AR and comorbidities. Treating AR may benefit associated respiratory tract comorbidities. Besides improving AR outcomes, treatment inhibiting eosinophil recruitment and migration, normalizing cytokine profiles, and reducing asthma-associated health care use in atopic subjects would likely ameliorate other upper airway diseases such as acute rhinosinusitis, chronic rhinosinusitis (CRS) with nasal polyposis (NP), adenoidal hypertrophy, and otitis media with effusion. Epidemiological concordance of AR with several airway diseases conforms to a bidirectional "unified airway" respiratory inflammation model based on anatomic and histological upper and lower airway connections. Epidemiology and current understanding of inflammatory, humoral, and neural processes make links between AR and disorders including asthma, otitis media, NP, and CRS plausible. Combining AR with associated conditions increases disease burden; worsened associated illness may accompany worsened AR. AR pharmacotherapies include antihistamines, leukotriene antagonists, intranasal corticosteroids, and immunotherapy; treatments attenuating proinflammatory responses may also benefit associated conditions.

  3. Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease

    PubMed Central

    Horseman, Michael A.; Surani, Salim; Bowman, John D.

    2017-01-01

    Background: Endotoxin is a lipopolysaccharide (LPS) constituent of the outer membrane of most gram negative bacteria. Ubiquitous in the environment, it has been implicated as a cause or con-tributing factor in several disparate disorders from sepsis to heatstroke and Type II diabetes mellitus. Starting at birth, the innate immune system develops cellular defense mechanisms against environmen-tal microbes that are in part modulated through a series of receptors known as toll-like receptors. Endo-toxin, often referred to as LPS, binds to toll-like receptor 4 (TLR4)/ myeloid differentiation protein 2 (MD2) complexes on various tissues including cells of the innate immune system, smooth muscle and endothelial cells of blood vessels including coronary arteries, and adipose tissue. Entry of LPS into the systemic circulation ultimately leads to intracellular transcription of several inflammatory mediators. The subsequent inflammation has been implicated in the development and progression atherosclerosis and subsequent coronary artery disease and heart failure. Objective: The potential roles of endotoxin and TLR4 are reviewed regarding their role in the pathogen-esis of atherosclerotic heart disease. Conclusion: Atherosclerosis is initiated by inflammation in arterial endothelial and subendothelial cells, and inflammatory processes are implicated in its progression to clinical heart disease. Endotoxin and TLR4 play a central role in the inflammatory process, and represent potential targets for therapeutic intervention. Therapy with HMG-CoA inhibitors may reduce the expression of TLR4 on monocytes. Other therapeutic interventions targeting TLR4 expression or function may prove beneficial in athero-sclerotic disease prevention and treatment.

  4. Antioxidant Capacity of “Mexican Arnica” Heterotheca inuloides Cass Natural Products and Some Derivatives: Their Anti-Inflammatory Evaluation and Effect on C. elegans Life Span

    PubMed Central

    Rodríguez-Chávez, José Luis; Nieto-Camacho, Antonio; Delgado-Lamas, Guillermo

    2015-01-01

    It has been suggested that the accumulation of biomolecular damage caused by reactive oxygen species (ROS) contributes to aging. The antioxidant activity is related to the ability of certain compounds to protect against the potentially harmful effect of processes or reactions involving ROS. This ability is associated with the termination of free radical propagation in biological systems. From Heterotheca inuloides various compounds which have shown to possess antioxidant capacity and scavenging ROS. The aim of this study was to determine the antioxidant capacity of additional natural components isolated from H. inuloides and some semisynthetic derivatives, their anti-inflammatory activity and the effect on Caenorhabditis elegans nematode life span. Compounds showed ability to inhibit various biological processes such as lipid peroxidation, scavenge nonbiological important oxidants such as 1O2, OH∙, H2O2, and HOCl and scavenge non biological stable free radicals (DPPH). Some cadinane type compounds showed possess antioxidant, ROS scavenging capacity, anti-inflammatory activity, and effect on the C. elegans life span. Flavonoid type compounds increased the life of the nematode and quercetin was identified as the compound with the greatest activity. The modification of chemical structure led to a change in the antioxidant capacity, the anti-inflammatory activity, and the survival of the worm. PMID:25821555

  5. Gasserian Ganglion and Retrobulbar Nerve Block in the Treatment of Ophthalmic Postherpetic Neuralgia: A Case Report.

    PubMed

    Huang, Jie; Ni, Zhongge; Finch, Philip

    2017-09-01

    Varicella zoster virus reactivation can cause permanent histological changes in the central and peripheral nervous system. Neural inflammatory changes or damage to the dorsal root ganglia sensory nerve fibers during reactivation can lead to postherpetic neuralgia (PHN). For PHN of the first division of the fifth cranial nerve (ophthalmic division of the trigeminal ganglion), there is evidence of inflammatory change in the ganglion and adjacent ocular neural structures. First division trigeminal nerve PHN can prove to be difficult and sometimes even impossible to manage despite the use of a wide range of conservative measures, including anticonvulsant and antidepressant medication. Steroids have been shown to play an important role by suppressing neural inflammatory processes. We therefore chose the trigeminal ganglion as an interventional target for an 88-year-old woman with severe ophthalmic division PHN after she failed to respond to conservative treatment. Under fluoroscopic guidance, a trigeminal ganglion nerve block was performed with lidocaine combined with dexamethasone. A retrobulbar block with lidocaine and triamcinolone settled residual oculodynia. At 1-year follow-up, the patient remained pain free and did not require analgesic medication. To our knowledge, this is the first reported case of ophthalmic division PHN successfully treated with a combination of trigeminal ganglion and retrobulbar nerve block using a local anesthetic agent and steroid for central and peripheral neural inflammatory processes. © 2016 World Institute of Pain.

  6. Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects.

    PubMed

    Fehrenbach, Elvira; Schneider, Marion E

    2006-01-01

    Accidental trauma and heavy endurance exercise, both induce a kind of systemic inflammatory response, also called systemic inflammatory response syndrome (SIRS). Exercise-related SIRS is conditioned by hyperthermia and concomitant heat shock responses, whereas trauma-induced SIRS manifests concomitantly with tissue necrosis and immune activation, secondarily followed by fever. Inflammatory cytokines are common denominators in both trauma and exercise, although there are marked quantitative differences. Different anti-inflammatory cytokines may be involved in the control of inflammation in trauma- and exercise-induced stress. Exercise leads to a balanced equilibrium between inflammatory and anti-inflammatory responses. Intermittent states of rest, as well as anti-oxidant capacity, are lacking or minor in trauma but are high in exercising individuals. Regular training may enhance immune competence, whereas trauma-induced SIRS often paves the way for infectious complications, such as sepsis.

  7. Inflammation-induced lymphangiogenesis and lymphatic dysfunction

    PubMed Central

    Liao, Shan; von der Weid, Pierre-Yves

    2014-01-01

    The lymphatic system is intimately linked to tissue fluid homeostasis and immune cell trafficking. These functions are paramount in the establishment and development of an inflammatory response. In the past decade, an increasing number of reports has revealed that marked changes, such as lymphangiogenesis and lymphatic contractile dysfunction occur in both vascular and nodal parts of the lymphatic system during inflammation, as well as other disease processes. This review provides a critical update on the role of the lymphatic system in disease process such as chronic inflammation and cancer and examines the changes in lymphatic functions the diseases cause and the influence these changes have on the progression of the diseases. PMID:24449090

  8. A Potential Contribution of Chemokine Network Dysfunction to the Depressive Disorders

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Chwastek, Jakub; Głombik, Katarzyna; Basta-Kaim, Agnieszka

    2016-01-01

    In spite of many years of research, the pathomechanism of depression has not yet been elucidated. Among many hypotheses, the immune theory has generated a substantial interest. Up till now, it has been thought that depression is accompanied by the activation of inflammatory response and increase in pro-inflammatory cytokine levels. However, recently this view has become controversial, mainly due to the family of small proteins called chemokines. They play a key role in the modulation of peripheral function of the immune system by controlling immune reactions, mediating immune cell communication, and regulating chemotaxis and cell adhesion. Last studies underline significance of chemokines in the central nervous system, not only in the neuromodulation but also in the regulation of neurodevelopmental processes, neuroendocrine functions and in mediating the action of classical neurotransmitters. Moreover, it was demonstrated that these proteins are responsible for maintaining interactions between neuronal and glial cells both in the developing and adult brain also in the course of diseases. This review outlines the role of chemokine in the central nervous system under physiological and pathological conditions and their involvement in processes underlying depressive disorder. It summarizes the most important data from experimental and clinical studies. PMID:26893168

  9. The use of Brazilian propolis for discovery and development of novel anti-inflammatory drugs.

    PubMed

    Franchin, Marcelo; Freires, Irlan Almeida; Lazarini, Josy Goldoni; Nani, Bruno Dias; da Cunha, Marcos Guilherme; Colón, David Fernando; de Alencar, Severino Matias; Rosalen, Pedro Luiz

    2018-06-10

    Anti-Inflammatory drugs have been routinely used in the management of acute and chronic inflammatory conditions. Nevertheless, their undesirable side and adverse effects have encouraged the development of more selective, tolerable and efficacious drugs able to modulate the inflammatory process through distinct mechanisms than those of drugs currently available in the market, for instance, inhibition of leukocyte recruitment (chemotaxis, rolling, adhesion and transmigration). Natural products, including Brazilian propolis, have been considered a rich source of anti-inflammatory molecules due to a very complex phytochemical diversity. Brazil has at least thirteen distinct types of propolis and many bioactive compounds have been isolated therefrom, such as apigenin, artepillin C, vestitol, neovestitol, among others. These molecules were proven to play a significant immunomodulatory role through (i) inhibition of inflammatory cytokines (e.g. TNF-α) and chemokines (CXCL1/KC and CXCL2/MIP2); (ii) inhibition of IκBα, ERK1/2, JNK and p38MAPK phosphorylation; (iii) inhibition of NF-κB activation; and (iv) inhibition of neutrophil adhesion and transmigration (ICAM-1, VCAM-1 and E-selectin expression). In this review, we shed light on the new advances in the research of compounds isolated from Brazilian propolis from Apis mellifera bees as potentially novel anti-inflammatory drugs. The compilation of data and insights presented herein may open further avenues for the pharmacological management of oral and systemic inflammatory conditions. Further research should focus on clinical and acute/chronic toxicological validation of the most promising compounds described in this review. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Inflammatory and immunological aspects of dental pulp repair

    PubMed Central

    Goldberg, Michel; Farges, Jean-Christophe; Lacerda-Pinheiro, Sally; Six, Ngampis; Jegat, Nadège; Decup, Frank; Septier, Dominique; Carrouel, Florence; Durand, Stéphanie; Chaussain-Miller, Catherine; DenBesten, Pamela; Veis, Arthur; Poliard, Anne

    2010-01-01

    The repair of dental pulp by direct capping with calcium hydroxide or by implantation of bioactive extracellular matrix (ECM) molecules implies a cascade of four steps: a moderate inflammation, the commitment of adult reserve stem cells, their proliferation and terminal differentiation. The link between the initial inflammation and cell commitment is not yet well established but appears as a potential key factor in the reparative process. Either the release of cytokines due to inflammatory events activates resident stem (progenitor) cells, or inflammatory cells or pulp fibroblasts undergo a phenotypic conversion into osteoblast/odontoblast-like progenitors implicated in reparative dentin formation. Activation of antigen-presenting dendritic cells by mild inflammatory processes may also promote osteoblast/odontoblast-like differentiation and expression of ECM molecules implicated in mineralization. Recognition of bacteria by specific odontoblast and fibroblast membrane receptors triggers an inflammatory and immune response within the pulp tissue that would also modulate the repair process. PMID:18602009

  11. Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.

    PubMed

    Mach, François; Montecucco, Fabrizio; Steffens, Sabine

    2009-01-01

    The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.

  12. Neurological consequences of systemic inflammation in the premature neonate.

    PubMed

    Patra, Aparna; Huang, Hong; Bauer, John A; Giannone, Peter J

    2017-06-01

    Despite substantial progress in neonatal care over the past two decades leading to improved survival of extremely premature infants, extreme prematurity continues to be associated with long term neurodevelopmental impairments. Cerebral white matter injury is the predominant form of insult in preterm brain leading to adverse neurological consequences. Such brain injury pattern and unfavorable neurologic sequelae is commonly encountered in premature infants exposed to systemic inflammatory states such as clinical or culture proven sepsis with or without evidence of meningitis, prolonged mechanical ventilation, bronchopulmonary dysplasia, necrotizing enterocolitis and chorioamnionitis. Underlying mechanisms may include cytokine mediated processes without direct entry of pathogens into the brain, developmental differences in immune response and complex neurovascular barrier system that play a critical role in regulating the cerebral response to various systemic inflammatory insults in premature infants. Understanding of these pathologic mechanisms and clinical correlates of such injury based on serum biomarkers or brain imaging findings on magnetic resonance imaging will pave way for future research and translational therapeutic opportunities for the developing brain.

  13. Cannabinoid Receptor Type 1 Agonist ACEA Protects Neurons from Death and Attenuates Endoplasmic Reticulum Stress-Related Apoptotic Pathway Signaling.

    PubMed

    Vrechi, Talita A; Crunfli, Fernanda; Costa, Andressa P; Torrão, Andréa S

    2018-05-01

    Neurodegeneration is the result of progressive destruction of neurons in the central nervous system, with unknown causes and pathological mechanisms not yet fully elucidated. Several factors contribute to neurodegenerative processes, including neuroinflammation, accumulation of neurotoxic factors, and misfolded proteins in the lumen of the endoplasmic reticulum (ER). Endocannabinoid signaling has been pointed out as an important modulatory system in several neurodegeneration-related processes, inhibiting the inflammatory response and increasing neuronal survival. Thus, we investigated the presumptive protective effect of the selective cannabinoid type 1 (CB1) receptor agonist arachidonyl-2'-chloroethylamide (ACEA) against inflammatory (lipopolysaccharide, LPS) and ER stress (tunicamycin) stimuli in an in vitro neuronal model (Neuro-2a neuroblastoma cells). Cell viability analysis revealed that ACEA was able to protect against cell death induced by LPS and tunicamycin. This neuroprotective effect occurs via the CB1 receptor in the inflammation process and via the transient receptor potential of vanilloid type-1 (TRPV1) channel in ER stress. Furthermore, the immunoblotting analyses indicated that the neuroprotective effect of ACEA seems to involve the modulation of eukaryotic initiation factor 2 (eIF2α), transcription factor C/EBP homologous protein (CHOP), and caspase 12, as well as the survival/death p44/42 MAPK, ERK1/2-related signaling pathways. Together, these data suggest that the endocannabinoid system is a potential therapeutic target in neurodegenerative processes, especially in ER-related neurodegenerative diseases.

  14. Systemic inflammatory response following acute myocardial infarction

    PubMed Central

    Fang, Lu; Moore, Xiao-Lei; Dart, Anthony M; Wang, Le-Min

    2015-01-01

    Acute cardiomyocyte necrosis in the infarcted heart generates damage-associated molecular patterns, activating complement and toll-like receptor/interleukin-1 signaling, and triggering an intense inflammatory response. Inflammasomes also recognize danger signals and mediate sterile inflammatory response following acute myocardial infarction (AMI). Inflammatory response serves to repair the heart, but excessive inflammation leads to adverse left ventricular remodeling and heart failure. In addition to local inflammation, profound systemic inflammation response has been documented in patients with AMI, which includes elevation of circulating inflammatory cytokines, chemokines and cell adhesion molecules, and activation of peripheral leukocytes and platelets. The excessive inflammatory response could be caused by a deregulated immune system. AMI is also associated with bone marrow activation and spleen monocytopoiesis, which sustains a continuous supply of monocytes at the site of inflammation. Accumulating evidence has shown that systemic inflammation aggravates atherosclerosis and markers for systemic inflammation are predictors of adverse clinical outcomes (such as death, recurrent myocardial infarction, and heart failure) in patients with AMI. PMID:26089856

  15. Biological effects of direct and indirect manipulation of the fascial system. Narrative review.

    PubMed

    Parravicini, Giovanni; Bergna, Andrea

    2017-04-01

    Osteopathic Manipulative Treatment (OMT) is effective in improving function, movement and restoring pain conditions. Despite clinical results, the mechanisms of how OMT achieves its' effects remain unclear. The fascial system is described as a tensional network that envelops the human body. Direct or indirect manipulations of the fascial system are a distinctive part of OMT. This review describes the biological effects of direct and indirect manipulation of the fascial system. Literature search was performed in February 2016 in the electronic databases: Cochrane, Medline, Scopus, Ostmed, Pedro and authors' publications relative to Fascia Research Congress Website. Manipulation of the fascial system seems to interfere with some cellular processes providing various pro-inflammatory and anti-inflammatory cells and molecules. Despite growing research in the osteopathic field, biological effects of direct or indirect manipulation of the fascial system are not conclusive. To elevate manual medicine as a primary intervention in clinical settings, it's necessary to clarify how OMT modalities work in order to underpin their clinical efficacies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Neuro-immune interactions in inflammation and host defense: Implications for transplantation.

    PubMed

    Chavan, Sangeeta S; Ma, Pingchuan; Chiu, Isaac M

    2018-03-01

    Sensory and autonomic neurons of the peripheral nervous system (PNS) play a critical role in regulating the immune system during tissue inflammation and host defense. Recent studies have identified the molecular mechanisms underlying the bidirectional communication between the nervous system and the immune system. Here, we highlight the studies that demonstrate the importance of the neuro-immune interactions in health and disease. Nociceptor sensory neurons detect immune mediators to produce pain, and release neuropeptides that act on the immune system to regulate inflammation. In parallel, neural reflex circuits including the vagus nerve-based inflammatory reflex are physiological regulators of inflammatory responses and cytokine production. In transplantation, neuro-immune communication could significantly impact the processes of host-pathogen defense, organ rejection, and wound healing. Emerging approaches to target the PNS such as bioelectronics could be useful in improving the outcome of transplantation. Therefore, understanding how the nervous system shapes the immune response could have important therapeutic ramifications for transplantation medicine. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Association of Helicobacter pylori and iNOS production by macrophages and lymphocytes in the gastric mucosa in chronic gastritis.

    PubMed

    Cherdantseva, Lilia A; Potapova, Oksana V; Sharkova, Tatyana V; Belyaeva, Yana Yu; Shkurupiy, Vyacheslav A

    2014-01-01

    Helicobacter pylori is one of the most common causes of chronic gastritis. With the development of the disease cellular inflammatory infiltrates composed of lymphocytes, plasma cells, and macrophages are formed in epithelium and lamina propria of the stomach. These cells are capable of secreting a number of active substances, including inducible nitric oxide synthase (iNOS). We examined the relationship between H. pylori and secretion of iNOS by cells of inflammatory infiltrates in chronic gastritis by light microscopy and immunohistochemistry. The data obtained indicate that stimulation of H. pylori immune system cells of the host organism during development of chronic gastritis causes increase in number of macrophages and lymphocytes in the inflammatory infiltrate of the gastric mucosa. This is accompanied with increased expression of inducible NO-synthase with excess free radicals in the tissues, which leads to secondary alterations and exacerbates the inflammation with impaired regeneration processes.

  18. Resveratrol counteracts lipopolysaccharide-mediated microglial inflammation by modulating a SOCS-1 dependent signaling pathway.

    PubMed

    Dragone, Teresa; Cianciulli, Antonia; Calvello, Rosa; Porro, Chiara; Trotta, Teresa; Panaro, Maria Antonietta

    2014-09-01

    Brain damage or exposure to inflammatory agents provokes the activation of microglia and secretion of pro-inflammatory and neurotoxic mediators responsible for neuronal loss. Several lines of evidence show that resveratrol, a natural non-flavonoid polyphenol, may exert a neuroprotective action in neurodegenerative diseases. Suppressor of cytokine signaling (SOCS) proteins are a family of eight members expressed by immune cells and the central nervous system (CNS) cells, that regulate immune processes within the CNS, including microglia activation. We demonstrate that resveratrol had anti-inflammatory effects in murine N13 microglial cells stimulated with lipopolysaccharide (LPS), through up-regulating SOCS-1 expression. Interestingly, in SOCS-1-silenced cells resveratrol failed to play a protective role after LPS treatment. Our data demonstrate that resveratrol can impair microglia activation by activating a SOCS-1 mediated signaling pathway. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Elevated levels of numerous cytokines in drainage fluid after primary total hip arthroplasty.

    PubMed

    van der Heide, Huub J L; van der Kraan, Peter M; Rijnberg, Willard J; Buma, Pieter; Schreurs, B Willem

    2010-12-01

    As cytokines are involved in wound healing and other inflammatory processes, it could be valuable to measure their levels at the operative site. This study was conducted to investigate whether different cytokines are measurable in drainage fluid and, when measurable, whether we can find a difference in cytokine levels between one and six hours postoperatively. Samples from the drainage system in 30 consecutive patients undergoing primary total hip replacement were collected at one and six hours after closure of the wound. Levels of several cytokines were measured in the drainage fluids. A significant elevation of almost all cytokines was observed between the sample after one hour and six hours postoperatively. We found a strong correlation between the different pro-inflammatory cytokines. The IL-6 to IL-10 ratio were also raised, showing a pro-inflammatory predominance. Levels were much higher than those previously shown in serum.

  20. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy

    PubMed Central

    Hotchkiss, Richard S.; Monneret, Guillaume; Payen, Didier

    2014-01-01

    Sepsis — severe life-threatening infection with organ dysfunction — initiates a complex interplay of host pro- and anti-inflammatory processes. In a real sense, sepsis can be considered a race to the death between the pathogens and the host immune system. It is the proper balance between the often competing pro- and anti-inflammatory pathways that determines the fate of the individual. Although the field of sepsis research has witnessed the failure of many highly-touted clinical trials, a better understanding of the pathophysiological basis of the disorder and the mechanisms responsible for the associated pro- and anti-inflammatory responses is leading to a novel approach to treat this highly lethal condition. Biomarker-guided immunotherapy administered to patients at the proper immune phase of sepsis represents a potential major advance in the treatment of sepsis and more broadly in the field of infectious disease. PMID:24232462

  1. Management of Uveitis in Spondyloarthropathy: Current Trends

    PubMed Central

    Gupta, Nikhil; Agarwal, Aditi

    2018-01-01

    Spondyloarthritis is a chronic inflammatory disease predominantly affecting joints of the axial skeleton. However, as many as 50% of patients with this disease may have extra-articular manifestations, which include uveitis; psoriasis; inflammatory bowel disease such as Crohn disease or ulcerative colitis; cardiovascular manifestations in the form of conduction abnormalities, atherosclerosis, or valvular heart disease; pulmonary involvement; and rarely renal involvement. Uveitis occurs in 25% to 40% of patients with spondyloarthritis. Management of uveitis is crucial to prevent morbidity caused by vision loss and secondary complications. Treatment ranges from local therapies to systemic drugs and varies depending on the severity and response to treatment. Categories of medical treatment include nonsteroidal anti-inflammatory agents, corticosteroids, and steroid-sparing agents. Biologic therapies such as antitumor necrosis factor agents act early in the disease process and have revolutionized the field of rheumatology, including management of uveitis. This review will focus on the management of ophthalmic manifestations in spondyloarthropathies. PMID:29272246

  2. Innate Immune Regulations and Liver Ischemia Reperfusion Injury

    PubMed Central

    Lu, Ling; Zhou, Haoming; Ni, Ming; Wang, Xuehao; Busuttil, Ronald; Kupiec-Weglinski, Jerzy; Zhai, Yuan

    2016-01-01

    Liver ischemia reperfusion activates innate immune system to drive the full development of inflammatory hepatocellular injury. Damage-associated molecular patterns (DAMPs) stimulate myeloid and dendritic cells via pattern recognition receptors (PRRs) to initiate the immune response. Complex intracellular signaling network transduces inflammatory signaling to regulate both innate immune cell activation and parenchymal cell death. Recent studies have revealed that DAMPs may trigger not only proinflammatory, but also immune regulatory responses by activating different PRRs or distinctive intracellular signaling pathways or in special cell populations. Additionally, tissue injury milieu activates PRR-independent receptors which also regulate inflammatory disease processes. Thus, the innate immune mechanism of liver IRI involves diverse molecular and cellular interactions, subjected to both endogenous and exogenous regulation in different cells. A better understanding of these complicated regulatory pathways/network is imperative for us in designing safe and effective therapeutic strategy to ameliorate liver IRI in patients. PMID:27861288

  3. Community acquired pneumonia: genetic variants influencing systemic inflammation.

    PubMed

    Ferrer Agüero, J M; Millán, S; Rodríguez de Castro, F; Martín-Loeches, I; Solé Violán, J

    2014-01-01

    The inflammatory response depends on several factors, including pathogenicity and duration of the stimulus, and also on the balance between inflammatory and antiinflammatory response. Several studies have presented evidence of the importance of genetic factors in severe infections. The innate immune response prevents the invasion and spread of pathogens during the first hours after infection. Each of the different processes involved in innate immunity may be affected by genetic polymorphisms, which can result in susceptibility or resistance to infection. The results obtained in the different studies do not irrefutably prove the role or function of a gene in the pathogenesis of respiratory infections. However, they can generate new hypotheses, suggest new candidate genes based on their role in the inflammatory response, and constitute a first step in understanding the underlying genetic factors. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  4. Tumour necrosis factor receptor trafficking dysfunction opens the TRAPS door to pro-inflammatory cytokine secretion

    PubMed Central

    Turner, Mark D.; Chaudhry, Anupama; Nedjai, Belinda

    2011-01-01

    Cytokines are secreted from macrophages and other cells of the immune system in response to pathogens. Additionally, in autoinflammatory diseases cytokine secretion occurs in the absence of pathogenic stimuli. In the case of TRAPS [TNFR (tumour necrosis factor receptor)-associated periodic syndrome], inflammatory episodes result from mutations in the TNFRSF1A gene that encodes TNFR1. This work remains controversial, however, with at least three distinct separate mechanisms of receptor dysfunction having been proposed. Central to these hypotheses are the NF-κB (nuclear factor κB) and MAPK (mitogen-activated protein kinase) families of transcriptional activators that are able to up-regulate expression of a number of genes, including pro-inflammatory cytokines. The present review examines each proposed mechanism of TNFR1 dysfunction, and addresses how these processes might ultimately impact upon cytokine secretion and disease pathophysiology. PMID:22115362

  5. Anti-inflammatory properties of edible mushrooms: A review.

    PubMed

    Muszyńska, Bożena; Grzywacz-Kisielewska, Agata; Kała, Katarzyna; Gdula-Argasińska, Joanna

    2018-03-15

    Mushrooms have been used extensively, owing to their nutritional and medicinal value, for thousands of years. Modern research confirms the therapeutic effect of traditionally used species. Inflammation is a natural response of the immune system to damaging factors, e.g. physical, chemical and pathogenic. Deficiencies of antioxidants, vitamins, and microelements, as well as physiological processes, such as aging, can affect the body's ability to resolve inflammation. Mushrooms are rich in anti-inflammatory components, such as polysaccharides, phenolic and indolic compounds, mycosteroids, fatty acids, carotenoids, vitamins, and biometals. Metabolites from mushrooms of the Basidiomycota taxon possess antioxidant, anticancer, and most significantly, anti-inflammatory properties. Recent reports indicate that edible mushroom extracts exhibit favourable therapeutic and health-promoting benefits, particularly in relation to diseases associated with inflammation. In all certainty, edible mushrooms can be referred to as a "superfood" and are recommended as a valuable constituent of the daily diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress.

    PubMed

    Pearson-Leary, J; Eacret, D; Chen, R; Takano, H; Nicholas, B; Bhatnagar, S

    2017-06-27

    During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood-brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces vulnerability to stress. These results have translational relevance as they suggest that administration of anti-inflammatory agents may reduce the impact of stress or trauma in vulnerable individuals.

  7. Inflammation and vascular remodeling in the ventral hippocampus contributes to vulnerability to stress

    PubMed Central

    Pearson-Leary, J; Eacret, D; Chen, R; Takano, H; Nicholas, B; Bhatnagar, S

    2017-01-01

    During exposure to chronic stress, some individuals engage in active coping behaviors that promote resiliency to stress. Other individuals engage in passive coping that is associated with vulnerability to stress and with anxiety and depression. In an effort to identify novel molecular mechanisms that underlie vulnerability or resilience to stress, we used nonbiased analyses of microRNAs in the ventral hippocampus (vHPC) to identify those miRNAs differentially expressed in active (long-latency (LL)/resilient) or passive (short-latency (SL)/vulnerable) rats following chronic social defeat. In the vHPC of active coping rats, miR-455-3p level was increased, while miR-30e-3p level was increased in the vHPC of passive coping rats. Pathway analyses identified inflammatory and vascular remodeling pathways as enriched by genes targeted by these microRNAs. Utilizing several independent markers for blood vessels, inflammatory processes and neural activity in the vHPC, we found that SL/vulnerable rats exhibit increased neural activity, vascular remodeling and inflammatory processes that include both increased blood–brain barrier permeability and increased number of microglia in the vHPC relative to control and resilient rats. To test the relevance of these changes for the development of the vulnerable phenotype, we used pharmacological approaches to determine the contribution of inflammatory processes in mediating vulnerability and resiliency. Administration of the pro-inflammatory cytokine vascular endothelial growth factor-164 increased vulnerability to stress, while the non-steroidal anti-inflammatory drug meloxicam attenuated vulnerability. Collectively, these results show that vulnerability to stress is determined by a re-designed neurovascular unit characterized by increased neural activity, vascular remodeling and pro-inflammatory mechanisms in the vHPC. These results suggest that dampening inflammatory processes by administering anti-inflammatory agents reduces vulnerability to stress. These results have translational relevance as they suggest that administration of anti-inflammatory agents may reduce the impact of stress or trauma in vulnerable individuals. PMID:28654094

  8. Acute inflammatory neuropathy with monoclonal anti-GM2 IgM antibodies, IgM-κ paraprotein and additional autoimmune processes in association with a diffuse large B-cell non-Hodgkin's lymphoma.

    PubMed

    Milnik, Annette; Roggenbuck, Dirk; Conrad, Karsten; Bartels, Claudius

    2013-01-21

    Lymphoproliferative disorders are often associated with autoimmune processes preceding or following the occurrence of a lymphoma. Here, we describe a patient with a history of recurrent diffuse large B-cell non-Hodgkin's lymphoma who suffered from an acute inflammatory neuropathy with specific monoclonal anti-GM2 IgM antibodies and associated IgM-κ paraprotein. It was possible in this case to prove that both, anti-GM2 IgM antibodies and IgM-κ paraprotein, share the same binding characteristic. In addition, the patient possibly suffered from an immune thrombocytopenia and an early-stage bullous pemphigoid with anti-BP-230 IgG antibodies. Intravenous immunoglobulin and plasmapheresis alleviated the acute neuropathy and thrombocytopenia, while the bullous pemphigoid has been aggravated. In summary, the simultaneous occurrence of multiple autoimmune processes was a sign of a dysfunctional immune system preceding the relapse of a B-cell non-Hodgkin's lymphoma.

  9. An Autologous Protein Solution prepared from the blood of osteoarthritic patients contains an enhanced profile of anti-inflammatory cytokines and anabolic growth factors

    PubMed Central

    O'Shaughnessey, Krista; Matuska, Andrea; Hoeppner, Jacy; Farr, Jack; Klaassen, Mark; Kaeding, Christopher; Lattermann, Christian; King, William; Woodell-May, Jennifer

    2014-01-01

    The objective of this clinical study was to test if blood from osteoarthritis (OA) patients (n = 105) could be processed by a device system to form an autologous protein solution (APS) with preferentially increased concentrations of anti-inflammatory cytokines compared to inflammatory cytokines. To address this objective, APS was prepared from patients exhibiting radiographic evidence of knee OA. Patient metrics were collected including: demographic information, medical history, medication records, and Knee Injury and Osteoarthritis Outcome Score (KOOS) surveys. Cytokine and growth factor concentrations in whole blood and APS were measured using enzyme-linked immunosorbent assays. Statistical analyses were used to identify relationships between OA patient metrics and cytokines. The results of this study indicated that anti-inflammatory cytokines were preferentially increased compared to inflammatory cytokines in APS from 98% of OA patients. APS contained high concentrations of anti-inflammatory proteins including 39,000 ± 20,000 pg/ml IL-1ra, 21,000 ± 5,000 pg/ml sIL-1RII, 2,100 ± 570 pg/ml sTNF-RI, and 4,200 ± 1,500 pg/ml sTNF-RII. Analysis of the 82 patient metrics indicated that no single patient metric was strongly correlated (R2 > .7) with the key cytokine concentrations in APS. Therefore, APS can be prepared from a broad range of OA patients. PMID:24981198

  10. HDAC1-3 inhibitor MS-275 enhances IL10 expression in RAW264.7 macrophages and reduces cigarette smoke-induced airway inflammation in mice

    PubMed Central

    Leus, Niek G. J.; van den Bosch, Thea; van der Wouden, Petra E.; Krist, Kim; Ourailidou, Maria E.; Eleftheriadis, Nikolaos; Kistemaker, Loes E. M.; Bos, Sophie; Gjaltema, Rutger A. F.; Mekonnen, Solomon A.; Bischoff, Rainer; Gosens, Reinoud; Haisma, Hidde J.; Dekker, Frank J.

    2017-01-01

    Chronic obstructive pulmonary disease (COPD) constitutes a major health burden. Studying underlying molecular mechanisms could lead to new therapeutic targets. Macrophages are orchestrators of COPD, by releasing pro-inflammatory cytokines. This process relies on transcription factors such as NF-κB, among others. NF-κB is regulated by lysine acetylation; a post-translational modification installed by histone acetyltransferases and removed by histone deacetylases (HDACs). We hypothesized that small molecule HDAC inhibitors (HDACi) targeting class I HDACs members that can regulate NF-κB could attenuate inflammatory responses in COPD via modulation of the NF-κB signaling output. MS-275 is an isoform-selective inhibitor of HDAC1-3. In precision-cut lung slices and RAW264.7 macrophages, MS-275 upregulated the expression of both pro- and anti-inflammatory genes, implying mixed effects. Interestingly, anti-inflammatory IL10 expression was upregulated in these model systems. In the macrophages, this was associated with increased NF-κB activity, acetylation, nuclear translocation, and binding to the IL10 promoter. Importantly, in an in vivo model of cigarette smoke-exposed C57Bl/6 mice, MS-275 robustly attenuated inflammatory expression of KC and neutrophil influx in the lungs. This study highlights for the first time the potential of isoform-selective HDACi for the treatment of inflammatory lung diseases like COPD. PMID:28344354

  11. Inhibition of inflammatory gene expression in keratinocytes using a composition containing carnitine, thioctic Acid and saw palmetto extract.

    PubMed

    Chittur, Sridar; Parr, Brian; Marcovici, Geno

    2011-01-01

    Chronic inflammation of the hair follicle (HF) is considered a contributing factor in the pathogenesis of androgenetic alopecia (AGA). Previously, we clinically tested liposterolic extract of Serenoa repens (LSESr) and its glycoside, β-sitosterol, in subjects with AGA and showed a highly positive response to treatment. In this study, we sought to determine whether blockade of inflammation using a composition containing LSESr as well as two anti-inflammatory agents (carnitine and thioctic acid) could alter the expression of molecular markers of inflammation in a well-established in vitro system. Using a well-validated assay representative of HF keratinocytes, specifically, stimulation of cultured human keratinocyte cells in vitro, we measured changes in gene expression of a spectrum of well-known inflammatory markers. Lipopolysaccharide (LPS) provided an inflammatory stimulus. In particular, we found that the composition effectively suppressed LPS-activated gene expression of chemokines, including CCL17, CXCL6 and LTB(4) associated with pathways involved in inflammation and apoptosis. Our data support the hypothesis that the test compound exhibits anti-inflammatory characteristics in a well-established in vitro assay representing HF keratinocyte gene expression. These findings suggest that 5-alpha reductase inhibitors combined with blockade of inflammatory processes could represent a novel two-pronged approach in the treatment of AGA with improved efficacy over current modalities.

  12. Evaluation of analgesic and anti-inflammatory activity of a combination of tramadol-ibuprofen in experimental animals.

    PubMed

    Suthakaran, Chidambarann; Kayalvizhi, Muniyagounder K; Nithya, Karnam; Raja, Thozhudalangudy Ar

    2017-01-01

    Pain is the major concern of patients attending dental clinics, and satisfactory pain relief has always been difficult to achieve. Since the pathophysiology of pain is a complex, central and peripheral nervous system process, combined analgesic regimens with different mechanisms of action as a multimodal approach are becoming popular among the clinicians and dentists. The aim of the present study was to evaluate the analgesic and anti-inflammatory activity of ibuprofen and tramadol when used alone or in combination in animal models of pain and inflammation. The animals were divided into six groups with six animals in each group. Analgesic activity was assessed by hot plate method in rats and by acetic acid-induced writhing test in mice. Paw edema model in rats after induction with 0.1 mL of 1% carrageenan was used to assess the anti-inflammatory activity. Analysis of variance followed by Tukey's honestly significant difference post hoc test was used for statistical analysis. Combined use of tramadol and ibuprofen provided enhanced analgesic and anti-inflammatory effects in animal models of pain and inflammation.

  13. Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside-a Comprehensive Review.

    PubMed

    Alves, C Henrique; Farrell, Eric; Vis, Marijn; Colin, Edgar M; Lubberts, Erik

    2016-08-01

    Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions.

  14. Inflammation and oxidative stress in vertebrate host–parasite systems

    PubMed Central

    Sorci, Gabriele; Faivre, Bruno

    2008-01-01

    Innate, inflammation-based immunity is the first line of vertebrate defence against micro-organisms. Inflammation relies on a number of cellular and molecular effectors that can strike invading pathogens very shortly after the encounter between inflammatory cells and the intruder, but in a non-specific way. Owing to this non-specific response, inflammation can generate substantial costs for the host if the inflammatory response, and the associated oxygen-based damage, get out of control. This imposes strong selection pressure that acts to optimize two key features of the inflammatory response: the timing of activation and resolution (the process of downregulation of the response). In this paper, we review the benefits and costs of inflammation-driven immunity. Our aim is to emphasize the importance of resolution of inflammation as a way of maintaining homeostasis against oxidative stress and to prevent the ‘horror autotoxicus’ of chronic inflammation. Nevertheless, host immune regulation also opens the way to pathogens to subvert host defences. Therefore, quantifying inflammatory costs requires assessing (i) short-term negative effects, (ii) delayed inflammation-driven diseases, and (iii) parasitic strategies to subvert inflammation. PMID:18930878

  15. Idiopathic inflammatory myopathies overlapping with systemic diseases

    PubMed Central

    Lepreux, Sébastien; Hainfellner, Johannes A.; Vital, Anne

    2018-01-01

    A muscle biopsy is currently requested to assess the diagnosis of an idiopathic inflammatory myopathy overlapping with a systemic disease. During the past few years, the classification of inflammatory myopathy subtypes has been revisited progressively on the basis of correlations between clinical phenotypes, autoantibodies and histological data. Several syndromic entities are now more clearly defined, and the aim of the present review is to clarify the contribution of muscle biopsy in a setting of idiopathic inflammatory myopathies overlapping with systemic diseases. PMID:29154752

  16. Splanchnic venous thrombosis and pancreatitis.

    PubMed

    Nadkarni, Nikhil A; Khanna, Sahil; Vege, Santhi Swaroop

    2013-08-01

    Pancreatitis is an inflammatory process with local and systemic manifestations. One such local manifestation is thrombosis in splanchnic venous circulation, predominantly of the splenic vein. The literature on this important complication is very sparse. This review offers an overview of mechanism of thrombosis, its pathophysiology, diagnosis, and management in the setting of acute as well as chronic pancreatitis.

  17. Agent-based modeling of endotoxin-induced acute inflammatory response in human blood leukocytes.

    PubMed

    Dong, Xu; Foteinou, Panagiota T; Calvano, Steven E; Lowry, Stephen F; Androulakis, Ioannis P

    2010-02-18

    Inflammation is a highly complex biological response evoked by many stimuli. A persistent challenge in modeling this dynamic process has been the (nonlinear) nature of the response that precludes the single-variable assumption. Systems-based approaches offer a promising possibility for understanding inflammation in its homeostatic context. In order to study the underlying complexity of the acute inflammatory response, an agent-based framework is developed that models the emerging host response as the outcome of orchestrated interactions associated with intricate signaling cascades and intercellular immune system interactions. An agent-based modeling (ABM) framework is proposed to study the nonlinear dynamics of acute human inflammation. The model is implemented using NetLogo software. Interacting agents involve either inflammation-specific molecules or cells essential for the propagation of the inflammatory reaction across the system. Spatial orientation of molecule interactions involved in signaling cascades coupled with the cellular heterogeneity are further taken into account. The proposed in silico model is evaluated through its ability to successfully reproduce a self-limited inflammatory response as well as a series of scenarios indicative of the nonlinear dynamics of the response. Such scenarios involve either a persistent (non)infectious response or innate immune tolerance and potentiation effects followed by perturbations in intracellular signaling molecules and cascades. The ABM framework developed in this study provides insight on the stochastic interactions of the mediators involved in the propagation of endotoxin signaling at the cellular response level. The simulation results are in accordance with our prior research effort associated with the development of deterministic human inflammation models that include transcriptional dynamics, signaling, and physiological components. The hypothetical scenarios explored in this study would potentially improve our understanding of how manipulating the behavior of the molecular species could manifest into emergent behavior of the overall system.

  18. Effects of low-intensity ultrahigh frequency electromagnetic radiation on inflammatory processes.

    PubMed

    Lushnikov, K V; Shumilina, Yu V; Yakushina, V S; Gapeev, A B; Sadovnikov, V B; Chemeris, N K

    2004-04-01

    Low-intensity ultrahigh frequency electromagnetic radiation (42 GHz, 100 microW/cm(2)) reduces the severity of inflammation and inhibits production of active oxygen forms by inflammatory exudate neutrophils only in mice with inflammatory process. These data suggest that some therapeutic effects of electromagnetic radiation can be explained by its antiinflammatory effect which is realized via modulation of functional activity of neutrophils in the focus of inflammation.

  19. The renin-angiotensin-aldosterone system (RAAS) - physiology and molecular mechanisms of functioning.

    PubMed

    Chaszczewska-Markowska, Monika; Sagan, Maria; Bogunia-Kubik, Katarzyna

    2016-09-13

    Secretion of renin juxtaglomerular cells into bloodstream initiates activation of an enzymatic-hormonal cascade known as the RAAS (renin - angiotensin - aldosterone system). As a result, blood pressure is increased by the means several interrelated mechanisms. Mechanism of Zjednoczoaction of this system has been known for decades, but a few previously unknown components were recently added, such as ACE-2 and Ang(1-7), and their role often seems to be opposite to that of the conventional components. Local tissue systems also have important biological functions. They operate largely independently of the systemic activity, and their activity is observed primarily in the kidney, heart, in blood vessels, adrenal gland and nervous system. Angiotensin-2 (Ang-2), the main RAAS effector, has a wide scope of action, and thus abnormalities in its functioning have many consequences. Excessive activation is accompanied by chronic inflammation, as Ang-2 stimulates inflammatory mediators. As a result, degenerative processes and atherosclerosis are initiated. RAAS imbalance is associated with the most common diseases of civilization, such as cardio-vascular diseases, diabetes, kidney diseases, preeclampsia, osteoporosis and even neurodegenerative diseases. Many of these pathological processes are attributed to the excessive activation of tissue RA system. Therapeutic strategies based on inhibition of the RAAS are commonly used mainly in the treatment of hypertension and other cardiovascular disorders. The benefits of this class of drugs is primarily a decrease in blood pressure, but also the suppression of inflammatory processes and other pathological phenomena resulting from excessive activation of the RAAS. For that reason, some consider to use RAAS inhibitors in other diseases, e.g. Parkinson's disease. Further studies give hope for the improvement of RAAS inhibitor therapy and the development of new therapeutic strategies.

  20. Lipid Rafts in Mast Cell Biology

    PubMed Central

    Silveira e Souza, Adriana Maria Mariano; Mazucato, Vivian Marino; Jamur, Maria Célia; Oliver, Constance

    2011-01-01

    Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization. PMID:21490812

  1. Inflammatory Cytokines in Depression: Neurobiological Mechanisms and Therapeutic Implications

    PubMed Central

    Felger, Jennifer C.; Lotrich, Francis E.

    2013-01-01

    Mounting evidence indicates that inflammatory cytokines contribute to the development of depression in both medically ill and medically healthy individuals. Cytokines are important for development and normal brain function, and have the ability to influence neurocircuitry and neurotransmitter systems to produce behavioral alterations. Acutely, inflammatory cytokine administration or activation of the innate immune system produces adaptive behavioral responses that promote conservation of energy to combat infection or recovery from injury. However, chronic exposure to elevated inflammatory cytokines and persistent alterations in neurotransmitter systems can lead to neuropsychiatric disorders and depression. Mechanisms of cytokine behavioral effects involve activation of inflammatory signaling pathways in the brain that results in changes in monoamine, glutamate, and neuropeptide systems, and decreases in growth factors, e.g. brain derived neurotrophic factor. Furthermore, inflammatory cytokines may serve as mediators of both environmental (e.g. childhood trauma, obesity, stress, and poor sleep) and genetic (functional gene polymorphisms) factors that contribute to depression’s development. This review explores the idea that specific gene polymorphisms and neurotransmitter systems can confer protection from or vulnerability to specific symptom dimensions of cytokine-related depression. Additionally, potential therapeutic strategies that target inflammatory cytokine signaling or the consequences of cytokines on neurotransmitter systems in the brain to prevent or reverse cytokine effects on behavior are discussed. PMID:23644052

  2. Mesenchymal Stem Cells of Dental Origin-Their Potential for Antiinflammatory and Regenerative Actions in Brain and Gut Damage.

    PubMed

    Földes, Anna; Kádár, Kristóf; Kerémi, Beáta; Zsembery, Ákos; Gyires, Klára; S Zádori, Zoltán; Varga, Gábor

    2016-01-01

    Alzheimer's disease, Parkinson's disease, traumatic brain and spinal cord injury and neuroinflammatory multiple sclerosis are diverse disorders of the central nervous system. However, they are all characterized by various levels of inappropriate inflammatory/immune response along with tissue destruction. In the gastrointestinal system, inflammatory bowel disease (IBD) is also a consequence of tissue destruction resulting from an uncontrolled inflammation. Interestingly, there are many similarities in the immunopathomechanisms of these CNS disorders and the various forms of IBD. Since it is very hard or impossible to cure them by conventional manner, novel therapeutic approaches such as the use of mesenchymal stem cells, are needed. Mesenchymal stem cells have already been isolated from various tissues including the dental pulp and periodontal ligament. Such cells possess transdifferentiating capabilities for different tissue specific cells to serve as new building blocks for regeneration. But more importantly, they are also potent immunomodulators inhibiting proinflammatory processes and stimulating anti-inflammatory mechanisms. The present review was prepared to compare the immunopathomechanisms of the above mentioned neurodegenerative, neurotraumatic and neuroinflammatory diseases with IBD. Additionally, we considered the potential use of mesenchymal stem cells, especially those from dental origin to treat such disorders. We conceive that such efforts will yield considerable advance in treatment options for central and peripheral disorders related to inflammatory degeneration.

  3. TWEAK: A New Player in Obesity and Diabetes

    PubMed Central

    Vendrell, Joan; Chacón, Matilde R.

    2013-01-01

    Obesity and type 2 diabetes (T2D) are associated with chronic low-grade inflammation. Mounting evidence suggests the involvement of an inflammatory switch in adipose tissue, both in mature adipocytes and immune-competent cells from the stromal vascular compartment, in the progression of obesity and insulin resistance. Several inflammatory cytokines secreted by obese adipose tissue, including TNFα and IL-6 have been described as hallmark molecules involved in this process, impairing insulin signaling in insulin-responsive organs. An increasing number of new molecules affecting the local and systemic inflammatory imbalance in obesity and T2D have been identified. In this complex condition, some molecules may exhibit opposing actions, depending on the cell type and on systemic or local influences. Tumor necrosis factor weak inducer of apoptosis (TWEAK), a cytokine of the tumor necrosis (TNF) superfamily, is gaining attention as an important player in chronic inflammatory diseases. TWEAK can exist as a full-length membrane-associated (mTWEAK) form and as a soluble (sTWEAK) form and, by acting through its cognate receptor Fn14, can control many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. Notably, sTWEAK has been proposed as a biomarker of cardiovascular diseases. Here, we will review the recent findings relating to TWEAK and its receptor within the context of obesity and the associated disorder T2D. PMID:24416031

  4. TWEAK: A New Player in Obesity and Diabetes.

    PubMed

    Vendrell, Joan; Chacón, Matilde R

    2013-12-30

    Obesity and type 2 diabetes (T2D) are associated with chronic low-grade inflammation. Mounting evidence suggests the involvement of an inflammatory switch in adipose tissue, both in mature adipocytes and immune-competent cells from the stromal vascular compartment, in the progression of obesity and insulin resistance. Several inflammatory cytokines secreted by obese adipose tissue, including TNFα and IL-6 have been described as hallmark molecules involved in this process, impairing insulin signaling in insulin-responsive organs. An increasing number of new molecules affecting the local and systemic inflammatory imbalance in obesity and T2D have been identified. In this complex condition, some molecules may exhibit opposing actions, depending on the cell type and on systemic or local influences. Tumor necrosis factor weak inducer of apoptosis (TWEAK), a cytokine of the tumor necrosis (TNF) superfamily, is gaining attention as an important player in chronic inflammatory diseases. TWEAK can exist as a full-length membrane-associated (mTWEAK) form and as a soluble (sTWEAK) form and, by acting through its cognate receptor Fn14, can control many cellular activities including proliferation, migration, differentiation, apoptosis, angiogenesis, and inflammation. Notably, sTWEAK has been proposed as a biomarker of cardiovascular diseases. Here, we will review the recent findings relating to TWEAK and its receptor within the context of obesity and the associated disorder T2D.

  5. Comparative histopathological analysis of human pulps after class I cavity preparation with a high-speed air-turbine handpiece or Er:YAG laser

    NASA Astrophysics Data System (ADS)

    Kina, J. F.; Benitez, P. C.; Lizarelli, R. F. Z.; Bagnato, V. S.; Martinez, T. C.; Oliveira, C. F.; Hebling, J.; Costa, C. A. S.

    2008-12-01

    The purpose of this study was to comparatively evaluate the response of human pulps after cavity preparation with different devices. Deep class I cavities were prepared in sound mandibular premolars using either a high-speed air-turbine handpiece (Group 1) or an Er:YAG laser (Group 2). Following total acid etching and the application of an adhesive system, all cavities were restored with composite resin. Fifteen days after the clinical procedure, the teeth were extracted and processed for analysis under optical microscopy. In Group 1 in which the average for the remaining dentin thickness (RDT) between the cavity floor and the coronal pulp was 909.5 μm, a discrete inflammatory response occurred in only one specimen with an RDT of 214 μm. However, tissue disorganization occurred in most specimens. In Group 2 (average RDT = 935.2 μm), the discrete inflammatory pulp response was observed in only one specimen (average RDT = 413 μm). It may be concluded that the high-speed air-turbine handpiece caused greater structural alterations in the pulp, although without inducing inflammatory processes.

  6. Pathogenesis of systemic inflammatory diseases in childhood: "Lessons from clinical trials of anti-cytokine monoclonal antibodies for Kawasaki disease, systemic onset juvenile idiopathic arthritis, and cryopyrin-associated periodic fever syndrome".

    PubMed

    Yokota, Shumpei; Kikuchi, Masako; Nozawa, Tomo; Kanetaka, Taichi; Sato, Tomomi; Yamazaki, Kazuko; Sakurai, Nodoka; Hara, Ryoki; Mori, Masaaki

    2015-01-01

    Inflammation has often been considered to be a nonspecific response and to play a bridging role in the activation of adaptive immunity. However, it is now accepted that inflammation is the product of an independent innate immune system closely linked to the adaptive immune system. The key mediators of inflammation are inflammatory cytokines, as determined by multiple lines of evidence both in vitro and in vivo. Due to the crucial role of inflammatory cytokines in the pathogenesis of autoimmune disorders, anti-cytokine treatment has been developed as a therapy for rheumatoid arthritis, juvenile idiopathic arthritis (JIA), and inflammatory bowel diseases. We recently completed several clinical trials of anti-cytokine treatment for children with systemic inflammatory diseases: anti-IL-6 receptor monoclonal antibody (tocilizumab) for children with two subtypes of JIA (poly-JIA and systemic JIA), anti-TNF-α monoclonal antibody (infliximab) for children with Kawasaki disease, and anti-IL-1-β monoclonal antibody (canakinumab) for children with cryopyrin-associated periodic syndrome. This review summarizes the basis of inflammation in terms of innate immunity and adaptive immunity in these systemic inflammatory diseases, clinical efficacy, and tolerability of these biologic agents, and attempts to determine the roles of individual inflammatory cytokines in disease pathogenesis.

  7. A vascular biology network model focused on inflammatory processes to investigate atherogenesis and plaque instability

    PubMed Central

    2014-01-01

    Background Numerous inflammation-related pathways have been shown to play important roles in atherogenesis. Rapid and efficient assessment of the relative influence of each of those pathways is a challenge in the era of “omics” data generation. The aim of the present work was to develop a network model of inflammation-related molecular pathways underlying vascular disease to assess the degree of translatability of preclinical molecular data to the human clinical setting. Methods We constructed and evaluated the Vascular Inflammatory Processes Network (V-IPN), a model representing a collection of vascular processes modulated by inflammatory stimuli that lead to the development of atherosclerosis. Results Utilizing the V-IPN as a platform for biological discovery, we have identified key vascular processes and mechanisms captured by gene expression profiling data from four independent datasets from human endothelial cells (ECs) and human and murine intact vessels. Primary ECs in culture from multiple donors revealed a richer mapping of mechanisms identified by the V-IPN compared to an immortalized EC line. Furthermore, an evaluation of gene expression datasets from aortas of old ApoE-/- mice (78 weeks) and human coronary arteries with advanced atherosclerotic lesions identified significant commonalities in the two species, as well as several mechanisms specific to human arteries that are consistent with the development of unstable atherosclerotic plaques. Conclusions We have generated a new biological network model of atherogenic processes that demonstrates the power of network analysis to advance integrative, systems biology-based knowledge of cross-species translatability, plaque development and potential mechanisms leading to plaque instability. PMID:24965703

  8. Contribution of dot-blot assay to the diagnosis and management of myositis: a three-year practice at a university hospital centre.

    PubMed

    Martel, Clothilde; Vignaud, Guillaume; Liozon, Eric; Magy, Laurent; Gallouedec, Gael; Ly, Kim; Bezanahary, Holly; Cypierre, Anne; Lapébie, François-Xavier; Palat, Sylvain; Gondran, Guillaume; Jauberteau, Marie-Odile; Fauchais, Anne-Laure

    2016-01-01

    Idiopathic inflammatory myopathies (IIM) are heterogeneous autoimmune diseases with wide clinical spectrum that may lead to delayed diagnosis. The aim of this study was to examine the impact of IIM-specific dot-blot assay on diagnostic process of patients presenting with muscular or systemic symptoms evocating of IIM. We collected all the prescriptions of an IIM specific dot-blot assay (8 autoantigens including Jo-1, PL-7, PL-12, SRP, Mi-2, Ku, PM/Scl and Scl-70) over a 38-month period. 316 myositis dot-blot assays (MSD) were performed in 274 patients (156 women, mean age 53±10.6 years) referring for muscular and/or systemic symptoms suggesting IIM. The timing of dot prescription through the diagnostic process was highly variable: without (35%), concomitantly (16%) or after electromyographic studies (35%). Fifty-nine patients (22%) had IIM according to Bohan and Peter's criteria. Among them, 29 (49%) had positive dot (8 Jo-1, 6 PM-Scl, 5 PL-12, 5 SRP, 2 Mi-2, 2 PL-7 and 1 Ku). Various other diagnoses were performed including 35 autoimmune disease or granulomatosis (12%), 19 inflammatory rheumatic disease (7%), 16 non inflammatory muscular disorders (6%), 10 drug-induced myalgia (4%), 11 infectious myositis (4%). Except 11 borderline SRP results and one transient PM-Scl, MSD was positive only in one case of IIM. Dot allowed clinicians to correct diagnosis in 4 cases and improved the diagnosis of IIM subtypes in 4 cases. This study reflects the interest of myositis dot in the rapid diagnosis process of patients with non-specific muscular symptoms leading to various diagnoses including IIM.

  9. Anti-inflammatory and wound healing activities of calophyllolide isolated from Calophyllum inophyllum Linn.

    PubMed

    Nguyen, Van-Linh; Truong, Cong-Tri; Nguyen, Binh Cao Quan; Vo, Thanh-Niem Van; Dao, Trong-Thuc; Nguyen, Van-Dan; Trinh, Dieu-Thuong Thi; Huynh, Hieu Kim; Bui, Chi-Bao

    2017-01-01

    Due to the high-cost and limitations of current wound healing treatments, the search for alternative approaches or drugs, particularly from medicinal plants, is of key importance. In this study, we report anti-inflammatory and wound healing activities of the major calophyllolide (CP) compound isolated from Calophyllum inophyllum Linn. The results showed that CP had no effect on HaCaT cell viability over a range of concentrations. CP reduced fibrosis formation and effectively promoted wound closure in mouse model without causing body weight loss. The underlying molecular mechanisms of wound repair by CP was investigated. CP markedly reduced MPO activity, and increased M2 macrophage skewing, as shown by up-regulation of M2-related gene expression, which is beneficial to the wound healing process. CP treatment prevented a prolonged inflammatory process by down-regulation of the pro-inflammatory cytokines-IL-1β, IL-6, TNF-α, but up-regulation of the anti-inflammatory cytokine, IL-10. This study is the first to indicate a plausible role for CP in accelerating the process of wound healing through anti-inflammatory activity mechanisms, namely, by regulation of inflammatory cytokines, reduction in MPO, and switching of macrophages to an M2 phenotype. These findings may enable the utilization of CP as a potent therapeutic for cutaneous wound healing.

  10. Roles of inflammatory caspases during processing of zebrafish interleukin-1β in Francisella noatunensis infection

    USGS Publications Warehouse

    Vojtech, Lucia N.; Scharping, Nichole; Woodson, James C.; Hansen, John D.

    2012-01-01

    The interleukin-1 family of cytokines are essential for the control of pathogenic microbes but are also responsible for devastating autoimmune pathologies. Consequently, tight regulation of inflammatory processes is essential for maintaining homeostasis. In mammals, interleukin-1 beta (IL-1β) is primarily regulated at two levels, transcription and processing. The main pathway for processing IL-1β is the inflammasome, a multiprotein complex that forms in the cytosol and which results in the activation of inflammatory caspase (caspase 1) and the subsequent cleavage and secretion of active IL-1β. Although zebrafish encode orthologs of IL-1β and inflammatory caspases, the processing of IL-1β by activated caspase(s) has never been examined. Here, we demonstrate that in response to infection with the fish-specific bacterial pathogen Francisella noatunensis, primary leukocytes from adult zebrafish display caspase-1-like activity that results in IL-1β processing. Addition of caspase 1 or pancaspase inhibitors considerably abrogates IL-1β processing. As in mammals, this processing event is concurrent with the secretion of cleaved IL-1β into the culture medium. Furthermore, two putative zebrafish inflammatory caspase orthologs, caspase A and caspase B, are both able to cleave IL-1β, but with different specificities. These results represent the first demonstration of processing and secretion of zebrafish IL-1β in response to a pathogen, contributing to our understanding of the evolutionary processes governing the regulation of inflammation.                   

  11. Effect of intraarticular tramadol administration in the rat model of knee joint inflammation.

    PubMed

    Garlicki, Jarosław; Dorazil-Dudzik, Magdalena; Wordliczek, Jerzy; Przewłocka, Barbara

    2006-01-01

    Local administration of exogenous opioids may cause effective analgesia without adverse symptoms from the central nervous system. Experiments show that peripheral antinociceptive effect of opioids is observed especially in inflammatory pain. The aim of the research was to estimate the effect of tramadol on nociceptive process at the level of peripheral nervous system, after its local administration in the model of knee joint inflammation. Tramadol was administered intraarticulary into the rat knee joint, before the inflammation as a preemptive analgesia and, for comparison, after the intraarticular injection of carrageenan. The research determined the influence of tramadol injection on pain threshold for thermal stimuli, development of inflammatory processes using the measurement of joint edema and motor function following the induction of knee joint inflammation in the rat. Functional assessment of knee joint with inflammation, in terms of rats' mobility and body position as well as joint loading and mobility were studied. The results of the experiments show that local administration of tramadol induces antinociceptive effect. The effect of tramadol, which elicits also a decrease in inflammatory edema, appears not only after its administration after carrageenan when inflammation was already present, but also in the case of its injection prior to carrageenan in the scheme of preemptive analgesia. The results of the described research show that not only morphine but also another opioid, tramadol, widely used in clinical practice, inhibits nociception, edema and functional impairment of the paw after its local application directly to the inflamed knee joint.

  12. Role of training and detraining on inflammatory and metabolic profile in infarcted rats: influences of cardiovascular autonomic nervous system.

    PubMed

    Rodrigues, Bruno; Santana, Aline Alves; Santamarina, Aline Boveto; Oyama, Lila Missae; Caperuto, Érico Chagas; de Souza, Cláudio Teodoro; Barboza, Catarina de Andrade; Rocha, Leandro Yanase; Figueroa, Diego; Mostarda, Cristiano; Irigoyen, Maria Cláudia; Lira, Fábio Santos

    2014-01-01

    The aim of this study was to evaluate the effects of exercise training (ET, 50-70% of VO2 max, 5 days/week) and detraining (DT) on inflammatory and metabolic profile after myocardial infarction (MI) in rats. Male Wistar rats were divided into control (C, n = 8), sedentary infarcted (SI, n = 9), trained infarcted (TI, n = 10; 3 months of ET), and detrained infarcted (DI, n = 11; 2 months of ET + 1 month of DT). After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis), and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI.

  13. Role of Training and Detraining on Inflammatory and Metabolic Profile in Infarcted Rats: Influences of Cardiovascular Autonomic Nervous System

    PubMed Central

    Santana, Aline Alves; Santamarina, Aline Boveto; Oyama, Lila Missae; Caperuto, Érico Chagas; de Souza, Cláudio Teodoro; Barboza, Catarina de Andrade; Rocha, Leandro Yanase; Figueroa, Diego; Mostarda, Cristiano; Irigoyen, Maria Cláudia; Lira, Fábio Santos

    2014-01-01

    The aim of this study was to evaluate the effects of exercise training (ET, 50–70% of VO2 max, 5 days/week) and detraining (DT) on inflammatory and metabolic profile after myocardial infarction (MI) in rats. Male Wistar rats were divided into control (C, n = 8), sedentary infarcted (SI, n = 9), trained infarcted (TI, n = 10; 3 months of ET), and detrained infarcted (DI, n = 11; 2 months of ET + 1 month of DT). After ET and DT protocols, ventricular function and inflammation, cardiovascular autonomic modulation (spectral analysis), and adipose tissue inflammation and lipolytic pathway were evaluated. ET after MI improved cardiac and vascular autonomic modulation, and these benefits were correlated with reduced inflammatory cytokines on the heart and adipose tissue. These positive changes were sustained even after 1 month of detraining. No expressive changes were observed in oxidative stress and lipolytic pathway in experimental groups. In conclusion, our results strongly suggest that the autonomic improvement promoted by ET, and maintained even after the detraining period, was associated with reduced inflammatory profile in the left ventricle and adipose tissue of rats subjected to MI. These data encourage enhancing cardiovascular autonomic function as a therapeutic strategy for the treatment of inflammatory process triggered by MI. PMID:25045207

  14. Borrelia burgdorferi infection induces lipid mediator production during Lyme arthritis.

    PubMed

    Brown, Charles R; Dennis, Edward A

    2017-10-01

    Experimental Lyme arthritis provides a mouse model for exploring the development of pathology following infection of C3H mice with Borrelia burgdorferi. Infected mice develop a reliable inflammatory arthritis of the ankle joint with severity that typically peaks around two to three weeks post-infection and then undergoes spontaneous resolution. This makes experimental Lyme arthritis an excellent model for investigating the mechanisms that drive both the development and resolution phases of inflammatory disease. Eicosanoids are powerful lipid mediators of inflammation and are known to regulate multiple aspects of inflammatory processes. While much is known about the role of eicosanoids in regulating immune responses during autoimmune disease and cancer, relatively little is known about their role during bacterial infection. In this review, we discuss the role of eicosanoid biosynthetic pathways in mediating inflammatory responses during bacterial infection using experimental Lyme arthritis as a model system. We point out the critical role eicosanoids play in disease development and highlight surprising differences between sterile autoimmune responses and those occurring in response to bacterial infection. These differences should be kept in mind when designing therapies and treatments for inflammatory diseases. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Synergistic Interaction of Matricaria Chamomilla Extract with Diclofenac and Indomethacin on Carrageenan-Induced Paw Inflammation in Rats.

    PubMed

    Ortiz, Mario I; Cariño-Cortés, Raquel; Ponce-Monter, Héctor A; González-García, Martha P; Castañeda-Hernández, Gilberto; Salinas-Caballero, Mireya

    2017-11-01

    Preclinical Research The coadministration of non-steroidal anti-inflammatory drugs (NSAIDs) with medicinal plant extracts may increase anti-inflammatory activity, thus permitting the use of lower NSAID doses and limiting the side effects. The aim of this study was to explore the interactions between an ethanolic extract of M. chamomilla extract (MCE) with two NSAIDs, diclofenac and indomethacin on carrageenan-induced paw inflammation and gastric injury in rats. Diclofenac, indomethacin and MCE, or combinations with MCE produced an anti-inflammatory effect. Effective dose (ED) values were estimated for the individual drugs, and isobolograms were constructed. The final experimental ED values were 483.7 mg/kg for diclofenac + MCE combination, and 212.6 mg/kg for indomethacin + MCE. These values were lower (p < 0.05) than the theoretical ED values (1186.9 mg/kg for diclofenac + MCE combination, and 1183.8 mg/kg for indomethacin + MCE). These data suggest that the interactions between NSAIDs and MCE that mediate the anti-inflammatory effects at the systemic level are synergistic and may have therapeutic advantages for the clinical treatment of inflammatory processes. Drug Dev Res 78 : 360-367, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration

    PubMed Central

    Noailles, Agustina; Maneu, Victoria; Campello, Laura; Gómez-Vicente, Violeta; Lax, Pedro; Cuenca, Nicolás

    2016-01-01

    Microglia act as the resident immune cells of the central nervous system, including the retina. In response to damaging stimuli microglia adopt an activated state, which can progress into a phagocytic phenotype and play a potentially harmful role by eliciting the expression and release of pro-inflammatory cytokines. The aim of the present study was to assess longitudinal changes in microglia during retinal degeneration in the homozygous P23H rat, a model of dominant retinitis pigmentosa. Microglial phenotypes, morphology and density were analyzed by immunohistochemistry, flow cytometry, and cytokine antibody array. In addition, we performed electroretinograms to evaluate the retinal response. In the P23H retina, sclera, choroid and ciliary body, inflammatory cells increased in number compared with the control at all ages analyzed. As the rats became older, a higher number of amoeboid MHC-II+ cells were observed in the P23H retina, which correlated with an increase in the expression of pro-inflammatory cytokines. These findings suggest that, in the P23H model, retinal neuroinflammation persists throughout the rat’s life span even after photoreceptor depletion. Therefore, the inclusion of anti-inflammatory drugs at advanced stages of the neurodegenerative process may provide better retinal fitness so the remaining cells could still be used as targets of cellular or gene therapies. PMID:27624537

  17. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit

    PubMed Central

    Huang, Feiruo

    2015-01-01

    Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits. PMID:26339623

  18. N-3 Polyunsaturated Fatty Acids and Inflammation in Obesity: Local Effect and Systemic Benefit.

    PubMed

    Wang, Yue; Huang, Feiruo

    2015-01-01

    Overwhelming consensus emerges among countless evidences that obesity is characterized by a chronic low-grade inflammation in the adipose tissue (AT), which subsequently develops into a systemic inflammatory state contributing to obesity-associated diseases. N-3 Polyunsaturated fatty acids (n-3 PUFA), known as important modulators participating in inflammatory process, turn out to be an effective mitigating strategy dealing with local and systemic inflammation observed in obesity. Some of the effects of n-3 PUFA are brought about by regulation of gene expression through interacting with nuclear receptors and transcription factors; other effects are elicited by modulation of the amount and type of mediator derived from PUFAs. The metabolic effects of n-3 PUFA mainly result from their interactions with several organ systems, not limited to AT. Notably, the attenuation of inflammation in hard-hit AT, in turn, contributes to reducing circulating concentrations of proinflammatory cytokines and detrimental metabolic derivatives, which is beneficial for the function of other involved organs. The present review highlights a bridging mechanism between n-3 PUFA-mediated inflammation relief in AT and systemic benefits.

  19. The role of airway macrophages in apoptotic cell clearance following acute and chronic lung inflammation.

    PubMed

    Grabiec, Aleksander M; Hussell, Tracy

    2016-07-01

    Acute and chronic inflammatory responses in the lung are associated with the accumulation of large quantities of immune and structural cells undergoing apoptosis, which need to be engulfed by phagocytes in a process called 'efferocytosis'. Apoptotic cell recognition and removal from the lung is mediated predominantly by airway macrophages, though immature dendritic cells and non-professional phagocytes, such as epithelial cells and mesenchymal cells, can also display this function. Efficient clearance of apoptotic cells from the airways is essential for successful resolution of inflammation and the return to lung homeostasis. Disruption of this process leads to secondary necrosis of accumulating apoptotic cells, release of necrotic cell debris and subsequent uncontrolled inflammatory activation of the innate immune system by the released 'damage associated molecular patterns' (DAMPS). To control the duration of the immune response and prevent autoimmune reactions, anti-inflammatory signalling cascades are initiated in the phagocyte upon apoptotic cell uptake, mediated by a range of receptors that recognise specific phospholipids or proteins externalised on, or secreted by, the apoptotic cell. However, prolonged activation of apoptotic cell recognition receptors, such as the family of receptor tyrosine kinases Tyro3, Axl and MerTK (TAM), may delay or prevent inflammatory responses to subsequent infections. In this review, we will discuss recent advances in our understanding of the mechanism controlling apoptotic cell recognition and removal from the lung in homeostasis and during inflammation, the contribution of defective efferocytosis to chronic inflammatory lung diseases, such as chronic obstructive pulmonary disease, asthma and cystic fibrosis, and implications of the signals triggered by apoptotic cells in the susceptibility to pulmonary microbial infections.

  20. Mycolactone displays anti-inflammatory effects on the nervous system

    PubMed Central

    Isaac, Caroline; Mauborgne, Annie; Grimaldi, Alfonso; Ade, Kemy; Pohl, Michel; Limatola, Cristina; Boucher, Yves; Demangel, Caroline

    2017-01-01

    Background Mycolactone is a macrolide produced by the skin pathogen Mycobacterium ulcerans, with cytotoxic, analgesic and immunomodulatory properties. The latter were recently shown to result from mycolactone blocking the Sec61-dependent production of pro-inflammatory mediators by immune cells. Here we investigated whether mycolactone similarly affects the inflammatory responses of the nervous cell subsets involved in pain perception, transmission and maintenance. We also investigated the effects of mycolactone on the neuroinflammation that is associated with chronic pain in vivo. Methodology/ Principle findings Sensory neurons, Schwann cells and microglia were isolated from mice for ex vivo assessment of mycolactone cytotoxicity and immunomodulatory activity by measuring the production of proalgesic cytokines and chemokines. In all cell types studied, prolonged (>48h) exposure to mycolactone induced significant cell death at concentrations >10 ng/ml. Within the first 24h treatment, nanomolar concentrations of mycolactone efficiently suppressed the cell production of pro-inflammatory mediators, without affecting their viability. Notably, mycolactone also prevented the pro-inflammatory polarization of cortical microglia. Since these cells critically contribute to neuroinflammation, we next tested if mycolactone impacts this pathogenic process in vivo. We used a rat model of neuropathic pain induced by chronic constriction of the sciatic nerve. Here, mycolactone was injected daily for 3 days in the spinal canal, to ensure its proper delivery to spinal cord. While this treatment failed to prevent injury-induced neuroinflammation, it decreased significantly the local production of inflammatory cytokines without inducing detectable cytotoxicity. Conclusion/ Significance The present study provides in vitro and in vivo evidence that mycolactone suppresses the inflammatory responses of sensory neurons, Schwann cells and microglia, without affecting the cell viability. Together with previous studies using peripheral blood leukocytes, our work implies that mycolactone-mediated analgesia may, at least partially, be explained by its anti-inflammatory properties. PMID:29149212

  1. Elevated Mitochondrial Reactive Oxygen Species and Cellular Redox Imbalance in Human NADPH-Oxidase-Deficient Phagocytes

    PubMed Central

    Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan

    2017-01-01

    Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548

  2. Altered joint tribology in osteoarthritis: Reduced lubricin synthesis due to the inflammatory process. New horizons for therapeutic approaches.

    PubMed

    Szychlinska, M A; Leonardi, R; Al-Qahtani, M; Mobasheri, A; Musumeci, G

    2016-06-01

    Osteoarthritis (OA) is the most common form of joint disease. This review aimed to consolidate the current evidence that implicates the inflammatory process in the attenuation of synovial lubrication and joint tissue homeostasis in OA. Moreover, with these findings, we propose some evidence for novel therapeutic strategies for preventing and/or treating this complex disorder. The studies reviewed support that inflammatory mediators participate in the onset and progression of OA after joint injury. The flow of pro-inflammatory cytokines following an acute injury seems to be directly associated with altered lubricating ability in the joint tissue. The latter is associated with reduced level of lubricin, one of the major joint lubricants. Future research should focus on the development of new therapies that attenuate the inflammatory process and restore lubricin synthesis and function. This approach could support joint tribology and synovial lubrication leading to improved joint function and pain relief. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Similar Metabolic, Innate Immunity, and Adipokine Profiles in Adult and Pediatric Sepsis Versus Systemic Inflammatory Response Syndrome-A Pilot Study.

    PubMed

    Tavladaki, Theonymfi; Spanaki, Anna Maria; Dimitriou, Helen; Kondili, Efmorfia; Choulaki, Christianna; Georgopoulos, Dimitris; Briassoulis, George

    2017-11-01

    To examine whether the septic profiles of heat shock protein 72, heat shock protein 90α, resistin, adiponectin, oxygen consumption, CO2 production, energy expenditure, and metabolic pattern, along with illness severity, nutritional, and inflammatory indices, differ between adult and pediatric patients compared with systemic inflammatory response syndrome and healthy controls. To evaluate whether these biomolecules may discriminate sepsis from systemic inflammatory response syndrome in adult and pediatric patients. Prospective cohort study. University ICU and PICU. Seventy-eight adults (sepsis/23; systemic inflammatory response syndrome/23; healthy controls/33), 67 children (sepsis/18; systemic inflammatory response syndrome/23; controls/27), mechanically ventilated. None. Flow cytometry determined mean fluorescence intensity for monocyte or neutrophil heat shock protein expression. Resistin, adiponectin, and extracellular heat shock proteins were measured using enzyme-linked immunosorbent assay; energy expenditure by E-COVX (GE Healthcare). Genomic DNA was extracted with PureLink Genomic DNA kit (Invitrogen, Carlsbad, CA) to detect heat shock protein 72 single nucleotide polymorphisms. Similarly, in adult and pediatric patients, Acute Physiology and Chronic Evaluation-II/Acute Physiology and Pediatric Risk of Mortality-III, Simplified Acute Physiology Score-III, C-reactive protein, lactate, and resistin were higher and myocardial contractility, monocyte heat shock protein 72, oxygen consumption, CO2 production, energy expenditure, metabolic pattern, glucose, and albumin lower in sepsis compared with systemic inflammatory response syndrome or controls (p < 0.05). For discriminating sepsis from systemic inflammatory response syndrome, resistin, extracellular heat shock protein 90α, and lactate achieved a receiver operating characteristic curve greater than 0.80 in children and greater than 0.75 in adults (p < 0.05). In both, adults and children, genotype heat shock protein 72 analysis did not disclose any diagnosis or mortality group differences regarding either rs6457452 or rs1061581 haplotypes. Sepsis presents with similar profiles in adult and pediatric patients, characterized by enhanced inflammatory hormonal response and by repressed innate immunity, metabolism, and myocardial contractility. These features early distinguish sepsis from systemic inflammatory response syndrome across all age groups.

  4. [Involvement of the peripheral nervous system in systemic connective tissue diseases: report on clinical cases].

    PubMed

    Kujawska-Danecka, Hanna; Masiak, Anna; Smoleńska, Zaneta; Zdrojewski, Zbigniew

    2011-01-01

    The peripheral nervous system is usually involved in the majority of systemic connective tissue diseases, particularly in systemic lupus erythematosus, Sjögren's syndrome, vasculitis and systemic sclerosis. The pathogenesis of lesions in the peripheral nervous system associated with the autoimmune process is complex and it appears that two mechanisms, immunological and ischemic, are of greatest importance. Structures of the nervous system may be damaged by several autoantibodies (e.g. antineuronal, anti-nerve growth factor, anti-neurotrophins), by cytotoxic effects ofproinflammatory cytokines and by activated cells of the immune system. Local ischemia and hypoxia of neurons caused by inflammation of vasa nervosum represents the second significant mechanism leading to damage of nerve fibres in the peripheral nervous system. We present 3 cases with involvement of the peripheral nervous system as a dominant feature in the clinical picture of systemic connective tissue diseases. Clinical conditions in which the peripheral nervous system is involved include peripheral sensory and sensorimotor polyneuropathy, mononeuropathies, cranial neuropathies, acute inflammatory demyelinating polyneuropathy (Guillian-Barré syndrome), chronic inflammatory demyelinating polyneuropathy, plexopathy, myasthenia gravis, and dysfunctions of the autonomic nervous system. The diagnosis is based on clinical symptoms reported by the patient and disclosed during neurologic examination. The importance of electrophysiologic tests is advocated. Selection of treatment depends on the patient's clinical condition, as well as on the clinical form and type of disease. Treatment relies principally on glucocorticosteroids, intravenous immunoglobulins, cyclophosphamide, and other immunosuppressive drugs. Plasmapheresis and rituximab are administered in severe cases. Rehabilitation of the patient appears to be an important element of therapy. Cases with neurologic symptoms as the first and often the sole manifestation of systemic connective tissue disease are particularly problematic requiring a multidimensional approach; their process of diagnosis and treatment is usually long.

  5. Increasing Maternal Body Mass Index Is Associated with Systemic Inflammation in the Mother and the Activation of Distinct Placental Inflammatory Pathways1

    PubMed Central

    Aye, Irving L.M.H.; Lager, Susanne; Ramirez, Vanessa I.; Gaccioli, Francesca; Dudley, Donald J.; Jansson, Thomas; Powell, Theresa L.

    2014-01-01

    ABSTRACT Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. PMID:24759787

  6. Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways.

    PubMed

    Aye, Irving L M H; Lager, Susanne; Ramirez, Vanessa I; Gaccioli, Francesca; Dudley, Donald J; Jansson, Thomas; Powell, Theresa L

    2014-06-01

    Obese pregnant women have increased levels of proinflammatory cytokines in maternal circulation and placental tissues. However, the pathways contributing to placental inflammation in obesity are largely unknown. We tested the hypothesis that maternal body mass index (BMI) was associated with elevated proinflammatory cytokines in maternal and fetal circulations and increased activation of placental inflammatory pathways. A total of 60 women of varying pre-/early pregnancy BMI, undergoing delivery by Cesarean section at term, were studied. Maternal and fetal (cord) plasma were collected for analysis of insulin, leptin, IL-1beta, IL-6, IL-8, monocyte chemoattractant protein (MCP) 1, and TNFalpha by multiplex ELISA. Activation of the inflammatory pathways in the placenta was investigated by measuring the phosphorylated and total protein expression of p38-mitogen-activated protein kinase (MAPK), c-Jun-N-terminal kinase (JNK)-MAPK, signal transducer-activated transcription factor (STAT) 3, caspase-1, IL-1beta, IkappaB-alpha protein, and p65 DNA-binding activity. To determine the link between activated placental inflammatory pathways and elevated maternal cytokines, cultured primary human trophoblast (PHT) cells were treated with physiological concentrations of insulin, MCP-1, and TNFalpha, and inflammatory signaling analyzed by Western blot. Maternal BMI was positively correlated with maternal insulin, leptin, MCP-1, and TNFalpha, whereas only fetal leptin was increased with BMI. Placental phosphorylation of p38-MAPK and STAT3, and the expression of IL-1beta protein, were increased with maternal BMI; phosphorylation of p38-MAPK was also correlated with birth weight. In contrast, placental NFkappaB, JNK and caspase-1 signaling, and fetal cytokine levels were unaffected by maternal BMI. In PHT cells, p38-MAPK was activated by MCP-1 and TNFalpha, whereas STAT3 phosphorylation was increased following TNFalpha treatment. Maternal BMI is associated with elevated maternal cytokines and activation of placental p38-MAPK and STAT3 inflammatory pathways, without changes in fetal systemic inflammatory profile. Activation of p38-MAPK by MCP-1 and TNFalpha, and STAT3 by TNFalpha, suggests a link between elevated proinflammatory cytokines in maternal plasma and activation of placental inflammatory pathways. We suggest that inflammatory processes associated with elevated maternal BMI may influence fetal growth by altering placental function. © 2014 by the Society for the Study of Reproduction, Inc.

  7. Inflammatory Mechanisms Linking Periodontal Diseases to Cardiovascular Diseases

    PubMed Central

    Schenkein, Harvey A.; Loos, Bruno G.

    2015-01-01

    Aims In this paper, inflammatory mechanisms that link periodontal diseases to cardiovascular diseases (CVD) are reviewed. Materials and Methods and Results This paper is a literature review. Studies in the literature implicate a number of possible mechanisms that could be responsible for increased inflammatory responses in atheromatous lesions due to periodontal infections. These include increased systemic levels of inflammatory mediators stimulated by bacteria and their products at sites distant from the oral cavity, elevated thrombotic and hemostatic markers that promote a prothrombotic state and inflammation, cross-reactive systemic antibodies that promote inflammation and interact with the atheroma, promotion of dyslipidemia with consequent increases in proinflammatory lipid classes and subclasses, and common genetic susceptibility factors present in both disease leading to increased inflammatory responses. Conclusions Such mechanisms may be thought to act in concert to increase systemic inflammation in periodontal disease and to promote or exacerbate atherogenesis. However, proof that the increase in systemic inflammation attributable to periodontitis impacts inflammatory responses during atheroma development, thrombotic events, or myocardial infarction or stroke is lacking. PMID:23627334

  8. Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS).

    PubMed

    Caserta, Stefano; Kern, Florian; Cohen, Jonathan; Drage, Stephen; Newbury, Sarah F; Llewelyn, Martin J

    2016-06-20

    Systemic inflammation in humans may be triggered by infection, termed sepsis, or non-infective processes, termed non-infective systemic inflammatory response syndrome (SIRS). MicroRNAs regulate cellular processes including inflammation and may be detected in blood. We aimed to establish definitive proof-of-principle that circulating microRNAs are differentially affected during sepsis and non-infective SIRS. Critically ill patients with severe (n = 21) or non-severe (n = 8) intra-abdominal sepsis; severe (n = 23) or non-severe (n = 21) non-infective SIRS; or no SIRS (n = 16) were studied. Next-generation sequencing and qRT-PCR were used to measure plasma microRNAs. Detectable blood miRNAs (n = 116) were generally up-regulated in SIRS compared to no-SIRS patients. Levels of these 'circulating inflammation-related microRNAs' (CIR-miRNAs) were 2.64 (IQR: 2.10-3.29) and 1.52 (IQR: 1.15-1.92) fold higher for non-infective SIRS and sepsis respectively (p < 0.0001), hence CIR-miRNAs appeared less abundant in sepsis than in SIRS. Six CIR-miRNAs (miR-30d-5p, miR-30a-5p, miR-192-5p, miR-26a-5p, miR-23a-5p, miR-191-5p) provided good-to-excellent discrimination of severe sepsis from severe SIRS (0.742-0.917 AUC of ROC curves). CIR-miRNA levels inversely correlated with pro-inflammatory cytokines (IL-1, IL-6 and others). Thus, among critically ill patients, sepsis and non-infective SIRS are associated with substantial, differential changes in CIR-miRNAs. CIR-miRNAs may be regulators of inflammation and warrant thorough evaluation as diagnostic and therapeutic targets.

  9. Neuroendocrine Factors in the Regulation of Inflammation: Excessive Adiposity and Calorie Restriction

    PubMed Central

    Fontana, Luigi

    2009-01-01

    Acute inflammation is usually a self-limited life preserving response, triggered by pathogens and/or traumatic injuries. This transient response normally leads to removal of harmful agents and to healing of the damaged tissues. In contrast, unchecked or chronic inflammation can lead to persistent tissue and organ damage by activated leukocytes, cytokines, or collagen deposition. Excessive energy intake and adiposity cause systemic inflammation, whereas calorie restriction without malnutrition exerts a potent anti-inflammatory effect. As individuals accumulate fat and their adipocytes enlarge, adipose tissue undergoes molecular and cellular alterations, macrophages accumulate, and inflammation ensues. Overweight/obese subjects have significantly higher plasma concentrations of C-reactive protein and several cytokines, including IL-6, IL-8, IL-18, and TNF-alpha. Experimental animals on a chronic CR regimen, instead, have low levels of circulating inflammatory cytokines, low blood lymphocyte levels, reduced production of inflammatory cytokines by the white blood cells in response to stimulation, and cortisol levels in the high normal range. Recent data demonstrate that CR exerts a powerful anti-inflammatory effect also in non-human primates and humans. Multiple metabolic and neuroendocrine mechanisms are responsible for the CR-mediated anti-inflammatory effects, including reduced adiposity and secretion of pro-inflammatory adipokines, enhanced glucocorticoid production, reduced plasma glucose and advanced glycation end-product concentrations, increased parasympathetic tone, and increased ghrelin production. Measuring tissue specific effects of CR using genomic, proteomic and metabolomic techniques in humans will foster the understanding of the complex biological processes involved in the anti-inflammatory and anti-aging effects of CR. PMID:18502597

  10. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice.

    PubMed

    Porter, John D; Khanna, Sangeeta; Kaminski, Henry J; Rao, J Sunil; Merriam, Anita P; Richmonds, Chelliah R; Leahy, Patrick; Li, Jingjin; Guo, Wei; Andrade, Francisco H

    2002-02-01

    Mutations in dystrophin cause Duchenne muscular dystrophy (DMD), but absent dystrophin does not invariably cause necrosis in all muscles, life stages and species. Using DNA microarray, we established a molecular signature of dystrophinopathy in the mdx mouse, with evidence that secondary mechanisms are key contributors to pathogenesis. We used variability controls, adequate replicates and stringent analytic tools, including significance analysis of microarrays to estimate and manage false positive rates. In leg muscle, we identified 242 differentially expressed genes, >75% of which have not been previously reported as altered in human or animal dystrophies. Data provide evidence for coordinated activity of numerous components of a chronic inflammatory response, including cytokine and chemokine signaling, leukocyte adhesion and diapedesis, invasive cell type-specific markers, and complement system activation. Selective chemokine upregulation was confirmed by RT-PCR and immunoblot, and may be a key determinant of the nature of the inflammatory response in dystrophic muscle. Up-regulation of secreted phosphoprotein 1 (minopontin, osteopontin) mRNA and protein in dystrophic muscle identified a novel linkage between inflammatory cells and repair processes. Extracellular matrix genes were up-regulated in mdx to levels similar to those in DMD. Since, unlike DMD, mdx exhibits little fibrosis, data suggest that collagen regulation at post-transcriptional stages mediates extensive fibrosis in DMD. Taken together, these data identify a relatively neglected aspect of DMD, suggest new treatment avenues, and highlight the value of genome-wide profiling in study of complex disease processes.

  11. Low-level laser therapy (LLLT) reduces inflammatory infiltrate and enhances skeletal muscle repair: Histomorphometric parameters

    NASA Astrophysics Data System (ADS)

    Paiva-Oliveira, E. L.; Lima, N. C.; Silva, P. H.; Sousa, N. T. A.; Barbosa, F. S.; Orsini, M.; Silva, J. G.

    2012-09-01

    Low level laser therapy (LLLT) has been suggested as an effective therapeutics in inflammatory processes modulation and tissue repairing. However, there is a lack of studies that analyze the anti-inflammatory effects of the infrared lasers in muscular skeletal injury. The aim of this study was to investigate the effects of low-level laser therapy 904 nm in the repair process of skeletal muscle tissue. Swiss mice were submitted to cryoinjury and divided in test (LLLT-treated) and control groups. Histological sections were stained with hematoxylin-eosin to assess general morphology and inflammatory influx, and Picrossirus to quantify collagen fibers deposition. Our results showed significant reduction in inflammatory infiltrated in irradiated mice after 4 days of treatment compared to control ( p = 0.01). After 8 days, the irradiated group showed high levels at regenerating myofibers with significant statistically differences in relation at control group ( p < 0.01). Collagen deposition was significantly increased in the final stages of regeneration at test group, when compared with control group ( p = 0.05). Our data suggests that LLLT reduces the inflammatory response in the initial stages of injury and accelerates the process of muscular tissue repair.

  12. Edema: a silent but important factor.

    PubMed

    Villeco, June P

    2012-01-01

    Edema is a normal response to injury. Even the smallest injury is associated with some inflammation, and initial edema is part of the normal inflammatory process. However, edema becomes a concern when it persists beyond the inflammatory phase. Once we have progressed into the rebuilding, or fibroplastic phase of healing, edema will delay healing and contribute to complications such as pain and stiffness. Early prevention and management to prevent this progression are therefore critical. This article discusses edema in relation to stages of healing and presents the research behind techniques available to the clinician to manage localized extracellular upper extremity edema in the patient with an intact lymphatic system. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  13. Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly.

    PubMed

    Go, Dewi P; Palmer, Jason A; Mitchell, Geraldine M; Gras, Sally L; O'Connor, Andrea J

    2015-05-01

    Tissue engineering is a complex and dynamic process that requires varied biomolecular cues to promote optimal tissue growth. Consequently, the development of delivery systems capable of sequestering more than one biomolecule with controllable release profiles is a key step in the advancement of this field. This study develops multilayered polyelectrolyte films incorporating alpha-melanocyte stimulating hormone (α-MSH), an anti-inflammatory molecule, and basic fibroblast growth factor (bFGF). The layers were successfully formed on macroporous poly lactic-co-glycolic acid microspheres produced using a combined inkjet and thermally induced phase separation technique. Release profiles could be varied by altering layer properties including the number of layers and concentrations of layering molecules. α-MSH and bFGF were released in a sustained manner and the bioactivity of α-MSH was shown to be preserved using an activated macrophage cell assay in vitro. The system performance was also tested in vivo subcutaneously in rats. The multilayered microspheres reduced the inflammatory response induced by a carrageenan stimulus 6 weeks after implantation compared to the non-layered microspheres without the anti-inflammatory and growth factors, demonstrating the potential of such multilayered constructs for the controlled delivery of bioactive molecules. © 2014 Wiley Periodicals, Inc.

  14. Complement therapeutics in inflammatory diseases: promising drug candidates for C3-targeted intervention.

    PubMed

    Mastellos, D C; Ricklin, D; Hajishengallis, E; Hajishengallis, G; Lambris, J D

    2016-02-01

    There is increasing appreciation that complement dysregulation lies at the heart of numerous immune-mediated and inflammatory disorders. Complement inhibitors are therefore being evaluated as new therapeutic options in various clinical translation programs and the first clinically approved complement-targeted drugs have profoundly impacted the management of certain complement-mediated diseases. Among the many members of the intricate protein network of complement, the central component C3 represents a 'hot-spot' for complement-targeted therapeutic intervention. C3 modulates both innate and adaptive immune responses and is linked to diverse immunomodulatory systems and biological processes that affect human pathophysiology. Compelling evidence from preclinical disease models has shown that C3 interception may offer multiple benefits over existing therapies or even reveal novel therapeutic avenues in disorders that are not commonly regarded as complement-driven, such as periodontal disease. Using the clinically developed compstatin family of C3 inhibitors and periodontitis as illustrative examples, this review highlights emerging therapeutic concepts and developments in the design of C3-targeted drug candidates as novel immunotherapeutics for oral and systemic inflammatory diseases. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. A Systems Biology Approach Identifies Molecular Networks Defining Skeletal Muscle Abnormalities in Chronic Obstructive Pulmonary Disease

    PubMed Central

    Turan, Nil; Kalko, Susana; Stincone, Anna; Clarke, Kim; Sabah, Ayesha; Howlett, Katherine; Curnow, S. John; Rodriguez, Diego A.; Cascante, Marta; O'Neill, Laura; Egginton, Stuart; Roca, Josep; Falciani, Francesco

    2011-01-01

    Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients. PMID:21909251

  16. [Role of HMGB1 in Inflammatory-mediated Injury Caused by Digestive System Diseases and Its Repair].

    PubMed

    Wang, Fucai; Xie, Yong

    2015-08-01

    High mobility group box 1 protein (HMGB1), a damage-associated molecular pattern, exists ubiquitously in the cells of mammals. It contributes to maintaining the structure of nucleosome and modulating transcription of gene in nuclei. Extracellular HMGB1 plays two-way roles in promoting inflammatory and tissue repair. Released actively as well as passively following cytokine stimulation during cell death, HMGB1 may act as a late inflammatory factor and an endogenous damage-associated molecular pattern recognized by its receptors. And it may mediate the occurrence, development and outcome of the inflammatory injury of digestive system diseases, such as gastric mucosal injury, inflammatory bowel-disease, liver injury, pancreatitis, and so on. This review mainly concerns the research progresses of HMGB1 in the inflammatory injury of digestive system diseases. At the same time, HMGB1 itself, or as a therapeutic target, can promote tissue repair.

  17. Age-Dependent Neurochemical Remodeling of Hypothalamic Astrocytes.

    PubMed

    Santos, Camila Leite; Roppa, Paola Haack Amaral; Truccolo, Pedro; Fontella, Fernanda Urruth; Souza, Diogo Onofre; Bobermin, Larissa Daniele; Quincozes-Santos, André

    2017-10-04

    The hypothalamus is a crucial integrative center in the central nervous system, responsible for the regulation of homeostatic activities, including systemic energy balance. Increasing evidence has highlighted a critical role of astrocytes in orchestrating hypothalamic functions; they participate in the modulation of synaptic transmission, metabolic and trophic support to neurons, immune defense, and nutrient sensing. In this context, disturbance of systemic energy homeostasis, which is a common feature of obesity and the aging process, involves inflammatory responses. This may be related to dysfunction of hypothalamic astrocytes. In this regard, the aim of this study was to evaluate the neurochemical properties of hypothalamic astrocyte cultures from newborn, adult, and aged Wistar rats. Age-dependent changes in the regulation of glutamatergic homeostasis, glutathione biosynthesis, amino acid profile, glucose metabolism, trophic support, and inflammatory response were observed. Additionally, signaling pathways including nuclear factor erythroid-derived 2-like 2/heme oxygenase-1 p38 mitogen-activated protein kinase, nuclear factor kappa B, phosphatidylinositide 3-kinase/Akt, and leptin receptor expression may represent putative mechanisms associated with the cellular alterations. In summary, our findings indicate that as age increases, hypothalamic astrocytes remodel and exhibit changes in their neurochemical properties. This process may play a role in the onset and/or progression of metabolic disorders.

  18. The Process and Regulatory Components of Inflammation in Brain Oncogenesis

    PubMed Central

    Mostofa, A.G.M.; Punganuru, Surendra R.; Madala, Hanumantha Rao; Al-Obaide, Mohammad; Srivenugopal, Kalkunte S.

    2017-01-01

    Central nervous system tumors comprising the primary cancers and brain metastases remain the most lethal neoplasms and challenging to treat. Substantial evidence points to a paramount role for inflammation in the pathology leading to gliomagenesis, malignant progression and tumor aggressiveness in the central nervous system (CNS) microenvironment. This review summarizes the salient contributions of oxidative stress, interleukins, tumor necrosis factor-α(TNF-α), cyclooxygenases, and transcription factors such as signal transducer and activator of transcription 3 (STAT3) and nuclear factor kappa-light-chain-enhancer of activated B-cells (NF-κB) and the associated cross-talks to the inflammatory signaling in CNS cancers. The roles of reactive astrocytes, tumor associated microglia and macrophages, metabolic alterations, microsatellite instability, O6-methylguanine DNA methyltransferase (MGMT) DNA repair and epigenetic alterations mediated by the isocitrate dehydrogenase 1 (IDH1) mutations have been discussed. The inflammatory pathways with relevance to the brain cancer treatments have been highlighted. PMID:28346397

  19. Regulation of alveolar macrophage death in acute lung inflammation.

    PubMed

    Fan, Erica K Y; Fan, Jie

    2018-03-27

    Acute lung injury (ALI) and its severe form, known as acute respiratory distress syndrome (ARDS), are caused by direct pulmonary insults and indirect systemic inflammatory responses that result from conditions such as sepsis, trauma, and major surgery. The reciprocal influences between pulmonary and systemic inflammation augments the inflammatory process in the lung and promotes the development of ALI. Emerging evidence has revealed that alveolar macrophage (AM) death plays important roles in the progression of lung inflammation through its influence on other immune cell populations in the lung. Cell death and tissue inflammation form a positive feedback cycle, ultimately leading to exaggerated inflammation and development of disease. Pharmacological manipulation of AM death signals may serve as a logical therapeutic strategy for ALI/ARDS. This review will focus on recent advances in the regulation and underlying mechanisms of AM death as well as the influence of AM death on the development of ALI.

  20. Osteoimmunology - Unleashing the concepts

    PubMed Central

    Murthy, M. Bhanu

    2011-01-01

    Osteoimmunology is an emerging field of research dedicated to the relationship between the immune processes and the bone metabolism of various inflammatory bone diseases. The regulatory mechanisms governing the osteoclast and osteoblast are critical for understanding the health and disease of the skeletal system. These interactions are either by cell to cell contact or by the secretion of immune regulatory mediators like cytokines and chemokines by immune cells that are governed by the RANKL (TRANCE)-RANK- OPG axis. TRANCE-RANK signaling has served as a cornerstone of osteoimmunology research. There is increased recognition of the importance of the inflammatory and immune responses in the pathogenesis of periodontal disease. Thus, this field has provided a framework for studying the mechanisms underlying periodontal destruction. As bone homeostasis is mainly regulated by both the immune and endocrine systems, there emerged osteoimmunoendocrinology where adipokines take the lead. This review focuses on the underlying concepts of osteoimmunology, its relation to Periodontics. PMID:22028503

  1. Low-intensity infrared laser effects on zymosan-induced articular inflammatory response

    NASA Astrophysics Data System (ADS)

    Januária dos Anjos, Lúcia Mara; da Fonseca, Adenilson d. S.; Gameiro, Jacy; de Paoli, Flávia

    2015-03-01

    Low-level therapy laser is a phototherapy treatment that involves the application of low power light in the red or infrared wavelengths in various diseases such as arthritis. In this work, we investigated whether low-intensity infrared laser therapy could cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosaninduced articular inflammatory process. Inflammatory process was induced in C57BL/6 mouse by intra-articular injection of zymosan into rear tibio-tarsal joints. Thirty animals were divided in five groups: (I) control, (II) laser, (III) zymosan-induced, (IV) zymosan-induced + laser and (V). Laser exposure was performed after zymosan administration with low-intensity infrared laser (830 nm), power 10 mW, fluence 3.0 J/cm2 at continuous mode emission, in five doses. Twenty-four hours after last irradiation, the animals were sacrificed and the right joints fixed and demineralized. Morphological analysis was observed by hematoxylin and eosin stain, pro-apoptotic (caspase-6) was analyzed by immunocytochemistry and DNA fragmentation was performed by TUNEL assay in articular cartilage cells. Inflammatory process was observed in connective tissue near to articular cartilage, in IV and V groups, indicating zymosan effect. This process was decreased in both groups after laser treatment and dexamethasone. Although groups III and IV presented higher caspase-6 and DNA fragmentation percentages, statistical differences were not observed when compared to groups I and II. Our results suggest that therapies based on low-intensity infrared lasers could reduce inflammatory process and could not cause death by caspase-6 apoptosis or DNA damage pathways in cartilage cells after zymosan-induced articular inflammatory process.

  2. Experimental Gingivitis Induces Systemic Inflammatory Markers in Young Healthy Individuals: A Single-Subject Interventional Study

    PubMed Central

    Luchtefeld, Maren; Heuer, Wieland; Schuett, Harald; Divchev, Dimitar; Scherer, Ralph; Schmitz-Streit, Ruth; Langfeldt, Daniela; Stumpp, Nico; Staufenbiel, Ingmar

    2013-01-01

    Objectives We here investigated whether experimental gingivitis enhances systemic markers of inflammation which are also known as surrogate markers of atherosclerotic plaque development. Background Gingivitis is a low-level oral infection induced by bacterial deposits with a high prevalence within Western populations. A potential link between the more severe oral disease periodontitis and cardiovascular disease has already been shown. Methods 37 non-smoking young volunteers with no inflammatory disease or any cardiovascular risk factors participated in this single-subject interventional study with an intra-individual control. Intentionally experimental oral inflammation was induced by the interruption of oral hygiene for 21 days, followed by a 21-days resolving phase after reinitiation of oral hygiene. Primary outcome measures at baseline, day 21 and 42 were concentrations of hsCRP, IL-6, and MCP-1, as well as adhesion capacity and oxLDL uptake of isolated blood monocytes. Results The partial cessation of oral hygiene procedures was followed by the significant increase of gingival bleeding (34.0%, P<0.0001). This local inflammation was associated with a systemic increase in hsCRP (0.24 mg/L, P = 0.038), IL-6 (12.52 ng/L, P = 0.0002) and MCP-1 (9.10 ng/l, P = 0.124) in peripheral blood samples between baseline and day 21, which decreased at day 42. Monocytes showed an enhanced adherence to endothelial cells and increased foam cell formation after oxLDL uptake (P<0.050) at day 21 of gingivitis. Conclusions Bacterial-induced gingival low-level inflammation induced a systemic increase in inflammatory markers. Dental hygiene almost completely reversed this experimental inflammatory process, suggesting that appropriate dental prophylaxis may also limit systemic markers of inflammation in subjects with natural gingivitis. International Clinical Trials Register Platform of the World Health Organization, registry number: DRKS00003366, URL: http://apps.who.int/trialsearch/Default.aspx PMID:23408963

  3. A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate.

    PubMed

    Isiksacan, Ziya; Erel, Ozcan; Elbuken, Caglar

    2016-11-29

    The erythrocyte sedimentation rate (ESR) is a frequently used 30 min or 60 min clinical test for screening of several inflammatory conditions, infections, trauma, and malignant diseases, as well as non-inflammatory conditions including prostate cancer and stroke. Erythrocyte aggregation (EA) is a physiological process where erythrocytes form face-to-face linear structures, called rouleaux, at stasis or low shear rates. In this work, we proposed a method for ESR measurement from EA. We developed a microfluidic opto-electro-mechanical system, using which we experimentally showed a significant correlation (R 2 = 0.86) between ESR and EA. The microfluidic system was shown to measure ESR from EA using fingerprick blood in 2 min. 40 μl of whole blood is filled in a disposable polycarbonate cartridge which is illuminated with a near infrared emitting diode. Erythrocytes were disaggregated under the effect of a mechanical shear force using a solenoid pinch valve. Following complete disaggregation, transmitted light through the cartridge was measured using a photodetector for 1.5 min. The intensity level is at its lowest at complete disaggregation and highest at complete aggregation. We calculated ESR from the transmitted signal profile. We also developed another microfluidic cartridge specifically for monitoring the EA process in real-time during ESR measurement. The presented system is suitable for ultrafast, low-cost, and low-sample volume measurement of ESR at the point-of-care.

  4. Expression of pericardial fluid T-cells and related inflammatory cytokines in patients with chronic heart failure.

    PubMed

    Iskandar, Reinard; Liu, Shengchen; Xiang, Fei; Chen, Wen; Li, Liangpeng; Qin, Wei; Huang, Fuhua; Chen, Xin

    2017-05-01

    Pericardial fluid, as a biochemical indicator of heart status, directly indicates pathological alteration to the heart. The accumulation of pericardial fluid can be attributed to an underlying systemic or local inflammatory process. However, the pericardial fluid expression of cellular surface markers, as well as several cytokines in chronic heart failure (CHF), remain unclear. In order to evaluate these issues further the pericardial fluid expression of several cytokines and the surface expression of activity markers between CHF patients and non-heart failure (NHF) patients were analyzed. The pericardial fluid expression of cytokines was measured by immunofluorescence and biomarker of plasma N-terminal propeptide of B-type natriuretic peptide (NT-proBNP), while pericardial fluid levels of soluble glycoprotein 130 (sgp130) were analyzed by ELISA in 50 CHF and 24 NHF patients. In addition, the surface expression of activation markers for T-cells was measured by immunohistochemistry. Patients with CHF demonstrated increased levels of plasma NT-proBNP and pericardial fluid sgp130. Surface expression of cellular activation markers CD25 and Foxp3 in the pericardial fluid was increased in patients with CHF. Moreover, the pro- and anti-inflammatory cytokines interferon (IFN)-γ, interleukin (IL)-6 and IL-10 in patients with CHF also demonstrated an increased expression within its pericardial fluid. In addition, there was infiltration of inflammatory cells and enhanced expression of inflammatory cytokines in the pericardial fluid of patients with CHF, which may reflect T cell activation, suggesting that systemic inflammation is important in the progression of CHF. This evidence could indicate a possible novel target for future therapeutics and prevention of CHF.

  5. Inflammatory Mediator Profiling of n-butanol Exposed Upper Airways in Individuals with Multiple Chemical Sensitivity.

    PubMed

    Dantoft, Thomas Meinertz; Skovbjerg, Sine; Andersson, Linus; Claeson, Anna-Sara; Lind, Nina; Nordin, Steven; Brix, Susanne

    2015-01-01

    Multiple Chemical Sensitivity (MCS) is a chronic condition characterized by reports of recurrent symptoms in response to low level exposure to various chemical substances. Recent findings suggests that dysregulation of the immune system may play a role in MCS pathophysiology. The aim of this study was to examine baseline and low dose n-butanol-induced upper airway inflammatory response profiles in MCS subjects versus healthy controls. Eighteen participants with MCS and 18 age- and sex-matched healthy controls were enrolled in the study. Epithelial lining fluid was collected from the nasal cavity at three time points: baseline, within 15 minutes after being exposed to 3.7 ppm n-butanol in an exposure chamber and four hours after exposure termination. A total of 19 cytokines and chemokines were quantified. Furthermore, at baseline and during the exposure session, participants rated the perceived intensity, valence and levels of symptoms and autonomic recordings were obtained. The physiological and psychophysical measurements during the n-butanol exposure session verified a specific response in MCS individuals only. However, MCS subjects and healthy controls displayed similar upper airway inflammatory mediator profiles (P>0.05) at baseline. Likewise, direct comparison of mediator levels in the MCS group and controls after n-butanol exposure revealed no significant group differences. We demonstrate no abnormal upper airway inflammatory mediator levels in MCS subjects before or after a symptom-eliciting exposure to low dose n-butanol, implying that upper airways of MCS subjects are functionally intact at the level of cytokine and chemokine production and secretory capacity. This suggests that previous findings of increased cytokine plasma levels in MCS are unlikely to be caused by systemic priming via excessive upper airway inflammatory processes.

  6. N-terminal fragment of cardiac myosin binding protein-C triggers pro-inflammatory responses in vitro

    PubMed Central

    Lipps, Christoph; Nguyen, Jenine H.; Pyttel, Lukas; Lynch, Thomas L.; Liebetrau, Christoph; Aleshcheva, Ganna; Voss, Sandra; Dörr, Oliver; Nef, Holger M.; Möllmann, Helge; Hamm, Christian W.; Sadayappan, Sakthivel; Troidl, Christian

    2016-01-01

    Myocardial infarction (MI) leads to loss and degradation of contractile cardiac tissue followed by sterile inflammation of the myocardium through activation and recruitment of innate and adaptive cells of the immune system. Recently, it was shown that cardiac myosin binding protein-C (cMyBP-C), a protein of the cardiac sarcomere, is degraded following MI, releasing a predominant N-terminal 40-kDa fragment (C0C1f) into myocardial tissue and the systemic circulation. We hypothesized that early release of C0C1f contributes to the initiation of inflammation and plays a key role in recruitment and activation of immune cells. Therefore, we investigated the role of C0C1f on macrophage / monocyte activation using both mouse bone marrow-derived macrophages and human monocytes. Here we demonstrate that C0C1f leads to macrophage / monocyte activation in vitro. Furthermore, C0C1f induces strong upregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), tumor necrosis factor α (TNFα), and interleukin-1β (IL-1β)) in cultured murine macrophages and human monocytes, resulting in a pro-inflammatory phenotype. We identified the toll-like receptor 4 (TLR4), toll-like receptor 2 (TLR2), and Advanced Glycosylation End Product-Specific Receptor (RAGE) as potential receptors for C0C1f whose activation leads to mobilization of the NFκB signaling pathway, a central mediator of the pro-inflammatory signaling cascade. Thus, C0C1f appears to be a key player in the initiation of inflammatory processes and might also play an important role upon MI. PMID:27616755

  7. Low-intensity laser radiation in complex treatment of inflammatory diseases of parodontium

    NASA Astrophysics Data System (ADS)

    Sokolova, Irina A.; Erina, Stanislava V.

    1995-04-01

    The problem of complex treatment of inflammatory disease of parodontium has become very acute and actual at the moment. The diseases of inflammatory nature are considered to be the most vital issues of the day. The state of the local immune system of oral cavity plays the most important role in the complicated mechanism of inflammatory process development in the tissues of parodontium. Recently physical factors have become predominant in the system of complex therapy of parodontitis. The application of low-intense laser radiation (LLR) is considered to be the most important and up-to-date method in the preventive dentistry. There were 60 patients of average damage rate suffering from chronic generalizing parodontitis at the age of 25 up to 55 under observation. The major goal of examination was to get the objective results of the following methods' application: parodontium index (Russel, 1956), hygiene index (Fyodorov, Volodkina, 1971), Bacterioscopy of dental-gingival pockets content, simple and broadened stomatoscopy (Kunin, 1970), SIgA level determination in mixed saliva (Manchini et all, 1965) and R-protein level in gingival blood (Kulberg, 1990). All the patients were split into 2 groups. The first group (30 patients) has undergone the laser therapy course while the second group of 30 patients couldn't get it (LLR). Despite the kind of therapy they have undergone, all the patients have got the local anti-inflammatory medicamental therapy. The results of clinical observations have proved the fact that laser therapy application makes it possible to shorten the course of treatment in 1.5 times. The shifts of oral cavity local resistance take place in case of chronic generalizing parodontitis. The direct immunostimulating effect could be observed as a result of LLR- therapy application. The close connection of both anti-inflammatory medicamental and LLR-therapy has proved the possibility of purposeful local immune status correction in case of parodontitis.

  8. Neuroinflammation in Ischemic Pediatric Stroke.

    PubMed

    Steinlin, Maja

    2017-08-01

    Over the last decades, the importance of inflammatory processes in pediatric stroke have become increasingly evident. Ischemia launches a cascade of events: activation and inhibition of inflammation by a large network of cytokines, adhesion and small molecules, protease, and chemokines. There are major differences in the neonatal brain compared to adult brain, but developmental trajectories of the process during childhood are not yet well known. In neonatal stroke ischemia is the leading pathophysiology, but infectious and inflammatory processes have a significant input into the course and degree of tissue damage. In childhood, beside inflammation lanced by ischemia itself, the event of ischemia might be provoked by an underlying inflammatory pathophysiology: transient focal arteriopathy, dissection, sickle cell anemia, Moyamoya and more generalized in meningitides, generalized vasculitis or genetic arteriopathies (as in ADA2). Focal inflammatory reactions tend to be located in the distal part of the carotid artery or the proximal medial arteries, but generalized processes rather tend to affect the small arteries. Copyright © 2017. Published by Elsevier Inc.

  9. Growth Hormone Resistance—Special Focus on Inflammatory Bowel Disease

    PubMed Central

    Soendergaard, Christoffer; Young, Jonathan A.; Kopchick, John J.

    2017-01-01

    Growth hormone (GH) plays major anabolic and catabolic roles in the body and is important for regulating several aspects of growth. During an inflammatory process, cells may develop a state of GH resistance during which their response to GH stimulation is limited. In this review, we will emphasize specific mechanisms governing the formation of GH resistance in the active phase of inflammatory bowel disease. The specific molecular effects mediated through individual inflammatory mediators and processes will be highlighted to provide an overview of the transcriptional, translational and post-translational inflammation-mediated impacts on the GH receptor (GHR) along with the impacts on GH-induced intracellular signaling. We also will review GH’s effects on mucosal healing and immune cells in the context of experimental colitis, human inflammatory bowel disease and in patients with short bowel syndrome. PMID:28486400

  10. Leptin in the interplay of inflammation, metabolism and immune system disorders.

    PubMed

    Abella, Vanessa; Scotece, Morena; Conde, Javier; Pino, Jesús; Gonzalez-Gay, Miguel Angel; Gómez-Reino, Juan J; Mera, Antonio; Lago, Francisca; Gómez, Rodolfo; Gualillo, Oreste

    2017-02-01

    Leptin is one of the most relevant factors secreted by adipose tissue and the forerunner of a class of molecules collectively called adipokines. Initially discovered in 1994, its crucial role as a central regulator in energy homeostasis has been largely described during the past 20 years. Once secreted into the circulation, leptin reaches the central and peripheral nervous systems and acts by binding and activating the long form of leptin receptor (LEPR), regulating appetite and food intake, bone mass, basal metabolism, reproductive function and insulin secretion, among other processes. Research on the regulation of different adipose tissues has provided important insights into the intricate network that links nutrition, metabolism and immune homeostasis. The neuroendocrine and immune systems communicate bi-directionally through common ligands and receptors during stress responses and inflammation, and control cellular immune responses in several pathological situations including immune-inflammatory rheumatic diseases. This Review discusses the latest findings regarding the role of leptin in the immune system and metabolism, with particular emphasis on its effect on autoimmune and/or inflammatory rheumatic diseases, such as rheumatoid arthritis and osteoarthritis.

  11. Anti-inflammatory Chitosan/Poly-γ-glutamic acid nanoparticles control inflammation while remodeling extracellular matrix in degenerated intervertebral disc.

    PubMed

    Teixeira, Graciosa Q; Leite Pereira, Catarina; Castro, Flávia; Ferreira, Joana R; Gomez-Lazaro, Maria; Aguiar, Paulo; Barbosa, Mário A; Neidlinger-Wilke, Cornelia; Goncalves, Raquel M

    2016-09-15

    Intervertebral disc (IVD) degeneration is one of the most common causes of low back pain (LBP), the leading disorder in terms of years lived with disability. Inflammation can play a role in LPB, while impairs IVD regeneration. In spite of this, different inflammatory targets have been purposed in the context of IVD regeneration. Anti-inflammatory nanoparticles (NPs) of Chitosan and Poly-(γ-glutamic acid) with a non-steroidal anti-inflammatory drug, diclofenac (Df), were previously shown to counteract a pro-inflammatory response of human macrophages. Here, the effect of intradiscal injection of Df-NPs in degenerated IVD was evaluated. For that, Df-NPs were injected in a bovine IVD organ culture in pro-inflammatory/degenerative conditions, upon stimulation with needle-puncture and interleukin (IL)-1β. Df-NPs were internalized by IVD cells, down-regulating IL-6, IL-8, MMP1 and MMP3, and decreasing PGE2 production, compared with IL-1β-stimulated IVD punches. Interestingly, at the same time, Df-NPs promoted an up-regulation of extracellular matrix (ECM) proteins, namely collagen type II and aggrecan. Allover, this study suggests that IVD treatment with Df-NPs not only reduces inflammation, but also delays and/or decreases ECM degradation, opening perspectives to new intradiscal therapies for IVD degeneration, based on the modulation of inflammation. Degeneration of the IVD is an age-related progressive process considered to be the major cause of spine disorders. The pro-inflammatory environment and biomechanics of the degenerated IVD is a challenge for regenerative therapies. The novelty of this work is the intradiscal injection of an anti-inflammatory therapy based on Chitosan (Ch)/Poly-(γ-glutamic acid) (γ-PGA) nanoparticles (NPs) with an anti-inflammatory drug (diclofenac, Df), previously developed by us. This drug delivery system was tested in a pro-inflammatory/degenerative intervertebral disc ex vivo model. The main findings support the success of an anti-inflammatory therapy for degenerated IVD that not only reduces inflammation but also promotes native IVD matrix production. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Inflammatory Monocytes Mediate Early and Organ-Specific Innate Defense During Systemic Candidiasis

    PubMed Central

    Ngo, Lisa Y.; Kasahara, Shinji; Kumasaka, Debra K.; Knoblaugh, Sue E.; Jhingran, Anupam; Hohl, Tobias M.

    2014-01-01

    Candida albicans is a commensal fungus that can cause systemic disease in patients with breaches in mucosal integrity, indwelling catheters, and defects in phagocyte function. Although circulating human and murine monocytes bind C. albicans and promote inflammation, it remains unclear whether C-C chemokine receptor 2 (CCR2)– and Ly6C-expressing inflammatory monocytes exert a protective or a deleterious function during systemic infection. During murine systemic candidiasis, interruption of CCR2-dependent inflammatory monocyte trafficking into infected kidneys impaired fungal clearance and decreased murine survival. Depletion of CCR2-expressing cells led to uncontrolled fungal growth in the kidneys and brain and demonstrated an essential antifungal role for inflammatory monocytes and their tissue-resident derivatives in the first 48 hours postinfection. Adoptive transfer of purified inflammatory monocytes in depleted hosts reversed the defect in fungal clearance to a substantial extent, indicating a compartmentally and temporally restricted protective function that can be transferred to enhance systemic innate antifungal immunity. PMID:23922372

  13. Humanized Mouse Model of Skin Inflammation Is Characterized by Disturbed Keratinocyte Differentiation and Influx of IL-17A Producing T Cells

    PubMed Central

    de Oliveira, Vivian L.; Keijsers, Romy R. M. C.; van de Kerkhof, Peter C. M.; Seyger, Marieke M. B.; Fasse, Esther; Svensson, Lars; Latta, Markus; Norsgaard, Hanne; Labuda, Tord; Hupkens, Pieter; van Erp, Piet E. J.; Joosten, Irma; Koenen, Hans J. P. M.

    2012-01-01

    Humanized mouse models offer a challenging possibility to study human cell function in vivo. In the huPBL-SCID-huSkin allograft model human skin is transplanted onto immunodeficient mice and allowed to heal. Thereafter allogeneic human peripheral blood mononuclear cells are infused intra peritoneally to induce T cell mediated inflammation and microvessel destruction of the human skin. This model has great potential for in vivo study of human immune cells in (skin) inflammatory processes and for preclinical screening of systemically administered immunomodulating agents. Here we studied the inflammatory skin response of human keratinocytes and human T cells and the concomitant systemic human T cell response. As new findings in the inflamed human skin of the huPBL-SCID-huSkin model we here identified: 1. Parameters of dermal pathology that enable precise quantification of the local skin inflammatory response exemplified by acanthosis, increased expression of human β-defensin-2, Elafin, K16, Ki67 and reduced expression of K10 by microscopy and immunohistochemistry. 2. Induction of human cytokines and chemokines using quantitative real-time PCR. 3. Influx of inflammation associated IL-17A-producing human CD4+ and CD8+ T cells as well as immunoregulatory CD4+Foxp3+ cells using immunohistochemistry and -fluorescence, suggesting that active immune regulation is taking place locally in the inflamed skin. 4. Systemic responses that revealed activated and proliferating human CD4+ and CD8+ T cells that acquired homing marker expression of CD62L and CLA. Finally, we demonstrated the value of the newly identified parameters by showing significant changes upon systemic treatment with the T cell inhibitory agents cyclosporine-A and rapamycin. In summary, here we equipped the huPBL-SCID-huSkin humanized mouse model with relevant tools not only to quantify the inflammatory dermal response, but also to monitor the peripheral immune status. This combined approach will gain our understanding of the dermal immunopathology in humans and benefit the development of novel therapeutics for controlling inflammatory skin diseases. PMID:23094018

  14. Dissociation between systemic and pulmonary anti‐inflammatory effects of dexamethasone in humans

    PubMed Central

    Bartko, Johann; Stiebellehner, Leopold; Derhaschnig, Ulla; Schoergenhofer, Christian; Schwameis, Michael; Prosch, Helmut

    2016-01-01

    Aims The local pulmonary inflammatory response has a different temporal and qualitative profile compared with the systemic inflammatory response. Although glucocorticoids substantially downregulate the systemic release of acute‐phase mediators, it is not clear whether they have comparable inhibitory effects in the human lung compartment. Therefore, we compared the anti‐inflammatory effects of a pure glucocorticoid agonist, dexamethasone, on bronchoalveolar lavage and blood cytokine concentrations in response to bronchially instilled endotoxin. Methods In this randomized, double‐blind and placebo‐controlled trial, 24 volunteers received dexamethasone or placebo and had endotoxin instilled into a lung segment and saline instilled into a contralateral segment, followed by bronchoalveolar lavage. Results Bronchially instilled endotoxin induced a local and systemic inflammatory response. Dexamethasone strongly blunted the systemic interleukin (IL) 6 and C‐reactive protein release. In sharp contrast, dexamethasone left the local release of acute‐phase mediators in the lungs virtually unchanged: bronchoalveolar lavage levels of IL‐6 were only 18% lower and levels of IL‐8 were even higher with dexamethasone compared with placebo, although the differences between treatments were not statistically significant (P = 0.07 and P = 0.08, respectively). However, dexamethasone had inhibitory effects on pulmonary protein extravasation and neutrophil migration. Conclusions The present study demonstrated a remarkable dissociation between the systemic anti‐inflammatory effects of glucocorticoids and its protective effects on capillary leak on the one hand and surprisingly low anti‐inflammatory effects in the lungs on the other. PMID:26647918

  15. Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease.

    PubMed

    Cătană, Cristina-Sorina; Berindan Neagoe, Ioana; Cozma, Vasile; Magdaş, Cristian; Tăbăran, Flaviu; Dumitraşcu, Dan Lucian

    2015-05-21

    Inflammatory bowel diseases (IBDs) are chronic disorders of modern society, requiring management strategies aimed at prolonging an active life and establishing the exact etiology and pathogenesis. These idiopathic diseases have environmental, genetic, immunologic, inflammatory, and oxidative stress components. On the one hand, recent advances have shown that abnormal immune reactions against the microorganisms of the intestinal flora are responsible for the inflammation in genetically susceptible individuals. On the other hand, in addition to T helper cell-type (Th) 1 and Th2 immune responses, other subsets of T cells, namely regulatory T cells and Th17 maintained by IL-23 are likely to develop IBD. IL-23 acts on innate immune system members and also facilitates the expansion and maintenance of Th17 cells. The IL-17/IL-23 axis is relevant in IBD pathogenesis both in human and experimental studies. Novel biomarkers of IBD could be calprotectin, microRNAs, and serum proinflammatory cytokines. An efficient strategy for IBD therapy is represented by the combination of IL-17A and IL-17F in acute IL-17A knockout TNBS-induced colitis, and also definite decrease of the inflammatory process in IL-17F knockout, DSS-induced colitis have been observed. Studying the correlation between innate and adaptive immune systems, we hope to obtain a focused review in order to facilitate future approaches aimed at elucidating the immunological mechanisms that control gut inflammation.

  16. Contribution of the IL-17/IL-23 axis to the pathogenesis of inflammatory bowel disease

    PubMed Central

    Cătană, Cristina-Sorina; Berindan Neagoe, Ioana; Cozma, Vasile; Magdaş, Cristian; Tăbăran, Flaviu; Dumitraşcu, Dan Lucian

    2015-01-01

    Inflammatory bowel diseases (IBDs) are chronic disorders of modern society, requiring management strategies aimed at prolonging an active life and establishing the exact etiology and pathogenesis. These idiopathic diseases have environmental, genetic, immunologic, inflammatory, and oxidative stress components. On the one hand, recent advances have shown that abnormal immune reactions against the microorganisms of the intestinal flora are responsible for the inflammation in genetically susceptible individuals. On the other hand, in addition to T helper cell-type (Th) 1 and Th2 immune responses, other subsets of T cells, namely regulatory T cells and Th17 maintained by IL-23 are likely to develop IBD. IL-23 acts on innate immune system members and also facilitates the expansion and maintenance of Th17 cells. The IL-17/IL-23 axis is relevant in IBD pathogenesis both in human and experimental studies. Novel biomarkers of IBD could be calprotectin, microRNAs, and serum proinflammatory cytokines. An efficient strategy for IBD therapy is represented by the combination of IL-17A and IL-17F in acute IL-17A knockout TNBS-induced colitis, and also definite decrease of the inflammatory process in IL-17F knockout, DSS-induced colitis have been observed. Studying the correlation between innate and adaptive immune systems, we hope to obtain a focused review in order to facilitate future approaches aimed at elucidating the immunological mechanisms that control gut inflammation. PMID:26019446

  17. Metabolic inflammation in inflammatory bowel disease: crosstalk between adipose tissue and bowel.

    PubMed

    Gonçalves, Pedro; Magro, Fernando; Martel, Fátima

    2015-02-01

    Epidemiological studies show that both the incidence of inflammatory bowel disease (IBD) and the proportion of people with obesity and/or obesity-associated metabolic syndrome increased markedly in developed countries during the past half century. Obesity is also associated with the development of more active IBD and requirement for hospitalization and with a decrease in the time span between diagnosis and surgery. Patients with IBD, especially Crohn's disease, present fat-wrapping or "creeping fat," which corresponds to ectopic adipose tissue extending from the mesenteric attachment and covering the majority of the small and large intestinal surface. Mesenteric adipose tissue in patients with IBD presents several morphological and functional alterations, e.g., it is more infiltrated with immune cells such as macrophages and T cells. All these lines of evidence clearly show an association between obesity, adipose tissue, and functional bowel disorders. In this review, we will show that the mesenteric adipose tissue and creeping fat are not innocent by standers but actively contribute to the intestinal and systemic inflammatory responses in patients with IBD. More specifically, we will review evidence showing that adipose tissue in IBD is associated with major alterations in the secretion of cytokines and adipokines involved in inflammatory process, in adipose tissue mesenchymal stem cells and adipogenesis, and in the interaction between adipose tissue and other intestinal components (immune, lymphatic, neuroendocrine, and intestinal epithelial systems). Collectively, these studies underline the importance of adipose tissue for the identification of novel therapeutic approaches for IBD.

  18. Local Inflammation in Fracture Hematoma: Results from a Combined Trauma Model in Pigs

    PubMed Central

    Horst, K.; Eschbach, D.; Pfeifer, R.; Hübenthal, S.; Sassen, M.; Steinfeldt, T.; Wulf, H.; Ruchholtz, S.; Pape, H. C.; Hildebrand, F.

    2015-01-01

    Background. Previous studies showed significant interaction between the local and systemic inflammatory response after severe trauma in small animal models. The purpose of this study was to establish a new combined trauma model in pigs to investigate fracture-associated local inflammation and gain information about the early inflammatory stages after polytrauma. Material and Methods. Combined trauma consisted of tibial fracture, lung contusion, liver laceration, and controlled hemorrhage. Animals were mechanically ventilated and under ICU-monitoring for 48 h. Blood and fracture hematoma samples were collected during the time course of the study. Local and systemic levels of serum cytokines and diverse alarmins were measured by ELISA kit. Results. A statistical significant difference in the systemic serum values of IL-6 and HMGB1 was observed when compared to the sham. Moreover, there was a statistical significant difference in the serum values of the fracture hematoma of IL-6, IL-8, IL-10, and HMGB1 when compared to the systemic inflammatory response. However a decrease of local proinflammatory concentrations was observed while anti-inflammatory mediators increased. Conclusion. Our data showed a time-dependent activation of the local and systemic inflammatory response. Indeed it is the first study focusing on the local and systemic inflammatory response to multiple-trauma in a large animal model. PMID:25694748

  19. Alarmin S100A8/S100A9 as a biomarker for molecular imaging of local inflammatory activity.

    PubMed

    Vogl, Thomas; Eisenblätter, Michel; Völler, Tom; Zenker, Stefanie; Hermann, Sven; van Lent, Peter; Faust, Andreas; Geyer, Christiane; Petersen, Beatrix; Roebrock, Kirsten; Schäfers, Michael; Bremer, Christoph; Roth, Johannes

    2014-08-06

    Inflammation has a key role in the pathogenesis of various human diseases. The early detection, localization and monitoring of inflammation are crucial for tailoring individual therapies. However, reliable biomarkers to detect local inflammatory activities and to predict disease outcome are still missing. Alarmins, which are locally released during cellular stress, are early amplifiers of inflammation. Here, using optical molecular imaging, we demonstrate that the alarmin S100A8/S100A9 serves as a sensitive local and systemic marker for the detection of even sub-clinical disease activity in inflammatory and immunological processes like irritative and allergic contact dermatitis. In a model of collagen-induced arthritis, we use S100A8/S100A9 imaging to predict the development of disease activity. Furthermore, S100A8/S100A9 can act as a very early and sensitive biomarker in experimental leishmaniasis for phagocyte activation linked to an effective Th1-response. In conclusion, the alarmin S100A8/S100A9 is a valuable and sensitive molecular target for novel imaging approaches to monitor clinically relevant inflammatory disorders on a molecular level.

  20. Parallel Profiles of Inflammatory and Effector Memory T Cells in Visceral Fat and Liver of Obesity-Associated Cancer Patients.

    PubMed

    Conroy, Melissa J; Galvin, Karen C; Doyle, Suzanne L; Kavanagh, Maria E; Mongan, Ann-Marie; Cannon, Aoife; Moore, Gillian Y; Reynolds, John V; Lysaght, Joanne

    2016-10-01

    In the midst of a worsening obesity epidemic, the incidence of obesity-associated morbidities, including cancer, diabetes, cardiac and liver disease is increasing. Insights into mechanisms underlying pathological obesity-associated inflammation are lacking. Both the omentum, the principal component of visceral fat, and liver of obese individuals are sites of excessive inflammation, but to date the T cell profiles of both compartments have not been assessed or compared in a patient cohort with obesity-associated disease. We have previously identified that omentum is enriched with inflammatory cytokines, chemokines and T cells. Here, we compared the inflammatory profile of T cells in the omentum and liver of patients with the obesity-associated malignancy oesophageal adenocarcinoma (OAC). Furthermore, we assessed the secreted cytokine profile in OAC patient serum, omentum and liver to assess systemic and local inflammation. We observed parallel T cell cytokine profiles and phenotypes in the omentum and liver of OAC patients, in particular CD69(+) and inflammatory effector memory T cells. This study reflects similar processes of inflammation and T cell activation in the omentum and liver, and may suggest common targets to modulate pathological inflammation at these sites.

  1. Update on Inflammatory Biomarkers and Treatments in Ischemic Stroke

    PubMed Central

    Bonaventura, Aldo; Liberale, Luca; Vecchié, Alessandra; Casula, Matteo; Carbone, Federico; Dallegri, Franco; Montecucco, Fabrizio

    2016-01-01

    After an acute ischemic stroke (AIS), inflammatory processes are able to concomitantly induce both beneficial and detrimental effects. In this narrative review, we updated evidence on the inflammatory pathways and mediators that are investigated as promising therapeutic targets. We searched for papers on PubMed and MEDLINE up to August 2016. The terms searched alone or in combination were: ischemic stroke, inflammation, oxidative stress, ischemia reperfusion, innate immunity, adaptive immunity, autoimmunity. Inflammation in AIS is characterized by a storm of cytokines, chemokines, and Damage-Associated Molecular Patterns (DAMPs) released by several cells contributing to exacerbate the tissue injury both in the acute and reparative phases. Interestingly, many biomarkers have been studied, but none of these reflected the complexity of systemic immune response. Reperfusion therapies showed a good efficacy in the recovery after an AIS. New therapies appear promising both in pre-clinical and clinical studies, but still need more detailed studies to be translated in the ordinary clinical practice. In spite of clinical progresses, no beneficial long-term interventions targeting inflammation are currently available. Our knowledge about cells, biomarkers, and inflammatory markers is growing and is hoped to better evaluate the impact of new treatments, such as monoclonal antibodies and cell-based therapies. PMID:27898011

  2. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration.

    PubMed

    Kempuraj, Duraisamy; Thangavel, Ramasamy; Selvakumar, Govindhasamy P; Zaheer, Smita; Ahmed, Mohammad E; Raikwar, Sudhanshu P; Zahoor, Haris; Saeed, Daniyal; Natteru, Prashant A; Iyer, Shankar; Zaheer, Asgar

    2017-01-01

    Neuroinflammatory response is primarily a protective mechanism in the brain. However, excessive and chronic inflammatory responses can lead to deleterious effects involving immune cells, brain cells and signaling molecules. Neuroinflammation induces and accelerates pathogenesis of Parkinson's disease (PD), Alzheimer's disease (AD) and Multiple sclerosis (MS). Neuroinflammatory pathways are indicated as novel therapeutic targets for these diseases. Mast cells are immune cells of hematopoietic origin that regulate inflammation and upon activation release many proinflammatory mediators in systemic and central nervous system (CNS) inflammatory conditions. In addition, inflammatory mediators released from activated glial cells induce neurodegeneration in the brain. Systemic inflammation-derived proinflammatory cytokines/chemokines and other factors cause a breach in the blood brain-barrier (BBB) thereby allowing for the entry of immune/inflammatory cells including mast cell progenitors, mast cells and proinflammatory cytokines and chemokines into the brain. These peripheral-derived factors and intrinsically generated cytokines/chemokines, α-synuclein, corticotropin-releasing hormone (CRH), substance P (SP), beta amyloid 1-42 (Aβ1-42) peptide and amyloid precursor proteins can activate glial cells, T-cells and mast cells in the brain can induce additional release of inflammatory and neurotoxic molecules contributing to chronic neuroinflammation and neuronal death. The glia maturation factor (GMF), a proinflammatory protein discovered in our laboratory released from glia, activates mast cells to release inflammatory cytokines and chemokines. Chronic increase in the proinflammatory mediators induces neurotoxic Aβ and plaque formation in AD brains and neurodegeneration in PD brains. Glial cells, mast cells and T-cells can reactivate each other in neuroinflammatory conditions in the brain and augment neuroinflammation. Further, inflammatory mediators from the brain can also enter into the peripheral system through defective BBB, recruit immune cells into the brain, and exacerbate neuroinflammation. We suggest that mast cell-associated inflammatory mediators from systemic inflammation and brain could augment neuroinflammation and neurodegeneration in the brain. This review article addresses the role of some atypical inflammatory mediators that are associated with mast cell inflammation and their activation of glial cells to induce neurodegeneration.

  3. A Systematic Review on the Implication of Minerals in the Onset, Severity and Treatment of Periodontal Disease.

    PubMed

    Varela-López, Alfonso; Giampieri, Francesca; Bullón, Pedro; Battino, Maurizio; Quiles, José L

    2016-09-07

    Periodontal disease is an inflammatory disease with high prevalence in adults that leads to destruction of the teeth-supporting tissues. Periodontal therapy has been traditionally directed at reduction of the bacterial load to a level that encourages health-promoting bacteria and maintenance of oral-hygiene. The role of nutrition in different chronic inflammatory diseases has been the subject of an increasing body of research in the last decades. In this sense, there has been an important increase in the volume of research on role of nutrition in periodontitis since the diet has known effects on the immune system and inflammatory cascades. Minerals play a key role in all these processes due to the multiple pathways where they participate. To clarify the role of the different minerals in the establishment, progression and/or treatment of this pathology, a systemically review of published literature cited in PubMed until May 2016 was conducted, which included research on the relationship of these elements with the onset and progression of periodontal disease. Among all the minerals, calcium dietary intake seems important to maintain alveolar bone. Likewise, dietary proportions of minerals that may influence its metabolism also can be relevant. Lastly, some observations suggest that all those minerals with roles in immune and/or antioxidant systems should be considered in future research.

  4. Inhibition of 2-AG hydrolysis differentially regulates blood brain barrier permeability after injury.

    PubMed

    Piro, Justin R; Suidan, Georgette L; Quan, Jie; Pi, YeQing; O'Neill, Sharon M; Ilardi, Marissa; Pozdnyakov, Nikolay; Lanz, Thomas A; Xi, Hualin; Bell, Robert D; Samad, Tarek A

    2018-05-14

    Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae. Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high therapeutic potential. Induction of general and localized BBB disruption in mice was carried out using systemic administration of LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2. Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated by cannabinoid receptor signaling in the ischemic brain insult. Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction and cerebral edema associated with inflammatory brain insults.

  5. Aicardi-Goutières syndrome: a model disease for systemic autoimmunity.

    PubMed

    Lee-Kirsch, M A; Wolf, C; Günther, C

    2014-01-01

    Systemic autoimmunity is a complex disease process that results from a loss of immunological tolerance characterized by the inability of the immune system to discriminate self from non-self. In patients with the prototypic autoimmune disease systemic lupus erythematosus (SLE), formation of autoantibodies targeting ubiquitous nuclear antigens and subsequent deposition of immune complexes in the vascular bed induces inflammatory tissue injury that can affect virtually any organ system. Given the extraordinary genetic and phenotypic heterogeneity of SLE, one approach to the genetic dissection of complex SLE is to study monogenic diseases, for which a single gene defect is responsible. Considerable success has been achieved from the analysis of the rare monogenic disorder Aicardi-Goutières syndrome (AGS), an inflammatory encephalopathy that clinically resembles in-utero-acquired viral infection and that also shares features with SLE. Progress in understanding the cellular and molecular functions of the AGS causing genes has revealed novel pathways of the metabolism of intracellular nucleic acids, the major targets of the autoimmune attack in patients with SLE. Induction of autoimmunity initiated by immune recognition of endogenous nucleic acids originating from processes such as DNA replication/repair or endogenous retro-elements represents novel paradigms of SLE pathogenesis. These findings illustrate how investigating rare monogenic diseases can also fuel discoveries that advance our understanding of complex disease. This will not only aid the development of improved tools for SLE diagnosis and disease classification, but also the development of novel targeted therapeutic approaches. © 2013 British Society for Immunology.

  6. A Review of Inflammatory Processes of the Breast with a Focus on Diagnosis in Core Biopsy Samples

    PubMed Central

    D’Alfonso, Timothy M.; Ginter, Paula S.; Shin, Sandra J.

    2015-01-01

    Inflammatory and reactive lesions of the breast are relatively uncommon among benign breast lesions and can be the source of an abnormality on imaging. Such lesions can simulate a malignant process, based on both clinical and radiographic findings, and core biopsy is often performed to rule out malignancy. Furthermore, some inflammatory processes can mimic carcinoma or other malignancy microscopically, and vice versa. Diagnostic difficulty may arise due to the small and fragmented sample of a core biopsy. This review will focus on the pertinent clinical, radiographic, and histopathologic features of the more commonly encountered inflammatory lesions of the breast that can be characterized in a core biopsy sample. These include fat necrosis, mammary duct ectasia, granulomatous lobular mastitis, diabetic mastopathy, and abscess. The microscopic differential diagnoses for these lesions when seen in a core biopsy sample will be discussed. PMID:26095437

  7. A Review of Inflammatory Processes of the Breast with a Focus on Diagnosis in Core Biopsy Samples.

    PubMed

    D'Alfonso, Timothy M; Ginter, Paula S; Shin, Sandra J

    2015-07-01

    Inflammatory and reactive lesions of the breast are relatively uncommon among benign breast lesions and can be the source of an abnormality on imaging. Such lesions can simulate a malignant process, based on both clinical and radiographic findings, and core biopsy is often performed to rule out malignancy. Furthermore, some inflammatory processes can mimic carcinoma or other malignancy microscopically, and vice versa. Diagnostic difficulty may arise due to the small and fragmented sample of a core biopsy. This review will focus on the pertinent clinical, radiographic, and histopathologic features of the more commonly encountered inflammatory lesions of the breast that can be characterized in a core biopsy sample. These include fat necrosis, mammary duct ectasia, granulomatous lobular mastitis, diabetic mastopathy, and abscess. The microscopic differential diagnoses for these lesions when seen in a core biopsy sample will be discussed.

  8. Polymer-Based Therapeutics: Nanoassemblies and Nanoparticles for Management of Atherosclerosis

    PubMed Central

    Lewis, Daniel R.; Kamisoglu, Kubra; York, Adam; Moghe, Prabhas V.

    2012-01-01

    Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the athero-inflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to athero-inflammatory lesions and atherosclerotic plaques. PMID:21523920

  9. Safety of a low-dosage Filgrastim (rhG-CSF) treatment in non-neutropenic surgical intensive care patients with an inflammatory process.

    PubMed

    Gross-Weege, W; Weiss, M; Schneider, M; Wenning, M; Harms, B; Dumon, K; Ohmann, C; Röher, H D

    1997-01-01

    To evaluate the effect and safety of a low dose Filgrastim treatment in surgical intensive care patients. Prospective, clinical study. Surgical intensive care unit (ICU) in a university hospital. Ten patients with the systemic inflammatory response syndrome (SIRS) and ten patients with sepsis were included in the study. Filgrastim was given intravenously at 1.0 microgram/kg for 3 days, followed by 0.5 microgram/kg for 4 days. Filgrastim treatment increased leukocyte counts and plasma levels of G-CSF. Cytokine levels (IL-6 and IL-8) decreased in the first 3 days of treatment. None of the SIRS patients developed sepsis or multiple organ failure and none of the patients died. In the sepsis group four patients died. No adverse side effects were observed, especially no attenuation of lung injury. Low-dosage Filgrastim treatment in ICU patients is safe. Whether the observed changes of the inflammatory response can be attributed to Filgrastim has to be clarified in further randomized trials.

  10. Comparative analysis of Lacistema pubescens and dexamethasone on topical treatment of skin inflammation in a chronic disease model and side effects.

    PubMed

    da Silva, Josiane M; Conegundes, Jéssica L M; Pinto, Nícolas C C; Mendes, Renata F; Castañon, Maria Christina M N; Scio, Elita

    2018-04-01

    This study aimed to evaluate the chronic topical anti-inflammatory activity of the pharmaceutical formulation ProHLP containing the hexane fraction of Lacistema pubescens (HLP). It was also investigated the possible cutaneous and systemic adverse effects of HLP and ProHLP in mice when compared to dexamethasone. The chronic topical anti-inflammatory activity was determined by croton oil multiple application-induced mouse ear oedema model. Histopathological analyses of ear tissue samples sensitized with croton oil were performed. Cutaneous atrophy induced by HLP and topical glucocorticoid treatments and excision skin wounds model to evidenced possible adverse reactions were also determined. ProHLP significantly reduced the mice ear oedema and considerably accelerated the wound-healing process. Also, HLP did not lead cutaneous atrophy and preserved the clinical aspect of the thymus, adrenal and spleen, unlike dexamethasone. The results suggested that ProHLP is an efficient and safer pharmaceutical formulation to treat chronic inflammatory diseases. © 2018 Royal Pharmaceutical Society.

  11. LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARγ ligand synthesis

    PubMed Central

    Lefèvre, Lise; Authier, Hélène; Stein, Sokrates; Majorel, Clarisse; Couderc, Bettina; Dardenne, Christophe; Eddine, Mohamad Ala; Meunier, Etienne; Bernad, José; Valentin, Alexis; Pipy, Bernard; Schoonjans, Kristina; Coste, Agnès

    2015-01-01

    Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPARγ ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPARγ axis. PMID:25873311

  12. Analysis of adrenocortical secretory responses during acute an prolonged immune stimulation in inflammation-susceptible and -resistant rat strains.

    PubMed

    Andersson, I M; Lorentzen, J C; Ericsson-Dahlstrand, A

    2000-11-01

    Endogenous corticosterone secreted during immune challenge restricts the inflammatory process and genetic variations in this neuroendocrine-immune dialogue have been suggested to influence an individuals sensitivity to develop chronic inflammatory disorders. We have tested inflammation-susceptible Dark Agouti (DA) rats and resistant, MHC-identical, PVG.1AV1 rats for their abilities to secrete corticosterone in response to acute challenge with bacterial lipopolysaccharide (LPS) or a prolonged activation of the nonspecific immune system with arthritogenic yeast beta-glucan. Intravenous injection of LPS triggered equipotent secretion of corticosterone in both rat strains. Interestingly, peak concentrations of corticosterone did not differ significantly between the strains. Intradermal injection of beta-glucan caused severe, monophasic, polyarthritis in DA rats while PVG.1AV1 responded with significantly milder joint inflammation. Importantly, serial sampling of plasma from glucan-injected DA and PVG.1AV1 rats did not reveal elevated concentrations of plasma corticosterone at any time from days 1-30 postinjection compared to preinjection values, in spite of the ongoing inflammatory process. Interestingly, adrenalectomized, beta-glucan-challenged DA rats responded with an aggravated arthritic process, indicating an anti-inflammatory role for the basal levels of corticosterone that were detected in intact DA rats challenged with beta-glucan. Moreover, substitution with subcutaneous corticosterone-secreting pellets, yielding moderate stress-levels, significantly attenuated the arthritic response. In contrast, adrenalectomized and glucan-challenged PVG.1AV1 rats did not respond with an elevated arthritic response, suggesting that these rats contain the arthritic process via corticosterone-independent mechanisms. In conclusion, the hypothalamic-pituitary-adrenal axis in both rat strains exhibited strong activation after challenge with LPS. This contrasted to the basal corticosterone levels observed strains during a prolonged arthritic process. No correlation between ability to secrete corticosterone and susceptibility to inflammation could be demonstrated. Basal levels of endogenous corticosterone appeared to restrain inflammation in beta-glucan-challenged DA rats whereas resistance to inflammation in PVG.1AV1 rats may be mediated via corticosterone-independent mechanisms.

  13. Molecular Mechanisms and Pathways as Targets for Cancer Prevention and Progression with Dietary Compounds.

    PubMed

    Nosrati, Nagisa; Bakovic, Marica; Paliyath, Gopinadhan

    2017-09-25

    A unique feature of bioactive food ingredients is their broad antioxidant function. Antioxidants having a wide spectrum of chemical structure and activity beyond basic nutrition; display different health benefits by the prevention and progression of chronic diseases. Functional food components are capable of enhancing the natural antioxidant defense system by scavenging reactive oxygen and nitrogen species, protecting and repairing DNA damage, as well as modulating the signal transduction pathways and gene expression. Major pathways affected by bioactive food ingredients include the pro-inflammatory pathways regulated by nuclear factor kappa B (NF-κB), as well as those associated with cytokines and chemokines. The present review summarizes the importance of plant bioactives and their roles in the regulation of inflammatory pathways. Bioactives influence several physiological processes such as gene expression, cell cycle regulation, cell proliferation, cell migration, etc., resulting in cancer prevention. Cancer initiation is associated with changes in metabolic pathways such as glucose metabolism, and the effect of bioactives in normalizing this process has been provided. Initiation and progression of inflammatory bowel diseases (IBD) which increase the chances of developing of colorectal cancers can be downregulated by plant bioactives. Several aspects of the potential roles of microRNAs and epigenetic modifications in the development of cancers have also been presented.

  14. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain

    PubMed Central

    Haider, Lukas; Hametner, Simon; Höftberger, Romana; Bagnato, Francesca; Grabner, Günther; Trattnig, Siegfried; Pfeifenbring, Sabine; Brück, Wolfgang

    2016-01-01

    Abstract Multiple sclerosis is a chronic inflammatory disease with primary demyelination and neurodegeneration in the central nervous system. In our study we analysed demyelination and neurodegeneration in a large series of multiple sclerosis brains and provide a map that displays the frequency of different brain areas to be affected by these processes. Demyelination in the cerebral cortex was related to inflammatory infiltrates in the meninges, which was pronounced in invaginations of the brain surface (sulci) and possibly promoted by low flow of the cerebrospinal fluid in these areas. Focal demyelinated lesions in the white matter occurred at sites with high venous density and additionally accumulated in watershed areas of low arterial blood supply. Two different patterns of neurodegeneration in the cortex were identified: oxidative injury of cortical neurons and retrograde neurodegeneration due to axonal injury in the white matter. While oxidative injury was related to the inflammatory process in the meninges and pronounced in actively demyelinating cortical lesions, retrograde degeneration was mainly related to demyelinated lesions and axonal loss in the white matter. Our data show that accumulation of lesions and neurodegeneration in the multiple sclerosis brain does not affect all brain regions equally and provides the pathological basis for the selection of brain areas for monitoring regional injury and atrophy development in future magnetic resonance imaging studies. PMID:26912645

  15. Gla-rich protein is involved in the cross-talk between calcification and inflammation in osteoarthritis.

    PubMed

    Cavaco, Sofia; Viegas, Carla S B; Rafael, Marta S; Ramos, Acácio; Magalhães, Joana; Blanco, Francisco J; Vermeer, Cees; Simes, Dina C

    2016-03-01

    Osteoarthritis (OA) is a whole-joint disease characterized by articular cartilage loss, tissue inflammation, abnormal bone formation and extracellular matrix (ECM) mineralization. Disease-modifying treatments are not yet available and a better understanding of osteoarthritis pathophysiology should lead to the discovery of more effective treatments. Gla-rich protein (GRP) has been proposed to act as a mineralization inhibitor and was recently shown to be associated with OA in vivo. Here, we further investigated the association of GRP with OA mineralization-inflammation processes. Using a synoviocyte and chondrocyte OA cell system, we showed that GRP expression was up-regulated following cell differentiation throughout ECM calcification, and that inflammatory stimulation with IL-1β results in an increased expression of COX2 and MMP13 and up-regulation of GRP. Importantly, while treatment of articular cells with γ-carboxylated GRP inhibited ECM calcification, treatment with either GRP or GRP-coated basic calcium phosphate (BCP) crystals resulted in the down-regulation of inflammatory cytokines and mediators of inflammation, independently of its γ-carboxylation status. Our results strengthen the calcification inhibitory function of GRP and strongly suggest GRP as a novel anti-inflammatory agent, with potential beneficial effects on the main processes responsible for osteoarthritis progression. In conclusion, GRP is a strong candidate target to develop new therapeutic approaches.

  16. Update on neuromyelitis optica: natural history and management

    PubMed Central

    Jindahra, Panitha; Plant, T

    2012-01-01

    Neuromyelitis optica or Devic disease is an inflammatory disorder of the central nervous system. It is caused by antibodies that attack aquaporin 4 water channels in the cell membrane of astrocytic foot processes at the blood brain barrier. It can involve the optic nerve, the spinal cord and beyond. Here we review its pathophysiology, clinical features, and therapy. PMID:28539779

  17. Collagenous mucosal inflammatory diseases of the gastrointestinal tract.

    PubMed

    Freeman, Hugh J

    2005-07-01

    Collagenous mucosal inflammatory diseases involve the columnar-lined gastric and intestinal mucosa and have become recognized increasingly as a significant cause of symptomatic morbidity, particularly in middle-aged and elderly women, especially with watery diarrhea. Still, mechanisms involved in the pathogenesis of this diarrhea remain poorly understood and require further elucidation. The prognosis and long-term outcome of these disorders has been documented only to a limited extent. Recent clinical and pathologic studies have indicated that collagenous mucosal inflammatory disease is a more extensive pathologic process that concomitantly may involve several sites in the gastric and intestinal mucosa. The dominant pathologic lesion is a distinct subepithelial hyaline-like deposit that has histochemical and ultrastructural features of collagen overlying a microscopically defined inflammatory process. An intimate relationship with other autoimmune connective tissue disorders is evident, particularly celiac disease. This is intriguing because these collagenous disorders have not been shown to be gluten dependent. Collagenous mucosal inflammatory disorders may represent a relatively unique but generalized inflammatory response to a multitude of causes, including celiac disease, along with a diverse group of pharmacologic agents. Some recent reports have documented treatment success but histopathologic reversal has been more difficult to substantiate owing to the focal, sometimes extensive nature, of this pathologic process.

  18. Propolis reduces Leishmania amazonensis-induced inflammation in the liver of BALB/c mice.

    PubMed

    da Silva, Suelen S; Mizokami, Sandra S; Fanti, Jacqueline R; Miranda, Milena M; Kawakami, Natalia Y; Teixeira, Fernanda Humel; Araújo, Eduardo J A; Panis, Carolina; Watanabe, Maria A E; Sforcin, José M; Pavanelli, Wander R; Verri, Waldiceu A; Felipe, Ionice; Conchon-Costa, Ivete

    2016-04-01

    Experimental models of mouse paw infection with L. amazonensis show an induction of a strong inflammatory response in the skin, and parasitic migration may occur to secondary organs with consequent tissue injury. There are few studies focusing on the resolution of damage in secondary organs caused by Leishmania species-related cutaneous leishmaniasis. We investigated the propolis treatment effect on liver inflammation induced by Leishmania amazonensis infection in the mouse paw. BALB/c mice were infected in the hind paw with L. amazonensis (10(7)) promastigote forms. After 15 days, animals were treated daily with propolis (5 mg/kg), Glucantime (10 mg/kg), or with propolis plus Glucantime combined. After 60 days, mice were euthanized and livers were collected for inflammatory process analysis. Liver microscopic analysis showed that propolis reduced the inflammatory process compared to untreated infected control. There was a decrease of liver myeloperoxidase and N-acetyl-β-glucosaminidase activity levels, collagen fiber deposition, pro-inflammatory cytokine production, and plasma aspartate transaminase and alanine transaminase levels. Furthermore, propolis treatment enhanced anti-inflammatory cytokine levels and reversed hepatosplenomegaly. Our data demonstrated that daily low doses of Brazilian propolis reduced the secondary chronic inflammatory process in the liver caused by L. amazonensis subcutaneous infection in a susceptible mice strain.

  19. Pharmacology of Ischemia-Reperfusion. Translational Research Considerations.

    PubMed

    Prieto-Moure, Beatriz; Lloris-Carsí, José M; Barrios-Pitarque, Carlos; Toledo-Pereyra, Luis-H; Lajara-Romance, José María; Berda-Antolí, M; Lloris-Cejalvo, J M; Cejalvo-Lapeña, Dolores

    2016-08-01

    Ischemia-reperfusion (IRI) is a complex physiopathological mechanism involving a large number of metabolic processes that can eventually lead to cell apoptosis and ultimately tissue necrosis. Treatment approaches intended to reduce or palliate the effects of IRI are varied, and are aimed basically at: inhibiting cell apoptosis and the complement system in the inflammatory process deriving from IRI, modulating calcium levels, maintaining mitochondrial membrane integrity, reducing the oxidative effects of IRI and levels of inflammatory cytokines, or minimizing the action of macrophages, neutrophils, and other cell types. This study involved an extensive, up-to-date review of the bibliography on the currently most widely used active products in the treatment and prevention of IRI, and their mechanisms of action, in an aim to obtain an overview of current and potential future treatments for this pathological process. The importance of IRI is clearly reflected by the large number of studies published year after year, and by the variety of pathophysiological processes involved in this major vascular problem. A quick study of the evolution of IRI-related publications in PubMed shows that in a single month in 2014, 263 articles were published, compared to 806 articles in the entire 1990.

  20. Proteases in agricultural dust induce lung inflammation through PAR-1 and PAR-2 activation.

    PubMed

    Romberger, Debra J; Heires, Art J; Nordgren, Tara M; Souder, Chelsea P; West, William; Liu, Xiang-de; Poole, Jill A; Toews, Myron L; Wyatt, Todd A

    2015-08-15

    Workers exposed to aerosolized dust present in concentrated animal feeding operations (CAFOs) are susceptible to inflammatory lung diseases, such as chronic obstructive pulmonary disease. Extracts of dust collected from hog CAFOs [hog dust extract (HDE)] are potent stimulators of lung inflammatory responses in several model systems. The observation that HDE contains active proteases prompted the present study, which evaluated the role of CAFO dust proteases in lung inflammatory processes and tested whether protease-activated receptors (PARs) are involved in the signaling pathway for these events. We hypothesized that the damaging proinflammatory effect of HDE is due, in part, to the proteolytic activation of PARs, and inhibiting the proteases in HDE or disrupting PAR activation would attenuate HDE-mediated inflammatory indexes in bronchial epithelial cells (BECs), in mouse lung slices in vitro, and in a murine in vivo exposure model. Human BECs and mouse lung slice cultures stimulated with 5% HDE released significantly more of each of the cytokines measured (IL-6, IL-8, TNF-α, keratinocyte-derived chemokine/CXC chemokine ligand 1, and macrophage inflammatory protein-2/CXC chemokine ligand 2) than controls, and these effects were markedly diminished by protease inhibition. Inhibition of PARs also blunted the HDE-induced cytokine release from BECs. In addition, protease depletion inhibited HDE-induced BEC intracellular PKCα and PKCε activation. C57BL/6J mice administered 12.5% HDE intranasally, either once or daily for 3 wk, exhibited increased total cellular and neutrophil influx, bronchial alveolar fluid inflammatory cytokines, lung histopathology, and inflammatory scores compared with mice receiving protease-depleted HDE. These data suggest that proteases in dust from CAFOs are important mediators of lung inflammation, and these proteases and their receptors may provide novel targets for therapeutic intervention in CAFO dust-induced airways disease.

  1. Mast Cell and M1 Macrophage Infiltration and Local Pro-Inflammatory Factors Were Attenuated with Incretin-Based Therapies in Obesity-Related Glomerulopathy.

    PubMed

    He, Jiao; Yuan, Geheng; Cheng, Fangxiao; Zhang, Junqing; Guo, Xiaohui

    2017-09-01

    The global increase of obesity parallels the obesity-related glomerulopathy (ORG) epidemic. Dipeptidyl peptidase 4 inhibitors and glucagon-like peptide-1 receptor agonists were well recognized to attenuate renal injury independent of glucose control in diabetic nephropathy. There are limited studies focusing on their effects on ORG. We explored the effects of incretin-based therapies on early ORG and the inflammatory responses involved mainly concentrated on mast cell (MC) and macrophage (M) infiltration and local pro-inflammatory factors. ORG rat models were induced by high-fat diet and then divided into ORG vehicle, vildagliptin (3 mg/kg/day, qd) and liraglutide (200 μg/kg, bid) treated groups. After 8 weeks of treatments, albuminuria, glomerular histology, renal inflammatory cell infiltration, and pro-inflammatory factors were analyzed. Early ORG model was demonstrated by albuminuria, glomerulomegaly, foot process fusion, and mesangial and endothelial mild proliferation. Incretin-based therapies limited body weight gain and improved insulin sensitivity. ORG was alleviated, manifested by decreased average glomerular area, attenuated mesangial and endothelial cell proliferation, and revived cell-to-cell propagation of podocytes, which contributed to reduced albuminuria. Compared with ORG vehicle, MC and M1 macrophage (pro-inflammatory) infiltration and M1/M2 ratio were significantly decreased; M2 macrophage (anti-inflammatory) was not significantly increased after incretin-based treatments. Tumor necrosis factor-α (TNF-α) and IL-6 in renal cortex were significantly downregulated, while transforming growth factor-β1 (TGF-β1) remained unchanged. Incretin-based treatments could alleviate high-fat diet-induced ORG partly through the systemic insulin sensitivity improvement and the attenuated local inflammation, mainly by the decrease of MC and M1 macrophage infiltration and reduction of TNF-α and IL-6.

  2. Anti-inflammatory and antiedematogenic activity of the Ocimum basilicum essential oil and its main compound estragole: In vivo mouse models.

    PubMed

    Rodrigues, Lindaiane Bezerra; Oliveira Brito Pereira Bezerra Martins, Anita; Cesário, Francisco Rafael Alves Santana; Ferreira E Castro, Fyama; de Albuquerque, Thaís Rodrigues; Martins Fernandes, Maria Neyze; Fernandes da Silva, Bruno Anderson; Quintans Júnior, Lucindo José; da Costa, José Galberto Martins; Melo Coutinho, Henrique Douglas; Barbosa, Roseli; Alencar de Menezes, Irwin Rose

    2016-09-25

    The genus Ocimum are used in cooking, however, their essential oils are utilized in traditional medicine as aromatherapy. The present study was carried out to investigate the chemical composition and systemic anti-inflammatory activity of the Ocimum basilicum essential oil (EOOB) and its major component estragole, as well as its possible mechanisms of action. The Ocimum basilicum essential oil was obtained by hydrodistillation and analyzed by GC-MS. The anti-inflammatory action was verified using acute and chronic in vivo tests as paw edema, peritonitis, and vascular permeability and granulomatous inflammation model. The anti-inflammatory mechanism of action was analyzed by the participation of histamine and arachidonic acid pathways. The chemical profile analysis identified fourteen components present in the essential oil, within them: estragole (60.96%). The in vivo test results show that treatment with EOOB (100 and 50 mg/kg) and estragole (60 and 30 mg/kg) significantly reduced paw edema induced by carrageenan and dextran. The smallest doses of EOOB (50 mg/kg) and estragole (30 mg/kg) showed efficacy in the reduction of paw edema induced by histamine and arachidonic acid, vascular permeability inhibition and leukocyte emigration in the peritoneal fluid. Theses doses were capable of reducing the chronic inflammatory process. The results observed between the EOOB and estragole demonstrate efficacy in anti-inflammatory activity, however, the essential oil is more efficacious in the acute and chronic anti-inflammatory action. This study confirms the therapeutic potential of this plant and reinforces the validity of its use in popular medicine. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Sexual Dimorphism in Periapical Inflammation and Bone Loss from MAP Kinase Phosphatase-1 Deficient Mice

    PubMed Central

    McAbee, Justin; Li, Qiyan; Yu, Hong; Kirkwood, Keith L.

    2012-01-01

    Introduction Mitogen Activating Protein (MAPK) kinase phosphatase-1 (MKP-1) has been shown to be a key negative regulator of the MAP kinase pathways of the innate immune system. The impact of MKP-1 in an endodontic model has yet to be studied. Thus, the purpose of this study was to determine the role of MKP-1 in a bacterial-driven model of pathological endodontic bone loss. Methods Pulps were exposed in both lower 1st molars of 10-week old mkp-1+/+ and mkp-1−/− mice and left open to the oral environment for either 3 or 8 weeks. At sacrifice, mandibles were harvested and scanned by microcomputed tomography (μCT) to determine periapical bone loss. Histopathological scoring was then performed on the samples to determine the amount of inflammatory infiltrate within the periapical microenvironment. Results Significant bone loss and inflammatory infiltrate were found in all experimental groups when compared to control. No statistical difference was found between mkp-1+/+ and mkp-1−/− at either time point with respect to bone loss or inflammatory infiltrate. At 8 weeks, male mkp-1−/− mice were found to have significantly more bone loss and inflammatory infiltrate when compared to female mkp-1−/− mice. There was also a significant correlation between an increase in bone loss and increase in inflammatory infiltrate. Conclusions A sexual dimorphism exists in the periapical inflammatory process, where male mkp-1−/− mice have more inflammation than female mkp-1−/− mice. The increase in inflammatory infiltrate correlates to more bone loss in the male mice. PMID:22794213

  4. Membrane stabilization activity as anti-inflammatory mechanisms of Vernonia amygdalina leaves extracts

    NASA Astrophysics Data System (ADS)

    Nuryanto, MK; Paramita, S.; Iskandar, A.

    2018-04-01

    Inflammation is a normal process in the human body as a response to injury from healing process. Meanwhile, chronic inflammation will cause new health problems to patients. Anti-inflammatory agents generally used for those conditions, have several side effects to patients. The aim of this research was to find alternative anti-inflammatory agents, especially from natural sources. Vernonia amygdalina knew locally as “daun afrika” belong to family Apiaceae is one of those potential natural sources for alternative anti-inflammatory agents. This plant is known astraditionalmedicine from East Kalimantanfor health problems caused by the muscle stiffness and used as material in this research. The experimental method of anti-inflammatory measurement using membrane stabilization activity for V. amygdalina leaves extracts. The results showed that significant differences of EC50(p<0.05)achieved between indomethacin as the positive control (26.39 ± 2.91 µg/mL) with V. amygdalina leaves extracts for concentration 1% (131.81 ± 2.95 µg/mL) and 10% (62.54 ± 2.05 µg/mL). EC50 of V.amygdalina leaves extracts showed the potential anti-inflammatory activities. It could be concluded that V. amygdalina leaves extracts to have anti-inflammatory activities, which could be further developed as a new natural source of the anti-inflammatory agents.

  5. Bilateral sclerosing orbital pseudotumour in an adult

    PubMed Central

    Sripathi, Smiti; Shenoy, Poonam Mohan; Ayachit, Anurag; Kadavigere, Rajagopal

    2014-01-01

    Sclerosing pseudotumour of the orbit is a rare idiopathic chronic inflammatory process, which greatly mimics neoplasms both clinically and on imaging studies. It is therefore important to differentiate this entity from true neoplasms and to rule out any systemic associations. We present a rare case of sclerosing orbital pseudotumour in an adult man with no systemic illnesses who presented with painless progressive proptosis of both eyes and showed a gradual initial response to steroid therapy but relapsed after a 2-year interval. PMID:24876210

  6. Bilateral sclerosing orbital pseudotumour in an adult.

    PubMed

    Sripathi, Smiti; Shenoy, Poonam Mohan; Ayachit, Anurag; Kadavigere, Rajagopal

    2014-05-29

    Sclerosing pseudotumour of the orbit is a rare idiopathic chronic inflammatory process, which greatly mimics neoplasms both clinically and on imaging studies. It is therefore important to differentiate this entity from true neoplasms and to rule out any systemic associations. We present a rare case of sclerosing orbital pseudotumour in an adult man with no systemic illnesses who presented with painless progressive proptosis of both eyes and showed a gradual initial response to steroid therapy but relapsed after a 2-year interval. 2014 BMJ Publishing Group Ltd.

  7. Influence of laser radiation on some integrative indications of sympathetic-adrenal system activity

    NASA Astrophysics Data System (ADS)

    Pronchenkova, G. F.; Chesnokova, N. P.

    2002-07-01

    One of the goals of this experimental research is elucidation of the influence of laser radiation on the functional state of the sympathetic-adrenal system of a microorganism, which to a large extent defines the intensity of an inflammatory reaction development, and in particular regeneration and repair process in the zone of post traumatic influence of infectious and non-infectious pathogen factors. We have also studied the alteration of adrenaline and noradrenaline content in the wound itself in the dynamics of regeneration.

  8. Attenuating the Systemic Inflammatory Response to Adult Cardiopulmonary Bypass: A Critical Review of the Evidence Base

    PubMed Central

    Landis, R. Clive; Brown, Jeremiah R.; Fitzgerald, David; Likosky, Donald S.; Shore-Lesserson, Linda; Baker, Robert A.; Hammon, John W.

    2014-01-01

    Abstract: A wide range of pharmacological, surgical, and mechanical pump approaches have been studied to attenuate the systemic inflammatory response to cardiopulmonary bypass, yet no systematically based review exists to cover the scope of anti-inflammatory interventions deployed. We therefore conducted an evidence-based review to capture “self-identified” anti-inflammatory interventions among adult cardiopulmonary bypass procedures. To be included, trials had to measure at least one inflammatory mediator and one clinical outcome, specified in the “Outcomes 2010” consensus statement. Ninety-eight papers satisfied inclusion criteria and formed the basis of the review. The review identified 33 different interventions and approaches to attenuate the systemic inflammatory response. However, only a minority of papers (35 of 98 [35.7%]) demonstrated any clinical improvement to one or more of the predefined outcome measures (most frequently myocardial protection or length of intensive care unit stay). No single intervention was supported by strong level A evidence (multiple randomized controlled trials [RCTs] or meta-analysis) for clinical benefit. Interventions at level A evidence included off-pump surgery, minimized circuits, biocompatible circuit coatings, leukocyte filtration, complement C5 inhibition, preoperative aspirin, and corticosteroid prophylaxis. Interventions at level B evidence (single RCT) for minimizing inflammation included nitric oxide donors, C1 esterase inhibition, neutrophil elastase inhibition, propofol, propionyl-L-carnitine, and intensive insulin therapy. A secondary analysis revealed that suppression of at least one inflammatory marker was necessary but not sufficient to confer clinical benefit. The most effective interventions were those that targeted multiple inflammatory pathways. These observations are consistent with a “multiple hit” hypothesis, whereby clinically effective suppression of the systemic inflammatory response requires hitting multiple inflammatory targets simultaneously. Further research is warranted to evaluate if combinations of interventions that target multiple inflammatory pathways are capable of synergistically reducing inflammation and improving outcomes after cardiopulmonary bypass. PMID:26357785

  9. Persistent Oxytetracycline Exposure Induces an Inflammatory Process That Improves Regenerative Capacity in Zebrafish Larvae

    PubMed Central

    Barros-Becker, Francisco; Romero, Jaime; Pulgar, Alvaro; Feijóo, Carmen G.

    2012-01-01

    Background The excessive use of antibiotics in aquaculture can adversely affect not only the environment, but also fish themselves. In this regard, there is evidence that some antibiotics can activate the immune system and reduce their effectiveness. None of those studies consider in detail the adverse inflammatory effect that the antibiotic remaining in the water may cause to the fish. In this work, we use the zebrafish to analyze quantitatively the effects of persistent exposure to oxytetracycline, the most common antibiotic used in fish farming. Methodology We developed a quantitative assay in which we exposed zebrafish larvae to oxytetracycline for a period of 24 to 96 hrs. In order to determinate if the exposure causes any inflammation reaction, we evaluated neutrophils infiltration and quantified their total number analyzing the Tg(mpx:GFP)i114 transgenic line by fluorescence stereoscope, microscope and flow cytometry respectively. On the other hand, we characterized the process at a molecular level by analyzing several immune markers (il-1β, il-10, lysC, mpx, cyp1a) at different time points by qPCR. Finally, we evaluated the influence of the inflammation triggered by oxytetracycline on the regeneration capacity in the lateral line. Conclusions Our results suggest that after 48 hours of exposure, the oxytetracycline triggered a widespread inflammation process that persisted until 96 hours of exposure. Interestingly, larvae that developed an inflammation process showed an improved regeneration capacity in the mechanosensory system lateral line. PMID:22590621

  10. [Axonopathy in the pathogenesis of multiple sclerosis, peripheral diffuse and local motor neuropathies and motor neuron disease].

    PubMed

    Merkulov, Iu A; Merkulova, D M; Iosifova, O A; Zavalishin, I A

    2010-01-01

    Two hundreds and seventy-six patients including 43 patients with multiple sclerosis, 24 - with acute inflammatory demyelinating polyneuropathy (AIDP), 144 - with chronic inflammatory demyelinating polyneuropathy (CIDP), 27 - with motor multifocal neuropathy (MMN), 38 - with lateral amyotrophic sclerosis (LAS) have been examined. Symptoms of axonal degeneration, manifested in denervation phenomena in both clinical and instrumental studies (electromyography, transcranial magnetic stimulation, MRT), were revealed in all groups of patients. The formation of excitation conduction blocks is an universal pathophysiological mechanism of the axonopathy development in AIDP, CIDP, MMN and LAS. Symptoms of axonopathy and peripheral demyelinization in patients with multiple sclerosis and LAS suggest the possibility of transformation of immunopathological process from the central nervous system to the peripheral one.

  11. Innate lymphoid cells in the initiation, regulation and resolution of inflammation

    PubMed Central

    Sonnenberg, Gregory F.; Artis, David

    2016-01-01

    A previously unappreciated cell type of the innate immune system, termed innate lymphoid cells (ILCs), has been characterized in mice and humans, and found to profoundly influence the induction, regulation and resolution of inflammation. ILCs play an important role in these processes in murine models of infection, inflammatory disease and tissue repair. Further, disease association studies in defined patient populations have identified significant alterations in ILC responses, suggesting a potential role for these cell populations in human health and disease. In this review, we discuss the emerging family of ILCs, the role of ILCs in inflammation, and how current or novel therapeutic strategies could be employed to selectively modulate ILC responses and limit chronic inflammatory diseases in patients. PMID:26121198

  12. Role of interleukins in obesity: implications for metabolic disease.

    PubMed

    Febbraio, Mark A

    2014-06-01

    It has been two decades since the discovery that pro-inflammatory cytokines are expressed in obesity. This initial work was the catalyst for the now-accepted paradigm that nutrient overload promotes inflammation and links the metabolic and immune systems, where inflammation may be pathological. However, inflammation is an adaptive and, importantly, an energy-consuming process. Indeed, the rapid mobilization of stored energy reserves by cytokines such as the interleukins, is critical to mounting any successful inflammatory response. Thus, the role of the interleukins in metabolism and energy homeostasis is more complex than first thought and recent evidence is mounting that, for several interleukins, although excess production is negative, blockade or insufficiency is equally undesirable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression.

    PubMed

    Maes, Michael; Yirmyia, Raz; Noraberg, Jens; Brene, Stefan; Hibbeln, Joe; Perini, Giulia; Kubera, Marta; Bob, Petr; Lerer, Bernard; Maj, Mario

    2009-03-01

    Despite extensive research, the current theories on serotonergic dysfunctions and cortisol hypersecretion do not provide sufficient explanations for the nature of depression. Rational treatments aimed at causal factors of depression are not available yet. With the currently available antidepressant drugs, which mainly target serotonin, less than two thirds of depressed patients achieve remission. There is now evidence that inflammatory and neurodegenerative (I&ND) processes play an important role in depression and that enhanced neurodegeneration in depression may-at least partly-be caused by inflammatory processes. Multiple inflammatory-cytokines, oxygen radical damage, tryptophan catabolites-and neurodegenerative biomarkers have been established in patients with depression and these findings are corroborated by animal models of depression. A number of vulnerability factors may predispose towards depression by enhancing inflammatory reactions, e.g. lower peptidase activities (dipeptidyl-peptidase IV, DPP IV), lower omega-3 polyunsaturated levels and an increased gut permeability (leaky gut). The cytokine hypothesis considers that external, e.g. psychosocial stressors, and internal stressors, e.g. organic inflammatory disorders or conditions, such as the postpartum period, may trigger depression via inflammatory processes. Most if not all antidepressants have specific anti-inflammatory effects, while restoration of decreased neurogenesis, which may be induced by inflammatory processes, may be related to the therapeutic efficacy of antidepressant treatments. Future research to disentangle the complex etiology of depression calls for a powerful paradigm shift, i.e. by means of a high throughput-high quality screening, including functional genetics and genotyping microarrays; established and novel animal and ex vivo-in vitro models for depression, such as new transgenic mouse models and endophenotype-based animal models, specific cell lines, in vivo and ex vivo electroporation, and organotypic brain slice culture models. This screening will allow to: 1) discover new I&ND biomarkers, both at the level of gene expression and the phenotype; and elucidate the underlying molecular I&ND pathways causing depression; and 2) identify new therapeutic targets in the I&ND pathways; develop new anti-I&ND drugs for these targets; select existing anti-I&ND drugs or substances that could augment the efficacy of antidepressants; and predict therapeutic response by genetic I&ND profiles.

  14. β2‑adrenergic receptor functionality and genotype in two different models of chronic inflammatory disease: Liver cirrhosis and osteoarthritis.

    PubMed

    Roca, Reyes; Esteban, Pablo; Zapater, Pedro; Inda, María-Del-Mar; Conte, Anna Lucia; Gómez-Escolar, Laura; Martínez, Helena; Horga, José F; Palazon, José M; Peiró, Ana M

    2018-06-01

    The present study was designed to investigate the functional status of β2 adrenoceptors (β2AR) in two models of chronic inflammatory disease: liver cirrhosis (LC) and osteoarthritis (OA). The β2AR gene contains three single nucleotide polymorphisms at amino acid positions 16, 27 and 164. The aim of the present study was to investigate the potential influence of lymphocyte β2AR receptor functionality and genotype in LC and OA patients. Blood samples from cirrhotic patients (n=52, hepatic venous pressure gradient 13±4 mmHg, CHILD 7±2 and MELD 11±4 scores), OA patients (n=30, 84% Kellgren‑Lawrence severity 4 grade, 14% knee replacement joint) and healthy volunteers as control group (n=26) were analyzed. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood and basal and isoproterenol induced adenylate cyclase activity (isoproterenol stimulus from 10‑9 to 10‑4 mM), and β2AR allelic variants (rs1042713, rs1042714, rs1800888) were determined. β2AR functionality was decreased in the two different models of chronic inflammatory disease studied, OA (50% vs. control) and LC (85% vs. control). In these patients, the strength of the β2AR response to adrenergic stimulation was very limited. Adrenergic modulation of PBMC function through the β2AR stimulus is decreased in chronic inflammatory processes including LC and OA, suggesting that the adrenergic system may be important in the development of these processes.

  15. Systemic inflammatory response syndrome (SIRS)

    PubMed Central

    Balk, Robert A

    2014-01-01

    The concept of a systemic inflammatory response syndrome (SIRS) to describe the complex pathophysiologic response to an insult such as infection, trauma, burns, pancreatitis, or a variety of other injuries came from a 1991 consensus conference charged with the task of developing an easy-to-apply set of clinical parameters to aid in the early identification of potential candidates to enter into clinical trials to evaluate new treatments for sepsis. There was recognition that a diverse group of injuries produced a common inflammatory response in the host and provided attractive targets for new anti-inflammatory molecules designed to prevent further propagation and/or provide specific treatment. Effective application of these new anti-inflammatory strategies necessitated identification of early clinical markers that could be assessed in real-time and were likely to define a population of patients that would have a beneficial response to the targeted intervention. It was felt that early clinical manifestations might be more readily available to clinicians than more sophisticated and specific assays for inflammatory substances that were systemically released by the network of injurious inflammatory events. Therefore, the early definition of a systemic inflammatory response syndrome (SIRS) was built upon a foundation of basic clinical and laboratory abnormalities that were readily available in almost all clinical settings. With further refinement, it was hoped, that this definition would have a high degree of sensitivity, coupled with a reasonable degree of specificity. This manuscript reviews the derivation, application, utilization, potential benefits, and speculation regarding the future of the SIRS definition. PMID:24280933

  16. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders

    PubMed Central

    Saviano, A.; Newton, E. E.; Serricchio, M. L.; Dal Lago, A. A.

    2018-01-01

    Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders. PMID:29563853

  17. [Fibrous tissue(s): a key for lesion characterization in digestive diseases].

    PubMed

    Régent, D; Laurent, V; Antunes, L; Debelle, L; Cannard, L; Leclerc, Jc; Beot, S

    2002-02-01

    Fibrosis is one of the hallmarks of inflammatory and repair processes in pathology. Various exogenous and endogenous stimuli, including tumor development, can induce inflammatory reactions. During the post-equilibrium phase after IV injection of non specific contrast media, CT and/or MR allow the study of these inflammatory answers to tumoral or infectious processes. Delayed enhancement of collagenic fibrous tissue during the late post-equilibrium phase is an essential complementary data in the characterization of many liver lesions: cirrhosis, cholangiocarcinoma, focal nodular hyperplasia, fibrous metastasis. but also for the differential diagnosis of pancreatic diseases (groove pancreatitis vs ductal adenocarcinoma) or of gastro-intestinal diseases (gastric adenocarcinoma vs lymphoma, mechanical complication vs inflammatory bouts of ileal Crohn's disease).

  18. Reducing inappropriate non-steroidal anti-inflammatory prescription in primary care patients with chronic kidney disease.

    PubMed

    Keohane, David M; Dennehy, Thomas; Keohane, Kenneth P; Shanahan, Eamonn

    2017-08-14

    Purpose The purpose of this paper is to reduce inappropriate non-steroidal anti-inflammatory prescribing in primary care patients with chronic kidney disease (CKD). Once diagnosed, CKD management involves delaying progression to end stage renal failure and preventing complications. It is well established that non-steroidal anti-inflammatories have a negative effect on kidney function and consequently, all nephrology consensus groups suggest avoiding this drug class in CKD. Design/methodology/approach The sampling criteria included all practice patients with a known CKD risk factor. This group was refined to include those with an estimated glomerular filtration rate (eGFR)<60 ml/min per 1.73m2 (stage 3 CKD or greater). Phase one analysed how many prescriptions had occurred in this group over the preceding three months. The intervention involved creating an automated alert on at risk patient records if non-steroidal anti-inflammatories were prescribed and discussing the rationale with practice staff. The re-audit phase occurred three months' post intervention. Findings The study revealed 728/7,500 (9.7 per cent) patients at risk from CKD and 158 (2.1 per cent) who were subsequently found to have an eGFR<60 ml/min, indicating=stage 3 CKD. In phase one, 10.2 per cent of at risk patients had received a non-steroidal anti-inflammatory prescription in the preceding three months. Additionally, 6.2 per cent had received non-steroidal anti-inflammatories on repeat prescription. Phase two post intervention revealed a significant 75 per cent reduction in the total non-steroidal anti-inflammatories prescribed and a 90 per cent reduction in repeat non-steroidal anti-inflammatory prescriptions in those with CKD. Originality/value The study significantly reduced non-steroidal anti-inflammatory prescription in those with CKD in primary care settings. It also created a CKD register within the practice and an enduring medication alert system for individuals that risk nephrotoxic non-steroidal anti-inflammatory prescription. It established a safe, reliable and efficient process for reducing morbidity and mortality, improving quality of life and limiting the CKD associated health burden.

  19. Interaction of the endocrine system with inflammation: a function of energy and volume regulation

    PubMed Central

    2014-01-01

    During acute systemic infectious disease, precisely regulated release of energy-rich substrates (glucose, free fatty acids, and amino acids) and auxiliary elements such as calcium/phosphorus from storage sites (fat tissue, muscle, liver, and bone) are highly important because these factors are needed by an energy-consuming immune system in a situation with little or no food/water intake (sickness behavior). This positively selected program for short-lived infectious diseases is similarly applied during chronic inflammatory diseases. This review presents the interaction of hormones and inflammation by focusing on energy storage/expenditure and volume regulation. Energy storage hormones are represented by insulin (glucose/lipid storage and growth-related processes), insulin-like growth factor-1 (IGF-1) (muscle and bone growth), androgens (muscle and bone growth), vitamin D (bone growth), and osteocalcin (bone growth, support of insulin, and testosterone). Energy expenditure hormones are represented by cortisol (breakdown of liver glycogen/adipose tissue triglycerides/muscle protein, and gluconeogenesis; water retention), noradrenaline/adrenaline (breakdown of liver glycogen/adipose tissue triglycerides, and gluconeogenesis; water retention), growth hormone (glucogenic, lipolytic; has also growth-related aspects; water retention), thyroid gland hormones (increase metabolic effects of adrenaline/noradrenaline), and angiotensin II (induce insulin resistance and retain water). In chronic inflammatory diseases, a preponderance of energy expenditure pathways is switched on, leading to typical hormonal changes such as insulin/IGF-1 resistance, hypoandrogenemia, hypovitaminosis D, mild hypercortisolemia, and increased activity of the sympathetic nervous system and the renin-angiotensin-aldosterone system. Though necessary during acute inflammation in the context of systemic infection or trauma, these long-standing changes contribute to increased mortality in chronic inflammatory diseases. PMID:24524669

  20. Interaction of the endocrine system with inflammation: a function of energy and volume regulation.

    PubMed

    Straub, Rainer H

    2014-02-13

    During acute systemic infectious disease, precisely regulated release of energy-rich substrates (glucose, free fatty acids, and amino acids) and auxiliary elements such as calcium/phosphorus from storage sites (fat tissue, muscle, liver, and bone) are highly important because these factors are needed by an energy-consuming immune system in a situation with little or no food/water intake (sickness behavior). This positively selected program for short-lived infectious diseases is similarly applied during chronic inflammatory diseases. This review presents the interaction of hormones and inflammation by focusing on energy storage/expenditure and volume regulation. Energy storage hormones are represented by insulin (glucose/lipid storage and growth-related processes), insulin-like growth factor-1 (IGF-1) (muscle and bone growth), androgens (muscle and bone growth), vitamin D (bone growth), and osteocalcin (bone growth, support of insulin, and testosterone). Energy expenditure hormones are represented by cortisol (breakdown of liver glycogen/adipose tissue triglycerides/muscle protein, and gluconeogenesis; water retention), noradrenaline/adrenaline (breakdown of liver glycogen/adipose tissue triglycerides, and gluconeogenesis; water retention), growth hormone (glucogenic, lipolytic; has also growth-related aspects; water retention), thyroid gland hormones (increase metabolic effects of adrenaline/noradrenaline), and angiotensin II (induce insulin resistance and retain water). In chronic inflammatory diseases, a preponderance of energy expenditure pathways is switched on, leading to typical hormonal changes such as insulin/IGF-1 resistance, hypoandrogenemia, hypovitaminosis D, mild hypercortisolemia, and increased activity of the sympathetic nervous system and the renin-angiotensin-aldosterone system. Though necessary during acute inflammation in the context of systemic infection or trauma, these long-standing changes contribute to increased mortality in chronic inflammatory diseases.

  1. Reversal of Sepsis-Like Features of Neutrophils by Interleukin-1 Blockade in Patients With Systemic-Onset Juvenile Idiopathic Arthritis.

    PubMed

    Ter Haar, Nienke M; Tak, Tamar; Mokry, Michal; Scholman, Rianne C; Meerding, Jenny M; de Jager, Wilco; Verwoerd, Anouk; Foell, Dirk; Vogl, Thomas; Roth, Johannes; Leliefeld, Pieter H C; van Loosdregt, Jorg; Koenderman, Leo; Vastert, Sebastiaan J; de Roock, Sytze

    2018-06-01

    Neutrophils are the most abundant innate immune cells in the blood, but little is known about their role in (acquired) chronic autoinflammatory diseases. This study was undertaken to investigate the role of neutrophils in systemic-onset juvenile idiopathic arthritis (JIA), a prototypical multifactorial autoinflammatory disease that is characterized by arthritis and severe systemic inflammation. Fifty patients with systemic-onset JIA who were receiving treatment with recombinant interleukin-1 receptor antagonist (rIL-1Ra; anakinra) were analyzed at disease onset and during remission. RNA sequencing was performed on fluorescence-activated cell-sorted neutrophils from 3 patients with active systemic-onset JIA and 3 healthy controls. Expression of activation markers, apoptosis, production of reactive oxygen species (ROS), and degranulation of secretory vesicles from neutrophils were assessed by flow cytometry in serum samples from 17 patients with systemic-onset JIA and 15 healthy controls. Neutrophil counts were markedly increased at disease onset, and this correlated with the levels of inflammatory mediators. The neutrophil counts normalized within days after the initiation of rIL-1Ra therapy. RNA-sequencing analysis revealed a substantial up-regulation of inflammatory processes in neutrophils from patients with active systemic-onset JIA, significantly overlapping with the transcriptome of sepsis. Correspondingly, neutrophils from patients with active systemic-onset JIA displayed a primed phenotype that was characterized by increased ROS production, CD62L shedding, and secretory vesicle degranulation, which was reversed by rIL-1Ra treatment in patients who had achieved clinical remission. Patients with a short disease duration had high neutrophil counts, more immature neutrophils, and a complete response to rIL-1Ra, whereas patients with symptoms for >1 month had normal neutrophil counts and an unsatisfactory response to rIL-1Ra. In vitro, rIL-1Ra antagonized the priming effect of IL-1β on neutrophils from healthy subjects. These results strongly support the notion that neutrophils play an important role in systemic-onset JIA, especially in the early inflammatory phase of the disease. The findings also demonstrate that neutrophil numbers and the inflammatory activity of systemic-onset JIA are both susceptible to IL-1 blockade. © 2018, American College of Rheumatology.

  2. Reliability of the identification of the systemic inflammatory response syndrome in critically ill infants and children.

    PubMed

    Juskewitch, Justin E; Prasad, Swati; Salas, Carlos F Santillan; Huskins, W Charles

    2012-01-01

    To assess interobserver reliability of the identification of episodes of the systemic inflammatory response syndrome in critically ill hospitalized infants and children. Retrospective, cross-sectional study of the application of the 2005 consensus definition of systemic inflammatory response syndrome in infants and children by two independent, trained reviewers using information in the electronic medical record. Eighteen-bed pediatric multidisciplinary medical/surgical pediatric intensive care unit. A randomly selected sample of children admitted consecutively to the pediatric intensive care unit between May 1 and September 30, 2009. None. Sixty infants and children were selected from a total of 343 admitted patients. Their median age was 3.9 yrs (interquartile range, 1.5-12.7), 57% were female, and 68% were Caucasian. Nineteen (32%) children were identified by both reviewers as having an episode of systemic inflammatory response syndrome (88% agreement, 95% confidence interval 78-94; κ = 0.75, 95% confidence interval 0.59-0.92). Among these 19 children, agreement between the reviewers for individual systemic inflammatory response syndrome criteria was: temperature (84%, 95% confidence interval 60-97); white blood cell count (89%, 95% confidence interval 67-99); respiratory rate (84%, 95% confidence interval 60-97); and heart rate (68%, 95% confidence interval 33-87). Episodes of systemic inflammatory response syndrome in critically ill infants and children can be identified reproducibly using the consensus definition.

  3. 21 CFR 520.1720a - Phenylbutazone tablets and boluses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... the relief of inflammatory conditions associated with the musculoskeletal system. (iii) Limitations... inflammatory conditions associated with the musculoskeletal system. (iii) Limitations. Do not use in horses...

  4. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases.

    PubMed

    Solleiro-Villavicencio, Helena; Rivas-Arancibia, Selva

    2018-01-01

    In a state of oxidative stress, there is an increase of reactive species, which induce an altered intracellular signaling, leading to dysregulation of the inflammatory response. The inability of the antioxidant defense systems to modulate the proinflammatory response is key to the onset and progression of neurodegenerative diseases. The aim of this work is to review the effect of the state of oxidative stress on the loss of regulation of the inflammatory response on the microglia and astrocytes, the induction of different CD4 + T cell populations in neuroinflammation, as well as its role in some neurodegenerative diseases. For this purpose, an intentional search of original articles, short communications, and reviews, was carried out in the following databases: PubMed, Scopus, and Google Scholar. The articles reviewed included the period from 1997 to 2017. With the evidence obtained, we conclude that the loss of redox balance induces alterations in the differentiation and number of CD4 + T cell subpopulations, leading to an increase in Th1 and Th17 response. This contributes to the development of neuroinflammation as well as loss of the regulation of the inflammatory response in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Multiple Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory response of effect of T cells, microglia, and astrocytes. In this respect, it has been found that the mobilization of T cells with anti-inflammatory characteristics toward damaged regions of the CNS can provide neuroprotection and become a therapeutic strategy to control inflammatory processes in neurodegeneration.

  5. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases

    PubMed Central

    Solleiro-Villavicencio, Helena; Rivas-Arancibia, Selva

    2018-01-01

    In a state of oxidative stress, there is an increase of reactive species, which induce an altered intracellular signaling, leading to dysregulation of the inflammatory response. The inability of the antioxidant defense systems to modulate the proinflammatory response is key to the onset and progression of neurodegenerative diseases. The aim of this work is to review the effect of the state of oxidative stress on the loss of regulation of the inflammatory response on the microglia and astrocytes, the induction of different CD4+T cell populations in neuroinflammation, as well as its role in some neurodegenerative diseases. For this purpose, an intentional search of original articles, short communications, and reviews, was carried out in the following databases: PubMed, Scopus, and Google Scholar. The articles reviewed included the period from 1997 to 2017. With the evidence obtained, we conclude that the loss of redox balance induces alterations in the differentiation and number of CD4+T cell subpopulations, leading to an increase in Th1 and Th17 response. This contributes to the development of neuroinflammation as well as loss of the regulation of the inflammatory response in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Multiple Sclerosis (MS). In contrast, regulatory T cells (Tregs) and Th2 modulate the inflammatory response of effect of T cells, microglia, and astrocytes. In this respect, it has been found that the mobilization of T cells with anti-inflammatory characteristics toward damaged regions of the CNS can provide neuroprotection and become a therapeutic strategy to control inflammatory processes in neurodegeneration. PMID:29755324

  6. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies.

    PubMed

    Calder, P C; Ahluwalia, N; Albers, R; Bosco, N; Bourdet-Sicard, R; Haller, D; Holgate, S T; Jönsson, L S; Latulippe, M E; Marcos, A; Moreines, J; M'Rini, C; Müller, M; Pawelec, G; van Neerven, R J J; Watzl, B; Zhao, J

    2013-01-01

    To monitor inflammation in a meaningful way, the markers used must be valid: they must reflect the inflammatory process under study and they must be predictive of future health status. In 2009, the Nutrition and Immunity Task Force of the International Life Sciences Institute, European Branch, organized an expert group to attempt to identify robust and predictive markers, or patterns or clusters of markers, which can be used to assess inflammation in human nutrition studies in the general population. Inflammation is a normal process and there are a number of cells and mediators involved. These markers are involved in, or are produced as a result of, the inflammatory process irrespective of its trigger and its location and are common to all inflammatory situations. Currently, there is no consensus as to which markers of inflammation best represent low-grade inflammation or differentiate between acute and chronic inflammation or between the various phases of inflammatory responses. There are a number of modifying factors that affect the concentration of an inflammatory marker at a given time, including age, diet and body fatness, among others. Measuring the concentration of inflammatory markers in the bloodstream under basal conditions is probably less informative compared with data related to the concentration change in response to a challenge. A number of inflammatory challenges have been described. However, many of these challenges are poorly standardised. Patterns and clusters may be important as robust biomarkers of inflammation. Therefore, it is likely that a combination of multiple inflammatory markers and integrated readouts based upon kinetic analysis following defined challenges will be the most informative biomarker of inflammation.

  7. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue

    PubMed Central

    Diaz, Alain; Romero, Maria; Thaller, Seth; Blomberg, Bonnie B.

    2018-01-01

    The adipose tissue (AT) contributes to systemic and B cell intrinsic inflammation, reduced B cell responses and secretion of autoimmune antibodies. In this study we show that adipocytes in the human obese subcutaneous AT (SAT) secrete several pro-inflammatory cytokines and chemokines, which contribute to the establishment and maintenance of local and systemic inflammation, and consequent suboptimal immune responses in obese individuals, as we have previously shown. We also show that pro-inflammatory chemokines recruit immune cells expressing the corresponding receptors to the SAT, where they also contribute to local and systemic inflammation, secreting additional pro-inflammatory mediators. Moreover, we show that the SAT generates autoimmune antibodies. During the development of obesity, reduced oxygen and consequent hypoxia and cell death lead to further release of pro-inflammatory cytokines, “self” protein antigens, cell-free DNA and lipids. All these stimulate class switch and the production of autoimmune IgG antibodies which have been described to be pathogenic. In addition to hypoxia, we have measured cell cytotoxicity and DNA damage mechanisms, which may also contribute to the release of “self” antigens in the SAT. All these processes are significantly elevated in the SAT as compared to the blood. We definitively found that fat-specific IgG antibodies are secreted by B cells in the SAT and that B cells express mRNA for the transcription factor T-bet and the membrane marker CD11c, both involved in the production of autoimmune IgG antibodies. Finally, the SAT also expresses RNA for cytokines known to promote Germinal Center formation, isotype class switch, and plasma cell differentiation. Our results show novel mechanisms for the generation of autoimmune antibody responses in the human SAT and allow the identification of new pathways to possibly manipulate in order to reduce systemic inflammation and autoantibody production in obese individuals. PMID:29768501

  8. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue.

    PubMed

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Thaller, Seth; Blomberg, Bonnie B

    2018-01-01

    The adipose tissue (AT) contributes to systemic and B cell intrinsic inflammation, reduced B cell responses and secretion of autoimmune antibodies. In this study we show that adipocytes in the human obese subcutaneous AT (SAT) secrete several pro-inflammatory cytokines and chemokines, which contribute to the establishment and maintenance of local and systemic inflammation, and consequent suboptimal immune responses in obese individuals, as we have previously shown. We also show that pro-inflammatory chemokines recruit immune cells expressing the corresponding receptors to the SAT, where they also contribute to local and systemic inflammation, secreting additional pro-inflammatory mediators. Moreover, we show that the SAT generates autoimmune antibodies. During the development of obesity, reduced oxygen and consequent hypoxia and cell death lead to further release of pro-inflammatory cytokines, "self" protein antigens, cell-free DNA and lipids. All these stimulate class switch and the production of autoimmune IgG antibodies which have been described to be pathogenic. In addition to hypoxia, we have measured cell cytotoxicity and DNA damage mechanisms, which may also contribute to the release of "self" antigens in the SAT. All these processes are significantly elevated in the SAT as compared to the blood. We definitively found that fat-specific IgG antibodies are secreted by B cells in the SAT and that B cells express mRNA for the transcription factor T-bet and the membrane marker CD11c, both involved in the production of autoimmune IgG antibodies. Finally, the SAT also expresses RNA for cytokines known to promote Germinal Center formation, isotype class switch, and plasma cell differentiation. Our results show novel mechanisms for the generation of autoimmune antibody responses in the human SAT and allow the identification of new pathways to possibly manipulate in order to reduce systemic inflammation and autoantibody production in obese individuals.

  9. [Opportunistic microorganisms in purulent inflammatory otolaryngologic diseases and meningitis].

    PubMed

    Mironov, A Iu; Savitskaia, K I; Vorob'ev, A A

    2001-01-01

    The contamination of clinical specimens material, obtained from patients with otolaryngology inflammatory processes and purulent meningitides in the Moscow region, has been studied. Etiologically significant causative agents dominating in different purulent inflammatory diseases have been established. As revealed in this study, in the Moscow region the leading causative agents of purulent inflammatory otolaryngology deseases and meningitides are coagulase-negative ataphylococci, Escherichia coli, meningococci, pyogenic streptococci and fungi of the genus Candida.

  10. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    PubMed

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  11. A Novel Brucine Gel Transdermal Delivery System Designed for Anti-Inflammatory and Analgesic Activities.

    PubMed

    Wu, Ping; Liang, Qin; Feng, Pei; Li, Chunyan; Yang, Chunguang; Liang, Hongsuo; Tang, Huaibo; Shuai, Cijun

    2017-04-03

    The seeds of Strychnos nux -vomica L., as a traditional Chinese medicine, have good anti-inflammatory and analgesic activities. However, it usually leads to gastrointestinal irritation and systemic toxicity via oral administration. In the study, it was discovered that a novel gel transdermal delivery system contained brucine, the main effective component extracted from Strychnos nux - vomica . Results showed that the brucine gel system inhibited arthritis symptoms and the proliferation of the synoviocytes in the rat adjuvant arthritis model, which indicated its curative effect for rheumatoid arthritis. Meanwhile, it significantly relieved the xylene-induced ear edema in the mouse ear swelling test, which manifested its anti-inflammatory property. Moreover, the brucine gel eased the pain of paw formalin injection in the formalin test, which demonstrated its analgesic effects. In addition, the brucine significantly inhibited lipopolysaccharide (LPS)-induced Prostaglandin E2 (PGE2) production without affecting the viability of cell in vitro anti-inflammatory test, which proved that its anti-inflammatory and analgesic actions were related to inhibition of prostaglandin synthesis. It is suggested that the brucine gel is a promising vehicle for transdermal delivery on the treatment of inflammatory disease.

  12. A multiscale modeling approach to inflammation: A case study in human endotoxemia

    NASA Astrophysics Data System (ADS)

    Scheff, Jeremy D.; Mavroudis, Panteleimon D.; Foteinou, Panagiota T.; An, Gary; Calvano, Steve E.; Doyle, John; Dick, Thomas E.; Lowry, Stephen F.; Vodovotz, Yoram; Androulakis, Ioannis P.

    2013-07-01

    Inflammation is a critical component in the body's response to injury. A dysregulated inflammatory response, in which either the injury is not repaired or the inflammatory response does not appropriately self-regulate and end, is associated with a wide range of inflammatory diseases such as sepsis. Clinical management of sepsis is a significant problem, but progress in this area has been slow. This may be due to the inherent nonlinearities and complexities in the interacting multiscale pathways that are activated in response to systemic inflammation, motivating the application of systems biology techniques to better understand the inflammatory response. Here, we review our past work on a multiscale modeling approach applied to human endotoxemia, a model of systemic inflammation, consisting of a system of compartmentalized differential equations operating at different time scales and through a discrete model linking inflammatory mediators with changing patterns in the beating of the heart, which has been correlated with outcome and severity of inflammatory disease despite unclear mechanistic underpinnings. Working towards unraveling the relationship between inflammation and heart rate variability (HRV) may enable greater understanding of clinical observations as well as novel therapeutic targets.

  13. Lack of Correlation Between Pulmonary and Systemic Inflammation Markers in Patients with Chronic Obstructive Pulmonary Disease: A Simultaneous, Two-Compartmental Analysis.

    PubMed

    Núñez, Belen; Sauleda, Jaume; Garcia-Aymerich, Judith; Noguera, Aina; Monsó, Eduard; Gómez, Federico; Barreiro, Esther; Marín, Alicia; Antó, Josep Maria; Agusti, Alvar

    2016-07-01

    The origin of systemic inflammation in chronic obstructive pulmonary disease (COPD) patients remains to be defined, but one of the most widely accepted hypothesis is the 'spill over' of inflammatory mediators from the lung to the circulation. To evaluate the relationship between pulmonary and systemic inflammation in COPD quantifying several inflammatory markers in sputum and serum determined simultaneously. Correlations between various inflammatory variables (TNF-α, IL6, IL8) in sputum and serum were evaluated in 133 patients from the PAC-COPD cohort study. A secondary objective was the evaluation of relationships between inflammatory variables and lung function. Inflammatory markers were clearly higher in sputum than in serum. No significant correlation was found (absolute value, r=0.03-0.24) between inflammatory markers in blood and in sputum. There were no significant associations identified between those markers and lung function variables, such as FEV1, DLCO and PaO2 neither. We found no correlation between pulmonary and systemic inflammation in patients with stable COPD, suggesting different pathogenic mechanisms. Copyright © 2016 SEPAR. Published by Elsevier Espana. All rights reserved.

  14. Systems Pharmacology Dissection of the Anti-Inflammatory Mechanism for the Medicinal Herb Folium Eriobotryae

    PubMed Central

    Zhang, Jingxiao; Li, Yan; Chen, Su-Shing; Zhang, Lilei; Wang, Jinghui; Yang, Yinfeng; Zhang, Shuwei; Pan, Yanqiu; Wang, Yonghua; Yang, Ling

    2015-01-01

    Inflammation is a hallmark of many diseases like diabetes, cancers, atherosclerosis and arthritis. Thus, lots of concerns have been raised toward developing novel anti-inflammatory agents. Many alternative herbal medicines possess excellent anti-inflammatory properties, yet their precise mechanisms of action are yet to be elucidated. Here, a novel systems pharmacology approach based on a large number of chemical, biological and pharmacological data was developed and exemplified by a probe herb Folium Eriobotryae, a widely used clinical anti-inflammatory botanic drug. The results show that 11 ingredients of this herb with favorable pharmacokinetic properties are predicted as active compounds for anti-inflammatory treatment. In addition, via systematic network analyses, their targets are identified to be 43 inflammation-associated proteins including especially COX2, ALOX5, PPARG, TNF and RELA that are mainly involved in the mitogen-activated protein kinase (MAPK) signaling pathway, the rheumatoid arthritis pathway and NF-κB signaling pathway. All these demonstrate that the integrated systems pharmacology method provides not only an effective tool to illustrate the anti-inflammatory mechanisms of herbs, but also a new systems-based approach for drug discovery from, but not limited to, herbs, especially when combined with further experimental validations. PMID:25636035

  15. Ubiquitination in Periodontal Disease: A Review.

    PubMed

    Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio

    2017-07-10

    Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue's response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin-protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases.

  16. Ubiquitination in Periodontal Disease: A Review

    PubMed Central

    Tsuchida, Sachio; Satoh, Mamoru; Takiwaki, Masaki; Nomura, Fumio

    2017-01-01

    Periodontal disease (periodontitis) is a chronic inflammatory condition initiated by microbial infection that leads to gingival tissue destruction and alveolar bone resorption. The periodontal tissue’s response to dental plaque is characterized by the accumulation of polymorphonuclear leukocytes, macrophages, and lymphocytes, all of which release inflammatory mediators and cytokines to orchestrate the immunopathogenesis of periodontal disease. Ubiquitination is achieved by a mechanism that involves a number of factors, including an ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin–protein ligase. Ubiquitination is a post-translational modification restricted to eukaryotes that are involved in essential host processes. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Increasing numbers of recent reports have provided evidence that many approaches are delivering promising reports for discovering the relationship between ubiquitination and periodontal disease. The scope of this review was to investigate recent progress in the discovery of ubiquitinated protein in diseased periodontium and to discuss the ubiquitination process in periodontal diseases. PMID:28698506

  17. A strategy to estimate the rate of recruitment of inflammatory cells during bovine intramammary infection under field management.

    PubMed

    Detilleux, J

    2017-06-08

    In most infectious diseases, among which bovine mastitis, promptness of the recruitment of inflammatory cells (mainly neutrophils) in inflamed tissues has been shown to be of prime importance in the resolution of the infection. Although this information should aid in designing efficient control strategies, it has never been quantified in field studies. Here, a system of ordinary differential equations is proposed that describes the dynamic process of the inflammatory response to mammary pathogens. The system was tested, by principal differential analysis, on 1947 test-day somatic cell counts collected on 756 infected cows, from 50 days before to 50 days after the diagnosis of clinical mastitis. Cell counts were log-transformed before estimating recruitment rates. Daily rates of cellular recruitment was estimated at 0.052 (st. err. = 0.005) during health. During disease, an additional cellular rate of recruitment was estimated at 0.004 (st. err. = 0.001) per day and per bacteria. These estimates are in agreement with analogous measurements of in vitro neutrophil functions. Results suggest the method is adequate to estimate one of the components of innate resistance to mammary pathogens at the individual level and in field studies. Extension of the method to estimate components of innate tolerance and limits of the study are discussed.

  18. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease

    PubMed Central

    Brown, Kirsty; DeCoffe, Daniella; Molcan, Erin; Gibson, Deanna L.

    2012-01-01

    The gastrointestinal (GI) microbiota is the collection of microbes which reside in the GI tract and represents the largest source of non-self antigens in the human body. The GI tract functions as a major immunological organ as it must maintain tolerance to commensal and dietary antigens while remaining responsive to pathogenic stimuli. If this balance is disrupted, inappropriate inflammatory processes can result, leading to host cell damage and/or autoimmunity. Evidence suggests that the composition of the intestinal microbiota can influence susceptibility to chronic disease of the intestinal tract including ulcerative colitis, Crohn’s disease, celiac disease and irritable bowel syndrome, as well as more systemic diseases such as obesity, type 1 diabetes and type 2 diabetes. Interestingly, a considerable shift in diet has coincided with increased incidence of many of these inflammatory diseases. It was originally believed that the composition of the intestinal microbiota was relatively stable from early childhood; however, recent evidence suggests that diet can cause dysbiosis, an alteration in the composition of the microbiota, which could lead to aberrant immune responses. The role of the microbiota and the potential for diet-induced dysbiosis in inflammatory conditions of the GI tract and systemic diseases will be discussed. PMID:23016134

  19. Expression and arrangement of extracellular matrix proteins in the lungs of mice infected with Paracoccidioides brasiliensis conidia

    PubMed Central

    González, Angel; Lenzi, Henrique Leonel; Motta, Ester Maria; Caputo, Luzia; Restrepo, Angela; Cano, Luz Elena

    2008-01-01

    Extracellular matrix (ECM) proteins are important modulators of migration, differentiation and proliferation for the various cell types present in the lungs; they influence the immune response as well as participate in the adherence of several fungi including Paracoccidioides brasiliensis. The expression, deposition and arrangement of ECM proteins such as laminin, fibronectin, fibrinogen, collagen and proteoglycans in the lungs of mice infected with P. brasiliensis conidia has been evaluated in this study, together with the elastic fibre system. Lungs of BALB/c mice infected with P. brasiliensis conidia were analysed for the different ECM proteins by histological and immunohistochemical procedures at different times of infection. In addition, laser scanning confocal microscopy and scanning electron microscopy were used. During the early periods, the lungs of infected animals showed an inflammatory infiltrate composed mainly of polymorphonuclear neutrophils (PMNs) and macrophages, while during the later periods, mice presented a chronic inflammatory response with granuloma formation. Re-arrangement and increased expression of all ECM proteins tested were observed throughout all studied periods, especially during the occurrence of inflammatory infiltration and formation of the granuloma. The elastic fibre system showed an elastolysis process in all experiments. In conclusion, this study provides new details of pulmonary ECM distribution during the course of paracoccidioidomycosis. PMID:18336528

  20. Value-based health care for inflammatory bowel diseases.

    PubMed

    van Deen, Welmoed K; Esrailian, Eric; Hommes, Daniel W

    2015-05-01

    Increasing healthcare costs worldwide put the current healthcare systems under pressure. Although many efforts have aimed to contain costs in medicine, only a few have achieved substantial changes. Inflammatory bowel diseases rank among the most costly of chronic diseases, and physicians nowadays are increasingly engaged in health economics discussions. Value-based health care [VBHC] has gained a lot of attention recently, and is thought to be the way forward to contain costs while maintaining quality. The key concept behind VBHC is to improve achieved outcomes per encountered costs, and evaluate performance accordingly. Four main components need to be in place for the system to be effective: [1] accurate measurement of health outcomes and costs; [2] reporting of these outcomes and benchmarking against other providers; [3] identification of areas in need of improvement based on these data and adjusting the care delivery processes accordingly; and [4] rewarding high-performing participants. In this article we will explore the key components of VBHC, we will review available evidence focussing on inflammatory bowel diseases, and we will present our own experience as a guide for other providers. Copyright © 2015 European Crohn’s and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  1. Ethnopharmacological in vitro studies on Austria's folk medicine—An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs☆

    PubMed Central

    Vogl, Sylvia; Picker, Paolo; Mihaly-Bison, Judit; Fakhrudin, Nanang; Atanasov, Atanas G.; Heiss, Elke H.; Wawrosch, Christoph; Reznicek, Gottfried; Dirsch, Verena M.; Saukel, Johannes; Kopp, Brigitte

    2013-01-01

    Ethnopharmacological relevance In Austria, like in most Western countries, knowledge about traditional medicinal plants is becoming scarce. Searching the literature concerning Austria's ethnomedicine reveals its scant scientific exploration. Aiming to substantiate the potential of medicinal plants traditionally used in Austria, 63 plant species or genera with claimed anti-inflammatory properties listed in the VOLKSMED database were assessed for their in vitro anti-inflammatory activity. Material and methods 71 herbal drugs from 63 plant species or genera were extracted using solvents of varying polarities and subsequently depleted from the bulk constituents, chlorophylls and tannins to avoid possible interferences with the assays. The obtained 257 extracts were assessed for their in vitro anti-inflammatory activity. The expression of the inflammatory mediators E-selectin and interleukin-8 (IL-8), induced by the inflammatory stimuli tumor necrosis factor alpha (TNF-α) and the bacterial product lipopolysaccharide (LPS) was measured in endothelial cells. The potential of the extracts to activate the nuclear factors PPARα and PPARγ and to inhibit TNF-α-induced activation of the nuclear factor-kappa B (NF-κB) in HEK293 cells was determined by luciferase reporter gene assays. Results In total, extracts from 67 of the 71 assessed herbal drugs revealed anti-inflammatory activity in the applied in vitro test systems. Thereby, 30 could downregulate E-selectin or IL-8 gene expression, 28 were strong activators of PPARα or PPARγ (inducing activation of more than 2-fold at a concentration of 10 µg/mL) and 21 evoked a strong inhibition of NF-κB (inhibition of more than 80% at 10 µg/mL). Conclusion Our research supports the efficacy of herbal drugs reported in Austrian folk medicine used for ailments associated with inflammatory processes. Hence, an ethnopharmacological screening approach is a useful tool for the discovery of new drug leads. PMID:23770053

  2. Elucidation of in-vitro anti-inflammatory bioactive compounds isolated from Jatropha curcas L. plant root.

    PubMed

    Othman, Ahmad Razi; Abdullah, Norhani; Ahmad, Syahida; Ismail, Intan Safinar; Zakaria, Mohamad Pauzi

    2015-02-05

    The Jatropha curcas plant or locally known as "Pokok Jarak" has been widely used in traditional medical applications. This plant is used to treat various conditions such as arthritis, gout, jaundice, wound and inflammation. However, the nature of compounds involved has not been well documented. Hence, this study was conducted to investigate the anti-inflammatory activity of different parts of J. curcas plant and to identify the active compounds involved. In this study, methanol (80%) extraction of four different parts (leaves, fruits, stem and root) of J. curcas plant was carried out. Phenolic content of each part was determined by using Folin-Ciocalteau reagent. Gallic acid was used as the phenol standard. Each plant part was screened for anti-inflammatory activity using cultured macrophage RAW 264.7 cells. The active plant part was then partitioned with hexane, chloroform, ethyl acetate and water. Each partition was again screened for anti-inflammatory activity. The active partition was then fractionated using an open column chromatography system. Single spots isolated from column chromatography were assayed for anti-inflammatory and cytotoxicity activities. Spots that showed activity were subjected to gas chromatography mass spectrophotometry (GC-MS) analysis for identification of active metabolites. The hexane partition from root extract showed the highest anti-inflammatory activity. However, it also showed high cytotoxicity towards RAW 264.7 cells at 1 mg/mL. Fractionation process using column chromatography showed five spots. Two spots labeled as H-4 and H-5 possessed anti-inflammatory activity, without cytotoxicity activity. Analysis of both spots by GC-MS showed the presence of hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid. This finding suggests that hexadecanoic acid methyl ester, octadecanoic acid methyl ester and octadecanoic acid could be responsible for the anti-inflammatory activity of the J. curcas root extract.

  3. EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors.

    PubMed

    Hui, Tianqian; A, Peng; Zhao, Yuan; Yang, Jing; Ye, Ling; Wang, Chenglin

    2018-01-01

    Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. IgG4 hypophysitis - a rare and underdiagnosed cause of pituitary gland and stalk mass-like thickening.

    PubMed

    Murphy, Alexandra N; Hannon, Anne Marie; Brett, Francesca M; Agha, Amar; Javadpour, Mohsen; Looby, Seamus

    2018-01-01

    Our aim is to present a typical case of IgG4-related hypophysitis, which will offer insight into the aetiology and pathogenesis of this relatively newly described disease. IgG4 Related Disease is a protean systemic condition that mimics inflammatory, infectious, and malignant processes. Biopsy of affected organs will show a typical histopathological pattern.

  5. Unilateral renal ischaemia in rats induces a rapid secretion of inflammatory markers to renal lymph and increased capillary permeability

    PubMed Central

    Bivol, Liliana Monica; Iversen, Bjarne Magnus; Hultström, Michael; Wallace, Paal William; Reed, Rolf Kåre

    2015-01-01

    Key points Transient reduction in renal blood flow results in inflammation and is a primary cause of acute kidney injury, thereby representing a major clinical problem.It is not known whether the inflammatory reaction is local only or part of a systemic response.We accessed the renal microenvironment through isolation of lymph and were in this way able to investigate whether the inflammatory reaction is local or systemic.Transient ischaemia followed by reperfusion resulted in a rapid production of inflammatory mediators locally in the renal interstitium.We moreover showed that the injury response affected the glomerular as well as the non‐glomerular barrier and resulted in a reduced size and charge selectivity of the glomerular capillaries. Abstract A better understanding of the inflammatory process associated with renal ischaemia–reperfusion (IR) injury may be clinically important. In this study we examined the role of the kidney in production of inflammatory mediators by analysing renal lymph after 30 min unilateral occlusion of renal artery followed by 120 min reperfusion, as well as the effect of IR on size selectivity for proteins in both glomerular and peritubular capillaries. All measured mediators increased dramatically in renal hilar lymph, plasma and renal cortical tissue samples and returned to control levels after 120 min reperfusion. The responses were differentiated; interleukin‐1β, monocyte chemoattractant protein‐1 and leptin were markedly increased in plasma before reperfusion, reflecting an extrarenal response possibly induced by afferent renal nerve activity from the ischaemic kidney. Tumour necrosis factor‐α  was the only mediator showing elevated lymph‐to‐plasma ratio following 30 min reperfusion, indicating that most cytokines were released directly into the bloodstream. The IR‐induced rise in cytokine levels was paralleled by a significant increase in high molecular weight plasma proteins in both lymph and urine. The latter was shown as a 14‐ to 166‐fold increase in glomerular sieving coefficient of plasma proteins assessed by a novel proteomic approach, and indicated a temporarily reduced size selectivity of both glomerular and peritubular capillaries. Collectively, our data suggest that cytokines from the ischaemic kidney explain most of the rise in plasma concentration, and that the locally produced substances enter the systemic circulation through transport directly to plasma and not via the interstitium to lymph. PMID:26584508

  6. Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages.

    PubMed

    Goren, Itamar; Müller, Elke; Schiefelbein, Dana; Christen, Urs; Pfeilschifter, Josef; Mühl, Heiko; Frank, Stefan

    2007-09-01

    To date, diabetes-associated skin ulcerations represent a therapeutic problem of clinical importance. The insulin-resistant type II diabetic phenotype is functionally connected to obesity in rodent models of metabolic syndrome through the release of inflammatory mediators from adipose tissue. Here, we used the impaired wound-healing process in obese/obese (ob/ob) mice to investigate the impact of obesity-mediated systemic inflammation on cutaneous wound-healing processes. Systemic administration of neutralizing monoclonal antibodies against tumor necrosis factor (TNF)alpha (V1q) or monocyte/macrophage-expressed EGF-like module-containing mucin-like hormone receptor-like (Emr)-1 (F4/80) into wounded ob/ob mice at the end of acute wound inflammation initiated a rapid and complete neo-epidermal coverage of impaired wound tissue in the presence of a persisting diabetic phenotype. Wound closure in antibody-treated mice was paralleled by a marked attenuation of wound inflammation. Remarkably, anti-TNFalpha- and anti-F4/80-treated mice exhibited a strong reduction in circulating monocytic cells and reduced numbers of viable macrophages at the wound site. Our data provide strong evidence that anti-TNFalpha therapy, widely used in chronic inflammatory diseases in humans, might also exert effects by targeting "activated" TNFalpha-expressing macrophage subsets, and that inactivation or depletion of misbehaving macrophages from impaired wounds might be a novel therapeutic clue to improve healing of skin ulcers.

  7. Hyperosmotic nanoemulsions: Development and application of a new antimicrobial treatment for wound care

    NASA Astrophysics Data System (ADS)

    Connell, Sean

    Wound healing is the intricate process that restores function to damaged skin. The process consists of the inflammatory, proliferative and remodeling phases that orchestrate dynamic cellular responses to regenerate the cutaneous barrier. However, microbial contamination of the wound site stimulates a deleterious inflammatory response with the production of endotoxins, exotoxins and proteases that result in secondary injury. The end result is delayed healing, protracted debilitation and increased health care costs. Controlling contamination is critical for proper wound management and reduced burden on the healthcare system. Based on this concern, we developed and applied a new antimicrobial therapeutic that relies on hyperosmotic nanoemulsions (HNE). The biomechanical process consists of a high-energy nanoemulsion component that permeates the protective microbial membrane and a (ii) nonionic hyperosmoticum that facilitates intracellular water extraction to critically dehydrate the pathogen. HNE was shown to be effective against a multitude of pathogens including bacteria, antibiotic-resistant variants, fungi and viruses. Reported non-clinical studies demonstrate that the membrane disrupting nanoemulsion and hyperosmotic component act synergistically to enhance microbicidal activity. Further, results illustrate that pathogen inactivation was rapid as determined by ion and macromolecule leakage assays. Application of HNE in a pre-clinical animal model of wound healing demonstrated the treatment actively promoted healing to reduce treatment times. HNE mitigated wound infection to reduce the inflammatory response and mechanically debrided the wound to facilitate wound closure. Recent work further enhanced the stability of the nanoemulsion component with the addition of surfactant stabilizers using a low-energy spontaneous emulsification process. The refined nanoemulsion composition was stable against physical stressors and long-term storage without disrupting the intrinsic antimicrobial attributes. The reported findings have key implications for the development and application of a new antimicrobial therapeutic platform for wound management.

  8. Ion channels in inflammation.

    PubMed

    Eisenhut, Michael; Wallace, Helen

    2011-04-01

    Most physical illness in vertebrates involves inflammation. Inflammation causes disease by fluid shifts across cell membranes and cell layers, changes in muscle function and generation of pain. These disease processes can be explained by changes in numbers or function of ion channels. Changes in ion channels have been detected in diarrhoeal illnesses, pyelonephritis, allergy, acute lung injury and systemic inflammatory response syndromes involving septic shock. The key role played by changes in ion transport is directly evident in inflammation-induced pain. Expression or function of all major categories of ion channels like sodium, chloride, calcium, potassium, transient receptor potential, purinergic receptor and acid-sensing ion channels can be influenced by cyto- and chemokines, prostaglandins, leukotrienes, histamine, ATP, reactive oxygen species and protons released in inflammation. Key pathways in this interaction are cyclic nucleotide, phosphoinositide and mitogen-activated protein kinase-mediated signalling, direct modification by reactive oxygen species like nitric oxide, ATP or protons and disruption of the cytoskeleton. Therapeutic interventions to modulate the adverse and overlapping effects of the numerous different inflammatory mediators on each ion transport system need to target adversely affected ion transport systems directly and locally.

  9. Impact of acute exacerbations on platelet reactivity in chronic obstructive pulmonary disease patients.

    PubMed

    Muñoz-Esquerre, Mariana; Ferreiro, José Luis; Huertas, Daniel; Marcano, Ana Lucrecia; López-Sánchez, Marta; Roura, Gerard; Gómez-Hospital, Joan Antoni; Dorca, Jordi; Cequier, Angel; Santos, Salud

    2018-01-01

    A higher risk of atherothrombotic cardiovascular events, which are platelet-driven processes, has been described during acute exacerbations of chronic obstructive pulmonary disease (AECOPD). However, the relevance of platelet reactivity during AECOPD and whether this is affected by antiplatelet agents are not fully elucidated to date. This study aimed to evaluate whether platelet reactivity is augmented during an exacerbation in COPD patients with and without antiplatelet therapy and its association with systemic inflammatory parameters. Prospective, observational, ex vivo investigation was conducted in consecutive patients suffering an exacerbation of COPD. Platelet reactivity was assessed during AECOPD and at stable state. Platelet function assays included: 1) vasodilator-stimulated phosphoprotein assay expressed as P2Y 12 reactivity index (PRI), 2) multiple electrode aggregometry and 3) optical aggregometry. Systemic inflammatory parameters such as leukocyte count, interleukin-6 and fibrinogen were also assessed. Higher platelet reactivity was observed during AECOPD compared to stability measured by vasodilator-stimulated phosphoprotein (PRI: 75.2%±1.9% vs 68.8%±2.4%, p =0.001). This augmented platelet aggregability was also observed in the subset of patients on antiplatelet therapy (PRI: 72.8%±3.1% vs 61.7%±7.5%, p =0.071). Consistent findings were observed with all other platelet function tests. Patients with greater enhancement of inflammatory markers during AECOPD were more likely to present a higher increase in platelet reactivity. Platelet reactivity is increased during AECOPD, which may contribute to the augmented cardiovascular risk of these patients. Additionally, the increase in platelet reactivity might be associated with an increment in inflammatory markers during exacerbations.

  10. A novel hypothesis for an alkaline phosphatase 'rescue' mechanism in the hepatic acute phase immune response.

    PubMed

    Pike, Adrianne F; Kramer, Nynke I; Blaauboer, Bas J; Seinen, Willem; Brands, Ruud

    2013-12-01

    The liver isoform of the enzyme alkaline phosphatase (AP) has been used classically as a serum biomarker for hepatic disease states such as hepatitis, steatosis, cirrhosis, drug-induced liver injury, and hepatocellular carcinoma. Recent studies have demonstrated a more general anti-inflammatory role for AP, as it is capable of dephosphorylating potentially deleterious molecules such as nucleotide phosphates, the pathogenic endotoxin lipopolysaccharide (LPS), and the contact clotting pathway activator polyphosphate (polyP), thereby reducing inflammation and coagulopathy systemically. Yet the mechanism underlying the observed increase in liver AP levels in circulation during inflammatory insults is largely unknown. This paper hypothesizes an immunological role for AP in the liver and the potential of this system for damping generalized inflammation along with a wide range of ancillary pathologies. Based on the provided framework, a mechanism is proposed in which AP undergoes transcytosis in hepatocytes from the canalicular membrane to the sinusoidal membrane during inflammation and the enzyme's expression is upregulated as a result. Through a tightly controlled, nucleotide-stimulated negative feedback process, AP is transported in this model as an immune complex with immunoglobulin G by the asialoglycoprotein receptor through the cell and secreted into the serum, likely using the receptor's State 1 pathway. The subsequent dephosphorylation of inflammatory stimuli by AP and uptake of the circulating immune complex by endothelial cells and macrophages may lead to decreased inflammation and coagulopathy while providing an early upstream signal for the induction of a number of anti-inflammatory gene products, including AP itself. © 2013.

  11. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases.

    PubMed

    Lin, T-H; Pajarinen, J; Lu, L; Nabeshima, A; Cordova, L A; Yao, Z; Goodman, S B

    Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. © 2017 Elsevier Inc. All rights reserved.

  12. NF-κB as a Therapeutic Target in Inflammatory-Associated Bone Diseases

    PubMed Central

    Lin, T.-h.; Pajarinen, J.; Lu, L.; Nabeshima, A.; Cordova, L.A.; Yao, Z.; Goodman, S.B.

    2017-01-01

    Inflammation is a defensive mechanism for pathogen clearance and maintaining tissue homeostasis. In the skeletal system, inflammation is closely associated with many bone disorders including fractures, nonunions, periprosthetic osteolysis (bone loss around orthopedic implants), and osteoporosis. Acute inflammation is a critical step for proper bone-healing and bone-remodeling processes. On the other hand, chronic inflammation with excessive proinflammatory cytokines disrupts the balance of skeletal homeostasis involving osteoblastic (bone formation) and osteoclastic (bone resorption) activities. NF-κB is a transcriptional factor that regulates the inflammatory response and bone-remodeling processes in both bone-forming and bone-resorption cells. In vitro and in vivo evidences suggest that NF-κB is an important potential therapeutic target for inflammation-associated bone disorders by modulating inflammation and bone-remodeling process simultaneously. The challenges of NF-κB-targeting therapy in bone disorders include: (1) the complexity of canonical and noncanonical NF-κB pathways; (2) the fundamental roles of NF-κB-mediated signaling for bone regeneration at earlier phases of tissue damage and acute inflammation; and (3) the potential toxic effects on nontargeted cells such as lymphocytes. Recent developments of novel inhibitors with differential approaches to modulate NF-κB activity, and the controlled release (local) or bone-targeting drug delivery (systemic) strategies, have largely increased the translational application of NF-κB therapy in bone disorders. Taken together, temporal modulation of NF-κB pathways with the combination of recent advanced bone-targeting drug delivery techniques is a highly translational strategy to reestablish homeostasis in the skeletal system. PMID:28215222

  13. Regulation of Eosinophil Recruitment and Activation by Galectins in Allergic Asthma.

    PubMed

    Rao, Savita P; Ge, Xiao Na; Sriramarao, P

    2017-01-01

    Eosinophils are differentiated granulocytes that are recruited from the bone marrow to sites of inflammation via the vascular system. Allergic asthma is characterized by the presence of large numbers of eosinophils in the lungs and airways. Due to their capacity to rapidly release inflammatory mediators such as cytokines, chemokines, growth factors, and cytotoxic granule proteins upon stimulation, eosinophils play a critical role in pro-inflammatory processes in allergen-exposed lungs. Identifying key players and understanding the molecular mechanisms directing eosinophil trafficking and recruitment to inflamed airways is a key to developing therapeutic strategies to limit their influx. Recent studies have brought to light the important role of glycans and glycan binding proteins in regulating recruitment of eosinophils. In addition to the role of previously identified eosinophil- and endothelial-expressed adhesion molecules in mediating eosinophil trafficking and recruitment to the inflamed airways, studies have also indicated a role for galectins (galectin-3) in this process. Galectins are mammalian lectins expressed by various cell types including eosinophils. Intracellularly, they can regulate biological processes such as cell motility. Extracellularly, galectins interact with β-galactosides in cell surface-expressed glycans to regulate cellular responses like production of inflammatory mediators, cell adhesion, migration, and apoptosis. Eosinophils express galectins intracellularly or on the cell surface where they interact with cell surface glycoconjugate receptors. Depending on the type (galectin-1, -3, etc.) and location (extracellular or intracellular, endogenous or exogenously delivered), galectins differentially regulate eosinophil recruitment, activation, and apoptosis and thus exert a pro- or anti-inflammatory outcome. Here, we have reviewed information pertaining to galectins (galectin-1, -3 -9, and -10) that are expressed by eosinophils themselves and/or other cells that play a role in eosinophil recruitment and function in the context of allergic asthma and their potential use as disease biomarkers or therapeutic targets for immunomodulation.

  14. The inflammatory response between miniaturised and conventional cardiopulmonary bypass after cardiac surgery in an Asian population.

    PubMed

    Ng, R R G; Chew, S T H; Liu, W; Ong, P; Caleb, M G; Ti, L K

    2015-09-01

    We compared the systemic inflammatory response of the MCPB system to the CCPB system with cell salvage and phosphorylcholine-coated tubing amongst Asian patients undergoing coronary artery bypass grafting. Seventy-eight patients were randomly assigned to the MCPB or the CCPB groups equally and followed up in a prospective, single-blinded, randomised, controlled trial. Levels of TNF-α, IL-6, CRP and LDH were measured peri-operatively. The systemic inflammatory response was similar in both groups (TNF-α: p=0.222; IL-6: p=0.991; CRP: p=0.258). Only haemolysis was significantly higher in the CCPB group (LDH: p=0.011). The MCPB system was twice more expensive, but had a near 4-fold cost saving in tranfusions. Overall, the MCPB system cost 20% more than the modified CCPB system. These results corroborate with studies that demonstrated the avoidance of cardiotomy suction rather than the MCPB system, itself, leads to an attenuated inflammatory response. The absence of obvious clinical benefit and the higher costs involved with the MCPB system would preclude its routine use. © The Author(s) 2014.

  15. Direct and Indirect Effects of PM on the Cardiovascular System

    PubMed Central

    Nelin, Timothy D.; Joseph, Allan M.; Gorr, Matthew W.; Wold, Loren E.

    2011-01-01

    Human exposure to particulate matter (PM) elicits a variety of responses on the cardiovascular system through both direct and indirect pathways. Indirect effects of PM on the cardiovascular system are mediated through the autonomic nervous system, which controls heart rate variability, and inflammatory responses, which augment acute cardiovascular events and atherosclerosis. Recent research demonstrates that PM also affects the cardiovascular system directly by entry into the systemic circulation. This process causes myocardial dysfunction through mechanisms of reactive oxygen species production, calcium ion interference, and vascular dysfunction. In this review, we will present key evidence in both the direct and indirect pathways, suggest clinical applications of the current literature, and recommend directions for future research. PMID:22119171

  16. Systemic effect of mineral aggregate-based cements: histopathological analysis in rats.

    PubMed

    Garcia, Lucas da Fonseca Roberti; Huck, Claudia; Magalhães, Fernando Augusto Cintra; Souza, Pedro Paulo Chaves de; Souza Costa, Carlos Alberto de

    2017-01-01

    Several studies reported the local tissue reaction caused by mineral aggregate-based cements. However, few studies have investigated the systemic effects promoted by these cements on liver and kidney when directly applied to connective tissue. The purpose of this in vivo study was to investigate the systemic effect of mineral aggregate-based cements on the livers and kidneys of rats. Samples of Mineral Trioxide Aggregate (MTA) and a calcium aluminate-based cement (EndoBinder) containing different radiopacifiers were implanted into the dorsum of 40 rats. After 7 and 30 d, samples of subcutaneous, liver and kidney tissues were submitted to histopathological analysis. A score (0-3) was used to grade the inflammatory reaction. Blood samples were collected to evaluate changes in hepatic and renal functions of animals. The moderate inflammatory reaction (2) observed for 7 d in the subcutaneous tissue decreased with time for all cements. The thickness of inflammatory capsules also presented a significant decrease with time (P<.05). Systemically, all cements caused adverse inflammatory reactions in the liver and kidney, being more evident for MTA, persisting until the end of the analysis. Liver functions increased significantly for MTA during 30 d (P<.05). The different cements induced to a locally limited inflammatory reaction. However, from the systemic point of view, the cements promoted significant inflammatory reactions in the liver and kidney. For MTA, the reactions were more accentuated.

  17. Niacin and its metabolites as master regulators of macrophage activation.

    PubMed

    Montserrat-de la Paz, Sergio; Naranjo, M Carmen; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J Garcia; Bermudez, Beatriz

    2017-01-01

    Niacin is a broad-spectrum lipid-regulating drug used for clinical therapy of chronic high-grade inflammatory diseases. However, the mechanisms by which either niacin or the byproducts of its catabolism ameliorate these inflammatory diseases are not clear yet. Human circulating monocytes and mature macrophages were used to analyze the effects of niacin and its metabolites (NAM, NUA and 2-Pyr) on oxidative stress, plasticity and inflammatory response by using biochemical, flow cytometry, quantitative real-time PCR and Western blot technologies. Niacin, NAM and 2-Pyr significantly decreased ROS, NO and NOS2 expression in LPS-treated human mature macrophages. Niacin and NAM skewed macrophage polarization toward antiinflammatory M2 macrophage whereas a trend toward proinflammatory M1 macrophage was noted following treatment with NUA. Niacin and NAM also reduced the inflammatory competence of LPS-treated human mature macrophages and promoted bias toward antiinflammatory CD14 + CD16 ++ nonclassical human primary monocytes. This study reveals for the first time that niacin and its metabolites possess antioxidant, reprogramming and antiinflammatory properties on human primary monocytes and monocyte-derived macrophages. Our findings imply a new understanding of the mechanisms by which niacin and its metabolites favor a continuous and gradual plasticity process in the human monocyte/macrophage system. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome.

    PubMed

    Tortosa-Caparrós, Esther; Navas-Carrillo, Diana; Marín, Francisco; Orenes-Piñero, Esteban

    2017-11-02

    A lipid excess produces a systemic inflammation process due to tumor necrosis factor-α, interleukin-6 and C-reactive protein synthesis. Simultaneously, this fat excess promotes the appearance of insulin resistance. All this contributes to the development of atherosclerosis and increases the risk of cardiovascular diseases (CVDs). On the other hand, polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid and docosahexaenoic acid (omega 3), and arachidonic acid (omega 6) have shown anti-inflammatory properties. Lately, an inverse relationship between omega-3 fatty acids, inflammation, obesity and CVDs has been demonstrated. To check fatty acids effect, the levels of some inflammation biomarkers have been analyzed. Leptin, adiponectin and resistin represent a group of hormones associated with the development of CVDs, obesity, type 2 diabetes mellitus and insulin resistance and are modified in obese/overweight people comparing to normal weight people. Omega-3 PUFAs have been shown to decrease the production of inflammatory mediators, having a positive effect in obesity and diabetes mellitus type-2. Moreover, they significantly decrease the appearance of CVD risk factors. Regarding omega-6 PUFA, there is controversy whether their effects are pro- or anti-inflammatory. The aim of this manuscript is to provide a comprehensive overview about the role of omega-3 and omega-6 PUFAs in CVDs and metabolic syndrome.

  19. A review of the application of inflammatory biomarkers in epidemiologic cancer research

    PubMed Central

    Brenner, Darren R.; Scherer, Dominique; Muir, Kenneth; Schildkraut, Joellen; Boffetta, Paolo; Spitz, Margaret R.; LeMarchand, Loic; Chan, Andrew T.; Goode, Ellen L.; Ulrich, Cornelia M.; Hung, Rayjean J.

    2014-01-01

    Inflammation is a facilitating process for multiple cancer types. It is believed to affect cancer development and progression through several etiologic pathways including increased levels of DNA adduct formation, increased angiogenesis and altered anti-apoptotic signaling. This review highlights the application of inflammatory biomarkers in epidemiologic studies and discusses the various cellular mediators of inflammation characterizing the innate immune system response to infection and chronic insult from environmental factors. Included is a review of six classes of inflammation-related biomarkers: cytokines/chemokines, immune-related effectors, acute phase proteins, reactive oxygen and nitrogen species, prostaglandins and cyclooxygenase-related factors, and mediators such as transcription factors and growth factors. For each of these biomarkers we provide a brief overview of the etiologic role in the inflammation response and how they have been related to cancer etiology and progression within the literature. We provide a discussion of the common techniques available for quantification of each marker including strengths, weaknesses and potential pitfalls. Subsequently, we highlight a few under-studied measures to characterize the inflammatory response and their potential utility in epidemiologic studies of cancer. Finally, we suggest integrative methods for future studies to apply multi-faceted approaches to examine the relationship between inflammatory markers and their roles in cancer development. PMID:24962838

  20. Steroidogenesis in the skin: implications for local immune functions

    PubMed Central

    Slominski, Andrzej; Zbytek, Bazej; Nikolakis, Georgios; Manna, Pulak R.; Skobowiat, Cezary; Zmijewski, Michal; Li, Wei; Janjetovic, Zorica; Postlethwaite, Arnold; Zouboulis, Christos C.; Tuckey, Robert C.

    2013-01-01

    The skin has developed a hierarchy of systems that encompasses the skin immune and local steroidogenic activities in order to protect the body against the external environment and biological factors and to maintain local homeostasis. Most recently it has been established that skin cells contain the entire biochemical apparatus necessary for production of glucocorticoids, androgens and estrogens either from precursors of systemic origin or, alternatively, through the conversion of cholesterol to pregnenolone and its subsequent transformation to biologically active steroids. Examples of these products are corticosterone, cortisol, testosterone, dihydrotesterone and estradiol. Their local production can be regulated by locally produced corticotropin releasing hormone (CRH), adrenocorticotropic hormone (ACTH) or cytokines. Furthermore the production of glucocorticoids is affected by ultraviolet B radiation. The level of production and nature of the final steroid products are dependent on the cell type or cutaneous compartment, e.g., epidermis, dermis, adnexal structures or adipose tissue. Locally produced glucocorticoids, androgens and estrogens affect functions of the epidermis and adnexal structures as well as local immune activity. Malfunction of these steroidogenic activities can lead to inflammatory disorders or autoimmune diseases. The cutaneous steroidogenic system can also have systemic effects, which are emphasized by significant skin contribution to circulating androgens and/or estrogens. Furthermore, local activity of CYP11A1 can produce novel 7 -steroids and secosteroids that are biologically active. Therefore, modulation of local steroidogenic activity may serve as a new therapeutic approach for treatment of inflammatory disorders, autoimmune processes or other skin disorders. In conclusion, the skin can be defined as an independent steroidogenic organ, whose activity can affect its functions and the development of local or systemic inflammatory or autoimmune diseases. PMID:23435015

  1. Lactodifucotetraose, a human milk oligosaccharide, attenuates platelet function and inflammatory cytokine release.

    PubMed

    Newburg, David S; Tanritanir, Ayse C; Chakrabarti, Subrata

    2016-07-01

    Human milk strongly quenches inflammatory processes in vitro, and breastfed infants have lower incidence of inflammatory diseases than those fed artificially. Platelets from neonates, in contrast to those from adults, are less responsive to platelet agonists such as collagen, thrombin, ADP, and epinephrine. Breastfed infants absorb oligosaccharides intact from the human milk in their gut to the circulation. This study was to determine whether these oligosaccharides can attenuate platelet function and platelet secretion of pro-inflammatory proteins, and to identify the active component. The natural mixture of oligosaccharides from human milk and pure individual human milk oligosaccharides were tested for their ability to modulate responses of platelets isolated from human blood following exposure to thrombin, ADP, and collagen. Human milk and the natural mixture of human milk oligosaccharides inhibited platelet release of inflammatory proteins. Of the purified human milk oligosaccharides tested, only lactodifucotetraose (LDFT) significantly inhibited thrombin induced release of the pro-inflammatory proteins RANTES and sCD40L. LDFT also inhibited platelet adhesion to a collagen-coated surface, as well as platelet aggregation induced by ADP or collagen. These data indicate that LDFT may help modulate hemostasis by suppressing platelet-induced inflammatory processes in breastfed infants. This activity suggests further study of LDFT for its potential as a therapeutic agent in infants and adults.

  2. Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis

    PubMed Central

    2013-01-01

    Background Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. Methods The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1–6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Results Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. Conclusions The observations show an up-regulation of the tachykinin system bilaterally during muscle derangement/myositis in response to pronounced unilateral muscle overuse. This up-regulation occurred in inflammatory areas and was related not only to increased tachykinin innervation but also to tachykinin expression in blood vessel walls and inflammatory cells. Importantly, the tachykinin system appears to be an important factor not only ipsilaterally but also contralaterally in these processes. PMID:23587295

  3. Bilateral increase in expression and concentration of tachykinin in a unilateral rabbit muscle overuse model that leads to myositis.

    PubMed

    Song, Yafeng; Stål, Per S; Yu, Ji-Guo; Forsgren, Sture

    2013-04-12

    Tachykinins can have pro-inflammatory as well as healing effects during tissue reorganization and inflammation. Recent studies report an up-regulation in the expression of the substance P (SP)-preferred receptor, the neurokinin-1 receptor, in marked muscle inflammation (myositis). There is, however, only very little information on the expression patterns and levels of tachykinins in this situation. The tachykinin system was analyzed using a rabbit experimental model of muscle overuse, whereby unilateral muscle exercise in combination with electrical stimulation led to muscle derangement and myositis in the triceps surae muscle (experimental length 1-6 weeks). Evaluations were made for both parts of the muscle (soleus and gastrocnemius muscles) in experimental and non-experimental (contralateral) sides. Morphologic evaluation, immunohistochemistry, in situ hybridization and enzyme immunoassay (EIA) analyses were applied. Myositis and muscle derangement occurred focally not only in the experimental side but also in the non-experimental side. In the inflammatory areas (focal myositis areas), there were frequent nerve fibers showing tachykinin-like immunoreactivity and which were parts of nerve fascicles and which were freely dispersed in the tissue. Cells in the inflammatory infiltrates showed tachykinin-like immunoreactivity and tachykinin mRNA expression. Specific immunoreactivity and mRNA expression were noted in blood vessel walls of both sides, especially in focally affected areas. With increasing experimental length, we observed an increase in the degree of immunoreactivity in the vessel walls. The EIA analyses showed that the concentration of tachykinin in the tissue on both sides increased in a time-dependent manner. There was a statistical correlation in the concentration of tachykinin and the level of tachykinin immunoreactivity in the blood vessel walls between experimental and non-experimental sides. The observations show an up-regulation of the tachykinin system bilaterally during muscle derangement/myositis in response to pronounced unilateral muscle overuse. This up-regulation occurred in inflammatory areas and was related not only to increased tachykinin innervation but also to tachykinin expression in blood vessel walls and inflammatory cells. Importantly, the tachykinin system appears to be an important factor not only ipsilaterally but also contralaterally in these processes.

  4. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of Albizzia lebbeck in rats

    PubMed Central

    Meshram, Girish Gulab; Kumar, Anil; Rizvi, Waseem; Tripathi, C.D.; Khan, R.A.

    2015-01-01

    Albizzia lebbeck Benth. (Mimosaceae) is a medicinal tree used to treat several inflammatory ailments in the Indian traditional Ayurvedic system of medicine. The aim of the present study was to evaluate the possible anti-inflammatory activity of the aqueous (AE) and ethanolic (EE) extracts of the leaves of A. lebbeck to support the ethnopharmacological claims. The study was carried out using Wistar rats (100–150 g). The AE and EE were prepared using the Soxhlet extraction process. The anti-inflammatory activity of the AE and EE of the leaves of A. lebbeck were studied using carrageenan-induced paw edema and cotton pellet-induced granuloma models. The AE and EE of the leaves of A. lebbeck at doses of 50, 100, and 200 mg/kg p.o. (oral administration) showed a dose-dependent and significant (p < 0.05) inhibition of carrageenan-induced hind paw edema with maximum percentage inhibition (PI) values of 22.34, 30.85, 39.36 and 22.53, 32.98, 42.55, respectively. The AE and EE at doses of 50, 100, 200 mg/kg p.o. significantly (p < 0.05) inhibited granuloma formation with PI values of 19.07, 27.57, 38.55 and 23.93, 32.23, 42.33, respectively. The AE and EE of the leaves of A. lebbeck showed significant (p < 0.05) anti-inflammatory activity. PMID:27114941

  5. Evaluation of the anti-inflammatory activity of the aqueous and ethanolic extracts of the leaves of Albizzia lebbeck in rats.

    PubMed

    Meshram, Girish Gulab; Kumar, Anil; Rizvi, Waseem; Tripathi, C D; Khan, R A

    2016-04-01

    Albizzia lebbeck Benth. (Mimosaceae) is a medicinal tree used to treat several inflammatory ailments in the Indian traditional Ayurvedic system of medicine. The aim of the present study was to evaluate the possible anti-inflammatory activity of the aqueous (AE) and ethanolic (EE) extracts of the leaves of A. lebbeck to support the ethnopharmacological claims. The study was carried out using Wistar rats (100-150 g). The AE and EE were prepared using the Soxhlet extraction process. The anti-inflammatory activity of the AE and EE of the leaves of A. lebbeck were studied using carrageenan-induced paw edema and cotton pellet-induced granuloma models. The AE and EE of the leaves of A. lebbeck at doses of 50, 100, and 200 mg/kg p.o. (oral administration) showed a dose-dependent and significant (p < 0.05) inhibition of carrageenan-induced hind paw edema with maximum percentage inhibition (PI) values of 22.34, 30.85, 39.36 and 22.53, 32.98, 42.55, respectively. The AE and EE at doses of 50, 100, 200 mg/kg p.o. significantly (p < 0.05) inhibited granuloma formation with PI values of 19.07, 27.57, 38.55 and 23.93, 32.23, 42.33, respectively. The AE and EE of the leaves of A. lebbeck showed significant (p < 0.05) anti-inflammatory activity.

  6. Metabolic phenotyping of an adoptive transfer mouse model of experimental colitis and impact of dietary fish oil intake.

    PubMed

    Martin, Francois-Pierre J; Lichti, Pia; Bosco, Nabil; Brahmbhatt, Viral; Oliveira, Manuel; Haller, Dirk; Benyacoub, Jalil

    2015-04-03

    Inflammatory bowel diseases are acute and chronic disabling inflammatory disorders with multiple complex etiologies that are not well-defined. Chronic intestinal inflammation has been linked to an energy-deficient state of gut epithelium with alterations in oxidative metabolism. Plasma-, urine-, stool-, and liver-specific metabonomic analyses are reported in a naïve T cell adoptive transfer (AT) experimental model of colitis, which evaluated the impact of long-chain n-3 polyunsaturated fatty acid (PUFA)-enriched diet. Metabolic profiles of AT animals and their controls under chow diet or fish oil supplementation were compared to describe the (i) consequences of inflammatory processes and (ii) the differential impact of n-3 fatty acids. Inflammation was associated with higher glycoprotein levels (related to acute-phase response) and remodeling of PUFAs. Low triglyceride levels and enhanced PUFA levels in the liver suggest activation of lipolytic pathways that could lead to the observed increase of phospholipids in the liver (including plasmalogens and sphingomyelins). In parallel, the increase in stool excretion of most amino acids may indicate a protein-losing enteropathy. Fecal content of glutamine was lower in AT mice, a feature exacerbated under fish oil intervention that may reflect a functional relationship between intestinal inflammatory status and glutamine metabolism. The decrease in Krebs cycle intermediates in urine (succinate, α-ketoglutarate) also suggests a reduction in the glutaminolytic pathway at a systemic level. Our data indicate that inflammatory status is related to this overall loss of energy homeostasis.

  7. Resveratrol pretreatment attenuates traumatic brain injury in rats by suppressing NLRP3 inflammasome activation via SIRT1.

    PubMed

    Zou, Peng; Liu, Xiaoxiao; Li, Gang; Wang, Yangang

    2018-02-01

    The inflammatory response in the cerebral cortex serves an important role in the progression of secondary injury following traumatic brain injury (TBI). The NLR family pyrin domain containing 3 (NLRP3) inflammasome is necessary for initiating inflammation and is involved in various central nervous system disorders. The aim of the present study was to investigate the neuroprotective effect of resveratrol and elucidate the underlying mechanisms of resveratrol associated regulation of the NLRP3 inflammasome in TBI. The results demonstrated that the activation of NLRP3, caspase‑1 and sirtuin 1 (SIRT1), enhanced the production of inflammatory cytokines and reactive oxygen species (ROS) following TBI. Administration of resveratrol alleviated the degree of TBI, as evidenced by the reduced neuron‑specific enolase (NSE) and brain water content (WBC). Resveratrol pretreatment also inhibited the activation of NLRP3 and caspase‑1, and reduced the production of inflammatory cytokines and ROS. In addition, resveratrol further promoted SIRT1 activation. Furthermore, the suppressing effect of resveratrol on the NLRP3 inflammasome and ROS was blocked by the SIRT1 inhibitor, sirtinol. The results revealed that the activation of the NLRP3 inflammasome and the subsequent inflammatory responses in the cerebral cortex were involved in the process of TBI. Resveratrol may attenuate the inflammatory response and relieve TBI by reducing ROS production and inhibiting NLRP3 activation. The effect of resveratrol on NLRP3 inflammasome and ROS may also be SIRT1 dependent.

  8. The Impact of Inflammation on Metabolomic Profiles in Patients With Arthritis

    PubMed Central

    Young, Stephen P; Kapoor, Sabrina R; Viant, Mark R; Byrne, Jonathan J; Filer, Andrew; Buckley, Christopher D; Kitas, George D; Raza, Karim

    2013-01-01

    Objective. Inflammatory arthritis is associated with systemic manifestations including alterations in metabolism. We used nuclear magnetic resonance (NMR) spectroscopy–based metabolomics to assess metabolic fingerprints in serum from patients with established rheumatoid arthritis (RA) and those with early arthritis. Methods. Serum samples were collected from newly presenting patients with established RA who were naive for disease-modifying antirheumatic drugs, matched healthy controls, and 2 groups of patients with synovitis of ≤3 months' duration whose outcomes were determined at clinical followup. Serum metabolomic profiles were assessed using 1-dimensional 1H-NMR spectroscopy. Discriminating metabolites were identified, and the relationships between metabolomic profiles and clinical variables including outcomes were examined. Results. The serum metabolic fingerprint in established RA was clearly distinct from that of healthy controls. In early arthritis, we were able to stratify the patients according to the level of current inflammation, with C-reactive protein correlating with metabolic differences in 2 separate groups (P < 0.001). Lactate and lipids were important discriminators of inflammatory burden in both early arthritis patient groups. The sensitivities and specificities of models to predict the development of either RA or persistent arthritis in patients with early arthritis were low. Conclusion. The metabolic fingerprint reflects inflammatory disease activity in patients with synovitis, demonstrating that underlying inflammatory processes drive significant changes in metabolism that can be measured in the peripheral blood. The identification of metabolic alterations may provide insights into disease mechanisms operating in patients with inflammatory arthritis. PMID:23740368

  9. Hypothalamic inflammation in obesity and metabolic disease.

    PubMed

    Jais, Alexander; Brüning, Jens C

    2017-01-03

    Over the last years, hypothalamic inflammation has been linked to the development and progression of obesity and its sequelae. There is accumulating evidence that this inflammation not only impairs energy balance but also contributes to obesity-associated insulin resistance. Elevated activation of key inflammatory mediators such as JNK and IκB kinase (IKK) occurs rapidly upon consumption of a high-fat diet, even prior to significant weight gain. This activation of hypothalamic inflammatory pathways results in the uncoupling of caloric intake and energy expenditure, fostering overeating and further weight gain. In addition, these inflammatory processes contribute to obesity-associated insulin resistance and deterioration of glucose metabolism via altered neurocircuit functions. An understanding of the contributions of different neuronal and non-neuronal cell types to hypothalamic inflammatory processes, and delineation of the differences and similarities between acute and chronic activation of these inflammatory pathways, will be critical for the development of novel therapeutic strategies for the treatment of obesity and metabolic syndrome.

  10. When combination therapy isn't working: emerging therapies for the management of inflammatory bowel disease.

    PubMed

    Krishnareddy, Suneeta; Swaminath, Arun

    2014-02-07

    Although antagonists of tumor necrosis factor have resulted in major therapeutic benefits in inflammatory bowel disease, the magnitude and durability of response are variable. Similar to previously available drugs such as 5-aminosalicylates and immunomodulators, the therapeutic effect is not universal leaving many people searching for options. The development of newer agents has benefited from advances in the understanding of the pathophysiology of the disease. Uncontrolled activation of the acquired immune system has an important role, and lymphocytes, cytokines, and adhesion molecules are broadly targeted for therapeutic intervention. There is increasing evidence of an important role of the innate immune system and the intestinal epithelium, and the therapeutic paradigm is also shifting from immunosuppression to the reinforcement of the intestinal barrier, and modification of the disease process. In this review, we explore the limitation of current therapy as well as mechanisms of actions of new drugs and the efficacy and adverse events from data from clinical trials.

  11. DD genotype of ACE gene I/D polymorphism is associated with Behcet disease in a Turkish population.

    PubMed

    Yigit, Serbülent; Tural, Sengül; Rüstemoglu, Aydin; Inanir, Ahmet; Gul, Ulker; Kalkan, Goknur; Akkanet, Songul; Karakuş, Nevin; Ateş, Omer

    2013-01-01

    Behcet's disease (BD) is a chronic, multi-systemic and inflammatory disorder. The local renin-angiotensin system (RAS) in the vessel wall plays a role in the endothelial control and contributes to inflammatory processes. Angiotensin-converting enzyme (ACE) is the regulatory component of the RAS. This study was conducted in Turkish patients with BD to determine the frequency of I/D polymorphism genotypes of ACE gene. Genomic DNA obtained from 566 persons (266 patients with BD and 300 healthy controls). ACE gene I/D polymorphism genotypes were determined using polymerase chain reaction using I and D allele-specific primers. There was statistically significant difference between the groups with respect to genotype distribution (p < 0.001). This study is the largest study in Turkish population that ACE gene I/D polymorphism investigated in BD. As a result of this study, ACE gene I/D polymorphism DD genotype could be a genetic marker in BD in Turkish study population.

  12. Innate and adaptive immune responses to cell death

    PubMed Central

    Rock, Kenneth L.; Lai, Jiann-Jyh; Kono, Hajime

    2011-01-01

    Summary The immune system plays an essential role in protecting the host against infections and to accomplish this task has evolved mechanisms to recognize microbes and destroy them. In addition, it monitors the health of cells and responds to ones that have been injured and die, even if this occurs under sterile conditions. This process is initiated when dying cells expose intracellular molecules that can be recognized by cells of the innate immune system. As a consequence of this recognition, dendritic cells are activated in ways that help to promote T-cell responses to antigens associated with the dying cells. In addition, macrophages are stimulated to produce the cytokine interleukin-1 that then acts on radioresistant parenchymal cells in the host in ways that drive a robust inflammatory response. In addition to dead cells, a number of other sterile particles and altered physiological states can similarly stimulate an inflammatory response and do so through common pathways involving the inflammasome and interleukin-1. These pathways underlie the pathogenesis of a number of diseases. PMID:21884177

  13. Surface code—biophysical signals for apoptotic cell clearance

    NASA Astrophysics Data System (ADS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  14. Inflammatory Mechanisms and Oxidative Stress as Key Factors Responsible for Progression of Neurodegeneration: Role of Brain Innate Immune System.

    PubMed

    Leszek, Jerzy; Barreto, George E; Gąsiorowski, Kazimierz; Koutsouraki, Euphrosyni; Ávila-Rodrigues, Marco; Aliev, Gjumrakch

    2016-01-01

    Chronic inflammation is characterized by longstanding microglial activation followed by sustained release of inflammatory mediators, which aid in enhanced nitrosative and oxidative stress. The sustained release of inflammatory mediators propels the inflammatory cycle by increased microglial activation, promoting their proliferation and thus stimulating enhanced release of inflammatory factors. Elevated levels of several cytokines and chronic neuroinflammation have been associated with many neurodegenerative disorders of central nervous system like age-related macular degeneration, Alzheimer disease, multiple sclerosis, Parkinson's disease, Huntington' disease, and tauopathies. This review highlights the basic mechanisms of neuroinflammation, the characteristics of neurodegenerative diseases, and the main immunologic responses in CNS neurodegenerative disorders. A comprehensive outline for the crucial role of microglia in neuroinflammation and neurodegeneration and the role of Toll-like receptor signalling in coexistence of inflammatory mechanisms and oxidative stress as major factors responsible for progression of neurodegeneration have also been presented.

  15. Pathogen- and host-directed anti-inflammatory activities of macrolide antibiotics.

    PubMed

    Steel, Helen C; Theron, Annette J; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance.

  16. Pathogen- and Host-Directed Anti-Inflammatory Activities of Macrolide Antibiotics

    PubMed Central

    Steel, Helen C.; Theron, Annette J.; Cockeran, Riana; Anderson, Ronald; Feldman, Charles

    2012-01-01

    Macrolide antibiotics possess several, beneficial, secondary properties which complement their primary antimicrobial activity. In addition to high levels of tissue penetration, which may counteract seemingly macrolide-resistant bacterial pathogens, these agents also possess anti-inflammatory properties, unrelated to their primary antimicrobial activity. Macrolides target cells of both the innate and adaptive immune systems, as well as structural cells, and are beneficial in controlling harmful inflammatory responses during acute and chronic bacterial infection. These secondary anti-inflammatory activities of macrolides appear to be particularly effective in attenuating neutrophil-mediated inflammation. This, in turn, may contribute to the usefulness of these agents in the treatment of acute and chronic inflammatory disorders of both microbial and nonmicrobial origin, predominantly of the airways. This paper is focused on the various mechanisms of macrolide-mediated anti-inflammatory activity which target both microbial pathogens and the cells of the innate and adaptive immune systems, with emphasis on their clinical relevance. PMID:22778497

  17. Nanocarriers in therapy of infectious and inflammatory diseases

    NASA Astrophysics Data System (ADS)

    Ikoba, Ufuoma; Peng, Haisheng; Li, Haichun; Miller, Cathy; Yu, Chenxu; Wang, Qun

    2015-02-01

    Nanotechnology is a growing science that has applications in various areas of medicine. The composition of nanocarriers for drug delivery is critical to guarantee high therapeutic performance when targeting specific host sites. Applications of nanotechnology are prevalent in the diagnosis and treatment of infectious and inflammatory diseases. This review summarizes recent advancements in the application of nanotechnology to the therapy of infectious and inflammatory diseases. The major focus is on the design and fabrication of various nanomaterials, characteristics and physicochemical properties of drug-loaded nanocarriers, and the use of these nanoscale drug delivery systems in treating infectious and inflammatory diseases, such as AIDS, hepatitis, tuberculosis, melanoma, and representative inflammatory diseases. Clinical trials and future perspective of the use of nanocarriers are also discussed in detail. We hope that such a review will be valuable to researchers who are exploring nanoscale drug delivery systems for the treatment of specific infectious and inflammatory diseases.

  18. Low level laser therapy on injured rat muscle

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-06-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT doses, using continuous illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood and histological analysis of muscle tissue. We verified that all applied doses produce an effect on reducing the number of inflammatory cells and the concentration of pro-inflammatory TNF-α and IL-1β cytokines. The best results were obtained for 40 mW. The results may suggest a biphasic dose response curve.

  19. A concise review on advances in development of small molecule anti-inflammatory therapeutics emphasising AMPK: An emerging target.

    PubMed

    Gejjalagere Honnappa, Chethan; Mazhuvancherry Kesavan, Unnikrishnan

    2016-12-01

    Inflammatory diseases are complex, multi-factorial outcomes of evolutionarily conserved tissue repair processes. For decades, non-steroidal anti-inflammatory drugs and cyclooxygenase inhibitors, the primary drugs of choice for the management of inflammatory diseases, addressed individual targets in the arachidonic acid pathway. Unsatisfactory safety and efficacy profiles of the above have necessitated the development of multi-target agents to treat complex inflammatory diseases. Current anti-inflammatory therapies still fall short of clinical needs and the clinical trial results of multi-target therapeutics are anticipated. Additionally, new drug targets are emerging with improved understanding of molecular mechanisms controlling the pathophysiology of inflammation. This review presents an outline of small molecules and drug targets in anti-inflammatory therapeutics with a summary of a newly identified target AMP-activated protein kinase, which constitutes a novel therapeutic pathway in inflammatory pathology. © The Author(s) 2016.

  20. Dopamine Mediates the Vagal Modulation of the Immune System by Electroacupuncture

    PubMed Central

    Torres-Rosas, Rafael; Yehia, Ghassan; Peña, Geber; Mishra, Priya; del Rocio Thompson-Bonilla, Maria; Moreno-Eutimio, Mario Adán; Arriaga-Pizano, Lourdes Andrea; Isibasi, Armando; Ulloa, Luis

    2014-01-01

    Previous anti-inflammatory strategies against sepsis, a leading cause of death in hospitals, had limited efficacy in clinical trials, in part because they targeted single cytokines and the experimental models failed to mimic clinical settings1-3. Neuronal networks represent physiological mechanisms selected by evolution to control inflammation that can be exploited for the treatment of inflammatory and infectious disorders3. Here, we report that sciatic nerve activation with electroacupuncture controls systemic inflammation and rescues mice from polymicrobial peritonitis. Electroacupuncture at the sciatic nerve controls systemic inflammation by inducing a vagal activation of DOPA decarboxylase leading to the production of dopamine in the adrenal medulla. Experimental models with adrenolectomized animals mimic clinical adrenal insufficiency4, increase the susceptibility to sepsis, and prevent the anti-inflammatory potential of electroacupuncture. Dopamine inhibits cytokine production via dopaminergic type-1 receptors. Dopaminergic D1-agonists suppress systemic inflammation and rescue mice from polymicrobial peritonitis in animals with adrenal insufficiency. Our results suggest a novel anti-inflammatory mechanism mediated by the sciatic and the vagus nerves modulating the production of catecholamines in the adrenal glands. From a pharmacological perspective, selective dopaminergic agonists mimic the anti-inflammatory potential of electroacupuncture and can provide therapeutic advantages to control inflammation in infectious and inflammatory disorders. PMID:24562381

  1. The impact of nonsteroidal anti-inflammatory drugs on inflammatory response after aneurysmal subarachnoid hemorrhage.

    PubMed

    Muroi, Carl; Hugelshofer, Michael; Seule, Martin; Keller, Emanuela

    2014-04-01

    The degree of inflammatory response with cytokine release is associated with poor outcomes after aneurysmal subarachnoid hemorrhage (SAH). Previously, we reported on an association between systemic IL-6 levels and clinical outcome in patients with aneurysmal SAH. The intention was to assess the impact of nonsteroidal anti-inflammatory drugs (NSAIDs) and acetaminophen on the inflammatory response after SAH. Our method involved exploratory analysis of data and samples collected within a previous study. In 138 patients with SAH, systemic interleukin (IL-6) and c-reactive protein (CRP) were measured daily up to day 14 after SAH. The correlations among the cumulatively applied amount of NSAIDs, inflammatory parameters, and clinical outcome were calculated. An inverse correlation between cumulatively applied NSAIDs and both IL-6 and CRP levels was found (r = -0.437, p < 0.001 and r = -0.369, p < 0.001 respectively). Multivariable linear regression analysis showed a cumulative amount of NSAIDs to be independently predictive for systemic IL-6 and CRP levels. The cumulative amount of NSAIDs reduced the odds for unfavorable outcome, defined as Glasgow outcome scale 1-3. The results indicate a potential beneficial effect of NSAIDs in patients with SAH in terms of ameliorating inflammatory response, which might have an impact on outcome.

  2. The topograpy of demyelination and neurodegeneration in the multiple sclerosis brain.

    PubMed

    Haider, Lukas; Zrzavy, Tobias; Hametner, Simon; Höftberger, Romana; Bagnato, Francesca; Grabner, Günther; Trattnig, Siegfried; Pfeifenbring, Sabine; Brück, Wolfgang; Lassmann, Hans

    2016-03-01

    Multiple sclerosis is a chronic inflammatory disease with primary demyelination and neurodegeneration in the central nervous system. In our study we analysed demyelination and neurodegeneration in a large series of multiple sclerosis brains and provide a map that displays the frequency of different brain areas to be affected by these processes. Demyelination in the cerebral cortex was related to inflammatory infiltrates in the meninges, which was pronounced in invaginations of the brain surface (sulci) and possibly promoted by low flow of the cerebrospinal fluid in these areas. Focal demyelinated lesions in the white matter occurred at sites with high venous density and additionally accumulated in watershed areas of low arterial blood supply. Two different patterns of neurodegeneration in the cortex were identified: oxidative injury of cortical neurons and retrograde neurodegeneration due to axonal injury in the white matter. While oxidative injury was related to the inflammatory process in the meninges and pronounced in actively demyelinating cortical lesions, retrograde degeneration was mainly related to demyelinated lesions and axonal loss in the white matter. Our data show that accumulation of lesions and neurodegeneration in the multiple sclerosis brain does not affect all brain regions equally and provides the pathological basis for the selection of brain areas for monitoring regional injury and atrophy development in future magnetic resonance imaging studies. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish

    PubMed Central

    Hall, Chris; Flores, Maria Vega; Storm, Thilo; Crosier, Kathy; Crosier, Phil

    2007-01-01

    Background How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. Results We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. Conclusion These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation. PMID:17477879

  4. Omega-3 fatty acids and inflammatory processes: from molecules to man.

    PubMed

    Calder, Philip C

    2017-10-15

    Inappropriate, excessive or uncontrolled inflammation contributes to a range of human diseases. Inflammation involves a multitude of cell types, chemical mediators and interactions. The present article will describe nutritional and metabolic aspects of omega-6 (n-6) and omega-3 (n-3) fatty acids and explain the roles of bioactive members of those fatty acid families in inflammatory processes. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are n-3 fatty acids found in oily fish and fish oil supplements. These fatty acids are capable of partly inhibiting many aspects of inflammation including leucocyte chemotaxis, adhesion molecule expression and leucocyte-endothelial adhesive interactions, production of eicosanoids like prostaglandins and leukotrienes from the n-6 fatty acid arachidonic acid and production of pro-inflammatory cytokines. In addition, EPA gives rise to eicosanoids that often have lower biological potency than those produced from arachidonic acid, and EPA and DHA give rise to anti-inflammatory and inflammation resolving mediators called resolvins, protectins and maresins. Mechanisms underlying the anti-inflammatory actions of EPA and DHA include altered cell membrane phospholipid fatty acid composition, disruption of lipid rafts, inhibition of activation of the pro-inflammatory transcription factor nuclear factor κB so reducing expression of inflammatory genes and activation of the anti-inflammatory transcription factor peroxisome proliferator-activated receptor γ. Animal experiments demonstrate benefit from EPA and DHA in a range of models of inflammatory conditions. Human trials demonstrate benefit of oral n-3 fatty acids in rheumatoid arthritis and in stabilizing advanced atherosclerotic plaques. Intravenous n-3 fatty acids may have benefits in critically ill patients through reduced inflammation. The anti-inflammatory and inflammation resolving actions of EPA, DHA and their derivatives are of clinical relevance. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Role of Nonneuronal TRPV4 Signaling in Inflammatory Processes.

    PubMed

    Rajasekhar, Pradeep; Poole, Daniel P; Veldhuis, Nicholas A

    2017-01-01

    Transient receptor potential (TRP) ion channels are important signaling components in nociceptive and inflammatory pathways. This is attributed to their ability to function as polymodal sensors of environmental stimuli (chemical and mechanical) and as effector molecules in receptor signaling pathways. TRP vanilloid 4 (TRPV4) is a nonselective cation channel that is activated by multiple endogenous stimuli including shear stress, membrane stretch, and arachidonic acid metabolites. TRPV4 contributes to many important physiological processes and dysregulation of its activity is associated with chronic conditions of metabolism, inflammation, peripheral neuropathies, musculoskeletal development, and cardiovascular regulation. Mechanosensory and receptor- or lipid-mediated signaling functions of TRPV4 have historically been attributed to central and peripheral neurons. However, with the development of potent and selective pharmacological tools, transgenic mice and improved molecular and imaging techniques, many new roles for TRPV4 have been revealed in nonneuronal cells. In this chapter, we discuss these recent findings and highlight the need for greater characterization of TRPV4-mediated signaling in nonneuronal cell types that are either directly associated with neurons or indirectly control their excitability through release of sensitizing cellular factors. We address the integral role of these cells in sensory and inflammatory processes as well as their importance when considering undesirable on-target effects that may be caused by systemic delivery of TRPV4-selective pharmaceutical agents for treatment of chronic diseases. In future, this will drive a need for targeted drug delivery strategies to regulate such a diverse and promiscuous protein. © 2017 Elsevier Inc. All rights reserved.

  6. Supplemental oxygen therapy does not affect the systemic inflammatory response to acute myocardial infarction.

    PubMed

    Hofmann, R; Tornvall, P; Witt, N; Alfredsson, J; Svensson, L; Jonasson, L; Nilsson, L

    2018-04-01

    Oxygen therapy has been used routinely in normoxemic patients with suspected acute myocardial infarction (AMI) despite limited evidence supporting a beneficial effect. AMI is associated with a systemic inflammation. Here, we hypothesized that the inflammatory response to AMI is potentiated by oxygen therapy. The DETermination of the role of Oxygen in suspected Acute Myocardial Infarction (DETO2X-AMI) multicentre trial randomized patients with suspected AMI to receive oxygen at 6 L min -1 for 6-12 h or ambient air. For this prespecified subgroup analysis, we recruited patients with confirmed AMI from two sites for evaluation of inflammatory biomarkers at randomization and 5-7 h later. Ninety-two inflammatory biomarkers were analysed using proximity extension assay technology, to evaluate the effect of oxygen on the systemic inflammatory response to AMI. Plasma from 144 AMI patients was analysed whereof 76 (53%) were randomized to oxygen and 68 (47%) to air. Eight biomarkers showed a significant increase, whereas 13 were decreased 5-7 h after randomization. The inflammatory response did not differ between the two treatment groups neither did plasma troponin T levels. After adjustment for increase in troponin T over time, age and sex, the release of inflammation-related biomarkers was still similar in the groups. In a randomized controlled setting of normoxemic patients with AMI, the use of supplemental oxygen did not have any significant impact on the early release of systemic inflammatory markers. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  7. Shed-blood-separation and cell-saver: an integral Part of MiECC? Shed-blood-separation and its influence on the perioperative inflammatory response during coronary revascularization with minimal invasive extracorporeal circulation systems - a randomized controlled trial.

    PubMed

    Bauer, Adrian; Hausmann, Harald; Schaarschmidt, Jan; Scharpenberg, Martin; Troitzsch, Dirk; Johansen, Peter; Nygaard, Hans; Eberle, Thomas; Hasenkam, J Michael

    2018-03-01

    The postoperative systemic inflammatory response after cardiopulmonary bypass (CPB) is still an undesirable side-effect after cardiac surgery. It is most likely caused by blood contact with foreign surfaces and by the surgical trauma itself. However, the recirculation of activated shed mediastinal blood is another main cause of blood cell activation and cytokine release. Minimal invasive extracorporeal circulation (MiECC) comprises a completely closed circuit, coated surfaces and the separation of suction blood. We hypothesized that MiECC, with separated cell saved blood, would induce less of a systemic inflammatory response than MiECC with no cell-saver. The aim of this study was, therefore, to investigate the impact of cell washing shed blood from the operating field versus direct return to the ECC on the biomarkers for systemic inflammation. In the study, patients with MiECC and cell-saver were compared with the control group, patients with MiECC and direct re-transfusion of the drawn blood shed from the surgical field. High amounts of TNF-α (+ 120% compared to serum blood) were found in the shed blood itself, but a significant reduction was demonstrated with the use of a cell-saver (TNF-α ng/l post-ECC 10 min: 9.5±3.5 vs. 19.7±14.5, p<0.0001). The values for procalcitonin were not significantly increased in the control group (6h: 1.07±3.4 vs. 2.15±9.55, p=0.19) and lower for C-reactive protein (CRP) (24h: 147.1±64.0 vs.134.4±52.4 p=0.28). The use of a cell-saver and the processing of shed blood as an integral part of MiECC significantly reduces the systemic cytokine load. We, therefore, recommend the integration of cell-saving devices in MiECC to reduce the perioperative inflammatory response.

  8. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle

    PubMed Central

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-01

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling. PMID:26725948

  9. Sulforaphane improves outcomes and slows cerebral ischemic/reperfusion injury via inhibition of NLRP3 inflammasome activation in rats.

    PubMed

    Yu, Chang; He, Qi; Zheng, Jing; Li, Ling Yu; Hou, Yang Hao; Song, Fang Zhou

    2017-04-01

    Ischemia/reperfusion (I/R) injury has been correlated with systemic inflammatory response. In addition, NLRP3 has been suggested as a cause in many inflammatory processes. Sulforaphane (SFN) is a naturally occurring isothiocyanate found in cruciferous vegetables, such as broccoli and cabbage. While recent studies have demonstrated that Sulforaphane has protective effects against cerebral ischemia/reperfusion injury, little is known about how those protective effects work. In this study, we focus our investigation on the role and process of Sulforaphane in the inhibition of NLRP3 inflammasome activation, as well as its effect on brain ischemia/reperfusion injury. Adult male Sprague-Dawley rats were injected with Sulforaphane (5 or 10mg/kg) intraperitoneally at the beginning of reperfusion, after a 60min period of occlusion. A neurological score and infarct volume were assessed at 24h after the administration of Sulforaphane. Myeloperoxidase (MPO) activity was measured at 24h to assess neutrophil infiltration in brain tissue. ELISA, RT-PCR and Western blot analyses were used to measure any inflammatory reaction. Sulforaphane treatment significantly reduced infarct volume and improved neurological scores when compared to a vehicle-treated group. Neutrophil infiltration was significantly higher in the vehicle-treated group than in the Sulforaphane treatment group. Sulforaphane treatment inhibits NLRP3 inflammasome activation and the downregulation of cleaved caspase-1, while reducing IL-1β and IL-18 expression. The inhibition of inflammatory response with Sulforaphane treatment improves outcomes after focal cerebral ischemia. This neuroprotective effect is likely exerted by Sulforaphane inhibited NLRP3 inflammasome activation caused by the downregulation of NLRP3, the induction of cleaved caspase-1, and thus the reduction of IL-1β and IL-18. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A Chemically Modified Curcumin (CMC 2.24) Inhibits Nuclear Factor κB Activation and Inflammatory Bone Loss in Murine Models of LPS-Induced Experimental Periodontitis and Diabetes-Associated Natural Periodontitis.

    PubMed

    Elburki, Muna S; Rossa, Carlos; Guimarães-Stabili, Morgana R; Lee, Hsi-Ming; Curylofo-Zotti, Fabiana A; Johnson, Francis; Golub, Lorne M

    2017-08-01

    The purpose of this study was to assess the effect of a novel chemically modified curcumin (CMC 2.24) on NF-κB and MAPK signaling and inflammatory cytokine production in two experimental models of periodontal disease in rats. Experimental model I: Periodontitis was induced by repeated injections of LPS into the gingiva (3×/week, 3 weeks); control rats received vehicle injections. CMC 2.24, or the vehicle, was administered by daily oral gavage for 4 weeks. Experimental model II: Diabetes was induced in adult male rats by streptozotocin injection; periodontal breakdown then results as a complication of uncontrolled hyperglycemia. Non-diabetic rats served as controls. CMC 2.24, or the vehicle, was administered by oral gavage daily for 3 weeks to the diabetics. Hemimaxillae and gingival tissues were harvested, and bone loss was assessed radiographically. Gingival tissues were pooled according to the experimental conditions and processed for the analysis of matrix metalloproteinases (MMPs) and bone-resorptive cytokines. Activation of p38 MAPK and NF-κB signaling pathways was assessed by western blot. Both LPS and diabetes induced an inflammatory process in the gingival tissues associated with excessive alveolar bone resorption and increased activation of p65 (NF-κB) and p38 MAPK. In both models, the administration of CMC 2.24 produced a marked reduction of inflammatory cytokines and MMPs in the gingival tissues, decreased bone loss, and decreased activation of p65 (NF-κB) and p38 MAPK. Inhibition of these cell signaling pathways by this novel tri-ketonic curcuminoid (natural curcumin is di-ketonic) may play a role in its therapeutic efficacy in locally and systemically associated periodontitis.

  11. N-Palmitoylethanolamine and Neuroinflammation: a Novel Therapeutic Strategy of Resolution.

    PubMed

    Skaper, Stephen D; Facci, Laura; Barbierato, Massimo; Zusso, Morena; Bruschetta, Giuseppe; Impellizzeri, Daniela; Cuzzocrea, Salvatore; Giusti, Pietro

    2015-10-01

    Inflammation is fundamentally a protective cellular response aimed at removing injurious stimuli and initiating the healing process. However, when prolonged, it can override the bounds of physiological control and becomes destructive. Inflammation is a key element in the pathobiology of chronic pain, neurodegenerative diseases, stroke, spinal cord injury, and neuropsychiatric disorders. Glia, key players in such nervous system disorders, are not only capable of expressing a pro-inflammatory phenotype but respond also to inflammatory signals released from cells of immune origin such as mast cells. Chronic inflammatory processes may be counteracted by a program of resolution that includes the production of lipid mediators endowed with the capacity to switch off inflammation. These naturally occurring lipid signaling molecules include the N-acylethanolamines, N-arachidonoylethanolamine (an endocannabinoid), and its congener N-palmitoylethanolamine (palmitoylethanolamide or PEA). PEA may play a role in maintaining cellular homeostasis when faced with external stressors provoking, for example, inflammation. PEA is efficacious in mast cell-mediated models of neurogenic inflammation and neuropathic pain and is neuroprotective in models of stroke, spinal cord injury, traumatic brain injury, and Parkinson disease. PEA in micronized/ultramicronized form shows superior oral efficacy in inflammatory pain models when compared to naïve PEA. Intriguingly, while PEA has no antioxidant effects per se, its co-ultramicronization with the flavonoid luteolin is more efficacious than either molecule alone. Inhibiting or modulating the enzymatic breakdown of PEA represents a complementary therapeutic approach to treat neuroinflammation. This review is intended to discuss the role of mast cells and glia in neuroinflammation and strategies to modulate their activation based on leveraging natural mechanisms with the capacity for self-defense against inflammation.

  12. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease.

    PubMed

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-09-21

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date.

  13. The Innate and Adaptive Immune System as Targets for Biologic Therapies in Inflammatory Bowel Disease

    PubMed Central

    Holleran, Grainne; Lopetuso, Loris; Petito, Valentina; Graziani, Cristina; Ianiro, Gianluca; McNamara, Deirdre; Gasbarrini, Antonio; Scaldaferri, Franco

    2017-01-01

    Inflammatory bowel disease (IBD) is an immune-mediated inflammatory condition causing inflammation of gastrointestinal and systemic cells, with an increasing prevalence worldwide. Many factors are known to trigger and maintain inflammation in IBD including the innate and adaptive immune systems, genetics, the gastrointestinal microbiome and several environmental factors. Our knowledge of the involvement of the immune system in the pathophysiology of IBD has advanced rapidly over the last two decades, leading to the development of several immune-targeted treatments with a biological source, known as biologic agents. The initial focus of these agents was directed against the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) leading to dramatic changes in the disease course for a proportion of patients with IBD. However, more recently, it has been shown that a significant proportion of patients do not respond to anti-TNF-α directed therapies, leading a shift to other inflammatory pathways and targets, including those of both the innate and adaptive immune systems, and targets linking both systems including anti-leukocyte trafficking agents-integrins and adhesion molecules. This review briefly describes the molecular basis of immune based gastrointestinal inflammation in IBD, and then describes how several current and future biologic agents work to manipulate these pathways, and their clinical success to date. PMID:28934123

  14. Application of dense gas techniques for the production of fine particles.

    PubMed

    Foster, Neil R; Dehghani, Fariba; Charoenchaitrakoo, Kiang M; Warwick, Barry

    2003-01-01

    The feasibility of using dense gas techniques such as rapid expansion of supercritical solutions (RESS) and aerosol solvent extraction system (ASES) for micronization of pharmaceutical compounds is demonstrated. The chiral nonsteroidal anti-inflammatory racemic ibuprofen is soluble in carbon dioxide at 35 degrees C and pressures above 90 bar. The particle size decreased to less than 2 microm while the degree of crystallinity was slightly decreased when processed by RESS. The dissolution rate of the ibuprofen (a poorly water-soluble compound) was significantly enhanced after processing by RESS. The nonsteroidal anti-inflammatory drug Cu2(indomethacin)4L2(Cu-Indo); (L = dimethylformamide [DMF]), which possessed very low solubility in supercritical CO2, was successfully micronized by ASES at 25 degrees C and 68.9 bar using DMF as the solvent and CO2 as the antisolvent. The concentration of solute dramatically influenced the precipitate characteristics. The particles obtained from the ASES process were changed from bipyramidal to spherical, with particle size less than 5 microm, as the concentration increased from 5 to 100 mg/g. A further increase in solute concentration to 200 mg/g resulted in large porous spheres, between 20 and 50 micron, when processing Cu-Indo by the ASES method. The dissolution rate of the micronized Cu-Indo was significantly higher than the commercial product.

  15. Inflamm-Aging of Hematopoiesis, Hematopoietic Stem Cells, and the Bone Marrow Microenvironment

    PubMed Central

    Kovtonyuk, Larisa V.; Fritsch, Kristin; Feng, Xiaomin; Manz, Markus G.; Takizawa, Hitoshi

    2016-01-01

    All hematopoietic and immune cells are continuously generated by hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) through highly organized process of stepwise lineage commitment. In the steady state, HSCs are mostly quiescent, while HPCs are actively proliferating and contributing to daily hematopoiesis. In response to hematopoietic challenges, e.g., life-threatening blood loss, infection, and inflammation, HSCs can be activated to proliferate and engage in blood formation. The HSC activation induced by hematopoietic demand is mediated by direct or indirect sensing mechanisms involving pattern recognition receptors or cytokine/chemokine receptors. In contrast to the hematopoietic challenges with obvious clinical symptoms, how the aging process, which involves low-grade chronic inflammation, impacts hematopoiesis remains undefined. Herein, we summarize recent findings pertaining to functional alternations of hematopoiesis, HSCs, and the bone marrow (BM) microenvironment during the processes of aging and inflammation and highlight some common cellular and molecular changes during the processes that influence hematopoiesis and its cells of origin, HSCs and HPCs, as well as the BM microenvironment. We also discuss how age-dependent alterations of the immune system lead to subclinical inflammatory states and how inflammatory signaling might be involved in hematopoietic aging. Our aim is to present evidence supporting the concept of “Inflamm-Aging,” or inflammation-associated aging of hematopoiesis. PMID:27895645

  16. Sterile Inflammation of Brain, due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders

    PubMed Central

    Ratajczak, Mariusz Z.; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-01

    Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as “sterile inflammation” when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms. PMID:29541038

  17. Sterile Inflammation of Brain, due to Activation of Innate Immunity, as a Culprit in Psychiatric Disorders.

    PubMed

    Ratajczak, Mariusz Z; Pedziwiatr, Daniel; Cymer, Monika; Kucia, Magda; Kucharska-Mazur, Jolanta; Samochowiec, Jerzy

    2018-01-01

    Evidence has accumulated that the occurrence of psychiatric disorders is related to chronic inflammation. In support of this linkage, changes in the levels of circulating pro-inflammatory cytokines and chemokines in the peripheral blood (PB) of psychiatric patients as well as correlations between chronic inflammatory processes and psychiatric disorders have been described. Furthermore, an inflammatory process known as "sterile inflammation" when initiated directly in brain tissue may trigger the onset of psychoses. In this review, we will present the hypothesis that prolonged or chronic activation of the complement cascade (ComC) directly triggers inflammation in the brain and affects the proper function of this organ. Based on the current literature and our own work on mechanisms activating the ComC we hypothesize that inflammation in the brain is initiated by the mannan-binding lectin pathway of ComC activation. This activation is triggered by an increase in brain tissue of danger-associated molecular pattern (DAMP) mediators, including extracellular ATP and high-mobility group box 1 (HMGB1) protein, which are recognized by circulating pattern-recognition receptors, including mannan-binding lectin (MBL), that activate the ComC. On the other hand, this process is controlled by the anti-inflammatory action of heme oxygenase 1 (HO-1). In this review, we will try to connect changes in the release of DAMPs in the brain with inflammatory processes triggered by the innate immunity involving activation of the ComC as well as the inflammation-limiting effects of the anti-inflammatory HO-1 pathway. We will also discuss parallel observations that during ComC activation subsets of stem cells are mobilized into PB from bone marrow that are potentially involved in repair mechanisms.

  18. Determination of anti-inflammatory activities of standardised preparations of plant- and mushroom-based foods.

    PubMed

    Gunawardena, Dhanushka; Shanmugam, Kirubakaran; Low, Mitchell; Bennett, Louise; Govindaraghavan, Suresh; Head, Richard; Ooi, Lezanne; Münch, Gerald

    2014-02-01

    Chronic inflammatory processes contribute to the pathogenesis of many age-related diseases. In search of anti-inflammatory foods, we have systematically screened a variety of common dietary plants and mushrooms for their anti-inflammatory activity. A selection of 115 samples was prepared by a generic food-compatible processing method involving heating. These products were tested for their anti-inflammatory activity in murine N11 microglia and RAW 264.7 macrophages, using nitric oxide (NO) and tumour necrosis factor-α (TNF-α) as pro-inflammatory readouts. Ten food samples including lime zest, English breakfast tea, honey-brown mushroom, button mushroom, oyster mushroom, cinnamon and cloves inhibited NO production in N11 microglia, with IC50 values below 0.5 mg/ml. The most active samples were onion, oregano and red sweet potato, exhibiting IC50 values below 0.1 mg/ml. When these ten food preparations were retested in RAW 264.7 macrophages, they all inhibited NO production similar to the results obtained in N11 microglia. In addition, English breakfast tea leaves, oyster mushroom, onion, cinnamon and button mushroom preparations suppressed TNF-α production, exhibiting IC50 values below 0.5 mg/ml in RAW 264.7 macrophages. In summary, anti-inflammatory activity in these food samples survived 'cooking'. Provided that individual bioavailability allows active compounds to reach therapeutic levels in target tissues, these foods may be useful in limiting inflammation in a variety of age-related inflammatory diseases. Furthermore, these foods could be a source for the discovery of novel anti-inflammatory drugs.

  19. Use of Lentiviral Particles As a Cell Membrane-Based mFasL Delivery System for In Vivo Treatment of Inflammatory Arthritis.

    PubMed

    Rodríguez-Frade, José M; Guedán, Anabel; Lucas, Pilar; Martínez-Muñoz, Laura; Villares, Ricardo; Criado, Gabriel; Balomenos, Dimitri; Reyburn, Hugh T; Mellado, Mario

    2017-01-01

    During budding, lentiviral particles (LVP) incorporate cell membrane proteins in the viral envelope. We explored the possibility of harnessing this process to generate LVP-expressing membrane proteins of therapeutic interest and studied the potential of these tools to treat different pathologies. Fas-mediated apoptosis is central to the maintenance of T cell homeostasis and prevention of autoimmune processes. We prepared LVP that express murine FasL on their surface. Our data indicate that mFasL-bearing LVP induce caspase 3 and 9 processing, cytochrome C release, and significantly more cell death than control LVP in vitro . This cytotoxicity is blocked by the caspase inhibitor Z-VAD. Analysis of the application of these reagents for the treatment of inflammatory arthritis in vivo suggests that FasL-expressing LVP could be useful for therapy in autoimmune diseases such as rheumatoid arthritis, where there is an excess of Fas-expressing activated T cells in the joint. LVP could be a vehicle not only for mFasL but also for other membrane-bound proteins that maintain their native conformation and might mediate biological activities.

  20. Mitochondrial dysfunction in obesity.

    PubMed

    de Mello, Aline Haas; Costa, Ana Beatriz; Engel, Jéssica Della Giustina; Rezin, Gislaine Tezza

    2018-01-01

    Obesity leads to various changes in the body. Among them, the existing inflammatory process may lead to an increase in the production of reactive oxygen species (ROS) and cause oxidative stress. Oxidative stress, in turn, can trigger mitochondrial changes, which is called mitochondrial dysfunction. Moreover, excess nutrients supply (as it commonly is the case with obesity) can overwhelm the Krebs cycle and the mitochondrial respiratory chain, causing a mitochondrial dysfunction, and lead to a higher ROS formation. This increase in ROS production by the respiratory chain may also cause oxidative stress, which may exacerbate the inflammatory process in obesity. All these intracellular changes can lead to cellular apoptosis. These processes have been described in obesity as occurring mainly in peripheral tissues. However, some studies have already shown that obesity is also associated with changes in the central nervous system (CNS), with alterations in the blood-brain barrier (BBB) and in cerebral structures such as hypothalamus and hippocampus. In this sense, this review presents a general view about mitochondrial dysfunction in obesity, including related alterations, such as inflammation, oxidative stress, and apoptosis, and focusing on the whole organism, covering alterations in peripheral tissues, BBB, and CNS. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cerebrospinal fluid inflammatory markers in patients with multiple sclerosis: a pilot study.

    PubMed

    Matejčíková, Z; Mareš, J; Přikrylová Vranová, H; Klosová, J; Sládková, V; Doláková, J; Zapletalová, J; Kaňovský, P

    2015-02-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Autoimmune inflammation is common in the early stages of MS. This stage is followed by the neurodegenerative process. The result of these changes is axon and myelin breakdown. Although MS is according to McDonald's revised diagnostic criteria primarily a clinical diagnosis, paraclinical investigation methods are an important part in the diagnosis of MS. In common practice, magnetic resonance imaging of the brain and spinal cord, examination of cerebrospinal fluid (CSF) and examination of visual evoked potentials are used. There are an increasing number of studies dealing with biomarkers in CSF and their role in the diagnosis and treatment of MS. We hypothesized that the levels of some markers could be changed in MS in comparison with controls. We studied five inflammatory markers [interleukin-6 (IL-6), interleukin-8, interleukin-10 (IL-10), beta-2-microglobulin, orosomucoid]. CSF and serum levels of inflammatory markers were assessed in 38 patients with newly diagnosed MS meeting McDonald's revised diagnostic criteria and in 28 subjects as a control group (CG). Levels of beta-2-microglobulin and interleukin-8 in CSF were found to be significantly higher in MS patients in comparison to CG (p < 0.001 resp. p = 0.007). No differences in other CSF markers (IL-6, IL-10 and orosomucoid) and serum levels of all markers between both groups were found. The levels of two studied inflammatory markers were found to be increased at the time of first clinical symptoms of MS. Research on the role of inflammatory and neurodegenerative markers in MS should continue.

  2. The effect of classical swine fever virus NS5A and NS5A mutants on oxidative stress and inflammatory response in swine testicular cells.

    PubMed

    Dong, Wang; Lv, Huifang; Wang, Yifan; Li, Xiaomeng; Li, Cheng; Wang, Lu; Wang, Chengbao; Guo, Kangkang; Zhang, Yanming

    2017-06-01

    Infection with classical swine fever virus (CSFV) results in highly significant economic losses; this infection is characterized by being highly contagious and accompanied by hyperthermia and systemic bleeding. Oxidative stress (OS) plays a critical role in the pathological process of viral infection. The function of the nonstructural protein 5A (NS5A) in the pathogenesis of CSFV has not been completely understood. Here, OS and the inflammatory response were studied with NS5A and substitution mutants in swine testicular (ST) cells. ST cell lines stably expressing CSFV NS5A or substitution mutants were established. Reactive oxygen species (ROS) production, antioxidant protein expression and inflammatory response were analyzed by quantitative real-time PCR (qRT-PCR), ELISA and flow cytometry analysis. The results showed that CSFV NS5A did not increase ROS production or the antioxidant protein (Trx, HO-1 and PRDX-6) expression in ST cells. However, NS5A inhibited cyclooxygenase-2 (COX-2) expression, a pro-inflammatory protein related to OS. Further studies have shown that NS5A mutants S15A and S92A increased ROS production and inhibited antioxidant protein expression. S15A, S81A and T274A affected the inflammatory response. This study suggested that CSFV NS5A did not induce OS, and amino acids Ser15 and Ser92 of CSFV NS5A were essential for inhibiting OS. Additionally, Ser15, Ser81 and Thr274 played important roles in the inflammatory response in ST cells. These observations provided insight into the function of CSFV NS5A and the mechanism of CSFV persistent infection in ST cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Growth and Development Symposium: Inflammation: Role in the etiology and pathophysiology of clinical mastitis in dairy cows.

    PubMed

    Ballou, M A

    2012-05-01

    Genetic selection for increased milk production in dairy cattle was not associated with an attenuated inflammatory response. The systemic and local inflammatory responses contribute to altered metabolism, reduced production performance, and increased cull rate of lactating dairy cows with clinical mastitis. More aggressive inflammatory responses were observed during the peripartum period when compared with cows in late lactation after an intramammary challenge with purified lipopolysaccharide. The epidemiology of clinical mastitis indicates that the greatest incidence is observed during the peripartum period; therefore, an enhanced inflammatory response with concomitant suppression in other immune responses may be involved in the etiology and severity of the clinical mastitis observed in peripartum cows. Milk production losses and compositional changes are observed among all mammary quarters from a cow with clinical mastitis, but the responses are more severe and sustained among infected quarters. The infected mammary quarters reflect both the systemic and local reactions, whereas uninfected quarters represent only the systemic response. The systemic effects of the inflammatory response include reduced DMI, hyperthermia, and changes in whole-body nutrient partitioning affecting mammary epithelial substrate availability, whereas local inflammatory effects include energetic requirements of the increased inflammatory leukocyte pool, decreased synthetic capacity of mammary epithelium independent of substrate availability, and paracellular leakage of milk components from the alveolar lumen into the extracellular fluid. Research has focused on improving host immunological defenses, attenuating the inflammatory response, or improving the resolution of the disease state to limit the deleterious effects during clinical mastitis. This paper highlights the role inflammation plays in the etiology and pathophysiology of clinical mastitis as well as potential management strategies to reduce or prevent those losses.

  4. Central vein sign differentiates Multiple Sclerosis from central nervous system inflammatory vasculopathies.

    PubMed

    Maggi, Pietro; Absinta, Martina; Grammatico, Matteo; Vuolo, Luisa; Emmi, Giacomo; Carlucci, Giovanna; Spagni, Gregorio; Barilaro, Alessandro; Repice, Anna Maria; Emmi, Lorenzo; Prisco, Domenico; Martinelli, Vittorio; Scotti, Roberta; Sadeghi, Niloufar; Perrotta, Gaetano; Sati, Pascal; Dachy, Bernard; Reich, Daniel S; Filippi, Massimo; Massacesi, Luca

    2018-02-01

    In multiple sclerosis (MS), magnetic resonance imaging (MRI) is a sensitive tool for detecting white matter lesions, but its diagnostic specificity is still suboptimal; ambiguous cases are frequent in clinical practice. Detection of perivenular lesions in the brain (the "central vein sign") improves the pathological specificity of MS diagnosis, but comprehensive evaluation of this MRI biomarker in MS-mimicking inflammatory and/or autoimmune diseases, such as central nervous system (CNS) inflammatory vasculopathies, is lacking. In a multicenter study, we assessed the frequency of perivenular lesions in MS versus systemic autoimmune diseases with CNS involvement and primary angiitis of the CNS (PACNS). In 31 patients with inflammatory CNS vasculopathies and 52 with relapsing-remitting MS, 3-dimensional T2*-weighted and T2-fluid-attenuated inversion recovery images were obtained during a single MRI acquisition after gadolinium injection. For each lesion, the central vein sign was evaluated according to consensus guidelines. For each patient, lesion count, volume, and brain location, as well as fulfillment of dissemination in space MRI criteria, were assessed. MS showed higher frequency of perivenular lesions (median = 88%) than did inflammatory CNS vasculopathies (14%), without overlap between groups or differences between 3T and 1.5T MRI. Among inflammatory vasculopathies, Behçet disease showed the highest median frequency of perivenular lesions (34%), followed by PACNS (14%), antiphospholipid syndromes (12%), Sjögren syndrome (11%), and systemic lupus erythematosus (0%). When a threshold of 50% perivenular lesions was applied, central vein sign discriminated MS from inflammatory vasculopathies with a diagnostic accuracy of 100%. The central vein sign differentiates inflammatory CNS vasculopathies from MS at standard clinical magnetic field strengths. Ann Neurol 2018;83:283-294. © 2018 The Authors Annals of Neurology published by Wiley Periodicals, Inc. on behalf of American Neurological Association.

  5. The Local and Systemic Immune Response to Intrauterine LPS in the Prepartum Mouse1

    PubMed Central

    Edey, Lydia F.; O'Dea, Kieran P.; Herbert, Bronwen R.; Hua, Renyi; Waddington, Simon N.; MacIntyre, David A.; Bennett, Philip R.; Takata, Masao; Johnson, Mark R.

    2016-01-01

    Inflammation plays a key role in human term and preterm labor (PTL). Intrauterine LPS has been widely used to model inflammation-induced complications of pregnancy, including PTL. It has been shown to induce an intense myometrial inflammatory cell infiltration, but the role of LPS-induced inflammatory cell activation in labor onset and fetal demise is unclear. We investigated this using a mouse model of PTL, where an intrauterine injection of 10 μg of LPS (serotype 0111:B4) was given at E16 of CD1 mouse pregnancy. This dose induced PTL at an average of 12.7 h postinjection in association with 85% fetal demise. Flow cytometry showed that LPS induced a dramatic systemic inflammatory response provoking a rapid and marked leucocyte infiltration into the maternal lung and liver in association with increased cytokine levels. Although there was acute placental inflammatory gene expression, there was no corresponding increase in fetal brain inflammatory gene expression until after fetal demise. There was marked myometrial activation of NFκB and MAPK/AP-1 systems in association with increased chemokine and cytokine levels, both of which peaked with the onset of parturition. Myometrial macrophage and neutrophil numbers were greater in the LPS-injected mice with labor onset only; prior to labor, myometrial neutrophils and monocytes numbers were greater in PBS-injected mice, but this was not associated with an earlier onset of labor. These data suggest that intrauterine LPS induces parturition directly, independent of myometrial inflammatory cell infiltration, and that fetal demise occurs without fetal inflammation. Intrauterine LPS provokes a marked local and systemic inflammatory response but with limited inflammatory cell infiltration into the myometrium or placenta. PMID:27760748

  6. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    PubMed

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The induction of bystander effects and instabilities may reflect interrelated aspects of a non-specific inflammatory-type response to radiation-induced stress and injury and be involved in a variety of the pathological consequences of radiation exposures.

  7. The degree of local inflammatory response after colonic resection depends on the surgical approach: an observational study in 61 patients.

    PubMed

    Glatz, Torben; Lederer, Ann-Kathrin; Kulemann, Birte; Seifert, Gabriel; Holzner, Philipp Anton; Hopt, Ulrich Theodor; Hoeppner, Jens; Marjanovic, Goran

    2015-10-06

    Clinical data indicate that laparoscopic surgery reduces postoperative inflammatory response and benefits patient recovery. Little is known about the mechanisms involved in reduced systemic and local inflammation and the contribution of reduced trauma to the abdominal wall and the parietal peritoneum. Included were 61 patients, who underwent elective colorectal resection without intraabdominal complications; 17 received a completely laparoscopic, 13 a laparoscopically- assisted procedure and 31 open surgery. Local inflammatory response was quantified by measurement of intraperitoneal leukocytes and IL-6 levels during the first 4 days after surgery. There was no statistical difference between the groups in systemic inflammatory parameters and intraperitoneal leukocytes. Intraperitoneal interleukin-6 was significantly lower in the laparoscopic group than in the laparoscopically-assisted and open group on postoperative day 1 (26.16 versus 43.25 versus 40.83 ng/ml; p = 0.001). No difference between the groups was recorded on POD 2-4. Intraperitoneal interleukin-6 showed a correlation with duration of hospital stay on POD 1 (0.233, p = 0.036), but not on POD 2-4. Patients who developed a surgical wound infection showed higher levels of intraperitoneal interleukin-6 on postoperative day 2-4 (POD 2: 42.56 versus 30.02 ng/ml, p = 0.03), POD 3: 36.52 versus 23.62 ng/ml, p = 0.06 and POD 4: 34.43 versus 19.99 ng/ml, p = 0.046). Extraabdominal infections had no impact. The analysis shows an attenuated intraperitoneal inflammatory response on POD 1 in completely laparoscopically-operated patients, associated with a quicker recovery. This effect cannot be observed in patients, who underwent a laparoscopically-assisted or open procedure. Factors inflicting additional trauma to the abdominal wall and parietal peritoneum promote the intraperitoneal inflammation process.

  8. The Role of Physical Exercise in Inflammatory Bowel Disease

    PubMed Central

    Bilski, Jan; Brzozowski, Bartosz; Mazur-Bialy, Agnieszka; Sliwowski, Zbigniew; Brzozowski, Tomasz

    2014-01-01

    We reviewed and analyzed the relationship between physical exercise and inflammatory bowel disease (IBD) which covers a group of chronic, relapsing, and remitting intestinal disorders including Crohn's disease (CD) and ulcerative colitis. The etiology of IBD likely involves a combination of genetic predisposition and environmental risk factors. Physical training has been suggested to be protective against the onset of IBD, but there are inconsistencies in the findings of the published literature. Hypertrophy of the mesenteric white adipose tissue (mWAT) is recognized as a characteristic feature of CD, but its importance for the perpetuation of onset of this intestinal disease is unknown. Adipocytes synthesize proinflammatory and anti-inflammatory cytokines. Hypertrophy of mWAT could play a role as a barrier to the inflammatory process, but recent data suggest that deregulation of adipokine secretion is involved in the pathogenesis of CD. Adipocytokines and macrophage mediators perpetuate the intestinal inflammatory process, leading to mucosal ulcerations along the mesenteric border, a typical feature of CD. Contracting skeletal muscles release biologically active myokines, known to exert the direct anti-inflammatory effects, and inhibit the release of proinflammatory mediators from visceral fat. Further research is required to confirm these observations and establish exercise regimes for IBD patients. PMID:24877092

  9. The role of physical exercise in inflammatory bowel disease.

    PubMed

    Bilski, Jan; Brzozowski, Bartosz; Mazur-Bialy, Agnieszka; Sliwowski, Zbigniew; Brzozowski, Tomasz

    2014-01-01

    We reviewed and analyzed the relationship between physical exercise and inflammatory bowel disease (IBD) which covers a group of chronic, relapsing, and remitting intestinal disorders including Crohn's disease (CD) and ulcerative colitis. The etiology of IBD likely involves a combination of genetic predisposition and environmental risk factors. Physical training has been suggested to be protective against the onset of IBD, but there are inconsistencies in the findings of the published literature. Hypertrophy of the mesenteric white adipose tissue (mWAT) is recognized as a characteristic feature of CD, but its importance for the perpetuation of onset of this intestinal disease is unknown. Adipocytes synthesize proinflammatory and anti-inflammatory cytokines. Hypertrophy of mWAT could play a role as a barrier to the inflammatory process, but recent data suggest that deregulation of adipokine secretion is involved in the pathogenesis of CD. Adipocytokines and macrophage mediators perpetuate the intestinal inflammatory process, leading to mucosal ulcerations along the mesenteric border, a typical feature of CD. Contracting skeletal muscles release biologically active myokines, known to exert the direct anti-inflammatory effects, and inhibit the release of proinflammatory mediators from visceral fat. Further research is required to confirm these observations and establish exercise regimes for IBD patients.

  10. Bioactive Compounds Isolated from Microalgae in Chronic Inflammation and Cancer

    PubMed Central

    Talero, Elena; García-Mauriño, Sofía; Ávila-Román, Javier; Rodríguez-Luna, Azahara; Alcaide, Antonio; Motilva, Virginia

    2015-01-01

    The risk of onset of cancer is influenced by poorly controlled chronic inflammatory processes. Inflammatory diseases related to cancer development include inflammatory bowel disease, which can lead to colon cancer, or actinic keratosis, associated with chronic exposure to ultraviolet light, which can progress to squamous cell carcinoma. Chronic inflammatory states expose these patients to a number of signals with tumorigenic effects, including nuclear factor kappa B (NF-κB) and mitogen-activated protein kinases (MAPK) activation, pro-inflammatory cytokines and prostaglandins release and ROS production. In addition, the participation of inflammasomes, autophagy and sirtuins has been demonstrated in pathological processes such as inflammation and cancer. Chemoprevention consists in the use of drugs, vitamins, or nutritional supplements to reduce the risk of developing or having a recurrence of cancer. Numerous in vitro and animal studies have established the potential colon and skin cancer chemopreventive properties of substances from marine environment, including microalgae species and their products (carotenoids, fatty acids, glycolipids, polysaccharides and proteins). This review summarizes the main mechanisms of actions of these compounds in the chemoprevention of these cancers. These actions include suppression of cell proliferation, induction of apoptosis, stimulation of antimetastatic and antiangiogenic responses and increased antioxidant and anti-inflammatory activity. PMID:26437418

  11. Computational modeling of heterogeneity and function of CD4+ T cells

    PubMed Central

    Carbo, Adria; Hontecillas, Raquel; Andrew, Tricity; Eden, Kristin; Mei, Yongguo; Hoops, Stefan; Bassaganya-Riera, Josep

    2014-01-01

    The immune system is composed of many different cell types and hundreds of intersecting molecular pathways and signals. This large biological complexity requires coordination between distinct pro-inflammatory and regulatory cell subsets to respond to infection while maintaining tissue homeostasis. CD4+ T cells play a central role in orchestrating immune responses and in maintaining a balance between pro- and anti- inflammatory responses. This tight balance between regulatory and effector reactions depends on the ability of CD4+ T cells to modulate distinct pathways within large molecular networks, since dysregulated CD4+ T cell responses may result in chronic inflammatory and autoimmune diseases. The CD4+ T cell differentiation process comprises an intricate interplay between cytokines, their receptors, adaptor molecules, signaling cascades and transcription factors that help delineate cell fate and function. Computational modeling can help to describe, simulate, analyze, and predict some of the behaviors in this complicated differentiation network. This review provides a comprehensive overview of existing computational immunology methods as well as novel strategies used to model immune responses with a particular focus on CD4+ T cell differentiation. PMID:25364738

  12. Rare inflammatory diseases of the white matter and mimics of multiple sclerosis and related disorders.

    PubMed

    Tardieu, Marc; Deiva, Kumaran

    2013-12-01

    The spectra of white matter neuroinflammatory diseases and pathological processes inducing inflammatory lesions in the white matter of the central nervous system are wider in children than in adults. The definitions of multiple sclerosis (MS) and of the related clinically isolated syndromes (CIS) and acute disseminated encephalomyelitis (ADEM) have been recently revised leading to a new consensus definition. However, other entities with similarities to these diseases may also develop with monophasic or relapsing white matter inflammation. These conditions include congenital immunogenetic diseases (such as hemophagocytic lymphohistiocytosis), vasculitis, and autoantibody-mediated encephalopathies (Hashimoto encephalopathy, encephalitis with anti-N-methyl-D-aspartate receptor antibodies and neuromyelitis optica). Moreover, infectious diseases, such as Lyme disease, tumors (oligodendroglioma and lymphoma), and even genetic or metabolic diseases should also be considered if the clinical course of the disease does not follow the typical pattern for ADEM or MS. This short review describes these different entities and provides information for the differential diagnosis of inflammatory diseases of the white matter. Georg Thieme Verlag KG Stuttgart · New York.

  13. The sterile inflammatory response

    PubMed Central

    Rock, Kenneth L.; Latz, Eicke; Ontiveros, Fernando; Kono, Hajime

    2015-01-01

    The acute inflammatory response is a double-edged sword. On the one hand it plays a key role in initial host defense particularly against many infections. On the other hand its aim is imprecise and as a consequence, when it is drawn into battle, it can cause collateral damage in tissues. In situations where the inciting stimulus is sterile, the cost-benefit ratio may be high; because of this, sterile inflammation underlies the pathogenesis of a number of diseases. While there have been major advances in our understanding of how microbes trigger inflammation, much less has been learned about this process in sterile situations. This review focuses on a subset of the many sterile stimuli that can induce inflammation – specifically dead cells and a variety of irritant particles, including crystals, minerals, and protein aggregates. Although this subset of stimuli is structurally very diverse and might appear to be unrelated, there is accumulating evidence that the innate immune system may recognize them in similar ways and stimulate the sterile inflammatory response via common pathways. Here we review established and emerging data about these responses. PMID:20307211

  14. Pulmonary Delivery of siRNA via Polymeric Vectors as Therapies of Asthma

    PubMed Central

    Xie, Yuran; Merkel, Olivia M

    2015-01-01

    Asthma is a chronic inflammatory disease. Despite the fact that current therapies, such as the combination of inhaled corticosteroids and β2-agonists, can control the symptoms of asthma in most patients, there is still an urgent need for an alternative anti-inflammatory therapy for patients who suffer from severe asthma but lack acceptable response to conventional therapies. Many molecular factors are involved in the inflammatory process in asthma, and thus blocking the function of these factors could efficiently alleviate airway inflammation. RNA interference (RNAi) is often thought to be the answer in the search for more efficient and biocompatible treatments. However, difficulties of efficient delivery of small interference RNA (siRNA), the key factor in RNAi, to target cells and tissues has limited its clinical application. In this review, we summarize cytokines and chemokines, transcription factors, tyrosine kinases and costimulatory factors that have been reported as targets of siRNA mediated treatment in experimental asthma. Additionally, we conclude several targeted delivery systems of siRNA to specific cells such as T cells, macrophages and dendritic cells, which could potentially be applied in asthma therapy. PMID:26148454

  15. The Production of Nitric Oxide, IL-6, and TNF-Alpha in Palmitate-Stimulated PBMNCs Is Enhanced through Hyperglycemia in Diabetes

    PubMed Central

    Volpe, Caroline Maria Oliveira; Abreu, Luana Farnese Machado; Gomes, Pollyanna Stephanie; Gonzaga, Raquel Miranda; Veloso, Clara Araújo; Nogueira-Machado, José Augusto

    2014-01-01

    We examined nitric oxide (NO), IL-6, and TNF-α secretion from cultured palmitate-stimulated PBMNCs or in the plasma from type 2 diabetes mellitus (T2MD) patients or nondiabetic (ND) controls. Free fatty acids (FFA) have been suggested to induce chronic low-grade inflammation, activate the innate immune system, and cause deleterious effects on vascular cells and other tissues through inflammatory processes. The levels of NO, IL-6, TNF-α, and MDA were higher in supernatant of palmitate stimulated blood cells (PBMNC) or from plasma from patients. The results obtained in the present study demonstrated that hyperglycemia in diabetes exacerbates in vitro inflammatory responses in PBMNCs stimulated with high levels of SFA (palmitate). These results suggest that hyperglycemia primes PBMNCs for NO, IL-6, and TNF-alpha secretion under in vitro FFA stimulation are associated with the secretion of inflammatory biomarkers in diabetes. A combined therapy targeting signaling pathways activated by hyperglycemia in conjunction with simultaneous control of hyperglycemia and hypertriglyceridemia would be suggested for controlling the progress of diabetic complications. PMID:24803982

  16. Role of the inflammasome in defense against venoms

    PubMed Central

    Palm, Noah W.; Medzhitov, Ruslan

    2013-01-01

    Venoms consist of a complex mixture of toxic components that are used by a variety of animal species for defense and predation. Envenomation of mammalian species leads to an acute inflammatory response and can lead to the development of IgE-dependent venom allergy. However, the mechanisms by which the innate immune system detects envenomation and initiates inflammatory and allergic responses to venoms remain largely unknown. Here we show that bee venom is detected by the NOD-like receptor family, pyrin domain-containing 3 inflammasome and can trigger activation of caspase-1 and the subsequent processing and unconventional secretion of the leaderless proinflammatory cytokine IL-1β in macrophages. Whereas activation of the inflammasome by bee venom induces a caspase-1–dependent inflammatory response, characterized by recruitment of neutrophils to the site or envenomation, the inflammasome is dispensable for the allergic response to bee venom. Finally, we find that caspase-1–deficient mice are more susceptible to the noxious effects of bee and snake venoms, suggesting that a caspase-1–dependent immune response can protect against the damaging effects of envenomation. PMID:23297192

  17. The role of vitamin D in pulmonary disease: COPD, asthma, infection, and cancer

    PubMed Central

    2011-01-01

    The role of vitamin D (VitD) in calcium and bone homeostasis is well described. In the last years, it has been recognized that in addition to this classical function, VitD modulates a variety of processes and regulatory systems including host defense, inflammation, immunity, and repair. VitD deficiency appears to be frequent in industrialized countries. Especially patients with lung diseases have often low VitD serum levels. Epidemiological data indicate that low levels of serum VitD is associated with impaired pulmonary function, increased incidence of inflammatory, infectious or neoplastic diseases. Several lung diseases, all inflammatory in nature, may be related to activities of VitD including asthma, COPD and cancer. The exact mechanisms underlying these data are unknown, however, VitD appears to impact on the function of inflammatory and structural cells, including dendritic cells, lymphocytes, monocytes, and epithelial cells. This review summarizes the knowledge on the classical and newly discovered functions of VitD, the molecular and cellular mechanism of action and the available data on the relationship between lung disease and VitD status. PMID:21418564

  18. Gastrointestinal parasites: potential therapy for refractory inflammatory bowel diseases.

    PubMed

    Moreels, Tom G; Pelckmans, Paul A

    2005-02-01

    Crohn's disease and ulcerative colitis are chronic relapsing inflammatory bowel diseases (IBDs). Different pharmacological agents are currently used in several combinations to control the inflammatory process. Recently, antibodies against the proinflammatory cytokine tumor necrosis factor-alpha appeared to be very effective in treating patients with Crohn's disease. However, due to the fact that the pathogen causing IBD is still unknown, no causative treatment is currently available that is able to make the disease disappear. Recently, the hygiene hypothesis of the development of immunological diseases was proposed, stating that raising children in extremely hygienic environments with less exposure to parasite infections may negatively affect the development of the immune system, predisposing them to immunologic diseases such as IBD. This hypothesis is supported by experimental data showing that helminthic parasites protect against T helper (TH) type 1 cell-mediated gastrointestinal inflammations like Crohn's disease. Both TH-2 cells and regulatory T cells may be involved in this immunomodulatory mechanism. Here, we review the experimental and clinical studies in favor of the hygiene hypothesis, opening perspectives on new therapies for IBD.

  19. The Role of Oxidative Stress and Membrane Transport Systems during Endometriosis: A Fresh Look at a Busy Corner

    PubMed Central

    Capriglione, Stella; Peterlunger, Isabel; La Rosa, Valentina Lucia; Vitagliano, Amerigo; Noventa, Marco; Valenti, Gaetano; Sapia, Fabrizio; Angioli, Roberto; Lopez, Salvatore; Sarpietro, Giuseppe; Rossetti, Diego; Zito, Gabriella

    2018-01-01

    Endometriosis is a condition characterized by the presence of endometrial tissue outside the uterine cavity, leading to a chronic inflammatory reaction. It is one of the most widespread gynecological diseases with a 10–15% prevalence in the general female population, rising up to 30–45% in patients with infertility. Although it was first described in 1860, its etiology and pathogenesis are still unclear. It is now accepted that inflammation plays a central role in the development and progression of endometriosis. In particular, it is marked by an inflammatory process associated with the overproduction of an array of inflammatory mediators such as prostaglandins, metalloproteinases, cytokines, and chemokines. In addition, the growth and adhesion of endometrial cells in the peritoneal cavity due to reactive oxygen species (ROS) and free radicals lead to disease onset, its ensuing symptoms—among which pain and infertility. The aim of our review is to evaluate the role of oxidative stress and ROS in the pathogenesis of endometriosis and the efficacy of antioxidant therapy in the treatment and mitigation of its symptoms. PMID:29743986

  20. Treatment strategies for childhood noninfectious chronic uveitis: an update.

    PubMed

    Cantarini, Luca; Simonini, Gabriele; Frediani, Bruno; Pagnini, Ilaria; Galeazzi, Mauro; Cimaz, Rolando

    2012-01-01

    Uveitis is an inflammatory disorder involving inflammation of the uveal tract. It is classified as anterior, intermediate, posterior or panuveitis, depending on the part of eye affected by the inflammatory process. In children, noninfectious, chronic uveitis is a relatively uncommon but serious disease, with the potential for significant long-term complications and possible blindness. Although frequently associated with an underlying systemic disease, for example, juvenile idiopathic arthritis, a significant number of cases in children show no associated signs or symptoms and are labeled as idiopathic. We reviewed the available literature. Taking into account this evidence, an anti-inflammatory therapy based on an immunomodulatory approach seems a reasonable strategy for noninfectious chronic uveitis, in children as well as in adults. Due to a lack of controlled studies regarding uveitis in children, immunosuppressive strategy is supported only at evidence level III. Our aim is to review the currently available medical strategies for the treatment of childhood sight-threatening chronic uveitis. Uveitis in children can be severe. Methotrexate is the drug of choice for recalcitrant cases, and biologic therapies can be useful in selected situations.

  1. Current therapeutic approaches to autoimmune chronic uveitis in children.

    PubMed

    Simonini, Gabriele; Cantarini, Luca; Bresci, Cecilia; Lorusso, Monica; Galeazzi, Mauro; Cimaz, Rolando

    2010-08-01

    Uveitis is an inflammatory disorder involving inflammation of the uveal tract. It is classified as anterior, intermediate, posterior or panuveitis, depending on the part of eye affected by the inflammatory process. In children, non-infectious, chronic uveitis is a relatively uncommon but serious disease, with the potential for significant long-term complications and possible blindness. Although frequently associated with an underlying systemic disease, e.g. juvenile idiopathic arthritis (JIA), a significant number of cases in children show no associated signs or symptoms, and are labelled as idiopathic. Taking into account this evidence, an anti-inflammatory therapy based on an immuno-modulatory approach seems a reasonable strategy for non-infectious chronic uveitis, in children as well as in adults. Due to a lack of controlled studies regarding uveitis in children, immunosuppressive drugs are supported only at evidence level III. The aim of this review is to report currently available medical strategies for treatment of childhood sight-threatening chronic uveitis; in addition, a step-by-step approach to the use of immunosuppressants in this context is suggested. 2010 Elsevier B.V. All rights reserved.

  2. Periodontal disease as a potential factor for systemic inflammatory response in the dog.

    PubMed

    Kouki, M I; Papadimitriou, S A; Kazakos, G M; Savas, I; Bitchava, D

    2013-01-01

    Periodontal disease is an inflammatory disease that has numerous consequences both locally and systemically The aim of this study was to assess whether periodontal disease causes systemic inflammatory response in otherwise healthy, adult dogs. We estimated the total mouth periodontal score (TMPS), measured the concentration of C-reactive protein (CRP), hematocrit, and albumin, and determined the white blood cell (WBC) and polymorphonuclear cell (PMN) counts in client-owned dogs. There was a statistically significant relationship between the gingival bleeding index (TMPS-G) and CRP concentration, and WBC and PMN counts, possibly during the active periods of periodontal tissue destruction. No correlation was found between the periodontal destruction index (TMPS-P) and the measured blood parameters. We conclude that chronic periodontal disease does not cause anemia or a reduction in serum albumin. However, active periods of periodontal inflammation may be associated with laboratory values suggestive of a systemic inflammatory response.

  3. MECHANISMS INVOLVED IN THE ASSOCIATION BETWEEN PERIDONTAL DISEASES AND CARDIOVASCULAR DISEASE

    PubMed Central

    Teles, Ricardo; Wang, Cun-Yu

    2012-01-01

    It is now well accepted that besides the cholesterol associated mechanisms of atherogenesis, inflammation plays a crucial role in all stages of the development of the atherosclerotic lesion. This “inflammation hypothesis” raises the possibility that, through systemic elevations of pro-inflammatory cytokines, periodontal diseases might also contribute to systemic inflammation and, therefore, to atherogenesis. In fact, there is evidence that periodontal diseases are associated with higher systemic levels of high-sensitivity C-reactive protein and a low grade systemic inflammation. This phenomenon has been explained based on mechanisms associated with either the infectious or the inflammatory nature of periodontal diseases. The purposes of this article are to review (1) the evidence suggesting a role for oral bacterial species, particularly periodontal pathogens, in atherogenesis; (2) the potential mechanisms explaining an etiological role for oral bacteria in atherosclerosis; (3) the evidence suggesting that periodontal infections are accompanied by a heightened state of systemic inflammation; (4) the potential sources of systemic inflammatory biomarkers associated with periodontal diseases; and (5) the effects of periodontal therapy on systemic inflammatory biomarkers and cardiovascular risk. PMID:21223455

  4. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  5. Coconut water of different maturity stages ameliorates inflammatory processes in model of inflammation.

    PubMed

    Rao, Sadia Saleem; Najam, Rahila

    2016-01-01

    Coconut water is a natural beverage that is a part of daily diet of many people. This study was designed to explore the anti-inflammatory activity of coconut water of different maturation stages (young and mature) with rat paw edema model of inflammation using plethysmometer. For this study, albino rats were selected and divided into four equal groups (10 rats in each group). Group 1 was set as control and administered distilled water 1 ml orally; Groups 2 and 3 were treated with young and mature coconut water, respectively, at 4 ml/100 g dose orally. Group 4 was treated with the standard drug (ibuprofen) at 400 mg/70 kg. 0.1 ml of 1% w/v acetic acid was administered in the subplantar tissue of rat paw 30 min after oral treatments of groups. Plethysmometer was used to measure rat paw edema. Results revealed that both coconut water possess significant anti-inflammatory activity (P < 0.001). In comparison to control, percent inhibition by young coconut water was 20.22%, 35.13%, 42.52%, and 36% at 1, 2, 3, and 4 h of acetic acid administration, respectively. However, maximum percent inhibition (42.52%) was observed in the second phase of the inflammatory process. On the other hand, percent inhibition by mature coconut water was 18.80%, 25.94%, 24.13%, and 18.66% at 1, 2, 3, and 4 h of acetic acid administration, respectively. However, maximum percent inhibition (25.94%) was observed in the first phase of the inflammatory process. This study strongly suggests the use of young coconut water for potent anti-inflammatory effect and mature coconut water for moderate anti-inflammatory effect.

  6. Coconut water of different maturity stages ameliorates inflammatory processes in model of inflammation

    PubMed Central

    Rao, Sadia Saleem; Najam, Rahila

    2016-01-01

    Aim: Coconut water is a natural beverage that is a part of daily diet of many people. This study was designed to explore the anti-inflammatory activity of coconut water of different maturation stages (young and mature) with rat paw edema model of inflammation using plethysmometer. Methodology: For this study, albino rats were selected and divided into four equal groups (10 rats in each group). Group 1 was set as control and administered distilled water 1 ml orally; Groups 2 and 3 were treated with young and mature coconut water, respectively, at 4 ml/100 g dose orally. Group 4 was treated with the standard drug (ibuprofen) at 400 mg/70 kg. 0.1 ml of 1% w/v acetic acid was administered in the subplantar tissue of rat paw 30 min after oral treatments of groups. Plethysmometer was used to measure rat paw edema. Results: Results revealed that both coconut water possess significant anti-inflammatory activity (P < 0.001). In comparison to control, percent inhibition by young coconut water was 20.22%, 35.13%, 42.52%, and 36% at 1, 2, 3, and 4 h of acetic acid administration, respectively. However, maximum percent inhibition (42.52%) was observed in the second phase of the inflammatory process. On the other hand, percent inhibition by mature coconut water was 18.80%, 25.94%, 24.13%, and 18.66% at 1, 2, 3, and 4 h of acetic acid administration, respectively. However, maximum percent inhibition (25.94%) was observed in the first phase of the inflammatory process. Conclusions: This study strongly suggests the use of young coconut water for potent anti-inflammatory effect and mature coconut water for moderate anti-inflammatory effect. PMID:27366350

  7. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids.

    PubMed

    Bower, Julienne E; Ganz, Patricia A; Aziz, Najib; Olmstead, Richard; Irwin, Michael R; Cole, Steve W

    2007-03-01

    Fatigue is a common problem following cancer treatment and our previous studies suggest that a chronic inflammatory process might contribute to cancer-related fatigue. However, immune responses to challenge have not yet been evaluated among individuals with cancer-related fatigue, and it is not known what mechanisms drive increased levels of inflammatory markers in fatigued cancer survivors. We have previously reported that fatigued breast cancer survivors show a blunted cortisol response to an experimental psychological stressor. In this report, we focus on inflammatory responses to this stressor and their relationship to circulating glucocorticoids and cellular sensitivity to glucocorticoid inhibition. Relative to non-fatigued control survivors, participants experiencing persistent fatigue showed significantly greater increases in LPS-stimulated production of IL-1beta and IL-6 following the stressor (Group x Time interaction: p<.05). Fatigued participants did not show any difference in cellular sensitivity to cortisol inhibition of cytokine production, but they did show significantly less salivary cortisol increase in the aftermath of the stressor. Moreover, blunted cortisol responses were associated with significantly increased production of IL-6 in response to LPS stimulation (p<.05). These data provide further evidence of enhanced inflammatory processes in fatigued breast cancer survivors and suggest that these processes may stem in part from decreased glucocorticoid response to stress.

  8. Is antibiotic prophylaxis mandatory after the insertion of levonorgestrel-releasing intrauterine systemin order to decrease the risk of pelvic inflammatory disease?

    PubMed

    Munteanu, O; Radulescu, L; Bodean, O; Cirstoiu, C; Secara, D; Cirstoiu, M

    2013-01-01

    This study was undertaken in order to determine if antibiotic prophylaxis is mandatory, after the insertion of levonorgestrel-releasing intrauterine system in order to decrease the risk of pelvic inflammatory disease. We prospectively evaluated 44 patients, admitted in the Bucharest Emergency Hospital between the 1ⁱ of February 2012 and the 1ⁱ of October 2012, in whom the levonorgestrel-releasing intrauterine system was inserted. The patients enrolled were divided into two groups. In group A, a number of 22 patients, received, after the insertion of levonorgestrel-releasing intrauterine system, 875mg Amoxicillin Trihydrate + 125 mg Potassium Clavulanate, a dose every 12 hours for 5 days. Group B was represented by the other 22 patients who did not receive antibiotic prophylaxis. All patients were reevaluated at 4 and 12 weeks after the insertion of levonorgestrel-releasing intrauterine system. During the first 4 weeks after the insertion of levonorgestrel-releasing intrauterine system only two patients, one from group A and one from group B were diagnosed with pelvic inflammatory disease. At a second follow up visit - 12 weeks after the insertion of levonorgestrel-releasing intrauterine system, no other patient was diagnosed with pelvic inflammatory disease. Antibiotic prophylaxis is not mandatory, after the insertion of levonorgestrel-releasing intrauterine system in order to decrease the risk of pelvic inflammatory disease.

  9. [The brain and cytokines - the mutual origin of depression, obesity and cardiovascular diseases?].

    PubMed

    Ufnal, Marcin; Wolynczyk-Gmaj, Dorota

    2011-04-19

    Accumulating evidence points to a pivotal role of the brain in the regulation of the circulatory system and energy balance. It has also been found that common civilization diseases such as depression, obesity, hypertension, myocardial infarction or heart failure are accompanied by an increase in concentration of inflammatory mediators in the blood, cerebrospinal fluid and various tissues. Recent studies have revealed that inflammatory mediators that are synthesized peripherally or in the brain may affect the nervous regulation of animal body systems. For example, it has been found that non-specific pro-inflammatory stimuli as well as treatment with several cytokines may cause depressive behavior, disturbances in energy balance and alterations in the circulatory system. On the other hand, knockout of genes for pro-inflammatory cytokines or administration of anti-inflammatory mediators may normalize the pathological changes. In the present manuscript we will review studies that imply the common neuroinflammatory pathogenesis of cardiovascular diseases, depression and energy balance disorders.

  10. Evolutionary medicine and chronic inflammatory state--known and new concepts in pathophysiology.

    PubMed

    Straub, Rainer H

    2012-05-01

    During the last 10 years, a series of exciting observations has led to a new theory of pathophysiology using insights from evolutionary biology and neuroendocrine immunology to understand the sequelae of chronic inflammatory disease. According to this theory, disease sequelae can be explained based on redirection of energy-rich fuels from storage organs to the activated immune system. These disease sequelae are highly diverse and include the following: sickness behavior, anorexia, malnutrition, muscle wasting-cachexia, cachectic obesity, insulin resistance with hyperinsulinemia, dyslipidemia, increase of adipose tissue near inflamed tissue, alterations of steroid hormone axes, elevated sympathetic tone and local sympathetic nerve fiber loss, decreased parasympathetic tone, hypertension, inflammation-related anemia, and osteopenia. Since these disease sequelae can be found in many animal models of chronic inflammatory diseases with mammals (e.g., monkeys, mice, rats, rabbits, etc.), the evolutionary time line goes back at least 70 million years. While the initial version of this theory could explain prominent sequelae of chronic inflammatory disease, it did not however address two features important in the pathogenesis of immune-mediated diseases: the time point when an acute inflammatory disease becomes chronic, and the appearance of hypertension in chronic inflammation. To address these aspects more specifically, a new version of the theory has been developed. This version defines more precisely the moment of transition from acute inflammatory disease to chronic inflammatory disease as a time in which energy stores become empty (complete energy consumption). Depending on the amount of stored energy, this time point can be calculated to be 19-43 days. Second, the revised theory addresses the mechanisms of essential hypertension since, on the basis of water loss, acute inflammatory diseases can stimulate water retention using a positively selected water retention system (identical to the energy provision system). In chronic smoldering inflammation, however, there is no increased water loss. In contrast, there is increased water generation in inflamed tissue and inflammatory cells, and the activation of the water retention system persists. This combination leads to a net increase of the systemic fluid volume, which is hypothesized to be the basis of essential hypertension (prevalence in adults 22-32%).

  11. Removal of inflammatory ascites is associated with dynamic modification of local and systemic inflammation along with prevention of acute lung injury: in vivo and in silico studies.

    PubMed

    Emr, Bryanna; Sadowsky, David; Azhar, Nabil; Gatto, Louis A; An, Gary; Nieman, Gary F; Vodovotz, Yoram

    2014-04-01

    Sepsis-induced inflammation in the gut/peritoneal compartment occurs early in sepsis and can lead to acute lung injury (ALI). We have suggested that inflammatory ascites drives the pathogenesis of ALI and that removal of ascites with an abdominal wound vacuum prevents ALI. We hypothesized that the time- and compartment-dependent changes in inflammation that determine this process can be discerned using principal component analysis (PCA) and Dynamic Bayesian Network (DBN) inference. To test this hypothesis, data from a previous study were analyzed using PCA and DBN. In that study, two groups of anesthetized, ventilated pigs were subjected to experimental sepsis via intestinal ischemia/reperfusion and placement of a peritoneal fecal clot. The control group (n = 6) had the abdomen opened at 12 h after injury (T12) with attachment of a passive drain. The peritoneal suction treatment (PST) group (n = 6) was treated in an identical fashion except that a vacuum was applied to the peritoneal cavity at T12 to remove ascites and maintained until T48. Multiple inflammatory mediators were measured in ascites and plasma and related to lung function (PaO2/FIO2 ratio and oxygen index) using PCA and DBN. Peritoneal suction treatment prevented ALI based on lung histopathology, whereas control animals developed ALI. Principal component analysis revealed that local to the insult (i.e., ascites), primary proinflammatory cytokines play a decreased role in the overall response in the treatment group as compared with control. In both groups, multiple, nested positive feedback loops were inferred from DBN, which included interrelated roles for bacterial endotoxin, interleukin 6, transforming growth factor β1, C-reactive protein, PaO2/FIO2 ratio, and oxygen index. von Willebrand factor was an output in control, but not PST, ascites. These combined in vivo and in silico studies suggest that in this clinically realistic paradigm of sepsis, endotoxin drives the inflammatory response in the ascites, interplaying with lung dysfunction in a feed-forward loop that exacerbates inflammation and leads to endothelial dysfunction, systemic spillover, and ALI; PST partially modifies this process.

  12. Role of inflammation in cardiopulmonary health effects of PM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donaldson, Ken; Mills, Nicholas; MacNee, William

    2005-09-01

    The relationship between increased exposure to PM and adverse cardiovascular effects is well documented in epidemiological studies. Inflammation in the lungs, caused by deposited particles, can be seen as a key process that could mediate adverse effects on the cardiovascular system. There are at least three potential pathways that could lead from pulmonary inflammation to adverse cardiovascular effects. Firstly, inflammation in the lung could lead to systemic inflammation, which is well known to be linked to sudden death from cardiovascular causes. Systemic inflammation can lead to destabilization by activation of inflammatory processes in atheromatous plaques. Secondly, inflammation can cause anmore » imbalance in coagulation factors that favor propagation of thrombi if thrombosis is initiated. Thirdly, inflammation could affect the autonomic nervous system activity in ways that could lead to alterations in the control of heart rhythm which could culminate in fatal dysrhythmia.« less

  13. Influence of dietary fiber on inflammatory bowel disease and colon cancer: importance of fermentation pattern.

    PubMed

    Rose, Devin J; DeMeo, Mark T; Keshavarzian, Ali; Hamaker, Bruce R

    2007-02-01

    The benefits of dietary fiber on inflammatory bowel disease may be related to the fermentative production of butyrate in the colon, which appears to decrease the inflammatory response. The benefits of dietary fiber against colon cancer may be related to both fermentative and non-fermentative processes, although poorly fermentable fibers appear more influential. Dietary fiber fermentation profiles are important in determining optimal fibers for colonic health, and may be a function of structure, processing conditions, and other food components. A greater understanding of the relationships between fermentation rate and dietary fiber structure would allow for development of dietary fibers for optimum colonic health.

  14. Systemic effect of mineral aggregate-based cements: histopathological analysis in rats

    PubMed Central

    Garcia, Lucas da Fonseca Roberti; Huck, Claudia; Magalhães, Fernando Augusto Cintra; de Souza, Pedro Paulo Chaves; de Souza Costa, Carlos Alberto

    2017-01-01

    Abstract Objective: Several studies reported the local tissue reaction caused by mineral aggregate-based cements. However, few studies have investigated the systemic effects promoted by these cements on liver and kidney when directly applied to connective tissue. The purpose of this in vivo study was to investigate the systemic effect of mineral aggregate-based cements on the livers and kidneys of rats. Material and Methods: Samples of Mineral Trioxide Aggregate (MTA) and a calcium aluminate-based cement (EndoBinder) containing different radiopacifiers were implanted into the dorsum of 40 rats. After 7 and 30 d, samples of subcutaneous, liver and kidney tissues were submitted to histopathological analysis. A score (0-3) was used to grade the inflammatory reaction. Blood samples were collected to evaluate changes in hepatic and renal functions of animals. Results: The moderate inflammatory reaction (2) observed for 7 d in the subcutaneous tissue decreased with time for all cements. The thickness of inflammatory capsules also presented a significant decrease with time (P<.05). Systemically, all cements caused adverse inflammatory reactions in the liver and kidney, being more evident for MTA, persisting until the end of the analysis. Liver functions increased significantly for MTA during 30 d (P<.05). Conclusion: The different cements induced to a locally limited inflammatory reaction. However, from the systemic point of view, the cements promoted significant inflammatory reactions in the liver and kidney. For MTA, the reactions were more accentuated. PMID:29211283

  15. Myocarditis in auto-immune or auto-inflammatory diseases.

    PubMed

    Comarmond, Cloé; Cacoub, Patrice

    2017-08-01

    Myocarditis is a major cause of heart disease in young patients and a common precursor of heart failure due to dilated cardiomyopathy. Some auto-immune and/or auto-inflammatory diseases may be accompanied by myocarditis, such as sarcoidosis, Behçet's disease, eosinophilic granulomatosis with polyangiitis, myositis, and systemic lupus erythematosus. However, data concerning myocarditis in such auto-immune and/or auto-inflammatory diseases are sparse. New therapeutic strategies should better target the modulation of the immune system, depending on the phase of the disease and the type of underlying auto-immune and/or auto-inflammatory disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The role of the central nervous system in the generation and maintenance of chronic pain in rheumatoid arthritis, osteoarthritis and fibromyalgia

    PubMed Central

    2011-01-01

    Pain is a key component of most rheumatologic diseases. In fibromyalgia, the importance of central nervous system pain mechanisms (for example, loss of descending analgesic activity and central sensitization) is well documented. A few studies have also noted alterations in central pain processing in osteoarthritis, and some data, including the observation of widespread pain sensitivity, suggest that central pain-processing defects may alter the pain response in rheumatoid arthritis patients. When central pain is identified, different classes of analgesics (for example, serotonin-norepinephrine reuptake inhibitors, α2δ ligands) may be more effective than drugs that treat peripheral or nociceptive pain (for example, nonsteroidal anti-inflammatory drugs and opioids). PMID:21542893

  17. [Potentialities of the vegetative resonance test for diagnostics of hyperplastic processes in vocal folds].

    PubMed

    Ukhankova, N I; Sotskaia, T Iu

    2010-01-01

    The objective of the present study was to evaluate potentialities of the vegetative resonance test (VRT) for the elucidation of metabolic aspects of the inflammatory process in different forms of chronic vocal fold hyperplasty. The proposed diagnostic criteria characterize the inflammatory process in the larynx, specific features of metabolism in patients presenting with catarrhal and oedematopolypous laryngitis, characteristic changes in oedematofibrous and fibrous polyps. The use of VRT allowed diagnostic criteria for precarcinogenic conditions in the larynx to be developed.

  18. Nutritional management of osteoarthritis.

    PubMed

    Richardson, D C; Schoenherr, W D; Zicker, S C

    1997-07-01

    Nutrition can influence developmental orthopedic diseases and the inflammatory process of arthritis. Developmental skeletal disease is a group of skeletal abnormalities that primarily affect fast-growing, large-breed dogs. Nutrient excesses (calcium and energy) and rapid growth (overfeeding and excess energy) are known risk factors. Inflammation can be directly or indirectly affected by nutritional influences. A direct effect can be achieved by modulating the immune response and inflammatory process with fatty acids. Weight control can indirectly influence the degenerative joint disease process by reducing the stresses on the joint.

  19. The role of local and systemic cytokines in patients infected with Clostridium difficile.

    PubMed

    Czepiel, J; Biesiada, G; Brzozowski, T; Ptak-Belowska, A; Perucki, W; Birczynska, M; Jurczyszyn, A; Strzalka, M; Targosz, A; Garlicki, A

    2014-10-01

    It is widely accepted that the pathogenesis of Clostridium difficile infection (CDI) is multifactorial, dependent on pathogen virulence factors produced by the organism as well as disorders of the gastrointestinal tract, the alteration in intestinal flora and the immune response of the host. In particular, the immune response in the course of CDI and the involvement of cytokines in the pathogenesis of CDI is not fully understood. The aim of our study was to evaluate the relationship between proinflammatory and anti-inflammatory cytokines and the course of CDI in vivo. We prospectively studied 80 patients. Our study group included 40 patients aged 30-87 years (mean age 66.9 years) with CDI hospitalized at Infectious Diseases Department and Gastroenterology and Hepatology Clinic, University Hospital in Cracow, and 40 healthy volunteers aged 24-62 years (mean age 51.1 years). The serum concentrations of cytokines IL-1β, IL-6, IL-8, IL-10, tumor necrosis factor (TNF-α), myeloperoxidase (MPO), and prostaglandin E2 (PGE2) were measured using ELISA assays. Additionally, the routine biochemical parameters were assessed including the following: white blood cells with differential leukocyte count, platelets counts, and blood plasma levels of creatinine, alanine transaminase, and C-reactive protein were determined. We noted a significant increase in the concentration of the following cytokines in the CDI group when compared to the control group: IL-1b (4.7 vs. 3.6 pg/ml), IL-6 (21.0 vs. 0.04 pg/ml), IL-10 (8.5 vs. 0.5 pg/ml), TNF-α (7.1 vs. 0.09 pg/ml). In addition the serum concentration of MPO (1056.0 vs. 498.0 pg/ml), and PGE2 (2036.7 vs. 1492.0 pg/ml) showed a significant increase in CDI patients as compared with control subjects. Most CDI patients did not show any increase in the concentration of IL-8. We did observe a direct relationship between TNF-α and creatinine. The course of CDI is characterized by an initial local inflammatory process followed by a systemic inflammatory response, which manifests clinically as fever, and includes leukocytosis, an increase in the level of neutrophils in the blood, and an increase in the serum concentrations of TNF-α, IL-1β, IL-6, IL-10, MPO and PGE2. Despite the leading role of IL-8 in the local inflammatory process, we postulate TNF-α and IL-6 play a key role in the systemic inflammatory response in CDI, and the plasma TNF-α level seems to act as a major factor of poor prognosis in patients with CDI.

  20. [The rehabilitative treatment of the patients presenting with chronic obstructive pulmonary disease including the application of the manual handling methods].

    PubMed

    Ayrapetova, N S; Eremushkin, M A; Antonovich, I V; Kuznetsov, O F; Samorukov, A E; Budylin, S P; Tarasova, L Yu; Derevnina, N A

    The objective of the present study was to identify the peculiar features and advantages of different methods for the mechanical impact on the thoracic tissues of the patients presenting with chronic obstructive pulmonary disease (COPD) and to develop specific indications for their clinical applications. This randomized prospective comparative study included 137 patients with COPD. In accordance with the currently accepted classification (GOLD, 2013), all the patients had COPD of medium severity. The smoldering inflammatory process was diagnosed in 75 (54.7%) patients, grade I and II respiratory insufficiency in 80 (58.4%) and 57 (41.6%) patients, respectively. The external respiration function was evaluated by means of pneumotachometry techniques during the forced expiratory maneuver and by spirometry. The pulmonary hemodynamics and myocardial contractility of the right ventricle were studied with the use of rheopulmonography and central hemodynamics by tetrapolar thoracic rheography. The routine inflammatory and immune tests were employed. Investigations of the systemic circulation have demonstrated the prevalence of its hyperkinetic type (54,0%) over the hypokinetic and eukinetic ones (23,3% and 22,7% respectively). All the patients were divided into three group identical in terms of clinical and functional characteristics. The patients comprising group 1 (n=46) were prescribed the rehabilitative treatment in the form of classical chest massage, those of group 2 (n=47) were treated by means of intense massage of asymmetric chest zones, and the patients included in group 3 (n=44) underwent manual therapy. It was shown that intense massage produced the most pronounced beneficial effect. Classical massage also resulted in the reduction of the inflammatory manifestations but its effectiveness was significantly lower than that of the intense treatment (р<0,05-0,02). Manual therapy failed to cause any appreciable changes in the character and severity of the inflammatory process (р>0,5). The intense massage of asymmetric chest zones proved to provide the most efficient tool for the anti-inflammatory treatment of the patients presenting with chronic obstructive pulmonary disease in comparison with other known methods for the mechanical impact on the thoracic tissues. However, the application of this technique is limited in the patients with the hypokinetic type of systemic circulation and pulmonary hypertension. The most important advantage of chest massage by the conventional method is the possibility of its application for the treatment of the patients suffering from severe forms of COPD associated with pulmonary and systemic cardiohemodynamic disturbances with alveolar hypoxia. Manual therapy can be recommended in the first place to the patients with COPD in remission and the accompanying functional blockade of the vertebral segments.

  1. [Allergic inflammation in respiratory system].

    PubMed

    An, Lifeng; Wang, Yanshu; Li, Lin

    2015-02-01

    The pathophysiology of allergic disease such as asthma and allergic rhinitis tell the similar story: when the endogenous and exogenous inflammatory mechanisms occur disorder, the body may begin with inflammatory cell activation, namely through the release of cytokine and inflammatory mediator role in the corresponding target cells, activate the sensory nerve fiber, acting on the cell organ specificity effect, clinical symptoms. This article is divided into the following five parts focused on the research progress of allergic inflammatory diseases: (1) inflammatory cells; (2) staphylococcus aureus superantigen; (3) small molecules (cytokines, inflammatory mediators, lipid classes medium); (4) nerve fibers and effect cells; (5) genetic and epigenetic factors.

  2. Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat.

    PubMed

    Casolini, Paola; Catalani, Assia; Zuena, Anna R; Angelucci, Luciano

    2002-05-01

    Brain aging as well as brain degenerative processes with accompanying cognitive impairments are generally associated with hyperactivity of the hypothalamus-pituitary-adrenal axis, the end product of which, the glucocorticoid hormone, has been warranted the role of cell damage primum movens ("cascade hypothesis"). However, chronic inflammatory activity occurs in the hippocampus of aged rats as well as in the brain of Alzheimer's disease patients. The concomitant increase in the secretion of the glucocorticoid hormone, the endogenous anti-inflammatory and pro-inflammatory markers, has prompted us to investigate the two phenomena in the aging rat, and to work out its meaning. This study shows that: (I) interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNFalpha), and prostaglandin E(2) (PGE(2)) increase with age in the rats hippocampus, and (II) chronic oral treatment with celecoxib, a selective cycloxygenase-2 (COX-2) inhibitor, is able to contrast the age-dependent increase in hippocampal levels of pro-inflammatory markers and circulating anti-inflammatory corticosterone, provided that it is started at an early stage of aging. Under these conditions, age-related impairments in cognitive ability may be ameliorated. Taken together, these results indicate that there is a natural tendency to offset the age-dependent increase in brain inflammatory processes via the homeostatic increase of the circulating glucocorticoid hormone. Copyright 2002 Wiley-Liss, Inc.

  3. Sleep and inflammatory markers in different psychiatric disorders.

    PubMed

    Krysta, Krzysztof; Krzystanek, Marek; Bratek, Agnieszka; Krupka-Matuszczyk, Irena

    2017-02-01

    Many psychiatric disorders, like schizophrenia, affective disorders, addictions and different forms of dementia are associated with sleep disturbances. In the etiology and course of those diseases inflammatory processes are regarded to be an increasingly important factor. They are also a frequently discussed element of the pathology of sleep. In this literature review reports on correlations between poor sleep and inflammatory responses in various psychiatric conditions are discussed. The link between schizophrenia, affective disorders and inflammatory cytokines is a complex phenomenon, which has been already confirmed in a number of studies. However, the presence of sleep deficits in those conditions, being a common symptom of depression and psychoses, can be an additional factor having a considerable impact on the immunological processes in mental illnesses. In the analyzed data, a number of studies are presented describing the role of inflammatory markers in sleep disturbances and psychopathological symptoms of affective, psychotic, neurogenerative and other disorders. Also attention is drawn to possible implications for their treatment. Efforts to use, e.g., anti-inflammatory agents in psychiatry in the context of their impact on sleep are reported. The aspect of inflammatory markers in the role of sleep deprivation as the treatment method in major depressive disorder is also discussed. A general conclusion is drawn that the improvement of sleep quality plays a crucial role in the care for psychiatric patients.

  4. Participation of hypothalamic CB1 receptors in reproductive axis disruption during immune challenge.

    PubMed

    Surkin, P N; Di Rosso, M E; Correa, F; Elverdin, J C; Genaro, A M; De Laurentiis, A; Fernández-Solari, J

    2017-08-01

    Immune challenge inhibits reproductive function and endocannabinoids (eCB) modulate sexual hormones. However, no studies have been performed to assess whether the eCB system mediates the inhibition of hormones that control reproduction as a result of immune system activation during systemic infections. For that reason, we evaluated the participation of the hypothalamic cannabinoid receptor CB1 on the hypothalamic-pituitary-gonadal (HPG) axis activity in rats submitted to immune challenge. Male adult rats were treated i.c.v. administration with a CB1 antagonist/inverse agonist (AM251) (500 ng/5 μL), followed by an i.p. injection of lipopolysaccharide (LPS) (5 mg/kg) 15 minutes later. Plasmatic, hypothalamic and adenohypophyseal pro-inflammatory cytokines, hormones and neuropeptides were assessed 90 or 180 minutes post-LPS. The plasma concentration of tumour necrosis factor α and adenohypophyseal mRNA expression of Tnfα and Il1β increased 90 and 180 minutes post i.p. administration of LPS. However, cytokine mRNA expression in the hypothalamus increased only 180 minutes post-LPS, suggesting an inflammatory delay in this organ. CB1 receptor blockade with AM251 increased LPS inflammatory effects, particularly in the hypothalamus. LPS also inhibited the HPG axis by decreasing gonadotrophin-releasing hormone hypothalamic content and plasma levels of luteinising hormone and testosterone. These disruptor effects were accompanied by decreased hypothalamic Kiss1 mRNA expression and prostaglandin E2 content, as well as by increased gonadotrophin-inhibitory hormone (Rfrp3) mRNA expression. All these disruptive effects were prevented by the presence of AM251. In summary, our results suggest that, in male rats, eCB mediate immune challenge-inhibitory effects on reproductive axis at least partially via hypothalamic CB1 activation. In addition, this receptor also participates in homeostasis recovery by modulating the inflammatory process taking place after LPS administration. © 2017 British Society for Neuroendocrinology.

  5. Plasma iron, C-reactive protein, albumin, and plasma fibrinogen concentrations in dogs with systemic inflammatory response syndrome.

    PubMed

    Torrente, Carlos; Manzanilla, Edgar G; Bosch, Luis; Fresno, Laura; Rivera Del Alamo, Montserrat; Andaluz, Anna; Saco, Yolanda; Ruiz de Gopegui, Rafael

    2015-01-01

    To investigate the diagnostic and prognostic value over time of plasma iron compared with the inflammatory markers albumin, C-reactive protein (CRP), and fibrinogen in dogs with systemic inflammatory response syndrome (SIRS). Prospective observational study of sequentially enrolled dogs. ICU of a veterinary teaching hospital. One hundred and sixteen client-owned dogs: 54 dogs with SIRS or sepsis, 42 with focal inflammation, and 20 clinically healthy dogs. Blood samples were obtained on admission in all study groups, and then on alternate days until discharge or death in both inflammation groups. On admission, dogs with SIRS had significantly lower plasma iron (65 ± 5.8 μg/dL, P = 0.001) concentrations than dogs with focal inflammation (89.5 ± 6.2 μg/dL, P = 0.001). Plasma iron, albumin, and CRP effectively discriminated the SIRS/sepsis group from those presenting with focal inflammation with areas under the curve for the receiver operating curves of 0.679, 0.834, and 0.704, respectively. The admission values for these variables did not discriminate survivors from nonsurvivors within the SIRS/sepsis group. However, the magnitude of increase in iron concentration and the decrease in CRP concentration from admission to hospital discharge was higher in survivors than in nonsurvivors within the SIRS/septic group (22.8 vs. 2.51 μg/dL, respectively, P = 0.021 for iron; -67.1 vs. -4.1 mg/L, respectively, P = 0.002 for CRP), resulting in iron and CRP concentrations at hospital discharge for survivors similar to those in the focal inflammation group. Hypoferremia is a sensitive marker of systemic inflammation in dogs. In this study, the increase in iron concentrations during the hospitalization period of SIRS/septic dogs was associated with a better prognosis, suggesting that plasma iron in combination with CRP and albumin concentrations might be used to monitor dogs with inflammatory disease processes. © Veterinary Emergency and Critical Care Society 2015.

  6. Bio-corrosion of stainless steel by osteoclasts--in vitro evidence.

    PubMed

    Cadosch, Dieter; Chan, Erwin; Gautschi, Oliver P; Simmen, Hans-Peter; Filgueira, Luis

    2009-07-01

    Most metals in contact with biological systems undergo corrosion by an electrochemical process. This study investigated whether human osteoclasts (OC) are able to grow on stainless steel (SS) and directly corrode the metal alloy leading to the formation of corresponding metal ions, which may cause inflammatory reactions and activate the immune system. Scanning electron microscopy analysis demonstrated long-term viable OC cultures and evident resorption features on the surface of SS discs on which OC were cultured for 21 days. The findings were confirmed by atomic emission spectrometry investigations showing significantly increased levels of chromium, nickel, and manganese in the supernatant of OC cultures. Furthermore, significant levels of pro-inflammatory cytokines IL-1beta, IL-6, and TNF-alpha, which are considered to be major mediators of osteolysis, were revealed in the same cultures by cytometric bead array analysis. Within the present study, it was shown that human osteoclast precursors are able to grow and differentiate towards mature OC on SS. The mature cells are able to directly corrode the metal surface and release corresponding metal ions, which induce the secretion of pro-inflammatory cytokines that are known to enhance osteoclast differentiation, activation, and survival. Enhanced corrosion and the subsequently released metal ions may therefore result in enhanced osteolytic lesions in the peri-prosthetic bone, contributing to the aseptic loosening of the implant.

  7. Hypercholesterolemia induces T cell expansion in humanized immune mice.

    PubMed

    Proto, Jonathan D; Doran, Amanda C; Subramanian, Manikandan; Wang, Hui; Zhang, Mingyou; Sozen, Erdi; Rymond, Christina C; Kuriakose, George; D'Agati, Vivette; Winchester, Robert; Sykes, Megan; Yang, Yong-Guang; Tabas, Ira

    2018-06-01

    Emerging data suggest that hypercholesterolemia has stimulatory effects on adaptive immunity and that these effects can promote atherosclerosis and perhaps other inflammatory diseases. However, research in this area has relied primarily on inbred strains of mice whose adaptive immune system can differ substantially from that of humans. Moreover, the genetically induced hypercholesterolemia in these models typically results in plasma cholesterol levels that are much higher than those in most humans. To overcome these obstacles, we studied human immune system-reconstituted mice (hu-mice) rendered hypercholesterolemic by treatment with adeno-associated virus 8-proprotein convertase subtilisin/kexin type 9 (AAV8-PCSK9) and a high-fat/high-cholesterol Western-type diet (WD). These mice had a high percentage of human T cells and moderate hypercholesterolemia. Compared with hu-mice that had lower plasma cholesterol, the PCSK9-WD mice developed a T cell-mediated inflammatory response in the lung and liver. Human CD4+ and CD8+ T cells bearing an effector memory phenotype were significantly elevated in the blood, spleen, and lungs of PCSK9-WD hu-mice, whereas splenic and circulating regulatory T cells were reduced. These data show that moderately high plasma cholesterol can disrupt human T cell homeostasis in vivo. This process may not only exacerbate atherosclerosis, but also contribute to T cell-mediated inflammatory diseases in the hypercholesterolemia setting.

  8. Wound Healing in Mac-1 Deficient Mice

    DTIC Science & Technology

    2017-05-01

    36. Rosenkranz AR, Coxon A, Maurer M, Gurish MF, Austen KF, Friend DS, Galli SJ, Mayadas TN. Impaired mast cell development and innate immunity in Mac...genetically deficient mice. 3 INTRODUCTION Wound healing is a complex yet well-regulated process in which multiple resident cells ...recruited inflammatory cells , and stem cells interact to create an environment that supports the healing process. An optimal inflammatory response is a

  9. Systems approach to the study of brain damage in the very preterm newborn

    PubMed Central

    Leviton, Alan; Gressens, Pierre; Wolkenhauer, Olaf; Dammann, Olaf

    2015-01-01

    Background: A systems approach to the study of brain damage in very preterm newborns has been lacking. Methods: In this perspective piece, we offer encephalopathy of prematurity as an example of the complexity and interrelatedness of brain-damaging molecular processes that can be initiated inflammatory phenomena. Results: Using three transcription factors, nuclear factor-kappa B (NF-κB), Notch-1, and nuclear factor erythroid 2 related factor 2 (NRF2), we show the inter-connectedness of signaling pathways activated by some antecedents of encephalopathy of prematurity. Conclusions: We hope that as biomarkers of exposures and processes leading to brain damage in the most immature newborns become more readily available, those who apply a systems approach to the study of neuroscience can be persuaded to study the pathogenesis of brain disorders in the very preterm newborn. PMID:25926780

  10. Maintaining brain health by monitoring inflammatory processes: a mechanism to promote successful aging.

    PubMed

    Rosano, Caterina; Marsland, Anna L; Gianaros, Peter J

    2012-02-01

    Maintaining brain health promotes successful aging. The main determinants of brain health are the preservation of cognitive function and remaining free from structural and metabolic abnormalities, including loss of neuronal synapses, atrophy, small vessel disease and focal amyloid deposits visible by neuroimaging. Promising studies indicate that these determinants are to some extent modifiable, even among adults seventy years and older. Converging animal and human evidence further suggests that inflammation is a shared mechanism, contributing to both cognitive decline and abnormalities in brain structure and metabolism. Thus, inflammation may provide a target for intervention. Specifically, circulating inflammatory markers have been associated with declines in cognitive function and worsening of brain structural and metabolic characteristics. Additionally, it has been proposed that older brains are characterized by a sensitization to neuroinflammatory responses, even in the absence of overt disease. This increased propensity to central inflammation may contribute to poor brain health and premature brain aging. Still unknown is whether and how peripheral inflammatory factors directly contribute to decline of brain health. Human research is limited by the challenges of directly measuring neuroinflammation in vivo. This review assesses the role that inflammation may play in the brain changes that often accompany aging, focusing on relationships between peripheral inflammatory markers and brain health among well-functioning, community-dwelling adults seventy years and older. We propose that monitoring and maintaining lower levels of systemic and central inflammation among older adults could help preserve brain health and support successful aging. Hence, we also identify plausible ways and novel experimental study designs of maintaining brain health late in age through interventions that target the immune system.

  11. Anti-inflammatory Agents: Present and Future

    PubMed Central

    Dinarello, Charles A.

    2012-01-01

    Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, when allowed to continue unchecked, inflammation may result in autoimmune or autoinflammatory disorders, neurodegenerative disease, or cancer. A variety of safe and effective anti-inflammatory agents are available, including aspirin and other nonsteroidal anti-inflammatories, with many more drugs under development. In particular, the new era of anti-inflammatory agents includes “biologicals” such as anticytokine therapies and small molecules that block the activity of kinases. Other anti-inflammatories currently in use or under development include statins, histone deacetylase inhibitors, PPAR agonists, and small RNAs. This Review discusses the current status of anti-inflammatory drug research and the development of new anti-inflammatory therapeutics. PMID:20303881

  12. Heterogeneity of serum activities of matrix metalloproteinases in chronic endometritis.

    PubMed

    Sukhikh, G T; Soboleva, G M; Silantyeva, E S; Shagerbieva, E A; Serov, V N

    2007-04-01

    Matrix metalloproteinases belong to the key molecules of tissue remodeling involved in physiological and pathological processes of the female reproductive system. Adequate levels of their expression in the endometrium are essential for effective implantation and uneventful pregnancy. Chronic inflammatory process in the endometrium is associated with low tissue expression of metalloproteinase-9. Histologically verified chronic endometritis is associated with low serum activities of metalloproteinases 2 and 9, which are restored after combined etiotropic therapy. We measured serum levels of metalloproteinases in patients with chronic endometritis concomitant with sterility and its changes during the first days after magnetotherapy.

  13. High-fat diet feeding differentially affects the development of inflammation in the central nervous system.

    PubMed

    Guillemot-Legris, Owein; Masquelier, Julien; Everard, Amandine; Cani, Patrice D; Alhouayek, Mireille; Muccioli, Giulio G

    2016-08-26

    Obesity and its associated disorders are becoming a major health issue in many countries. The resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system with regard to the inflammatory tone. We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks) a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest on a primary co-culture of astrocytes and microglial cells. We measured an increase in the inflammatory tone in the cerebellum at the different time-points. However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two different regions of the central nervous system, specifically an increase in the cerebellum and no modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly suggest region-dependent as well as time-dependent adaptations of the central nervous system to the high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing enabled us to identify three classes of lipids-phosphatidylinositols, phosphatidylethanolamines, and lysophosphatidylcholines-as well as palmitoylethanolamide, as potentially responsible for the difference in inflammatory tone. This study demonstrates that the inflammatory tone induced by a high-fat diet does not similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize their activity and their role in controlling inflammation in the central nervous system.

  14. Glucocorticoids shift arachidonic acid metabolism toward endocannabinoid synthesis: a non-genomic anti-inflammatory switch

    PubMed Central

    Malcher-Lopes, Renato; Franco, Alier; Tasker, Jeffrey G.

    2008-01-01

    Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-derived endocannabinoid biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX2) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response. PMID:18295199

  15. The roles of special proresolving mediators in pain relief.

    PubMed

    Zhang, Lan-Yu; Jia, Ming-Rui; Sun, Tao

    2018-02-08

    The resolution of acute inflammation, once thought to be a passive process, is now recognized as an active one. The productions of endogenous special proresolving mediators (SPMs) are involved in this process. SPMs, including lipoxins, resolvins, protectins, and maresins, are endogenous lipid mediators generated from ω-6 arachidonic acid or ω-3 poly-unsaturated fatty acids during the resolution phase of acute inflammation. They have potent anti-inflammatory and proresolving actions in various inflammatory disorders. Due to the potent proresolving and anti-inflammatory effects, SPMs are also used for pain relief. This review focuses on the mechanisms by which SPMs act on their respective G-protein-coupled receptors in immune cells and nerve cells to normalize pain via regulating inflammatory mediators, transient receptor potential ion channels, and central sensitization. SPMs may offer novel therapeutic approaches for preventing and treating pain conditions associated with inflammation.

  16. Tricuspid valve excision using off-pump inflow occlusion technique: role of intra-operative trans-esophageal echocardiography.

    PubMed

    Gadhinglajkar, Shrinivas; Sreedhar, Rupa; Karunakaran, Jayakumar; Misra, Manoranjan; Somasundaram, Ganesh; Mathew, Thomas

    2010-01-01

    A pacing system infection may lead to infective endocarditis and systemic sepsis. Tricuspid valve surgery may be required if the valve is severely damaged in the process of endocarditis. Although, cardiopulmonary bypass is the safe choice for performing right-heart procedures, it may carry risk of inducing systemic inflammatory response and multi-organ dysfunction. Some studies have advocated TV surgery without institution of CPB. We report tricuspid valve excision using the off-pump inflow occlusion technique in a 68-year-old man. We also describe role of intra-operative TEE as a monitoring tool at different stages of the surgical procedure.

  17. The role of low-grade inflammation and metabolic flexibility in aging and nutritional modulation thereof: a systems biology approach.

    PubMed

    Calçada, Dulce; Vianello, Dario; Giampieri, Enrico; Sala, Claudia; Castellani, Gastone; de Graaf, Albert; Kremer, Bas; van Ommen, Ben; Feskens, Edith; Santoro, Aurelia; Franceschi, Claudio; Bouwman, Jildau

    2014-01-01

    Aging is a biological process characterized by the progressive functional decline of many interrelated physiological systems. In particular, aging is associated with the development of a systemic state of low-grade chronic inflammation (inflammaging), and with progressive deterioration of metabolic function. Systems biology has helped in identifying the mediators and pathways involved in these phenomena, mainly through the application of high-throughput screening methods, valued for their molecular comprehensiveness. Nevertheless, inflammation and metabolic regulation are dynamical processes whose behavior must be understood at multiple levels of biological organization (molecular, cellular, organ, and system levels) and on multiple time scales. Mathematical modeling of such behavior, with incorporation of mechanistic knowledge on interactions between inflammatory and metabolic mediators, may help in devising nutritional interventions capable of preventing, or ameliorating, the age-associated functional decline of the corresponding systems. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  18. Thalidomide decreases the plasma levels of IL-1 and TNF following burn injury: is it a new drug for modulation of systemic inflammatory response.

    PubMed

    Eski, Muhitdin; Sahin, Ismail; Sengezer, Mustafa; Serdar, Muhittin; Ifran, Ahmet

    2008-02-01

    TNF and IL-1, which are produced from phagocytic cells, can produce a significant systemic inflammatory response independently by inducing systemic leukocyte and endothelial cell activation. These cytokines play a pivotal role in development of systemic inflammatory response after severe burn. Thalidomide has been shown to decrease the secretion of TNF from phagocytic cells, therefore suppression of TNF and IL-1 production from activated phagocytic cells might be a successful treatment modality for prevention of systemic inflammatory response following severe burn. To address this issue, we aimed to show whether thalidomide treatment decreased or suppressed plasma levels of TNF and IL-1 following burn in rats. Following the injury, 36 rats were randomly separated into two experimental groups at the third and seventh days. Rats in the experimental group had oral thalidomide (10mg/kg day) treatment for three and seven consecutive days whereas animals in control groups had no treatment. Thalidomide treatment decreased TNF and IL-1 significantly in both experimental groups at both the points (P<0.05). Although in this study we just showed inhibitory effect of thalidomide on plasma the level of TNF and IL-1, we speculate that thalidomide may have modulatory effect on the systemic inflammatory response after burn by decreasing plasma levels of TNF and IL-1.

  19. Chemistry meets biology in colitis-associated carcinogenesis

    PubMed Central

    Mangerich, Aswin; Dedon, Peter C.; Fox, James G.; Tannenbaum, Steven R.; Wogan, Gerald N.

    2015-01-01

    The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD) – a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation. PMID:23926919

  20. DNA damage, metabolism and aging in pro-inflammatory T cells: Rheumatoid arthritis as a model system.

    PubMed

    Li, Yinyin; Goronzy, Jörg J; Weyand, Cornelia M

    2018-05-01

    The aging process is the major driver of morbidity and mortality, steeply increasing the risk to succumb to cancer, cardiovascular disease, infection and neurodegeneration. Inflammation is a common denominator in age-related pathologies, identifying the immune system as a gatekeeper in aging overall. Among immune cells, T cells are long-lived and exposed to intense replication pressure, making them sensitive to aging-related abnormalities. In successful T cell aging, numbers of naïve cells, repertoire diversity and activation thresholds are preserved as long as possible; in maladaptive T cell aging, protective T cell functions decline and pro-inflammatory effector cells are enriched. Here, we review in the model system of rheumatoid arthritis (RA) how maladaptive T cell aging renders the host susceptible to chronic, tissue-damaging inflammation. In T cells from RA patients, known to be about 20years pre-aged, three interconnected functional domains are altered: DNA damage repair, metabolic activity generating energy and biosynthetic precursor molecules, and shaping of plasma membranes to promote T cell motility. In each of these domains, key molecules and pathways have now been identified, including the glycolytic enzymes PFKFB3 and G6PD; the DNA repair molecules ATM, DNA-PKcs and MRE11A; and the podosome marker protein TKS5. Some of these molecules may help in defining targetable pathways to slow the T cell aging process. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Immune dysfunction in cirrhosis.

    PubMed

    Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria

    2014-03-14

    Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality.

  2. Immune dysfunction in cirrhosis

    PubMed Central

    Sipeki, Nora; Antal-Szalmas, Peter; Lakatos, Peter L; Papp, Maria

    2014-01-01

    Innate and adaptive immune dysfunction, also referred to as cirrhosis-associated immune dysfunction syndrome, is a major component of cirrhosis, and plays a pivotal role in the pathogenesis of both the acute and chronic worsening of liver function. During the evolution of the disease, acute decompensation events associated with organ failure(s), so-called acute-on chronic liver failure, and chronic decompensation with progression of liver fibrosis and also development of disease specific complications, comprise distinct clinical entities with different immunopathology mechanisms. Enhanced bacterial translocation associated with systemic endotoxemia and increased occurrence of systemic bacterial infections have substantial impacts on both clinical situations. Acute and chronic exposure to bacteria and/or their products, however, can result in variable clinical consequences. The immune status of patients is not constant during the illness; consequently, alterations of the balance between pro- and anti-inflammatory processes result in very different dynamic courses. In this review we give a detailed overview of acquired immune dysfunction and its consequences for cirrhosis. We demonstrate the substantial influence of inherited innate immune dysfunction on acute and chronic inflammatory processes in cirrhosis caused by the pre-existing acquired immune dysfunction with limited compensatory mechanisms. Moreover, we highlight the current facts and future perspectives of how the assessment of immune dysfunction can assist clinicians in everyday practical decision-making when establishing treatment and care strategies for the patients with end-stage liver disease. Early and efficient recognition of inappropriate performance of the immune system is essential for overcoming complications, delaying progression and reducing mortality. PMID:24627592

  3. Marine Diterpenoids as Potential Anti-Inflammatory Agents

    PubMed Central

    González, Yisett; Torres-Mendoza, Daniel; Jones, Gillian E.; Fernandez, Patricia L.

    2015-01-01

    The inflammatory response is a highly regulated process, and its dysregulation can lead to the establishment of chronic inflammation and, in some cases, to death. Inflammation is the cause of several diseases, including rheumatoid arthritis, inflammatory bowel diseases, multiple sclerosis, and asthma. The search for agents inhibiting inflammation is a great challenge as the inflammatory response plays an important role in the defense of the host to infections. Marine invertebrates are exceptional sources of new natural products, and among those diterpenoids secondary metabolites exhibit notable anti-inflammatory properties. Novel anti-inflammatory diterpenoids, exclusively produced by marine organisms, have been identified and synthetic molecules based on those structures have been obtained. The anti-inflammatory activity of marine diterpenoids has been attributed to the inhibition of Nuclear Factor-κB activation and to the modulation of arachidonic acid metabolism. However, more research is necessary to describe the mechanisms of action of these secondary metabolites. This review is a compilation of marine diterpenoids, mainly isolated from corals, which have been described as potential anti-inflammatory molecules. PMID:26538822

  4. Clinical studies and anti-inflammatory mechanisms of treatments

    PubMed Central

    French, Jacqueline A.; Koepp, Matthias; Naegelin, Yvonne; Vigevano, Federico; Auvin, Stéphane; Rho, Jong M.; Rosenberg, Evan; Devinsky, Orrin; Olofsson, Peder S.; Dichter, Marc A.

    2017-01-01

    Summary In this exciting era, we are coming closer and closer to bringing an anti-inflammatory therapy to the clinic for the purpose of seizure prevention, modification, and/or suppression. At present, it is unclear what this approach might entail, and what form it will take. Irrespective of the therapy that ultimately reaches the clinic, there will be some commonalities with regard to clinical trials. A number of animal models have now been used to identify inflammation as a major underlying mechanism of both chronic seizures and the epileptogenic process. These models have demonstrated that specific anti-inflammatory treatments can be effective at both suppressing chronic seizures and interfering with the process of epileptogenesis. Some of these have already been evaluated in early phase clinical trials. It can be expected that there will soon be more clinical trials of both “conventional, broad spectrum” anti-inflammatory agents and novel new approaches to utilizing specific anti-inflammatory therapies with drugs or other therapeutic interventions. A summary of some of those approaches appears below, as well as a discussion of the issues facing clinical trials in this new domain. PMID:28675558

  5. Anti-Inflammatory Activity of Citric Acid-Treated Wheat Germ Extract in Lipopolysaccharide-Stimulated Macrophages.

    PubMed

    Jeong, Hee-Yeong; Choi, Yong-Seok; Lee, Jae-Kang; Lee, Beom-Joon; Kim, Woo-Ki; Kang, Hee

    2017-07-10

    Until recently, fermentation was the only processing used to improve the functionality of wheat germ. The release of 2,6-dimethoxy-1,4-benzoquinone (DMBQ) from hydroquinone glycosides during the fermentation process is considered a marker of quality control. Here, we treated wheat germ extract with citric acid (CWG) to release DMBQ and examined the anti-inflammatory activity of this extract using a lipopolysaccharide-activated macrophage model. Treatment of wheat germ with citric acid resulted in detectable release of DMBQ but reduced total phenolic and total flavonoid contents compared with untreated wheat germ extract (UWG). CWG inhibited secretion of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-12 and the synthesis of cyclooxygenase-2, while UWG only decreased IL-12 production. CWG and UWG induced high levels of anti-inflammatory IL-10 and heme oxygenase-1. CWG specifically inhibited phosphorylation of NF-κB p65 and p38 kinase at 15 min after LPS stimulation. Our study showed that citric acid treatment enhanced the anti-inflammatory activity of wheat germ extract.

  6. Estrogen Signaling in Metabolic Inflammation

    PubMed Central

    Monteiro, Rosário; Teixeira, Diana; Calhau, Conceição

    2014-01-01

    There is extensive evidence supporting the interference of inflammatory activation with metabolism. Obesity, mainly visceral obesity, is associated with a low-grade inflammatory state, triggered by metabolic surplus where specialized metabolic cells such as adipocytes activate cellular stress initiating and sustaining the inflammatory program. The increasing prevalence of obesity, resulting in increased cardiometabolic risk and precipitating illness such as cardiovascular disease, type 2 diabetes, fatty liver, cirrhosis, and certain types of cancer, constitutes a good example of this association. The metabolic actions of estrogens have been studied extensively and there is also accumulating evidence that estrogens influence immune processes. However, the connection between these two fields of estrogen actions has been underacknowledged since little attention has been drawn towards the possible action of estrogens on the modulation of metabolism through their anti-inflammatory properties. In the present paper, we summarize knowledge on the modification inflammatory processes by estrogens with impact on metabolism and highlight major research questions on the field. Understanding the regulation of metabolic inflammation by estrogens may provide the basis for the development of therapeutic strategies to the management of metabolic dysfunctions. PMID:25400333

  7. Inflammation and Alzheimer’s disease

    PubMed Central

    Akiyama, Haruhiko; Barger, Steven; Barnum, Scott; Bradt, Bonnie; Bauer, Joachim; Cole, Greg M.; Cooper, Neil R.; Eikelenboom, Piet; Emmerling, Mark; Fiebich, Berndt L.; Finch, Caleb E.; Frautschy, Sally; Griffin, W.S.T.; Hampel, Harald; Hull, Michael; Landreth, Gary; Lue, Lih–Fen; Mrak, Robert; Mackenzie, Ian R.; McGeer, Patrick L.; O’Banion, M. Kerry; Pachter, Joel; Pasinetti, Guilio; Plata–Salaman, Carlos; Rogers, Joseph; Rydel, Russell; Shen, Yong; Streit, Wolfgang; Strohmeyer, Ronald; Tooyoma, Ikuo; Van Muiswinkel, Freek L.; Veerhuis, Robert; Walker, Douglas; Webster, Scott; Wegrzyniak, Beatrice; Wenk, Gary; Wyss–Coray, Tony

    2013-01-01

    Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer’s disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid β peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder. PMID:10858586

  8. Role of Antioxidants and Natural Products in Inflammation

    PubMed Central

    Fard, Masoumeh Tangestani; Tan, Woan Sean; Gothai, Sivapragasam; Kumar, S. Suresh

    2016-01-01

    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases. PMID:27803762

  9. The Interplay Between Fiber and the Intestinal Microbiome in the Inflammatory Response12

    PubMed Central

    Kuo, Shiu-Ming

    2013-01-01

    Fiber intake is critical for optimal health. This review covers the anti-inflammatory roles of fibers using results from human epidemiological observations, clinical trials, and animal studies. Fiber has body weight–related anti-inflammatory activity. With its lower energy density, a diet high in fiber has been linked to lower body weight, alleviating obesity-induced chronic inflammation evidenced by reduced amounts of inflammatory markers in human and animal studies. Body weight–unrelated anti-inflammatory activity of fiber has also been extensively studied in animal models in which the type and amount of fiber intake can be closely monitored. Fermentable fructose-, glucose-, and galactose-based fibers as well as mixed fibers have shown systemic and local intestinal anti-inflammatory activities when plasma inflammatory markers and tissue inflammation were examined. Similar anti-inflammatory activities have also been demonstrated in some human studies that controlled total fiber intake. The anti-inflammatory activities of synbiotics (probiotics plus fiber) were reviewed as well, but there was no convincing evidence indicating higher efficacy of synbiotics compared with that of fiber alone. Adverse effects have not been observed with the amount of fiber intake or supplementation used in studies, although patients with Crohn’s disease may be more sensitive to inulin intake. Several possible mechanisms that may mediate the body weight–unrelated anti-inflammatory activity of fibers are discussed based on the in vitro and in vivo evidence. Fermentable fibers are known to affect the intestinal microbiome. The immunomodulatory role of the intestinal microbiome and/or microbial metabolites could contribute to the systemic and local anti-inflammatory activities of fibers. PMID:23319119

  10. Avoidance-related EEG asymmetry predicts circulating interleukin-6.

    PubMed

    Shields, Grant S; Moons, Wesley G

    2016-03-01

    Recent research has linked avoidance-oriented motivational states to elevated pro-inflammatory cytokine levels. According to one of many theories regarding the association between avoidance and cytokine levels, because the evolutionarily basic avoidance system may be activated when an organism is threatened or overwhelmed, an associated inflammatory response may be adaptive for dealing with potential injury in such threatening situations. To examine this hypothesis, we tested whether the neural correlate of avoidance motivation associates with baseline levels of the circulating pro-inflammatory cytokine interleukin-6 (IL-6). Controlling for covariates, greater resting neural activity in the right frontal cortex relative to the left frontal cortex-the neural correlate of avoidance motivation-was associated with baseline IL-6. These results thus support the hypothesis that the avoidance motivational system may be closely linked to systemic inflammatory activity. (c) 2016 APA, all rights reserved).

  11. [Interleukins network in rheumatoid arthritis pathophysiology: beyond proinflammatory cytokines].

    PubMed

    Sánchez-Ramón, Silvia; López-Longo, Francisco Javier; Carreño, Luis

    2011-03-01

    Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by synovitis and progressive destruction of the joint cartilage and underlying bone, together with diverse extra-articular manifestations. Cytokines act as soluble effector mediators of the inflammatory process. Therapeutic neutralization with monoclonal antibodies against the pro-inflammatory cytokines TNF-alpha and interleukin 1 (IL-1) has shown a clear efficacy on inflammation and clinical manifestations of RA, although a percentage of patients do not respond. This review covers new relevant cytokines in the RA physiopathology and potential biomarkers of inflammation. The current challenge is to develop biomarkers that enable an earlier diagnosis, as well as prognostic markers and new therapeutic candidates. Combined administration of several of these cytokines could eventually address a personalized treatment approach for each patient. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  12. Necrotizing Sialometaplasia of the Hard Palate in a Patient Treated with Topical Nonsteroidal Anti-Inflammatory Drug.

    PubMed

    Gatti, Alessandro; Broccardo, Emanuele; Poglio, Giuseppe; Benech, Arnaldo

    2016-01-01

    Necrotizing sialometaplasia is a rare, benign, self-limiting, necrotizing process involving the minor salivary glands, mainly the mucoserous glands of the hard palate. It is thought to be the result of an ischemic event of the vasculature supplying the salivary gland lobules. Some predisposing factors such as smoking, use of alcohol, denture wearing, recent surgery, traumatic injuries, respiratory infections, systemic diseases bulimia, and anorexia have been described. Herein we present a case of necrotizing sialometaplasia of the hard palate in a patient without known predisposing factors, in our opinion, resulting from the use of topical anti-inflammatory drug. After diagnosis, the patient underwent treatment with chlorhexidine gluconate and a full palatal acrylic guard to protect the exposed bone from food residues during meals. After the sixth week the lesion regressed.

  13. Geographic atrophy: Etiopathogenesis and current therapies.

    PubMed

    Sastre-Ibáñez, M; Barreiro-González, A; Gallego-Pinazo, R; Dolz-Marco, R; García-Armendariz, B

    2018-01-01

    Geographic atrophy is characterized by severe visual deficit whose etiology and pathophysiology are yet to be elucidated. As a working hypothesis, oxidative damage could trigger a chronic inflammation in Bruch's membrane-RPE-choriocapillaris complex, mostly due to complement pathway overactivation. Some individuals with mutations in the complement system and other factors have diminished capacity in the modulation of the inflammatory response, which results in cell damage and waste accumulation. This accumulation of intracellular and extracellular waste products manifests as drusen and pigmentary changes that precede the atrophy of photoreceptors, RPE, choriocapillaris with an ischemic process with decreased choroid flow. All these processes can be detected as tomographic findings and autofluorescence signals that are useful in the evaluation of patients with atrophic AMD, which helps to establish an individualized prognosis. Anti-inflammatory, antioxidant and therapies that decrease the accumulation of toxins for the preservation of the RPE cells and photoreceptors are being investigated in order to slow down the progression of this disease. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Endogenous hydrogen sulfide regulates histone demethylase JMJD3-mediated inflammatory response in LPS-stimulated macrophages and in a mouse model of LPS-induced septic shock.

    PubMed

    Liu, Siyu; Wang, Xiling; Pan, Lilong; Wu, Weijun; Yang, Di; Qin, Ming; Jia, Wanwan; Xiao, Chenxi; Long, Fen; Ge, Junbo; Liu, Xinhua; Zhu, YiZhun

    2018-03-01

    Overproduction of inflammatory mediators contributes to uncontrolled inflammation during endotoxin shock. Cystathionine-γ-lyase (CSE), an enzyme involved in hydrogen sulfide (H 2 S) biosynthesis, has potential anti-inflammatory activity in a variety of inflammatory diseases. Jumonji domain-containing protein 3 (JMJD3), a histone 3 Lys27 (H3K27) demethylase, has been implicated in macrophage activation, but its function in CSE-mediated anti-inflammatory activities remains unknown. In the present study CSE was found to be upregulated in macrophages and mouse lipopolysaccharide (LPS) challenge models. LPS stimulation also enhanced the activation of JMJD3 and decreased H3K27me3 levels. JMJD3 knockdown upregulated H3K27me3 levels and attenuated the LPS-mediated inflammatory response. CSE knockout amplified the inflammatory cascade by increasing JMJD3 expression in septic mice. Similarly, enhanced production of inflammatory mediators by macrophages was mitigated by CSE overexpression via inhibition of JMJD3 expression. This is the first report indicating that inflammation enhanced CSE/H 2 S system biosynthesis, that in turn attenuated the LPS-triggered inflammatory response by regulating JMJD3 expression. Thus, the CSE/H 2 S system represents an epigenetic-based modification mechanism to prevent uncontrolled inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The neuropeptide cortistatin attenuates experimental autoimmune myocarditis via inhibition of cardiomyogenic T cell‐driven inflammatory responses

    PubMed Central

    Delgado‐Maroto, Virginia; Falo, Clara P; Forte‐Lago, Irene; Adan, Norma; Morell, Maria; Maganto‐Garcia, Elena; Robledo, Gema; O'Valle, Francisco; Lichtman, Andrew H; Gonzalez‐Rey, Elena

    2017-01-01

    Background and purpose Myocarditis is an inflammatory and autoimmune cardiovascular disease that causes dilated myocardiopathy and is responsible for high morbidity and mortality worldwide. Cortistatin is a neuropeptide produced by neurons and cells of the immune and vascular systems. Besides its action in locomotor activity and sleep, cortistatin inhibits inflammation in different experimental models of autoimmune diseases. However, its role in inflammatory cardiovascular disorders is unexplored. Here, we investigated the therapeutic effects of cortistatin in a well‐established preclinical model of experimental autoimmune myocarditis (EAM). Experimental Approach We induced EAM by immunization with a fragment of cardiac myosin in susceptible Balb/c mice. Cortistatin was administered i.p. starting 7, 11 or 15 days after EAM induction. At day 21, we evaluated heart hypertrophy, myocardial injury, cardiac inflammatory infiltration and levels of serum and cardiac inflammatory cytokines, cortistatin and autoantibodies. We determined proliferation and cytokine production by heart draining lymph node cells in response to cardiac myosin restimulation. Key Results Systemic injection of cortistatin during the effector phase of the disease significantly reduced its prevalence and signs of heart hypertrophy and injury (decreased the levels of brain natriuretic peptide) and impaired myocardial inflammatory cell infiltration. This effect was accompanied by a reduction in self‐antigen‐specific T‐cell responses in lymph nodes and in the levels of cardiomyogenic antibodies and inflammatory cytokines in serum and myocardium. Finally, we found a positive correlation between cardiac and systemic cortistatin levels and EAM severity. Conclusions and Implications Cortistatin emerges as a new candidate to treat inflammatory dilated cardiomyopathy. PMID:27922195

  16. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culturemore » of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.« less

  17. Differential Pro-Inflammatory Responses of Astrocytes and Microglia Involve STAT3 Activation in Response to 1800 MHz Radiofrequency Fields

    PubMed Central

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure. PMID:25275372

  18. Combination of Azathioprine and Aminosalicylate Treatment Prevent Risk of Cardiovascular Disease in Women with Ulcerative Colitis by Reducing Inflammation.

    PubMed

    dos Santos, Lana Claudinez; Costa, Aline Villela; Lopes, Lorrayne Gonçalves; Leonel, Alda Jusceline; Aguilar, Edenil Costa; Noviello, Maria de Lourdes Meirelles; Ferrari, Maria de Lourdes de Abreu; Alvarez-Leite, Jacqueline I

    2015-08-07

    Ulcerative colitis (UC) is a chronic inflammatory bowel disease with involvement of the immune system. Chronic inflammatory diseases have been associated with increased risk of cardiovascular disease (CVD) but few studies have assessed this risk in patients with UC and the influence of drug treatment. Thus, we evaluated the risk of development of CVD in women with UC in clinical remission, considering the drug treatment. Twenty-one women with UC participated in this study: 12 used aminosalicylates (ASA group) and 9 used azathioprine added to aminosalicylates (AZA+ASA group). The healthy control group was matched for age. We evaluated blood pressure, body composition, and biochemical and immunological parameters. Compared to the respective control group, the UC groups showed expansion of body fat and less lean body mass. Blood pressure, pro-inflammatory cytokines, nitric oxide, C reactive protein, erythrocyte sedimentation rate (ESR), and anti-oxidized LDL antibodies were higher in UC groups. Only AZA+ASA group showed increased anti-inflammatory cytokines (IL-10 and TGF-β). Framingham scores showed higher risk of CVD in UC groups. UC groups were compared and women treated with azathioprine showed reduction of total protein, globulin, ESR, and lymphocytes, with increased IL-6, TNF, IL-10, and TGF-β. Our data suggest that women with UC in clinical remission have a higher risk for development of atherosclerosis and CVD when compared to the control group, while women treated with azathioprine seem more protected than those treated only with aminosalicylates, due to better regulation of the inflammatory process.

  19. Differential pro-inflammatory responses of astrocytes and microglia involve STAT3 activation in response to 1800 MHz radiofrequency fields.

    PubMed

    Lu, Yonghui; He, Mindi; Zhang, Yang; Xu, Shangcheng; Zhang, Lei; He, Yue; Chen, Chunhai; Liu, Chuan; Pi, Huifeng; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Microglia and astrocytes play important role in maintaining the homeostasis of central nervous system (CNS). Several CNS impacts have been postulated to be associated with radiofrequency (RF) electromagnetic fields exposure. Given the important role of inflammation in neural physiopathologic processes, we investigated the pro-inflammatory responses of microglia and astrocytes and the involved mechanism in response to RF fields. Microglial N9 and astroglial C8-D1A cells were exposed to 1800 MHz RF for different time with or without pretreatment with STAT3 inhibitor. Microglia and astrocytes were activated by RF exposure indicated by up-regulated CD11b and glial fibrillary acidic protein (GFAP). However, RF exposure induced differential pro-inflammatory responses in astrocytes and microglia, characterized by different expression and release profiles of IL-1β, TNF-α, IL-6, PGE2, nitric oxide (NO), inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX2). Moreover, the RF exposure activated STAT3 in microglia but not in astrocytes. Furthermore, the STAT3 inhibitor Stattic ameliorated the RF-induced release of pro-inflammatory cytokines in microglia but not in astrocytes. Our results demonstrated that RF exposure differentially induced pro-inflammatory responses in microglia and astrocytes, which involved differential activation of STAT3 in microglia and astrocytes. Our data provide novel insights into the potential mechanisms of the reported CNS impacts associated with mobile phone use and present STAT3 as a promising target to protect humans against increasing RF exposure.

  20. Sleep deprivation and activation of morning levels of cellular and genomic markers of inflammation.

    PubMed

    Irwin, Michael R; Wang, Minge; Campomayor, Capella O; Collado-Hidalgo, Alicia; Cole, Steve

    2006-09-18

    Inflammation is associated with increased risk of cardiovascular disorders, arthritis, diabetes mellitus, and mortality. The effects of sleep loss on the cellular and genomic mechanisms that contribute to inflammatory cytokine activity are not known. In 30 healthy adults, monocyte intracellular proinflammatory cytokine production was repeatedly assessed during the day across 3 baseline periods and after partial sleep deprivation (awake from 11 pm to 3 am). We analyzed the impact of sleep loss on transcription of proinflammatory cytokine genes and used DNA microarray analyses to characterize candidate transcription-control pathways that might mediate the effects of sleep loss on leukocyte gene expression. In the morning after a night of sleep loss, monocyte production of interleukin 6 and tumor necrosis factor alpha was significantly greater compared with morning levels following uninterrupted sleep. In addition, sleep loss induced a more than 3-fold increase in transcription of interleukin 6 messenger RNA and a 2-fold increase in tumor necrosis factor alpha messenger RNA. Bioinformatics analyses suggested that the inflammatory response was mediated by the nuclear factor kappaB inflammatory signaling system as well as through classic hormone and growth factor response pathways. Sleep loss induces a functional alteration of the monocyte proinflammatory cytokine response. A modest amount of sleep loss also alters molecular processes that drive cellular immune activation and induce inflammatory cytokines; mapping the dynamics of sleep loss on molecular signaling pathways has implications for understanding the role of sleep in altering immune cell physiologic characteristics. Interventions that target sleep might constitute new strategies to constrain inflammation with effects on inflammatory disease risk.

Top