Sample records for systemic transcriptome responses

  1. Root Type-Specific Reprogramming of Maize Pericycle Transcriptomes by Local High Nitrate Results in Disparate Lateral Root Branching Patterns1[OPEN

    PubMed Central

    Lithio, Andrew

    2016-01-01

    The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190

  2. A Systems Biology Study in Tomato Fruit Reveals Correlations between the Ascorbate Pool and Genes Involved in Ribosome Biogenesis, Translation, and the Heat-Shock Response

    PubMed Central

    Stevens, Rebecca G.; Baldet, Pierre; Bouchet, Jean-Paul; Causse, Mathilde; Deborde, Catherine; Deschodt, Claire; Faurobert, Mireille; Garchery, Cécile; Garcia, Virginie; Gautier, Hélène; Gouble, Barbara; Maucourt, Mickaël; Moing, Annick; Page, David; Petit, Johann; Poëssel, Jean-Luc; Truffault, Vincent; Rothan, Christophe

    2018-01-01

    Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes—ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream. PMID:29491875

  3. Myeloid differentiation architecture of leukocyte transcriptome dynamics in perceived social isolation

    PubMed Central

    Cole, Steven W.; Capitanio, John P.; Chun, Katie; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cacioppo, John T.

    2015-01-01

    To define the cellular mechanisms of up-regulated inflammatory gene expression and down-regulated antiviral response in people experiencing perceived social isolation (loneliness), we conducted integrative analyses of leukocyte gene regulation in humans and rhesus macaques. Five longitudinal leukocyte transcriptome surveys in 141 older adults showed up-regulation of the sympathetic nervous system (SNS), monocyte population expansion, and up-regulation of the leukocyte conserved transcriptional response to adversity (CTRA). Mechanistic analyses in a macaque model of perceived social isolation confirmed CTRA activation and identified selective up-regulation of the CD14++/CD16− classical monocyte transcriptome, functional glucocorticoid desensitization, down-regulation of Type I and II interferons, and impaired response to infection by simian immunodeficiency virus (SIV). These analyses identify neuroendocrine-related alterations in myeloid cell population dynamics as a key mediator of CTRA transcriptome skewing, which may both propagate perceived social isolation and contribute to its associated health risks. PMID:26598672

  4. Cell-type- and tissue-specific transcriptomes of the white spruce (Picea glauca) bark unmask fine-scale spatial patterns of constitutive and induced conifer defense.

    PubMed

    Celedon, Jose M; Yuen, Macaire M S; Chiang, Angela; Henderson, Hannah; Reid, Karen E; Bohlmann, Jörg

    2017-11-01

    Plant defenses often involve specialized cells and tissues. In conifers, specialized cells of the bark are important for defense against insects and pathogens. Using laser microdissection, we characterized the transcriptomes of cortical resin duct cells, phenolic cells and phloem of white spruce (Picea glauca) bark under constitutive and methyl jasmonate (MeJa)-induced conditions, and we compared these transcriptomes with the transcriptome of the bark tissue complex. Overall, ~3700 bark transcripts were differentially expressed in response to MeJa. Approximately 25% of transcripts were expressed in only one cell type, revealing cell specialization at the transcriptome level. MeJa caused cell-type-specific transcriptome responses and changed the overall patterns of cell-type-specific transcript accumulation. Comparison of transcriptomes of the conifer bark tissue complex and specialized cells resolved a masking effect inherent to transcriptome analysis of complex tissues, and showed the actual cell-type-specific transcriptome signatures. Characterization of cell-type-specific transcriptomes is critical to reveal the dynamic patterns of spatial and temporal display of constitutive and induced defense systems in a complex plant tissue or organ. This was demonstrated with the improved resolution of spatially restricted expression of sets of genes of secondary metabolism in the specialized cell types. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  5. Whole Body Melanoma Transcriptome Response in Medaka

    PubMed Central

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K.; Postlethwait, John; Warren, Wesley C.

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model. PMID:26714172

  6. Whole Body Melanoma Transcriptome Response in Medaka.

    PubMed

    Schartl, Manfred; Shen, Yingjia; Maurus, Katja; Walter, Ron; Tomlinson, Chad; Wilson, Richard K; Postlethwait, John; Warren, Wesley C

    2015-01-01

    The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.

  7. Transcription expression of immune-related genes from Caligus rogercresseyi evidences host-dependent patterns on Atlantic and coho salmon.

    PubMed

    Vera-Bizama, Fredy; Valenzuela-Muñoz, Valentina; Gonçalves, Ana Teresa; Marambio, Jorge Pino; Hawes, Christopher; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2015-12-01

    The transcriptomic response of the sea louse Caligus rogercresseyi during the infestation on Atlantic salmon (Salmo salar) and coho salmon (Oncorhynchus kisutch) was evaluated using 27 genes related to immune response, antioxidant system and secretome. Results showed early responses of TLR/IMD signaling pathway in sea lice infesting Atlantic salmon. Overall, genes associated with oxidative stress responses were upregulated in both host species. This pattern suggests that reactive oxygen species emitted by the host as a response to the infestation, could modulate the sea louse antioxidant system. Secretome-related transcripts evidenced upregulation of trypsins and serpins, mainly associated to Atlantic salmon than coho salmon. Interestingly, cathepsins and trypsin2 were downregulated at 7 days post-infection (dpi) in coho salmon. The principal component analysis revealed an inverse time-dependent pattern based on the different responses of C. rogercresseyi infecting both salmon species. Here, Atlantic salmon strongly modulates the transcriptome responses at earlier infection stages; meanwhile coho salmon reveals a less marked modulation, increasing the transcription activity during the infection process. This study evidences transcriptome differences between two salmon host species and provides pivotal knowledge towards elaborating future control strategies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis

    PubMed Central

    Faria-Blanc, Nuno; Mortimer, Jenny C.; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants. PMID:29636762

  9. A Transcriptomic Analysis of Xylan Mutants Does Not Support the Existence of a Secondary Cell Wall Integrity System in Arabidopsis.

    PubMed

    Faria-Blanc, Nuno; Mortimer, Jenny C; Dupree, Paul

    2018-01-01

    Yeast have long been known to possess a cell wall integrity (CWI) system, and recently an analogous system has been described for the primary walls of plants (PCWI) that leads to changes in plant growth and cell wall composition. A similar system has been proposed to exist for secondary cell walls (SCWI). However, there is little data to support this. Here, we analyzed the stem transcriptome of a set of cell wall biosynthetic mutants in order to investigate whether cell wall damage, in this case caused by aberrant xylan synthesis, activates a signaling cascade or changes in cell wall synthesis gene expression. Our data revealed remarkably few changes to the transcriptome. We hypothesize that this is because cells undergoing secondary cell wall thickening have entered a committed programme leading to cell death, and therefore a SCWI system would have limited impact. The absence of transcriptomic responses to secondary cell wall alterations may facilitate engineering of the secondary cell wall of plants.

  10. Transcriptomic responses to wounding: meta-analysis of gene expression microarray data.

    PubMed

    Sass, Piotr Andrzej; Dąbrowski, Michał; Charzyńska, Agata; Sachadyn, Paweł

    2017-11-07

    A vast amount of microarray data on transcriptomic response to injury has been collected so far. We designed the analysis in order to identify the genes displaying significant changes in expression after wounding in different organisms and tissues. This meta-analysis is the first study to compare gene expression profiles in response to wounding in as different tissues as heart, liver, skin, bones, and spinal cord, and species, including rat, mouse and human. We collected available microarray transcriptomic profiles obtained from different tissue injury experiments and selected the genes showing a minimum twofold change in expression in response to wounding in prevailing number of experiments for each of five wound healing stages we distinguished: haemostasis & early inflammation, inflammation, early repair, late repair and remodelling. During the initial phases after wounding, haemostasis & early inflammation and inflammation, the transcriptomic responses showed little consistency between different tissues and experiments. For the later phases, wound repair and remodelling, we identified a number of genes displaying similar transcriptional responses in all examined tissues. As revealed by ontological analyses, activation of certain pathways was rather specific for selected phases of wound healing, such as e.g. responses to vitamin D pronounced during inflammation. Conversely, we observed induction of genes encoding inflammatory agents and extracellular matrix proteins in all wound healing phases. Further, we selected several genes differentially upregulated throughout different stages of wound response, including established factors of wound healing in addition to those previously unreported  in this context such as PTPRC and AQP4. We found that transcriptomic responses to wounding showed similar traits in a diverse selection of tissues including skin, muscles, internal organs and nervous system. Notably, we distinguished transcriptional induction of inflammatory genes not only in the initial response to wounding, but also later, during wound repair and tissue remodelling.

  11. Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond.

    PubMed

    Loor, Juan J; Moyes, Kasey M; Bionaz, Massimo

    2011-12-01

    Application of microarrays to the study of intramammary infections in recent years has provided a wealth of fundamental information on the transcriptomics adaptation of tissue/cells to the disease. Due to its heavy toll on productivity and health of the animal, in vivo and in vitro transcriptomics works involving different mastitis-causing pathogens have been conducted on the mammary gland, primarily on livestock species such as cow and sheep, with few studies in non-ruminants. However, the response to an infectious challenge originating in the mammary gland elicits systemic responses in the animal and encompasses tissues such as liver and immune cells in the circulation, with also potential effects on other tissues such as adipose. The susceptibility of the animal to develop mastitis likely is affected by factors beyond the mammary gland, e.g. negative energy balance as it occurs around parturition. Objectives of this review are to discuss the use of systems biology concepts for the holistic study of animal responses to intramammary infection; providing an update of recent work using transcriptomics to study mammary and peripheral tissue (i.e. liver) as well as neutrophils and macrophage responses to mastitis-causing pathogens; discuss the effect of negative energy balance on mastitis predisposition; and analyze the bovine and murine mammary innate-immune responses during lactation and involution using a novel functional analysis approach to uncover potential predisposing factors to mastitis throughout an animal's productive life.

  12. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem[OPEN

    PubMed Central

    Eshbaugh, Robert; Chen, Fang; Atwell, Susana

    2017-01-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana-Botrytis cinerea pathosystem to test how the host’s defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1, individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea. This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. PMID:29042403

  13. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem.

    PubMed

    Zhang, Wei; Corwin, Jason A; Copeland, Daniel; Feusier, Julie; Eshbaugh, Robert; Chen, Fang; Atwell, Susana; Kliebenstein, Daniel J

    2017-11-01

    To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana - Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1 , individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen. © 2017 American Society of Plant Biologists. All rights reserved.

  14. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq

    PubMed Central

    Choi, Sun Young; Park, Byeonghyeok; Choi, In-Geol; Sim, Sang Jun; Lee, Sun-Mi; Um, Youngsoon; Woo, Han Min

    2016-01-01

    The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and biofuel production due to photoautotrophic cell growth and direct CO2 conversion. Here, we performed a transcriptome analysis of S. elongatus PCC 7942 using RNA-seq to understand the changes of cellular metabolism and regulation for nitrogen starvation responses. As a result, differentially expressed genes (DEGs) were identified and functionally categorized. With mapping onto metabolic pathways, we probed transcriptional perturbation and regulation of carbon and nitrogen metabolisms relating to nitrogen starvation responses. Experimental evidence such as chlorophyll a and phycobilisome content and the measurement of CO2 uptake rate validated the transcriptome analysis. The analysis suggests that S. elongatus PCC 7942 reacts to nitrogen starvation by not only rearranging the cellular transport capacity involved in carbon and nitrogen assimilation pathways but also by reducing protein synthesis and photosynthesis activities. PMID:27488818

  15. A transcriptomic analysis of Yersinia enterocolitica biovar 1B infecting murine macrophages reveals new mechanisms of intracellular survival

    DOE PAGES

    Bent, Zachary W.; Poorey, Kunal; Brazel, David M.; ...

    2015-04-20

    Yersinia enterocolitica is typically considered an extracellular pathogen; however, during the course of an infection, a significant number of bacteria are stably maintained within host cell vacuoles. Little is known about this population and the role it plays during an infection. To address this question and to elucidate the spatially and temporally dynamic gene expression patterns of Y. enterocoliticabiovar 1B through the course of an in vitro infection, transcriptome sequencing and differential gene expression analysis of bacteria infecting murine macrophage cells were performed under four distinct conditions. Bacteria were first grown in a nutrient-rich medium at 26°C to establish amore » baseline of gene expression that is unrelated to infection. The transcriptomes of these bacteria were then compared to bacteria grown in a conditioned cell culture medium at 37°C to identify genes that were differentially expressed in response to the increased temperature and medium but not in response to host cells. Infections were then performed, and the transcriptomes of bacteria found on the extracellular surface and intracellular compartments were analyzed individually. The upregulated genes revealed potential roles for a variety of systems in promoting intracellular virulence, including the Ysa type III secretion system, the Yts2 type II secretion system, and the Tad pilus. It was further determined that mutants of each of these systems had decreased virulence while infecting macrophages. Overall, these results reveal the complete set of genes expressed by Y. enterocolitica in response to infection and provide the groundwork for future virulence studies.« less

  16. Host transcriptomic responses to pneumonic plague reveal that Yersinia pestis inhibits both the initial adaptive and innate immune responses in mice.

    PubMed

    Yang, Huiying; Wang, Tong; Tian, Guang; Zhang, Qingwen; Wu, Xiaohong; Xin, Youqian; Yan, Yanfeng; Tan, Yafang; Cao, Shiyang; Liu, Wanbing; Cui, Yujun; Yang, Ruifu; Du, Zongmin

    2017-01-01

    Pneumonic plague is the most deadly form of infection caused by Yersinia pestis and can progress extremely fast. However, our understanding on the host transcriptomic response to pneumonic plague is insufficient. Here, we used RNA-sequencing technology to analyze transcriptomic responses in mice infected with fully virulent strain 201 or EV76, a live attenuated vaccine strain lacking the pigmentation locus. Approximately 600 differentially expressed genes (DEGs) were detected in lungs from both 201- and EV76-infected mice at 12h post-infection (hpi). DEGs in lungs of 201-infected mice exceeded 2000 at 48hpi, accompanied by sustained large numbers of DEGs in the liver and spleen; however, limited numbers of DEGs were detected in those organs of EV-infected mice. Remarkably, DEGs in lungs were significantly enriched in critical immune responses pathways in EV76-infected but not 201-infected mice, including antigen processing and presentation, T cell receptor signaling among others. Pathological and bacterial load analyses confirmed the rapid systemic dissemination of 201-infection and the confined EV76-infection in lungs. Our results suggest that fully virulent Y. pestis inhibits both the innate and adaptive immune responses that are substantially stimulated in a self-limited infection, which update our holistic views on the transcriptomic response to pneumonic plague. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. RNA-seq analysis of the head-kidney transcriptome response to handling-stress in the red cusk-eel (Genypterus chilensis).

    PubMed

    Aballai, Víctor; Aedo, Jorge E; Maldonado, Jonathan; Bastias-Molina, Macarena; Silva, Herman; Meneses, Claudio; Boltaña, Sebastian; Reyes, Ariel; Molina, Alfredo; Valdés, Juan Antonio

    2017-12-01

    Stress is a primary contributing factor of fish disease and mortality in aquaculture. We have previously reported that the red cusk-eel (Genypterus chilensis), an important farmed marine fish, demonstrates a handling-stress response that results in increased juvenile mortality, which is mainly associated with skeletal muscle atrophy and liver steatosis. To better understand the systemic effects of stress on red cusk-eel immune-related gene expression, the present study assessed the transcriptomic head-kidney response to handling-stress. The RNA sequencing generated a total of 61,655,525 paired-end reads from control and stressed conditions. De novo assembly using the CLC Genomic Workbench produced 86,840 transcripts and created a reference transcriptome with a N50 of 1426bp. Reads mapped onto the assembled reference transcriptome resulted in the identification of 569 up-regulated and 513 down-regulated transcripts. Gene ontology enrichment analysis revealed a significant up-regulation of the biological processes, like response to stress, response to biotic stimulus, and immune response. Conversely, a significant down-regulation of biological processes is associated with metabolic processes. These results were validated by RT-qPCR analysis for nine candidate genes involved in the immune response. The present data demonstrated that short term stress promotes the immune innate response in the marine teleost G. chilensis. This study is an important step towards understanding the immune adaptive response to stress in non-model teleost species. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Analysis of Transcriptomic Dose Response Data in the ...

    EPA Pesticide Factsheets

    Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment Slide presentation at the HESI-HEALTH Canada-McGill Workshop on Transcriptomic Dose Response Data in the Context of Chemical Risk Assessment

  19. Selenium supplementation prevents metabolic and transcriptomic responses to cadmium in mouse lung.

    PubMed

    Hu, Xin; Chandler, Joshua D; Fernandes, Jolyn; Orr, Michael L; Hao, Li; Uppal, Karan; Neujahr, David C; Jones, Dean P; Go, Young-Mi

    2018-04-12

    The protective effect of selenium (Se) on cadmium (Cd) toxicity is well documented, but underlying mechanisms are unclear. Male mice fed standard diet were given Cd (CdCl 2 , 18 μmol/L) in drinking water with or without Se (Na 2 SeO 4, 20 μmol/L) for 16 weeks. Lungs were analyzed for Cd concentration, transcriptomics and metabolomics. Data were analyzed with biostatistics, bioinformatics, pathway enrichment analysis, and combined transcriptome-metabolome-wide association study. Mice treated with Cd had higher lung Cd content (1.7 ± 0.4 pmol/mg protein) than control mice (0.8 ± 0.3 pmol/mg protein) or mice treated with Cd and Se (0.4 ± 0.1 pmol/mg protein). Gene set enrichment analysis of transcriptomics data showed that Se prevented Cd effects on inflammatory and myogenesis genes and diminished Cd effects on several other pathways. Similarly, Se prevented Cd-disrupted metabolic pathways in amino acid metabolism and urea cycle. Integrated transcriptome and metabolome network analysis showed that Cd treatment had a network structure with fewer gene-metabolite clusters compared to control. Centrality measurements showed that Se counteracted changes in a group of Cd-responsive genes including Zdhhc11, (protein-cysteine S-palmitoyltransferase), Ighg1 (immunoglobulin heavy constant gamma-1) and associated changes in metabolite concentrations. Co-administration of Se with Cd prevented Cd increase in lung and prevented Cd-associated pathway and network responses of the transcriptome and metabolome. Se protection against Cd toxicity in lung involves complex systems responses. Environmental Cd stimulates proinflammatory and profibrotic signaling. The present results indicate that dietary or supplemental Se could be useful to mitigate Cd toxicity. Published by Elsevier B.V.

  20. Hepatic Transcriptome Responses in Mice (Mus musculus) Exposed to the Nafion Membrane and Its Combustion Products

    PubMed Central

    Feng, Mingbao; Qu, Ruijuan; Habteselassie, Mussie; Wu, Jun; Yang, Shaogui; Sun, Ping; Huang, Qingguo; Wang, Zunyao

    2015-01-01

    Nafion 117 membrane (N117), an important polymer electrolyte membrane (PEM), has been widely used for numerous chemical technologies. Despite its increasing production and use, the toxicity data for N117 and its combustion products remain lacking. Toxicity studies are necessary to avoid problems related to waste disposal in landfills and incineration that may arise. In this study, we investigated the histopathological alterations, oxidative stress biomarker responses, and transcriptome profiles in the liver of male mice exposed to N117 and its combustion products for 24 days. An ion-chromatography system and liquid chromatography system coupled to a hybrid quadrupole time-of-flight mass spectrometry were used to analyze the chemical compositions of these combustion products. The transcriptomics analysis identified several significantly altered molecular pathways, including the metabolism of xenobiotics, carbohydrates and lipids; signal transduction; cellular processes; immune system; and signaling molecules and interaction. These studies provide preliminary data for the potential toxicity of N117 and its combustion products on living organisms and may fill the information gaps in the toxicity databases for the currently used PEMs. PMID:26057616

  1. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani.

    PubMed

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.

  2. The response of Isidorella newcombi to copper exposure: Using an integrated biological framework to interpret transcriptomic responses from RNA-seq analysis.

    PubMed

    Ubrihien, Rodney P; Ezaz, Tariq; Taylor, Anne M; Stevens, Mark M; Krikowa, Frank; Foster, Simon; Maher, William A

    2017-04-01

    This study describes the transcriptomic response of the Australian endemic freshwater gastropod Isidorella newcombi exposed to 80±1μg/L of copper for 3days. Analysis of copper tissue concentration, lysosomal membrane destabilisation and RNA-seq were conducted. Copper tissue concentrations confirmed that copper was bioaccumulated by the snails. Increased lysosomal membrane destabilisation in the copper-exposed snails indicated that the snails were stressed as a result of the exposure. Both copper tissue concentrations and lysosomal destabilisation were significantly greater in snails exposed to copper. In order to interpret the RNA-seq data from an ecotoxicological perspective an integrated biological response model was developed that grouped transcriptomic responses into those associated with copper transport and storage, survival mechanisms and cell death. A conceptual model of expected transcriptomic changes resulting from the copper exposure was developed as a basis to assess transcriptomic responses. Transcriptomic changes were evident at all the three levels of the integrated biological response model. Despite lacking statistical significance, increased expression of the gene encoding copper transporting ATPase provided an indication of increased internal transport of copper. Increased expression of genes associated with endocytosis are associated with increased transport of copper to the lysosome for storage in a detoxified form. Survival mechanisms included metabolic depression and processes associated with cellular repair and recycling. There was transcriptomic evidence of increased cell death by apoptosis in the copper-exposed organisms. Increased apoptosis is supported by the increase in lysosomal membrane destabilisation in the copper-exposed snails. Transcriptomic changes relating to apoptosis, phagocytosis, protein degradation and the lysosome were evident and these processes can be linked to the degradation of post-apoptotic debris. The study identified contaminant specific transcriptomic markers as well as markers of general stress. From an ecotoxicological perspective, the use of a framework to group transcriptomic responses into those associated with copper transport, survival and cell death assisted with the complex process of interpretation of RNA-seq data. The broad adoption of such a framework in ecotoxicology studies would assist in comparison between studies and the identification of reliable transcriptomic markers of contaminant exposure and response. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Transcriptome comparison and gene coexpression network analysis provide a systems view of citrus response to ‘Candidatus Liberibacter asiaticus’ infection

    PubMed Central

    2013-01-01

    Background Huanglongbing (HLB) is arguably the most destructive disease for the citrus industry. HLB is caused by infection of the bacterium, Candidatus Liberibacter spp. Several citrus GeneChip studies have revealed thousands of genes that are up- or down-regulated by infection with Ca. Liberibacter asiaticus. However, whether and how these host genes act to protect against HLB remains poorly understood. Results As a first step towards a mechanistic view of citrus in response to the HLB bacterial infection, we performed a comparative transcriptome analysis and found that a total of 21 Probesets are commonly up-regulated by the HLB bacterial infection. In addition, a number of genes are likely regulated specifically at early, late or very late stages of the infection. Furthermore, using Pearson correlation coefficient-based gene coexpression analysis, we constructed a citrus HLB response network consisting of 3,507 Probesets and 56,287 interactions. Genes involved in carbohydrate and nitrogen metabolic processes, transport, defense, signaling and hormone response were overrepresented in the HLB response network and the subnetworks for these processes were constructed. Analysis of the defense and hormone response subnetworks indicates that hormone response is interconnected with defense response. In addition, mapping the commonly up-regulated HLB responsive genes into the HLB response network resulted in a core subnetwork where transport plays a key role in the citrus response to the HLB bacterial infection. Moreover, analysis of a phloem protein subnetwork indicates a role for this protein and zinc transporters or zinc-binding proteins in the citrus HLB defense response. Conclusion Through integrating transcriptome comparison and gene coexpression network analysis, we have provided for the first time a systems view of citrus in response to the Ca. Liberibacter spp. infection causing HLB. PMID:23324561

  4. Systems Biology Analysis of Zymomonas mobilis ZM4 Ethanol Stress Responses

    PubMed Central

    Yang, Shihui; Pan, Chongle; Tschaplinski, Timothy J.; Hurst, Gregory B.; Engle, Nancy L.; Zhou, Wen; Dam, PhuongAn; Xu, Ying; Rodriguez, Miguel; Dice, Lezlee; Johnson, Courtney M.; Davison, Brian H.; Brown, Steven D.

    2013-01-01

    Background Zymomonas mobilis ZM4 is a capable ethanologenic bacterium with high ethanol productivity and ethanol tolerance. Previous studies indicated that several stress-related proteins and changes in the ZM4 membrane lipid composition may contribute to ethanol tolerance. However, the molecular mechanisms of its ethanol stress response have not been elucidated fully. Methodology/Principal Findings In this study, ethanol stress responses were investigated using systems biology approaches. Medium supplementation with an initial 47 g/L (6% v/v) ethanol reduced Z. mobilis ZM4 glucose consumption, growth rate and ethanol productivity compared to that of untreated controls. A proteomic analysis of early exponential growth identified about one thousand proteins, or approximately 55% of the predicted ZM4 proteome. Proteins related to metabolism and stress response such as chaperones and key regulators were more abundant in the early ethanol stress condition. Transcriptomic studies indicated that the response of ZM4 to ethanol is dynamic, complex and involves many genes from all the different functional categories. Most down-regulated genes were related to translation and ribosome biogenesis, while the ethanol-upregulated genes were mostly related to cellular processes and metabolism. Transcriptomic data were used to update Z. mobilis ZM4 operon models. Furthermore, correlations among the transcriptomic, proteomic and metabolic data were examined. Among significantly expressed genes or proteins, we observe higher correlation coefficients when fold-change values are higher. Conclusions Our study has provided insights into the responses of Z. mobilis to ethanol stress through an integrated “omics” approach for the first time. This systems biology study elucidated key Z. mobilis ZM4 metabolites, genes and proteins that form the foundation of its distinctive physiology and its multifaceted response to ethanol stress. PMID:23874800

  5. RNA-seq analysis of broiler liver transcriptome reveals novel responses to high ambient temperature.

    PubMed

    Coble, Derrick J; Fleming, Damarius; Persia, Michael E; Ashwell, Chris M; Rothschild, Max F; Schmidt, Carl J; Lamont, Susan J

    2014-12-10

    In broilers, high ambient temperature can result in reduced feed consumption, digestive inefficiency, impaired metabolism, and even death. The broiler sector of the U.S. poultry industry incurs approximately $52 million in heat-related losses annually. The objective of this study is to characterize the effects of cyclic high ambient temperature on the transcriptome of a metabolically active organ, the liver. This study provides novel insight into the effects of high ambient temperature on metabolism in broilers, because it is the first reported RNA-seq study to characterize the effect of heat on the transcriptome of a metabolic-related tissue. This information provides a platform for future investigations to further elucidate physiologic responses to high ambient temperature and seek methods to ameliorate the negative impacts of heat. Transcriptome sequencing of the livers of 8 broiler males using Illumina HiSeq 2000 technology resulted in 138 million, 100-base pair single end reads, yielding a total of 13.8 gigabases of sequence. Forty genes were differentially expressed at a significance level of P-value < 0.05 and a fold-change ≥ 2 in response to a week of cyclic high ambient temperature with 27 down-regulated and 13 up-regulated genes. Two gene networks were created from the function-based Ingenuity Pathway Analysis (IPA) of the differentially expressed genes: "Cell Signaling" and "Endocrine System Development and Function". The gene expression differences in the liver transcriptome of the heat-exposed broilers reflected physiological responses to decrease internal temperature, reduce hyperthermia-induced apoptosis, and promote tissue repair. Additionally, the differential gene expression revealed a physiological response to regulate the perturbed cellular calcium levels that can result from high ambient temperature exposure. Exposure to cyclic high ambient temperature results in changes at the metabolic, physiologic, and cellular level that can be characterized through RNA-seq analysis of the liver transcriptome of broilers. The findings highlight specific physiologic mechanisms by which broilers reduce the effects of exposure to high ambient temperature. This information provides a foundation for future investigations into the gene networks involved in the broiler stress response and for development of strategies to ameliorate the negative impacts of heat on animal production and welfare.

  6. Understanding the immune system architecture and transcriptome responses to southern rice black-streaked dwarf virus in Sogatella furcifera.

    PubMed

    Wang, Lin; Tang, Nan; Gao, Xinlei; Guo, Dongyang; Chang, Zhaoxia; Fu, Yating; Akinyemi, Ibukun A; Wu, Qingfa

    2016-11-02

    Sogatella furcifera, the white-backed planthopper (WBPH), has become one of the most destructive pests in rice production owing to its plant sap-sucking behavior and efficient transmission of Southern rice black-streaked dwarf virus (SRBSDV) in a circulative, propagative and persistent manner. The dynamic and complex SRBSDV-WBPH-rice plant interaction is still poorly understood. In this study, based on a homology-based genome-wide analysis, 348 immune-related genes belonging to 28 families were identified in WBPH. A transcriptome analysis of non-viruliferous (NVF) and viruliferous groups with high viral titers (HVT) and median viral titers (MVT) revealed that feeding on SRBSDV-infected rice plants has a significant impact on gene expression, regardless of viral titers in insects. We identified 278 up-regulated and 406 down-regulated genes shared among the NVF, MVT, and HVT groups and detected significant down-regulation of primary metabolism-related genes and oxidoreductase. In viruliferous WBPH with viral titer-specific transcriptome changes, 1,906 and 1,467 genes exhibited strict monotonically increasing and decreasing expression, respectively. The RNAi pathway was the major antiviral response to increasing viral titers among diverse immune responses. These results clarify the responses of immune genes and the transcriptome of WBPH to SRBSDV and improve our knowledge of the functional relationship between pathogen, vector, and host.

  7. Nitrogen economics of root foraging: Transitive closure of the nitrate–cytokinin relay and distinct systemic signaling for N supply vs. demand

    PubMed Central

    Ruffel, Sandrine; Krouk, Gabriel; Ristova, Daniela; Shasha, Dennis; Birnbaum, Kenneth D.; Coruzzi, Gloria M.

    2011-01-01

    As sessile organisms, root plasticity enables plants to forage for and acquire nutrients in a fluctuating underground environment. Here, we use genetic and genomic approaches in a “split-root” framework—in which physically isolated root systems of the same plant are challenged with different nitrogen (N) environments—to investigate how systemic signaling affects genome-wide reprogramming and root development. The integration of transcriptome and root phenotypes enables us to identify distinct mechanisms underlying “N economy” (i.e., N supply and demand) of plants as a system. Under nitrate-limited conditions, plant roots adopt an “active-foraging strategy”, characterized by lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate deprivation. By contrast, in nitrate-replete conditions, plant roots adopt a “dormant strategy”, characterized by a repression of lateral root outgrowth and a shared pattern of transcriptome reprogramming, in response to either local or distal nitrate supply. Sentinel genes responding to systemic N signaling identified by genome-wide comparisons of heterogeneous vs. homogeneous split-root N treatments were used to probe systemic N responses in Arabidopsis mutants impaired in nitrate reduction and hormone synthesis and also in decapitated plants. This combined analysis identified genetically distinct systemic signaling underlying plant N economy: (i) N supply, corresponding to a long-distance systemic signaling triggered by nitrate sensing; and (ii) N demand, experimental support for the transitive closure of a previously inferred nitrate–cytokinin shoot–root relay system that reports the nitrate demand of the whole plant, promoting a compensatory root growth in nitrate-rich patches of heterogeneous soil. PMID:22025711

  8. Quantifying whole transcriptome size, a prerequisite for understanding transcriptome evolution across species: an example from a plant allopolyploid.

    PubMed

    Coate, Jeremy E; Doyle, Jeff J

    2010-01-01

    Evolutionary biologists are increasingly comparing gene expression patterns across species. Due to the way in which expression assays are normalized, such studies provide no direct information about expression per gene copy (dosage responses) or per cell and can give a misleading picture of genes that are differentially expressed. We describe an assay for estimating relative expression per cell. When used in conjunction with transcript profiling data, it is possible to compare the sizes of whole transcriptomes, which in turn makes it possible to compare expression per cell for each gene in the transcript profiling data set. We applied this approach, using quantitative reverse transcriptase-polymerase chain reaction and high throughput RNA sequencing, to a recently formed allopolyploid and showed that its leaf transcriptome was approximately 1.4-fold larger than either progenitor transcriptome (70% of the sum of the progenitor transcriptomes). In contrast, the allopolyploid genome is 94.3% as large as the sum of its progenitor genomes and retains > or =93.5% of the sum of its progenitor gene complements. Thus, "transcriptome downsizing" is greater than genome downsizing. Using this transcriptome size estimate, we inferred dosage responses for several thousand genes and showed that the majority exhibit partial dosage compensation. Homoeologue silencing is nonrandomly distributed across dosage responses, with genes showing extreme responses in either direction significantly more likely to have a silent homoeologue. This experimental approach will add value to transcript profiling experiments involving interspecies and interploidy comparisons by converting expression per transcriptome to expression per genome, eliminating the need for assumptions about transcriptome size.

  9. Comparative Transcriptome Analysis Reveals a Preformed Defense System in Apple Root of a Resistant Genotype of G.935 in the Absence of Pathogen

    PubMed Central

    Shao, Jonathan; Zhou, Zhe; Davis, Robert E.

    2017-01-01

    Two apple rootstock genotypes G.935 and B.9 were recently demonstrated to exhibit distinct resistance responses following infection by Pythium ultimum. As part of an effort to elucidate the genetic regulation of apple root resistance to soilborne pathogens, preinoculation transcriptome variations in roots of these two apple rootstock genotypes are hypothesized to contribute to the observed disease resistance phenotypes. Results from current comparative transcriptome analysis demonstrated elevated transcript abundance for many genes which function in a system-wide defense response in the root tissue of the resistant genotype of G.935 in comparison with susceptible B.9. Based on the functional annotation, these differentially expressed genes encode proteins that function in several tiers of defense responses, such as pattern recognition receptors for pathogen detection and subsequent signal transduction, defense hormone biosynthesis and signaling, transcription factors with known roles in defense activation, enzymes of secondary metabolism, and various classes of resistance proteins. The data set suggested a more poised status, which is ready to defend pathogen infection, in the root tissues of resistant genotype of G.935, compared to the susceptible B.9. The significance of preformed defense in the absence of a pathogen toward overall resistance phenotypes in apple root and the potential fitness cost due to the overactivated defense system were discussed. PMID:28465679

  10. Functional Analysis of RNA Interference-Related Soybean Pod Borer (Lepidoptera) Genes Based on Transcriptome Sequences.

    PubMed

    Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin

    2018-01-01

    RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccas e 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like ( Sil1 ), scavenger receptor class C ( Src ), and scavenger receptor class B ( Srb3 and Srb4 ) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean.

  11. Functional Analysis of RNA Interference-Related Soybean Pod Borer (Lepidoptera) Genes Based on Transcriptome Sequences

    PubMed Central

    Meng, Fanli; Yang, Mingyu; Li, Yang; Li, Tianyu; Liu, Xinxin; Wang, Guoyue; Wang, Zhanchun; Jin, Xianhao; Li, Wenbin

    2018-01-01

    RNA interference (RNAi) is useful for controlling pests of agriculturally important crops. The soybean pod borer (SPB) is the most important soybean pest in Northeastern Asia. In an earlier study, we confirmed that the SPB could be controlled via transgenic plant-mediated RNAi. Here, the SPB transcriptome was sequenced to identify RNAi-related genes, and also to establish an RNAi-of-RNAi assay system for evaluating genes involved in the SPB systemic RNAi response. The core RNAi genes, as well as genes potentially involved in double-stranded RNA (dsRNA) uptake were identified based on SPB transcriptome sequences. A phylogenetic analysis and the characterization of these core components as well as dsRNA uptake related genes revealed that they contain conserved domains essential for the RNAi pathway. The results of the RNAi-of-RNAi assay involving Laccase 2 (a critical cuticle pigmentation gene) as a marker showed that genes encoding the sid-like (Sil1), scavenger receptor class C (Src), and scavenger receptor class B (Srb3 and Srb4) proteins of the endocytic pathway were required for SPB cellular uptake of dsRNA. The SPB response was inferred to contain three functional small RNA pathways (i.e., miRNA, siRNA, and piRNA pathways). Additionally, the SPB systemic RNA response may rely on systemic RNA interference deficient transmembrane channel-mediated and receptor-mediated endocytic pathways. The results presented herein may be useful for developing RNAi-mediated methods to control SPB infestations in soybean. PMID:29773992

  12. Transcriptomic analysis of Petunia hybrida in response to salt stress using high throughput RNA sequencing.

    PubMed

    Villarino, Gonzalo H; Bombarely, Aureliano; Giovannoni, James J; Scanlon, Michael J; Mattson, Neil S

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments.

  13. Transcriptomic Analysis of Petunia hybrida in Response to Salt Stress Using High Throughput RNA Sequencing

    PubMed Central

    Villarino, Gonzalo H.; Bombarely, Aureliano; Giovannoni, James J.; Scanlon, Michael J.; Mattson, Neil S.

    2014-01-01

    Salinity and drought stress are the primary cause of crop losses worldwide. In sodic saline soils sodium chloride (NaCl) disrupts normal plant growth and development. The complex interactions of plant systems with abiotic stress have made RNA sequencing a more holistic and appealing approach to study transcriptome level responses in a single cell and/or tissue. In this work, we determined the Petunia transcriptome response to NaCl stress by sequencing leaf samples and assembling 196 million Illumina reads with Trinity software. Using our reference transcriptome we identified more than 7,000 genes that were differentially expressed within 24 h of acute NaCl stress. The proposed transcriptome can also be used as an excellent tool for biological and bioinformatics in the absence of an available Petunia genome and it is available at the SOL Genomics Network (SGN) http://solgenomics.net. Genes related to regulation of reactive oxygen species, transport, and signal transductions as well as novel and undescribed transcripts were among those differentially expressed in response to salt stress. The candidate genes identified in this study can be applied as markers for breeding or to genetically engineer plants to enhance salt tolerance. Gene Ontology analyses indicated that most of the NaCl damage happened at 24 h inducing genotoxicity, affecting transport and organelles due to the high concentration of Na+ ions. Finally, we report a modification to the library preparation protocol whereby cDNA samples were bar-coded with non-HPLC purified primers, without affecting the quality and quantity of the RNA-seq data. The methodological improvement presented here could substantially reduce the cost of sample preparation for future high-throughput RNA sequencing experiments. PMID:24722556

  14. Escherichia coli infection induces distinct local and systemic transcriptome responses in the mammary gland.

    PubMed

    Mitterhuemer, Simone; Petzl, Wolfram; Krebs, Stefan; Mehne, Daniel; Klanner, Andrea; Wolf, Eckhard; Zerbe, Holm; Blum, Helmut

    2010-02-25

    Coliform bacteria are the most common etiologic agents in severe mastitis of cows. Escherichia coli infections are mostly restricted to a single udder quarter whereas neighboring quarters stay clinically inapparent, implicating the presence of a systemic defense reaction. To address its underlying mechanism, we performed a transcriptome study of mammary tissue from udder quarters inoculated with E. coli (6 h and 24 h post infection), from neighboring quarters of the same animals, and from untreated control animals. After 6 h 13 probe sets of differentially expressed genes (DEG) were detected in infected quarters versus control animals. Eighteen hours later 2154 and 476 DEG were found in infected and in neighboring quarters vs. control animals. Cluster analysis revealed DEG found only in infected quarters (local response) and DEG detected in both infected and neighboring quarters (systemic response). The first group includes genes mainly involved in immune response and inflammation, while the systemic reaction comprises antigen processing and presentation, cytokines, protein degradation and apoptosis. Enhanced expression of antimicrobial genes (S100A8, S100A9, S100A12, CXCL2, GNLY), acute phase genes (LBP, SAA3, CP, BF, C6, C4BPA, IF), and indicators of oxidative stress (GPX3, MT1A, MT2A, SOD2) point to an active defense reaction in infected and neighboring healthy quarters. Its early onset is indicated by increased transcription of NFIL3 at 6 h. NFIL3 is a predicted regulator of many genes of the systemic response at 24 h. The significance of our transcriptome study was evidenced by some recent findings with candidate gene based approaches. The discovery and holistic analysis of an extensive systemic reaction in the mammary gland significantly expands the knowledge of host-pathogen interactions in mastitis which may be relevant for the development of novel therapies and for genetic selection towards mastitis resistance.

  15. Comprehensive Transcriptome Profiling and Functional Analysis of the Frog (Bombina maxima) Immune System

    PubMed Central

    Zhao, Feng; Yan, Chao; Wang, Xuan; Yang, Yang; Wang, Guangyin; Lee, Wenhui; Xiang, Yang; Zhang, Yun

    2014-01-01

    Amphibians occupy a key phylogenetic position in vertebrates and evolution of the immune system. But, the resources of its transcriptome or genome are still little now. Bombina maxima possess strong ability to survival in very harsh environment with a more mature immune system. We obtained a comprehensive transcriptome by RNA-sequencing technology. 14.3% of transcripts were identified to be skin-specific genes, most of which were not isolated from skin secretion in previous works or novel non-coding RNAs. 27.9% of transcripts were mapped into 242 predicted KEGG pathways and 6.16% of transcripts related to human disease and cancer. Of 39 448 transcripts with the coding sequence, at least 1501 transcripts (570 genes) related to the immune system process. The molecules of immune signalling pathway were almost presented, several transcripts with high expression in skin and stomach. Experiments showed that lipopolysaccharide or bacteria challenge stimulated pro-inflammatory cytokine production and activation of pro-inflammatory caspase-1. These frog's data can remarkably expand the existing genome or transcriptome resources of amphibians, especially immunity data. The entity of the data provides a valuable platform for further investigation on more detailed immune response in B. maxima and a comparative study with other amphibians. PMID:23942912

  16. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?

    PubMed Central

    Sng, Natasha J.; Zupanska, Agata K.; Krishnamurthy, Aparna; Schultz, Eric R.; Ferl, Robert J.

    2017-01-01

    Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation. PMID:28662188

  17. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?

    PubMed

    Paul, Anna-Lisa; Sng, Natasha J; Zupanska, Agata K; Krishnamurthy, Aparna; Schultz, Eric R; Ferl, Robert J

    2017-01-01

    Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation.

  18. Transcriptomic and innate immune responses to Yersinia pestis in the lymph node during bubonic plague.

    PubMed

    Comer, Jason E; Sturdevant, Daniel E; Carmody, Aaron B; Virtaneva, Kimmo; Gardner, Donald; Long, Dan; Rosenke, Rebecca; Porcella, Stephen F; Hinnebusch, B Joseph

    2010-12-01

    A delayed inflammatory response is a prominent feature of infection with Yersinia pestis, the agent of bubonic and pneumonic plague. Using a rat model of bubonic plague, we examined lymph node histopathology, transcriptome, and extracellular cytokine levels to broadly characterize the kinetics and extent of the host response to Y. pestis and how it is influenced by the Yersinia virulence plasmid (pYV). Remarkably, dissemination and multiplication of wild-type Y. pestis during the bubonic stage of disease did not induce any detectable gene expression or cytokine response by host lymph node cells in the developing bubo. Only after systemic spread had led to terminal septicemic plague was a transcriptomic response detected, which included upregulation of several cytokine, chemokine, and other immune response genes. Although an initial intracellular phase of Y. pestis infection has been postulated, a Th1-type cytokine response associated with classical activation of macrophages was not observed during the bubonic stage of disease. However, elevated levels of interleukin-17 (IL-17) were present in infected lymph nodes. In the absence of pYV, sustained recruitment to the lymph node of polymorphonuclear leukocytes (PMN, or neutrophils), the major IL-17 effector cells, correlated with clearance of infection. Thus, the ability to counteract a PMN response in the lymph node appears to be a major in vivo function of the Y. pestis virulence plasmid.

  19. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    PubMed

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  20. Comparison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection.

    PubMed

    Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie; Gruden, Kristina

    2017-07-06

    Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato ( Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it.

  1. Comparison between Proteome and Transcriptome Response in Potato (Solanum tuberosum L.) Leaves Following Potato Virus Y (PVY) Infection

    PubMed Central

    Stare, Tjaša; Stare, Katja; Weckwerth, Wolfram; Wienkoop, Stefanie

    2017-01-01

    Plant diseases caused by viral infection are affecting all major crops. Being an obligate intracellular organisms, chemical control of these pathogens is so far not applied in the field except to control the insect vectors of the viruses. Understanding of molecular responses of plant immunity is therefore economically important, guiding the enforcement of crop resistance. To disentangle complex regulatory mechanisms of the plant immune responses, understanding system as a whole is a must. However, integrating data from different molecular analysis (transcriptomics, proteomics, metabolomics, smallRNA regulation etc.) is not straightforward. We evaluated the response of potato (Solanum tuberosum L.) following the infection with potato virus Y (PVY). The response has been analyzed on two molecular levels, with microarray transcriptome analysis and mass spectroscopy-based proteomics. Within this report, we performed detailed analysis of the results on both levels and compared two different approaches for analysis of proteomic data (spectral count versus MaxQuant). To link the data on different molecular levels, each protein was mapped to the corresponding potato transcript according to StNIB paralogue grouping. Only 33% of the proteins mapped to microarray probes in a one-to-one relation and additionally many showed discordance in detected levels of proteins with corresponding transcripts. We discussed functional importance of true biological differences between both levels and showed that the reason for the discordance between transcript and protein abundance lies partly in complexity and structure of biological regulation of proteome and transcriptome and partly in technical issues contributing to it. PMID:28684682

  2. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen and phosphorus nutritional responses in Arabidopsis

    PubMed Central

    Bielecka, Monika; Watanabe, Mutsumi; Morcuende, Rosa; Scheible, Wolf-Rüdiger; Hawkesford, Malcolm J.; Hesse, Holger; Hoefgen, Rainer

    2015-01-01

    Sulfur is an essential macronutrient for plant growth and development. Reaching a thorough understanding of the molecular basis for changes in plant metabolism depending on the sulfur-nutritional status at the systems level will advance our basic knowledge and help target future crop improvement. Although the transcriptional responses induced by sulfate starvation have been studied in the past, knowledge of the regulation of sulfur metabolism is still fragmentary. This work focuses on the discovery of candidates for regulatory genes such as transcription factors (TFs) using ‘omics technologies. For this purpose a short term sulfate-starvation/re-supply approach was used. ATH1 microarray studies and metabolite determinations yielded 21 TFs which responded more than 2-fold at the transcriptional level to sulfate starvation. Categorization by response behaviors under sulfate-starvation/re-supply and other nutrient starvations such as nitrate and phosphate allowed determination of whether the TF genes are specific for or common between distinct mineral nutrient depletions. Extending this co-behavior analysis to the whole transcriptome data set enabled prediction of putative downstream genes. Additionally, combinations of transcriptome and metabolome data allowed identification of relationships between TFs and downstream responses, namely, expression changes in biosynthetic genes and subsequent metabolic responses. Effect chains on glucosinolate and polyamine biosynthesis are discussed in detail. The knowledge gained from this study provides a blueprint for an integrated analysis of transcriptomics and metabolomics and application for the identification of uncharacterized genes. PMID:25674096

  3. Transcriptomic Immune Response of Tenebrio molitor Pupae to Parasitization by Scleroderma guani

    PubMed Central

    Zhu, Jia-Ying; Yang, Pu; Zhang, Zhong; Wu, Guo-Xing; Yang, Bin

    2013-01-01

    Background Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. Methodology/Principal Findings In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. Conclusions/Significance obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction. PMID:23342153

  4. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    PubMed

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  5. Transcriptomes of Eight Arabidopsis thaliana Accessions Reveal Core Conserved, Genotype- and Organ-Specific Responses to Flooding Stress1[OPEN

    PubMed Central

    van Veen, Hans; Vashisht, Divya; Akman, Melis; Girke, Thomas; Mustroph, Angelika; Reinen, Emilie; Kooiker, Maarten; van Tienderen, Peter; Voesenek, Laurentius A.C.J.

    2016-01-01

    Climate change has increased the frequency and severity of flooding events, with significant negative impact on agricultural productivity. These events often submerge plant aerial organs and roots, limiting growth and survival due to a severe reduction in light reactions and gas exchange necessary for photosynthesis and respiration, respectively. To distinguish molecular responses to the compound stress imposed by submergence, we investigated transcriptomic adjustments to darkness in air and under submerged conditions using eight Arabidopsis (Arabidopsis thaliana) accessions differing significantly in sensitivity to submergence. Evaluation of root and rosette transcriptomes revealed an early transcriptional and posttranscriptional response signature that was conserved primarily across genotypes, although flooding susceptibility-associated and genotype-specific responses also were uncovered. Posttranscriptional regulation encompassed darkness- and submergence-induced alternative splicing of transcripts from pathways involved in the alternative mobilization of energy reserves. The organ-specific transcriptome adjustments reflected the distinct physiological status of roots and shoots. Root-specific transcriptome changes included marked up-regulation of chloroplast-encoded photosynthesis and redox-related genes, whereas those of the rosette were related to the regulation of development and growth processes. We identified a novel set of tolerance genes, recognized mainly by quantitative differences. These included a transcriptome signature of more pronounced gluconeogenesis in tolerant accessions, a response that included stress-induced alternative splicing. This study provides organ-specific molecular resolution of genetic variation in submergence responses involving interactions between darkness and low-oxygen constraints of flooding stress and demonstrates that early transcriptome plasticity, including alternative splicing, is associated with the ability to cope with a compound environmental stress. PMID:27208254

  6. Transcriptome profiles in sarcoidosis and their potential role in disease prediction.

    PubMed

    Schupp, Jonas C; Vukmirovic, Milica; Kaminski, Naftali; Prasse, Antje

    2017-09-01

    Sarcoidosis is a systemic disease defined by the presence of nonnecrotizing granuloma in the absence of any known cause. Although the heterogeneity of sarcoidosis is well characterized clinically, the transcriptome of sarcoidosis and underlying molecular mechanisms are not. The signal of all transcripts, small and long noncoding RNAs, can be detected using microarrays or RNA-Sequencing. Analyzing the transcriptome of tissues that are directly affected by granulomas is of great importance to understand biology of the disease and may be predictive of disease and treatment outcome. Multiple genome wide expression studies performed on sarcoidosis affected tissues were published in the last 11 years. Published studies focused on differences in gene expression between sarcoidosis vs. control tissues, stable vs. progressive sarcoidosis, as well as sarcoidosis vs. other diseases. Strikingly, all these transcriptomics data confirm the key role of TH1 immune response in sarcoidosis and particularly of interferon-γ (IFN-γ) and type I IFN-driven signaling pathways. The steps toward transcriptomics of sarcoidosis in precision medicine highlight the potentials of this approach. Large prospective follow-up studies are required to identify signatures predictive of disease progression and outcome.

  7. Transcriptome analysis of Pinus halepensis under drought stress and during recovery

    PubMed Central

    Fox, Hagar; Doron-Faigenboim, Adi; Kelly, Gilor; Bourstein, Ronny; Attia, Ziv; Zhou, Jing; Moshe, Yosef; Moshelion, Menachem; David-Schwartz, Rakefet

    2018-01-01

    Abstract Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species’ dynamic response to drought and recovery and unravels novel mechanisms. PMID:29177514

  8. Transcriptome analysis of Pinus halepensis under drought stress and during recovery.

    PubMed

    Fox, Hagar; Doron-Faigenboim, Adi; Kelly, Gilor; Bourstein, Ronny; Attia, Ziv; Zhou, Jing; Moshe, Yosef; Moshelion, Menachem; David-Schwartz, Rakefet

    2018-03-01

    Forest trees use various strategies to cope with drought stress and these strategies involve complex molecular mechanisms. Pinus halepensis Miller (Aleppo pine) is found throughout the Mediterranean basin and is one of the most drought-tolerant pine species. In order to decipher the molecular mechanisms that P. halepensis uses to withstand drought, we performed large-scale physiological and transcriptome analyses. We selected a mature tree from a semi-arid area with suboptimal growth conditions for clonal propagation through cuttings. We then used a high-throughput experimental system to continuously monitor whole-plant transpiration rates, stomatal conductance and the vapor pressure deficit. The transcriptomes of plants were examined at six physiological stages: pre-stomatal response, partial stomatal closure, minimum transpiration, post-irrigation, partial recovery and full recovery. At each stage, data from plants exposed to the drought treatment were compared with data collected from well-irrigated control plants. A drought-stressed P. halepensis transcriptome was created using paired-end RNA-seq. In total, ~6000 differentially expressed, non-redundant transcripts were identified between drought-treated and control trees. Cluster analysis has revealed stress-induced down-regulation of transcripts related to photosynthesis, reactive oxygen species (ROS)-scavenging through the ascorbic acid (AsA)-glutathione cycle, fatty acid and cell wall biosynthesis, stomatal activity, and the biosynthesis of flavonoids and terpenoids. Up-regulated processes included chlorophyll degradation, ROS-scavenging through AsA-independent thiol-mediated pathways, abscisic acid response and accumulation of heat shock proteins, thaumatin and exordium. Recovery from drought induced strong transcription of retrotransposons, especially the retrovirus-related transposon Tnt1-94. The drought-related transcriptome illustrates this species' dynamic response to drought and recovery and unravels novel mechanisms.

  9. Biologic Phenotyping of the Human Small Airway Epithelial Response to Cigarette Smoking

    PubMed Central

    Tilley, Ann E.; O'Connor, Timothy P.; Hackett, Neil R.; Strulovici-Barel, Yael; Salit, Jacqueline; Amoroso, Nancy; Zhou, Xi Kathy; Raman, Tina; Omberg, Larsson; Clark, Andrew; Mezey, Jason; Crystal, Ronald G.

    2011-01-01

    Background The first changes associated with smoking are in the small airway epithelium (SAE). Given that smoking alters SAE gene expression, but only a fraction of smokers develop chronic obstructive pulmonary disease (COPD), we hypothesized that assessment of SAE genome-wide gene expression would permit biologic phenotyping of the smoking response, and that a subset of healthy smokers would have a “COPD-like” SAE transcriptome. Methodology/Principal Findings SAE (10th–12th generation) was obtained via bronchoscopy of healthy nonsmokers, healthy smokers and COPD smokers and microarray analysis was used to identify differentially expressed genes. Individual responsiveness to smoking was quantified with an index representing the % of smoking-responsive genes abnormally expressed (ISAE), with healthy smokers grouped into “high” and “low” responders based on the proportion of smoking-responsive genes up- or down-regulated in each smoker. Smokers demonstrated significant variability in SAE transcriptome with ISAE ranging from 2.9 to 51.5%. While the SAE transcriptome of “low” responder healthy smokers differed from both “high” responders and smokers with COPD, the transcriptome of the “high” responder healthy smokers was indistinguishable from COPD smokers. Conclusion/Significance The SAE transcriptome can be used to classify clinically healthy smokers into subgroups with lesser and greater responses to cigarette smoking, even though these subgroups are indistinguishable by clinical criteria. This identifies a group of smokers with a “COPD-like” SAE transcriptome. PMID:21829517

  10. Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites

    ERIC Educational Resources Information Center

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…

  11. Next-Generation Transcriptome Profiling of the Salmon Louse Caligus rogercresseyi Exposed to Deltamethrin (AlphaMax™): Discovery of Relevant Genes and Sex-Related Differences.

    PubMed

    Chávez-Mardones, Jacqueline; Gallardo-Escárate, Cristian

    2015-12-01

    Sea lice are one of the main parasites affecting the salmon aquaculture industry, causing significant economic losses worldwide. Increased resistance to traditional chemical treatments has created the need to find alternative control methods. Therefore, the objective of this study was to identify the transcriptome response of the salmon louse Caligus rogercresseyi to the delousing drug deltamethrin (AlphaMax™). Through bioassays with different concentrations of deltamethrin, adult salmon lice transcriptomes were sequenced from cDNA libraries in the MiSeq Illumina platform. A total of 78 million reads for females and males were assembled in 30,212 and 38,536 contigs, respectively. De novo assembly yielded 86,878 high-quality contigs and, based on published data, it was possible to annotate and identify relevant genes involved in several biological processes. RNA-seq analysis in conjunction with heatmap hierarchical clustering evidenced that pyrethroids modify the ectoparasitic transcriptome in adults, affecting molecular processes associated with the nervous system, cuticle formation, oxidative stress, reproduction, and metabolism, among others. Furthermore, sex-related transcriptome differences were evidenced. Specifically, 534 and 1033 exclusive transcripts were identified for males and females, respectively, and 154 were shared between sexes. For males, estradiol 17-beta-dehydrogenase, sphingolipid delta4-desaturase DES1, ketosamine-3-kinase, and arylsulfatase A, among others, were discovered, while for females, vitellogenin 1, glycoprotein G, transaldolase, and nitric oxide synthase were among those identified. The shared transcripts included annotations for tropomyosin, γ-crystallin A, glutamate receptor-metabotropic, glutathione S-transferase, and carboxipeptidase B. The present study reveals that deltamethrin generates a complex transcriptome response in C. rogercresseyi, thus providing valuable genomic information for developing new delousing drugs.

  12. Specific Transcriptome Changes Associated with Blood Pressure Reduction in Hypertensive Patients After Relaxation Response Training.

    PubMed

    Bhasin, Manoj K; Denninger, John W; Huffman, Jeff C; Joseph, Marie G; Niles, Halsey; Chad-Friedman, Emma; Goldman, Roberta; Buczynski-Kelley, Beverly; Mahoney, Barbara A; Fricchione, Gregory L; Dusek, Jeffery A; Benson, Herbert; Zusman, Randall M; Libermann, Towia A

    2018-05-01

    Mind-body practices that elicit the relaxation response (RR) have been demonstrated to reduce blood pressure (BP) in essential hypertension (HTN) and may be an adjunct to antihypertensive drug therapy. However, the molecular mechanisms by which the RR reduces BP remain undefined. Genomic determinants associated with responsiveness to an 8-week RR-based mind-body intervention for lowering HTN in 13 stage 1 hypertensive patients classified as BP responders and 11 as nonresponders were identified. Transcriptome analysis in peripheral blood mononuclear cells identified 1771 genes regulated by the RR in responders. Biological process- and pathway-based analysis of transcriptome data demonstrated enrichment in the following gene categories: immune regulatory pathways and metabolism (among downregulated genes); glucose metabolism, cardiovascular system development, and circadian rhythm (among upregulated genes). Further in silico estimation of cell abundance from the microarray data showed enrichment of the anti-inflammatory M2 subtype of macrophages in BP responders. Nuclear factor-κB, vascular endothelial growth factor, and insulin were critical molecules emerging from interactive network analysis. These findings provide the first insights into the molecular mechanisms that are associated with the beneficial effects of the RR on HTN.

  13. Specific Transcriptome Changes Associated with Blood Pressure Reduction in Hypertensive Patients After Relaxation Response Training

    PubMed Central

    Bhasin, Manoj K.; Denninger, John W.; Huffman, Jeff C.; Joseph, Marie G.; Niles, Halsey; Chad-Friedman, Emma; Goldman, Roberta; Buczynski-Kelley, Beverly; Mahoney, Barbara A.; Fricchione, Gregory L.; Dusek, Jeffery A.; Benson, Herbert; Zusman, Randall M.

    2018-01-01

    Abstract Objective: Mind–body practices that elicit the relaxation response (RR) have been demonstrated to reduce blood pressure (BP) in essential hypertension (HTN) and may be an adjunct to antihypertensive drug therapy. However, the molecular mechanisms by which the RR reduces BP remain undefined. Design: Genomic determinants associated with responsiveness to an 8-week RR-based mind–body intervention for lowering HTN in 13 stage 1 hypertensive patients classified as BP responders and 11 as nonresponders were identified. Results: Transcriptome analysis in peripheral blood mononuclear cells identified 1771 genes regulated by the RR in responders. Biological process- and pathway-based analysis of transcriptome data demonstrated enrichment in the following gene categories: immune regulatory pathways and metabolism (among downregulated genes); glucose metabolism, cardiovascular system development, and circadian rhythm (among upregulated genes). Further in silico estimation of cell abundance from the microarray data showed enrichment of the anti-inflammatory M2 subtype of macrophages in BP responders. Nuclear factor-κB, vascular endothelial growth factor, and insulin were critical molecules emerging from interactive network analysis. Conclusions: These findings provide the first insights into the molecular mechanisms that are associated with the beneficial effects of the RR on HTN. PMID:29616846

  14. Genome scale transcriptomics of baculovirus-insect interactions.

    PubMed

    Nguyen, Quan; Nielsen, Lars K; Reid, Steven

    2013-11-12

    Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.

  15. Transcriptome analysis of resistant and susceptible tobacco (Nicotiana tabacum) in response to root-knot nematode Meloidogyne incognita infection.

    PubMed

    Xing, Xuexia; Li, Xiaohui; Zhang, Mingzhen; Wang, Yuan; Liu, Bingyang; Xi, Qiliang; Zhao, Ke; Wu, Yunjie; Yang, Tiezhao

    2017-01-22

    The root-knot nematode (RKN) Meloidogyne incognita reproduces on the roots of tobacco (Nicotiana tabacum), damaging crops, reducing crop yield, and causing economic losses annually. The development of resistant genotypes is an alternative strategy to effectively control these losses. However, the molecular mechanism responsible for host pathogenesis and defense responses in tobacco specifically against RKNs remain poorly understood. Here, root transcriptome analysis of resistant (Yuyan12) and susceptible (Changbohuang) tobacco varieties infected with RKNs was performed. Moreover, 2623 and 545 differentially expressed genes (DEGs) in RKN-infected roots were observed in Yuyan12 and Changbohuang, respectively, compared to those in non-infected roots, including 289 DEGs commonly expressed in the two genotypes. Among these DEGs, genes encoding cell wall modifying proteins, auxin-related proteins, the ROS scavenging system, and transcription factors involved in various biological and physiochemical processes were significantly expressed in both the resistant and susceptible genotypes. This work is thus the first report on the relationships in the RKN-tobacco interaction using transcriptome analysis, and the results provide important information on the mechanism of RKN resistance in tobacco. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Comparative transcriptomics of Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha during infections with salmon lice Lepeophtheirus salmonis.

    PubMed

    Sutherland, Ben J G; Koczka, Kim W; Yasuike, Motoshige; Jantzen, Stuart G; Yazawa, Ryosuke; Koop, Ben F; Jones, Simon R M

    2014-03-15

    Salmon species vary in susceptibility to infections with the salmon louse (Lepeophtheirus salmonis). Comparing mechanisms underlying responses in susceptible and resistant species is important for estimating impacts of infections on wild salmon, selective breeding of farmed salmon, and expanding our knowledge of fish immune responses to ectoparasites. Herein we report three L. salmonis experimental infection trials of co-habited Atlantic Salmo salar, chum Oncorhynchus keta and pink salmon O. gorbuscha, profiling hematocrit, blood cortisol concentrations, and transcriptomic responses of the anterior kidney and skin to the infection. In all trials, infection densities (lice per host weight (g)) were consistently highest on chum salmon, followed by Atlantic salmon, and lowest in pink salmon. At 43 days post-exposure, all lice had developed to motile stages, and infection density was uniformly low among species. Hematocrit was reduced in infected Atlantic and chum salmon, and cortisol was elevated in infected chum salmon. Systemic transcriptomic responses were profiled in all species and large differences in response functions were identified between Atlantic and Pacific (chum and pink) salmon. Pink and chum salmon up-regulated acute phase response genes, including complement and coagulation components, and down-regulated antiviral immune genes. The pink salmon response involved the largest and most diverse iron sequestration and homeostasis mechanisms. Pattern recognition receptors were up-regulated in all species but the active components were often species-specific. C-type lectin domain family 4 member M and acidic mammalian chitinase were specifically up-regulated in the resistant pink salmon. Experimental exposures consistently indicated increased susceptibility in chum and Atlantic salmon, and resistance in pink salmon, with differences in infection density occurring within the first three days of infection. Transcriptomic analysis suggested candidate resistance functions including local inflammation with cytokines, specific innate pattern recognition receptors, and iron homeostasis. Suppressed antiviral immunity in both susceptible and resistant species indicates the importance of future work investigating co-infections of viral pathogens and lice.

  17. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions.

    PubMed

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D

    2016-11-03

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses.

  18. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  19. Transcriptome and proteome analysis of Salmonella enterica serovar Typhimurium systemic infection of wild type and immune-deficient mice

    PubMed Central

    Oshota, Olusegun; Fookes, Maria; Schreiber, Fernanda; Chaudhuri, Roy R.; Yu, Lu; Clare, Simon; Choudhary, Jyoti; Thomson, Nicholas R.; Lio, Pietro

    2017-01-01

    Salmonella enterica are a threat to public health. Current vaccines are not fully effective. The ability to grow in infected tissues within phagocytes is required for S. enterica virulence in systemic disease. As the infection progresses the bacteria are exposed to a complex host immune response. Consequently, in order to continue growing in the tissues, S. enterica requires the coordinated regulation of fitness genes. Bacterial gene regulation has so far been investigated largely using exposure to artificial environmental conditions or to in vitro cultured cells, and little information is available on how S. enterica adapts in vivo to sustain cell division and survival. We have studied the transcriptome, proteome and metabolic flux of Salmonella, and the transcriptome of the host during infection of wild type C57BL/6 and immune-deficient gp91-/-phox mice. Our analyses advance the understanding of how S. enterica and the host behaves during infection to a more sophisticated level than has previously been reported. PMID:28796780

  20. Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress

    PubMed Central

    Lin, Wenwei; de Sessions, Paola Florez; Teoh, Garrett Hor Keong; Mohamed, Ahmad Naim Nazri; Zhu, Yuan O.; Koh, Vanessa Hui Qi; Ang, Michelle Lay Teng; Dedon, Peter C.; Hibberd, Martin Lloyd

    2016-01-01

    Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1. PMID:27324481

  1. Global transcriptomic analysis suggests carbon dioxide as an environmental stressor in spaceflight: A systems biology GeneLab case study.

    PubMed

    Beheshti, Afshin; Cekanaviciute, Egle; Smith, David J; Costes, Sylvain V

    2018-03-08

    Spaceflight introduces a combination of environmental stressors, including microgravity, ionizing radiation, changes in diet and altered atmospheric gas composition. In order to understand the impact of each environmental component on astronauts it is important to investigate potential influences in isolation. Rodent spaceflight experiments involve both standard vivarium cages and animal enclosure modules (AEMs), which are cages used to house rodents in spaceflight. Ground control AEMs are engineered to match the spaceflight environment. There are limited studies examining the biological response invariably due to the configuration of AEM and vivarium housing. To investigate the innate global transcriptomic patterns of rodents housed in spaceflight-matched AEM compared to standard vivarium cages we utilized publicly available data from the NASA GeneLab repository. Using a systems biology approach, we observed that AEM housing was associated with significant transcriptomic differences, including reduced metabolism, altered immune responses, and activation of possible tumorigenic pathways. Although we did not perform any functional studies, our findings revealed a mild hypoxic phenotype in AEM, possibly due to atmospheric carbon dioxide that was increased to match conditions in spaceflight. Our investigation illustrates the process of generating new hypotheses and informing future experimental research by repurposing multiple space-flown datasets.

  2. Increasing transcriptome response of serpins during the ontogenetic stages in the salmon louse Caligus rogercresseyi (Copepoda: Caligidae).

    PubMed

    Maldonado-Aguayo, W; Gallardo-Escárate, C

    2014-06-01

    Serine protease inhibitors, or serpins, target serine proteases, and are important regulators of intra- and extracellular proteolysis. For parasite survival, parasite-derived protease inhibitors have been suggested to play essential roles in evading the host's immune system and protecting against exogenous host proteases. The aim of this work was to identify serpins via high throughput transcriptome sequencing and elucidate their potential functions during the lifecycle of the salmon louse Caligus rogercresseyi. Eleven putative, partial serpin sequences in the C. rogercresseyi transcriptome were identified and denoted as Cr-serpins 1 to 11. Comparative analysis of the deduced serpin-like amino acid sequences revealed a highly conserved reactive center loop region. Interestingly, P1 residues suggest putative functions involved with the trypsin/subtilisin, elastase, or subtilisin inhibitors, which evidenced increasing gene expression profiles from the copepodid to adult stage in C. rogercresseyi. Concerning this, Cr-serpin 10 was mainly expressed in the copepodid stage, while Cr-serpins 3, 4, 5, and 11 were mostly expressed in chalimus and adult stages. These results suggest that serpins could be involved in evading the immune response of the host fish. The identification of these serpins furthers the understanding of the immune system in this important ectoparasite species. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. The utility of transcriptomics in fish conservation.

    PubMed

    Connon, Richard E; Jeffries, Ken M; Komoroske, Lisa M; Todgham, Anne E; Fangue, Nann A

    2018-01-29

    There is growing recognition of the need to understand the mechanisms underlying organismal resilience (i.e. tolerance, acclimatization) to environmental change to support the conservation management of sensitive and economically important species. Here, we discuss how functional genomics can be used in conservation biology to provide a cellular-level understanding of organismal responses to environmental conditions. In particular, the integration of transcriptomics with physiological and ecological research is increasingly playing an important role in identifying functional physiological thresholds predictive of compensatory responses and detrimental outcomes, transforming the way we can study issues in conservation biology. Notably, with technological advances in RNA sequencing, transcriptome-wide approaches can now be applied to species where no prior genomic sequence information is available to develop species-specific tools and investigate sublethal impacts that can contribute to population declines over generations and undermine prospects for long-term conservation success. Here, we examine the use of transcriptomics as a means of determining organismal responses to environmental stressors and use key study examples of conservation concern in fishes to highlight the added value of transcriptome-wide data to the identification of functional response pathways. Finally, we discuss the gaps between the core science and policy frameworks and how thresholds identified through transcriptomic evaluations provide evidence that can be more readily used by resource managers. © 2018. Published by The Company of Biologists Ltd.

  4. Comparative transcriptome response in swine tracheobronchial lymph nodes to viral infection

    USDA-ARS?s Scientific Manuscript database

    The tracheobronchial lymph node (TBLN) transcriptome response was evaluated following viral infection using Digital Gene Expression Tag Profiling (DGETP). Pigs were sham-treated or infected intranasally with porcine reproductive and respiratory syndrome virus, porcine circovirus type 2, pseudorabies...

  5. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks.

    PubMed

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G J; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as "papilionoid legume-specific" were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This transcriptome provides a valuable resource to investigate root hair biology in legumes and the roles that these cells play in rhizobial symbiosis establishment. These results could also contribute to the long-term objective of transferring this symbiotic capacity to non-legume plants.

  6. Relationships between drought, heat and air humidity responses revealed by transcriptome-metabolome co-analysis.

    PubMed

    Georgii, Elisabeth; Jin, Ming; Zhao, Jin; Kanawati, Basem; Schmitt-Kopplin, Philippe; Albert, Andreas; Winkler, J Barbro; Schäffner, Anton R

    2017-07-10

    Elevated temperature and reduced water availability are frequently linked abiotic stresses that may provoke distinct as well as interacting molecular responses. Based on non-targeted metabolomic and transcriptomic measurements from Arabidopsis rosettes, this study aims at a systematic elucidation of relevant components in different drought and heat scenarios as well as relationships between molecular players of stress response. In combined drought-heat stress, the majority of single stress responses are maintained. However, interaction effects between drought and heat can be discovered as well; these relate to protein folding, flavonoid biosynthesis and growth inhibition, which are enhanced, reduced or specifically induced in combined stress, respectively. Heat stress experiments with and without supplementation of air humidity for maintenance of vapor pressure deficit suggest that decreased relative air humidity due to elevated temperature is an important component of heat stress, specifically being responsible for hormone-related responses to water deprivation. Remarkably, this "dry air effect" is the primary trigger of the metabolomic response to heat. In contrast, the transcriptomic response has a substantial temperature component exceeding the dry air component and including up-regulation of many transcription factors and protein folding-related genes. Data level integration independent of prior knowledge on pathways and condition labels reveals shared drought and heat responses between transcriptome and metabolome, biomarker candidates and co-regulation between genes and metabolic compounds, suggesting novel players in abiotic stress response pathways. Drought and heat stress interact both at transcript and at metabolite response level. A comprehensive, non-targeted view of this interaction as well as non-interacting processes is important to be taken into account when improving tolerance to abiotic stresses in breeding programs. Transcriptome and metabolome may respond with different extent to individual stress components. Their contrasting behavior in response to temperature stress highlights that the protein folding machinery effectively shields the metabolism from stress. Disentangling the complex relationships between transcriptome and metabolome in response to stress is an enormous challenge. As demonstrated by case studies with supporting evidence from additional data, the large dataset provided in this study may assist in determining linked genetic and metabolic features as candidates for future mechanistic analyses.

  7. Transcriptomic response and perturbation of toxicity pathways in zebrafish larvae after exposure to graphene quantum dots (GQDs).

    PubMed

    Deng, Shun; Jia, Pan-Pan; Zhang, Jing-Hui; Junaid, Muhammad; Niu, Aping; Ma, Yan-Bo; Fu, Ailing; Pei, De-Sheng

    2018-05-29

    Graphene quantum dots (GQDs) are widely used for biomedical applications. Previously, the low-level toxicity of GQDs in vivo and in vitro has been elucidated, but the underlying molecular mechanisms remained largely unknown. Here, we employed the Illumina high-throughput RNA-sequencing to explore the whole-transcriptome profiling of zebrafish larvae after exposure to GQDs. Comparative transcriptome analysis identified 2116 differentially expressed genes between GQDs exposed groups and control. Functional classification demonstrated that a large proportion of genes involved in acute inflammatory responses and detoxifying process were significantly up-regulated by GQDs. The inferred gene regulatory network suggested that activator protein 1 (AP-1) was the early-response transcription factor in the linkage of a cascade of downstream (pro-) inflammatory signals with the apoptosis signals. Moreover, hierarchical signaling threshold determined the high sensitivity of complement system in zebrafish when exposed to the sublethal dose of GQDs. Further, 35 candidate genes from various signaling pathways were further validated by qPCR after exposure to 25, 50, and 100 μg/mL of GQDs. Taken together, our study provided a valuable insight into the molecular mechanisms of potential bleeding risks and detoxifying processes in response to GQDs exposure, thereby establishing a mechanistic basis for the biosafety evaluation of GQDs. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Global Transcriptome Analysis of Staphylococcus aureus Response to Hydrogen Peroxide†

    PubMed Central

    Chang, Wook; Small, David A.; Toghrol, Freshteh; Bentley, William E.

    2006-01-01

    Staphylococcus aureus responds with protective strategies against phagocyte-derived reactive oxidants to infect humans. Herein, we report the transcriptome analysis of the cellular response of S. aureus to hydrogen peroxide-induced oxidative stress. The data indicate that the oxidative response includes the induction of genes involved in virulence, DNA repair, and notably, anaerobic metabolism. PMID:16452450

  9. Genomic, Transcriptomic and Metabolomic Studies of Two Well-Characterized, Laboratory-Derived Vancomycin-Intermediate Staphylococcus aureus Strains Derived from the Same Parent Strain

    PubMed Central

    Hattangady, Dipti S.; Singh, Atul K.; Muthaiyan, Arun; Jayaswal, Radheshyam K.; Gustafson, John E.; Ulanov, Alexander V.; Li, Zhong; Wilkinson, Brian J.; Pfeltz, Richard F.

    2015-01-01

    Complete genome comparisons, transcriptomic and metabolomic studies were performed on two laboratory-selected, well-characterized vancomycin-intermediate Staphylococcus aureus (VISA) derived from the same parent MRSA that have changes in cell wall composition and decreased autolysis. A variety of mutations were found in the VISA, with more in strain 13136p−m+V20 (vancomycin MIC = 16 µg/mL) than strain 13136p−m+V5 (MIC = 8 µg/mL). Most of the mutations have not previously been associated with the VISA phenotype; some were associated with cell wall metabolism and many with stress responses, notably relating to DNA damage. The genomes and transcriptomes of the two VISA support the importance of gene expression regulation to the VISA phenotype. Similarities in overall transcriptomic and metabolomic data indicated that the VISA physiologic state includes elements of the stringent response, such as downregulation of protein and nucleotide synthesis, the pentose phosphate pathway and nutrient transport systems. Gene expression for secreted virulence determinants was generally downregulated, but was more variable for surface-associated virulence determinants, although capsule formation was clearly inhibited. The importance of activated stress response elements could be seen across all three analyses, as in the accumulation of osmoprotectant metabolites such as proline and glutamate. Concentrations of potential cell wall precursor amino acids and glucosamine were increased in the VISA strains. Polyamines were decreased in the VISA, which may facilitate the accrual of mutations. Overall, the studies confirm the wide variability in mutations and gene expression patterns that can lead to the VISA phenotype. PMID:27025616

  10. Global transcriptomic profiling using small volumes of whole blood: a cost-effective method for translational genomic biomarker identification in small animals.

    PubMed

    Fricano, Meagan M; Ditewig, Amy C; Jung, Paul M; Liguori, Michael J; Blomme, Eric A G; Yang, Yi

    2011-01-01

    Blood is an ideal tissue for the identification of novel genomic biomarkers for toxicity or efficacy. However, using blood for transcriptomic profiling presents significant technical challenges due to the transcriptomic changes induced by ex vivo handling and the interference of highly abundant globin mRNA. Most whole blood RNA stabilization and isolation methods also require significant volumes of blood, limiting their effective use in small animal species, such as rodents. To overcome these challenges, a QIAzol-based RNA stabilization and isolation method (QSI) was developed to isolate sufficient amounts of high quality total RNA from 25 to 500 μL of rat whole blood. The method was compared to the standard PAXgene Blood RNA System using blood collected from rats exposed to saline or lipopolysaccharide (LPS). The QSI method yielded an average of 54 ng total RNA per μL of rat whole blood with an average RNA Integrity Number (RIN) of 9, a performance comparable with the standard PAXgene method. Total RNA samples were further processed using the NuGEN Ovation Whole Blood Solution system and cDNA was hybridized to Affymetrix Rat Genome 230 2.0 Arrays. The microarray QC parameters using RNA isolated with the QSI method were within the acceptable range for microarray analysis. The transcriptomic profiles were highly correlated with those using RNA isolated with the PAXgene method and were consistent with expected LPS-induced inflammatory responses. The present study demonstrated that the QSI method coupled with NuGEN Ovation Whole Blood Solution system is cost-effective and particularly suitable for transcriptomic profiling of minimal volumes of whole blood, typical of those obtained with small animal species.

  11. Transcriptome-Based Analysis in Lactobacillus plantarum WCFS1 Reveals New Insights into Resveratrol Effects at System Level.

    PubMed

    Reverón, Inés; Plaza-Vinuesa, Laura; Franch, Mónica; de Las Rivas, Blanca; Muñoz, Rosario; López de Felipe, Félix

    2018-05-01

    This study was undertaken to expand our insights into the mechanisms involved in the tolerance to resveratrol (RSV) that operate at system-level in gut microorganisms and advance knowledge on new RSV-responsive gene circuits. Whole genome transcriptional profiling was used to characterize the molecular response of Lactobacillus plantarum WCFS1 to RSV. DNA repair mechanisms were induced by RSV and responses were triggered to decrease the load of copper, a metal required for RSV-mediated DNA cleavage, and H 2 S, a genotoxic gas. To counter the effects of RSV, L. plantarum strongly up- or downregulated efflux systems and ABC transporters pointing to transport control of RSV across the membrane as a key mechanism for RSV tolerance. L. plantarum also downregulated tRNAs, induced chaperones, and reprogrammed its transcriptome to tightly control ammonia levels. RSV induced a probiotic effector gene and a likely deoxycholate transporter, two functions that improve the host health status. Our data identify novel protective mechanisms involved in RSV tolerance operating at system level in a gut microbe. These insights could influence the way RSV is used for a better management of gut microbial ecosystems to obtain associated health benefits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 20180311 - Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells (SOT)

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  13. Differential Gene Expression and Concentration-Response Modeling Workflow for High-Throughput Transcriptomic (HTTr) Data: Results From MCF7 Cells

    EPA Science Inventory

    Increasing efficiency and declining cost of generating whole transcriptome profiles has made high-throughput transcriptomics a practical option for chemical bioactivity screening. The resulting data output provides information on the expression of thousands of genes and is amenab...

  14. High Throughput Transcriptomics @ USEPA (Toxicology ...

    EPA Pesticide Factsheets

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.

  15. A Transcriptomic Network Underlies Microstructural and Physiological Responses to Cadmium in Populus × canescens1[C][W

    PubMed Central

    He, Jiali; Li, Hong; Luo, Jie; Ma, Chaofeng; Li, Shaojun; Qu, Long; Gai, Ying; Jiang, Xiangning; Janz, Dennis; Polle, Andrea; Tyree, Melvin; Luo, Zhi-Bin

    2013-01-01

    Bark tissue of Populus × canescens can hyperaccumulate cadmium, but microstructural, transcriptomic, and physiological response mechanisms are poorly understood. Histochemical assays, transmission electron microscopic observations, energy-dispersive x-ray microanalysis, and transcriptomic and physiological analyses have been performed to enhance our understanding of cadmium accumulation and detoxification in P. × canescens. Cadmium was allocated to the phloem of the bark, and subcellular cadmium compartmentalization occurred mainly in vacuoles of phloem cells. Transcripts involved in microstructural alteration, changes in nutrition and primary metabolism, and stimulation of stress responses showed significantly differential expression in the bark of P. × canescens exposed to cadmium. About 48% of the differentially regulated transcripts formed a coregulation network in which 43 hub genes played a central role both in cross talk among distinct biological processes and in coordinating the transcriptomic regulation in the bark of P. × canescens in response to cadmium. The cadmium transcriptome in the bark of P. × canescens was mirrored by physiological readouts. Cadmium accumulation led to decreased total nitrogen, phosphorus, and calcium and increased sulfur in the bark. Cadmium inhibited photosynthesis, resulting in decreased carbohydrate levels. Cadmium induced oxidative stress and antioxidants, including free proline, soluble phenolics, ascorbate, and thiol compounds. These results suggest that orchestrated microstructural, transcriptomic, and physiological regulation may sustain cadmium hyperaccumulation in P. × canescens bark and provide new insights into engineering woody plants for phytoremediation. PMID:23530184

  16. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions.

    PubMed

    Parreira, Valeria R; Russell, Kay; Athanasiadou, Spiridoula; Prescott, John F

    2016-08-12

    Necrotic enteritis (NE) caused by netB-positive type A Clostridium perfringens is an important bacterial disease of poultry. Through its complex regulatory system, C. perfringens orchestrates the expression of a collection of toxins and extracellular enzymes that are crucial for the development of the disease; environmental conditions play an important role in their regulation. In this study, and for the first time, global transcriptomic analysis was performed on ligated intestinal loops in chickens colonized with a netB-positive C. perfringens strain, as well as the same strain propagated in vitro under various nutritional and environmental conditions. Analysis of the respective pathogen transcriptomes revealed up to 673 genes that were significantly expressed in vivo. Gene expression profiles in vivo were most similar to those of C. perfringens grown in nutritionally-deprived conditions. Taken together, our results suggest a bacterial transcriptome responses to the early stages of adaptation, and colonization of, the chicken intestine. Our work also reveals how netB-positive C. perfringens reacts to different environmental conditions including those in the chicken intestine.

  17. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm)

    PubMed Central

    Safronov, Omid; Kreuzwieser, Jürgen; Haberer, Georg; Alyousif, Mohamed S.; Schulze, Waltraud; Al-Harbi, Naif; Arab, Leila; Ache, Peter; Stempfl, Thomas; Kruse, Joerg; Mayer, Klaus X.; Hedrich, Rainer; Rennenberg, Heinz

    2017-01-01

    Plants adapt to the environment by either long-term genome evolution or by acclimatization processes where the cellular processes and metabolism of the plant are adjusted within the existing potential in the genome. Here we studied the adaptation strategies in date palm, Phoenix dactylifera, under mild heat, drought and combined heat and drought by transcriptomic and metabolomic profiling. In transcriptomics data, combined heat and drought resembled heat response, whereas in metabolomics data it was more similar to drought. In both conditions, soluble carbohydrates, such as fucose, and glucose derivatives, were increased, suggesting a switch to carbohydrate metabolism and cell wall biogenesis. This result is consistent with the evidence from transcriptomics and cis-motif analysis. In addition, transcriptomics data showed transcriptional activation of genes related to reactive oxygen species in all three conditions (drought, heat, and combined heat and drought), suggesting increased activity of enzymatic antioxidant systems in cytosol, chloroplast and peroxisome. Finally, the genes that were differentially expressed in heat and combined heat and drought stresses were significantly enriched for circadian and diurnal rhythm motifs, suggesting new stress avoidance strategies. PMID:28570677

  18. First Insights into the Subterranean Crustacean Bathynellacea Transcriptome: Transcriptionally Reduced Opsin Repertoire and Evidence of Conserved Homeostasis Regulatory Mechanisms

    PubMed Central

    Kim, Bo-Mi; Kang, Seunghyun; Ahn, Do-Hwan; Kim, Jin-Hyoung; Ahn, Inhye; Lee, Chi-Woo; Cho, Joo-Lae; Min, Gi-Sik; Park, Hyun

    2017-01-01

    Bathynellacea (Crustacea, Syncarida, Parabathynellidae) are subterranean aquatic crustaceans that typically inhabit freshwater interstitial spaces (e.g., groundwater) and are occasionally found in caves and even hot springs. In this study, we sequenced the whole transcriptome of Allobathynella bangokensis using RNA-seq. De novo sequence assembly produced 74,866 contigs including 28,934 BLAST hits. Overall, the gene sequences were most similar to those of the waterflea Daphnia pulex. In the A. bangokensis transcriptome, no opsin or related sequences were identified, and no contig aligned to the crustacean visual opsins and non-visual opsins (i.e. arthropsins, peropsins, and melaopsins), suggesting potential regressive adaptation to the dark environment. However, A. bangokensis expressed conserved gene family sets, such as heat shock proteins and those related to key innate immunity pathways and antioxidant defense systems, at the transcriptional level, suggesting that this species has evolved adaptations involving molecular mechanisms of homeostasis. The transcriptomic information of A. bangokensis will be useful for investigating molecular adaptations and response mechanisms to subterranean environmental conditions. PMID:28107438

  19. Systemic Chromosome Instability Resulted in Colonic Transcriptomic Changes in Metabolic, Proliferation, and Stem Cell Regulators in Sgo1-/+ Mice.

    PubMed

    Rao, Chinthalapally V; Sanghera, Saira; Zhang, Yuting; Biddick, Laura; Reddy, Arun; Lightfoot, Stan; Janakiram, Naveena B; Mohammed, Altaf; Dai, Wei; Yamada, Hiroshi Y

    2016-02-01

    Colon cancer is the second most lethal cancer and is predicted to claim 49,700 lives in the United States this year. Chromosome instability (CIN) is observed in 80% to 90% of colon cancers and is thought to contribute to colon cancer progression and recurrence. To investigate the impact of CIN on colon cancer development, we developed shugoshin-1 (Sgo1) haploinsufficient (-/+) mice, an animal model focusing on mitotic error-induced CIN. In this study, we analyzed signature changes in the colonic transcriptome of Sgo1(-/+) mice to examine the molecular events underlying the altered carcinogenesis profiles in Sgo1(-/+) mice. We performed next-generation sequencing of normal-looking colonic mucosal tissue from mice treated with the carcinogen azoxymethane after 24 weeks. Transcriptome profiling revealed 349 hits with a 2-fold expression difference threshold (217 upregulated genes, 132 downregulated genes, P < 0.05). Pathway analyses indicated that the Sgo1-CIN tissues upregulated pathways known to be activated in colon cancer, including lipid metabolism (z score 4.47), Notch signaling (4.47), insulin signaling (3.81), and PPAR pathways (3.75), and downregulated pathways involved in immune responses including allograft rejection (6.69) and graft-versus-host disease (6.54). Notably, stem cell markers were also misregulated. Collectively, our findings demonstrate that systemic CIN results in transcriptomic changes in metabolism, proliferation, cell fate, and immune responses in the colon, which may foster a microenvironment amenable to cancer development. Therefore, therapeutic approaches focusing on these identified pathways may be valuable for colon cancer prevention and treatment. ©2016 American Association for Cancer Research.

  20. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii.

    PubMed

    Huth, Troy J; Place, Sean P

    2013-11-20

    The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14-25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (-1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a pivotal species in polar research spanning several decades. The comparison of these findings to previous studies demonstrates the efficacy of transcriptomics and digital gene expression analysis as tools in future studies of polar organisms and has greatly increased the available genomic resources for the suborder Notothenioidei, particularly in the Trematominae subfamily.

  1. De novo assembly and characterization of tissue specific transcriptomes in the emerald notothen, Trematomus bernacchii

    PubMed Central

    2013-01-01

    Background The notothenioids comprise a diverse group of fishes that rapidly radiated after isolation by the Antarctic Circumpolar Current approximately 14–25 million years ago. Given that evolutionary adaptation has led to finely tuned traits with narrow physiological limits in these organisms, this system provides a unique opportunity to examine physiological trade-offs and limits of adaptive responses to environmental perturbation. As such, notothenioids have a rich history with respect to studies attempting to understand the vulnerability of polar ecosystems to the negative impacts associated with global climate change. Unfortunately, despite being a model system for understanding physiological adaptations to extreme environments, we still lack fundamental molecular tools for much of the Nototheniidae family. Results Specimens of the emerald notothen, Trematomus bernacchii, were acclimated for 28 days in flow-through seawater tanks maintained near ambient seawater temperatures (−1.5°C) or at +4°C. Following acclimation, tissue specific cDNA libraries for liver, gill and brain were created by pooling RNA from n = 5 individuals per temperature treatment. The tissue specific libraries were bar-coded and used for 454 pyrosequencing, which yielded over 700 thousand sequencing reads. A de novo assembly and annotation of these reads produced a functional transcriptome library of T. bernacchii containing 30,107 unigenes, 13,003 of which possessed significant homology to a known protein product. Digital gene expression analysis of these extremely cold adapted fish reinforced the loss of an inducible heat shock response and allowed the preliminary exploration into other elements of the cellular stress response. Conclusions Preliminary exploration of the transcriptome of T. bernacchii under elevated temperatures enabled a semi-quantitative comparison to prior studies aimed at characterizing the thermal response of this endemic fish whose size, abundance and distribution has established it as a pivotal species in polar research spanning several decades. The comparison of these findings to previous studies demonstrates the efficacy of transcriptomics and digital gene expression analysis as tools in future studies of polar organisms and has greatly increased the available genomic resources for the suborder Notothenioidei, particularly in the Trematominae subfamily. PMID:24252228

  2. Transcriptomic analysis of the hepatic response to stress in the red cusk-eel (Genypterus chilensis): Insights into lipid metabolism, oxidative stress and liver steatosis

    PubMed Central

    Aedo, Jorge E.; Zuloaga, Rodrigo; Maldonado, Jonathan; Bastias-Molina, Macarena; Silva, Herman; Meneses, Claudio; Gallardo-Escarate, Cristian; Molina, Alfredo

    2017-01-01

    Teleosts exhibit a broad divergence in their adaptive response to stress, depending on the magnitude, duration, and frequency of stressors and the species receiving the stimulus. We have previously reported that the red cusk-eel (Genypterus chilensis), an important marine farmed fish, shows a physiological response to stress that results in increased skeletal muscle atrophy mediated by over-expression of components of the ubiquitin proteasome and autophagy-lysosomal systems. To better understand the systemic effects of stress on the red cusk-eel metabolism, the present study assessed the transcriptomic hepatic response to repetitive handling-stress. Using high-throughput RNA-seq, 259 up-regulated transcripts were found, mostly associated with angiogenesis, gluconeogenesis, and triacylglyceride catabolism. Conversely, 293 transcripts were down-regulated, associated to cholesterol biosynthesis, PPARα signaling, fatty acid biosynthesis, and glycolysis. This gene signature was concordant with hepatic metabolite levels and hepatic oxidative damage. Moreover, the increased plasmatic levels of AST (aspartate aminotransferase), ALT (alanine aminotransferase) and AP (alkaline phosphatase), as well as liver histology suggest stress-induced liver steatosis. This study offers an integrative molecular and biochemical analysis of the hepatic response to handling-stress, and reveals unknown aspects of lipid metabolism in a non-model teleost. PMID:28448552

  3. Understanding the response to endurance exercise using a systems biology approach: combining blood metabolomics, transcriptomics and miRNomics in horses.

    PubMed

    Mach, Núria; Ramayo-Caldas, Yuliaxis; Clark, Allison; Moroldo, Marco; Robert, Céline; Barrey, Eric; López, Jesús Maria; Le Moyec, Laurence

    2017-02-17

    Endurance exercise in horses requires adaptive processes involving physiological, biochemical, and cognitive-behavioral responses in an attempt to regain homeostasis. We hypothesized that the identification of the relationships between blood metabolome, transcriptome, and miRNome during endurance exercise in horses could provide significant insights into the molecular response to endurance exercise. For this reason, the serum metabolome and whole-blood transcriptome and miRNome data were obtained from ten horses before and after a 160 km endurance competition. We obtained a global regulatory network based on 11 unique metabolites, 263 metabolic genes and 5 miRNAs whose expression was significantly altered at T1 (post- endurance competition) relative to T0 (baseline, pre-endurance competition). This network provided new insights into the cross talk between the distinct molecular pathways (e.g. energy and oxygen sensing, oxidative stress, and inflammation) that were not detectable when analyzing single metabolites or transcripts alone. Single metabolites and transcripts were carrying out multiple roles and thus sharing several biochemical pathways. Using a regulatory impact factor metric analysis, this regulatory network was further confirmed at the transcription factor and miRNA levels. In an extended cohort of 31 independent animals, multiple factor analysis confirmed the strong associations between lactate, methylene derivatives, miR-21-5p, miR-16-5p, let-7 family and genes that coded proteins involved in metabolic reactions primarily related to energy, ubiquitin proteasome and lipopolysaccharide immune responses after the endurance competition. Multiple factor analysis also identified potential biomarkers at T0 for an increased likelihood for failure to finish an endurance competition. To the best of our knowledge, the present study is the first to provide a comprehensive and integrated overview of the metabolome, transcriptome, and miRNome co-regulatory networks that may have a key role in regulating the metabolic and immune response to endurance exercise in horses.

  4. Mycobacterium tuberculosis Transcriptome Profiling in Mice with Genetically Different Susceptibility to Tuberculosis.

    PubMed

    Skvortsov, T A; Ignatov, D V; Majorov, K B; Apt, A S; Azhikina, T L

    2013-04-01

    Whole transcriptome profiling is now almost routinely used in various fields of biology, including microbiology. In vivo transcriptome studies usually provide relevant information about the biological processes in the organism and thus are indispensable for the formulation of hypotheses, testing, and correcting. In this study, we describe the results of genome-wide transcriptional profiling of the major human bacterial pathogen M. tuberculosis during its persistence in lungs. Two mouse strains differing in their susceptibility to tuberculosis were used for experimental infection with M. tuberculosis. Mycobacterial transcriptomes obtained from the infected tissues of the mice at two different time points were analyzed by deep sequencing and compared. It was hypothesized that the changes in the M. tuberculosis transcriptome may attest to the activation of the metabolism of lipids and amino acids, transition to anaerobic respiration, and increased expression of the factors modulating the immune response. A total of 209 genes were determined whose expression increased with disease progression in both host strains (commonly upregulated genes, CUG). Among them, the genes related to the functional categories of lipid metabolism, cell wall, and cell processes are of great interest. It was assumed that the products of these genes are involved in M. tuberculosis adaptation to the host immune system defense, thus being potential targets for drug development.

  5. Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X.

    PubMed

    Choi, Hoseong; Jo, Yeonhwa; Lian, Sen; Jo, Kyoung-Min; Chu, Hyosub; Yoon, Ju-Yeon; Choi, Seung-Kook; Kim, Kook-Hyung; Cho, Won Kyong

    2015-06-01

    The chrysanthemum is one of popular flowers in the world and a host for several viruses. So far, molecular interaction studies between the chrysanthemum and viruses are limited. In this study, we carried out a transcriptome analysis of chrysanthemum in response to three different viruses including Cucumber mosaic virus (CMV), Tomato spotted wilt virus (TSWV) and Potato virus X (PVX). A chrysanthemum 135K microarray derived from expressed sequence tags was successfully applied for the expression profiles of the chrysanthemum at early stage of virus infection. Finally, we identified a total of 125, 70 and 124 differentially expressed genes (DEGs) for CMV, TSWV and PVX, respectively. Many DEGs were virus specific; however, 33 DEGs were commonly regulated by three viruses. Gene ontology (GO) enrichment analysis identified a total of 132 GO terms, and of them, six GO terms related stress response and MCM complex were commonly identified for three viruses. Several genes functioning in stress response such as chitin response and ethylene mediated signaling pathway were up-regulated indicating their involvement in establishment of host immune system. In particular, TSWV infection significantly down-regulated genes related to DNA metabolic process including DNA replication, chromatin organization, histone modification and cytokinesis, and they are mostly targeted to nucleosome and MCM complex. Taken together, our comparative transcriptome analysis revealed several genes related to hormone mediated viral stress response and DNA modification. The identified chrysanthemums genes could be good candidates for further functional study associated with resistant to various plant viruses.

  6. Transcriptomic responses of the biocontrol yeast Pichia anomala to aflatoxigenic Aspergillus flavus

    USDA-ARS?s Scientific Manuscript database

    Pichia anomala (Wickerhamomyces anomalus) WRL-076 is a biocontrol yeast which has been shown to inhibit growth and aflatoxin production of Aspergillus flavus. The molecular mechanism of biological control was further characterized by the temporal transcriptome response of P. anomala to A. flavus in...

  7. Transcriptome alteration in Phytophthora infestans in response to phenazine-1-carboxylic acid production by Pseudomonas fluorescens strain LBUM223.

    PubMed

    Roquigny, Roxane; Novinscak, Amy; Arseneault, Tanya; Joly, David L; Filion, Martin

    2018-06-19

    Phytophthora infestans is responsible for late blight, one of the most important potato diseases. Phenazine-1-carboxylic acid (PCA)-producing Pseudomonas fluorescens strain LBUM223 isolated in our laboratory shows biocontrol potential against various plant pathogens. To characterize the effect of LBUM223 on the transcriptome of P. infestans, we conducted an in vitro time-course study. Confrontational assay was performed using P. infestans inoculated alone (control) or with LBUM223, its phzC- isogenic mutant (not producing PCA), or exogenically applied PCA. Destructive sampling was performed at 6, 9 and 12 days and the transcriptome of P. infestans was analysed using RNA-Seq. The expression of a subset of differentially expressed genes was validated by RT-qPCR. Both LBUM223 and exogenically applied PCA significantly repressed P. infestans' growth at all times. Compared to the control treatment, transcriptomic analyses showed that the percentages of all P. infestans' genes significantly altered by LBUM223 and exogenically applied PCA increased as time progressed, from 50 to 61% and from to 32 to 46%, respectively. When applying an absolute cut-off value of 3 fold change or more for all three harvesting times, 207 genes were found significantly differentially expressed by PCA, either produced by LBUM223 or exogenically applied. Gene ontology analysis revealed that both treatments altered the expression of key functional genes involved in major functions like phosphorylation mechanisms, transmembrane transport and oxidoreduction activities. Interestingly, even though no host plant tissue was present in the in vitro system, PCA also led to the overexpression of several genes encoding effectors. The mutant only slightly repressed P. infestans' growth and barely altered its transcriptome. Our study suggests that PCA is involved in P. infestans' growth repression and led to important transcriptomic changes by both up- and down-regulating gene expression in P. infestans over time. Different metabolic functions were altered and many effectors were found to be upregulated, suggesting their implication in biocontrol.

  8. Role of TGF Beta and PPAR Alpha Signaling Pathways in Radiation Response of Locally Exposed Heart: Integrated Global Transcriptomics and Proteomics Analysis.

    PubMed

    Subramanian, Vikram; Seemann, Ingar; Merl-Pham, Juliane; Hauck, Stefanie M; Stewart, Fiona A; Atkinson, Michael J; Tapio, Soile; Azimzadeh, Omid

    2017-01-06

    Epidemiological data from patients undergoing radiotherapy for thoracic tumors clearly show the damaging effect of ionizing radiation on cardiovascular system. The long-term impairment of heart function and structure after local high-dose irradiation is associated with systemic inflammatory response, contraction impairment, microvascular damage, and cardiac fibrosis. The goal of the present study was to investigate molecular mechanisms involved in this process. C57BL/6J mice received a single X-ray dose of 16 Gy given locally to the heart at the age of 8 weeks. Radiation-induced changes in the heart transcriptome and proteome were investigated 40 weeks after the exposure. The omics data were analyzed by bioinformatics tools and validated by immunoblotting. Integrated network analysis of transcriptomics and proteomics data elucidated the signaling pathways that were similarly affected at gene and protein level. Analysis showed induction of transforming growth factor (TGF) beta signaling but inactivation of peroxisome proliferator-activated receptor (PPAR) alpha signaling in irradiated heart. The putative mediator role of mitogen-activated protein kinase cascade linking PPAR alpha and TGF beta signaling was supported by data from immunoblotting and ELISA. This study indicates that both signaling pathways are involved in radiation-induced heart fibrosis, metabolic disordering, and impaired contractility, a pathophysiological condition that is often observed in patients that received high radiation doses in thorax.

  9. The role of transcriptome resilience in resistance of corals to bleaching.

    PubMed

    Seneca, Francois O; Palumbi, Stephen R

    2015-04-01

    Wild populations increasingly experience extreme conditions as climate change amplifies environmental variability. How individuals respond to environmental extremes determines the impact of climate change overall. The variability of response from individual to individual can represent the opportunity for natural selection to occur as a result of extreme conditions. Here, we experimentally replicated the natural exposure to extreme temperatures of the reef lagoon at Ofu Island (American Samoa), where corals can experience severe heat stress during midday low tide. We investigated the bleaching and transcriptome response of 20 Acropora hyacinthus colonies 5 and 20 h after exposure to control (29 °C) or heated (35 °C) conditions. We found a highly dynamic transcriptome response: 27% of the coral transcriptome was significantly regulated 1 h postheat exposure. Yet 15 h later, when heat-induced coral bleaching became apparent, only 12% of the transcriptome was differentially regulated. A large proportion of responsive genes at the first time point returned to control levels, others remained differentially expressed over time, while an entirely different subset of genes was successively regulated at the second time point. However, a noteworthy variability in gene expression was observed among individual coral colonies. Among the genes of which expression lingered over time, fast return to normal levels was associated with low bleaching. Colonies that maintained higher expression levels of these genes bleached severely. Return to normal levels of gene expression after stress has been termed transcriptome resilience, and in the case of some specific genes may signal the physiological health and response ability of individuals to environmental stress. © 2015 John Wiley & Sons Ltd.

  10. Transcriptomic response of the insect vector, Peregrinus maidis, to Maize mosaic rhabdovirus and identification of conserved responses to propagative viruses in hopper vectors.

    PubMed

    Martin, Kathleen M; Barandoc-Alviar, Karen; Schneweis, Derek J; Stewart, Catherine L; Rotenberg, Dorith; Whitfield, Anna E

    2017-09-01

    Maize mosaic virus (MMV) is a plant-pathogenic rhabdovirus that is transmitted by the corn planthopper, Peregrinus maidis, in a propagative manner. P. maidis supports long-term MMV infections with no negative effects on insect performance. To elucidate whole-body transcriptome responses to virus infection, RNA-Seq was used to examine differential gene expression of virus-infected adult insects, and libraries were prepared from replicated groups of virus-exposed insects and non-exposed insects. From the 68,003 de novo-assembled transcripts, 144 were differentially-expressed (DE) during viral infection with comparable numbers up- and down-regulated. DE transcripts with similarity to genes associated with transposable elements (i.e., RNA-directed DNA polymerases) were enriched and may represent a mechanisim for modulating virus infection. Comparison of the P. maidis DE transcripts to published propagative virus-responsive transcript databases for two other hopper vectors revealed that 16% of the DE transcripts were shared across the three systems and may represent conserved responses to propagative viruses. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations.

    PubMed

    Yıldırım, Kubilay; Yağcı, Adem; Sucu, Seda; Tunç, Sümeyye

    2018-06-01

    Roots are the major interface between the plant and various stress factors in the soil environment. Alteration of root system architecture (RSA) (root length, spread, number and length of lateral roots) in response to environmental changes is known to be an important strategy for plant adaptation and productivity. In light of ongoing climate changes and global warming predictions, the breeding of drought-tolerant grapevine cultivars is becoming a crucial factor for developing a sustainable viticulture. Root-trait modeling of grapevine rootstock for drought stress scenarios, together with high-throughput phenotyping and genotyping techniques, may provide a valuable background for breeding studies in viticulture. Here, tree grafted grapevine rootstocks (110R, 5BB and 41B) having differential RSA regulations and drought tolerance were investigated to define their drought dependent root characteristics. Root area, root length, ramification and number of root tips reduced less in 110R grafted grapevines compared to 5BB and 41B grafted ones during drought treatment. Root relative water content as well as total carbohydrate and nitrogen content were found to be much higher in the roots of 110R than it was in the roots of other rootstocks under drought. Microarray-based root transcriptome profiling was also conducted on the roots of these rootstocks to identify their gene regulation network behind drought-dependent RSA alterations. Transcriptome analysis revealed totally 2795, 1196 and 1612 differentially expressed transcripts at the severe drought for the roots of 110R, 5BB and 41B, respectively. According to this transcriptomic data, effective root elongation and enlargement performance of 110R were suggested to depend on three transcriptomic regulations. First one is the drought-dependent induction in sugar and protein transporters genes (SWEET and NRT1/PTR) in the roots of 110R to facilitate carbohydrate and nitrogen accumulation. In the roots of the same rootstock, expression increase in osmolyte producer genes revealed another transcriptomic regulation enabling effective root osmotic adjustment under drought stress. The third mechanism was linked to root suberization with upregulation of transcripts functional in wax producing enzymes (Caffeic acid 3-O-methyltransferase, Eceriferum3, 3-ketoacyl-CoAsynthase). These three transcriptomic regulations were suggested to provide essential energy and water preservation to the roots of 110R for its effective RSA regulation under drought. This phenotypic and genotypic knowledge could be used to develop root-dependent drought tolerant grapevines in breeding programs and could facilitate elucidation of genetic regulations behind RSA alteration in other plants. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  12. Heterologous oligonucleotide microarrays for transcriptomics in a non-model species; a proof-of-concept study of drought stress in Musa

    PubMed Central

    Davey, Mark W; Graham, Neil S; Vanholme, Bartel; Swennen, Rony; May, Sean T; Keulemans, Johan

    2009-01-01

    Background 'Systems-wide' approaches such as microarray RNA-profiling are ideally suited to the study of the complex overlapping responses of plants to biotic and abiotic stresses. However, commercial microarrays are only available for a limited number of plant species and development costs are so substantial as to be prohibitive for most research groups. Here we evaluate the use of cross-hybridisation to Affymetrix oligonucleotide GeneChip® microarrays to profile the response of the banana (Musa spp.) leaf transcriptome to drought stress using a genomic DNA (gDNA)-based probe-selection strategy to improve the efficiency of detection of differentially expressed Musa transcripts. Results Following cross-hybridisation of Musa gDNA to the Rice GeneChip® Genome Array, ~33,700 gene-specific probe-sets had a sufficiently high degree of homology to be retained for transcriptomic analyses. In a proof-of-concept approach, pooled RNA representing a single biological replicate of control and drought stressed leaves of the Musa cultivar 'Cachaco' were hybridised to the Affymetrix Rice Genome Array. A total of 2,910 Musa gene homologues with a >2-fold difference in expression levels were subsequently identified. These drought-responsive transcripts included many functional classes associated with plant biotic and abiotic stress responses, as well as a range of regulatory genes known to be involved in coordinating abiotic stress responses. This latter group included members of the ERF, DREB, MYB, bZIP and bHLH transcription factor families. Fifty-two of these drought-sensitive Musa transcripts were homologous to genes underlying QTLs for drought and cold tolerance in rice, including in 2 instances QTLs associated with a single underlying gene. The list of drought-responsive transcripts also included genes identified in publicly-available comparative transcriptomics experiments. Conclusion Our results demonstrate that despite the general paucity of nucleotide sequence data in Musa and only distant phylogenetic relations to rice, gDNA probe-based cross-hybridisation to the Rice GeneChip® is a highly promising strategy to study complex biological responses and illustrates the potential of such strategies for gene discovery in non-model species. PMID:19758430

  13. Methods to study legionella transcriptome in vitro and in vivo.

    PubMed

    Faucher, Sebastien P; Shuman, Howard A

    2013-01-01

    The study of transcriptome responses can provide insight into the regulatory pathways and genetic factors that contribute to a specific phenotype. For bacterial pathogens, it can identify putative new virulence systems and shed light on the mechanisms underlying the regulation of virulence factors. Microarrays have been previously used to study gene regulation in Legionella pneumophila. In the past few years a sharp reduction of the costs associated with microarray experiments together with the availability of relatively inexpensive custom-designed commercial microarrays has made microarray technology an accessible tool for the majority of researchers. Here we describe the methodologies to conduct microarray experiments from in vitro and in vivo samples.

  14. Systems analysis of the prostate transcriptome in African-American men compared with European-American men.

    PubMed

    Hardiman, Gary; Savage, Stephen J; Hazard, E Starr; Wilson, Robert C; Courtney, Sean M; Smith, Michael T; Hollis, Bruce W; Halbert, Chanita Hughes; Gattoni-Celli, Sebastiano

    2016-07-01

    African-Americans (AA) have increased prostate cancer risk and a greater mortality rate than European-Americans (EA). AA exhibit a high prevalence of vitamin D deficiency. We examined the global prostate transcriptome in AA and EA, and the effect of vitamin D 3 supplementation. Twenty-seven male subjects (ten AA and 17 EA), slated to undergo prostatectomy were enrolled in the study. Fourteen subjects received vitamin D 3 (4000 IU daily) and 13 subjects received placebo for 2 months prior to surgery. AA show higher expression of genes associated with immune response and inflammation. Systems level analyses support the concept that Inflammatory processes may contribute to disease progression in AA. These transcripts can be modulated by a short course of vitamin D 3 supplementation.

  15. Transcriptome analysis of Cronobacter sakazakii ATCC BAA-894 after interaction with human intestinal epithelial cell line HCT-8.

    PubMed

    Jing, Chun-e; Du, Xin-jun; Li, Ping; Wang, Shuo

    2016-01-01

    Cronobacter spp. are opportunistic pathogens that are responsible for infections including severe meningitis, septicemia, and necrotizing enterocolitis in neonates and infants. To date, questions still remain regarding the mechanisms of pathogenicity and virulence determinants for each bacterial strain. In this study, we established an in vitro model for Cronobacter sakazakii ATCC BAA-894 infection of HCT-8 human colorectal epithelial cells. The transcriptome profile of C. sakazakii ATCC BAA-894 after interaction with HCT-8 cells was determined using high-throughput whole-transcriptome sequencing (RNA sequencing (RNA-seq)). Gene expression profiles indicated that 139 genes were upregulated and 72 genes were downregulated in the adherent C. sakazakii ATCC BAA-894 strain on HCT-8 cells compared to the cultured bacteria in the cell-free medium. Expressions of some flagella genes and virulence factors involved in adherence were upregulated. High osmolarity and osmotic stress-associated genes were highly upregulated, as well as genes responsible for the synthesis of lipopolysaccharides and outer membrane proteins, iron acquisition systems, and glycerol and glycerophospholipid metabolism. In sum, our study provides further insight into the mechanisms underlying C. sakazakii pathogenesis in the human gastrointestinal tract.

  16. Transcriptome-wide identification of reference genes for expression analysis of soybean responses to drought stress along the day

    USDA-ARS?s Scientific Manuscript database

    The soybean transcriptome displays strong variation along the day in optimal growth conditions and also in response to adverse circumstances, like drought stress. However, no study conducted to date has presented suitable reference genes, with stable expression along the day, for relative gene expre...

  17. A transcriptomic study reveals differentially expressed genes and pathways respond to simulated acid rain in Arabidopsis thaliana.

    PubMed

    Liu, Ting-Wu; Niu, Li; Fu, Bin; Chen, Juan; Wu, Fei-Hua; Chen, Juan; Wang, Wen-Hua; Hu, Wen-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2013-01-01

    Acid rain, as a worldwide environmental issue, can cause serious damage to plants. In this study, we provided the first case study on the systematic responses of arabidopsis (Arabidopsis thaliana (L.) Heynh.) to simulated acid rain (SiAR) by transcriptome approach. Transcriptomic analysis revealed that the expression of a set of genes related to primary metabolisms, including nitrogen, sulfur, amino acid, photosynthesis, and reactive oxygen species metabolism, were altered under SiAR. In addition, transport and signal transduction related pathways, especially calcium-related signaling pathways, were found to play important roles in the response of arabidopsis to SiAR stress. Further, we compared our data set with previously published data sets on arabidopsis transcriptome subjected to various stresses, including wound, salt, light, heavy metal, karrikin, temperature, osmosis, etc. The results showed that many genes were overlapped in several stresses, suggesting that plant response to SiAR is a complex process, which may require the participation of multiple defense-signaling pathways. The results of this study will help us gain further insights into the response mechanisms of plants to acid rain stress.

  18. Deep sequencing-based transcriptome profiling reveals comprehensive insights into the responses of Nicotiana benthamiana to beet necrotic yellow vein virus infections containing or lacking RNA4.

    PubMed

    Fan, Huiyan; Sun, Haiwen; Wang, Ying; Zhang, Yongliang; Wang, Xianbing; Li, Dawei; Yu, Jialin; Han, Chenggui

    2014-01-01

    Beet necrotic yellow vein virus (BNYVV), encodes either four or five plus-sense single stranded RNAs and is the causal agent of sugar beet rhizomania disease, which is widely distributed in most regions of the world. BNYVV can also infect Nicotiana benthamiana systemically, and causes severe curling and stunting symptoms in the presence of RNA4 or mild symptoms in the absence of RNA4. Confocal laser scanning microscopy (CLSM) analyses showed that the RNA4-encoded p31 protein fused to the red fluorescent protein (RFP) accumulated mainly in the nuclei of N. benthamiana epidermal cells. This suggested that severe RNA4-induced symptoms might result from p31-dependent modifications of the transcriptome. Therefore, we used next-generation sequencing technologies to analyze the transcriptome profile of N. benthamiana in response to infection with different isolates of BNYVV. Comparisons of the transcriptomes of mock, BN3 (RNAs 1+2+3), and BN34 (RNAs 1+2+3+4) infected plants identified 3,016 differentially expressed transcripts, which provided a list of candidate genes that potentially are elicited in response to virus infection. Our data indicate that modifications in the expression of genes involved in RNA silencing, ubiquitin-proteasome pathway, cellulose synthesis, and metabolism of the plant hormone gibberellin may contribute to the severe symptoms induced by RNA4 from BNYVV. These results expand our understanding of the genetic architecture of N. benthamiana as well as provide valuable clues to identify genes potentially involved in resistance to BNYVV infection. Our global survey of gene expression changes in infected plants reveals new insights into the complicated molecular mechanisms underlying symptom development, and aids research into new strategies to protect crops against viruses.

  19. An Integrated Proteomics/Transcriptomics Approach Points to Oxygen as the Main Electron Sink for Methanol Metabolism in Methylotenera mobilis▿†

    PubMed Central

    Beck, David A. C.; Hendrickson, Erik L.; Vorobev, Alexey; Wang, Tiansong; Lim, Sujung; Kalyuzhnaya, Marina G.; Lidstrom, Mary E.; Hackett, Murray; Chistoserdova, Ludmila

    2011-01-01

    Methylotenera species, unlike their close relatives in the genera Methylophilus, Methylobacillus, and Methylovorus, neither exhibit the activity of methanol dehydrogenase nor possess mxaFI genes encoding this enzyme, yet they are able to grow on methanol. In this work, we integrated a genome-wide proteomics approach, shotgun proteomics, and a genome-wide transcriptomics approach, shotgun transcriptome sequencing (RNA-seq), of Methylotenera mobilis JLW8 to identify genes and enzymes potentially involved in methanol oxidation, with special attention to alternative nitrogen sources, to address the question of whether nitrate could play a role as an electron acceptor in place of oxygen. Both proteomics and transcriptomics identified a limited number of genes and enzymes specifically responding to methanol. This set includes genes involved in oxidative stress response systems, a number of oxidoreductases, including XoxF-type alcohol dehydrogenases, a type II secretion system, and proteins without a predicted function. Nitrate stimulated expression of some genes in assimilatory nitrate reduction and denitrification pathways, while ammonium downregulated some of the nitrogen metabolism genes. However, none of these genes appeared to respond to methanol, which suggests that oxygen may be the main electron sink during growth on methanol. This study identifies initial targets for future focused physiological studies, including mutant analysis, which will provide further details into this novel process. PMID:21764938

  20. A Pipeline for High-Throughput Concentration Response Modeling of Gene Expression for Toxicogenomics

    PubMed Central

    House, John S.; Grimm, Fabian A.; Jima, Dereje D.; Zhou, Yi-Hui; Rusyn, Ivan; Wright, Fred A.

    2017-01-01

    Cell-based assays are an attractive option to measure gene expression response to exposure, but the cost of whole-transcriptome RNA sequencing has been a barrier to the use of gene expression profiling for in vitro toxicity screening. In addition, standard RNA sequencing adds variability due to variable transcript length and amplification. Targeted probe-sequencing technologies such as TempO-Seq, with transcriptomic representation that can vary from hundreds of genes to the entire transcriptome, may reduce some components of variation. Analyses of high-throughput toxicogenomics data require renewed attention to read-calling algorithms and simplified dose–response modeling for datasets with relatively few samples. Using data from induced pluripotent stem cell-derived cardiomyocytes treated with chemicals at varying concentrations, we describe here and make available a pipeline for handling expression data generated by TempO-Seq to align reads, clean and normalize raw count data, identify differentially expressed genes, and calculate transcriptomic concentration–response points of departure. The methods are extensible to other forms of concentration–response gene-expression data, and we discuss the utility of the methods for assessing variation in susceptibility and the diseased cellular state. PMID:29163636

  1. Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner.

    PubMed

    Kroes, Anneke; Broekgaarden, Colette; Castellanos Uribe, Marcos; May, Sean; van Loon, Joop J A; Dicke, Marcel

    2017-01-01

    Plants are commonly attacked by multiple herbivorous species. Yet, little is known about transcriptional patterns underlying plant responses to multiple insect attackers feeding simultaneously. Here, we assessed transcriptomic responses of Arabidopsis thaliana plants to simultaneous feeding by Plutella xylostella caterpillars and Brevicoryne brassicae aphids in comparison to plants infested by P. xylostella caterpillars alone, using microarray analysis. We particularly investigated how aphid feeding interferes with the transcriptomic response to P. xylostella caterpillars and whether this interference is dependent on aphid density and time since aphid attack. Various JA-responsive genes were up-regulated in response to feeding by P. xylostella caterpillars. The additional presence of aphids, both at low and high densities, clearly affected the transcriptional plant response to caterpillars. Interestingly, some important modulators of plant defense signalling, including WRKY transcription factor genes and ABA-dependent genes, were differentially induced in response to simultaneous aphid feeding at low or high density compared with responses to P. xylostella caterpillars feeding alone. Furthermore, aphids affected the P. xylostella-induced transcriptomic response in a density-dependent manner, which caused an acceleration in plant response against dual insect attack at high aphid density compared to dual insect attack at low aphid density. In conclusion, our study provides evidence that aphids influence the caterpillar-induced transcriptional response of A. thaliana in a density-dependent manner. It highlights the importance of addressing insect density to understand how plant responses to single attackers interfere with responses to other attackers and thus underlines the importance of the dynamics of transcriptional plant responses to multiple herbivory.

  2. Poplar trees reconfigure the transcriptome and metabolome in response to drought in a genotype- and time-of-day-dependent manner.

    PubMed

    Hamanishi, Erin T; Barchet, Genoa L H; Dauwe, Rebecca; Mansfield, Shawn D; Campbell, Malcolm M

    2015-04-21

    Drought has a major impact on tree growth and survival. Understanding tree responses to this stress can have important application in both conservation of forest health, and in production forestry. Trees of the genus Populus provide an excellent opportunity to explore the mechanistic underpinnings of forest tree drought responses, given the growing molecular resources that are available for this taxon. Here, foliar tissue of six water-deficit stressed P. balsamifera genotypes was analysed for variation in the metabolome in response to drought and time of day by using an untargeted metabolite profiling technique, gas chromatography/mass-spectrometry (GC/MS). Significant variation in the metabolome was observed in response the imposition of water-deficit stress. Notably, organic acid intermediates such as succinic and malic acid had lower concentrations in leaves exposed to drought, whereas galactinol and raffinose were found in increased concentrations. A number of metabolites with significant difference in accumulation under water-deficit conditions exhibited intraspecific variation in metabolite accumulation. Large magnitude fold-change accumulation was observed in three of the six genotypes. In order to understand the interaction between the transcriptome and metabolome, an integrated analysis of the drought-responsive transcriptome and the metabolome was performed. One P. balsamifera genotype, AP-1006, demonstrated a lack of congruence between the magnitude of the drought transcriptome response and the magnitude of the metabolome response. More specifically, metabolite profiles in AP-1006 demonstrated the smallest changes in response to water-deficit conditions. Pathway analysis of the transcriptome and metabolome revealed specific genotypic responses with respect to primary sugar accumulation, citric acid metabolism, and raffinose family oligosaccharide biosynthesis. The intraspecific variation in the molecular strategies that underpin the responses to drought among genotypes may have an important role in the maintenance of forest health and productivity.

  3. Transcriptome responses of an ungrafted Phytophthora root rot tolerant avocado (Persea americana) rootstock to flooding and Phytophthora cinnamomi.

    PubMed

    Reeksting, B J; Olivier, N A; van den Berg, N

    2016-09-22

    Avocado (Persea americana Mill.) is a commercially important fruit crop worldwide. A major limitation to production is the oomycete Phytophthora cinnamomi, which causes root rot leading to branch-dieback and tree death. The decline of orchards infected with P. cinnamomi occurs much faster when exposed to flooding, even if flooding is only transient. Flooding is a multifactorial stress compromised of several individual stresses, making breeding and selection for tolerant varieties challenging. With more plantations occurring in marginal areas, with imperfect irrigation and drainage, understanding the response of avocado to these stresses will be important for the industry. Maintenance of energy production was found to be central in the response to flooding, as seen by up-regulation of transcripts related to glycolysis and induction of transcripts related to ethanolic fermentation. Energy-intensive processes were generally down-regulated, as evidenced by repression of transcripts related to processes such as secondary cell-wall biosynthesis as well as defence-related transcripts. Aquaporins were found to be down-regulated in avocado roots exposed to flooding, indicating reduced water-uptake under these conditions. The transcriptomic response of avocado to flooding and P. cinnamomi was investigated utilizing microarray analysis. Differences in the transcriptome caused by the presence of the pathogen were minor compared to transcriptomic perturbations caused by flooding. The transcriptomic response of avocado to flooding reveals a response to flooding that is conserved in several species. This data could provide key information that could be used to improve selection of stress tolerant rootstocks in the avocado industry.

  4. Comparative transcriptome and lipidome analyses reveal molecular systems underlying chilling response in chilling-tolerant sorghums

    USDA-ARS?s Scientific Manuscript database

    Chilling temperatures are a major constraint for temperate cultivation of tropical-origin crops, including the cereal crop sorghum (Sorghum bicolor [L.] Moench). Northern Chinese sorghums have adapted to early-season chilling, but molecular mechanisms of chilling tolerance are unknown. We used RNA ...

  5. Immune response of the Caribbean sea fan, Gorgonia ventalina, exposed to an Aplanochytrium parasite as revealed by transcriptome sequencing

    PubMed Central

    Burge, Colleen A.; Mouchka, Morgan E.; Harvell, C. Drew; Roberts, Steven

    2013-01-01

    Coral reef communities are undergoing marked declines due to a variety of stressors including disease. The sea fan coral, Gorgonia ventalina, is a tractable study system to investigate mechanisms of immunity to a naturally occurring pathogen. Functional studies in Gorgonia ventalina immunity indicate that several key pathways and cellular components are involved in response to natural microbial invaders, although to date the functional and regulatory pathways remain largely un-described. This study used short-read sequencing (Illumina GAIIx) to identify genes involved in the response of G. ventalina to a naturally occurring Aplanochytrium spp. parasite. De novo assembly of the G. ventalina transcriptome yielded 90,230 contigs of which 40,142 were annotated. RNA-Seq analysis revealed 210 differentially expressed genes in sea fans exposed to the Aplanochytrium parasite. Differentially expressed genes involved in immunity include pattern recognition molecules, anti-microbial peptides, and genes involved in wound repair and reactive oxygen species formation. Gene enrichment analysis indicated eight biological processes were enriched representing 36 genes, largely involved with protein translation and energy production. This is the first report using high-throughput sequencing to characterize the host response of a coral to a natural pathogen. Furthermore, we have generated the first transcriptome for a soft (octocoral or non-scleractinian) coral species. Expression analysis revealed genes important in invertebrate innate immune pathways, as well as those whose role is previously un-described in cnidarians. This resource will be valuable in characterizing G. ventalina immune response to infection and co-infection of pathogens in the context of environmental change. PMID:23898300

  6. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation

    PubMed Central

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain

    2015-01-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil. PMID:26002901

  7. Survival of Listeria monocytogenes in Soil Requires AgrA-Mediated Regulation.

    PubMed

    Vivant, Anne-Laure; Garmyn, Dominique; Gal, Laurent; Hartmann, Alain; Piveteau, Pascal

    2015-08-01

    In a recent paper, we demonstrated that inactivation of the Agr system affects the patterns of survival of Listeria monocytogenes (A.-L. Vivant, D. Garmyn, L. Gal, and P. Piveteau, Front Cell Infect Microbiol 4:160, http://dx.doi.org/10.3389/fcimb.2014.00160). In this study, we investigated whether the Agr-mediated response is triggered during adaptation in soil, and we compared survival patterns in a set of 10 soils. The fate of the parental strain L. monocytogenes L9 (a rifampin-resistant mutant of L. monocytogenes EGD-e) and that of a ΔagrA deletion mutant were compared in a collection of 10 soil microcosms. The ΔagrA mutant displayed significantly reduced survival in these biotic soil microcosms, and differential transcriptome analyses showed large alterations of the transcriptome when AgrA was not functional, while the variations in the transcriptomes between the wild type and the ΔagrA deletion mutant were modest under abiotic conditions. Indeed, in biotic soil environments, 578 protein-coding genes and an extensive repertoire of noncoding RNAs (ncRNAs) were differentially transcribed. The transcription of genes coding for proteins involved in cell envelope and cellular processes, including the phosphotransferase system and ABC transporters, and proteins involved in resistance to antimicrobial peptides was affected. Under sterilized soil conditions, the differences were limited to 86 genes and 29 ncRNAs. These results suggest that the response regulator AgrA of the Agr communication system plays important roles during the saprophytic life of L. monocytogenes in soil. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of adaptation to stress.

    DOE PAGES

    Konstantinos, Billis; Billini, Maria; Tripp, Harry J.; ...

    2014-09-23

    Background: Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 are model cyanobacteria from which the metabolism and adaptive responses of other cyanobacteria are inferred. Here we report the gene expression response of these two strains to a variety of nutrient and environmental stresses of varying duration, using transcriptomics. Our data comprise both stranded and 5' enriched libraries in order to elucidate many aspects of the transcriptome. Results: Both organisms were exposed to stress conditions due to nutrient deficiency (inorganic carbon) or change of environmental conditions (salinity, temperature, pH, light) sampled at 1 and 24 hours after the application ofmore » stress. The transcriptome profile of each strain revealed similarities and differences in gene expression for photosynthetic and respiratory electron transport chains and carbon fixation. Transcriptome profiles also helped us improve the structural annotation of the genome and identify possible missed genes (including anti-sense) and determine transcriptional units (operons). Finally, we predicted association of proteins of unknown function biochemical pathways by associating them to well-characterized ones based on their transcript levels correlation. Conclusions: Overall, this study results an informative annotation of those species and the comparative analysis of the response of the two organisms revealed similarities but also significant changes in the way they respond to external stress and the duration of the response« less

  9. Comparative transcriptomics between Synechococcus PCC 7942 and Synechocystis PCC 6803 provide insights into mechanisms of adaptation to stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstantinos, Billis; Billini, Maria; Tripp, Harry J.

    Background: Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803 are model cyanobacteria from which the metabolism and adaptive responses of other cyanobacteria are inferred. Here we report the gene expression response of these two strains to a variety of nutrient and environmental stresses of varying duration, using transcriptomics. Our data comprise both stranded and 5' enriched libraries in order to elucidate many aspects of the transcriptome. Results: Both organisms were exposed to stress conditions due to nutrient deficiency (inorganic carbon) or change of environmental conditions (salinity, temperature, pH, light) sampled at 1 and 24 hours after the application ofmore » stress. The transcriptome profile of each strain revealed similarities and differences in gene expression for photosynthetic and respiratory electron transport chains and carbon fixation. Transcriptome profiles also helped us improve the structural annotation of the genome and identify possible missed genes (including anti-sense) and determine transcriptional units (operons). Finally, we predicted association of proteins of unknown function biochemical pathways by associating them to well-characterized ones based on their transcript levels correlation. Conclusions: Overall, this study results an informative annotation of those species and the comparative analysis of the response of the two organisms revealed similarities but also significant changes in the way they respond to external stress and the duration of the response« less

  10. Integrated transcriptomic and proteomic analysis of the bile stress response in probiotic Lactobacillus salivarius LI01.

    PubMed

    Lv, Long-Xian; Yan, Ren; Shi, Hai-Yan; Shi, Ding; Fang, Dai-Qiong; Jiang, Hui-Yong; Wu, Wen-Rui; Guo, Fei-Fei; Jiang, Xia-Wei; Gu, Si-Lan; Chen, Yun-Bo; Yao, Jian; Li, Lan-Juan

    2017-01-06

    Lactobacillus salivarius LI01, isolated from healthy humans, has demonstrated probiotic properties in the prevention and treatment of liver failure. Tolerance to bile stress is crucial to allow lactobacilli to survive in the gastrointestinal tract and exert their benefits. In this work, we used a Digital Gene Expression transcriptomic and iTRAQ LC-MS/MS proteomic approach to examine the characteristics of LI01 in response to bile stress. Using culture medium with or without 0.15% ox bile, 591 differentially transcribed genes and 347 differentially expressed proteins were detected in LI01. Overall, we found the bile resistance of LI01 to be based on a highly remodeled cell envelope and a reinforced bile efflux system rather than on the activity of bile salt hydrolases. Additionally, some differentially expressed genes related to regulatory systems, the general stress response and central metabolism processes, also play roles in stress sensing, bile-induced damage prevention and energy efficiency. Moreover, bile salts appear to enhance proteolysis and amino acid uptake (especially aromatic amino acids) by LI01, which may support the liver protection properties of this strain. Altogether, this study establishes a model of global response mechanism to bile stress in L. salivarius LI01. L. salivarius strain LI01 exhibits not only antibacterial and antifungal properties but also exerts a good health-promoting effect in acute liver failure. As a potential probiotic strain, the bile-tolerance trait of strain LI01 is important, though this has not yet been explored. In this study, an analysis based on DGE and iTRAQ was performed to investigate the gene expression in strain LI01 under bile stress at the mRNA and protein levels, respectively. To our knowledge, this work also represents the first combined transcriptomic and proteomic analysis of the bile stress response mechanism in L. salivarius. Copyright © 2016. Published by Elsevier B.V.

  11. Genome-wide retinal transcriptome analysis of endotoxin-induced uveitis in mice with next-generation sequencing.

    PubMed

    Qiu, Yiguo; Yu, Peng; Lin, Ru; Fu, Xinyu; Hao, Bingtao; Lei, Bo

    2017-01-01

    Endotoxin-induced uveitis (EIU) is a well-established mouse model for studying human acute inflammatory uveitis. The purpose of this study is to investigate the genome-wide retinal transcriptome profile of EIU. The anterior segment of the mice was examined with a slit-lamp, and clinical scores were evaluated simultaneously. The histological changes in the posterior segment of the eyes were evaluated with hematoxylin and eosin (H&E) staining. A high throughput RNA sequencing (RNA-seq) strategy using the Illumina Hiseq 2500 platform was applied to characterize the retinal transcriptome profile from lipopolysaccharide (LPS)-treated and untreated mice. The validation of the differentially expressed genes (DEGs) was analyzed with real-time PCR. At the 24th hour after challenge, the clinical score of the LPS group was significantly higher (3.83±0.75, mean ± standard deviation [SD]) than that of the control group (0.08±0.20, mean ± SD; p<0.001). The histological evaluation showed a large number of inflammatory cells infiltrated into the vitreous cavity in the LPS group compared with the control group. A total of 478 DEGs were identified with RNA-seq. Among these genes, 406 were upregulated and 72 were downregulated in the LPS group. Gene Ontology (GO) enrichment showed three significantly enriched upregulated terms. Twenty-one upregulated and seven downregulated pathways were remarkably enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Eleven inflammatory response-, complement system-, fibrinolytic system-, and cell stress-related genes were validated to show similar results as the RNA-seq. We first reported the retinal transcriptome profile of the EIU mouse with RNA-seq. The results indicate that the abnormal changes in the inflammatory response-, complement system-, fibrinolytic system-, and cell stress-related genes occurred concurrently in EIU. These genes may play an important role in the pathogenesis of EIU. This study will lead to a better understanding of the underlying mechanisms and shed light on discovering novel therapeutic targets for ocular inflammation.

  12. Nod Factor Effects on Root Hair-Specific Transcriptome of Medicago truncatula: Focus on Plasma Membrane Transport Systems and Reactive Oxygen Species Networks

    PubMed Central

    Damiani, Isabelle; Drain, Alice; Guichard, Marjorie; Balzergue, Sandrine; Boscari, Alexandre; Boyer, Jean-Christophe; Brunaud, Véronique; Cottaz, Sylvain; Rancurel, Corinne; Da Rocha, Martine; Fizames, Cécile; Fort, Sébastien; Gaillard, Isabelle; Maillol, Vincent; Danchin, Etienne G. J.; Rouached, Hatem; Samain, Eric; Su, Yan-Hua; Thouin, Julien; Touraine, Bruno; Puppo, Alain; Frachisse, Jean-Marie; Pauly, Nicolas; Sentenac, Hervé

    2016-01-01

    Root hairs are involved in water and nutrient uptake, and thereby in plant autotrophy. In legumes, they also play a crucial role in establishment of rhizobial symbiosis. To obtain a holistic view of Medicago truncatula genes expressed in root hairs and of their regulation during the first hours of the engagement in rhizobial symbiotic interaction, a high throughput RNA sequencing on isolated root hairs from roots challenged or not with lipochitooligosaccharides Nod factors (NF) for 4 or 20 h was carried out. This provided a repertoire of genes displaying expression in root hairs, responding or not to NF, and specific or not to legumes. In analyzing the transcriptome dataset, special attention was paid to pumps, transporters, or channels active at the plasma membrane, to other proteins likely to play a role in nutrient ion uptake, NF electrical and calcium signaling, control of the redox status or the dynamic reprogramming of root hair transcriptome induced by NF treatment, and to the identification of papilionoid legume-specific genes expressed in root hairs. About 10% of the root hair expressed genes were significantly up- or down-regulated by NF treatment, suggesting their involvement in remodeling plant functions to allow establishment of the symbiotic relationship. For instance, NF-induced changes in expression of genes encoding plasma membrane transport systems or disease response proteins indicate that root hairs reduce their involvement in nutrient ion absorption and adapt their immune system in order to engage in the symbiotic interaction. It also appears that the redox status of root hair cells is tuned in response to NF perception. In addition, 1176 genes that could be considered as “papilionoid legume-specific” were identified in the M. truncatula root hair transcriptome, from which 141 were found to possess an ortholog in every of the six legume genomes that we considered, suggesting their involvement in essential functions specific to legumes. This transcriptome provides a valuable resource to investigate root hair biology in legumes and the roles that these cells play in rhizobial symbiosis establishment. These results could also contribute to the long-term objective of transferring this symbiotic capacity to non-legume plants. PMID:27375649

  13. Construction of a medicinal leech transcriptome database and its application to the identification of leech homologs of neural and innate immune genes.

    PubMed

    Macagno, Eduardo R; Gaasterland, Terry; Edsall, Lee; Bafna, Vineet; Soares, Marcelo B; Scheetz, Todd; Casavant, Thomas; Da Silva, Corinne; Wincker, Patrick; Tasiemski, Aurélie; Salzet, Michel

    2010-06-25

    The medicinal leech, Hirudo medicinalis, is an important model system for the study of nervous system structure, function, development, regeneration and repair. It is also a unique species in being presently approved for use in medical procedures, such as clearing of pooled blood following certain surgical procedures. It is a current, and potentially also future, source of medically useful molecular factors, such as anticoagulants and antibacterial peptides, which may have evolved as a result of its parasitizing large mammals, including humans. Despite the broad focus of research on this system, little has been done at the genomic or transcriptomic levels and there is a paucity of openly available sequence data. To begin to address this problem, we constructed whole embryo and adult central nervous system (CNS) EST libraries and created a clustered sequence database of the Hirudo transcriptome that is available to the scientific community. A total of approximately 133,000 EST clones from two directionally-cloned cDNA libraries, one constructed from mRNA derived from whole embryos at several developmental stages and the other from adult CNS cords, were sequenced in one or both directions by three different groups: Genoscope (French National Sequencing Center), the University of Iowa Sequencing Facility and the DOE Joint Genome Institute. These were assembled using the phrap software package into 31,232 unique contigs and singletons, with an average length of 827 nt. The assembled transcripts were then translated in all six frames and compared to proteins in NCBI's non-redundant (NR) and to the Gene Ontology (GO) protein sequence databases, resulting in 15,565 matches to 11,236 proteins in NR and 13,935 matches to 8,073 proteins in GO. Searching the database for transcripts of genes homologous to those thought to be involved in the innate immune responses of vertebrates and other invertebrates yielded a set of nearly one hundred evolutionarily conserved sequences, representing all known pathways involved in these important functions. The sequences obtained for Hirudo transcripts represent the first major database of genes expressed in this important model system. Comparison of translated open reading frames (ORFs) with the other openly available leech datasets, the genome and transcriptome of Helobdella robusta, shows an average identity at the amino acid level of 58% in matched sequences. Interestingly, comparison with other available Lophotrochozoans shows similar high levels of amino acid identity, where sequences match, for example, 64% with Capitella capitata (a polychaete) and 56% with Aplysia californica (a mollusk), as well as 58% with Schistosoma mansoni (a platyhelminth). Phylogenetic comparisons of putative Hirudo innate immune response genes present within the Hirudo transcriptome database herein described show a strong resemblance to the corresponding mammalian genes, indicating that this important physiological response may have older origins than what has been previously proposed.

  14. Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions

    PubMed Central

    Margalef-Català, Mar; Araque, Isabel; Bordons, Albert; Reguant, Cristina; Bautista-Gallego, Joaquín

    2016-01-01

    Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF. PMID:27746771

  15. De novo Sequencing and Comparative Transcriptomics of Floral Development of the Distylous Species Lithospermum multiflorum

    PubMed Central

    Cohen, James I.

    2016-01-01

    Genes controlling the morphological, micromorphological, and physiological components of the breeding system distyly have been hypothesized, but many of the genes have not been investigated throughout development of the two floral morphs. To this end, the present study is an examination of comparative transcriptomes from three stages of development for the floral organs of the morphs of Lithospermum multiflorum. Transcriptomes of flowers of the two morphs, from various stages of development, were sequenced using an Illumina HiSeq 2000. The floral transcriptome of L. multiflorum was assembled, and differential gene expression (DE) was identified between morphs, throughout development. Additionally, Gene Ontology (GO) terms for DE genes were determined. Fewer genes were DE early in development compared to later in development, with more genes highly expressed in the gynoecium of the SS morph and the corolla and androecium of the LS morph. A reciprocal pattern was observed later in development, and many more genes were DE during this latter stage. During early development, DE genes appear to be involved in growth and floral development, and during later development, DE genes seem to affect physiological functions. Interestingly, many genes involved in response to stress were identified as DE between morphs. PMID:28066486

  16. De novo Sequencing and Comparative Transcriptomics of Floral Development of the Distylous Species Lithospermum multiflorum.

    PubMed

    Cohen, James I

    2016-01-01

    Genes controlling the morphological, micromorphological, and physiological components of the breeding system distyly have been hypothesized, but many of the genes have not been investigated throughout development of the two floral morphs. To this end, the present study is an examination of comparative transcriptomes from three stages of development for the floral organs of the morphs of Lithospermum multiflorum . Transcriptomes of flowers of the two morphs, from various stages of development, were sequenced using an Illumina HiSeq 2000. The floral transcriptome of L. multiflorum was assembled, and differential gene expression (DE) was identified between morphs, throughout development. Additionally, Gene Ontology (GO) terms for DE genes were determined. Fewer genes were DE early in development compared to later in development, with more genes highly expressed in the gynoecium of the SS morph and the corolla and androecium of the LS morph. A reciprocal pattern was observed later in development, and many more genes were DE during this latter stage. During early development, DE genes appear to be involved in growth and floral development, and during later development, DE genes seem to affect physiological functions. Interestingly, many genes involved in response to stress were identified as DE between morphs.

  17. The Transcriptome of Exophiala dermatitidis during Ex-vivo Skin Model Infection

    PubMed Central

    Poyntner, Caroline; Blasi, Barbara; Arcalis, Elsa; Mirastschijski, Ursula; Sterflinger, Katja; Tafer, Hakim

    2016-01-01

    The black yeast Exophiala dermatitidis is a widespread polyextremophile and human pathogen, that is found in extreme natural habitats and man-made environments such as dishwashers. It can cause various diseases ranging from phaeohyphomycosis and systemic infections, with fatality rates reaching 40%. While the number of cases in immunocompromised patients are increasing, knowledge of the infections, virulence factors and host response is still scarce. In this study, for the first time, an artificial infection of an ex-vivo skin model with Exophiala dermatitidis was monitored microscopically and transcriptomically. Results show that Exophiala dermatitidis is able to actively grow and penetrate the skin. The analysis of the genomic and RNA-sequencing data delivers a rich and complex transcriptome where circular RNAs, fusion transcripts, long non-coding RNAs and antisense transcripts are found. Changes in transcription strongly affect pathways related to nutrients acquisition, energy metabolism, cell wall, morphological switch, and known virulence factors. The L-Tyrosine melanin pathway is specifically upregulated during infection. Moreover the production of secondary metabolites, especially alkaloids, is increased. Our study is the first that gives an insight into the complexity of the transcriptome of Exophiala dermatitidis during artificial skin infections and reveals new virulence factors. PMID:27822460

  18. Brain Radiation Information Data Exchange (BRIDE): integration of experimental data from low-dose ionising radiation research for pathway discovery.

    PubMed

    Karapiperis, Christos; Kempf, Stefan J; Quintens, Roel; Azimzadeh, Omid; Vidal, Victoria Linares; Pazzaglia, Simonetta; Bazyka, Dimitry; Mastroberardino, Pier G; Scouras, Zacharias G; Tapio, Soile; Benotmane, Mohammed Abderrafi; Ouzounis, Christos A

    2016-05-11

    The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .

  19. Systems and Trans-System Level Analysis Identifies Conserved Iron Deficiency Responses in the Plant Lineage[W][OA

    PubMed Central

    Urzica, Eugen I.; Casero, David; Yamasaki, Hiroaki; Hsieh, Scott I.; Adler, Lital N.; Karpowicz, Steven J.; Blaby-Haas, Crysten E.; Clarke, Steven G.; Loo, Joseph A.; Pellegrini, Matteo; Merchant, Sabeeha S.

    2012-01-01

    We surveyed the iron nutrition-responsive transcriptome of Chlamydomonas reinhardtii using RNA-Seq methodology. Presumed primary targets were identified in comparisons between visually asymptomatic iron-deficient versus iron-replete cells. This includes the known components of high-affinity iron uptake as well as candidates for distributive iron transport in C. reinhardtii. Comparison of growth-inhibited iron-limited versus iron-replete cells revealed changes in the expression of genes in chloroplastic oxidative stress response pathways, among hundreds of other genes. The output from the transcriptome was validated at multiple levels: by quantitative RT-PCR for assessing the data analysis pipeline, by quantitative proteomics for assessing the impact of changes in RNA abundance on the proteome, and by cross-species comparison for identifying conserved or universal response pathways. In addition, we assessed the functional importance of three target genes, VITAMIN C 2 (VTC2), MONODEHYDROASCORBATE REDUCTASE 1 (MDAR1), and CONSERVED IN THE GREEN LINEAGE AND DIATOMS 27 (CGLD27), by biochemistry or reverse genetics. VTC2 and MDAR1, which are key enzymes in de novo ascorbate synthesis and ascorbate recycling, respectively, are likely responsible for the 10-fold increase in ascorbate content of iron-limited cells. CGLD27/At5g67370 is a highly conserved, presumed chloroplast-localized pioneer protein and is important for growth of Arabidopsis thaliana in low iron. PMID:23043051

  20. Genome-wide analysis on Chlamydomonas reinhardtii reveals the impact of hydrogen peroxide on protein stress responses and overlap with other stress transcriptomes

    DOE PAGES

    Blaby, Ian K.; Blaby-Haas, Crysten E.; Pérez-Pérez, María Esther; ...

    2015-12-07

    Reactive oxygen species (ROS) are produced by and have the potential to be damaging to all aerobic organisms. In photosynthetic organisms, they are an unavoidable byproduct of electron transfer in both the chloroplast and mitochondrion. Here, in this paper, we employ the reference unicellular green alga Chlamydomonas reinhardtii to identify the effect of H 2O 2 on gene expression by monitoring the changes in the transcriptome in a time-course experiment. Comparison of transcriptomes from cells sampled immediately prior to the addition of H 2O 2 and 0.5 and 1 h subsequently revealed 1278 differentially abundant transcripts. Of those transcripts thatmore » increase in abundance, many encode proteins involved in ROS detoxification, protein degradation and stress responses, whereas among those that decrease are transcripts encoding proteins involved in photosynthesis and central carbon metabolism. In addition to these transcriptomic adjustments, we observe that addition of H 2O 2 is followed by an accumulation and oxidation of the total intracellular glutathione pool, and a decrease in photosynthetic O 2 output. Additionally, we analyze our transcriptomes in the context of changes in transcript abundance in response to singlet O 2 (O 2 *), and relate our H 2O 2-induced transcripts to a diurnal transcriptome, where we demonstrate enrichments of H 2O 2-induced transcripts early in the light phase, late in the light phase and 2 h prior to light. In conclusion, on this basis several genes that are highlighted in this work may be involved in previously undiscovered stress remediation pathways or acclimation responses.« less

  1. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows.

    PubMed

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules.

  2. Transcriptome difference and potential crosstalk between liver and mammary tissue in mid-lactation primiparous dairy cows

    PubMed Central

    Bu, Dengpan; Bionaz, Massimo; Wang, Mengzhi; Nan, Xuemei; Ma, Lu; Wang, Jiaqi

    2017-01-01

    Liver and mammary gland are among the most important organs during lactation in dairy cows. With the purpose of understanding both the different and the complementary roles and the crosstalk of those two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4×44K Bovine Agilent microarray chip. The transcriptome difference between the two tissues was analyzed using SAS JMP Genomics using ANOVA with a false discovery rate correction (FDR). The analysis uncovered >9,000 genes differentially expressed (DEG) between the two tissues with a FDR<0.001. The functional analysis of the DEG uncovered a larger metabolic (especially related to lipid) and inflammatory response capacity in liver compared with mammary tissue while the mammary tissue had a larger protein synthesis and secretion, proliferation/differentiation, signaling, and innate immune system capacity compared with the liver. A plethora of endogenous compounds, cytokines, and transcription factors were estimated to control the DEG between the two tissues. Compared with mammary tissue, the liver transcriptome appeared to be under control of a large array of ligand-dependent nuclear receptors and, among endogenous chemical, fatty acids and bacteria-derived compounds. Compared with liver, the transcriptome of the mammary tissue was potentially under control of a large number of growth factors and miRNA. The in silico crosstalk analysis between the two tissues revealed an overall large communication with a reciprocal control of lipid metabolism, innate immune system adaptation, and proliferation/differentiation. In summary the transcriptome analysis confirmed prior known differences between liver and mammary tissue, especially considering the indication of a larger metabolic activity in liver compared with the mammary tissue and the larger protein synthesis, communication, and proliferative capacity in mammary tissue compared with the liver. Relatively novel is the indication by the data that the transcriptome of the liver is highly regulated by dietary and bacteria-related compounds while the mammary transcriptome is more under control of hormones, growth factors, and miRNA. A large crosstalk between the two tissues with a reciprocal control of metabolism and innate immune-adaptation was indicated by the network analysis that allowed uncovering previously unknown crosstalk between liver and mammary tissue for several signaling molecules. PMID:28291785

  3. Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium violaceum.

    PubMed

    Previato-Mello, Maristela; Meireles, Diogo de Abreu; Netto, Luis Eduardo Soares; da Silva Neto, José Freire

    2017-08-01

    A major pathway for the detoxification of organic hydroperoxides, such as cumene hydroperoxide (CHP), involves the MarR family transcriptional regulator OhrR and the peroxidase OhrA. However, the effect of these peroxides on the global transcriptome and the contribution of the OhrA/OhrR system to bacterial virulence remain poorly explored. Here, we analyzed the transcriptome profiles of Chromobacterium violaceum exposed to CHP and after the deletion of ohrR , and we show that OhrR controls the virulence of this human opportunistic pathogen. DNA microarray and Northern blot analyses of CHP-treated cells revealed the upregulation of genes related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing systems), the degradation of the aromatic moiety of CHP (oxygenases), and protection against other secondary stresses (DNA repair, heat shock, iron limitation, and nitrogen starvation responses). Furthermore, we identified two upregulated genes ( ohrA and a putative diguanylate cyclase with a GGDEF domain for cyclic di-GMP [c-di-GMP] synthesis) and three downregulated genes (hemolysin, chitinase, and collagenase) in the ohrR mutant by transcriptome analysis. Importantly, we show that OhrR directly repressed the expression of the putative diguanylate cyclase. Using a mouse infection model, we demonstrate that the ohrR mutant was attenuated for virulence and showed a decreased bacterial burden in the liver. Moreover, an ohrR -diguanylate cyclase double mutant displayed the same virulence as the wild-type strain. In conclusion, we have defined the transcriptional response to CHP, identified potential virulence factors such as diguanylate cyclase as members of the OhrR regulon, and shown that C. violaceum uses the transcriptional regulator OhrR to modulate its virulence. Copyright © 2017 American Society for Microbiology.

  4. Global Transcriptional Response to Organic Hydroperoxide and the Role of OhrR in the Control of Virulence Traits in Chromobacterium violaceum

    PubMed Central

    Previato-Mello, Maristela; Meireles, Diogo de Abreu; Netto, Luis Eduardo Soares

    2017-01-01

    ABSTRACT A major pathway for the detoxification of organic hydroperoxides, such as cumene hydroperoxide (CHP), involves the MarR family transcriptional regulator OhrR and the peroxidase OhrA. However, the effect of these peroxides on the global transcriptome and the contribution of the OhrA/OhrR system to bacterial virulence remain poorly explored. Here, we analyzed the transcriptome profiles of Chromobacterium violaceum exposed to CHP and after the deletion of ohrR, and we show that OhrR controls the virulence of this human opportunistic pathogen. DNA microarray and Northern blot analyses of CHP-treated cells revealed the upregulation of genes related to the detoxification of peroxides (antioxidant enzymes and thiol-reducing systems), the degradation of the aromatic moiety of CHP (oxygenases), and protection against other secondary stresses (DNA repair, heat shock, iron limitation, and nitrogen starvation responses). Furthermore, we identified two upregulated genes (ohrA and a putative diguanylate cyclase with a GGDEF domain for cyclic di-GMP [c-di-GMP] synthesis) and three downregulated genes (hemolysin, chitinase, and collagenase) in the ohrR mutant by transcriptome analysis. Importantly, we show that OhrR directly repressed the expression of the putative diguanylate cyclase. Using a mouse infection model, we demonstrate that the ohrR mutant was attenuated for virulence and showed a decreased bacterial burden in the liver. Moreover, an ohrR-diguanylate cyclase double mutant displayed the same virulence as the wild-type strain. In conclusion, we have defined the transcriptional response to CHP, identified potential virulence factors such as diguanylate cyclase as members of the OhrR regulon, and shown that C. violaceum uses the transcriptional regulator OhrR to modulate its virulence. PMID:28507067

  5. The carbon starvation response of Aspergillus niger during submerged cultivation: Insights from the transcriptome and secretome

    PubMed Central

    2012-01-01

    Background Filamentous fungi are confronted with changes and limitations of their carbon source during growth in their natural habitats and during industrial applications. To survive life-threatening starvation conditions, carbon from endogenous resources becomes mobilized to fuel maintenance and self-propagation. Key to understand the underlying cellular processes is the system-wide analysis of fungal starvation responses in a temporal and spatial resolution. The knowledge deduced is important for the development of optimized industrial production processes. Results This study describes the physiological, morphological and genome-wide transcriptional changes caused by prolonged carbon starvation during submerged batch cultivation of the filamentous fungus Aspergillus niger. Bioreactor cultivation supported highly reproducible growth conditions and monitoring of physiological parameters. Changes in hyphal growth and morphology were analyzed at distinct cultivation phases using automated image analysis. The Affymetrix GeneChip platform was used to establish genome-wide transcriptional profiles for three selected time points during prolonged carbon starvation. Compared to the exponential growth transcriptome, about 50% (7,292) of all genes displayed differential gene expression during at least one of the starvation time points. Enrichment analysis of Gene Ontology, Pfam domain and KEGG pathway annotations uncovered autophagy and asexual reproduction as major global transcriptional trends. Induced transcription of genes encoding hydrolytic enzymes was accompanied by increased secretion of hydrolases including chitinases, glucanases, proteases and phospholipases as identified by mass spectrometry. Conclusions This study is the first system-wide analysis of the carbon starvation response in a filamentous fungus. Morphological, transcriptomic and secretomic analyses identified key events important for fungal survival and their chronology. The dataset obtained forms a comprehensive framework for further elucidation of the interrelation and interplay of the individual cellular events involved. PMID:22873931

  6. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong

    2016-01-01

    ABSTRACT The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. PMID:27899501

  7. Transcriptome analysis of soiny mullet (Liza haematocheila) spleen in response to Streptococcus dysgalactiae.

    PubMed

    Qi, Zhitao; Wu, Ping; Zhang, Qihuan; Wei, Youchuan; Wang, Zisheng; Qiu, Ming; Shao, Rong; Li, Yao; Gao, Qian

    2016-02-01

    Soiny mullet (Liza haematocheila) is becoming an economically important aquaculture mugilid species in China and other Asian countries. However, increasing incidences of bacterial pathogenic diseases has greatly hampered the production of the soiny mullet. Deeper understanding of the soiny mullet immune system and its related genes in response to bacterial infections are necessary for disease control in this species. In this study, the transcriptomic profile of spleen from soiny mullet challenged with Streptococcus dysgalactiae was analyzed by Illumina-based paired-end sequencing method. After assembly, 86,884 unique transcript fragments (unigenes) were assembled, with an average length of 991 bp. Approximately 41,795 (48.1%) unigenes were annotated in the nr NCBI database and 57.9% of the unigenes were similar to that of the Nile tilapia. A total of 24,299 unigenes were categorized into three Gene Ontology (GO) categories (molecular function, cellular component and biological process), 13,570 unigenes into 25 functional Clusters of Orthologous Groups of proteins (COG) categories, and 30,547 unigenes were grouped into 258 known pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Following S. dysgalactiae infection, 11,461 differentially expressed unigenes were identified including 4658 up-regulated unigenes and 6803 down-regulated unigenes. Significant enrichment analysis of these differentially expressed unigenes identified major immune related pathways, including the Toll-like receptor, complement and coagulation cascades, T cell receptor signaling pathway and B cell receptor signaling pathway. In addition, 24,813 simple sequence repeats (SSRs) and 127,503 candidate single nucleotide polymorphisms (SNPs) were identified from the mullet spleen transcriptome. To this date, this study has globally analyzed the transcriptome profile from the spleen of L. haematocheila after S. dysgalactiae infection. Therefore, the results of our study contributes to better on the immune system and defense mechanisms of soiny mullet in response to bacterial infection, and provides valuable references for related studies in mugilidae species which currently lack genomic reference. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Transcriptome profilng of defense responses to aphid feeding in wheat

    USDA-ARS?s Scientific Manuscript database

    Greenbug (Schizaphis graminum) is a serious aphid pest in small grain crops in the southern Great Plains of the US. We are trying to understand the molecular mechanisms of host resistance against aphid infestation in the grass genome using wheat-greenbug as a model system. In the present study, a mi...

  9. Traditional and systems biology based drug discovery for the rare tumor syndrome neurofibromatosis type 2

    PubMed Central

    Angus, Steve P.; Beauchamp, Roberta L.; Blakeley, Jaishri O.; Bott, Marga; Burns, Sarah S.; Carlstedt, Annemarie; Chang, Long-Sheng; Chen, Xin; Clapp, D. Wade; Desouza, Patrick A.; Erdin, Serkan; Fernandez-Valle, Cristina; Guinney, Justin; Gusella, James F.; Haggarty, Stephen J.; Johnson, Gary L.; Morrison, Helen; Petrilli, Alejandra M.; Plotkin, Scott R.; Pratap, Abhishek; Ramesh, Vijaya; Sciaky, Noah; Stemmer-Rachamimov, Anat; Stuhlmiller, Tim J.; Talkowski, Michael E.; Yates, Charles W.; Zawistowski, Jon S.; Zhao, Wen-Ning

    2018-01-01

    Neurofibromatosis 2 (NF2) is a rare tumor suppressor syndrome that manifests with multiple schwannomas and meningiomas. There are no effective drug therapies for these benign tumors and conventional therapies have limited efficacy. Various model systems have been created and several drug targets have been implicated in NF2-driven tumorigenesis based on known effects of the absence of merlin, the product of the NF2 gene. We tested priority compounds based on known biology with traditional dose-concentration studies in meningioma and schwann cell systems. Concurrently, we studied functional kinome and gene expression in these cells pre- and post-treatment to determine merlin deficient molecular phenotypes. Cell viability results showed that three agents (GSK2126458, Panobinostat, CUDC-907) had the greatest activity across schwannoma and meningioma cell systems, but merlin status did not significantly influence response. In vivo, drug effect was tumor specific with meningioma, but not schwannoma, showing response to GSK2126458 and Panobinostat. In culture, changes in both the transcriptome and kinome in response to treatment clustered predominantly based on tumor type. However, there were differences in both gene expression and functional kinome at baseline between meningioma and schwannoma cell systems that may form the basis for future selective therapies. This work has created an openly accessible resource (www.synapse.org/SynodosNF2) of fully characterized isogenic schwannoma and meningioma cell systems as well as a rich data source of kinome and transcriptome data from these assay systems before and after treatment that enables single and combination drug discovery based on molecular phenotype. PMID:29897904

  10. Traditional and systems biology based drug discovery for the rare tumor syndrome neurofibromatosis type 2.

    PubMed

    Allaway, Robert; Angus, Steve P; Beauchamp, Roberta L; Blakeley, Jaishri O; Bott, Marga; Burns, Sarah S; Carlstedt, Annemarie; Chang, Long-Sheng; Chen, Xin; Clapp, D Wade; Desouza, Patrick A; Erdin, Serkan; Fernandez-Valle, Cristina; Guinney, Justin; Gusella, James F; Haggarty, Stephen J; Johnson, Gary L; La Rosa, Salvatore; Morrison, Helen; Petrilli, Alejandra M; Plotkin, Scott R; Pratap, Abhishek; Ramesh, Vijaya; Sciaky, Noah; Stemmer-Rachamimov, Anat; Stuhlmiller, Tim J; Talkowski, Michael E; Welling, D Bradley; Yates, Charles W; Zawistowski, Jon S; Zhao, Wen-Ning

    2018-01-01

    Neurofibromatosis 2 (NF2) is a rare tumor suppressor syndrome that manifests with multiple schwannomas and meningiomas. There are no effective drug therapies for these benign tumors and conventional therapies have limited efficacy. Various model systems have been created and several drug targets have been implicated in NF2-driven tumorigenesis based on known effects of the absence of merlin, the product of the NF2 gene. We tested priority compounds based on known biology with traditional dose-concentration studies in meningioma and schwann cell systems. Concurrently, we studied functional kinome and gene expression in these cells pre- and post-treatment to determine merlin deficient molecular phenotypes. Cell viability results showed that three agents (GSK2126458, Panobinostat, CUDC-907) had the greatest activity across schwannoma and meningioma cell systems, but merlin status did not significantly influence response. In vivo, drug effect was tumor specific with meningioma, but not schwannoma, showing response to GSK2126458 and Panobinostat. In culture, changes in both the transcriptome and kinome in response to treatment clustered predominantly based on tumor type. However, there were differences in both gene expression and functional kinome at baseline between meningioma and schwannoma cell systems that may form the basis for future selective therapies. This work has created an openly accessible resource (www.synapse.org/SynodosNF2) of fully characterized isogenic schwannoma and meningioma cell systems as well as a rich data source of kinome and transcriptome data from these assay systems before and after treatment that enables single and combination drug discovery based on molecular phenotype.

  11. Transcriptome landscape of a bacterial pathogen under plant immunity.

    PubMed

    Nobori, Tatsuya; Velásquez, André C; Wu, Jingni; Kvitko, Brian H; Kremer, James M; Wang, Yiming; He, Sheng Yang; Tsuda, Kenichi

    2018-03-27

    Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.

  12. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi.

    PubMed

    Bochenek, Michal; Etherington, Graham J; Koprivova, Anna; Mugford, Sam T; Bell, Thomas G; Malin, Gill; Kopriva, Stanislav

    2013-08-01

    The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  13. Muscle transcriptome response to ACTH administration in a free-ranging marine mammal

    PubMed Central

    Champagne, Cory D.; Preeyanon, Likit; Ortiz, Rudy M.; Crocker, Daniel E.

    2015-01-01

    While much of our understanding of stress physiology is derived from biomedical studies, little is known about the downstream molecular consequences of adaptive stress responses in free-living animals. We examined molecular effectors of the stress hormones cortisol and aldosterone in the northern elephant seal, a free-ranging study system in which extreme physiological challenges and cortisol fluctuations are a routine part of life history. We stimulated the neuroendocrine stress axis by administering exogenous adrenocorticotropic hormone (ACTH) and examined the resultant effects by measuring corticosteroid hormones, metabolites, and gene expression before, during, and following administration. ACTH induced an elevation in cortisol, aldosterone, glucose, and fatty acids within 2 h, with complete recovery observed within 24 h of administration. The global transcriptional response of elephant seal muscle tissue to ACTH was evaluated by transcriptomics and involved upregulation of a highly coordinated network of conserved glucocorticoid (GC) target genes predicted to promote metabolic substrate availability without causing deleterious effects seen in laboratory animals. Transcriptional recovery from ACTH was characterized by downregulation of GC target genes and restoration of cell proliferation, metabolism, and tissue maintenance pathways within 24 h. Differentially expressed genes included several adipokines not previously described in muscle, reflecting unique metabolic physiology in fasting-adapted animals. This study represents one of the first transcriptome analyses of cellular responses to hypothalamic-pituitary-adrenal axis stimulation in a free-living marine mammal and suggests that compensatory, tissue-sparing mechanisms may enable marine mammals to maintain cortisol and aldosterone sensitivity while avoiding deleterious long-term consequences of stress. PMID:26038394

  14. Different Blood Cell-Derived Transcriptome Signatures in Cows Exposed to Vaccination Pre- or Postpartum

    PubMed Central

    Weikard, Rosemarie; Demasius, Wiebke; Hadlich, Frieder; Kühn, Christa

    2015-01-01

    Periparturient cows have been found to reveal immunosuppression, frequently associated with increased susceptibility to uterine and mammary infections. To improve understanding of the causes and molecular regulatory mechanisms accounting for this phenomenon around calving, we examined the effect of an antigen challenge on gene expression modulation on cows prior to (BC) or after calving (AC) using whole transcriptome sequencing (RNAseq). The transcriptome analysis of the cows’ blood identified a substantially higher number of loci affected in BC cows (2,235) in response to vaccination compared to AC cows (208) and revealed a divergent transcriptional profile specific for each group. In BC cows, a variety of loci involved in immune defense and cellular signaling processes were transcriptionally activated, whereas protein biosynthesis and posttranslational processes were tremendously impaired in response to vaccination. Furthermore, energy metabolism in the blood cells of BC cows was shifted from oxidative phosphorylation to the glycolytic system. In AC cows, the number and variety of regulated pathways involved in immunomodulation and maintenance of immnunocompetence are considerably lower after vaccination, and upregulation of arginine degradation was suggested as an immunosuppressive mechanism. Elevated transcript levels of erythrocyte-specific genes involved in gas exchange processes were a specific transcriptional signature in AC cows pointing to hematopoiesis activation. The divergent and substantially lower magnitude of transcriptional modulation in response to vaccination in AC cows provides evidence for a suppressed immune capacity of early lactating cows on the molecular level and demonstrates that an efficient immune response of cows is related to their physiological and metabolic status. PMID:26317664

  15. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil.

    PubMed

    Gonzalez, Emmanuel; Brereton, Nicholas J B; Marleau, Julie; Guidi Nissim, Werther; Labrecque, Michel; Pitre, Frederic E; Joly, Simon

    2015-10-12

    High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.

  16. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia

    PubMed Central

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J. V.; Schulz, Marcel H.; Simon, Martin

    2015-01-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. PMID:26231545

  17. Remote reprogramming of hepatic circadian transcriptome by breast cancer.

    PubMed

    Hojo, Hiroaki; Enya, Sora; Arai, Miki; Suzuki, Yutaka; Nojiri, Takashi; Kangawa, Kenji; Koyama, Shinsuke; Kawaoka, Shinpei

    2017-05-23

    Cancers adversely affect organismal physiology. To date, the genes within a patient responsible for systemically spreading cancer-induced physiological disruption remain elusive. To identify host genes responsible for transmitting disruptive, cancer-driven signals, we thoroughly analyzed the transcriptome of a suite of host organs from mice bearing 4T1 breast cancer, and discovered complexly rewired patterns of circadian gene expression in the liver. Our data revealed that 7 core clock transcription factors, represented by Rev-erba and Rorg, exhibited abnormal daily expression rhythm in the liver of 4T1-bearing mice. Accordingly, expression patterns of specific set of downstream circadian genes were compromised. Osgin1, a marker for oxidative stress, was an example. Specific downstream genes, including E2f8, a transcriptional repressor that controls cellular polyploidy, displayed a striking pattern of disruption, "day-night reversal." Meanwhile, we found that the liver of 4T1-bearing mice suffered from increased oxidative stress. The tetraploid hepatocytes population was concomitantly increased in 4T1-bearing mice, which has not been previously appreciated as a cancer-induced phenotype. In summary, the current study provides a comprehensive characterization of the 4T1-affected hepatic circadian transcriptome that possibly underlies cancer-induced physiological alteration in the liver.

  18. Physiological and transcriptome response to cadmium in cosmos (Cosmos bipinnatus Cav.) seedlings.

    PubMed

    Liu, Yujing; Yu, Xiaofang; Feng, Yimei; Zhang, Chao; Wang, Chao; Zeng, Jian; Huang, Zhuo; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong; Gao, Suping; Chen, Qibing

    2017-10-31

    To date, several species of Asteraceae have been considered as Cd-accumulators. However, little information on the Cd tolerance and associated mechanisms of Asteraceae species Cosmos bipinnatus, is known. Presently, several physiological indexes and transcriptome profiling under Cd stress were investigated. C. bipinnatus exhibited strong Cd tolerance and recommended as a Cd-accumulator, although the biomasses were reduced by Cd. Meanwhile, Cd stresses reduced Zn and Ca uptake, but increased Fe uptake. Subcellular distribution indicated that the vacuole sequestration in root mainly detoxified Cd under lower Cd stress. Whilst, cell wall binding and vacuole sequestration in root co-detoxified Cd under high Cd exposure. Meanwhile, 66,407 unigenes were assembled and 41,674 (62.75%) unigenes were annotated in at least one database. 2,658 DEGs including 1,292 up-regulated unigenes and 1,366 down-regulated unigenes were identified under 40 μmol/L Cd stress. Among of these DEGs, ZIPs, HMAs, NRAMPs and ABC transporters might participate in Cd uptake, translocation and accumulation. Many DEGs participating in several processes such as cell wall biosynthesis, GSH metabolism, TCA cycle and antioxidant system probably play critical roles in cell wall binding, vacuole sequestration and detoxification. These results provided a novel insight into the physiological and transcriptome response to Cd in C. bipinnatus seedlings.

  19. Genome-Wide Mapping of Cystitis Due to Streptococcus agalactiae and Escherichia coli in Mice Identifies a Unique Bladder Transcriptome That Signifies Pathogen-Specific Antimicrobial Defense against Urinary Tract Infection

    PubMed Central

    Tan, Chee K.; Carey, Alison J.; Cui, Xiangqin; Webb, Richard I.; Ipe, Deepak; Crowley, Michael; Cripps, Allan W.; Benjamin, William H.; Ulett, Kimberly B.; Schembri, Mark A.

    2012-01-01

    The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms, including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize the bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35-year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; quantitative reverse transcriptase PCR (qRT-PCR) was used to analyze selected gene responses identified in array data sets. A surprisingly small significant-gene list of 172 genes was identified at 24 h; this compared to 2,507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2 h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2 h. Bioinformatics analyses, including integrative system-level network mapping, revealed multiple activated biological pathways in the GBS bladder transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens. PMID:22733575

  20. Analysis of the Citrullus colocynthis Transcriptome during Water Deficit Stress

    PubMed Central

    Wang, Zhuoyu; Hu, Hongtao; Goertzen, Leslie R.; McElroy, J. Scott; Dane, Fenny

    2014-01-01

    Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress. PMID:25118696

  1. RNA-Seq Technology and Its Application in Fish Transcriptomics

    PubMed Central

    Ba, Yi; Zhuang, Qianfeng

    2014-01-01

    Abstract High-throughput sequencing technologies, also known as next-generation sequencing (NGS) technologies, have revolutionized the way that genomic research is advancing. In addition to the static genome, these state-of-art technologies have been recently exploited to analyze the dynamic transcriptome, and the resulting technology is termed RNA sequencing (RNA-seq). RNA-seq is free from many limitations of other transcriptomic approaches, such as microarray and tag-based sequencing method. Although RNA-seq has only been available for a short time, studies using this method have completely changed our perspective of the breadth and depth of eukaryotic transcriptomes. In terms of the transcriptomics of teleost fishes, both model and non-model species have benefited from the RNA-seq approach and have undergone tremendous advances in the past several years. RNA-seq has helped not only in mapping and annotating fish transcriptome but also in our understanding of many biological processes in fish, such as development, adaptive evolution, host immune response, and stress response. In this review, we first provide an overview of each step of RNA-seq from library construction to the bioinformatic analysis of the data. We then summarize and discuss the recent biological insights obtained from the RNA-seq studies in a variety of fish species. PMID:24380445

  2. Transcriptomic Dose-Response Analysis for Mode of Action ...

    EPA Pesticide Factsheets

    Microarray and RNA-seq technologies can play an important role in assessing the health risks associated with environmental exposures. The utility of gene expression data to predict hazard has been well documented. Early toxicogenomics studies used relatively high, single doses with minimal replication. Thus, they were not useful in understanding health risks at environmentally-relevant doses. Until the past decade, application of toxicogenomics in dose response assessment and determination of chemical mode of action has been limited. New transcriptomic biomarkers have evolved to detect chemical hazards in multiple tissues together with pathway methods to study biological effects across the full dose response range and critical time course. Comprehensive low dose datasets are now available and with the use of transcriptomic benchmark dose estimation techniques within a mode of action framework, the ability to incorporate informative genomic data into human health risk assessment has substantially improved. The key advantage to applying transcriptomic technology to risk assessment is both the sensitivity and comprehensive examination of direct and indirect molecular changes that lead to adverse outcomes. Book Chapter with topic on future application of toxicogenomics technologies for MoA and risk assessment

  3. Thrips developmental stage-specific transcriptome response to tomato spotted wilt virus during the virus infection cycle in Frankliniella occidentalis, the primary vector.

    PubMed

    Schneweis, Derek J; Whitfield, Anna E; Rotenberg, Dorith

    2017-01-01

    Tomato spotted wilt virus (TSWV) is transmitted by Frankliniella occidentalis in a circulative-propagative manner. Little is known about thrips vector response to TSWV during the infection process from larval acquisition to adult inoculation of plants. Whole-body transcriptome response to virus infection was determined for first-instar larval, pre-pupal and adult thrips using RNA-Seq. TSWV responsive genes were identified using preliminary sequence of a draft genome of F. occidentalis as a reference and three developmental-stage transcriptomes were assembled. Processes and functions associated with host defense, insect cuticle structure and development, metabolism and transport were perturbed by TSWV infection as inferred by ontologies of responsive genes. The repertoire of genes responsive to TSWV varied between developmental stages, possibly reflecting the link between thrips development and the virus dissemination route in the vector. This study provides the foundation for exploration of tissue-specific expression in response to TSWV and functional analysis of thrips gene function. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Comparative Transcriptomics Implicates Mechansims of Evolved Pollution Tolerance in a Killifish Population

    EPA Science Inventory

    Wild populations of the killifish Fundulus heteroclitus resident in heavily contaminated North American Atlantic coast estuaries have recently and independently evolved dramatic, heritable, and adaptive pollution tolerance. We compared physiological and transcriptome responses t...

  5. ALOMYbase, a resource to investigate non-target-site-based resistance to herbicides inhibiting acetolactate-synthase (ALS) in the major grass weed Alopecurus myosuroides (black-grass).

    PubMed

    Gardin, Jeanne Aude Christiane; Gouzy, Jérôme; Carrère, Sébastien; Délye, Christophe

    2015-08-12

    Herbicide resistance in agrestal weeds is a global problem threatening food security. Non-target-site resistance (NTSR) endowed by mechanisms neutralising the herbicide or compensating for its action is considered the most agronomically noxious type of resistance. Contrary to target-site resistance, NTSR mechanisms are far from being fully elucidated. A part of weed response to herbicide stress, NTSR is considered to be largely driven by gene regulation. Our purpose was to establish a transcriptome resource allowing investigation of the transcriptomic bases of NTSR in the major grass weed Alopecurus myosuroides L. (Poaceae) for which almost no genomic or transcriptomic data was available. RNA-Seq was performed from plants in one F2 population that were sensitive or expressing NTSR to herbicides inhibiting acetolactate-synthase. Cloned plants were sampled over seven time-points ranging from before until 73 h after herbicide application. Assembly of over 159M high-quality Illumina reads generated a transcriptomic resource (ALOMYbase) containing 65,558 potentially active contigs (N50 = 1240 nucleotides) predicted to encode 32,138 peptides with 74% GO annotation, of which 2017 were assigned to protein families presumably involved in NTSR. Comparison with the fully sequenced grass genomes indicated good coverage and correct representation of A. myosuroides transcriptome in ALOMYbase. The part of the herbicide transcriptomic response common to the resistant and the sensitive plants was consistent with the expected effects of acetolactate-synthase inhibition, with striking similarities observed with published Arabidopsis thaliana data. A. myosuroides plants with NTSR were first affected by herbicide action like sensitive plants, but ultimately overcame it. Analysis of differences in transcriptomic herbicide response between resistant and sensitive plants did not allow identification of processes directly explaining NTSR. Five contigs associated to NTSR in the F2 population studied were tentatively identified. They were predicted to encode three cytochromes P450 (CYP71A, CYP71B and CYP81D), one peroxidase and one disease resistance protein. Our data confirmed that gene regulation is at the root of herbicide response and of NTSR. ALOMYbase proved to be a relevant resource to support NTSR transcriptomic studies, and constitutes a valuable tool for future research aiming at elucidating gene regulations involved in NTSR in A. myosuroides.

  6. Hierarchical cortical transcriptome disorganization in autism.

    PubMed

    Lombardo, Michael V; Courchesne, Eric; Lewis, Nathan E; Pramparo, Tiziano

    2017-01-01

    Autism spectrum disorders (ASD) are etiologically heterogeneous and complex. Functional genomics work has begun to identify a diverse array of dysregulated transcriptomic programs (e.g., synaptic, immune, cell cycle, DNA damage, WNT signaling, cortical patterning and differentiation) potentially involved in ASD brain abnormalities during childhood and adulthood. However, it remains unclear whether such diverse dysregulated pathways are independent of each other or instead reflect coordinated hierarchical systems-level pathology. Two ASD cortical transcriptome datasets were re-analyzed using consensus weighted gene co-expression network analysis (WGCNA) to identify common co-expression modules across datasets. Linear mixed-effect models and Bayesian replication statistics were used to identify replicable differentially expressed modules. Eigengene network analysis was then utilized to identify between-group differences in how co-expression modules interact and cluster into hierarchical meta-modular organization. Protein-protein interaction analyses were also used to determine whether dysregulated co-expression modules show enhanced interactions. We find replicable evidence for 10 gene co-expression modules that are differentially expressed in ASD cortex. Rather than being independent non-interacting sources of pathology, these dysregulated co-expression modules work in synergy and physically interact at the protein level. These systems-level transcriptional signals are characterized by downregulation of synaptic processes coordinated with upregulation of immune/inflammation, response to other organism, catabolism, viral processes, translation, protein targeting and localization, cell proliferation, and vasculature development. Hierarchical organization of meta-modules (clusters of highly correlated modules) is also highly affected in ASD. These findings highlight that dysregulation of the ASD cortical transcriptome is characterized by the dysregulation of multiple coordinated transcriptional programs producing synergistic systems-level effects that cannot be fully appreciated by studying the individual component biological processes in isolation.

  7. A systems biology approach using transcriptomic data reveals genes and pathways in porcine skeletal muscle affected by dietary lysine

    USDA-ARS?s Scientific Manuscript database

    Meeting the increasing market demands for pork products requires improvement of the feed efficiency of growing pigs. The use of Affymetrix Porcine Gene 1.0 ST array containing 19,211 genes in this study provides a comprehensive gene expression profile of skeletal muscle of finishing pigs in response...

  8. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes.

    PubMed

    Ribas, Laia; Liew, Woei Chang; Díaz, Noèlia; Sreenivasan, Rajini; Orbán, László; Piferrer, Francesc

    2017-02-07

    Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a "male-like" gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario.

  9. Simultaneous transcriptome analysis of Colletotrichum gloeosporioides and tomato fruit pathosystem reveals novel fungal pathogenicity and fruit defense strategies.

    PubMed

    Alkan, Noam; Friedlander, Gilgi; Ment, Dana; Prusky, Dov; Fluhr, Robert

    2015-01-01

    The fungus Colletotrichum gloeosporioides breaches the fruit cuticle but remains quiescent until fruit ripening signals a switch to necrotrophy, culminating in devastating anthracnose disease. There is a need to understand the distinct fungal arms strategy and the simultaneous fruit response. Transcriptome analysis of fungal-fruit interactions was carried out concurrently in the appressoria, quiescent and necrotrophic stages. Conidia germinating on unripe fruit cuticle showed stage-specific transcription that was accompanied by massive fruit defense responses. The subsequent quiescent stage showed the development of dendritic-like structures and swollen hyphae within the fruit epidermis. The quiescent fungal transcriptome was characterized by activation of chromatin remodeling genes and unsuspected environmental alkalization. Fruit response was portrayed by continued highly integrated massive up-regulation of defense genes. During cuticle infection of green or ripe fruit, fungi recapitulate the same developmental stages but with differing quiescent time spans. The necrotrophic stage showed a dramatic shift in fungal metabolism and up-regulation of pathogenicity factors. Fruit response to necrotrophy showed activation of the salicylic acid pathway, climaxing in cell death. Transcriptome analysis of C. gloeosporioides infection of fruit reveals its distinct stage-specific lifestyle and the concurrent changing fruit response, deepening our perception of the unfolding fungal-fruit arms and defenses race. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  10. Transcriptome Analysis of Spartina pectinata in Response to Freezing Stress

    PubMed Central

    Nah, Gyoungju; Lee, Moonsub; Kim, Do-Soon; Rayburn, A. Lane; Voigt, Thomas; Lee, D. K.

    2016-01-01

    Prairie cordgrass (Spartina pectinata), a perennial C4 grass native to the North American prairie, has several distinctive characteristics that potentially make it a model crop for production in stressful environments. However, little is known about the transcriptome dynamics of prairie cordgrass despite its unique freezing stress tolerance. Therefore, the purpose of this work was to explore the transcriptome dynamics of prairie cordgrass in response to freezing stress at -5°C for 5 min and 30 min. We used a RNA-sequencing method to assemble the S. pectinata leaf transcriptome and performed gene-expression profiling of the transcripts under freezing treatment. Six differentially expressed gene (DEG) groups were categorized from the profiling. In addition, two major consecutive orders of gene expression were observed in response to freezing; the first being the acute up-regulation of genes involved in plasma membrane modification, calcium-mediated signaling, proteasome-related proteins, and transcription regulators (e.g., MYB and WRKY). The follow-up and second response was of genes involved in encoding the putative anti-freezing protein and the previously known DNA and cell-damage-repair proteins. Moreover, we identified the genes involved in epigenetic regulation and circadian-clock expression. Our results indicate that freezing response in S. pectinata reflects dynamic changes in rapid-time duration, as well as in metabolic, transcriptional, post-translational, and epigenetic regulation. PMID:27032112

  11. Transcriptome Profiling of Shewanella oneidensis Gene Expression following Exposure to Acidic and Alkaline pH†

    PubMed Central

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm, Eric; Wan, Xiu-Feng; Arkin, Adam; Brown, Steven D.; Wu, Liyou; Yan, Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2006-01-01

    The molecular response of Shewanella oneidensis MR-1 to variations in extracellular pH was investigated based on genomewide gene expression profiling. Microarray analysis revealed that cells elicited both general and specific transcriptome responses when challenged with environmental acid (pH 4) or base (pH 10) conditions over a 60-min period. Global responses included the differential expression of genes functionally linked to amino acid metabolism, transcriptional regulation and signal transduction, transport, cell membrane structure, and oxidative stress protection. Response to acid stress included the elevated expression of genes encoding glycogen biosynthetic enzymes, phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS), whereas the molecular response to alkaline pH was characterized by upregulation of nhaA and nhaR, which are predicted to encode an Na+/H+ antiporter and transcriptional activator, respectively, as well as sulfate transport and sulfur metabolism genes. Collectively, these results suggest that S. oneidensis modulates multiple transporters, cell envelope components, and pathways of amino acid consumption and central intermediary metabolism as part of its transcriptome response to changing external pH conditions. PMID:16452448

  12. System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato1[W][OA

    PubMed Central

    Etalo, Desalegn W.; Stulemeijer, Iris J.E.; Peter van Esse, H.; de Vos, Ric C.H.; Bouwmeester, Harro J.; Joosten, Matthieu H.A.J.

    2013-01-01

    The hypersensitive response (HR) is considered to be the hallmark of the resistance response of plants to pathogens. To study HR-associated transcriptome and metabolome reprogramming in tomato (Solanum lycopersicum), we used plants that express both a resistance gene to Cladosporium fulvum and the matching avirulence gene of this pathogen. In these plants, massive reprogramming occurred, and we found that the HR and associated processes are highly energy demanding. Ubiquitin-dependent protein degradation, hydrolysis of sugars, and lipid catabolism are used as alternative sources of amino acids, energy, and carbon skeletons, respectively. We observed strong accumulation of secondary metabolites, such as hydroxycinnamic acid amides. Coregulated expression of WRKY transcription factors and genes known to be involved in the HR, in addition to a strong enrichment of the W-box WRKY-binding motif in the promoter sequences of the coregulated genes, point to WRKYs as the most prominent orchestrators of the HR. Our study has revealed several novel HR-related genes, and reverse genetics tools will allow us to understand the role of each individual component in the HR. PMID:23719893

  13. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea

    PubMed Central

    Garg, Rohini; Shankar, Rama; Thakkar, Bijal; Kudapa, Himabindu; Krishnamurthy, Lakshmanan; Mantri, Nitin; Varshney, Rajeev K.; Bhatia, Sabhyata; Jain, Mukesh

    2016-01-01

    Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea. PMID:26759178

  14. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols.

    PubMed

    Mansfeldt, Cresten B; Richter, Lubna V; Ahner, Beth A; Cochlan, William P; Richardson, Ruth E

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. "SAG-211-18" including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes-a galactoglycerolipid lipase and a diacylglyceride acyltransferase-were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.

  15. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing.

    PubMed

    Young, Ellen; Carey, Manus; Meharg, Andrew A; Meharg, Caroline

    2018-03-20

    Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were the most common genus in shoots, with Colletotrichum and Rhizophagus (AM fungi) most numerous in limestone soil roots. The latter coincided with upregulation of plant genes involved in AM symbiosis initiation and AM-based P acquisition in an environment where P availability is low. Meta-transcriptome analyses provided novel insights into H. lanatus transcriptome responses, associated eukaryotic microbiota functions and taxonomic community composition. Significant edaphic and plant ecotype effects were identified, demonstrating that meta-transcriptome-based functional analysis is a powerful tool for the study of natural plant-microbiome interactions.

  16. Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental Offspring Longissimus Muscle Transcriptome and Intramuscular Fat

    PubMed Central

    Moisá, Sonia J.; Shike, Daniel W.; Shoup, Lindsay; Rodriguez-Zas, Sandra L.; Loor, Juan J.

    2015-01-01

    In model organisms both the nutrition of the mother and the young offspring could induce long-lasting transcriptional changes in tissues. In livestock, such changes could have important roles in determining nutrient use and meat quality. The main objective was to evaluate if plane of maternal nutrition during late-gestation and weaning age alter the offspring’s Longissimus muscle (LM) transcriptome, animal performance, and metabolic hormones. Whole-transcriptome microarray analysis was performed on LM samples of early (EW) and normal weaned (NW) Angus × Simmental calves born to grazing cows receiving no supplement [low plane of nutrition (LPN)] or 2.3 kg high-grain mix/day [medium plane of nutrition (MPN)] during the last 105 days of gestation. Biopsies of LM were harvested at 78 (EW), 187 (NW) and 354 (before slaughter) days of age. Despite greater feed intake in MPN offspring, blood insulin was greater in LPN offspring. Carcass intramuscular fat content was greater in EW offspring. Bioinformatics analysis of the transcriptome highlighted a modest overall response to maternal plane of nutrition, resulting in only 35 differentially expressed genes (DEG). However, weaning age and a high-grain diet (EW) strongly impacted the transcriptome (DEG = 167), especially causing a lipogenic program activation. In addition, between 78 and 187 days of age, EW steers had an activation of the innate immune system due presumably to macrophage infiltration of intramuscular fat. Between 187 and 354 days of age (the “finishing” phase), NW steers had an activation of the lipogenic transcriptome machinery, while EW steers had a clear inhibition through the epigenetic control of histone acetylases. Results underscored the need to conduct further studies to understand better the functional outcome of transcriptome changes induced in the offspring by pre- and post-natal nutrition. Additional knowledge on molecular and functional outcomes would help produce more efficient beef cattle. PMID:26153887

  17. Maternal Plane of Nutrition during Late Gestation and Weaning Age Alter Angus × Simmental Offspring Longissimus Muscle Transcriptome and Intramuscular Fat.

    PubMed

    Moisá, Sonia J; Shike, Daniel W; Shoup, Lindsay; Rodriguez-Zas, Sandra L; Loor, Juan J

    2015-01-01

    In model organisms both the nutrition of the mother and the young offspring could induce long-lasting transcriptional changes in tissues. In livestock, such changes could have important roles in determining nutrient use and meat quality. The main objective was to evaluate if plane of maternal nutrition during late-gestation and weaning age alter the offspring's Longissimus muscle (LM) transcriptome, animal performance, and metabolic hormones. Whole-transcriptome microarray analysis was performed on LM samples of early (EW) and normal weaned (NW) Angus × Simmental calves born to grazing cows receiving no supplement [low plane of nutrition (LPN)] or 2.3 kg high-grain mix/day [medium plane of nutrition (MPN)] during the last 105 days of gestation. Biopsies of LM were harvested at 78 (EW), 187 (NW) and 354 (before slaughter) days of age. Despite greater feed intake in MPN offspring, blood insulin was greater in LPN offspring. Carcass intramuscular fat content was greater in EW offspring. Bioinformatics analysis of the transcriptome highlighted a modest overall response to maternal plane of nutrition, resulting in only 35 differentially expressed genes (DEG). However, weaning age and a high-grain diet (EW) strongly impacted the transcriptome (DEG = 167), especially causing a lipogenic program activation. In addition, between 78 and 187 days of age, EW steers had an activation of the innate immune system due presumably to macrophage infiltration of intramuscular fat. Between 187 and 354 days of age (the "finishing" phase), NW steers had an activation of the lipogenic transcriptome machinery, while EW steers had a clear inhibition through the epigenetic control of histone acetylases. Results underscored the need to conduct further studies to understand better the functional outcome of transcriptome changes induced in the offspring by pre- and post-natal nutrition. Additional knowledge on molecular and functional outcomes would help produce more efficient beef cattle.

  18. Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge

    PubMed Central

    Gonzalez-Pena, Dianelys; Nixon, Scott E.; O’Connor, Jason C.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Borras, Tania; Machuca, Debbie; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.

    2016-01-01

    Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis. PMID:26959683

  19. Microglia Transcriptome Changes in a Model of Depressive Behavior after Immune Challenge.

    PubMed

    Gonzalez-Pena, Dianelys; Nixon, Scott E; O'Connor, Jason C; Southey, Bruce R; Lawson, Marcus A; McCusker, Robert H; Borras, Tania; Machuca, Debbie; Hernandez, Alvaro G; Dantzer, Robert; Kelley, Keith W; Rodriguez-Zas, Sandra L

    2016-01-01

    Depression symptoms following immune response to a challenge have been reported after the recovery from sickness. A RNA-Seq study of the dysregulation of the microglia transcriptome in a model of inflammation-associated depressive behavior was undertaken. The transcriptome of microglia from mice at day 7 after Bacille Calmette Guérin (BCG) challenge was compared to that from unchallenged Control mice and to the transcriptome from peripheral macrophages from the same mice. Among the 562 and 3,851 genes differentially expressed between BCG-challenged and Control mice in microglia and macrophages respectively, 353 genes overlapped between these cells types. Among the most differentially expressed genes in the microglia, serum amyloid A3 (Saa3) and cell adhesion molecule 3 (Cadm3) were over-expressed and coiled-coil domain containing 162 (Ccdc162) and titin-cap (Tcap) were under-expressed in BCG-challenged relative to Control. Many of the differentially expressed genes between BCG-challenged and Control mice were associated with neurological disorders encompassing depression symptoms. Across cell types, S100 calcium binding protein A9 (S100A9), interleukin 1 beta (Il1b) and kynurenine 3-monooxygenase (Kmo) were differentially expressed between challenged and control mice. Immune response, chemotaxis, and chemokine activity were among the functional categories enriched by the differentially expressed genes. Functional categories enriched among the 9,117 genes differentially expressed between cell types included leukocyte regulation and activation, chemokine and cytokine activities, MAP kinase activity, and apoptosis. More than 200 genes exhibited alternative splicing events between cell types including WNK lysine deficient protein kinase 1 (Wnk1) and microtubule-actin crosslinking factor 1(Macf1). Network visualization revealed the capability of microglia to exhibit transcriptome dysregulation in response to immune challenge still after resolution of sickness symptoms, albeit lower than that observed in macrophages. The persistent transcriptome dysregulation in the microglia shared patterns with neurological disorders indicating that the associated persistent depressive symptoms share a common transcriptome basis.

  20. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening.

    PubMed

    Costa, Fabrizio; Alba, Rob; Schouten, Henk; Soglio, Valeria; Gianfranceschi, Luca; Serra, Sara; Musacchi, Stefano; Sansavini, Silviero; Costa, Guglielmo; Fei, Zhangjun; Giovannoni, James

    2010-10-25

    Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-methylcyclopropene. To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated.The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species.

  1. Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig.

    PubMed

    Jégou, Maëva; Gondret, Florence; Vincent, Annie; Tréfeu, Christine; Gilbert, Hélène; Louveau, Isabelle

    2016-01-01

    The molecular mechanisms underlying feed efficiency need to be better understood to improve animal efficiency, a research priority to support a competitive and sustainable livestock production. This study was undertaken to determine whether pig blood transcriptome was affected by differences in feed efficiency and by ingested nutrients. Growing pigs from two lines divergently selected for residual feed intake (RFI) and fed isoproteic and isocaloric diets contrasted in energy source and nutrients were considered. Between 74 and 132 days of age, pigs (n = 12 by diet and by line) received a regular diet rich in cereals and low in fat (LF) or a diet where cereals where partially substituted by lipids and fibers (HF). At the end of the feeding trial, the total number of white blood cells was not affected by the line or by the diet, whereas the red blood cell number was higher (P<0.001) in low RFI than in high RFI pigs. Analysis of the whole blood transcriptome using a porcine microarray reveals a higher number of probes differentially expressed (DE) between RFI lines than between diets (2,154 versus 92 probes DE, P<0.01). This corresponds to 528 overexpressed genes and 477 underexpressed genes in low RFI pigs compared with high RFI pigs, respectively. Overexpressed genes were predominantly associated with translational elongation. Underexpressed genes were mainly involved in the immune response, regulation of inflammatory response, anti-apoptosis process, and cell organization. These findings suggest that selection for RFI has affected the immune status and defense mechanisms of pigs. Genes DE between diets were mainly related to the immune system and lipid metabolism. Altogether, this study demonstrates the usefulness of the blood transcriptome to identify the main biological processes affected by genetic selection and feeding strategies.

  2. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum.

    PubMed

    Widana Gamage, Shirani M K; McGrath, Desmond J; Persley, Denis M; Dietzgen, Ralf G

    2016-01-01

    Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops.

  3. Transcriptome Analysis of Capsicum Chlorosis Virus-Induced Hypersensitive Resistance Response in Bell Capsicum

    PubMed Central

    Widana Gamage, Shirani M. K.; McGrath, Desmond J.; Persley, Denis M.

    2016-01-01

    Background Capsicum chlorosis virus (CaCV) is an emerging pathogen of capsicum, tomato and peanut crops in Australia and South-East Asia. Commercial capsicum cultivars with CaCV resistance are not yet available, but CaCV resistance identified in Capsicum chinense is being introgressed into commercial Bell capsicum. However, our knowledge of the molecular mechanisms leading to the resistance response to CaCV infection is limited. Therefore, transcriptome and expression profiling data provide an important resource to better understand CaCV resistance mechanisms. Methodology/Principal Findings We assembled capsicum transcriptomes and analysed gene expression using Illumina HiSeq platform combined with a tag-based digital gene expression system. Total RNA extracted from CaCV/mock inoculated CaCV resistant (R) and susceptible (S) capsicum at the time point when R line showed a strong hypersensitive response to CaCV infection was used in transcriptome assembly. Gene expression profiles of R and S capsicum in CaCV- and buffer-inoculated conditions were compared. None of the genes were differentially expressed (DE) between R and S cultivars when mock-inoculated, while 2484 genes were DE when inoculated with CaCV. Functional classification revealed that the most highly up-regulated DE genes in R capsicum included pathogenesis-related genes, cell death-associated genes, genes associated with hormone-mediated signalling pathways and genes encoding enzymes involved in synthesis of defense-related secondary metabolites. We selected 15 genes to confirm DE expression levels by real-time quantitative PCR. Conclusion/Significance DE transcript profiling data provided comprehensive gene expression information to gain an understanding of the underlying CaCV resistance mechanisms. Further, we identified candidate CaCV resistance genes in the CaCV-resistant C. annuum x C. chinense breeding line. This knowledge will be useful in future for fine mapping of the CaCV resistance locus and potential genetic engineering of resistance into CaCV-susceptible crops. PMID:27398596

  4. Physiological and Transcriptome Responses to Combinations of Elevated CO2 and Magnesium in Arabidopsis thaliana

    PubMed Central

    Niu, Yaofang; Ahammed, Golam Jalal; Tang, Caixian; Guo, Longbiao; Yu, Jingquan

    2016-01-01

    The unprecedented rise in atmospheric CO2 concentration and injudicious fertilization or heterogeneous distribution of Mg in the soil warrant further research to understand the synergistic and holistic mechanisms involved in the plant growth regulation. This study investigated the influence of elevated CO2 (800 μL L−1) on physiological and transcriptomic profiles in Arabidopsis cultured in hydroponic media treated with 1 μM (low), 1000 μM (normal) and 10000 μM (high) Mg2+. Following 7-d treatment, elevated CO2 increased the shoot growth and chlorophyll content under both low and normal Mg supply, whereas root growth was improved exclusively under normal Mg nutrition. Notably, the effect of elevated CO2 on mineral homeostasis in both shoots and roots was less than that of Mg supply. Irrespective of CO2 treatment, high Mg increased number of young leaf but decreased root growth and absorption of P, K, Ca, Fe and Mn whereas low Mg increased the concentration of P, K, Ca and Fe in leaves. Transcriptomics results showed that elevated CO2 decreased the expression of genes related to cell redox homeostasis, cadmium response, and lipid localization, but enhanced signal transduction, protein phosphorylation, NBS-LRR disease resistance proteins and subsequently programmed cell death in low-Mg shoots. By comparison, elevated CO2 enhanced the response of lipid localization (mainly LTP transfer protein/protease inhibitor), endomembrane system, heme binding and cell wall modification in high-Mg roots. Some of these transcriptomic results are substantially in accordance with our physiological and/or biochemical analysis. The present findings broaden our current understanding on the interactive effect of elevated CO2 and Mg levels in the Arabidopsis, which may help to design the novel metabolic engineering strategies to cope with Mg deficiency/excess in crops under elevated CO2. PMID:26881808

  5. Whole Blood Transcriptomics Is Relevant to Identify Molecular Changes in Response to Genetic Selection for Feed Efficiency and Nutritional Status in the Pig

    PubMed Central

    Jégou, Maëva; Gondret, Florence; Vincent, Annie; Tréfeu, Christine; Gilbert, Hélène; Louveau, Isabelle

    2016-01-01

    The molecular mechanisms underlying feed efficiency need to be better understood to improve animal efficiency, a research priority to support a competitive and sustainable livestock production. This study was undertaken to determine whether pig blood transcriptome was affected by differences in feed efficiency and by ingested nutrients. Growing pigs from two lines divergently selected for residual feed intake (RFI) and fed isoproteic and isocaloric diets contrasted in energy source and nutrients were considered. Between 74 and 132 days of age, pigs (n = 12 by diet and by line) received a regular diet rich in cereals and low in fat (LF) or a diet where cereals where partially substituted by lipids and fibers (HF). At the end of the feeding trial, the total number of white blood cells was not affected by the line or by the diet, whereas the red blood cell number was higher (P<0.001) in low RFI than in high RFI pigs. Analysis of the whole blood transcriptome using a porcine microarray reveals a higher number of probes differentially expressed (DE) between RFI lines than between diets (2,154 versus 92 probes DE, P<0.01). This corresponds to 528 overexpressed genes and 477 underexpressed genes in low RFI pigs compared with high RFI pigs, respectively. Overexpressed genes were predominantly associated with translational elongation. Underexpressed genes were mainly involved in the immune response, regulation of inflammatory response, anti-apoptosis process, and cell organization. These findings suggest that selection for RFI has affected the immune status and defense mechanisms of pigs. Genes DE between diets were mainly related to the immune system and lipid metabolism. Altogether, this study demonstrates the usefulness of the blood transcriptome to identify the main biological processes affected by genetic selection and feeding strategies. PMID:26752050

  6. Clostridium thermocellum Transcriptomic Profiles after Exposure to Furfural or Heat Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Charlotte M; Yang, Shihui; Rodriguez, Jr., Miguel

    2013-01-01

    Background The thermophilic anaerobe Clostridium thermocellum is a candidate consolidated bioprocessing (CBP)biocatalyst for cellulosic ethanol production. It is capable of both cellulose solubilization and its fermentation to produce lignocellulosic ethanol. Intolerance to stresses routinely encountered during industrial fermentations may hinder the commercial development of this organism. A previous C. thermocellum ethanol stress study showed that largest transcriptomic response was in genes and proteins related to nitrogen uptake and metabolism. Results In this study, C. thermocellum was grown to mid-exponential phase and treated with furfural or heat to a final concentration of 3 g.L-1 or 68 C respectively to investigate generalmore » and specific physiological and regulatory stress responses. Samples were taken at 10, 30, 60 and 120 min post-shock, and from untreated control fermentations, for transcriptomic analyses and fermentation product determinations and compared to a published dataset from an ethanol stress study. Urea uptake genes were induced following furfural stress, but not to the same extent as ethanol stress and transcription from these genes was largely unaffected by heat stress. The largest transcriptomic response to furfural stress was genes for sulfate transporter subunits and enzymes in the sulfate assimilatory pathway, although these genes were also affected late in the heat and ethanol stress responses. Lactate production was higher in furfural treated culture, although the lactate dehydrogenase gene was not differentially expressed under this condition. Other redox related genes such as a copy of the rex gene, a bifunctional acetaldehyde-CoA/alcohol dehydrogenase and adjacent genes did show lower expression after furfural stress compared to the control, heat and ethanol fermentation profiles. Heat stress induced expression from chaperone related genes and overlap was observed with the responses to the other stresses. This study suggests the involvement of C. thermocellum genes with functions in oxidative stress protection, electron transfer, detoxification, sulfur and nitrogen acquisition, and DNA repair mechanisms in its stress responses and the use of different regulatory networks to coordinate and control adaptation. Conclusions This study has identified C. thermocellum gene regulatory motifs and aspects of physiology and gene regulation for further study. The nexus between future systems biology studies and recently developed genetic tools for C. thermocellum offers the potential for more rapid strain development and for broader insights into this organism s physiology and regulation.« less

  7. Characterizing differential gene expression in polyploid grasses lacking a reference transcriptome

    USDA-ARS?s Scientific Manuscript database

    Basal transcriptome characterization and differential gene expression in response to varying conditions are often addressed through next generation sequencing (NGS) and data analysis techniques. While these strategies are commonly used, there are countless tools, pipelines, data analysis methods an...

  8. Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues

    PubMed Central

    Zhang, Sharon; Ratliff, Eric P.; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W.; Achal, Madhulika; Mauntz, Ruth E.; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A.; Macias, Andrew M.; Daugherty, Daniel; Harris, Greg L.; Edwards, Robert A.; Finley, Kim D.

    2018-01-01

    The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system. PMID:29642630

  9. Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues.

    PubMed

    Zhang, Sharon; Ratliff, Eric P; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W; Achal, Madhulika; Mauntz, Ruth E; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A; Macias, Andrew M; Daugherty, Daniel; Harris, Greg L; Edwards, Robert A; Finley, Kim D

    2018-04-10

    The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.

  10. Transcriptome analysis reveals mucin 4 to be highly associated with periodontitis and identifies pleckstrin as a link to systemic diseases

    PubMed Central

    Lundmark, Anna; Davanian, Haleh; Båge, Tove; Johannsen, Gunnar; Koro, Catalin; Lundeberg, Joakim; Yucel-Lindberg, Tülay

    2015-01-01

    The multifactorial chronic inflammatory disease periodontitis, which is characterized by destruction of tooth-supporting tissues, has also been implicated as a risk factor for various systemic diseases. Although periodontitis has been studied extensively, neither disease-specific biomarkers nor therapeutic targets have been identified, nor its link with systemic diseases. Here, we analyzed the global transcriptome of periodontitis and compared its gene expression profile with those of other inflammatory conditions, including cardiovascular disease (CVD), rheumatoid arthritis (RA), and ulcerative colitis (UC). Gingival biopsies from 62 patients with periodontitis and 62 healthy subjects were subjected to RNA sequencing. The up-regulated genes in periodontitis were related to inflammation, wounding and defense response, and apoptosis, whereas down-regulated genes were related to extracellular matrix organization and structural support. The most highly up-regulated gene was mucin 4 (MUC4), and its protein product was confirmed to be over-expressed in periodontitis. When comparing the expression profile of periodontitis with other inflammatory diseases, several gene ontology categories, including inflammatory response, cell death, cell motion, and homeostatic processes, were identified as common to all diseases. Only one gene, pleckstrin (PLEK), was significantly overexpressed in periodontitis, CVD, RA, and UC, implicating this gene as an important networking link between these chronic inflammatory diseases. PMID:26686060

  11. Heterochromatin assembly and transcriptome repression by Set1 in coordination with a class II histone deacetylase

    PubMed Central

    Lorenz, David R; Meyer, Lauren F; Grady, Patrick J R; Meyer, Michelle M; Cam, Hugh P

    2014-01-01

    Histone modifiers play essential roles in controlling transcription and organizing eukaryotic genomes into functional domains. Here, we show that Set1, the catalytic subunit of the highly conserved Set1C/COMPASS complex responsible for histone H3K4 methylation (H3K4me), behaves as a repressor of the transcriptome largely independent of Set1C and H3K4me in the fission yeast Schizosaccharomyces pombe. Intriguingly, while Set1 is enriched at highly expressed and repressed loci, Set1 binding levels do not generally correlate with the levels of transcription. We show that Set1 is recruited by the ATF/CREB homolog Atf1 to heterochromatic loci and promoters of stress-response genes. Moreover, we demonstrate that Set1 coordinates with the class II histone deacetylase Clr3 in heterochromatin assembly at prominent chromosomal landmarks and repression of the transcriptome that includes Tf2 retrotransposons, noncoding RNAs, and regulators of development and stress-responses. Our study delineates a molecular framework for elucidating the functional links between transcriptome control and chromatin organization. DOI: http://dx.doi.org/10.7554/eLife.04506.001 PMID:25497836

  12. Molecular and physiological responses to titanium dioxide ...

    EPA Pesticide Factsheets

    - Changes in tissue transcriptomes and productivity of Arabidopsis thaliana were investigated during exposure of plants to two widely-used engineered metal oxide nanoparticles, titanium dioxide (nano-titanium) and cerium dioxide (nano-cerium). Microarray analyses confirmed that exposure to either nanoparticle altered the transcriptomes of rosette leaves and roots, with comparatively larger numbers of differentially expressed genes (DEGs) found under nano-titania exposure. Nano-titania induced more DEGs in rosette leaves, whereas roots had more DEGs under nano-ceria exposure. MapMan analyses indicated that while nano-titania up-regulated overall and secondary metabolism in both tissues, metabolic processes under nano-ceria remained mostly unchanged. Gene enrichment analysis indicated that both nanoparticles mainly enriched ontology groups such as responses to stress (abiotic and biotic), and defense responses (pathogens), and responses to endogenous stimuli (hormones). Nano-titania specifically induced genes associated with photosynthesis, whereas nano-ceria induced expression of genes related to activating transcription factors, most notably those belonging to the ethylene responsive element binding protein family. Interestingly, there were also increased numbers of rosette leaves and plant biomass under nano-ceria exposure, but not under nano-titania. Other transcriptomic responses did not clearly relate to responses observed at the organism level. This may b

  13. BoolFilter: an R package for estimation and identification of partially-observed Boolean dynamical systems.

    PubMed

    Mcclenny, Levi D; Imani, Mahdi; Braga-Neto, Ulisses M

    2017-11-25

    Gene regulatory networks govern the function of key cellular processes, such as control of the cell cycle, response to stress, DNA repair mechanisms, and more. Boolean networks have been used successfully in modeling gene regulatory networks. In the Boolean network model, the transcriptional state of each gene is represented by 0 (inactive) or 1 (active), and the relationship among genes is represented by logical gates updated at discrete time points. However, the Boolean gene states are never observed directly, but only indirectly and incompletely through noisy measurements based on expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays. The Partially-Observed Boolean Dynamical System (POBDS) signal model is distinct from other deterministic and stochastic Boolean network models in removing the requirement of a directly observable Boolean state vector and allowing uncertainty in the measurement process, addressing the scenario encountered in practice in transcriptomic analysis. BoolFilter is an R package that implements the POBDS model and associated algorithms for state and parameter estimation. It allows the user to estimate the Boolean states, network topology, and measurement parameters from time series of transcriptomic data using exact and approximated (particle) filters, as well as simulate the transcriptomic data for a given Boolean network model. Some of its infrastructure, such as the network interface, is the same as in the previously published R package for Boolean Networks BoolNet, which enhances compatibility and user accessibility to the new package. We introduce the R package BoolFilter for Partially-Observed Boolean Dynamical Systems (POBDS). The BoolFilter package provides a useful toolbox for the bioinformatics community, with state-of-the-art algorithms for simulation of time series transcriptomic data as well as the inverse process of system identification from data obtained with various expression technologies such as cDNA microarrays, RNA-Seq, and cell imaging-based assays.

  14. H7N9 and Other Pathogenic Avian Influenza Viruses Elicit a Three-Pronged Transcriptomic Signature That Is Reminiscent of 1918 Influenza Virus and Is Associated with Lethal Outcome in Mice

    PubMed Central

    Morrison, Juliet; Josset, Laurence; Tchitchek, Nicolas; Chang, Jean; Belser, Jessica A.; Swayne, David E.; Pantin-Jackwood, Mary J.; Tumpey, Terrence M.

    2014-01-01

    ABSTRACT Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. IMPORTANCE Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response, targeting the host response is a promising approach to treating influenza. Here we characterize the host transcriptomic response to emerging H7N9 influenza virus and compare it with the responses to H7N7, H5N1, and pdm09H1N1. All three avian viruses were pathogenic in mice and elicited a transcriptomic signature that also occurs in response to the legendary 1918 influenza virus. Our work identifies host responses that could be targeted to treat severe H7N9 influenza and identifies six FDA-approved drugs that could potentially be repurposed as H7N9 influenza therapeutics. PMID:24991006

  15. H7N9 and other pathogenic avian influenza viruses elicit a three-pronged transcriptomic signature that is reminiscent of 1918 influenza virus and is associated with lethal outcome in mice.

    PubMed

    Morrison, Juliet; Josset, Laurence; Tchitchek, Nicolas; Chang, Jean; Belser, Jessica A; Swayne, David E; Pantin-Jackwood, Mary J; Tumpey, Terrence M; Katze, Michael G

    2014-09-01

    Modulating the host response is a promising approach to treating influenza, caused by a virus whose pathogenesis is determined in part by the reaction it elicits within the host. Though the pathogenicity of emerging H7N9 influenza virus in several animal models has been reported, these studies have not included a detailed characterization of the host response following infection. Therefore, we characterized the transcriptomic response of BALB/c mice infected with H7N9 (A/Anhui/01/2013) virus and compared it to the responses induced by H5N1 (A/Vietnam/1203/2004), H7N7 (A/Netherlands/219/2003), and pandemic 2009 H1N1 (A/Mexico/4482/2009) influenza viruses. We found that responses to the H7 subtype viruses were intermediate to those elicited by H5N1 and pdm09H1N1 early in infection but that they evolved to resemble the H5N1 response as infection progressed. H5N1, H7N7, and H7N9 viruses were pathogenic in mice, and this pathogenicity correlated with increased transcription of cytokine response genes and decreased transcription of lipid metabolism and coagulation signaling genes. This three-pronged transcriptomic signature was observed in mice infected with pathogenic H1N1 strains such as the 1918 virus, indicating that it may be predictive of pathogenicity across multiple influenza virus strains. Finally, we used host transcriptomic profiling to computationally predict drugs that reverse the host response to H7N9 infection, and we identified six FDA-approved drugs that could potentially be repurposed to treat H7N9 and other pathogenic influenza viruses. Emerging avian influenza viruses are of global concern because the human population is immunologically naive to them. Current influenza drugs target viral molecules, but the high mutation rate of influenza viruses eventually leads to the development of antiviral resistance. As the host evolves far more slowly than the virus, and influenza pathogenesis is determined in part by the host response, targeting the host response is a promising approach to treating influenza. Here we characterize the host transcriptomic response to emerging H7N9 influenza virus and compare it with the responses to H7N7, H5N1, and pdm09H1N1. All three avian viruses were pathogenic in mice and elicited a transcriptomic signature that also occurs in response to the legendary 1918 influenza virus. Our work identifies host responses that could be targeted to treat severe H7N9 influenza and identifies six FDA-approved drugs that could potentially be repurposed as H7N9 influenza therapeutics. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Epigenetic regulation of serotype expression antagonizes transcriptome dynamics in Paramecium tetraurelia.

    PubMed

    Cheaib, Miriam; Dehghani Amirabad, Azim; Nordström, Karl J V; Schulz, Marcel H; Simon, Martin

    2015-08-01

    Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  17. The Effect of Iron Limitation on the Transcriptome and Proteome of Pseudomonas fluorescens Pf-5

    PubMed Central

    Lim, Chee Kent; Hassan, Karl A.; Tetu, Sasha G.; Loper, Joyce E.; Paulsen, Ian T.

    2012-01-01

    One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels. PMID:22723948

  18. Comprehensive RNA-Seq transcriptomic profiling across 11 organs, 4 ages, and 2 sexes of Fischer 344 rats.

    PubMed

    Yu, Ying; Zhao, Chen; Su, Zhenqiang; Wang, Charles; Fuscoe, James C; Tong, Weida; Shi, Leming

    2014-01-01

    The rat is used extensively by the pharmaceutical, regulatory, and academic communities for safety assessment of drugs and chemicals and for studying human diseases; however, its transcriptome has not been well studied. As part of the SEQC (i.e., MAQC-III) consortium efforts, a comprehensive RNA-Seq data set was constructed using 320 RNA samples isolated from 10 organs (adrenal gland, brain, heart, kidney, liver, lung, muscle, spleen, thymus, and testes or uterus) from both sexes of Fischer 344 rats across four ages (2-, 6-, 21-, and 104-week-old) with four biological replicates for each of the 80 sample groups (organ-sex-age). With the Ribo-Zero rRNA removal and Illumina RNA-Seq protocols, 41 million 50 bp single-end reads were generated per sample, yielding a total of 13.4 billion reads. This data set could be used to identify and validate new rat genes and transcripts, develop a more comprehensive rat transcriptome annotation system, identify novel gene regulatory networks related to tissue specific gene expression and development, and discover genes responsible for disease and drug toxicity and efficacy.

  19. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    PubMed Central

    2010-01-01

    Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history of immunogenetics from fish to mammals. PMID:20707909

  20. Genomic and transcriptomic predictors of triglyceride response to regular exercise

    PubMed Central

    Sarzynski, Mark A; Davidsen, Peter K; Sung, Yun Ju; Hesselink, Matthijs K C; Schrauwen, Patrick; Rice, Treva K; Rao, D C; Falciani, Francesco; Bouchard, Claude

    2015-01-01

    Aim We performed genome-wide and transcriptome-wide profiling to identify genes and single nucleotide polymorphisms (SNPs) associated with the response of triglycerides (TG) to exercise training. Methods Plasma TG levels were measured before and after a 20-week endurance training programme in 478 white participants from the HERITAGE Family Study. Illumina HumanCNV370-Quad v3.0 BeadChips were genotyped using the Illumina BeadStation 500GX platform. Affymetrix HG-U133+2 arrays were used to quantitate gene expression levels from baseline muscle biopsies of a subset of participants (N=52). Genome-wide association study (GWAS) analysis was performed using MERLIN, while transcriptomic predictor models were developed using the R-package GALGO. Results The GWAS results showed that eight SNPs were associated with TG training-response (ΔTG) at p<9.9×10−6, while another 31 SNPs showed p values <1×10−4. In multivariate regression models, the top 10 SNPs explained 32.0% of the variance in ΔTG, while conditional heritability analysis showed that four SNPs statistically accounted for all of the heritability of ΔTG. A molecular signature based on the baseline expression of 11 genes predicted 27% of ΔTG in HERITAGE, which was validated in an independent study. A composite SNP score based on the top four SNPs, each from the genomic and transcriptomic analyses, was the strongest predictor of ΔTG (R2=0.14, p=3.0×10−68). Conclusions Our results indicate that skeletal muscle transcript abundance at 11 genes and SNPs at a number of loci contribute to TG response to exercise training. Combining data from genomics and transcriptomics analyses identified a SNP-based gene signature that should be further tested in independent samples. PMID:26491034

  1. Transcriptome Profiling of Watermelon Root in Response to Short-Term Osmotic Stress

    PubMed Central

    Yang, Yongchao; Mo, Yanling; Yang, Xiaozheng; Zhang, Haifei; Wang, Yongqi; Li, Hao; Wei, Chunhua; Zhang, Xian

    2016-01-01

    Osmotic stress adversely affects the growth, fruit quality and yield of watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai). Increasing the tolerance of watermelon to osmotic stress caused by factors such as high salt and water deficit is an effective way to improve crop survival in osmotic stress environments. Roots are important organs in water absorption and are involved in the initial response to osmosis stress; however, few studies have examined the underlying mechanism of tolerance to osmotic stress in watermelon roots. For better understanding of this mechanism, the inbred watermelon accession M08, which exhibits relatively high tolerance to water deficits, was treated with 20% polyethylene glycol (PEG) 6000. The root samples were harvested at 6 h after PEG treatment and untreated samples were used as controls. Transcriptome analyses were carried out by Illumina RNA sequencing. A total of 5246 differentially expressed genes were identified. Gene ontology enrichment and biochemical pathway analyses of these 5246 genes showed that short-term osmotic stress affected osmotic adjustment, signal transduction, hormone responses, cell division, cell cycle and ribosome, and M08 may repress root growth to adapt osmotic stress. The results of this study describe the watermelon root transcriptome under osmotic stress and propose new insight into watermelon root responses to osmotic stress at the transcriptome level. Accordingly, these results allow us to better understand the molecular mechanisms of watermelon in response to drought stress and will facilitate watermelon breeding projects to improve drought tolerance. PMID:27861528

  2. Functional genomics of fuzzless-lintless mutant of Gossypium hirsutum L. cv. MCU5 reveal key genes and pathways involved in cotton fibre initiation and elongation

    PubMed Central

    2012-01-01

    Background Fuzzless-lintless cotton mutants are considered to be the ideal material to understand the molecular mechanisms involved in fibre cell development. Although there are few reports on transcriptome and proteome analyses in cotton at fibre initiation and elongation stages, there is no comprehensive comparative transcriptome analysis of fibre-bearing and fuzzless-lintless cotton ovules covering fibre initiation to secondary cell wall (SCW) synthesis stages. In the present study, a comparative transcriptome analysis was carried out using G. hirsutum L. cv. MCU5 wild-type (WT) and it’s near isogenic fuzzless-lintless (fl) mutant at fibre initiation (0 dpa/days post anthesis), elongation (5, 10 and 15 dpa) and SCW synthesis (20 dpa) stages. Results Scanning electron microscopy study revealed the delay in the initiation of fibre cells and lack of any further development after 2 dpa in the fl mutant. Transcriptome analysis showed major down regulation of transcripts (90%) at fibre initiation and early elongation (5 dpa) stages in the fl mutant. Majority of the down regulated transcripts at fibre initiation stage in the fl mutant represent calcium and phytohormone mediated signal transduction pathways, biosynthesis of auxin and ethylene and stress responsive transcription factors (TFs). Further, transcripts involved in carbohydrate and lipid metabolisms, mitochondrial electron transport system (mETS) and cell wall loosening and elongation were highly down-regulated at fibre elongation stage (5–15 dpa) in the fl mutant. In addition, cellulose synthases and sucrose synthase C were down-regulated at SCW biosynthesis stage (15–20 dpa). Interestingly, some of the transcripts (~50%) involved in phytohormone signalling and stress responsive transcription factors that were up-regulated at fibre initiation stage in the WT were found to be up-regulated at much later stage (15 dpa) in fl mutant. Conclusions Comparative transcriptome analysis of WT and its near isogenic fl mutant revealed key genes and pathways involved at various stages of fibre development. Our data implicated the significant role of mitochondria mediated energy metabolism during fibre elongation process. The delayed expression of genes involved in phytohormone signalling and stress responsive TFs in the fl mutant suggests the need for a coordinated expression of regulatory mechanisms in fibre cell initiation and differentiation. PMID:23151214

  3. Transcriptomic Studies of the Effect of nod Gene-Inducing Molecules in Rhizobia: Different Weapons, One Purpose

    PubMed Central

    Jiménez-Guerrero, Irene; Acosta-Jurado, Sebastián; Navarro-Gómez, Pilar; López-Baena, Francisco Javier; Ollero, Francisco Javier

    2017-01-01

    Simultaneous quantification of transcripts of the whole bacterial genome allows the analysis of the global transcriptional response under changing conditions. RNA-seq and microarrays are the most used techniques to measure these transcriptomic changes, and both complement each other in transcriptome profiling. In this review, we exhaustively compiled the symbiosis-related transcriptomic reports (microarrays and RNA sequencing) carried out hitherto in rhizobia. This review is specially focused on transcriptomic changes that takes place when five rhizobial species, Bradyrhizobium japonicum (=diazoefficiens) USDA 110, Rhizobium leguminosarum biovar viciae 3841, Rhizobium tropici CIAT 899, Sinorhizobium (=Ensifer) meliloti 1021 and S. fredii HH103, recognize inducing flavonoids, plant-exuded phenolic compounds that activate the biosynthesis and export of Nod factors (NF) in all analysed rhizobia. Interestingly, our global transcriptomic comparison also indicates that each rhizobial species possesses its own arsenal of molecular weapons accompanying the set of NF in order to establish a successful interaction with host legumes. PMID:29267254

  4. Heat-induced masculinization in domesticated zebrafish is family-specific and yields a set of different gonadal transcriptomes

    PubMed Central

    2017-01-01

    Understanding environmental influences on sex ratios is important for the study of the evolution of sex-determining mechanisms and for evaluating the effects of global warming and chemical pollution. Fishes exhibit sexual plasticity, but the underlying mechanisms of environmental effects on their reproduction are unclear even in the well-established teleost research model, the zebrafish. Here we established the conditions to study the effects of elevated temperature on zebrafish sex. We showed that sex ratio response to elevated temperature is family-specific and typically leads to masculinization (female-to-male sex reversal), resulting in neomales. These results uncovered genotype-by-environment interactions that support a polygenic sex determination system in domesticated (laboratory) zebrafish. We found that some heat-treated fish had gene expression profiles similar to untreated controls of the same sex, indicating that they were resistant to thermal effects. Further, most neomales had gonadal transcriptomes similar to that of regular males. Strikingly, we discovered heat-treated females that displayed a normal ovarian phenotype but with a “male-like” gonadal transcriptome. Such major transcriptomic reprogramming with preserved organ structure has never been reported. Juveniles were also found to have a male-like transcriptome shortly after exposure to heat. These findings were validated by analyzing the expression of genes and signaling pathways associated with sex differentiation. Our results revealed a lasting thermal effect on zebrafish gonads, suggesting new avenues for detection of functional consequences of elevated temperature in natural fish populations in a global warming scenario. PMID:28115725

  5. Integrative "omic" analysis of experimental bacteremia identifies a metabolic signature that distinguishes human sepsis from systemic inflammatory response syndromes.

    PubMed

    Langley, Raymond J; Tipper, Jennifer L; Bruse, Shannon; Baron, Rebecca M; Tsalik, Ephraim L; Huntley, James; Rogers, Angela J; Jaramillo, Richard J; O'Donnell, Denise; Mega, William M; Keaton, Mignon; Kensicki, Elizabeth; Gazourian, Lee; Fredenburgh, Laura E; Massaro, Anthony F; Otero, Ronny M; Fowler, Vance G; Rivers, Emanuel P; Woods, Chris W; Kingsmore, Stephen F; Sopori, Mohan L; Perrella, Mark A; Choi, Augustine M K; Harrod, Kevin S

    2014-08-15

    Sepsis is a leading cause of morbidity and mortality. Currently, early diagnosis and the progression of the disease are difficult to make. The integration of metabolomic and transcriptomic data in a primate model of sepsis may provide a novel molecular signature of clinical sepsis. To develop a biomarker panel to characterize sepsis in primates and ascertain its relevance to early diagnosis and progression of human sepsis. Intravenous inoculation of Macaca fascicularis with Escherichia coli produced mild to severe sepsis, lung injury, and death. Plasma samples were obtained before and after 1, 3, and 5 days of E. coli challenge and at the time of killing. At necropsy, blood, lung, kidney, and spleen samples were collected. An integrative analysis of the metabolomic and transcriptomic datasets was performed to identify a panel of sepsis biomarkers. The extent of E. coli invasion, respiratory distress, lethargy, and mortality was dependent on the bacterial dose. Metabolomic and transcriptomic changes characterized severe infections and death, and indicated impaired mitochondrial, peroxisomal, and liver functions. Analysis of the pulmonary transcriptome and plasma metabolome suggested impaired fatty acid catabolism regulated by peroxisome-proliferator activated receptor signaling. A representative four-metabolite model effectively diagnosed sepsis in primates (area under the curve, 0.966) and in two human sepsis cohorts (area under the curve, 0.78 and 0.82). A model of sepsis based on reciprocal metabolomic and transcriptomic data was developed in primates and validated in two human patient cohorts. It is anticipated that the identified parameters will facilitate early diagnosis and management of sepsis.

  6. Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot

    PubMed Central

    Niu, Jun; Wang, Jia; An, Jiyong; Liu, Lili; Lin, Zixin; Wang, Rui; Wang, Libing; Ma, Chao; Shi, Lingling; Lin, Shanzhi

    2016-01-01

    Recently, our transcriptomic analysis has identified some functional genes responsible for oil biosynthesis in developing SASK, yet miRNA-mediated regulation for SASK development and oil accumulation is poorly understood. Here, 3 representative periods of 10, 30 and 60 DAF were selected for sRNA sequencing based on the dynamic patterns of growth tendency and oil content of developing SASK. By miRNA transcriptomic analysis, we characterized 296 known and 44 novel miRNAs in developing SASK, among which 36 known and 6 novel miRNAs respond specifically to developing SASK. Importantly, we performed an integrated analysis of mRNA and miRNA transcriptome as well as qRT-PCR detection to identify some key miRNAs and their targets (miR156-SPL, miR160-ARF18, miR164-NAC1, miR171h-SCL6, miR172-AP2, miR395-AUX22B, miR530-P2C37, miR393h-TIR1/AFB2 and psi-miRn5-SnRK2A) potentially involved in developing response and hormone signaling of SASK. Our results provide new insights into the important regulatory function of cross-talk between development response and hormone signaling for SASK oil accumulation. PMID:27762296

  7. Integrated mRNA and miRNA transcriptome reveal a cross-talk between developing response and hormone signaling for the seed kernels of Siberian apricot.

    PubMed

    Niu, Jun; Wang, Jia; An, Jiyong; Liu, Lili; Lin, Zixin; Wang, Rui; Wang, Libing; Ma, Chao; Shi, Lingling; Lin, Shanzhi

    2016-10-20

    Recently, our transcriptomic analysis has identified some functional genes responsible for oil biosynthesis in developing SASK, yet miRNA-mediated regulation for SASK development and oil accumulation is poorly understood. Here, 3 representative periods of 10, 30 and 60 DAF were selected for sRNA sequencing based on the dynamic patterns of growth tendency and oil content of developing SASK. By miRNA transcriptomic analysis, we characterized 296 known and 44 novel miRNAs in developing SASK, among which 36 known and 6 novel miRNAs respond specifically to developing SASK. Importantly, we performed an integrated analysis of mRNA and miRNA transcriptome as well as qRT-PCR detection to identify some key miRNAs and their targets (miR156-SPL, miR160-ARF18, miR164-NAC1, miR171h-SCL6, miR172-AP2, miR395-AUX22B, miR530-P2C37, miR393h-TIR1/AFB2 and psi-miRn5-SnRK2A) potentially involved in developing response and hormone signaling of SASK. Our results provide new insights into the important regulatory function of cross-talk between development response and hormone signaling for SASK oil accumulation.

  8. Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prokopec, Stephenie D.; Watson, John D.; Lee, Jamie

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental contaminant that produces myriad toxicities in most mammals. In rodents alone, there is a huge divergence in the toxicological response across species, as well as among different strains within a species. But there are also significant differences between males and females animals of a single strain. These differences are inconsistent across model systems: the severity of toxicity is greater in female rats than males, while male mice and guinea pigs are more sensitive than females. Because the specific events that underlie this difference remain unclear, we characterized the hepatic transcriptional response of adult male andmore » female C57BL/6 mice to 500 μg/kg TCDD at multiple time-points. The transcriptional profile diverged significantly between the sexes. Female mice demonstrated a large number of altered transcripts as early as 6 h following treatment, suggesting a large primary response. Conversely, male animals showed the greatest TCDD-mediated response 144 h following exposure, potentially implicating significant secondary responses. Nr1i3 was statistically significantly induced at all time-points in the sensitive male animals. This mRNA encodes the constitutive androstane receptor (CAR), a transcription factor involved in the regulation of xenobiotic metabolism, lipid metabolism, cell cycle and apoptosis. Surprisingly though, changes at the protein level (aside from the positive control, CYP1A1) were modest, with only FMO3 showing clear induction, and no genes with sex-differences. Thus, while male and female mice show transcriptional differences in their response to TCDD, their association with TCDD-induced toxicities remains unclear. - Highlights: • Differences exist between the toxicity phenotypes to TCDD in male and female mice. • TCDD-mediated transcriptomic differences were identified between the sexes. • Resistant female mice displayed a large, early-onset, transcriptomic response. • Sensitive male mice displayed a large, late-onset, transcriptomic response. • Fmo2, Fmo3 and Nr1i3 were induced across the time-course in only male mice.« less

  9. Integrating Transcriptomic and Proteomic Data Using Predictive Regulatory Network Models of Host Response to Pathogens

    PubMed Central

    Chasman, Deborah; Walters, Kevin B.; Lopes, Tiago J. S.; Eisfeld, Amie J.; Kawaoka, Yoshihiro; Roy, Sushmita

    2016-01-01

    Mammalian host response to pathogenic infections is controlled by a complex regulatory network connecting regulatory proteins such as transcription factors and signaling proteins to target genes. An important challenge in infectious disease research is to understand molecular similarities and differences in mammalian host response to diverse sets of pathogens. Recently, systems biology studies have produced rich collections of omic profiles measuring host response to infectious agents such as influenza viruses at multiple levels. To gain a comprehensive understanding of the regulatory network driving host response to multiple infectious agents, we integrated host transcriptomes and proteomes using a network-based approach. Our approach combines expression-based regulatory network inference, structured-sparsity based regression, and network information flow to infer putative physical regulatory programs for expression modules. We applied our approach to identify regulatory networks, modules and subnetworks that drive host response to multiple influenza infections. The inferred regulatory network and modules are significantly enriched for known pathways of immune response and implicate apoptosis, splicing, and interferon signaling processes in the differential response of viral infections of different pathogenicities. We used the learned network to prioritize regulators and study virus and time-point specific networks. RNAi-based knockdown of predicted regulators had significant impact on viral replication and include several previously unknown regulators. Taken together, our integrated analysis identified novel module level patterns that capture strain and pathogenicity-specific patterns of expression and helped identify important regulators of host response to influenza infection. PMID:27403523

  10. ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage.

    PubMed

    Romero-Campero, Francisco J; Perez-Hurtado, Ignacio; Lucas-Reina, Eva; Romero, Jose M; Valverde, Federico

    2016-03-12

    Chlamydomonas reinhardtii is the model organism that serves as a reference for studies in algal genomics and physiology. It is of special interest in the study of the evolution of regulatory pathways from algae to higher plants. Additionally, it has recently gained attention as a potential source for bio-fuel and bio-hydrogen production. The genome of Chlamydomonas is available, facilitating the analysis of its transcriptome by RNA-seq data. This has produced a massive amount of data that remains fragmented making necessary the application of integrative approaches based on molecular systems biology. We constructed a gene co-expression network based on RNA-seq data and developed a web-based tool, ChlamyNET, for the exploration of the Chlamydomonas transcriptome. ChlamyNET exhibits a scale-free and small world topology. Applying clustering techniques, we identified nine gene clusters that capture the structure of the transcriptome under the analyzed conditions. One of the most central clusters was shown to be involved in carbon/nitrogen metabolism and signalling, whereas one of the most peripheral clusters was involved in DNA replication and cell cycle regulation. The transcription factors and regulators in the Chlamydomonas genome have been identified in ChlamyNET. The biological processes potentially regulated by them as well as their putative transcription factor binding sites were determined. The putative light regulated transcription factors and regulators in the Chlamydomonas genome were analyzed in order to provide a case study on the use of ChlamyNET. Finally, we used an independent data set to cross-validate the predictive power of ChlamyNET. The topological properties of ChlamyNET suggest that the Chlamydomonas transcriptome posseses important characteristics related to error tolerance, vulnerability and information propagation. The central part of ChlamyNET constitutes the core of the transcriptome where most authoritative hub genes are located interconnecting key biological processes such as light response with carbon and nitrogen metabolism. Our study reveals that key elements in the regulation of carbon and nitrogen metabolism, light response and cell cycle identified in higher plants were already established in Chlamydomonas. These conserved elements are not only limited to transcription factors, regulators and their targets, but also include the cis-regulatory elements recognized by them.

  11. Comparative analysis of transcriptome in two wheat genotypes with contrasting levels of drought tolerance

    USDA-ARS?s Scientific Manuscript database

    Drought tolerance is a complex trait that is governed by multiple genes. To identify the potential candidate genes, comparative analysis of drought stress-responsive transcriptome between drought-tolerant (Triticum aestivum Cv. C306) and drought-sensitive (Triticum aestivum Cv. WL711) genotypes was ...

  12. Comparative analysis of microarray data in Arabidopsis transcriptome during compatible interactions with plant viruses

    USDA-ARS?s Scientific Manuscript database

    To analyze transcriptome response to virus infection, we have assembled currently available microarray data on changes in gene expression levels in compatible Arabidopsis-virus interactions. We used the mean r (Pearson’s correlation coefficient) for neighboring pairs to estimate pairwise local simil...

  13. Genomic, transcriptomic and phenomic variation reveals the complex adaptation to stress response of modern maize breeding

    USDA-ARS?s Scientific Manuscript database

    Early maize adaptation to different agricultural environments was an important process associated with the creation of a stable food supply that allowed the evolution of human civilization in the Americas. To explore the mechanisms of maize adaptation, genomic, transcriptomic and phenomic data were ...

  14. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions

    PubMed Central

    2018-01-01

    SUMMARY Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. PMID:29695497

  15. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions.

    PubMed

    Lee, Hyun Jae; Georgiadou, Athina; Otto, Thomas D; Levin, Michael; Coin, Lachlan J; Conway, David J; Cunnington, Aubrey J

    2018-06-01

    Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling. Copyright © 2018 Lee et al.

  16. Transcriptomic response to low salinity stress in gills of the Pacific white shrimp, Litopenaeus vannamei.

    PubMed

    Hu, Dongxu; Pan, Luqing; Zhao, Qun; Ren, Qin

    2015-12-01

    The Pacific white shrimp, Litopenaeus vannamei (L. vannamei), is one of the most farmed species. Salinity is an important environmental factor that affects its growth and distribution. However, the molecular mechanism of the shrimp in response to salinity stress remains largely unclear. High-throughput sequencing is a helpful tool to analyze the molecular response to salinity challenge in shrimp. In the present study, the transcriptomic responses of the gills in L. vannamei under low salinity stress were detected by Illumina's digital gene expression system. A total of 10,725,789 and 10,827,411 reads were generated from the non-changed and low salinity changed groups, respectively. 64,590 Unigenes with an average length of 764 bp were generated. Compared with the control, 585 genes were differentially expressed under low salinity. GO functional analysis and KEGG pathway analysis indicated some vital genes in response to the challenge. Ten genes related to osmoregulation and ambient salinity adaption were selected to validate the DGE results by RT-qPCR. This work provides valuable information to study the mechanism of salinity adaption in L. vannamei. Genes and pathways from the results will be beneficial to reveal the molecular basis of osmoregulation. It also gives an insight into the response to the salinity challenge in L. vannamei. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Transcriptome profiling analysis reveals the role of latrophilin in controlling development, reproduction and insecticide susceptibility in Tribolium castaneum.

    PubMed

    Gao, Shanshan; Xiong, Wenfeng; Wei, Luting; Liu, Juanjuan; Liu, Xing; Xie, Jia; Song, Xiaowen; Bi, Jingxiu; Li, Bin

    2018-06-01

    Latrophilin of Tribolium castaneum (Tclph) has been reported to play crucial roles in growth, development and reproduction. However, the regulatory mechanism of Tclph associated with these physiology processes is unknown. Thus, the global transcriptome profiles between RNAi treated (ds-Tclph) and control larvae of T. castaneum were analyzed by RNA-sequencing. Totally, 274 differentially expressed genes (DEGs) were identified between the ds-Tclph and control samples. These DEGs were classified into 42 GO functional groups, including developmental process, reproduction and stress response. The results indicated that knockdown of Tclph disturbed the antioxidant activity process, and partially inhibited the serine protease (SP) and lipase signaling pathways to regulate the development and reproduction as well as the decreasing of the stress response in T. castaneum. Additionally, knockdown of Tclph suppressed IMD immunity pathways which likely modulated the effects of Tclph on stress response. Interestingly, CSPs, ESTs, CYPs, AOXs and BGs were significantly down-regulated in ds-Tclph larvae, implying that they cooperated with Tclph to reduce the activity of cellular metabolism system. FMOs was up-regulated in ds-Tclph insects suggested it may be involved in detoxifying alkaloid of insect metabolism system. These results implied that Tclph participated in phase 0, I and II cellular detoxification. Furthermore, RNAi against Tclph increased larval susceptibility to carbamates and organophosphates insecticides, supporting that Tclph was indeed involved into the insecticide susceptibility in T. castaneum.

  18. Transcriptome Profiles Associated to VHSV Infection or DNA Vaccination in Turbot (Scophthalmus maximus)

    PubMed Central

    Pereiro, Patricia; Dios, Sonia; Boltaña, Sebastián; Coll, Julio; Estepa, Amparo; Mackenzie, Simon; Novoa, Beatriz; Figueras, Antonio

    2014-01-01

    DNA vaccines encoding the viral G glycoprotein show the most successful protection capability against fish rhabdoviruses. Nowadays, the molecular mechanisms underlying the protective response remain still poorly understood. With the aim of shedding light on the protection conferred by the DNA vaccines based in the G glycoprotein of viral haemorrhagic septicaemia virus (VHSV) in turbot (Scophthalmus maximus) we have used a specific microarray highly enriched in antiviral sequences to carry out the transcriptomic study associated to VHSV DNA vaccination/infection. The differential gene expression pattern in response to empty plasmid (pMCV1.4) and DNA vaccine (pMCV1.4-G860) intramuscular administration with regard to non-stimulated turbot was analyzed in head kidney at 8, 24 and 72 hours post-vaccination. Moreover, the effect of VHSV infection one month after immunization was also analyzed in vaccinated and non-vaccinated fish at the same time points. Genes implicated in the Toll-like receptor signalling pathway, IFN inducible/regulatory proteins, numerous sequences implicated in apoptosis and cytotoxic pathways, MHC class I antigens, as well as complement and coagulation cascades among others were analyzed in the different experimental groups. Fish receiving the pMCV1.4-G860 vaccine showed transcriptomic patterns very different to the ones observed in pMCV1.4-injected turbot after 72 h. On the other hand, VHSV challenge in vaccinated and non-vaccinated turbot induced a highly different response at the transcriptome level, indicating a very relevant role of the acquired immunity in vaccinated fish able to alter the typical innate immune response profile observed in non-vaccinated individuals. This exhaustive transcriptome study will serve as a complete overview for a better understanding of the crosstalk between the innate and adaptive immune response in fish after viral infection/vaccination. Moreover, it provides interesting clues about molecules with a potential use as vaccine adjuvants, antiviral treatments or markers for vaccine efficiency monitoring. PMID:25098168

  19. Global Analysis of Transcriptome Responses and Gene Expression Profiles to Cold Stress of Jatropha curcas L.

    PubMed Central

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Background Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. Results In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. Conclusions This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas. PMID:24349370

  20. Global analysis of transcriptome responses and gene expression profiles to cold stress of Jatropha curcas L.

    PubMed

    Wang, Haibo; Zou, Zhurong; Wang, Shasha; Gong, Ming

    2013-01-01

    Jatropha curcas L., also called the Physic nut, is an oil-rich shrub with multiple uses, including biodiesel production, and is currently exploited as a renewable energy resource in many countries. Nevertheless, because of its origin from the tropical MidAmerican zone, J. curcas confers an inherent but undesirable characteristic (low cold resistance) that may seriously restrict its large-scale popularization. This adaptive flaw can be genetically improved by elucidating the mechanisms underlying plant tolerance to cold temperatures. The newly developed Illumina Hiseq™ 2000 RNA-seq and Digital Gene Expression (DGE) are deep high-throughput approaches for gene expression analysis at the transcriptome level, using which we carefully investigated the gene expression profiles in response to cold stress to gain insight into the molecular mechanisms of cold response in J. curcas. In total, 45,251 unigenes were obtained by assembly of clean data generated by RNA-seq analysis of the J. curcas transcriptome. A total of 33,363 and 912 complete or partial coding sequences (CDSs) were determined by protein database alignments and ESTScan prediction, respectively. Among these unigenes, more than 41.52% were involved in approximately 128 known metabolic or signaling pathways, and 4,185 were possibly associated with cold resistance. DGE analysis was used to assess the changes in gene expression when exposed to cold condition (12°C) for 12, 24, and 48 h. The results showed that 3,178 genes were significantly upregulated and 1,244 were downregulated under cold stress. These genes were then functionally annotated based on the transcriptome data from RNA-seq analysis. This study provides a global view of transcriptome response and gene expression profiling of J. curcas in response to cold stress. The results can help improve our current understanding of the mechanisms underlying plant cold resistance and favor the screening of crucial genes for genetically enhancing cold resistance in J. curcas.

  1. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.

    PubMed

    Rienth, Markus; Torregrosa, Laurent; Luchaire, Nathalie; Chatbanyong, Ratthaphon; Lecourieux, David; Kelly, Mary T; Romieu, Charles

    2014-04-28

    Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies.

  2. Transcriptome analysis of the rhizosphere bacterium Azospirillum brasilense reveals an extensive auxin response.

    PubMed

    Van Puyvelde, Sandra; Cloots, Lore; Engelen, Kristof; Das, Frederik; Marchal, Kathleen; Vanderleyden, Jos; Spaepen, Stijn

    2011-05-01

    The rhizosphere bacterium Azospirillum brasilense produces the auxin indole-3-acetic acid (IAA) through the indole-3-pyruvate pathway. As we previously demonstrated that transcription of the indole-3-pyruvate decarboxylase (ipdC) gene is positively regulated by IAA, produced by A. brasilense itself or added exogenously, we performed a microarray analysis to study the overall effects of IAA on the transcriptome of A. brasilense. The transcriptomes of A. brasilense wild-type and the ipdC knockout mutant, both cultured in the absence and presence of exogenously added IAA, were compared.Interfering with the IAA biosynthesis/homeostasis in A. brasilense through inactivation of the ipdC gene or IAA addition results in much broader transcriptional changes than anticipated. Based on the multitude of changes observed by comparing the different transcriptomes, we can conclude that IAA is a signaling molecule in A. brasilense. It appears that the bacterium, when exposed to IAA, adapts itself to the plant rhizosphere, by changing its arsenal of transport proteins and cell surface proteins. A striking example of adaptation to IAA exposure, as happens in the rhizosphere, is the upregulation of a type VI secretion system (T6SS) in the presence of IAA. The T6SS is described as specifically involved in bacterium-eukaryotic host interactions. Additionally, many transcription factors show an altered regulation as well, indicating that the regulatory machinery of the bacterium is changing.

  3. Use of De Novo transcriptome libraries to characterize a novel oleaginous marine Chlorella species during the accumulation of triacylglycerols

    DOE PAGES

    Mansfeldt, Cresten B.; Richter, Lubna V.; Ahner, Beth A.; ...

    2016-02-03

    Here, marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt.We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark.We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioningmore » from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems.« less

  4. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.

    PubMed

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-07-05

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics, and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF-7, and PC-3 cell lines from the LINCS Project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled data set of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both pathway and gene level classification, DNN achieved high classification accuracy and convincingly outperformed the support vector machine (SVM) model on every multiclass classification problem, however, models based on pathway level data performed significantly better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development.

  5. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data

    PubMed Central

    Aliper, Alexander; Plis, Sergey; Artemov, Artem; Ulloa, Alvaro; Mamoshina, Polina; Zhavoronkov, Alex

    2016-01-01

    Deep learning is rapidly advancing many areas of science and technology with multiple success stories in image, text, voice and video recognition, robotics and autonomous driving. In this paper we demonstrate how deep neural networks (DNN) trained on large transcriptional response data sets can classify various drugs to therapeutic categories solely based on their transcriptional profiles. We used the perturbation samples of 678 drugs across A549, MCF‐7 and PC‐3 cell lines from the LINCS project and linked those to 12 therapeutic use categories derived from MeSH. To train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed using a pathway activation scoring algorithm, for a pooled dataset of samples perturbed with different concentrations of the drug for 6 and 24 hours. In both gene and pathway level classification, DNN convincingly outperformed support vector machine (SVM) model on every multiclass classification problem, however, models based on a pathway level classification perform better. For the first time we demonstrate a deep learning neural net trained on transcriptomic data to recognize pharmacological properties of multiple drugs across different biological systems and conditions. We also propose using deep neural net confusion matrices for drug repositioning. This work is a proof of principle for applying deep learning to drug discovery and development. PMID:27200455

  6. Use of De Novo Transcriptome Libraries to Characterize a Novel Oleaginous Marine Chlorella Species during the Accumulation of Triacylglycerols

    PubMed Central

    Ahner, Beth A.; Cochlan, William P.; Richardson, Ruth E.

    2016-01-01

    Marine chlorophytes of the genus Chlorella are unicellular algae capable of accumulating a high proportion of cellular lipids that can be used for biodiesel production. In this study, we examined the broad physiological capabilities of a subtropical strain (C596) of Chlorella sp. “SAG-211-18” including its heterotrophic growth and tolerance to low salt. We found that the alga replicates more slowly at diluted salt concentrations and can grow on a wide range of carbon substrates in the dark. We then sequenced the RNA of Chlorella strain C596 to elucidate key metabolic genes and investigate the transcriptomic response of the organism when transitioning from a nutrient-replete to a nutrient-deficient condition when neutral lipids accumulate. Specific transcripts encoding for enzymes involved in both starch and lipid biosynthesis, among others, were up-regulated as the cultures transitioned into a lipid-accumulating state whereas photosynthesis-related genes were down-regulated. Transcripts encoding for two of the up-regulated enzymes—a galactoglycerolipid lipase and a diacylglyceride acyltransferase—were also monitored by reverse transcription quantitative polymerase chain reaction assays. The results of these assays confirmed the transcriptome-sequencing data. The present transcriptomic study will assist in the greater understanding, more effective application, and efficient design of Chlorella-based biofuel production systems. PMID:26840425

  7. Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Yang, Dong-Hoon; Kim, Min-Kyu; Seo, Ho Seong; Lim, Sangyong; Bahn, Yong-Sun

    2016-11-29

    The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans IMPORTANCE: Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans. Copyright © 2016 Jung et al.

  8. Unbiased transcriptomic analyses reveal distinct effects of immune deficiency in CNS function with and without injury.

    PubMed

    Luo, Dandan; Ge, Weihong; Hu, Xiao; Li, Chen; Lee, Chia-Ming; Zhou, Liqiang; Wu, Zhourui; Yu, Juehua; Lin, Sheng; Yu, Jing; Xu, Wei; Chen, Lei; Zhang, Chong; Jiang, Kun; Zhu, Xingfei; Li, Haotian; Gao, Xinpei; Geng, Yanan; Jing, Bo; Wang, Zhen; Zheng, Changhong; Zhu, Rongrong; Yan, Qiao; Lin, Quan; Ye, Keqiang; Sun, Yi E; Cheng, Liming

    2018-06-28

    The mammalian central nervous system (CNS) is considered an immune privileged system as it is separated from the periphery by the blood brain barrier (BBB). Yet, immune functions have been postulated to heavily influence the functional state of the CNS, especially after injury or during neurodegeneration. There is controversy regarding whether adaptive immune responses are beneficial or detrimental to CNS injury repair. In this study, we utilized immunocompromised SCID mice and subjected them to spinal cord injury (SCI). We analyzed motor function, electrophysiology, histochemistry, and performed unbiased RNA-sequencing. SCID mice displayed improved CNS functional recovery compared to WT mice after SCI. Weighted gene-coexpression network analysis (WGCNA) of spinal cord transcriptomes revealed that SCID mice had reduced expression of immune function-related genes and heightened expression of neural transmission-related genes after SCI, which was confirmed by immunohistochemical analysis and was consistent with better functional recovery. Transcriptomic analyses also indicated heightened expression of neurotransmission-related genes before injury in SCID mice, suggesting that a steady state of immune-deficiency potentially led to CNS hyper-connectivity. Consequently, SCID mice without injury demonstrated worse performance in Morris water maze test. Taken together, not only reduced inflammation after injury but also dampened steady-state immune function without injury heightened the neurotransmission program, resulting in better or worse behavioral outcomes respectively. This study revealed the intricate relationship between immune and nervous systems, raising the possibility for therapeutic manipulation of neural function via immune modulation.

  9. Dermal Wound Transcriptomic Responses to Infection with Pseudomonas aeruginosa versus Klebsiella pneumoniae in a Rabbit Ear Wound Model

    DTIC Science & Technology

    2014-05-02

    harvested on POD4 for microarray and transcriptome analysis. Other wounds received topical antibiotic after infection for 24 hours to promote biofilm ...cell toxicity in response to a more damaging P.a. inflammatory milieu. The POD6 wounds were colonized with biofilm but expressed magnitudes fewer...infection for 24 hours to promote biofilm development, and were harvested on POD6 or POD12. Results: Wounds infected for 24 hours, relative to uninfected

  10. Transcriptomic changes throughout post-hatch development in Gallus gallus pituitary

    PubMed Central

    Lamont, Susan J; Schmidt, Carl J

    2016-01-01

    The pituitary gland is a neuroendocrine organ that works closely with the hypothalamus to affect multiple processes within the body including the stress response, metabolism, growth and immune function. Relative tissue expression (rEx) is a transcriptome analysis method that compares the genes expressed in a particular tissue to the genes expressed in all other tissues with available data. Using rEx, the aim of this study was to identify genes that are uniquely or more abundantly expressed in the pituitary when compared to all other collected chicken tissues. We applied rEx to define genes enriched in the chicken pituitaries at days 21, 22 and 42 post-hatch. rEx analysis identified 25 genes shared between all time points, 295 genes shared between days 21 and 22 and 407 genes unique to day 42. The 25 genes shared by all time points are involved in morphogenesis and general nervous tissue development. The 295 shared genes between days 21 and 22 are involved in neurogenesis and nervous system development and differentiation. The 407 unique day 42 genes are involved in pituitary development, endocrine system development and other hormonally related gene ontology terms. Overall, rEx analysis indicates a focus on nervous system/tissue development at days 21 and 22. By day 42, in addition to nervous tissue development, there is expression of genes involved in the endocrine system, possibly for maturation and preparation for reproduction. This study defines the transcriptome of the chicken pituitary gland and aids in understanding the expressed genes critical to its function and maturation. PMID:27856505

  11. Use of homologous and heterologous gene expression profiling tools to characterize transcription dynamics during apple fruit maturation and ripening

    PubMed Central

    2010-01-01

    Background Fruit development, maturation and ripening consists of a complex series of biochemical and physiological changes that in climacteric fruits, including apple and tomato, are coordinated by the gaseous hormone ethylene. These changes lead to final fruit quality and understanding of the functional machinery underlying these processes is of both biological and practical importance. To date many reports have been made on the analysis of gene expression in apple. In this study we focused our investigation on the role of ethylene during apple maturation, specifically comparing transcriptomics of normal ripening with changes resulting from application of the hormone receptor competitor 1-Methylcyclopropene. Results To gain insight into the molecular process regulating ripening in apple, and to compare to tomato (model species for ripening studies), we utilized both homologous and heterologous (tomato) microarray to profile transcriptome dynamics of genes involved in fruit development and ripening, emphasizing those which are ethylene regulated. The use of both types of microarrays facilitated transcriptome comparison between apple and tomato (for the later using data previously published and available at the TED: tomato expression database) and highlighted genes conserved during ripening of both species, which in turn represent a foundation for further comparative genomic studies. The cross-species analysis had the secondary aim of examining the efficiency of heterologous (specifically tomato) microarray hybridization for candidate gene identification as related to the ripening process. The resulting transcriptomics data revealed coordinated gene expression during fruit ripening of a subset of ripening-related and ethylene responsive genes, further facilitating the analysis of ethylene response during fruit maturation and ripening. Conclusion Our combined strategy based on microarray hybridization enabled transcriptome characterization during normal climacteric apple ripening, as well as definition of ethylene-dependent transcriptome changes. Comparison with tomato fruit maturation and ethylene responsive transcriptome activity facilitated identification of putative conserved orthologous ripening-related genes, which serve as an initial set of candidates for assessing conservation of gene activity across genomes of fruit bearing plant species. PMID:20973957

  12. Nutrient control of eukaryote cell growth: a systems biology study in yeast.

    PubMed

    Gutteridge, Alex; Pir, Pinar; Castrillo, Juan I; Charles, Philip D; Lilley, Kathryn S; Oliver, Stephen G

    2010-05-24

    To elucidate the biological processes affected by changes in growth rate and nutrient availability, we have performed a comprehensive analysis of the transcriptome, proteome and metabolome responses of chemostat cultures of the yeast, Saccharomyces cerevisiae, growing at a range of growth rates and in four different nutrient-limiting conditions. We find significant changes in expression for many genes in each of the four nutrient-limited conditions tested. We also observe several processes that respond differently to changes in growth rate and are specific to each nutrient-limiting condition. These include carbohydrate storage, mitochondrial function, ribosome synthesis, and phosphate transport. Integrating transcriptome data with proteome measurements allows us to identify previously unrecognized examples of post-transcriptional regulation in response to both nutrient and growth-rate signals. Our results emphasize the unique properties of carbon metabolism and the carbon substrate, the limitation of which induces significant changes in gene regulation at the transcriptional and post-transcriptional level, as well as altering how many genes respond to growth rate. By comparison, the responses to growth limitation by other nutrients involve a smaller set of genes that participate in specific pathways. See associated commentary http://www.biomedcentral.com/1741-7007/8/62.

  13. Differential immune responses of Monochamus alternatus against symbiotic and entomopathogenic fungi.

    PubMed

    Zhang, Wei; Meng, Jie; Ning, Jing; Qin, Peijun; Zhou, Jiao; Zou, Zhen; Wang, Yanhong; Jiang, Hong; Ahmad, Faheem; Zhao, Lilin; Sun, Jianghua

    2017-08-01

    Monochamus alternatus, the main vector beetles of invasive pinewood nematode, has established a symbiotic relationship with a native ectotrophic fungal symbiont, Sporothrix sp. 1, in China. The immune response of M. alternatus to S. sp. 1 in the coexistence of beetles and fungi is, however, unknown. Here, we report that immune responses of M. alternatus pupae to infection caused by ectotrophic symbiotic fungus S. sp. 1 and entomopathogenic fungus Beauveria bassiana differ significantly. The S. sp. 1 did not kill the beetles while B. bassiana killed all upon injection. The transcriptome results showed that the numbers of differentially expressed genes in M. alternatus infected with S. sp. 1 were 2-fold less than those infected with B. bassiana at 48 hours post infection. It was noticed that Toll and IMD pathways played a leading role in the beetle's immune system when infected by symbiotic fungus, but upon infection by entomopathogenic fungus, only the Toll pathway gets triggered actively. Furthermore, the beetles could tolerate the infection of symbiotic fungi by retracing their Toll and IMD pathways at 48 h. This study provided a comprehensive sequence resource of M. alternatus transcriptome for further study of the immune interactions between host and associated fungi.

  14. Assessing Global Transcriptome Changes in Response to South African Cassava Mosaic Virus [ZA-99] Infection in Susceptible Arabidopsis thaliana.

    PubMed

    Pierce, Erica J; Rey, M E Chrissie

    2013-01-01

    In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points.

  15. Assessing Global Transcriptome Changes in Response to South African Cassava Mosaic Virus [ZA-99] Infection in Susceptible Arabidopsis thaliana

    PubMed Central

    Pierce, Erica J.; Rey, M. E. Chrissie

    2013-01-01

    In susceptible plant hosts, co-evolution has favoured viral strategies to evade host defenses and utilize resources to their own benefit. The degree of manipulation of host gene expression is dependent on host-virus specificity and certain abiotic factors. In order to gain insight into global transcriptome changes for a geminivirus pathosystem, South African cassava mosaic virus [ZA:99] and Arabidopsis thaliana, 4×44K Agilent microarrays were adopted. After normalization, a log2 fold change filtering of data (p<0.05) identified 1,743 differentially expressed genes in apical leaf tissue. A significant increase in differential gene expression over time correlated with an increase in SACMV accumulation, as virus copies were 5-fold higher at 24 dpi and 6-fold higher at 36 dpi than at 14 dpi. Many altered transcripts were primarily involved in stress and defense responses, phytohormone signalling pathways, cellular transport, cell-cycle regulation, transcription, oxidation-reduction, and other metabolic processes. Only forty-one genes (2.3%) were shown to be continuously expressed across the infection period, indicating that the majority of genes were transient and unique to a particular time point during infection. A significant number of pathogen-responsive genes were suppressed during the late stages of pathogenesis, while during active systemic infection (14 to 24 dpi), there was an increase in up-regulated genes in several GO functional categories. An adaptive response was initiated to divert energy from growth-related processes to defense, leading to disruption of normal biological host processes. Similarities in cell-cycle regulation correlated between SACMV and Cabbage leaf curl virus (CaLCuV), but differences were also evident. Differences in gene expression between the two geminiviruses clearly demonstrated that, while some global transcriptome responses are generally common in plant virus infections, temporal host-specific interactions are required for successful geminivirus infection. To our knowledge this is the first geminivirus microarray study identifying global differentially expressed transcripts at 3 time points. PMID:23826319

  16. A narrow repertoire of transcriptional modules responsive to pyogenic bacteria is impaired in patients carrying loss-of-function mutations in MYD88 or IRAK4

    PubMed Central

    Alsina, L; Israelsson, E; Altman, MC; Dang, KK; Ghandil, P; Israel, L; von Bernuth, H; Baldwin, N; Qin, H; Jin, Z; Banchereau, R; Anguiano, E; Ionan, A; Abel, L; Puel, A; Picard, C; Pascual, V; Casanova, JL; Chaussabel, D

    2014-01-01

    Loss of function in the kinase IRAK-4 or the adapter MyD88 in humans interrupts a pathway critical for pathogen sensing and ignition of inflammation. Yet patients with loss of function mutations are surprisingly only susceptible to a limited range of pathogens. We employed a systems approach to investigate transcriptome responses following in vitro exposure of patients’ blood to Toll-like receptor and interleukin-1 receptor agonists, and whole pathogens. Responses to purified agonists were globally abolished but variable residual responses were present following exposure to whole pathogens. Further dissection of the latter responses identified a narrow repertoire of immune transcriptional programs affected by loss of MyD88 or IRAK-4 function. This work introduces the use of a systems approach for the global assessment of innate immune responses, and the characterization of human primary immunodeficiencies. PMID:25344726

  17. Transcriptome analysis of the response of Burmese python to digestion

    PubMed Central

    Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J.

    2017-01-01

    Abstract Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion. PMID:28873961

  18. Nuclear factor-kappaB bioluminescence imaging-guided transcriptomic analysis for the assessment of host-biomaterial interaction in vivo.

    PubMed

    Hsiang, Chien-Yun; Chen, Yueh-Sheng; Ho, Tin-Yun

    2009-06-01

    Establishment of a comprehensive platform for the assessment of host-biomaterial interaction in vivo is an important issue. Nuclear factor-kappaB (NF-kappaB) is an inducible transcription factor that is activated by numerous stimuli. Therefore, NF-kappaB-dependent luminescent signal in transgenic mice carrying the luciferase genes was used as the guide to monitor the biomaterials-affected organs, and transcriptomic analysis was further applied to evaluate the complex host responses in affected organs in this study. In vivo imaging showed that genipin-cross-linked gelatin conduit (GGC) implantation evoked the strong NF-kappaB activity at 6h in the implanted region, and transcriptomic analysis showed that the expressions of interleukin-6 (IL-6), IL-24, and IL-1 family were up-regulated. A strong luminescent signal was observed in spleen on 14 d, suggesting that GGC implantation might elicit the biological events in spleen. Transcriptomic analysis of spleen showed that 13 Kyoto Encyclopedia of Genes and Genomes pathways belonging to cell cycles, immune responses, and metabolism were significantly altered by GGC implants. Connectivity Map analysis suggested that the gene signatures of GGC were similar to those of compounds that affect lipid or glucose metabolism. GeneSetTest analysis further showed that host responses to GGC implants might be related to diseases states, especially the metabolic and cardiovascular diseases. In conclusion, our data provided a concept of molecular imaging-guided transcriptomic platform for the evaluation and the prediction of host-biomaterial interaction in vivo.

  19. Transcriptome analysis of the response of Burmese python to digestion.

    PubMed

    Duan, Jinjie; Sanggaard, Kristian Wejse; Schauser, Leif; Lauridsen, Sanne Enok; Enghild, Jan J; Schierup, Mikkel Heide; Wang, Tobias

    2017-08-01

    Exceptional and extreme feeding behaviour makes the Burmese python (Python bivittatus) an interesting model to study physiological remodelling and metabolic adaptation in response to refeeding after prolonged starvation. In this study, we used transcriptome sequencing of 5 visceral organs during fasting as well as 24 hours and 48 hours after ingestion of a large meal to unravel the postprandial changes in Burmese pythons. We first used the pooled data to perform a de novo assembly of the transcriptome and supplemented this with a proteomic survey of enzymes in the plasma and gastric fluid. We constructed a high-quality transcriptome with 34 423 transcripts, of which 19 713 (57%) were annotated. Among highly expressed genes (fragments per kilo base per million sequenced reads > 100 in 1 tissue), we found that the transition from fasting to digestion was associated with differential expression of 43 genes in the heart, 206 genes in the liver, 114 genes in the stomach, 89 genes in the pancreas, and 158 genes in the intestine. We interrogated the function of these genes to test previous hypotheses on the response to feeding. We also used the transcriptome to identify 314 secreted proteins in the gastric fluid of the python. Digestion was associated with an upregulation of genes related to metabolic processes, and translational changes therefore appear to support the postprandial rise in metabolism. We identify stomach-related proteins from a digesting individual and demonstrate that the sensitivity of modern liquid chromatography/tandem mass spectrometry equipment allows the identification of gastric juice proteins that are present during digestion. © The Authors 2017. Published by Oxford University Press.

  20. Comparative Transcriptomics Reveals Discrete Survival Responses of S. aureus and S. epidermidis to Sapienic Acid

    PubMed Central

    Moran, Josephine C.; Alorabi, Jamal A.; Horsburgh, Malcolm J.

    2017-01-01

    Staphylococcal colonization of human skin is ubiquitous, with particular species more frequent at different body sites. Whereas Staphylococcus epidermidis can be isolated from the skin of every individual tested, Staphylococcus aureus is isolated from <5% of healthy individuals. The factors that drive staphylococcal speciation and niche selection on skin are incompletely defined. Here we show that S. aureus is inhibited to a greater extent than S. epidermidis by the sebaceous lipid sapienic acid, supporting a role for this skin antimicrobial in selection of skin staphylococci. We used RNA-Seq and comparative transcriptomics to identify the sapienic acid survival responses of S. aureus and S. epidermidis. Consistent with the membrane depolarization mode of action of sapienic acid, both species shared a common transcriptional response to counteract disruption of metabolism and transport. The species differed in their regulation of SaeRS and VraRS regulons. While S. aureus upregulated urease operon transcription, S. epidermidis upregulated arginine deiminase, the oxygen-responsive NreABC nitrogen regulation system and the nitrate and nitrite reduction pathways. The role of S. aureus ACME and chromosomal arginine deiminase pathways in sapienic acid resistance was determined through mutational studies. We speculate that ammonia production could contribute to sapienic acid resistance in staphylococci. PMID:28179897

  1. Petri Net computational modelling of Langerhans cell Interferon Regulatory Factor Network predicts their role in T cell activation.

    PubMed

    Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R

    2017-04-06

    Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.

  2. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    PubMed Central

    2011-01-01

    Background The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Results Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Conclusions Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions. PMID:21880152

  3. A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence.

    PubMed

    Goldová, Jana; Ulrych, Aleš; Hercík, Kamil; Branny, Pavel

    2011-08-31

    The genome of Pseudomonas aeruginosa contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, ppkA, has been implicated in P. aeruginosa virulence. Together with the adjacent pppA phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a pppA-ppkA double mutant and characterised its phenotype and transcriptomic profiles. Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that pppA-ppkA deletion affects the expression of oxidative stress-responsive genes, stationary phase σ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the pppA-ppkA mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the pppA and ppkA genes were expressed ectopically. Our results suggest that in addition to its crucial role in controlling the activity of P. aeruginosa H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.

  4. A Transcriptomic Analysis of Cave, Surface, and Hybrid Isopod Crustaceans of the Species Asellus aquaticus

    PubMed Central

    Stahl, Bethany A.; Gross, Joshua B.; Speiser, Daniel I.; Oakley, Todd H.; Patel, Nipam H.; Gould, Douglas B.; Protas, Meredith E.

    2015-01-01

    Cave animals, compared to surface-dwelling relatives, tend to have reduced eyes and pigment, longer appendages, and enhanced mechanosensory structures. Pressing questions include how certain cave-related traits are gained and lost, and if they originate through the same or different genetic programs in independent lineages. An excellent system for exploring these questions is the isopod, Asellus aquaticus. This species includes multiple cave and surface populations that have numerous morphological differences between them. A key feature is that hybrids between cave and surface individuals are viable, which enables genetic crosses and linkage analyses. Here, we advance this system by analyzing single animal transcriptomes of Asellus aquaticus. We use high throughput sequencing of non-normalized cDNA derived from the head of a surface-dwelling male, the head of a cave-dwelling male, the head of a hybrid male (produced by crossing a surface individual with a cave individual), and a pooled sample of surface embryos and hatchlings. Assembling reads from surface and cave head RNA pools yielded an integrated transcriptome comprised of 23,984 contigs. Using this integrated assembly as a reference transcriptome, we aligned reads from surface-, cave- and hybrid- head tissue and pooled surface embryos and hatchlings. Our approach identified 742 SNPs and placed four new candidate genes to an existing linkage map for A. aquaticus. In addition, we examined SNPs for allele-specific expression differences in the hybrid individual. All of these resources will facilitate identification of genes and associated changes responsible for cave adaptation in A. aquaticus and, in concert with analyses of other species, will inform our understanding of the evolutionary processes accompanying adaptation to the subterranean environment. PMID:26462237

  5. Network Analysis of Rodent Transcriptomes in Spaceflight

    NASA Technical Reports Server (NTRS)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  6. De novo transcriptome sequencing of the Octopus vulgaris hemocytes using Illumina RNA-Seq technology: response to the infection by the gastrointestinal parasite Aggregata octopiana.

    PubMed

    Castellanos-Martínez, Sheila; Arteta, David; Catarino, Susana; Gestal, Camino

    2014-01-01

    Octopus vulgaris is a highly valuable species of great commercial interest and excellent candidate for aquaculture diversification; however, the octopus' well-being is impaired by pathogens, of which the gastrointestinal coccidian parasite Aggregata octopiana is one of the most important. The knowledge of the molecular mechanisms of the immune response in cephalopods, especially in octopus is scarce. The transcriptome of the hemocytes of O. vulgaris was de novo sequenced using the high-throughput paired-end Illumina technology to identify genes involved in immune defense and to understand the molecular basis of octopus tolerance/resistance to coccidiosis. A bi-directional mRNA library was constructed from hemocytes of two groups of octopus according to the infection by A. octopiana, sick octopus, suffering coccidiosis, and healthy octopus, and reads were de novo assembled together. The differential expression of transcripts was analysed using the general assembly as a reference for mapping the reads from each condition. After sequencing, a total of 75,571,280 high quality reads were obtained from the sick octopus group and 74,731,646 from the healthy group. The general transcriptome of the O. vulgaris hemocytes was assembled in 254,506 contigs. A total of 48,225 contigs were successfully identified, and 538 transcripts exhibited differential expression between groups of infection. The general transcriptome revealed genes involved in pathways like NF-kB, TLR and Complement. Differential expression of TLR-2, PGRP, C1q and PRDX genes due to infection was validated using RT-qPCR. In sick octopuses, only TLR-2 was up-regulated in hemocytes, but all of them were up-regulated in caecum and gills. The transcriptome reported here de novo establishes the first molecular clues to understand how the octopus immune system works and interacts with a highly pathogenic coccidian. The data provided here will contribute to identification of biomarkers for octopus resistance against pathogens, which could improve octopus farming in the near future.

  7. De Novo Transcriptome Sequencing of the Octopus vulgaris Hemocytes Using Illumina RNA-Seq Technology: Response to the Infection by the Gastrointestinal Parasite Aggregata octopiana

    PubMed Central

    Castellanos-Martínez, Sheila; Arteta, David; Catarino, Susana; Gestal, Camino

    2014-01-01

    Background Octopus vulgaris is a highly valuable species of great commercial interest and excellent candidate for aquaculture diversification; however, the octopus’ well-being is impaired by pathogens, of which the gastrointestinal coccidian parasite Aggregata octopiana is one of the most important. The knowledge of the molecular mechanisms of the immune response in cephalopods, especially in octopus is scarce. The transcriptome of the hemocytes of O. vulgaris was de novo sequenced using the high-throughput paired-end Illumina technology to identify genes involved in immune defense and to understand the molecular basis of octopus tolerance/resistance to coccidiosis. Results A bi-directional mRNA library was constructed from hemocytes of two groups of octopus according to the infection by A. octopiana, sick octopus, suffering coccidiosis, and healthy octopus, and reads were de novo assembled together. The differential expression of transcripts was analysed using the general assembly as a reference for mapping the reads from each condition. After sequencing, a total of 75,571,280 high quality reads were obtained from the sick octopus group and 74,731,646 from the healthy group. The general transcriptome of the O. vulgaris hemocytes was assembled in 254,506 contigs. A total of 48,225 contigs were successfully identified, and 538 transcripts exhibited differential expression between groups of infection. The general transcriptome revealed genes involved in pathways like NF-kB, TLR and Complement. Differential expression of TLR-2, PGRP, C1q and PRDX genes due to infection was validated using RT-qPCR. In sick octopuses, only TLR-2 was up-regulated in hemocytes, but all of them were up-regulated in caecum and gills. Conclusion The transcriptome reported here de novo establishes the first molecular clues to understand how the octopus immune system works and interacts with a highly pathogenic coccidian. The data provided here will contribute to identification of biomarkers for octopus resistance against pathogens, which could improve octopus farming in the near future. PMID:25329466

  8. Transcriptome analysis reveals a comprehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect Bemisia tabaci (whitefly)

    USDA-ARS?s Scientific Manuscript database

    The whitefly (Bemisia tabaci) causes tremendous damage to cotton production worldwide. However, very limited information is available about how plants perceive and defend themselves from this destructive pest. In this study, the transcriptomics differences between two cotton cultivars that exhibit e...

  9. De novo construction of an expanded transcriptome assembly for the western tarnished plant bug, Lygus hesperus

    USDA-ARS?s Scientific Manuscript database

    Background: The plant bug, Lygus hesperus Knight, is a polyphagous pest of many economically important crops. Despite its pest status, little is known about the molecular mechanisms responsible for much of Lygus biology. Earlier Lygus transcriptome assemblies were either limited by low read depth ...

  10. Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells.

    PubMed

    Cavill, Rachel; Kamburov, Atanas; Ellis, James K; Athersuch, Toby J; Blagrove, Marcus S C; Herwig, Ralf; Ebbels, Timothy M D; Keun, Hector C

    2011-03-01

    Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point of pathway analysis improved the detection of consensus pathways by 76%, and revealed associations between platinum sensitivity and several metabolic pathways that were not visible from transcriptome analysis alone. These pathways included the TCA cycle and pyruvate metabolism, lipoprotein uptake and nucleotide synthesis by both salvage and de novo pathways. Extending the approach across a wide panel of chemotherapeutics, we confirmed the specificity of the metabolic pathway associations to platinum sensitivity. We conclude that metabolic phenotyping could play a role in predicting response to platinum chemotherapy and that consensus-phenotype integration of molecular profiling data is a powerful and versatile tool for both biomarker discovery and for exploring the complex relationships between biological pathways and drug response.

  11. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions.

    PubMed

    Song, Li; Prince, Silvas; Valliyodan, Babu; Joshi, Trupti; Maldonado dos Santos, Joao V; Wang, Jiaojiao; Lin, Li; Wan, Jinrong; Wang, Yongqin; Xu, Dong; Nguyen, Henry T

    2016-01-15

    Soybean is a major crop that provides an important source of protein and oil to humans and animals, but its production can be dramatically decreased by the occurrence of drought stress. Soybeans can survive drought stress if there is a robust and deep root system at the early vegetative growth stage. However, little is known about the genome-wide molecular mechanisms contributing to soybean root system architecture. This study was performed to gain knowledge on transcriptome changes and related molecular mechanisms contributing to soybean root development under water limited conditions. The soybean Williams 82 genotype was subjected to very mild stress (VMS), mild stress (MS) and severe stress (SS) conditions, as well as recovery from the severe stress after re-watering (SR). In total, 6,609 genes in the roots showed differential expression patterns in response to different water-deficit stress levels. Genes involved in hormone (Auxin/Ethylene), carbohydrate, and cell wall-related metabolism (XTH/lipid/flavonoids/lignin) pathways were differentially regulated in the soybean root system. Several transcription factors (TFs) regulating root growth and responses under varying water-deficit conditions were identified and the expression patterns of six TFs were found to be common across the stress levels. Further analysis on the whole plant level led to the finding of tissue-specific or water-deficit levels specific regulation of transcription factors. Analysis of the over-represented motif of different gene groups revealed several new cis-elements associated with different levels of water deficit. The expression patterns of 18 genes were confirmed byquantitative reverse transcription polymerase chain reaction method and demonstrated the accuracy and effectiveness of RNA-Seq. The primary root specific transcriptome in soybean can enable a better understanding of the root response to water deficit conditions. The genes detected in root tissues that were associated with key hormones, carbohydrates, and cell wall-related metabolism could play a vital role in achieving drought tolerance and could be promising candidates for future functional characterization. TFs involved in the soybean root and at the whole plant level could be used for future network analysis between TFs and cis-elements. All of these findings will be helpful in elucidating the molecular mechanisms associated with water stress responses in soybean roots.

  12. Cross-omics comparison of stress responses in mesothelial cells exposed to heat- versus filter-sterilized peritoneal dialysis fluids.

    PubMed

    Kratochwill, Klaus; Bender, Thorsten O; Lichtenauer, Anton M; Herzog, Rebecca; Tarantino, Silvia; Bialas, Katarzyna; Jörres, Achim; Aufricht, Christoph

    2015-01-01

    Recent research suggests that cytoprotective responses, such as expression of heat-shock proteins, might be inadequately induced in mesothelial cells by heat-sterilized peritoneal dialysis (PD) fluids. This study compares transcriptome data and multiple protein expression profiles for providing new insight into regulatory mechanisms. Two-dimensional difference gel electrophoresis (2D-DIGE) based proteomics and topic defined gene expression microarray-based transcriptomics techniques were used to evaluate stress responses in human omental peritoneal mesothelial cells in response to heat- or filter-sterilized PD fluids. Data from selected heat-shock proteins were validated by 2D western-blot analysis. Comparison of proteomics and transcriptomics data discriminated differentially regulated protein abundance into groups depending on correlating or noncorrelating transcripts. Inadequate abundance of several heat-shock proteins following exposure to heat-sterilized PD fluids is not reflected on the mRNA level indicating interference beyond transcriptional regulation. For the first time, this study describes evidence for posttranscriptional inadequacy of heat-shock protein expression by heat-sterilized PD fluids as a novel cytotoxic property. Cross-omics technologies introduce a novel way of understanding PDF bioincompatibility and searching for new interventions to reestablish adequate cytoprotective responses.

  13. Detecting specific infections in children through host responses: a paradigm shift.

    PubMed

    Mejias, Asuncion; Suarez, Nicolas M; Ramilo, Octavio

    2014-06-01

    There is a need for improved diagnosis and for optimal classification of patients with infectious diseases. An alternative approach to the pathogen-detection strategy is based on a comprehensive analysis of the host response to the infection. This review focuses on the value of transcriptome analyses of blood leukocytes for the diagnosis and management of patients with infectious diseases. Initial studies showed that RNA from blood leukocytes of children with acute viral and bacterial infections carried pathogen-specific transcriptional signatures. Subsequently, transcriptional signatures for several other infections have been described and validated in humans with malaria, dengue, salmonella, melioidosis, respiratory syncytial virus, influenza, tuberculosis, and HIV. In addition, transcriptome analyses represent an invaluable tool to understand disease pathogenesis and to objectively classify patients according to the clinical severity. Microarray studies have been shown to be highly reproducible using different platforms, and in different patient populations, confirming the value of blood transcriptome analyses to study pathogen-specific host immune responses in the clinical setting. Combining the detection of the pathogen with a comprehensive assessment of the host immune response will provide a new understanding of the correlations between specific causative agents, the host response, and the clinical manifestations of the disease.

  14. Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes.

    PubMed

    Hermans, Christian; Vuylsteke, Marnik; Coppens, Frederik; Craciun, Adrian; Inzé, Dirk; Verbruggen, Nathalie

    2010-07-01

    *Plant growth and development ultimately depend on environmental variables such as the availability of essential minerals. Unravelling how nutrients affect gene expression will help to understand how they regulate plant growth. *This study reports the early transcriptomic response to magnesium (Mg) deprivation in Arabidopsis. Whole-genome transcriptome was studied in the roots and young mature leaves 4, 8 and 28 h after the removal of Mg from the nutrient solution. *The highest number of regulated genes was first observed in the roots. Contrary to other mineral deficiencies, Mg depletion did not induce a higher expression of annotated genes in Mg uptake. Remarkable responses include the perturbation of the central oscillator of the circadian clock in roots and the triggering of abscisic acid (ABA) signalling, with half of the up-regulated Mg genes in leaves being ABA-responsive. However, no change in ABA content was observed. *The specificity of the response of some Mg-regulated genes was challenged by studying their expression after other mineral deficiencies and environmental stresses. The possibility to develop markers for Mg incipient deficiency is discussed here.

  15. Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa

    PubMed Central

    Gehan, Malia A; Mockler, Todd C; Weinig, Cynthia; Ewers, Brent E

    2017-01-01

    The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop Brassica rapa during initial perception of drought, we applied a co-expression network approach to associate rhythmic gene expression changes with physiological responses. Coupled analysis of transcriptome and physiological parameters over a two-day time course in control and drought-stressed plants provided temporal resolution necessary for correlation of network modules with dynamic changes in stomatal conductance, photosynthetic rate, and photosystem II efficiency. This approach enabled the identification of drought-responsive genes based on their differential rhythmic expression profiles in well-watered versus droughted networks and provided new insights into the dynamic physiological changes that occur during drought. PMID:28826479

  16. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines.

    PubMed

    Sobkowiak, Alicja; Jończyk, Maciej; Jarochowska, Emilia; Biecek, Przemysław; Trzcinska-Danielewicz, Joanna; Leipner, Jörg; Fronk, Jan; Sowiński, Paweł

    2014-06-01

    Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for cold-performance of photosynthesis. This allowed direct comparison of present transcriptomic data with the earlier QTL mapping results. Cold-treated (14 h at 8/6 °C) maize seedlings of cold-tolerant ETH-DH7 and cold-sensitive ETH-DL3 lines at V3 stage showed strong, consistent response of the third leaf transcriptome: several thousand probes showed similar, statistically significant change in both lines, while only tens responded differently in the two lines. The most striking difference between the responses of the two lines to cold was the induction of expression of ca. twenty genes encoding membrane/cell wall proteins exclusively in the cold-tolerant ETH-DH7 line. The common response comprised mainly repression of numerous genes related to photosynthesis and induction of genes related to basic biological activity: transcription, regulation of gene expression, protein phosphorylation, cell wall organization. Among the genes showing differential response, several were close to the QTL regions identified in earlier studies with the same inbred lines and associated with biometrical, physiological or biochemical parameters. These transcripts, including two apparently non-protein-coding ones, are particularly attractive candidates for future studies on mechanisms determining divergent cold-tolerance of inbred maize lines.

  17. Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid

    PubMed Central

    2013-01-01

    Background Autotoxicity plays an important role in regulating crop yield and quality. To help characterize the autotoxicity mechanism of rice, we performed a large-scale, transcriptomic analysis of the rice root response to ferulic acid, an autotoxin from rice straw. Results Root growth rate was decreased and reactive oxygen species, calcium content and lipoxygenase activity were increased with increasing ferulic acid concentration in roots. Transcriptome analysis revealed more transcripts responsive to short ferulic-acid exposure (1- and 3-h treatments, 1,204 genes) than long exposure (24 h, 176 genes). Induced genes were involved in cell wall formation, chemical detoxification, secondary metabolism, signal transduction, and abiotic stress response. Genes associated with signaling and biosynthesis for ethylene and jasmonic acid were upregulated with ferulic acid. Ferulic acid upregulated ATP-binding cassette and amino acid/auxin permease transporters as well as genes encoding signaling components such as leucine-rich repeat VIII and receptor-like cytoplasmic kinases VII protein kinases, APETALA2/ethylene response factor, WRKY, MYB and Zinc-finger protein expressed in inflorescence meristem transcription factors. Conclusions The results of a transcriptome analysis suggest the molecular mechanisms of plants in response to FA, including toxicity, detoxicification and signaling machinery. FA may have a significant effect on inhibiting rice root elongation through modulating ET and JA hormone homeostasis. FA-induced gene expression of AAAP transporters may contribute to detoxicification of the autotoxin. Moreover, the WRKY and Myb TFs and LRR-VIII and SD-2b kinases might regulate downstream genes under FA stress but not general allelochemical stress. This comprehensive description of gene expression information could greatly facilitate our understanding of the mechanisms of autotoxicity in plants. PMID:23705659

  18. Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection.

    PubMed

    Nejat, Naghmeh; Cahill, David M; Vadamalai, Ganesan; Ziemann, Mark; Rookes, James; Naderali, Neda

    2015-10-01

    Invasive phytoplasmas wreak havoc on coconut palms worldwide, leading to high loss of income, food insecurity and extreme poverty of farmers in producing countries. Phytoplasmas as strictly biotrophic insect-transmitted bacterial pathogens instigate distinct changes in developmental processes and defence responses of the infected plants and manipulate plants to their own advantage; however, little is known about the cellular and molecular mechanisms underlying host-phytoplasma interactions. Further, phytoplasma-mediated transcriptional alterations in coconut palm genes have not yet been identified. This study evaluated the whole transcriptome profiles of naturally infected leaves of Cocos nucifera ecotype Malayan Red Dwarf in response to yellow decline phytoplasma from group 16SrXIV, using RNA-Seq technique. Transcriptomics-based analysis reported here identified genes involved in coconut innate immunity. The number of down-regulated genes in response to phytoplasma infection exceeded the number of genes up-regulated. Of the 39,873 differentially expressed unigenes, 21,860 unigenes were suppressed and 18,013 were induced following infection. Comparative analysis revealed that genes associated with defence signalling against biotic stimuli were significantly overexpressed in phytoplasma-infected leaves versus healthy coconut leaves. Genes involving cell rescue and defence, cellular transport, oxidative stress, hormone stimulus and metabolism, photosynthesis reduction, transcription and biosynthesis of secondary metabolites were differentially represented. Our transcriptome analysis unveiled a core set of genes associated with defence of coconut in response to phytoplasma attack, although several novel defence response candidate genes with unknown function have also been identified. This study constitutes valuable sequence resource for uncovering the resistance genes and/or susceptibility genes which can be used as genetic tools in disease resistance breeding.

  19. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth.

    PubMed

    Aseyev, Nikolay; Vinarskaya, Alia Kh; Roshchin, Matvey; Korshunova, Tatiana A; Malyshev, Aleksey Yu; Zuzina, Alena B; Ierusalimsky, Victor N; Lemak, Maria S; Zakharov, Igor S; Novikov, Ivan A; Kolosov, Peter; Chesnokova, Ekaterina; Volkova, Svetlana; Kasianov, Artem; Uroshlev, Leonid; Popova, Yekaterina; Boyle, Richard D; Balaban, Pavel M

    2017-01-01

    The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored.

  20. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.

    PubMed

    Morey, Jeanine S; Monroe, Emily A; Kinney, Amanda L; Beal, Marion; Johnson, Jillian G; Hitchcock, Gary L; Van Dolah, Frances M

    2011-07-05

    The role of coastal nutrient sources in the persistence of Karenia brevis red tides in coastal waters of Florida is a contentious issue that warrants investigation into the regulation of nutrient responses in this dinoflagellate. In other phytoplankton studied, nutrient status is reflected by the expression levels of N- and P-responsive gene transcripts. In dinoflagellates, however, many processes are regulated post-transcriptionally. All nuclear encoded gene transcripts studied to date possess a 5' trans-spliced leader (SL) sequence suggestive, based on the trypanosome model, of post-transcriptional regulation. The current study therefore sought to determine if the transcriptome of K. brevis is responsive to nitrogen and phosphorus and is informative of nutrient status. Microarray analysis of N-depleted K. brevis cultures revealed an increase in the expression of transcripts involved in N-assimilation (nitrate and ammonium transporters, glutamine synthetases) relative to nutrient replete cells. In contrast, a transcriptional signal of P-starvation was not apparent despite evidence of P-starvation based on their rapid growth response to P-addition. To study transcriptome responses to nutrient addition, the limiting nutrient was added to depleted cells and changes in global gene expression were assessed over the first 48 hours following nutrient addition. Both N- and P-addition resulted in significant changes in approximately 4% of genes on the microarray, using a significance cutoff of 1.7-fold and p ≤ 10-4. By far, the earliest responding genes were dominated in both nutrient treatments by pentatricopeptide repeat (PPR) proteins, which increased in expression up to 3-fold by 1 h following nutrient addition. PPR proteins are nuclear encoded proteins involved in chloroplast and mitochondria RNA processing. Correspondingly, other functions enriched in response to both nutrients were photosystem and ribosomal genes. Microarray analysis provided transcriptomic evidence for N- but not P-limitation in K. brevis. Transcriptomic responses to the addition of either N or P suggest a concerted program leading to the reactivation of chloroplast functions. Even the earliest responding PPR protein transcripts possess a 5' SL sequence that suggests post-transcriptional control. Given the current state of knowledge of dinoflagellate gene regulation, it is currently unclear how these rapid changes in such transcript levels are achieved.

  1. Transcriptomic analysis reveals numerous diverse protein kinases and transcription factors involved in desiccation tolerance in the resurrection plant Myrothamnus flabellifolia

    PubMed Central

    Ma, Chao; Wang, Hong; Macnish, Andrew J; Estrada-Melo, Alejandro C; Lin, Jing; Chang, Youhong; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The woody resurrection plant Myrothamnus flabellifolia has remarkable tolerance to desiccation. Pyro-sequencing technology permitted us to analyze the transcriptome of M. flabellifolia during both dehydration and rehydration. We identified a total of 8287 and 8542 differentially transcribed genes during dehydration and rehydration treatments respectively. Approximately 295 transcription factors (TFs) and 484 protein kinases (PKs) were up- or down-regulated in response to desiccation stress. Among these, the transcript levels of 53 TFs and 91 PKs increased rapidly and peaked early during dehydration. These regulators transduce signal cascades of molecular pathways, including the up-regulation of ABA-dependent and independent drought stress pathways and the activation of protective mechanisms for coping with oxidative damage. Antioxidant systems are up-regulated, and the photosynthetic system is modified to reduce ROS generation. Secondary metabolism may participate in the desiccation tolerance of M. flabellifolia as indicated by increases in transcript abundance of genes involved in isopentenyl diphosphate biosynthesis. Up-regulation of genes encoding late embryogenesis abundant proteins and sucrose phosphate synthase is also associated with increased tolerance to desiccation. During rehydration, the transcriptome is also enriched in transcripts of genes encoding TFs and PKs, as well as genes involved in photosynthesis, and protein synthesis. The data reported here contribute comprehensive insights into the molecular mechanisms of desiccation tolerance in M. flabellifolia. PMID:26504577

  2. System analysis of metabolism and the transcriptome in Arabidopsis thaliana roots reveals differential co-regulation upon iron, sulfur and potassium deficiency.

    PubMed

    Forieri, Ilaria; Sticht, Carsten; Reichelt, Michael; Gretz, Norbert; Hawkesford, Malcolm J; Malagoli, Mario; Wirtz, Markus; Hell, Ruediger

    2017-01-01

    Deprivation of mineral nutrients causes significant retardation of plant growth. This retardation is associated with nutrient-specific and general stress-induced transcriptional responses. In this study, we adjusted the external supply of iron, potassium and sulfur to cause the same retardation of shoot growth. Nevertheless, limitation by individual nutrients resulted in specific morphological adaptations and distinct shifts within the root metabolite fingerprint. The metabolic shifts affected key metabolites of primary metabolism and the stress-related phytohormones, jasmonic, salicylic and abscisic acid. These phytohormone signatures contributed to specific nutrient deficiency-induced transcriptional regulation. Limitation by the micronutrient iron caused the strongest regulation and affected 18% of the root transcriptome. Only 130 genes were regulated by all nutrients. Specific co-regulation between the iron and sulfur metabolic routes upon iron or sulfur deficiency was observed. Interestingly, iron deficiency caused regulation of a different set of genes of the sulfur assimilation pathway compared with sulfur deficiency itself, which demonstrates the presence of specific signal-transduction systems for the cross-regulation of the pathways. Combined iron and sulfur starvation experiments demonstrated that a requirement for a specific nutrient can overrule this cross-regulation. The comparative metabolomics and transcriptomics approach used dissected general stress from nutrient-specific regulation in roots of Arabidopsis. © 2016 John Wiley & Sons Ltd.

  3. Toxicogenomic response of Mycobacterium bovis BCG to peracetic acid and a comparative analysis of the M. bovis BCG response to three oxidative disinfectants.

    PubMed

    Nde, Chantal W; Toghrol, Freshteh; Jang, Hyeung-Jin; Bentley, William E

    2011-04-01

    Tuberculosis is a leading cause of death worldwide and infects thousands of Americans annually. Mycobacterium bovis causes tuberculosis in humans and several animal species. Peracetic acid is an approved tuberculocide in hospital and domestic environments. This study presents for the first time the transcriptomic changes in M. bovis BCG after treatment with 0.1 mM peracetic acid for 10 and 20 min. This study also presents for the first time a comparison among the transcriptomic responses of M. bovis BCG to three oxidative disinfectants: peracetic acid, sodium hypochlorite, and hydrogen peroxide after 10 min of treatment. Results indicate that arginine biosynthesis, virulence, and oxidative stress response genes were upregulated after both peracetic acid treatment times. Three DNA repair genes were downregulated after 10 and 20 min and cell wall component genes were upregulated after 20 min. The devR-devS signal transduction system was upregulated after 10 min, suggesting a role in the protection against peracetic acid treatment. Results also suggest that peracetic acid and sodium hypochlorite both induce the expression of the ctpF gene which is upregulated in hypoxic environments. Further, this study reveals that in M. bovis BCG, hydrogen peroxide and peracetic acid both induce the expression of katG involved in oxidative stress response and the mbtD and mbtI genes involved in iron regulation/virulence.

  4. Bartonella quintana Deploys Host and Vector Temperature-Specific Transcriptomes

    PubMed Central

    Previte, Domenic; Yoon, Kyong S.; Clark, J. Marshall; DeRisi, Joseph L.; Koehler, Jane E.

    2013-01-01

    The bacterial pathogen Bartonella quintana is passed between humans by body lice. B. quintana has adapted to both the human host and body louse vector niches, producing persistent infection with high titer bacterial loads in both the host (up to 105 colony-forming units [CFU]/ml) and vector (more than 108 CFU/ml). Using a novel custom microarray platform, we analyzed bacterial transcription at temperatures corresponding to the host (37°C) and vector (28°C), to probe for temperature-specific and growth phase-specific transcriptomes. We observed that transcription of 7% (93 genes) of the B. quintana genome is modified in response to change in growth phase, and that 5% (68 genes) of the genome is temperature-responsive. Among these transcriptional changes in response to temperature shift and growth phase was the induction of known B. quintana virulence genes and several previously unannotated genes. Hemin binding proteins, secretion systems, response regulators, and genes for invasion and cell attachment were prominent among the differentially-regulated B. quintana genes. This study represents the first analysis of global transcriptional responses by B. quintana. In addition, the in vivo experiments provide novel insight into the B. quintana transcriptional program within the body louse environment. These data and approaches will facilitate study of the adaptation mechanisms employed by Bartonella during the transition between human host and arthropod vector. PMID:23554923

  5. Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis.

    PubMed

    Li, Ruoyun; Xiong, Guotong; Yuan, Shukun; Wu, Zufang; Miao, Yingjie; Weng, Peifang

    2017-11-03

    Saccharomyces cerevisiae has been widely used for wine fermentation and bio-fuels production. A S. cerevisiae strain Sc131 isolated from tropical fruit shows good fermentation properties and ethanol tolerance, exhibiting significant potential in Chinese bayberry wine fermentation. In this study, RNA-sequence and RT-qPCR was used to investigate the transcriptome profile of Sc131 in response to ethanol stress. Scanning Electron Microscopy were carried out to observe surface morphology of yeast cells. Totally, 937 genes were identified differential expressed, including 587 up-regulated and 350 down-regulated genes, after 4-h ethanol stress (10% v/v). Transcriptomic analysis revealed that, most genes involved in regulating filamentous growth or pseudohyphal growth were significantly up-regulated in response to ethanol stress. The complex protein quality control machineries, Hsp90/Hsp70 and Hsp104/Hsp70/Hsp40 based chaperone system combining with ubiquitin-proteasome proteolytic pathway were both activated to recognize and degrade misfolding proteins. Genes related to biosynthesis and metabolism of two well-known stress-responsive substances trehalose and ergosterol were generally up-regulated, while genes associated with amino acids biosynthesis and metabolism processes were differentially expressed. Moreover, thiamine was also important in response to ethanol stress. This research may promote the potential applications of Sc131 in the fermentation of Chinese bayberry wine.

  6. Comparative transcriptomics reveals CrebA as a novel regulator of infection tolerance in D. melanogaster

    PubMed Central

    2018-01-01

    Host responses to infection encompass many processes in addition to activation of the immune system, including metabolic adaptations, stress responses, tissue repair, and other reactions. The response to bacterial infection in Drosophila melanogaster has been classically described in studies that focused on the immune response elicited by a small set of largely avirulent microbes. Thus, we have surprisingly limited knowledge of responses to infection that are outside the canonical immune response, of how the response to pathogenic infection differs from that to avirulent bacteria, or even of how generic the response to various microbes is and what regulates that core response. In this study, we addressed these questions by profiling the D. melanogaster transcriptomic response to 10 bacteria that span the spectrum of virulence. We found that each bacterium triggers a unique transcriptional response, with distinct genes making up to one third of the response elicited by highly virulent bacteria. We also identified a core set of 252 genes that are differentially expressed in response to the majority of bacteria tested. Among these, we determined that the transcription factor CrebA is a novel regulator of infection tolerance. Knock-down of CrebA significantly increased mortality from microbial infection without any concomitant change in bacterial number. Upon infection, CrebA is upregulated by both the Toll and Imd pathways in the fat body, where it is required to induce the expression of secretory pathway genes. Loss of CrebA during infection triggered endoplasmic reticulum (ER) stress and activated the unfolded protein response (UPR), which contributed to infection-induced mortality. Altogether, our study reveals essential features of the response to bacterial infection and elucidates the function of a novel regulator of infection tolerance. PMID:29394281

  7. Characterization and analysis of a transcriptome from the boreal spider crab Hyas araneus.

    PubMed

    Harms, Lars; Frickenhaus, Stephan; Schiffer, Melanie; Mark, Felix C; Storch, Daniela; Pörtner, Hans-Otto; Held, Christoph; Lucassen, Magnus

    2013-12-01

    Research investigating the genetic basis of physiological responses has significantly broadened our understanding of the mechanisms underlying organismic response to environmental change. However, genomic data are currently available for few taxa only, thus excluding physiological model species from this approach. In this study we report the transcriptome of the model organism Hyas araneus from Spitsbergen (Arctic). We generated 20,479 transcripts, using the 454 GS FLX sequencing technology in combination with an Illumina HiSeq sequencing approach. Annotation by Blastx revealed 7159 blast hits in the NCBI non-redundant protein database. The comparison between the spider crab H. araneus transcriptome and EST libraries of the European lobster Homarus americanus and the porcelain crab Petrolisthes cinctipes yielded 3229/2581 sequences with a significant hit, respectively. The clustering by the Markov Clustering Algorithm (MCL) revealed a common core of 1710 clusters present in all three species and 5903 unique clusters for H. araneus. The combined sequencing approaches generated transcripts that will greatly expand the limited genomic data available for crustaceans. We introduce the MCL clustering for transcriptome comparisons as a simple approach to estimate similarities between transcriptomic libraries of different size and quality and to analyze homologies within the selected group of species. In particular, we identified a large variety of reverse transcriptase (RT) sequences not only in the H. araneus transcriptome and other decapod crustaceans, but also sea urchin, supporting the hypothesis of a heritable, anti-viral immunity and the proposed viral fragment integration by host-derived RTs in marine invertebrates. © 2013.

  8. Combining systems pharmacology, transcriptomics, proteomics, and metabolomics to dissect the therapeutic mechanism of Chinese herbal Bufei Jianpi formula for application to COPD

    PubMed Central

    Zhao, Peng; Yang, Liping; Li, Jiansheng; Li, Ya; Tian, Yange; Li, Suyun

    2016-01-01

    Bufei Jianpi formula (BJF) has long been used as a therapeutic agent in the treatment of COPD. Systems pharmacology identified 145 active compounds and 175 potential targets of BJF in a previous study. Additionally, BJF was previously shown to effectively prevent COPD and its comorbidities, such as ventricular hypertrophy, by inhibition of inflammatory cytokine production, matrix metalloproteinases expression, and other cytokine production, in vivo. However, the system-level mechanism of BJF for the treatment of COPD is still unclear. The aim of this study was to gain insight into its system-level mechanisms by integrating transcriptomics, proteomics, and metabolomics together with systems pharmacology datasets. Using molecular function, pathway, and network analyses, the genes and proteins regulated in COPD rats and BJF-treated rats could be mainly attributed to oxidoreductase activity, antioxidant activity, focal adhesion, tight junction, or adherens junction. Furthermore, a comprehensive analysis of systems pharmacology, transcript, protein, and metabolite datasets is performed. The results showed that a number of genes, proteins, metabolites regulated in BJF-treated rats and potential target proteins of BJF were involved in lipid metabolism, cell junction, oxidative stress, and inflammatory response, which might be the system-level therapeutic mechanism of BJF treatment. PMID:27042044

  9. Development of Transcriptomic Resources for Interrogating the Biosynthesis of Monoterpene Indole Alkaloids in Medicinal Plant Species

    PubMed Central

    Góngora-Castillo, Elsa; Childs, Kevin L.; Fedewa, Greg; Hamilton, John P.; Liscombe, David K.; Magallanes-Lundback, Maria; Mandadi, Kranthi K.; Nims, Ezekiel; Runguphan, Weerawat; Vaillancourt, Brieanne; Varbanova-Herde, Marina; DellaPenna, Dean; McKnight, Thomas D.; O’Connor, Sarah; Buell, C. Robin

    2012-01-01

    The natural diversity of plant metabolism has long been a source for human medicines. One group of plant-derived compounds, the monoterpene indole alkaloids (MIAs), includes well-documented therapeutic agents used in the treatment of cancer (vinblastine, vincristine, camptothecin), hypertension (reserpine, ajmalicine), malaria (quinine), and as analgesics (7-hydroxymitragynine). Our understanding of the biochemical pathways that synthesize these commercially relevant compounds is incomplete due in part to a lack of molecular, genetic, and genomic resources for the identification of the genes involved in these specialized metabolic pathways. To address these limitations, we generated large-scale transcriptome sequence and expression profiles for three species of Asterids that produce medicinally important MIAs: Camptotheca acuminata, Catharanthus roseus, and Rauvolfia serpentina. Using next generation sequencing technology, we sampled the transcriptomes of these species across a diverse set of developmental tissues, and in the case of C. roseus, in cultured cells and roots following elicitor treatment. Through an iterative assembly process, we generated robust transcriptome assemblies for all three species with a substantial number of the assembled transcripts being full or near-full length. The majority of transcripts had a related sequence in either UniRef100, the Arabidopsis thaliana predicted proteome, or the Pfam protein domain database; however, we also identified transcripts that lacked similarity with entries in either database and thereby lack a known function. Representation of known genes within the MIA biosynthetic pathway was robust. As a diverse set of tissues and treatments were surveyed, expression abundances of transcripts in the three species could be estimated to reveal transcripts associated with development and response to elicitor treatment. Together, these transcriptomes and expression abundance matrices provide a rich resource for understanding plant specialized metabolism, and promotes realization of innovative production systems for plant-derived pharmaceuticals. PMID:23300689

  10. Comparative Transcriptomic Approaches Exploring Contamination Stress Tolerance in Salix sp. Reveal the Importance for a Metaorganismal de Novo Assembly Approach for Nonmodel Plants1[OPEN

    PubMed Central

    Brereton, Nicholas J. B.; Marleau, Julie; Nissim, Werther Guidi; Labrecque, Michel; Joly, Simon; Pitre, Frederic E.

    2016-01-01

    Metatranscriptomic study of nonmodel organisms requires strategies that retain the highly resolved genetic information generated from model organisms while allowing for identification of the unexpected. A real-world biological application of phytoremediation, the field growth of 10 Salix cultivars on polluted soils, was used as an exemplar nonmodel and multifaceted crop response well-disposed to the study of gene expression. Sequence reads were assembled de novo to create 10 independent transcriptomes, a global transcriptome, and were mapped against the Salix purpurea 94006 reference genome. Annotation of assembled contigs was performed without a priori assumption of the originating organism. Global transcriptome construction from 3.03 billion paired-end reads revealed 606,880 unique contigs annotated from 1588 species, often common in all 10 cultivars. Comparisons between transcriptomic and metatranscriptomic methodologies provide clear evidence that nonnative RNA can mistakenly map to reference genomes, especially to conserved regions of common housekeeping genes, such as actin, α/β-tubulin, and elongation factor 1-α. In Salix, Rubisco activase transcripts were down-regulated in contaminated trees across all 10 cultivars, whereas thiamine thizole synthase and CP12, a Calvin Cycle master regulator, were uniformly up-regulated. De novo assembly approaches, with unconstrained annotation, can improve data quality; care should be taken when exploring such plant genetics to reduce de facto data exclusion by mapping to a single reference genome alone. Salix gene expression patterns strongly suggest cultivar-wide alteration of specific photosynthetic apparatus and protection of the antenna complexes from oxidation damage in contaminated trees, providing an insight into common stress tolerance strategies in a real-world phytoremediation system. PMID:27002060

  11. Transcriptome characterization of immune suppression from battlefield-like stress

    PubMed Central

    Muhie, S; Hammamieh, R; Cummings, C; Yang, D; Jett, M

    2013-01-01

    Transcriptome alterations of leukocytes from soldiers who underwent 8 weeks of Army Ranger training (RASP, Ranger Assessment and Selection Program) were analyzed to evaluate impacts of battlefield-like stress on the immune response. About 1400 transcripts were differentially expressed between pre- and post-RASP leukocytes. Upon functional analysis, immune response was the most enriched biological process, and most of the transcripts associated with the immune response were downregulated. Microbial pattern recognition, chemotaxis, antigen presentation and T-cell activation were among the most downregulated immune processes. Transcription factors predicted to be stress-inhibited (IRF7, RELA, NFκB1, CREB1, IRF1 and HMGB) regulated genes involved in inflammation, maturation of dendritic cells and glucocorticoid receptor signaling. Many altered transcripts were predicted to be targets of stress-regulated microRNAs. Post-RASP leukocytes exposed ex vivo to Staphylococcal enterotoxin B showed a markedly impaired immune response to this superantigen compared with pre-RASP leukocytes, consistent with the suppression of the immune response revealed by transcriptome analyses. Our results suggest that suppression of antigen presentation and lymphocyte activation pathways, in the setting of normal blood cell counts, most likely contribute to the poor vaccine response, impaired wound healing and infection susceptibility associated with chronic intense stress. PMID:23096155

  12. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds.

    PubMed

    Yung, Pui Yi; Grasso, Letizia Lo; Mohidin, Abeed Fatima; Acerbi, Enzo; Hinks, Jamie; Seviour, Thomas; Marsili, Enrico; Lauro, Federico M

    2016-01-28

    Volatile organic compounds (VOCs) are commonly used as solvents in various industrial settings. Many of them present a challenge to receiving environments, due to their toxicity and low bioavailability for degradation. Microorganisms are capable of sensing and responding to their surroundings and this makes them ideal detectors for toxic compounds. This study investigates the global transcriptomic responses of Escherichia coli K-12 to selected VOCs at sub-toxic levels. Cells grown in the presence of VOCs were harvested during exponential growth, followed by whole transcriptome shotgun sequencing (RNAseq). The analysis of the data revealed both shared and unique genetic responses compared to cells without exposure to VOCs. Results suggest that various functional gene categories, for example, those relating to Fe/S cluster biogenesis, oxidative stress responses and transport proteins, are responsive to selected VOCs in E. coli. The differential expression (DE) of genes was validated using GFP-promoter fusion assays. A variety of genes were differentially expressed even at non-inhibitory concentrations and when the cells are at their balanced-growth. Some of these genes belong to generic stress response and others could be specific to VOCs. Such candidate genes and their regulatory elements could be used as the basis for designing biosensors for selected VOCs.

  13. Global transcriptomic responses of Escherichia coli K-12 to volatile organic compounds

    PubMed Central

    Yung, Pui Yi; Grasso, Letizia Lo; Mohidin, Abeed Fatima; Acerbi, Enzo; Hinks, Jamie; Seviour, Thomas; Marsili, Enrico; Lauro, Federico M.

    2016-01-01

    Volatile organic compounds (VOCs) are commonly used as solvents in various industrial settings. Many of them present a challenge to receiving environments, due to their toxicity and low bioavailability for degradation. Microorganisms are capable of sensing and responding to their surroundings and this makes them ideal detectors for toxic compounds. This study investigates the global transcriptomic responses of Escherichia coli K-12 to selected VOCs at sub-toxic levels. Cells grown in the presence of VOCs were harvested during exponential growth, followed by whole transcriptome shotgun sequencing (RNAseq). The analysis of the data revealed both shared and unique genetic responses compared to cells without exposure to VOCs. Results suggest that various functional gene categories, for example, those relating to Fe/S cluster biogenesis, oxidative stress responses and transport proteins, are responsive to selected VOCs in E. coli. The differential expression (DE) of genes was validated using GFP-promoter fusion assays. A variety of genes were differentially expressed even at non-inhibitory concentrations and when the cells are at their balanced-growth. Some of these genes belong to generic stress response and others could be specific to VOCs. Such candidate genes and their regulatory elements could be used as the basis for designing biosensors for selected VOCs. PMID:26818886

  14. Responses to Systemic Nitrogen Signaling in Arabidopsis Roots Involve trans-Zeatin in Shoots.

    PubMed

    Poitout, Arthur; Crabos, Amandine; Petřík, Ivan; Novák, Ondřej; Krouk, Gabriel; Lacombe, Benoît; Ruffel, Sandrine

    2018-05-15

    Plants face temporal and spatial variation in nitrogen (N) availability. This includes heterogeneity in soil nitrate (NO3-) content. To overcome these constraints, plants modify their gene expression and physiological processes to optimize N acquisition. This plasticity relies on a complex long-distance root-shoot-root signaling network that remains poorly understood. We previously showed that cytokinin (CK) biosynthesis is required to trigger systemic N signaling. Here, we performed split-root experiments and used a combination of CK-related mutant analyses, hormone profiling, transcriptomic analysis, NO3- uptake assays, and root growth measurements to gain insight into systemic N signaling in Arabidopsis thaliana. By comparing wild-type plants and mutants affected in CK biosynthesis and ABCG14-dependent root-to-shoot translocation of CK, we revealed an important role for active trans-Zeatin (tZ) in systemic N signaling. Both rapid sentinel gene regulation and long-term functional acclimation to heterogeneous NO3- supply, including NO3- transport and root growth regulation, are likely mediated by the integration of tZ content in shoots. Furthermore, shoot transcriptome profiling revealed that glutamate/glutamine metabolism is likely a target of tZ root-to-shoot translocation, prompting an interesting hypothesis regarding shoot-to-root communication. Finally, this study highlights tZ-independent pathways regulating gene expression in shoots as well as NO3- uptake activity in response to total N-deprivation. © 2018 American Society of Plant Biologists. All rights reserved.

  15. Transcriptome Analysis of Beta macrocarpa and Identification of Differentially Expressed Transcripts in Response to Beet Necrotic Yellow Vein Virus Infection.

    PubMed

    Fan, Huiyan; Zhang, Yongliang; Sun, Haiwen; Liu, Junying; Wang, Ying; Wang, Xianbing; Li, Dawei; Yu, Jialin; Han, Chenggui

    2015-01-01

    Rhizomania is one of the most devastating diseases of sugar beet. It is caused by Beet necrotic yellow vein virus (BNYVV) transmitted by the obligate root-infecting parasite Polymyxa betae. Beta macrocarpa, a wild beet species widely used as a systemic host in the laboratory, can be rub-inoculated with BNYVV to avoid variation associated with the presence of the vector P. betae. To better understand disease and resistance between beets and BNYVV, we characterized the transcriptome of B. macrocarpa and analyzed global gene expression of B. macrocarpa in response to BNYVV infection using the Illumina sequencing platform. The overall de novo assembly of cDNA sequence data generated 75,917 unigenes, with an average length of 1054 bp. Based on a BLASTX search (E-value ≤ 10-5) against the non-redundant (NR, NCBI) protein, Swiss-Prot, the Gene Ontology (GO), Clusters of Orthologous Groups of proteins (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases, there were 39,372 unigenes annotated. In addition, 4,834 simple sequence repeats (SSRs) were also predicted, which could serve as a foundation for various applications in beet breeding. Furthermore, comparative analysis of the two transcriptomes revealed that 261 genes were differentially expressed in infected compared to control plants, including 128 up- and 133 down-regulated genes. GO analysis showed that the changes in the differently expressed genes were mainly enrichment in response to biotic stimulus and primary metabolic process. Our results not only provide a rich genomic resource for beets, but also benefit research into the molecular mechanisms of beet- BNYV Vinteraction.

  16. From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism.

    PubMed

    Zouari, Inès; Salvioli, Alessandra; Chialva, Matteo; Novero, Mara; Miozzi, Laura; Tenore, Gian Carlo; Bagnaresi, Paolo; Bonfante, Paola

    2014-03-21

    Tomato (Solanum lycopersicum) establishes a beneficial symbiosis with arbuscular mycorrhizal (AM) fungi. The formation of the mycorrhizal association in the roots leads to plant-wide modulation of gene expression. To understand the systemic effect of the fungal symbiosis on the tomato fruit, we used RNA-Seq to perform global transcriptome profiling on Moneymaker tomato fruits at the turning ripening stage. Fruits were collected at 55 days after flowering, from plants colonized with Funneliformis mosseae and from control plants, which were fertilized to avoid responses related to nutrient deficiency. Transcriptome analysis identified 712 genes that are differentially expressed in fruits from mycorrhizal and control plants. Gene Ontology (GO) enrichment analysis of these genes showed 81 overrepresented functional GO classes. Up-regulated GO classes include photosynthesis, stress response, transport, amino acid synthesis and carbohydrate metabolism functions, suggesting a general impact of fungal symbiosis on primary metabolisms and, particularly, on mineral nutrition. Down-regulated GO classes include cell wall, metabolism and ethylene response pathways. Quantitative RT-PCR validated the RNA-Seq results for 12 genes out of 14 when tested at three fruit ripening stages, mature green, breaker and turning. Quantification of fruit nutraceutical and mineral contents produced values consistent with the expression changes observed by RNA-Seq analysis. This RNA-Seq profiling produced a novel data set that explores the intersection of mycorrhization and fruit development. We found that the fruits of mycorrhizal plants show two transcriptomic "signatures": genes characteristic of a climacteric fleshy fruit, and genes characteristic of mycorrhizal status, like phosphate and sulphate transporters. Moreover, mycorrhizal plants under low nutrient conditions produce fruits with a nutrient content similar to those from non-mycorrhizal plants under high nutrient conditions, indicating that AM fungi can help replace exogenous fertilizer for fruit crops.

  17. Transcriptome and Molecular Pathway Analysis of the Hepatopancreas in the Pacific White Shrimp Litopenaeus vannamei under Chronic Low-Salinity Stress

    PubMed Central

    Chen, Ke; Li, Erchao; Li, Tongyu; Xu, Chang; Wang, Xiaodan; Lin, Heizhao; Qin, Jian G.; Chen, Liqiao

    2015-01-01

    The Pacific white shrimp Litopenaeus vannamei is a euryhaline penaeid species that shows ontogenetic adaptations to salinity, with its larvae inhabiting oceanic environments and postlarvae and juveniles inhabiting estuaries and lagoons. Ontogenetic adaptations to salinity manifest in L. vannamei through strong hyper-osmoregulatory and hypo-osmoregulatory patterns and an ability to tolerate extremely low salinity levels. To understand this adaptive mechanism to salinity stress, RNA-seq was used to compare the transcriptomic response of L. vannamei to changes in salinity from 30 (control) to 3 practical salinity units (psu) for 8 weeks. In total, 26,034 genes were obtained from the hepatopancreas tissue of L. vannamei using the Illumina HiSeq 2000 system, and 855 genes showed significant changes in expression under salinity stress. Eighteen top Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly involved in physiological responses, particularly in lipid metabolism, including fatty-acid biosynthesis, arachidonic acid metabolism and glycosphingolipid and glycosaminoglycan metabolism. Lipids or fatty acids can reduce osmotic stress in L. vannamei by providing additional energy or changing the membrane structure to allow osmoregulation in relevant organs, such as the gills. Steroid hormone biosynthesis and the phosphonate and phosphinate metabolism pathways were also involved in the adaptation of L. vannamei to low salinity, and the differential expression patterns of 20 randomly selected genes were validated by quantitative real-time PCR (qPCR). This study is the first report on the long-term adaptive transcriptomic response of L. vannamei to low salinity, and the results will further our understanding of the mechanisms underlying osmoregulation in euryhaline crustaceans. PMID:26147449

  18. Systems Biology of Immune Response to Live and Inactivated Dengue Virus Vaccines

    DTIC Science & Technology

    2017-09-01

    transcriptomics; innate immunity; adaptive immunity; correlates of immunity; live-attenuated; purified inactivated; biomarkers; T- cell; B-cell; epitope. 5...original copies of journal articles, reprints of manuscripts and abstracts, a curriculum vitae, patent applications, study questionnaires, and surveys ...of DENV and capable of secreting IgG were detected in all arms at 6 moths post-vaccination. Of note is that little correlation with contemporaneous

  19. The green ash transcriptome and identification of genes responding to abiotic and biotic stresses

    Treesearch

    Thomas Lane; Teodora Best; Nicole Zembower; Jack Davitt; Nathan Henry; Yi Xu; Jennifer Koch; Haiying Liang; John McGraw; Stephan Schuster; Donghwan Shim; Mark V. Coggeshall; John E. Carlson; Margaret E. Staton

    2016-01-01

    Background: To develop a set of transcriptome sequences to support research on environmental stress responses in green ash (Fraxinus pennsylvanica), we undertook deep RNA sequencing of green ash tissues under various stress treatments. The treatments, including emerald ash borer (EAB) feeding, heat, drought, cold and ozone, were selected to mimic...

  20. De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel

    USDA-ARS?s Scientific Manuscript database

    The yeast, Metschnikowia fructicola, is an antagonist with biological control activity against postharvest diseases of several fruits. We performed a transcriptome analysis, using RNA-Seq technology, to examine the response of M. fructicola with citrus fruit and with the postharvest pathogen, Penic...

  1. 20180312 - Application of a Multiplexed High Content Imaging (HCI) Based Cell Viability and Apoptosis Chemical Screening Assay with Results in MCF-7 Cells (SOT)

    EPA Science Inventory

    The NCCT high throughput transcriptomics (HTTr) screening program uses whole transcriptome profiling assay in human-derived cells to collect concentration-response data for large numbers (100s-1000s) of environmental chemicals. To contextualize HTTr data, chemical effects on cell...

  2. Systems biology approaches to understand the effects of nutrition and promote health.

    PubMed

    Badimon, Lina; Vilahur, Gemma; Padro, Teresa

    2017-01-01

    Within the last years the implementation of systems biology in nutritional research has emerged as a powerful tool to understand the mechanisms by which dietary components promote health and prevent disease as well as to identify the biologically active molecules involved in such effects. Systems biology, by combining several '-omics' disciplines (mainly genomics/transcriptomics, proteomics and metabolomics), creates large data sets that upon computational integration provide in silico predictive networks that allow a more extensive analysis of the individual response to a nutritional intervention and provide a more global comprehensive understanding of how diet may influence health and disease. Numerous studies have demonstrated that diet and particularly bioactive food components play a pivotal role in helping to counteract environmental-related oxidative damage. Oxidative stress is considered to be strongly implicated in ageing and the pathophysiology of numerous diseases including neurodegenerative disease, cancers, metabolic disorders and cardiovascular diseases. In the following review we will provide insights into the role of systems biology in nutritional research and focus on transcriptomic, proteomic and metabolomics studies that have demonstrated the ability of functional foods and their bioactive components to fight against oxidative damage and contribute to health benefits. © 2016 The British Pharmacological Society.

  3. Transcriptome of intraperitoneal organs of starry flounder Platichthys stellatus challenged by Edwardsiella ictaluri JCM1680

    NASA Astrophysics Data System (ADS)

    Tong, Yanli; Sun, Xiuqin; Wang, Bo; Wang, Ling; Li, Yan; Tian, Jinhu; Zheng, Fengrong; Zheng, Minggang

    2015-01-01

    Platichthys stellatus is an economically important marine bony fish species that is cultured in China on a large scale. However, very little is known about its immune-related genes. In this study, the transcriptome of the immune organs of P. stellatus that were intraperitoneally challenged with the pathogen E dwardsiella ictaluri JCM1680 is analyzed. Total RNA from four tissues (spleen, kidney, liver, and intestine) was mixed equally and then sequenced on an Illumina HiSeq 2000 platform. Overall, 28 465 813 quality reads were generated and assembled into 43 061 unigenes. Similarity searches against public protein sequence databases were used to annotate 28 291 unigenes (65.7% of the total), 368 of which were associated with immunoregulation, including 188 related to immunity response. Additionally, the transcript levels of immunity response unigenes annotated as related to tumor necrosis factor (TNF), TNF receptor, chemokine, major histocompatibility complex, and interleukin-6 were investigated in the different tissues of normal and infected P. stellatus by real-time quantitative PCR. The results confirmed that the unigenes identified in the transcriptome database were indeed expressed and up-regulated in infected P. stellatus. To our knowledge, this is the first report of the sequencing and analysis of the transcriptome of P. stellatus. These findings provide insights into the transcriptomics and immunogenetics of bony fish.

  4. Clinical Correlations of Transcriptional Profile in Patients Infected with Avian Influenza H7N9 Virus.

    PubMed

    Guan, Wenda; Wu, Nicholas C; Lee, Horace H Y; Li, Yimin; Jiang, Wenxin; Shen, Lihan; Wu, Douglas C; Chen, Rongchang; Zhong, Nanshan; Wilson, Ian A; Peiris, Malik; Yang, Zifeng; Mok, Chris K P

    2018-05-28

    Avian influenza A (H7N9) viruses emerged in China in 2013 and caused zoonotic disease associated with a case-fatality ratio of over 30%. Transcriptional profiles in peripheral blood reflect host responses and can help to elucidate disease pathogenesis. We correlated serial blood transcriptomic profiles of patients with avian influenza A (H7N9) virus infection and determined the biological significances from the analysis. We found that specific gene expression profiles in the blood were strongly correlated with the PaO2/FiO2 ratio and viral load in the lower respiratory tract (LRT). Cell cycle and leukocyte-related immunity were activated at the acute stage of the infection while T cell functions and various metabolic processes were associated with the recovery phase of the illness. A transition from systemic innate to adaptive immunity was found. We developed a novel approach for transcriptomic analysis to identify key host responses that were strongly correlated with specific clinical and virologic parameters in patients with H7N9 infection.

  5. Transcriptome sequencing analysis of novel sRNAs of Kineococcus radiotolerans in response to ionizing radiation.

    PubMed

    Chen, Zhouwei; Li, Lufeng; Shan, Zhan; Huang, Hannian; Chen, Huan; Ding, Xianfeng; Guo, Jiangfeng; Liu, Lili

    2016-11-01

    Kineococcus radiotolerans is a Gram-positive, radio-resistant bacterium isolated from a radioactive environment. The small noncoding RNAs (sRNAs) in bacteria are reported to play roles in the immediate response to stress and/or the recovery from stress. The analysis of K. radiotolerans transcriptome sequencing results can identify these sRNAs in a genome-wide detection, using RNA sequencing (RNA-seq) by the deep sequencing technique. In this study, the raw data of radiation-exposed samples (RS) and control samples (CS) were acquired separately from the sequencing platform. There were 217 common sRNA candidates in the two samples screened in the genome-wide scale by bioinformatics analysis. There were 43 differentially expressed sRNA candidates, including 28 up-regulated and 15 down-regulated ones. The down-regulated sRNAs were selected for the sRNA target prediction, of which 12 sRNAs that may modulate the genes related to the transcription regulation and DNA repair were considered as the candidates involved in the radio-resistance regulation system. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    PubMed

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  7. Pediatric Sepsis Endotypes Among Adults With Sepsis.

    PubMed

    Wong, Hector R; Sweeney, Timothy E; Hart, Kimberly W; Khatri, Purvesh; Lindsell, Christopher J

    2017-12-01

    Recent transcriptomic studies describe two subgroups of adults with sepsis differentiated by a sepsis response signature. The implied biology and related clinical associations are comparable with recently reported pediatric sepsis endotypes, labeled "A" and "B." We classified adults with sepsis using the pediatric endotyping strategy and the sepsis response signature and determined how endotype assignment, sepsis response signature membership, and age interact with respect to mortality. Retrospective analysis of publically available transcriptomic data representing critically ill adults with sepsis from which the sepsis response signature groups were derived and validated. Multiple ICUs. Adults with sepsis. None. Transcriptomic data were conormalized into a single dataset yielding 549 unique cases with sepsis response signature assignments. Each subject was assigned to endotype A or B using the expression data for the 100 endotyping genes. There were 163 subjects (30%) assigned to endotype A and 386 to endotype B. There was a weak, positive correlation between endotype assignment and sepsis response signature membership. Mortality rates were similar between patients assigned endotype A and those assigned endotype B. A multivariable logistic regression model fit to endotype assignment, sepsis response signature membership, age, and the respective two-way interactions revealed that endotype A, sepsis response signature 1 membership, older age, and the interactions between them were associated with mortality. Subjects coassigned to endotype A, and sepsis response signature 1 had the highest mortality. Combining the pediatric endotyping strategy with sepsis response signature membership might provide complementary, age-dependent, biological, and prognostic information.

  8. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection.

    PubMed

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It's therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection.

  9. Transcriptome Analysis Revealed Changes of Multiple Genes Involved in Haliotis discus hannai Innate Immunity during Vibrio parahemolyticus Infection

    PubMed Central

    Nam, Bo-Hye; Jung, Myunghee; Subramaniyam, Sathiyamoorthy; Yoo, Seung-il; Markkandan, Kesavan; Moon, Ji-Young; Kim, Young-Ok; Kim, Dong-Gyun; An, Cheul Min; Shin, Younhee; Jung, Ho-jin; Park, Jun-hyung

    2016-01-01

    Abalone (Haliotis discus hannai) is one of the most valuable marine aquatic species in Korea, Japan and China. Tremendous exposure to bacterial infection is common in aquaculture environment, especially by Vibrio sp. infections. It’s therefore necessary and urgent to understand the mechanism of H. discus hannai host defense against Vibrio parahemolyticus infection. However studies on its immune system are hindered by the lack of genomic resources. In the present study, we sequenced the transcriptome of control and bacterial challenged H. discus hannai tissues. Totally, 138 MB of reference transcriptome were obtained from de novo assembly of 34 GB clean bases from ten different libraries and annotated with the biological terms (GO and KEGG). A total of 10,575 transcripts exhibiting the differentially expression at least one pair of comparison and the functional annotations highlight genes related to immune response, cell adhesion, immune regulators, redox molecules and mitochondrial coding genes. Mostly, these groups of genes were dominated in hemocytes compared to other tissues. This work is a prerequisite for the identification of those physiological traits controlling H. discus hannai ability to survive against Vibrio infection. PMID:27088873

  10. Signatures of Rapid Evolution in Urban and Rural Transcriptomes of White-Footed Mice (Peromyscus leucopus) in the New York Metropolitan Area

    PubMed Central

    Harris, Stephen E.; Munshi-South, Jason; Obergfell, Craig; O’Neill, Rachel

    2013-01-01

    Urbanization is a major cause of ecological degradation around the world, and human settlement in large cities is accelerating. New York City (NYC) is one of the oldest and most urbanized cities in North America, but still maintains 20% vegetation cover and substantial populations of some native wildlife. The white-footed mouse, Peromyscus leucopus , is a common resident of NYC’s forest fragments and an emerging model system for examining the evolutionary consequences of urbanization. In this study, we developed transcriptomic resources for urban P . leucopus to examine evolutionary changes in protein-coding regions for an exemplar “urban adapter.” We used Roche 454 GS FLX+ high throughput sequencing to derive transcriptomes from multiple tissues from individuals across both urban and rural populations. From these data, we identified 31,015 SNPs and several candidate genes potentially experiencing positive selection in urban populations of P . leucopus . These candidate genes are involved in xenobiotic metabolism, innate immune response, demethylation activity, and other important biological phenomena in novel urban environments. This study is one of the first to report candidate genes exhibiting signatures of directional selection in divergent urban ecosystems. PMID:24015321

  11. Comparative transcriptome analysis reveals insights into the streamlined genomes of haplosclerid demosponges

    NASA Astrophysics Data System (ADS)

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Sponges (Porifera) are one of the most ancestral metazoan groups. They are characterized by a simple body plan lacking the true tissues and organ systems found in other animals. Members of this phylum display a remarkable diversity of form and function and yet little is known about the composition and complexity of their genomes. In this study, we sequenced the transcriptomes of two marine haplosclerid sponges belonging to Demospongiae, the largest and most diverse class within phylum Porifera, and compared their gene content with members of other sponge classes. We recovered 44,693 and 50,067 transcripts expressed in adult tissues of Haliclona amboinensis and Haliclona tubifera, respectively. These transcripts translate into 20,280 peptides in H. amboinensis and 18,000 peptides in H. tubifera. Genes associated with important signaling and metabolic pathways, regulatory networks, as well as genes that may be important in the organismal stress response, were identified in the transcriptomes. Futhermore, lineage-specific innovations were identified that may be correlated with observed sponge characters and ecological adaptations. The core gene complement expressed within the tissues of adult haplosclerid demosponges may represent a streamlined and flexible genetic toolkit that underlies the ecological success and resilience of sponges to environmental stress.

  12. Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics

    PubMed Central

    He, Yongqun

    2011-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning. PMID:22919594

  13. Sexually dimorphic transcriptomic responses in the teleostean hypothalamus: a case study with the organochlorine pesticide dieldrin.

    PubMed

    Martyniuk, Christopher J; Doperalski, Nicholas J; Kroll, Kevin J; Barber, David S; Denslow, Nancy D

    2013-01-01

    Organochlorine pesticides (OCPs) such as dieldrin are a persistent class of aquatic pollutants that cause adverse neurological and reproductive effects in vertebrates. In this study, female and male largemouth bass (Micropterus salmoides) (LMB) were exposed to 3mg dieldrin/kg feed in a 2 month feeding exposure (August-October) to (1) determine if the hypothalamic transcript responses to dieldrin were conserved between the sexes; (2) characterize cell signaling cascades underlying dieldrin neurotoxicity; and (3) determine whether or not co-feeding with 17β-estradiol (E(2)), a hormone with neuroprotective roles, mitigates responses in males to dieldrin. Despite also being a weak estrogen, dieldrin treatments did not elicit changes in reproductive endpoints (e.g. gonadosomatic index, vitellogenin, or plasma E(2)). Sub-network (SNEA) and gene set enrichment analysis (GSEA) revealed that neuro-hormone networks, neurotransmitter and nuclear receptor signaling, and the activin signaling network were altered by dieldrin exposure. Most striking was that the majority of cell pathways identified by the gene set enrichment were significantly increased in females while the majority of cell pathways were significantly decreased in males fed dieldrin. These data suggest that (1) there are sexually dimorphic responses in the teleost hypothalamus; (2) neurotransmitter systems are a target of dieldrin at the transcriptomics level; and (3) males co-fed dieldrin and E(2) had the fewest numbers of genes and cell pathways altered in the hypothalamus, suggesting that E(2) may mitigate the effects of dieldrin in the central nervous system. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Sexually dimorphic transcriptomic responses in the teleostean hypothalamus: A case study with the organochlorine pesticide dieldrin

    PubMed Central

    Martyniuk, Christopher J.; Doperalski, Nicholas J.; Kroll, Kevin J.; Barber, David S.; Denslow, Nancy D.

    2013-01-01

    Organochlorine pesticides (OCPs) such as dieldrin are a persistent class of aquatic pollutants that cause adverse neurological and reproductive effects in vertebrates. In this study, female and male largemouth bass (Micropterus salmoides) (LMB) were exposed to 3 mg dieldrin/kg feed in a 2 month feeding exposure (August–October) to (1) determine if the hypothalamic transcript responses to dieldrin were conserved between the sexes; (2) characterize cell signaling cascades underlying dieldrin neurotoxicity; and (3) determine whether or not co-feeding with 17β-estradiol (E2), a hormone with neuroprotective roles, mitigates responses in males to dieldrin. Despite also being a weak estrogen, dieldrin treatments did not elicit changes in reproductive endpoints (e.g. gonadosomatic index, vitellogenin, or plasma E2). Sub-network (SNEA) and gene set enrichment analysis (GSEA) revealed that neuro-hormone networks, neurotransmitter and nuclear receptor signaling, and the activin signaling network were altered by dieldrin exposure. Most striking was that the majority of cell pathways identified by the gene set enrichment were significantly increased in females while the majority of cell pathways were significantly decreased in males fed dieldrin. These data suggest that (1) there are sexually dimorphic responses in the teleost hypothalamus; (2) neurotransmitter systems are a target of dieldrin at the transcriptomics level; and (3) males co-fed dieldrin and E2 had the fewest numbers of genes and cell pathways altered in the hypothalamus, suggesting that E2 may mitigate the effects of dieldrin in the central nervous system. PMID:23041725

  15. Proteomic and transcriptomic investigation of acne vulgaris microcystic and papular lesions: Insights in the understanding of its pathophysiology.

    PubMed

    Quanico, Jusal; Gimeno, Jean-Pascal; Nadal-Wollbold, Florence; Casas, Christiane; Alvarez-Georges, Sandrine; Redoulès, Daniel; Schmitt, Anne-Marie; Fournier, Isabelle; Salzet, Michel

    2017-03-01

    The pathogenesis of acne vulgaris involves several phases including androgen-dependent hyper-seborrhea, colonization by Propionibacterium acnes, and inflammation. Recent investigations have shown that in fact P. acnes provokes the activation of the inflammasome present in macrophages and dendritic cells. This signaling pathway leads to excessive production of interleukin IL-1β, a proinflammatory cytokine. Nevertheless, these well-studied phenomena in acne fail to elucidate the mechanisms responsible for the appearance of different lesions. We investigate response pathways for specific acne lesions such as microcysts and papules using shot-gun proteomic followed by systemic biology and transcriptomic approaches. Results show that most of the proteins identified as differentially expressed between the normal and acne tissue biopsies associated with the immune system response were identified as highly or exclusively expressed in the papule biopsies. They were also expressed in microcysts, but in lower amounts compared to those in papules. These results are supported by the identification of CAMP factor protein produced by P. acnes in microcysts, indicating its enhanced proliferation in this type of lesion CONCLUSIONS: As CAMP factor protein was not detected in papule biopsies, we can see a clear delineation in the stages of progression of acne pathogenesis, which begins with a hyphenated inflammatory response in the papule stage, followed by imbalance of lipid production, which in turn triggers the enhanced proliferation of P. acnes. We demonstrate that expression inflammation varies across the two types of lesions, suggesting different pathways enhanced as a function of the progression of P. acnes. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Analyses of Brucella pathogenesis, host immunity, and vaccine targets using systems biology and bioinformatics.

    PubMed

    He, Yongqun

    2012-01-01

    Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.

  17. Transcriptome Analysis of the Dihydrotestosterone-Exposed Fetal Rat Gubernaculum Identifies Common Androgen and Insulin-Like 3 Targets1

    PubMed Central

    Barthold, Julia S.; Wang, Yanping; Robbins, Alan; Pike, Jack; McDowell, Erin; Johnson, Kamin J.; McCahan, Suzanne M.

    2013-01-01

    ABSTRACT Androgens and insulin-like 3 (INSL3) are required for development of the fetal gubernaculum and testicular descent. Previous studies suggested that the INSL3-exposed fetal gubernacular transcriptome is enriched for genes involved in neural pathways. In the present study, we profiled the transcriptome of fetal gubernaculum explants exposed to dihydrotestosterone (DHT) and compared this response to that with INSL3. We exposed fetal (Embryonic Day 17) rat gubernacula to DHT for 24 h (10 and 30 nM) or 6 h (1 and 10 nM) in organ culture and analyzed gene expression relative to that of vehicle-treated controls using Affymetrix arrays. Results were annotated using functional, pathway, and promoter analyses and independently validated for selected transcripts using quantitative RT-PCR (qRT-PCR). Transcripts were differentially expressed after 24 h but not 6 h. Most highly overrepresented functional categories included those related to gene expression, skeletal and muscular development and function, and Wnt signaling. Promoter response elements enriched in the DHT-specific transcriptome included consensus sequences for c-ETS1, ELK1, CREB, CRE-BP1/c-June, NRF2, and USF. We observed that 55% of DHT probe sets were also differentially expressed after INSL3 exposure and that the direction of change was the same in 96%. The qRT-PCR results confirmed that DHT increased expression of the INSL3-responsive genes Crlf1 and Chrdl2 but reduced expression of Wnt4. We also validated reduced Tgfb2 and Cxcl12 and increased Slit3 expression following DHT exposure. These data suggest a robust overlap in the DHT- and INSL3-regulated transcriptome that may be mediated in part by CREB signaling and a common Wnt pathway response for both hormones in the fetal gubernaculum. PMID:24174575

  18. The immune gene repertoire of an important viral reservoir, the Australian black flying fox.

    PubMed

    Papenfuss, Anthony T; Baker, Michelle L; Feng, Zhi-Ping; Tachedjian, Mary; Crameri, Gary; Cowled, Chris; Ng, Justin; Janardhana, Vijaya; Field, Hume E; Wang, Lin-Fa

    2012-06-20

    Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection.

  19. The impact of oxygen on the transcriptome of recombinant S. cerevisiae and P. pastoris - a comparative analysis.

    PubMed

    Baumann, Kristin; Dato, Laura; Graf, Alexandra B; Frascotti, Gianni; Dragosits, Martin; Porro, Danilo; Mattanovich, Diethard; Ferrer, Pau; Branduardi, Paola

    2011-05-09

    Saccharomyces cerevisiae and Pichia pastoris are two of the most relevant microbial eukaryotic platforms for the production of recombinant proteins. Their known genome sequences enabled several transcriptomic profiling studies under many different environmental conditions, thus mimicking not only perturbations and adaptations which occur in their natural surroundings, but also in industrial processes. Notably, the majority of such transcriptome analyses were performed using non-engineered strains.In this comparative study, the gene expression profiles of S. cerevisiae and P. pastoris, a Crabtree positive and Crabtree negative yeast, respectively, were analyzed for three different oxygenation conditions (normoxic, oxygen-limited and hypoxic) under recombinant protein producing conditions in chemostat cultivations. The major differences in the transcriptomes of S. cerevisiae and P. pastoris were observed between hypoxic and normoxic conditions, where the availability of oxygen strongly affected ergosterol biosynthesis, central carbon metabolism and stress responses, particularly the unfolded protein response. Steady state conditions under low oxygen set-points seemed to perturb the transcriptome of S. cerevisiae to a much lesser extent than the one of P. pastoris, reflecting the major tolerance of the baker's yeast towards oxygen limitation, and a higher fermentative capacity. Further important differences were related to Fab production, which was not significantly affected by oxygen availability in S. cerevisiae, while a clear productivity increase had been previously reported for hypoxically grown P. pastoris. The effect of three different levels of oxygen availability on the physiology of P. pastoris and S. cerevisiae revealed a very distinct remodelling of the transcriptional program, leading to novel insights into the different adaptive responses of Crabtree negative and positive yeasts to oxygen availability. Moreover, the application of such comparative genomic studies to recombinant hosts grown in different environments might lead to the identification of key factors for efficient protein production.

  20. Genomics of Adaptation to Multiple Concurrent Stresses: Insights from Comparative Transcriptomics of a Cichlid Fish from One of Earth's Most Extreme Environments, the Hypersaline Soda Lake Magadi in Kenya, East Africa.

    PubMed

    Kavembe, Geraldine D; Franchini, Paolo; Irisarri, Iker; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2015-10-01

    The Magadi tilapia (Alcolapia grahami) is a cichlid fish that inhabits one of the Earth's most extreme aquatic environments, with high pH (~10), salinity (~60% of seawater), high temperatures (~40 °C), and fluctuating oxygen regimes. The Magadi tilapia evolved several unique behavioral, physiological, and anatomical adaptations, some of which are constituent and thus retained in freshwater conditions. We conducted a transcriptomic analysis on A. grahami to study the evolutionary basis of tolerance to multiple stressors. To identify the adaptive regulatory changes associated with stress responses, we massively sequenced gill transcriptomes (RNAseq) from wild and freshwater-acclimated specimens of A. grahami. As a control, corresponding transcriptome data from Oreochromis leucostictus, a closely related freshwater species, were generated. We found expression differences in a large number of genes with known functions related to osmoregulation, energy metabolism, ion transport, and chemical detoxification. Over-representation of metabolism-related gene ontology terms in wild individuals compared to laboratory-acclimated specimens suggested that freshwater conditions greatly decrease the metabolic requirements of this species. Twenty-five genes with diverse physiological functions related to responses to water stress showed signs of divergent natural selection between the Magadi tilapia and its freshwater relative, which shared a most recent common ancestor only about four million years ago. The complete set of genes responsible for urea excretion was identified in the gill transcriptome of A. grahami, making it the only fish species to have a functional ornithine-urea cycle pathway in the gills--a major innovation for increasing nitrogenous waste efficiency.

  1. Transcriptome changes associated with Tomato spotted wilt virus infection in various life stages of its thrips vector, Frankliniella fusca (Hinds).

    PubMed

    Shrestha, Anita; Champagne, Donald E; Culbreath, Albert K; Rotenberg, Dorith; Whitfield, Anna E; Srinivasan, Rajagopalbabu

    2017-08-01

    Persistent propagative viruses maintain intricate interactions with their arthropod vectors. In this study, we investigated the transcriptome-level responses associated with a persistent propagative phytovirus infection in various life stages of its vector using an Illumina HiSeq sequencing platform. The pathosystem components included a Tospovirus, Tomato spotted wilt virus (TSWV), its insect vector, Frankliniella fusca (Hinds), and a plant host, Arachis hypogaea (L.). We assembled (de novo) reads from three developmental stage groups of virus-exposed and non-virus-exposed F. fusca into one transcriptome consisting of 72 366 contigs and identified 1161 differentially expressed (DE) contigs. The number of DE contigs was greatest in adults (female) (562) when compared with larvae (first and second instars) (395) and pupae (pre- and pupae) (204). Upregulated contigs in virus-exposed thrips had blastx annotations associated with intracellular transport and virus replication. Upregulated contigs were also assigned blastx annotations associated with immune responses, including apoptosis and phagocytosis. In virus-exposed larvae, Blast2GO analysis identified functional groups, such as multicellular development with downregulated contigs, while reproduction, embryo development and growth were identified with upregulated contigs in virus-exposed adults. This study provides insights into differences in transcriptome-level responses modulated by TSWV in various life stages of an important vector, F. fusca.

  2. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112.

    PubMed

    Reddy, Srirama Krishna; Liu, Shuyu; Rudd, Jackie C; Xue, Qingwu; Payton, Paxton; Finlayson, Scott A; Mahan, James; Akhunova, Alina; Holalu, Srinidhi V; Lu, Nanyan

    2014-09-01

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior but distinct adaption mechanisms under water-deficit (WD) conditions. Nevertheless, the physiological and molecular basis of their adaptation remains unknown. A greenhouse study was conducted to understand the differences in the physiological and transcriptomic responses of TAM 111 and TAM 112 to WD stress. Whole-plant data indicated that TAM 112 used more water, produced more biomass and grain yield under WD compared to TAM 111. Leaf-level data at the grain filling stage indicated that TAM 112 had elevated abscisic acid (ABA) content and reduced stomatal conductance and photosynthesis as compared to TAM 111. Sustained WD during the grain filling stage also resulted in greater flag leaf transcriptome changes in TAM 112 than TAM 111. Transcripts associated with photosynthesis, carbohydrate metabolism, phytohormone metabolism, and other dehydration responses were uniquely regulated between cultivars. These results suggested a differential role for ABA in regulating physiological and transcriptomic changes associated with WD stress and potential involvement in the superior adaptation and yield of TAM 112. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. A systems biology approach to the analysis of subset-specific responses to lipopolysaccharide in dendritic cells.

    PubMed

    Hancock, David G; Shklovskaya, Elena; Guy, Thomas V; Falsafi, Reza; Fjell, Chris D; Ritchie, William; Hancock, Robert E W; Fazekas de St Groth, Barbara

    2014-01-01

    Dendritic cells (DCs) are critical for regulating CD4 and CD8 T cell immunity, controlling Th1, Th2, and Th17 commitment, generating inducible Tregs, and mediating tolerance. It is believed that distinct DC subsets have evolved to control these different immune outcomes. However, how DC subsets mount different responses to inflammatory and/or tolerogenic signals in order to accomplish their divergent functions remains unclear. Lipopolysaccharide (LPS) provides an excellent model for investigating responses in closely related splenic DC subsets, as all subsets express the LPS receptor TLR4 and respond to LPS in vitro. However, previous studies of the LPS-induced DC transcriptome have been performed only on mixed DC populations. Moreover, comparisons of the in vivo response of two closely related DC subsets to LPS stimulation have not been reported in the literature to date. We compared the transcriptomes of murine splenic CD8 and CD11b DC subsets after in vivo LPS stimulation, using RNA-Seq and systems biology approaches. We identified subset-specific gene signatures, which included multiple functional immune mediators unique to each subset. To explain the observed subset-specific differences, we used a network analysis approach. While both DC subsets used a conserved set of transcription factors and major signalling pathways, the subsets showed differential regulation of sets of genes that 'fine-tune' the network Hubs expressed in common. We propose a model in which signalling through common pathway components is 'fine-tuned' by transcriptional control of subset-specific modulators, thus allowing for distinct functional outcomes in closely related DC subsets. We extend this analysis to comparable datasets from the literature and confirm that our model can account for cell subset-specific responses to LPS stimulation in multiple subpopulations in mouse and man.

  4. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  5. Prepartal Energy Intake Alters Blood Polymorphonuclear Leukocyte Transcriptome During the Peripartal Period in Holstein Cows

    PubMed Central

    Agrawal, A; Khan, MJ; Graugnard, DE; Vailati-Riboni, M; Rodriguez-Zas, SL; Osorio, JS; Loor, JJ

    2017-01-01

    In the dairy industry, cow health and farmer profits depend on the balance between diet (ie, nutrient composition, daily intake) and metabolism. This is especially true during the transition period, where dramatic physiological changes foster vulnerability to immunosuppression, negative energy balance, and clinical and subclinical disorders. Using an Agilent microarray platform, this study examined changes in the transcriptome of bovine polymorphonuclear leukocytes (PMNLs) due to prepartal dietary intake. Holstein cows were fed a high-straw, control-energy diet (CON; NEL = 1.34 Mcal/kg) or overfed a moderate-energy diet (OVE; NEL = 1.62 Mcal/kg) during the dry period. Blood for PMNL isolation and metabolite analysis was collected at −14 and +7 days relative to parturition. At an analysis of variance false discovery rate <0.05, energy intake (OVE vs CON) influenced 1806 genes. Dynamic Impact Approach bioinformatics analysis classified treatment effects on Kyoto Encyclopedia of Genes and Genomes pathways, including activated oxidative phosphorylation and biosynthesis of unsaturated fatty acids and inhibited RNA polymerase, proteasome, and toll-like receptor signaling pathway. This analysis indicates that processes critical for energy metabolism and cellular and immune function were affected with mixed results. However, overall interpretation of the transcriptome data agreed in part with literature documenting a potentially detrimental, chronic activation of PMNL in response to overfeeding. The widespread, transcriptome-level changes captured here confirm the importance of dietary energy adjustments around calving on the immune system. PMID:28579762

  6. Whole blood transcriptome comparison of pigs with extreme production of in vivo dsRNA-induced serum IFN-a.

    PubMed

    Liu, Xiangdong; Huang, Jing; Yang, Songbai; Zhao, Yunxia; Xiang, Anjing; Cao, Jianhua; Fan, Bin; Wu, Zhenfang; Zhao, Junlong; Zhao, Shuhong; Zhu, Mengjin

    2014-05-01

    Interferon (IFN) is one of the major regulators of innate immunity, it also mediates the adaptive immune responses to a broad spectrum of pathogens. This study aims in identifying differences between high vs. low INF-a responders which were chosen based on serum INF-a levels at 4 h post poly I:C treatment. A transcriptomic analysis was designed to describe the whole blood differential transcriptomal response to poly I:C by pigs with high vs. low IFN alpha levels. The capability of producing dsRNA (poly I:C)-induced serum IFN-a is highly variable in pig population. The high INF-a responders had 328 unique differentially expressed genes, suggesting that the HIGH pigs have greater responsiveness upon the dsRNA simulation. Based on the results, the interferon-dependent antiviral responsiveness through the IFN-stimulated genes (ISGs) is likely more effective in HIGH pigs. Inferring from the known organization of IFN pathways, the reason for the more IFN-a production in the HIGH pigs was likely due to the enhanced expression of IRF-7 in TLR or RIG- I/MDA5 signaling pathways. Furthermore, the larger number of the altered genes in the HIGH pigs after simulation is also possibly because of the greater number of the altered transcription factors. To our knowledge, this is the first report of comparative transcriptomic analysis to advance our understanding of whole blood immune response in pigs with different in vivo poly I:C-inducted IFN-a levels. The paper significantly expands our knowledge of how pigs respond to poly I:C which is highly relevant for understanding resistance to viral infections and also for vaccine development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Transcriptome analysis and identification of induced genes in the response of Harmonia axyridis to cold hardiness.

    PubMed

    Tang, Bin; Liu, Xiao-Jun; Shi, Zuo-Kun; Shen, Qi-Da; Xu, Yan-Xia; Wang, Su; Zhang, Fan; Wang, Shi-Gui

    2017-06-01

    Harmonia axyridis is an important predatory lady beetle that is a natural enemy of agricultural and forestry pests. In this research, the cold hardiness induced genes and their expression changes in H. axyridis were screened and detected by the way of the transcriptome and qualitative real-time PCR under normal and low temperatures, using high-throughput transcriptome and digital gene-expression-tag technologies. We obtained a 10Gb transcriptome and an 8Mb gene expression tag pool using Illumina deep sequencing technology and RNA-Seq analysis (accession number SRX540102). Of the 46,980 non-redundant unigenes identified, 28,037 (59.7%) were matched to known genes in GenBank, 21,604 (46.0%) in Swiss-Prot, 19,482 (41.5%) in Kyoto Encyclopedia of Genes and Genomes and 13,193 (28.1%) in Gene Ontology databases. Seventy-five percent of the unigene sequences had top matches with gene sequences from Tribolium castaneum. Results indicated that 60 genes regulated the entire cold-acclimation response, and, of these, seven genes were always up-regulated and five genes always down-regulated. Further screening revealed that six cold-resistant genes, E3 ubiquitin-protein ligase, transketolase, trehalase, serine/arginine repetitive matrix protein 2, glycerol kinase and sugar transporter SWEET1-like, play key roles in the response. Expression from a number of the differentially expressed genes was confirmed with quantitative real-time PCR (HaCS_Trans). The paper attempted to identify cold-resistance response genes, and study the potential mechanism by which cold acclimation enhances the insect's cold endurance. Information on these cold-resistance response genes will improve the development of low-temperature storage technology of natural enemy insects for future use in biological control. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Rapid transcriptome responses of maize (Zea mays) to UV-B in irradiated and shielded tissues

    PubMed Central

    Casati, Paula; Walbot, Virginia

    2004-01-01

    Background Depletion of stratospheric ozone has raised terrestrial levels of ultraviolet-B radiation (UV-B), an environmental change linked to an increased risk of skin cancer and with potentially deleterious consequences for plants. To better understand the processes of UV-B acclimation that result in altered plant morphology and physiology, we investigated gene expression in different organs of maize at several UV-B fluence rates and exposure times. Results Microarray hybridization was used to assess UV-B responses in directly exposed maize organs and organs shielded by a plastic that absorbs UV-B. After 8 hours of high UV-B, the abundance of 347 transcripts was altered: 285 were increased significantly in at least one organ and 80 were downregulated. More transcript changes occurred in directly exposed than in shielded organs, and the levels of more transcripts were changed in adult compared to seedling tissues. The time course of transcript abundance changes indicated that the response kinetics to UV-B is very rapid, as some transcript levels were altered within 1 hour of exposure. Conclusions Most of the UV-B regulated genes are organ-specific. Because shielded tissues, including roots, immature ears, and leaves, displayed altered transcriptome profiles after exposure of the plant to UV-B, some signal(s) must be transmitted from irradiated to shielded tissues. These results indicate that there are integrated responses to UV-B radiation above normal levels. As the same total UV-B irradiation dose applied at three intensities elicited different transcript profiles, the transcriptome changes exhibit threshold effects rather than a reciprocal dose-effect response. Transcriptome profiling highlights possible signaling pathways and molecules for future research. PMID:15003119

  9. Modeling vascular inflammation and atherogenicity after inhalation of ambient levels of ozone: exploratory lessons from transcriptomics.

    PubMed

    Tham, Andrea; Lullo, Dominic; Dalton, Sarah; Zeng, Siyang; van Koeverden, Ian; Arjomandi, Mehrdad

    2017-02-01

    Epidemiologic studies have linked inhalation of air pollutants such as ozone to cardiovascular mortality. Human exposure studies have shown that inhalation of ambient levels of ozone causes airway and systemic inflammation and an imbalance in sympathetic/parasympathetic tone. To explore molecular mechanisms through which ozone inhalation contributes to cardiovascular mortality, we compared transcriptomics data previously obtained from bronchoalveolar lavage (BAL) cells obtained from healthy subjects after inhalational exposure to ozone (200 ppb for 4 h) to those of various cell samples from 11 published studies of patients with atherosclerotic disease using the Nextbio genomic data platform. Overlapping gene ontologies that may be involved in the transition from pulmonary to systemic vascular inflammation after ozone inhalation were explored. Local and systemic enzymatic activity of an overlapping upregulated gene, matrix metalloproteinase-9 (MMP-9), was measured by zymography after ozone exposure. A set of differentially expressed genes involved in response to stimulus, stress, and wounding were in common between the ozone and most of the atherosclerosis studies. Many of these genes contribute to biological processes such as cholesterol metabolism dysfunction, increased monocyte adherence, endothelial cell lesions, and matrix remodeling, and to diseases such as heart failure, ischemia, and atherosclerotic occlusive disease. Inhalation of ozone increased MMP-9 enzymatic activity in both BAL fluid and serum. Comparison of transcriptomics between BAL cells after ozone exposure and various cell types from patients with atherosclerotic disease reveals commonly regulated processes and potential mechanisms by which ozone inhalation may contribute to progression of pre-existent atherosclerotic lesions.

  10. Primary Respiratory Chain Disease Causes Tissue-Specific Dysregulation of the Global Transcriptome and Nutrient-Sensing Signaling Network

    PubMed Central

    Zhang, Zhe; Tsukikawa, Mai; Peng, Min; Polyak, Erzsebet; Nakamaru-Ogiso, Eiko; Ostrovsky, Julian; McCormack, Shana; Place, Emily; Clarke, Colleen; Reiner, Gail; McCormick, Elizabeth; Rappaport, Eric; Haas, Richard; Baur, Joseph A.; Falk, Marni J.

    2013-01-01

    Primary mitochondrial respiratory chain (RC) diseases are heterogeneous in etiology and manifestations but collectively impair cellular energy metabolism. Mechanism(s) by which RC dysfunction causes global cellular sequelae are poorly understood. To identify a common cellular response to RC disease, integrated gene, pathway, and systems biology analyses were performed in human primary RC disease skeletal muscle and fibroblast transcriptomes. Significant changes were evident in muscle across diverse RC complex and genetic etiologies that were consistent with prior reports in other primary RC disease models and involved dysregulation of genes involved in RNA processing, protein translation, transport, and degradation, and muscle structure. Global transcriptional and post-transcriptional dysregulation was also found to occur in a highly tissue-specific fashion. In particular, RC disease muscle had decreased transcription of cytosolic ribosomal proteins suggestive of reduced anabolic processes, increased transcription of mitochondrial ribosomal proteins, shorter 5′-UTRs that likely improve translational efficiency, and stabilization of 3′-UTRs containing AU-rich elements. RC disease fibroblasts showed a strikingly similar pattern of global transcriptome dysregulation in a reverse direction. In parallel with these transcriptional effects, RC disease dysregulated the integrated nutrient-sensing signaling network involving FOXO, PPAR, sirtuins, AMPK, and mTORC1, which collectively sense nutrient availability and regulate cellular growth. Altered activities of central nodes in the nutrient-sensing signaling network were validated by phosphokinase immunoblot analysis in RC inhibited cells. Remarkably, treating RC mutant fibroblasts with nicotinic acid to enhance sirtuin and PPAR activity also normalized mTORC1 and AMPK signaling, restored NADH/NAD+ redox balance, and improved cellular respiratory capacity. These data specifically highlight a common pathogenesis extending across different molecular and biochemical etiologies of individual RC disorders that involves global transcriptome modifications. We further identify the integrated nutrient-sensing signaling network as a common cellular response that mediates, and may be amenable to targeted therapies for, tissue-specific sequelae of primary mitochondrial RC disease. PMID:23894440

  11. Embryotoxic and pharmacologic potency ranking of six azoles in the rat whole embryo culture by morphological and transcriptomic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimopoulou, Myrto, E-mail: myrto.dimopoulou@wur.nl

    Differential gene expression analysis in the rat whole embryo culture (WEC) assay provides mechanistic insight into the embryotoxicity of test compounds. In our study, we hypothesized that comparative analysis of the transcriptomes of rat embryos exposed to six azoles (flusilazole, triadimefon, ketoconazole, miconazole, difenoconazole and prothioconazole) could lead to a better mechanism-based understanding of their embryotoxicity and pharmacological action. For evaluating embryotoxicity, we applied the total morphological scoring system (TMS) in embryos exposed for 48 h. The compounds tested showed embryotoxicity in a dose-response fashion. Functional analysis of differential gene expression after 4 h exposure at the ID{sub 10} (effectivemore » dose for 10% decreased TMS), revealed the sterol biosynthesis pathway and embryonic development genes, dominated by genes in the retinoic acid (RA) pathway, albeit in a differential way. Flusilazole, ketoconazole and triadimefon were the most potent compounds affecting the RA pathway, while in terms of regulation of sterol function, difenoconazole and ketoconazole showed the most pronounced effects. Dose-dependent analysis of the effects of flusilazole revealed that the RA pathway related genes were already differentially expressed at low dose levels while the sterol pathway showed strong regulation at higher embryotoxic doses, suggesting that this pathway is less predictive for the observed embryotoxicity. A similar analysis at the 24-hour time point indicated an additional time-dependent difference in the aforementioned pathways regulated by flusilazole. In summary, the rat WEC assay in combination with transcriptomics could add a mechanistic insight into the embryotoxic potency ranking and pharmacological mode of action of the tested compounds. - Highlights: • Embryonic exposure to azoles revealed concentration-dependent malformations. • Transcriptomics could enhance the mechanistic knowledge of embryotoxicants. • Retinoic acid gene set identifies early embryotoxic responses to azoles. • Toxic versus pharmacologic potency determines functional efficacy.« less

  12. Comparative Transcriptome Analysis of Bombyx mori (Lepidoptera) Larval Midgut Response to BmNPV in Susceptible and Near-Isogenic Resistant Strains

    PubMed Central

    Geng, Lei; Xu, Jia-Ping; Yu, Dong; Zhang, Shang-Zhi; Ma, Yan; Fei, Dong-Qiong

    2016-01-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is one of the primary pathogens causing severe economic losses in sericulture. However, the molecular mechanism of silkworm resistance to BmNPV remains largely unknown. Here, the recurrent parent P50 (susceptible strain) and the near-isogenic line BC9 (resistance strain) were used in a comparative transcriptome study examining the response to infection with BmNPV. A total of 14,300 unigenes were obtained from two different resistant strains; of these, 869 differentially expressed genes (DEGs) were identified after comparing the four transcriptomes. Many DEGs associated with protein metabolism, cytoskeleton, and apoptosis may be involved in the host response to BmNPV infection. Moreover, some immunity related genes were also altered following BmNPV infection. Specifically, after removing genetic background and individual immune stress response genes, 22 genes were found to be potentially involved in repressing BmNPV infection. These genes were related to transport, virus replication, intracellular innate immune, and apoptosis. Our study provided an overview of the molecular mechanism of silkworm resistance to BmNPV infection and laid a foundation for controlling BmNPV in the future. PMID:27168061

  13. Multi-level evaluation of Escherichia coli polyphosphate related mutants using global transcriptomic, proteomic and phenomic analyses.

    PubMed

    Varas, Macarena; Valdivieso, Camilo; Mauriaca, Cecilia; Ortíz-Severín, Javiera; Paradela, Alberto; Poblete-Castro, Ignacio; Cabrera, Ricardo; Chávez, Francisco P

    2017-04-01

    Polyphosphate (polyP) is a linear biopolymer found in all living cells. In bacteria, mutants lacking polyphosphate kinase 1 (PPK1), the enzyme responsible for synthesis of most polyP, have many structural and functional defects. However, little is known about the causes of these pleiotropic alterations. The link between ppk1 deletion and those numerous phenotypes observed can be the result of complex molecular interactions that can be elucidated via a systems biology approach. By integrating different omics levels (transcriptome, proteome and phenome), we described the functioning of various metabolic pathways among Escherichia coli polyphosphate mutant strains (Δppk1, Δppx, and ΔpolyP). Bioinformatic analyses reveal the complex metabolic and regulatory bases of the phenotypes unique to polyP mutants. Our results suggest that during polyP deficiency (Δppk1 mutant), metabolic pathways needed for energy supply are up-regulated, including fermentation, aerobic and anaerobic respiration. Transcriptomic and q-proteomic contrasting changes between Δppk1 and Δppx mutant strains were observed in those central metabolic pathways and confirmed by using Phenotypic microarrays. In addition, our results suggest a regulatory connection between polyP, second messenger metabolism, alternative Sigma/Anti-Sigma factors and type-II toxin-antitoxin (TA) systems. We suggest a broader role for polyP via regulation of ATP-dependent proteolysis of type II toxin-antitoxin system and alternative Sigma/Anti-Sigma factors, that could explain the multiple structural and functional deficiencies described due to alteration of polyP metabolism. Understanding the interplay of polyP in bacterial metabolism using a systems biology approach can help to improve design of novel antimicrobials toward pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Transcriptomic Analysis of the Primary Roots of Alhagi sparsifolia in Response to Water Stress

    PubMed Central

    Pei, Xinwu; Zhang, Chao; Jia, Shirong; Li, Weimin

    2015-01-01

    Background Alhagi sparsifolia is a typical desert phreatophyte and has evolved to withstand extreme dry, cold and hot weather. While A. sparsifolia represents an ideal model to study the molecular mechanism of plant adaption to abiotic stress, no research has been done in this aspect to date. Here we took advantage of Illumina platform to survey transcriptome in primary roots of A. sparsifolia under water stress conditions in aim to facilitate the exploration of its genetic basis for drought tolerance. Methodology and Principal Findings We sequenced four primary roots samples individually collected at 0, 6, 24 and 30h from the A. sparsifolia seedlings in the course of 24h of water stress following 6h of rehydration. The resulting 38,763,230, 67,511,150, 49,259,804 and 54,744,906 clean reads were pooled and assembled into 33,255 unigenes with an average length of 1,057 bp. All-unigenes were subjected to functional annotation by searching against the public databases. Based on the established transcriptome database, we further evaluated the gene expression profiles in the four different primary roots samples, and identified numbers of differently expressed genes (DEGs) reflecting the early response to water stress (6h vs. 0h), the late response to water stress (24h vs. 0h) and the response to post water stress rehydration (30h vs. 24h). Moreover, the DEGs specifically regulated at 6, 24 and 30h were captured in order to depict the dynamic changes of gene expression during water stress and subsequent rehydration. Functional categorization of the DEGs indicated the activation of oxidoreductase system, and particularly emphasized the significance of the ‘Glutathione metabolism pathway’ in response to water stress. Conclusions This is the first description of the genetic makeup of A. sparsifolia, thus providing a substantial contribution to the sequence resources for this species. The identified DEGs offer a deep insight into the molecular mechanism of A. sparsifolia in response to water stress, and merit further investigation. PMID:25822368

  15. Characterisation of transcriptional responses to dioxins and dioxin-like contaminants in roach (Rutilus rutilus) using whole transcriptome analysis.

    PubMed

    Brinkmann, Markus; Koglin, Sven; Eisner, Bryanna; Wiseman, Steve; Hecker, Markus; Eichbaum, Kathrin; Thalmann, Beat; Buchinger, Sebastian; Reifferscheid, Georg; Hollert, Henner

    2016-01-15

    There is significant concern regarding the contamination of riverine sediments with dioxins and dioxin-like compounds (DLCs), including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs) and some polycyclic aromatic hydrocarbons (PAHs). The majority of studies investigating the ecotoxicology of DLCs in fish have focused on a few standard model species. However, there is significant uncertainty as to whether these model species are representative of native river fish, particularly in Europe. In this study, the transcriptional responses following exposure to equipotent concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCB 156 or the dioxin-like PAH, benzo[k]fluoranthene (BkF), were investigated in juvenile roach (Rutilus rutilus), a fish species that constitutes a large proportion of the fish biomass in freshwater bodies throughout Europe. To this end, RNA sequencing analysis was used to comprehensively characterise the molecular mechanisms and pathways of toxicity of these DLCs. Whole transcriptome analyses using ClueGO software revealed that DLCs have the potential to disrupt a number of important processes, including energy metabolism, oogenesis, the immune system, apoptosis and the response to oxidative stress. However, despite using equipotent concentrations, there was very little conservation of the transcriptional responses observed in fish exposed to different DLCs. TCDD provoked significant specific changes in the levels of transcripts related to immunotoxicity and carbohydrate metabolism, while PCB 156 caused virtually no specific effects. Exposure to BkF affected the most diverse suite of molecular functions and biological processes, including blood coagulation, oxidative stress responses, unspecific responses to organic or inorganic substances/stimuli, cellular redox homeostasis and specific receptor pathways. To our knowledge, this is the first study of the transcriptome-wide effects of different classes of DLCs in fish. These findings represent an important step towards describing complete toxicity pathways of DLCs, which will be important in the context of informing risk assessments of DLC toxicity in native fish species. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit

    PubMed Central

    2014-01-01

    Background Global climate change will noticeably affect plant vegetative and reproductive development. The recent increase in temperatures has already impacted yields and composition of berries in many grapevine-growing regions. Physiological processes underlying temperature response and tolerance of the grapevine fruit have not been extensively investigated. To date, all studies investigating the molecular regulation of fleshly fruit response to abiotic stress were only conducted during the day, overlooking possible critical night-specific variations. The present study explores the night and day transcriptomic response of grapevine fruit to heat stress at several developmental stages. Short heat stresses (2 h) were applied at day and night to vines bearing clusters sequentially ordered according to the developmental stages along their vertical axes. The recently proposed microvine model (DRCF-Dwarf Rapid Cycling and Continuous Flowering) was grown in climatic chambers in order to circumvent common constraints and biases inevitable in field experiments with perennial macrovines. Post-véraison berry heterogeneity within clusters was avoided by constituting homogenous batches following organic acids and sugars measurements of individual berries. A whole genome transcriptomic approach was subsequently conducted using NimbleGen 090818 Vitis 12X (30 K) microarrays. Results Present work reveals significant differences in heat stress responsive pathways according to day or night treatment, in particular regarding genes associated with acidity and phenylpropanoid metabolism. Precise distinction of ripening stages led to stage-specific detection of malic acid and anthocyanin-related transcripts modulated by heat stress. Important changes in cell wall modification related processes as well as indications for heat-induced delay of ripening and sugar accumulation were observed at véraison, an effect that was reversed at later stages. Conclusions This first day - night study on heat stress adaption of the grapevine berry shows that the transcriptome of fleshy fruits is differentially affected by abiotic stress at night. The present results emphasize the necessity of including different developmental stages and especially several daytime points in transcriptomic studies. PMID:24774299

  17. Overlapping Yet Response-Specific Transcriptome Alterations Characterize the Nature of Tobacco-Pseudomonas syringae Interactions.

    PubMed

    Bozsó, Zoltán; Ott, Péter G; Kámán-Tóth, Evelin; Bognár, Gábor F; Pogány, Miklós; Szatmári, Ágnes

    2016-01-01

    In this study transcriptomic alterations of bacterially induced pattern triggered immunity (PTI) were compared with other types of tobacco-Pseudomonas interactions. In addition, using pharmacological agents we blocked some signal transduction pathways (Ca(2+) influx, kinases, phospholipases, proteasomic protein degradation) to find out how they contribute to gene expression during PTI. PTI is the first defense response of plant cells to microbes, elicited by their widely conserved molecular patterns. Tobacco is an important model of Solanaceae to study resistance responses, including defense mechanisms against bacteria. In spite of these facts the transcription regulation of tobacco genes during different types of plant bacterial interactions is not well-described. In this paper we compared the tobacco transcriptomic alterations in microarray experiments induced by (i) PTI inducer Pseudomonas syringae pv. syringae type III secretion mutant (hrcC) at earlier (6 h post inoculation) and later (48 hpi) stages of defense, (ii) wild type P. syringae (6 hpi) that causes effector triggered immunity (ETI) and cell death (HR), and (iii) disease-causing P. syringae pv. tabaci (6 hpi). Among the different treatments the highest overlap was between the PTI and ETI at 6 hpi, however, there were groups of genes with specifically altered activity for either type of defenses. Instead of quantitative effects of the virulent P. tabaci on PTI-related genes it influenced transcription qualitatively and blocked the expression changes of a special set of genes including ones involved in signal transduction and transcription regulation. P. tabaci specifically activated or repressed other groups of genes seemingly not related to either PTI or ETI. Kinase and phospholipase A inhibitors had highest impacts on the PTI response and effects of these signal inhibitors on transcription greatly overlapped. Remarkable interactions of phospholipase C-related pathways with the proteasomal system were also observable. Genes specifically affected by virulent P. tabaci belonged to various previously identified signaling routes, suggesting that compatible pathogens may modulate diverse signaling pathways of PTI to overcome plant defense.

  18. Transcriptomic signatures in seeds of apple (Malus domestica L. Borkh) during fruitlet abscission.

    PubMed

    Ferrero, Sergio; Carretero-Paulet, Lorenzo; Mendes, Marta Adelina; Botton, Alessandro; Eccher, Giulia; Masiero, Simona; Colombo, Lucia

    2015-01-01

    Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is performed to further reduce the number of fruitlets. In this study we have conducted a transcriptomic profiling of seeds from two different types of fruitlets, according to size and position in the fruit cluster. Transcriptomic profiles of central and lateral fruit seeds were obtained by RNAseq. Comparative analysis was performed by the functional categorization of differentially expressed genes by means of Gene Ontology (GO) annotation of the apple genome. Our results revealed the overexpression of genes involved in responses to stress, hormone biosynthesis and also the response and/or transport of auxin and ethylene. A smaller set of genes, mainly related to ion transport and homeostasis, were found to be down-regulated. The transcriptome characterization described in this manuscript contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of apple fruits and suggests a role for seeds in this process.

  19. De novo assembly and transcriptome characterization of the freshwater prawn Palaemonetes argentinus: Implications for a detoxification response.

    PubMed

    García, C Fernando; Pedrini, Nicolas; Sánchez-Paz, Arturo; Reyna-Blanco, Carlos S; Lavarias, Sabrina; Muhlia-Almazán, Adriana; Fernández-Giménez, Analía; Laino, Aldana; de-la-Re-Vega, Enrique; Lukaszewicz, German; López-Zavala, Alonso A; Brieba, Luis G; Criscitello, Michael F; Carrasco-Miranda, Jesús S; García-Orozco, Karina D; Ochoa-Leyva, Adrian; Rudiño-Piñera, Enrique; Sanchez-Flores, Alejandro; Sotelo-Mundo, Rogerio R

    2018-02-01

    Palaemonetes argentinus, an abundant freshwater prawn species in the northern and central region of Argentina, has been used as a bioindicator of environmental pollutants as it displays a very high sensitivity to pollutants exposure. Despite their extraordinary ecological relevance, a lack of genomic information has hindered a more thorough understanding of the molecular mechanisms potentially involved in detoxification processes of this species. Thus, transcriptomic profiling studies represent a promising approach to overcome the limitations imposed by the lack of extensive genomic resources for P. argentinus, and may improve the understanding of its physiological and molecular response triggered by pollutants. This work represents the first comprehensive transcriptome-based characterization of the non-model species P. argentinus to generate functional genomic annotations and provides valuable resources for future genetic studies. Trinity de novo assembly consisted of 24,738 transcripts with high representation of detoxification (phase I and II), anti-oxidation, osmoregulation pathways and DNA replication and bioenergetics. This crustacean transcriptome provides valuable molecular information about detoxification and biochemical processes that could be applied as biomarkers in further ecotoxicology studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Transcriptomic Signatures in Seeds of Apple (Malus domestica L. Borkh) during Fruitlet Abscission

    PubMed Central

    Ferrero, Sergio; Carretero-Paulet, Lorenzo; Mendes, Marta Adelina; Botton, Alessandro; Eccher, Giulia; Masiero, Simona; Colombo, Lucia

    2015-01-01

    Abscission is the regulated process of detachment of an organ from a plant. In apple the abscission of fruits occurs during their early development to control the fruit load depending on the nutritional state of the plant. In order to control production and obtain fruits with optimal market qualities, the horticultural procedure of thinning is performed to further reduce the number of fruitlets. In this study we have conducted a transcriptomic profiling of seeds from two different types of fruitlets, according to size and position in the fruit cluster. Transcriptomic profiles of central and lateral fruit seeds were obtained by RNAseq. Comparative analysis was performed by the functional categorization of differentially expressed genes by means of Gene Ontology (GO) annotation of the apple genome. Our results revealed the overexpression of genes involved in responses to stress, hormone biosynthesis and also the response and/or transport of auxin and ethylene. A smaller set of genes, mainly related to ion transport and homeostasis, were found to be down-regulated. The transcriptome characterization described in this manuscript contributes to unravelling the molecular mechanisms and pathways involved in the physiological abscission of apple fruits and suggests a role for seeds in this process. PMID:25781174

  1. Comparative transcriptome profiling of chilling stress responsiveness in grafted watermelon seedlings.

    PubMed

    Xu, Jinhua; Zhang, Man; Liu, Guang; Yang, Xingping; Hou, Xilin

    2016-12-01

    Rootstock grafting may improve the resistance of watermelon plants to low temperatures. However, information regarding the molecular responses of rootstock grafted plants to chilling stress is limited. To elucidate the molecular mechanisms of chilling tolerance in grafted plants, the transcriptomic responses of grafted watermelon under chilling stress were analyzed using RNA-seq analysis. Sequencing data were used for digital gene expression (DGE) analysis to characterize the transcriptomic responses in grafted watermelon seedlings. A total of 702 differentially-expressed genes (DEGs) were found in rootstock grafted (RG) watermelon relative to self-grafted (SG) watermelon; among these genes, 522 genes were up-regulated and 180 were down-regulated. Additionally, 164 and 953 genes were found to specifically expressed in RG and SG seedlings under chilling stress, respectively. Functional annotations revealed that up-regulated DEGs are involved in protein processing, plant-pathogen interaction and the spliceosome, whereas down-regulated DEGs are associated with photosynthesis. Moreover, 13 DEGs were randomly selected for quantitative real time PCR (qRT-PCR) analysis. The expression profiles of these 13 DEGs were consistent with those detected by the DGE analysis, supporting the reliability of the DGE data. This work provides additional insight into the molecular basis of grafted watermelon responses to chilling stress. Copyright © 2016. Published by Elsevier Masson SAS.

  2. Comparative Transcriptomic Analysis of the Response of Dunaliella acidophila (Chlorophyta) to Short-Term Cadmium and Chronic Natural Metal-Rich Water Exposures.

    PubMed

    Puente-Sánchez, Fernando; Olsson, Sanna; Aguilera, Angeles

    2016-10-01

    Heavy metals are toxic compounds known to cause multiple and severe cellular damage. However, acidophilic extremophiles are able to cope with very high concentrations of heavy metals. This study investigated the stress response under natural environmental heavy metal concentrations in an acidophilic Dunaliella acidophila. We employed Illumina sequencing for a de novo transcriptome assembly and to identify changes in response to high cadmium concentrations and natural metal-rich water. The photosynthetic performance was also estimated by pulse amplitude-modulated (PAM) fluorescence. Transcriptomic analysis highlights a number of processes mainly related to a high constitutive expression of genes involved in oxidative stress and response to reactive oxygen species (ROS), even in the absence of heavy metals. Photosynthetic activity seems to be unaltered under short-term exposition to Cd and chronic exposure to natural metal-rich water, probably due to an increase in the synthesis of structural photosynthetic components preserving their functional integrity. An overrepresentation of Gene Ontology (GO) terms related to metabolic activities, transcription, and proteosomal catabolic process was observed when D. acidophila grew under chronic exposure to natural metal-rich water. GO terms involved in carbohydrate metabolic process, reticulum endoplasmic and Golgi bodies, were also specifically overrepresented in natural metal-rich water library suggesting an endoplasmic reticulum stress response.

  3. Time of day determines Arabidopsis transcriptome and growth dynamics under mild drought.

    PubMed

    Dubois, Marieke; Claeys, Hannes; Van den Broeck, Lisa; Inzé, Dirk

    2017-02-01

    Drought stress is a major problem for agriculture worldwide, causing significant yield losses. Plants have developed highly flexible mechanisms to deal with drought, including organ- and developmental stage-specific responses. In young leaves, growth is repressed as an active mechanism to save water and energy, increasing the chances of survival but decreasing yield. Despite its importance, the molecular basis for this growth inhibition is largely unknown. Here, we present a novel approach to explore early molecular mechanisms controlling Arabidopsis leaf growth inhibition following mild drought. We found that growth and transcriptome responses to drought are highly dynamic. Growth was only repressed by drought during the day, and our evidence suggests that this may be due to gating by the circadian clock. Similarly, time of day strongly affected the extent, specificity, and in certain cases even direction of drought-induced changes in gene expression. These findings underscore the importance of taking into account diurnal patterns to understand stress responses, as only a small core of drought-responsive genes are affected by drought at all times of the day. Finally, we leveraged our high-resolution data to demonstrate that phenotypic and transcriptome responses can be matched to identify putative novel regulators of growth under mild drought. © 2016 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  4. Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes.

    PubMed

    Stillman, Jonathon H; Tagmount, Abderrahmane

    2009-10-01

    Central predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation. We observed acclimatization dependent induction of heat shock proteins, as well as unknown genes with heat shock protein-like expression profiles. Thermal acclimatization had the largest effect on heat stress responses of extensin-like, beta tubulin, and unknown genes. For these genes, crabs acclimatized to thermally variable sites had higher constitutive expression than specimens from low variability sites, but heat stress dramatically induced expression in specimens from low variability sites and repressed expression in specimens from highly variable sites. Our application of ecological transcriptomics has yielded new biomarkers that may represent sensitive indicators of acclimatization to habitat temperature fluctuation. Our study also has identified novel genes whose further description may yield novel understanding of cellular responses to thermal acclimatization or thermal stress.

  5. Transcriptome sequencing of rhizome tissue of Sinopodophyllum hexandrum at two temperatures.

    PubMed

    Kumari, Anita; Singh, Heikham Russiachand; Jha, Ashwani; Swarnkar, Mohit Kumar; Shankar, Ravi; Kumar, Sanjay

    2014-10-07

    Sinopodophyllum hexandrum is an endangered medicinal herb, which is commonly present in elevations ranging between 2,400-4,500 m and is sensitive to temperature. Medicinal property of the species is attributed to the presence of podophyllotoxin in the rhizome tissue. The present work analyzed transcriptome of rhizome tissue of S. hexandrum exposed to 15°C and 25°C to understand the temperature mediated molecular responses including those associated with podophyllotoxin biosynthesis. Deep sequencing of transcriptome with an average coverage of 88.34X yielded 60,089 assembled transcript sequences representing 20,387 unique genes having homology to known genes. Fragments per kilobase of exon per million fragments mapped (FPKM) based expression analysis revealed genes related to growth and development were over-expressed at 15°C, whereas genes involved in stress response were over-expressed at 25°C. There was a decreasing trend of podophyllotoxin accumulation at 25°C; data was well supported by the expression of corresponding genes of the pathway. FPKM data was validated by quantitative real-time polymerase chain reaction data using a total of thirty four genes and a positive correlation between the two platforms of gene expression was obtained. Also, detailed analyses yielded cytochrome P450s, methyltransferases and glycosyltransferases which could be the potential candidate hitherto unidentified genes of podophyllotoxin biosynthesis pathway. The present work revealed temperature responsive transcriptome of S. hexandrum on Illumina platform. Data suggested expression of genes for growth and development and podophyllotoxin biosynthesis at 15°C, and prevalence of those associated with stress response at 25°C.

  6. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    PubMed

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  7. Optimized Probe Masking for Comparative Transcriptomics of Closely Related Species

    PubMed Central

    Poeschl, Yvonne; Delker, Carolin; Trenner, Jana; Ullrich, Kristian Karsten; Quint, Marcel; Grosse, Ivo

    2013-01-01

    Microarrays are commonly applied to study the transcriptome of specific species. However, many available microarrays are restricted to model organisms, and the design of custom microarrays for other species is often not feasible. Hence, transcriptomics approaches of non-model organisms as well as comparative transcriptomics studies among two or more species often make use of cost-intensive RNAseq studies or, alternatively, by hybridizing transcripts of a query species to a microarray of a closely related species. When analyzing these cross-species microarray expression data, differences in the transcriptome of the query species can cause problems, such as the following: (i) lower hybridization accuracy of probes due to mismatches or deletions, (ii) probes binding multiple transcripts of different genes, and (iii) probes binding transcripts of non-orthologous genes. So far, methods for (i) exist, but these neglect (ii) and (iii). Here, we propose an approach for comparative transcriptomics addressing problems (i) to (iii), which retains only transcript-specific probes binding transcripts of orthologous genes. We apply this approach to an Arabidopsis lyrata expression data set measured on a microarray designed for Arabidopsis thaliana, and compare it to two alternative approaches, a sequence-based approach and a genomic DNA hybridization-based approach. We investigate the number of retained probe sets, and we validate the resulting expression responses by qRT-PCR. We find that the proposed approach combines the benefit of sequence-based stringency and accuracy while allowing the expression analysis of much more genes than the alternative sequence-based approach. As an added benefit, the proposed approach requires probes to detect transcripts of orthologous genes only, which provides a superior base for biological interpretation of the measured expression responses. PMID:24260119

  8. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome

    PubMed Central

    Kim, Gunjune

    2017-01-01

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is “leaves of three, let it be”, which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species. PMID:29125533

  9. Sequencing and De Novo Assembly of the Toxicodendron radicans (Poison Ivy) Transcriptome.

    PubMed

    Weisberg, Alexandra J; Kim, Gunjune; Westwood, James H; Jelesko, John G

    2017-11-10

    Contact with poison ivy plants is widely dreaded because they produce a natural product called urushiol that is responsible for allergenic contact delayed-dermatitis symptoms lasting for weeks. For this reason, the catchphrase most associated with poison ivy is "leaves of three, let it be", which serves the purpose of both identification and an appeal for avoidance. Ironically, despite this notoriety, there is a dearth of specific knowledge about nearly all other aspects of poison ivy physiology and ecology. As a means of gaining a more molecular-oriented understanding of poison ivy physiology and ecology, Next Generation DNA sequencing technology was used to develop poison ivy root and leaf RNA-seq transcriptome resources. De novo assembled transcriptomes were analyzed to generate a core set of high quality expressed transcripts present in poison ivy tissue. The predicted protein sequences were evaluated for similarity to SwissProt homologs and InterProScan domains, as well as assigned both GO terms and KEGG annotations. Over 23,000 simple sequence repeats were identified in the transcriptome, and corresponding oligo nucleotide primer pairs were designed. A pan-transcriptome analysis of existing Anacardiaceae transcriptomes revealed conserved and unique transcripts among these species.

  10. Assessing the Gene Content of the Megagenome: Sugar Pine (Pinus lambertiana)

    PubMed Central

    Gonzalez-Ibeas, Daniel; Martinez-Garcia, Pedro J.; Famula, Randi A.; Delfino-Mix, Annette; Stevens, Kristian A.; Loopstra, Carol A.; Langley, Charles H.; Neale, David B.; Wegrzyn, Jill L.

    2016-01-01

    Sugar pine (Pinus lambertiana Douglas) is within the subgenus Strobus with an estimated genome size of 31 Gbp. Transcriptomic resources are of particular interest in conifers due to the challenges presented in their megagenomes for gene identification. In this study, we present the first comprehensive survey of the P. lambertiana transcriptome through deep sequencing of a variety of tissue types to generate more than 2.5 billion short reads. Third generation, long reads generated through PacBio Iso-Seq have been included for the first time in conifers to combat the challenges associated with de novo transcriptome assembly. A technology comparison is provided here to contribute to the otherwise scarce comparisons of second and third generation transcriptome sequencing approaches in plant species. In addition, the transcriptome reference was essential for gene model identification and quality assessment in the parallel project responsible for sequencing and assembly of the entire genome. In this study, the transcriptomic data were also used to address questions surrounding lineage-specific Dicer-like proteins in conifers. These proteins play a role in the control of transposable element proliferation and the related genome expansion in conifers. PMID:27799338

  11. A Systems Biology View of Responses to Lignin Biosynthesis Perturbations in Arabidopsis[W

    PubMed Central

    Vanholme, Ruben; Storme, Véronique; Vanholme, Bartel; Sundin, Lisa; Christensen, Jørgen Holst; Goeminne, Geert; Halpin, Claire; Rohde, Antje; Morreel, Kris; Boerjan, Wout

    2012-01-01

    Lignin engineering is an attractive strategy to improve lignocellulosic biomass quality for processing to biofuels and other bio-based products. However, lignin engineering also results in profound metabolic consequences in the plant. We used a systems biology approach to study the plant’s response to lignin perturbations. To this end, inflorescence stems of 20 Arabidopsis thaliana mutants, each mutated in a single gene of the lignin biosynthetic pathway (phenylalanine ammonia-lyase1 [PAL1], PAL2, cinnamate 4-hydroxylase [C4H], 4-coumarate:CoA ligase1 [4CL1], 4CL2, caffeoyl-CoA O-methyltransferase1 [CCoAOMT1], cinnamoyl-CoA reductase1 [CCR1], ferulate 5-hydroxylase [F5H1], caffeic acid O-methyltransferase [COMT], and cinnamyl alcohol dehydrogenase6 [CAD6], two mutant alleles each), were analyzed by transcriptomics and metabolomics. A total of 566 compounds were detected, of which 187 could be tentatively identified based on mass spectrometry fragmentation and many were new for Arabidopsis. Up to 675 genes were differentially expressed in mutants that did not have any obvious visible phenotypes. Comparing the responses of all mutants indicated that c4h, 4cl1, ccoaomt1, and ccr1, mutants that produced less lignin, upregulated the shikimate, methyl-donor, and phenylpropanoid pathways (i.e., the pathways supplying the monolignols). By contrast, f5h1 and comt, mutants that provoked lignin compositional shifts, downregulated the very same pathways. Reductions in the flux to lignin were associated with the accumulation of various classes of 4-O- and 9-O-hexosylated phenylpropanoids. By combining metabolomic and transcriptomic data in a correlation network, system-wide consequences of the perturbations were revealed and genes with a putative role in phenolic metabolism were identified. Together, our data provide insight into lignin biosynthesis and the metabolic network it is embedded in and provide a systems view of the plant’s response to pathway perturbations. PMID:23012438

  12. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus.

    PubMed

    Brennan, Reid S; Galvez, Fernando; Whitehead, Andrew

    2015-04-15

    The killifish Fundulus heteroclitus is an estuarine species with broad physiological plasticity, enabling acclimation to diverse stressors. Previous work suggests that freshwater populations expanded their physiology to accommodate low salinity environments; however, it is unknown whether this compromises their tolerance to high salinity. We used a comparative approach to investigate the mechanisms of a derived freshwater phenotype and the fate of an ancestral euryhaline phenotype after invasion of a freshwater environment. We compared physiological and transcriptomic responses to high- and low-salinity stress in fresh and brackish water populations and found an enhanced plasticity to low salinity in the freshwater population coupled with a reduced ability to acclimate to high salinity. Transcriptomic data identified genes with a conserved common response, a conserved salinity-dependent response and responses associated with population divergence. Conserved common acclimation responses revealed stress responses and alterations in cell-cycle regulation as important mechanisms in the general osmotic response. Salinity-specific responses included the regulation of genes involved in ion transport, intracellular calcium, energetic processes and cellular remodeling. Genes diverged between populations were primarily those showing salinity-specific expression and included those regulating polyamine homeostasis and the cell cycle. Additionally, when populations were matched with their native salinity, expression patterns were consistent with the concept of 'transcriptomic resilience', suggesting local adaptation. These findings provide insight into the fate of a plastic phenotype after a shift in environmental salinity and help to reveal mechanisms allowing for euryhalinity. © 2015. Published by The Company of Biologists Ltd.

  13. Spatial transcriptomics: paving the way for tissue-level systems biology.

    PubMed

    Moor, Andreas E; Itzkovitz, Shalev

    2017-08-01

    The tissues in our bodies are complex systems composed of diverse cell types that often interact in highly structured repeating anatomical units. External gradients of morphogens, directional blood flow, as well as the secretion and absorption of materials by cells generate distinct microenvironments at different tissue coordinates. Such spatial heterogeneity enables optimized function through division of labor among cells. Unraveling the design principles that govern this spatial division of labor requires techniques to quantify the entire transcriptomes of cells while accounting for their spatial coordinates. In this review we describe how recent advances in spatial transcriptomics open the way for tissue-level systems biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Transcriptomic analysis of grain amaranth (Amaranthus hypochondriacus) using 454 pyrosequencing: comparison with A. tuberculatus, expression profiling in stems and in response to biotic and abiotic stress

    PubMed Central

    2011-01-01

    Background Amaranthus hypochondriacus, a grain amaranth, is a C4 plant noted by its ability to tolerate stressful conditions and produce highly nutritious seeds. These possess an optimal amino acid balance and constitute a rich source of health-promoting peptides. Although several recent studies, mostly involving subtractive hybridization strategies, have contributed to increase the relatively low number of grain amaranth expressed sequence tags (ESTs), transcriptomic information of this species remains limited, particularly regarding tissue-specific and biotic stress-related genes. Thus, a large scale transcriptome analysis was performed to generate stem- and (a)biotic stress-responsive gene expression profiles in grain amaranth. Results A total of 2,700,168 raw reads were obtained from six 454 pyrosequencing runs, which were assembled into 21,207 high quality sequences (20,408 isotigs + 799 contigs). The average sequence length was 1,064 bp and 930 bp for isotigs and contigs, respectively. Only 5,113 singletons were recovered after quality control. Contigs/isotigs were further incorporated into 15,667 isogroups. All unique sequences were queried against the nr, TAIR, UniRef100, UniRef50 and Amaranthaceae EST databases for annotation. Functional GO annotation was performed with all contigs/isotigs that produced significant hits with the TAIR database. Only 8,260 sequences were found to be homologous when the transcriptomes of A. tuberculatus and A. hypochondriacus were compared, most of which were associated with basic house-keeping processes. Digital expression analysis identified 1,971 differentially expressed genes in response to at least one of four stress treatments tested. These included several multiple-stress-inducible genes that could represent potential candidates for use in the engineering of stress-resistant plants. The transcriptomic data generated from pigmented stems shared similarity with findings reported in developing stems of Arabidopsis and black cottonwood (Populus trichocarpa). Conclusions This study represents the first large-scale transcriptomic analysis of A. hypochondriacus, considered to be a highly nutritious and stress-tolerant crop. Numerous genes were found to be induced in response to (a)biotic stress, many of which could further the understanding of the mechanisms that contribute to multiple stress-resistance in plants, a trait that has potential biotechnological applications in agriculture. PMID:21752295

  15. A Rapid, Extensive, and Transient Transcriptional Response to Estrogen Signaling in Breast Cancer Cells

    PubMed Central

    Hah, Nasun; Danko, Charles G.; Core, Leighton; Waterfall, Joshua J.; Siepel, Adam; Lis, John T.; Kraus, W. Lee

    2011-01-01

    Summary We report the immediate effects of estrogen signaling on the transcriptome of breast cancer cells using Global Run-On and sequencing (GRO-seq). The data were analyzed using a new bioinformatic approach that allowed us to identify transcripts directly from the GRO-seq data. We found that estrogen signaling directly regulates a strikingly large fraction of the transcriptome in a rapid, robust, and unexpectedly transient manner. In addition to protein coding genes, estrogen regulates the distribution and activity of all three RNA polymerases, and virtually every class of non-coding RNA that has been described to date. We also identified a large number of previously undetected estrogen-regulated intergenic transcripts, many of which are found proximal to estrogen receptor binding sites. Collectively, our results provide the most comprehensive measurement of the primary and immediate estrogen effects to date and a resource for understanding rapid signal-dependent transcription in other systems. PMID:21549415

  16. Xenobiotic metabolism in the fourth dimension: PARtners in time.

    PubMed

    Green, Carla B; Takahashi, Joseph S

    2006-07-01

    A significant portion of the transcriptome in mammals, including the PAR bZIP transcription factors DBP, HLF, and TEF, is under circadian clock control. In this issue of Cell Metabolism, Gachon and colleagues (Gachon et al., 2006) show that disruption of these three genes in mice alters gene expression patterns of many proteins involved in drug metabolism and in liver and kidney responses to xenobiotic agents. Triple mutant mice have severe physiological deficits, including increased hypersensitivity to xenobiotic agents and premature aging, highlighting the profound effect the circadian clock has on this important response system.

  17. Unraveling the early molecular and physiological mechanisms involved in response to phenanthrene exposure.

    PubMed

    Dumas, Anne-Sophie; Taconnat, Ludivine; Barbas, Evangelos; Rigaill, Guillem; Catrice, Olivier; Bernard, Delphine; Benamar, Abdelilah; Macherel, David; El Amrani, Abdelhak; Berthomé, Richard

    2016-10-21

    Higher plants have to cope with increasing concentrations of pollutants of both natural and anthropogenic origin. Given their capacity to concentrate and metabolize various compounds including pollutants, plants can be used to treat environmental problems - a process called phytoremediation. However, the molecular mechanisms underlying the stabilization, the extraction, the accumulation and partial or complete degradation of pollutants by plants remain poorly understood. Here, we determined the molecular events involved in the early plant response to phenanthrene, used as a model of polycyclic aromatic hydrocarbons. A transcriptomic and a metabolic analysis strongly suggest that energy availability is the crucial limiting factor leading to high and rapid transcriptional reprogramming that can ultimately lead to death. We show that the accumulation of phenanthrene in leaves inhibits electron transfer and photosynthesis within a few minutes, probably disrupting energy transformation. This kinetic analysis improved the resolution of the transcriptome in the initial plant response to phenanthrene, identifying genes that are involved in primary processes set up to sense and detoxify this pollutant but also in molecular mechanisms used by the plant to cope with such harmful stress. The identification of first events involved in plant response to phenanthrene is a key step in the selection of candidates for further functional characterization, with the prospect of engineering efficient ecological detoxification systems for polycyclic aromatic hydrocarbons.

  18. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration

    PubMed Central

    Petersen, Hendrik O.; Höger, Stefanie K.; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W.

    2015-01-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. PMID:25841488

  19. Bacterial Responses to Reactive Chlorine Species

    PubMed Central

    Gray, Michael J.; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  20. Global transcriptome analysis of eukaryotic genes affected by gromwell extract.

    PubMed

    Bang, Soohyun; Lee, Dohyun; Kim, Hanhe; Park, Jiyong; Bahn, Yong-Sun

    2014-02-01

    Gromwell is known to have diverse pharmacological, cosmetic and nutritional benefits for humans. Nevertheless, the biological influence of gromwell extract (GE) on the general physiology of eukaryotic cells remains unknown. In this study a global transcriptome analysis was performed to identify genes affected by the addition of GE with Cryptococcus neoformans as the model system. In response to GE treatment, genes involved in signal transduction were immediately regulated, and the evolutionarily conserved sets of genes involved in the core cellular functions, including DNA replication, RNA transcription/processing and protein translation/processing, were generally up-regulated. In contrast, a number of genes involved in carbohydrate metabolism and transport, inorganic ion transport and metabolism, post-translational modification/protein turnover/chaperone functions and signal transduction were down-regulated. Among the GE-responsive genes that are also evolutionarily conserved in the human genome, the expression patterns of YSA1, TPO2, CFO1 and PZF1 were confirmed by northern blot analysis. Based on the functional characterization of some GE-responsive genes, it was found that GE treatment may promote cellular tolerance against a variety of environmental stresses in eukaryotes. GE treatment affects the expression levels of a significant portion of the Cryptococcus genome, implying that GE significantly affects the general physiology of eukaryotic cells. © 2013 Society of Chemical Industry.

  1. Adenylylation of mycobacterial Glnk (PII) protein is induced by nitrogen limitation

    PubMed Central

    Williams, Kerstin J.; Bennett, Mark H.; Barton, Geraint R.; Jenkins, Victoria A.; Robertson, Brian D.

    2013-01-01

    Summary PII proteins are pivotal regulators of nitrogen metabolism in most prokaryotes, controlling the activities of many targets, including nitrogen assimilation enzymes, two component regulatory systems and ammonium transport proteins. Escherichia coli contains two PII-like proteins, PII (product of glnB) and GlnK, both of which are uridylylated under nitrogen limitation at a conserved Tyrosine-51 residue by GlnD (a uridylyl transferase). PII-uridylylation in E. coli controls glutamine synthetase (GS) adenylylation by GlnE and mediates the NtrB/C transcriptomic response. Mycobacteria contain only one PII protein (GlnK) which in environmental Actinomycetales is adenylylated by GlnD under nitrogen limitation. However in mycobacteria, neither the type of GlnK (PII) covalent modification nor its precise role under nitrogen limitation is known. In this study, we used LC-Tandem MS to analyse the modification state of mycobacterial GlnK (PII), and demonstrate that during nitrogen limitation GlnK from both non-pathogenic Mycobacterium smegmatis and pathogenic Mycobacterium tuberculosis is adenylylated at the Tyrosine-51 residue; we also show that GlnD is the adenylyl transferase enzyme responsible. Further analysis shows that in contrast to E. coli, GlnK (PII) adenylylation in M. tuberculosis does not regulate GS adenylylation, nor does it mediate the transcriptomic response to nitrogen limitation. PMID:23352854

  2. De novo transcriptome assembly and analysis of differential gene expression following peptidoglycan (PGN) challenge in Antheraea pernyi.

    PubMed

    Liu, Yu; Xin, Zhao-Zhe; Zhang, Dai-Zhen; Zhu, Xiao-Yu; Wang, Ying; Chen, Li; Tang, Bo-Ping; Zhou, Chun-Lin; Chai, Xin-Yue; Tian, Ji-Wu; Liu, Qiu-Ning

    2018-06-01

    Antheraea pernyi is not only an important economic insect, it is increasingly employed as a model organism due to a variety of advantages, including ease of rearing and experimental manipulation compared with other Lepidoptera. Peptidoglycan (PGN) is a major component of the bacterial cell wall, and interactions between PGN and A. pernyi cause a series of physiological changes in the insect. In the present study, we constructed cDNA libraries from a A. pernyi PGN-infected group and a control group stimulated with phosphate-buffered saline (PBS). The transcriptome was de novo assembled using the Trinity platform, and 1698 differentially expressed genes (DEGs) were identified, comprising 894 up-regulated and 804 down-regulated genes. To further investigate immune-related DEGs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed. GO analysis identified major immune-related GO terms and KEGG enrichment indicated gene responses to three pathways related to the insect immune system. Several homologous genes related to the immune response of the A. pernyi fat body post-PGN infection were identified and categorised. Taken together, the results provide insight into the complex molecular mechanisms of the responses to bacterial infection at the transcriptional level. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Proteomic and Transcriptomic Analysis of Aspergillus fumigatus on Exposure to Amphotericin B▿ †

    PubMed Central

    Gautam, Poonam; Shankar, Jata; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Gade, Wasudev Namdeo; Basir, Seemi Farhat; Sarma, Puranam Usha

    2008-01-01

    Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections, including invasive aspergillosis. It has been our aim to understand the molecular targets of AMB in Aspergillus fumigatus by genomic and proteomic approaches. In transcriptomic analysis, a total of 295 genes were found to be differentially expressed (165 upregulated and 130 downregulated), including many involving the ergosterol pathway, cell stress proteins, cell wall proteins, transport proteins, and hypothetical proteins. Proteomic profiles of A. fumigatus alone or A. fumigatus treated with AMB showed differential expression levels for 85 proteins (76 upregulated and 9 downregulated). Forty-eight of them were identified with high confidence and belonged to the above-mentioned categories. Differential expression levels for Rho-GDP dissociation inhibitor (Rho-GDI), secretory-pathway GDI, clathrin, Sec 31 (a subunit of the exocyst complex), and RAB GTPase Ypt51 in response to an antifungal drug are reported here for the first time and may represent a specific response of A. fumigatus to AMB. The expression of some of these genes was validated by real-time reverse transcription-PCR. The AMB responsive genes/proteins observed to be differentially expressed in A. fumigatus may be further explored for novel drug development. PMID:18838595

  4. Proteomic and transcriptomic analysis of Aspergillus fumigatus on exposure to amphotericin B.

    PubMed

    Gautam, Poonam; Shankar, Jata; Madan, Taruna; Sirdeshmukh, Ravi; Sundaram, Curam Sreenivasacharlu; Gade, Wasudev Namdeo; Basir, Seemi Farhat; Sarma, Puranam Usha

    2008-12-01

    Amphotericin B (AMB) is the most widely used polyene antifungal drug for the treatment of systemic fungal infections, including invasive aspergillosis. It has been our aim to understand the molecular targets of AMB in Aspergillus fumigatus by genomic and proteomic approaches. In transcriptomic analysis, a total of 295 genes were found to be differentially expressed (165 upregulated and 130 downregulated), including many involving the ergosterol pathway, cell stress proteins, cell wall proteins, transport proteins, and hypothetical proteins. Proteomic profiles of A. fumigatus alone or A. fumigatus treated with AMB showed differential expression levels for 85 proteins (76 upregulated and 9 downregulated). Forty-eight of them were identified with high confidence and belonged to the above-mentioned categories. Differential expression levels for Rho-GDP dissociation inhibitor (Rho-GDI), secretory-pathway GDI, clathrin, Sec 31 (a subunit of the exocyst complex), and RAB GTPase Ypt51 in response to an antifungal drug are reported here for the first time and may represent a specific response of A. fumigatus to AMB. The expression of some of these genes was validated by real-time reverse transcription-PCR. The AMB responsive genes/proteins observed to be differentially expressed in A. fumigatus may be further explored for novel drug development.

  5. Comparative analysis of the transcriptome responses of zebrafish embryos after exposure to low concentrations of cadmium, cobalt and copper.

    PubMed

    Sonnack, Laura; Klawonn, Thorsten; Kriehuber, Ralf; Hollert, Henner; Schäfers, Christoph; Fenske, Martina

    2018-03-01

    Metal toxicity is a global environmental challenge. Fish are particularly prone to metal exposure, which can be lethal or cause sublethal physiological impairments. The objective of this study was to investigate how adverse effects of chronic exposure to non-toxic levels of essential and non-essential metals in early life stage zebrafish may be explained by changes in the transcriptome. We therefore studied the effects of three different metals at low concentrations in zebrafish embryos by transcriptomics analysis. The study design compared exposure effects caused by different metals at different developmental stages (pre-hatch and post-hatch). Wild-type embryos were exposed to solutions of low concentrations of copper (CuSO 4 ), cadmium (CdCl 2 ) and cobalt (CoSO 4 ) until 96h post-fertilization (hpf) and microarray experiments were carried out to determine transcriptome profiles at 48 and 96hpf. We found that the toxic metal cadmium affected the expression of more genes at 96hpf than 48hpf. The opposite effect was observed for the essential metals cobalt and copper, which also showed enrichment of different GO terms. Genes involved in neuromast and motor neuron development were significantly enriched, agreeing with our previous results showing motor neuron and neuromast damage in the embryos. Our data provide evidence that the response of the transcriptome of fish embryos to metal exposure differs for essential and non-essential metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Nature and nurture: environmental influences on a genetic rat model of depression.

    PubMed

    Mehta-Raghavan, N S; Wert, S L; Morley, C; Graf, E N; Redei, E E

    2016-03-29

    In this study, we sought to learn whether adverse events such as chronic restraint stress (CRS), or 'nurture' in the form of environmental enrichment (EE), could modify depression-like behavior and blood biomarker transcript levels in a genetic rat model of depression. The Wistar Kyoto More Immobile (WMI) is a genetic model of depression that aided in the identification of blood transcriptomic markers, which successfully distinguished adolescent and adult subjects with major depressive disorders from their matched no-disorder controls. Here, we followed the effects of CRS and EE in adult male WMIs and their genetically similar control strain, the Wistar Kyoto Less Immobile (WLI), that does not show depression-like behavior, by measuring the levels of these transcripts in the blood and hippocampus. In WLIs, increased depression-like behavior and transcriptomic changes were present in response to CRS, but in WMIs no behavioral or additive transcriptomic changes occurred. Environmental enrichment decreased both the inherent depression-like behavior in the WMIs and the behavioral difference between WMIs and WLIs, but did not reverse basal transcript level differences between the strains. The inverse behavioral change induced by CRS and EE in the WLIs did not result in parallel inverse expression changes of the transcriptomic markers, suggesting that these behavioral responses to the environment work via separate molecular pathways. In contrast, 'trait' transcriptomic markers with expression differences inherent and unchanging between the strains regardless of the environment suggest that in our model, environmental and genetic etiologies of depression work through independent molecular mechanisms.

  7. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel.

    PubMed

    Pujolar, Jose Martin; Marino, Ilaria A M; Milan, Massimo; Coppe, Alessandro; Maes, Gregory E; Capoccioni, Fabrizio; Ciccotti, Eleonora; Bervoets, Lieven; Covaci, Adrian; Belpaire, Claude; Cramb, Gordon; Patarnello, Tomaso; Bargelloni, Luca; Bortoluzzi, Stefania; Zane, Lorenzo

    2012-09-25

    Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production.

  8. Comparative Immune- and Stress-Related Transcript Response Induced by Air Exposure and Vibrio anguillarum Bacterin in Rainbow Trout (Oncorhynchus mykiss) and Gilthead Seabream (Sparus aurata) Mucosal Surfaces

    PubMed Central

    Khansari, Ali Reza; Balasch, Joan Carles; Vallejos-Vidal, Eva; Parra, David; Reyes-López, Felipe E.; Tort, Lluís

    2018-01-01

    Fish have to face various environmental challenges that may compromise the efficacy of the immune response in mucosal surfaces. Since the effect of acute stress on mucosal barriers in fish has still not been fully elucidated, we aimed to compare the short-term mucosal stress and immune transcriptomic responses in a freshwater (rainbow trout, Oncorhynchus mykiss) and a marine fish (gilthead seabream, Sparus aurata) to bacterial immersion (Vibrio anguillarum bacterin vaccine) and air exposure stress in skin, gills, and intestine. Air exposure and combined (vaccine + air) stressors exposure were found to be inducers of the cortisol secretion in plasma and skin mucus on both species in a time-dependent manner, while V. anguillarum bacterin exposure induced cortisol release in trout skin mucus only. This was coincident with a marked differential increase in transcriptomic patterns of stress- and immune-related gene expression profiles. Particularly in seabream skin, the expression of cytokines was markedly enhanced, whereas in gills the response was mainly suppressed. In rainbow trout gut, both air exposure and vaccine stimulated the transcriptomic response, whereas in seabream, stress and immune responses were mainly induced by air exposure. Therefore, our comparative survey on the transcriptomic mucosal responses demonstrates that skin and gut were generally more reactive in both species. However, the upregulation of immune transcripts was more pronounced in gills and gut of vaccinated trout, whereas seabream appeared to be more stress-prone and less responsive to V. anguillarum bacterin in gills and gut. When fish were subjected to both treatments no definite pattern was observed. Overall, the results indicate that (1) the immune response was not homogeneous among mucosae (2), it was greatly influenced by the specific traits of each stressor in each surface and (3) was highly species-specific, probably as a result of the adaptive life story of each species to the microbial load and environmental characteristics of their respective natural habitats. PMID:29770134

  9. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption.

    PubMed

    Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Muth-Köhne, Elke; Giesy, John P; Hecker, Markus; Fenske, Martina

    2013-01-01

    Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Aerosol from Tobacco Heating System 2.2 has reduced impact on mouse heart gene expression compared with cigarette smoke.

    PubMed

    Szostak, Justyna; Boué, Stéphanie; Talikka, Marja; Guedj, Emmanuel; Martin, Florian; Phillips, Blaine; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-03-01

    Experimental studies clearly demonstrate a causal effect of cigarette smoking on cardiovascular disease. To reduce the individual risk and population harm caused by smoking, alternative products to cigarettes are being developed. We recently reported on an apolipoprotein E-deficient (Apoe -/- ) mouse inhalation study that compared the effects of exposure to aerosol from a candidate modified risk tobacco product, Tobacco Heating System 2.2 (THS2.2), and smoke from the reference cigarette (3R4F) on pulmonary and vascular biology. Here, we applied a transcriptomics approach to evaluate the impact of the exposure to 3R4F smoke and THS2.2 aerosol on heart tissues from the same cohort of mice. The systems response profiles demonstrated that 3R4F smoke exposure led to time-dependent transcriptomics changes (False Discovery Rate (FDR) < 0.05; 44 differentially expressed genes at 3-months; 491 at 8-months). Analysis of differentially expressed genes in the heart tissue indicated that 3R4F exposure induced the downregulation of genes involved in cytoskeleton organization and the contractile function of the heart, notably genes that encode beta actin (Actb), actinin alpha 4 (Actn4), and filamin C (Flnc). This was accompanied by the downregulation of genes related to the inflammatory response. None of these effects were observed in the group exposed to THS2.2 aerosol. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Transcriptome analysis of genes involved in the response of a pollinator fig wasp to volatile organic compounds from its host figs

    NASA Astrophysics Data System (ADS)

    Zeng, Jiqing; Yu, Hui; Kjellberg, Finn

    2018-07-01

    The mutualism of figs and their pollinating fig wasps is widely regarded as a model for coevolved mutualism. A high degree of host specificity is ensured by female wasps only being attracted by their specific fig tree species through the volatile organic compounds (VOCs) released by the figs when they are ready to be pollinated. However, very little is known about the molecular mechanisms underlying the production of VOCs and how pollinators respond to these VOCs. Here we present transcriptome sequencing data from VOC-treated fig wasps and control fig wasps. Using Illumina paired-end sequencing, approximately 6.47 Gbp and 6.48 Gbp high quality reads were generated for fig wasps that had been exposed or not to VOCs of their host fig. After read trimming, the de novo assembly of both types of reads produced 58,192 unigenes with an average length of 817 bp. Then functional annotation and GO enrichment analysis was performed by aligning all-unigenes with public protein databases including NR, SwissProt, and KEGG. Differentially expressed genes (DEGs) were investigated using the RPKM method. Overall, 16 up-regulated genes and 13 down-regulated genes were identified. We further performed GO enrichment and metabolic pathway enrichment analyses. One gene involved in the synoptic vesicle cycle and two genes coding for odorant binding proteins (OBP) are likely to have potential impacts on the response of fig wasps to the VOCs emitted by their host figs. This is the first transcriptome sequencing of a fig wasp in the presence of VOCs of its host figs using the next-generation sequencing technology. Our studies suggest that the expression of some genes in the olfactory neural system of the fig wasps is affected by the VOCs released from the figs. This suggests the presence of a dynamic molecular system of detection and hence response to host plant VOCs. As such our findings provide indications for further mechanistic studies on the fig-fig wasp interactions.

  12. Distinct herpesvirus resistances and immune responses of three gynogenetic clones of gibel carp revealed by comprehensive transcriptomes.

    PubMed

    Gao, Fan-Xiang; Wang, Yang; Zhang, Qi-Ya; Mou, Cheng-Yan; Li, Zhi; Deng, Yuan-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-07-24

    Gibel carp is an important aquaculture species in China, and a herpesvirus, called as Carassius auratus herpesvirus (CaHV), has hampered the aquaculture development. Diverse gynogenetic clones of gibel carp have been identified or created, and some of them have been used as aquaculture varieties, but their resistances to herpesvirus and the underlying mechanism remain unknown. To reveal their susceptibility differences, we firstly performed herpesvirus challenge experiments in three gynogenetic clones of gibel carp, including the leading variety clone A + , candidate variety clone F and wild clone H. Three clones showed distinct resistances to CaHV. Moreover, 8772, 8679 and 10,982 differentially expressed unigenes (DEUs) were identified from comparative transcriptomes between diseased individuals and control individuals of clone A + , F and H, respectively. Comprehensive analysis of the shared DEUs in all three clones displayed common defense pathways to the herpesvirus infection, activating IFN system and suppressing complements. KEGG pathway analysis of specifically changed DEUs in respective clones revealed distinct immune responses to the herpesvirus infection. The DEU numbers identified from clone H in KEGG immune-related pathways, such as "chemokine signaling pathway", "Toll-like receptor signaling pathway" and others, were remarkably much more than those from clone A + and F. Several IFN-related genes, including Mx1, viperin, PKR and others, showed higher increases in the resistant clone H than that in the others. IFNphi3, IFI44-like and Gig2 displayed the highest expression in clone F and IRF1 uniquely increased in susceptible clone A + . In contrast to strong immune defense in resistant clone H, susceptible clone A + showed remarkable up-regulation of genes related to apoptosis or death, indicating that clone A + failed to resist virus offensive and evidently induced apoptosis or death. Our study is the first attempt to screen distinct resistances and immune responses of three gynogenetic gibel carp clones to herpesvirus infection by comprehensive transcriptomes. These differential DEUs, immune-related pathways and IFN system genes identified from susceptible and resistant clones will be beneficial to marker-assisted selection (MAS) breeding or molecular module-based resistance breeding in gibel carp.

  13. Transcriptomics of Desiccation Tolerance in the Streptophyte Green Alga Klebsormidium Reveal a Land Plant-Like Defense Reaction

    PubMed Central

    Holzinger, Andreas; Kaplan, Franziska; Blaas, Kathrin; Zechmann, Bernd; Komsic-Buchmann, Karin; Becker, Burkhard

    2014-01-01

    Background Water loss has significant effects on physiological performance and survival rates of algae. However, despite the prominent presence of aeroterrestrial algae in terrestrial habitats, hardly anything is known about the molecular events that allow aeroterrestrial algae to survive harsh environmental conditions. We analyzed the transcriptome and physiology of a strain of the alpine aeroterrestrial alga Klebsormidium crenulatum under control and strong desiccation-stress conditions. Principal Findings For comparison we first established a reference transcriptome. The high-coverage reference transcriptome includes about 24,183 sequences (1.5 million reads, 636 million bases). The reference transcriptome encodes for all major pathways (energy, carbohydrates, lipids, amino acids, sugars), nearly all deduced pathways are complete or missing only a few transcripts. Upon strong desiccation, more than 7000 transcripts showed changes in their expression levels. Most of the highest up-regulated transcripts do not show similarity to known viridiplant proteins, suggesting the existence of some genus- or species-specific responses to desiccation. In addition, we observed the up-regulation of many transcripts involved in desiccation tolerance in plants (e.g. proteins similar to those that are abundant in late embryogenesis (LEA), or proteins involved in early response to desiccation ERD), and enzymes involved in the biosynthesis of the raffinose family of oligosaccharides (RFO) known to act as osmolytes). Major physiological shifts are the up-regulation of transcripts for photosynthesis, energy production, and reactive oxygen species (ROS) metabolism, which is supported by elevated cellular glutathione content as revealed by immunoelectron microscopy as well as an increase in total antiradical power. However, the effective quantum yield of Photosystem II and CO2 fixation decreased sharply under the applied desiccation stress. In contrast, transcripts for cell integrative functions such as cell division, DNA replication, cofactor biosynthesis, and amino acid biosynthesis were down-regulated. Significance This is the first study investigating the desiccation transcriptome of a streptophyte green alga. Our results indicate that the cellular response is similar to embryophytes, suggesting that embryophytes inherited a basic cellular desiccation tolerance from their streptophyte predecessors. PMID:25340847

  14. The chromatin accessibility signature of human immune aging stems from CD8+ T cells.

    PubMed

    Ucar, Duygu; Márquez, Eladio J; Chung, Cheng-Han; Marches, Radu; Rossi, Robert J; Uyar, Asli; Wu, Te-Chia; George, Joshy; Stitzel, Michael L; Palucka, A Karolina; Kuchel, George A; Banchereau, Jacques

    2017-10-02

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8 + T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. © 2017 Ucar et al.

  15. The chromatin accessibility signature of human immune aging stems from CD8+ T cells

    PubMed Central

    Marches, Radu; Rossi, Robert J.; Uyar, Asli; Wu, Te-Chia; Stitzel, Michael L.; Palucka, A. Karolina

    2017-01-01

    Aging is linked to deficiencies in immune responses and increased systemic inflammation. To unravel the regulatory programs behind these changes, we applied systems immunology approaches and profiled chromatin accessibility and the transcriptome in PBMCs and purified monocytes, B cells, and T cells. Analysis of samples from 77 young and elderly donors revealed a novel and robust aging signature in PBMCs, with simultaneous systematic chromatin closing at promoters and enhancers associated with T cell signaling and a potentially stochastic chromatin opening mostly found at quiescent and repressed sites. Combined analyses of chromatin accessibility and the transcriptome uncovered immune molecules activated/inactivated with aging and identified the silencing of the IL7R gene and the IL-7 signaling pathway genes as potential biomarkers. This signature is borne by memory CD8+ T cells, which exhibited an aging-related loss in binding of NF-κB and STAT factors. Thus, our study provides a unique and comprehensive approach to identifying candidate biomarkers and provides mechanistic insights into aging-associated immunodeficiency. PMID:28904110

  16. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus.

    PubMed

    Wei, Lijuan; Jian, Hongju; Lu, Kun; Filardo, Fiona; Yin, Nengwen; Liu, Liezhao; Qu, Cunmin; Li, Wei; Du, Hai; Li, Jiana

    2016-06-01

    Brassica napus is one of the most important oil crops in the world, and stem rot caused by the fungus Sclerotinia sclerotiorum results in major losses in yield and quality. To elucidate resistance genes and pathogenesis-related genes, genome-wide association analysis of 347 accessions was performed using the Illumina 60K Brassica SNP (single nucleotide polymorphism) array. In addition, the detached stem inoculation assay was used to select five highly resistant (R) and susceptible (S) B. napus lines, 48 h postinoculation with S. sclerotiorum for transcriptome sequencing. We identified 17 significant associations for stem resistance on chromosomes A8 and C6, five of which were on A8 and 12 on C6. The SNPs identified on A8 were located in a 409-kb haplotype block, and those on C6 were consistent with previous QTL mapping efforts. Transcriptome analysis suggested that S. sclerotiorum infection activates the immune system, sulphur metabolism, especially glutathione (GSH) and glucosinolates in both R and S genotypes. Genes found to be specific to the R genotype related to the jasmonic acid pathway, lignin biosynthesis, defence response, signal transduction and encoding transcription factors. Twenty-four genes were identified in both the SNP-trait association and transcriptome sequencing analyses, including a tau class glutathione S-transferase (GSTU) gene cluster. This study provides useful insight into the molecular mechanisms underlying the plant's response to S. sclerotiorum. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Gene expression during different periods of the handling-stress response in Pampus argenteus

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Tang, Baojun; Yin, Fei

    2017-11-01

    Common aquaculture practices subject fish to a variety of acute and chronic stressors. Such stressors are inherent in aquaculture production but can adversely affect survival, growth, immune response, reproductive capacity, and behavior. Understanding the biological mechanisms underlying stress responses helps with methods to alleviate the negative effects through better aquaculture practices, resulting in improved animal welfare and production efficiency. In the present study, transcriptome sequencing of liver and kidney was performed in silver pomfret (Pampus argenteus) subjected to handling stress versus controls. A total of 162.19 million clean reads were assembled to 30 339 unigenes. The quality of the assembly was high, with an N50 length of 2 472 bases. For function classification and pathway assignment, the unigenes were categorized into three GO (gene ontology) categories, twenty-six clusters of eggNOG (evolutionary genealogy of genes: non-supervised orthologous groups) function categories, and thirty-eight KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways. Stress affected different functional groups of genes in the tissues studied. Differentially expressed genes were mainly involved in metabolic pathways (carbohydrate metabolism, lipid metabolism, amino-acid metabolism, uptake of cofactors and vitamins, and biosynthesis of other secondary metabolites), environmental information processing (signaling molecules and their interactions), organismal systems (endocrine system, digestive system), and disease (immune, neurodegenerative, endocrine and metabolic diseases). This is the first reported analysis of genome-wide transcriptome in P. argenteus, and the findings expand our understanding of the silver pomfret genome and gene expression in association with stress. The results will be useful to future analyses of functional genes and studies of healthy artificial breeding in P. argenteus and other related fish species.

  18. Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba)

    PubMed Central

    Tian, Shan; Wang, Bei; Zhao, Xusheng

    2017-01-01

    Wild jujube (Ziziphus acidojujuba Mill.) is highly tolerant to alkaline, saline and drought stress; however, no studies have performed transcriptome profiling to study the response of wild jujube to these and other abiotic stresses. In this study, we examined the tolerance of wild jujube to NaHCO3-NaOH solution and analyzed gene expression profiles in response to alkaline stress. Physiological experiments revealed that H2O2 content in leaves increased significantly and root activity decreased quickly during alkaline of pH 9.5 treatment. For transcriptome analysis, wild jujube plants grown hydroponically were treated with NaHCO3-NaOH solution for 0, 1, and 12 h and six transcriptomes from roots were built. In total, 32,758 genes were generated, and 3,604 differentially expressed genes (DEGs) were identified. After 1 h, 853 genes showed significantly different expression between control and treated plants; after 12 h, expression of 2,856 genes was significantly different. The expression pattern of nine genes was validated by quantitative real-time PCR. After gene annotation and gene ontology enrichment analysis, the genes encoding transcriptional factors, serine/threonine-protein kinases, heat shock proteins, cysteine-like kinases, calmodulin-like proteins, and reactive oxygen species (ROS) scavengers were found to be closely involved in alkaline stress response. These results will provide useful insights for elucidating the mechanisms underlying alkaline tolerance in wild jujube. PMID:28976994

  19. Adaptive Changes in the Vestibular System of Land Snail to a 30-Day Spaceflight and Readaptation on Return to Earth

    PubMed Central

    Aseyev, Nikolay; Vinarskaya, Alia Kh.; Roshchin, Matvey; Korshunova, Tatiana A.; Malyshev, Aleksey Yu.; Zuzina, Alena B.; Ierusalimsky, Victor N.; Lemak, Maria S.; Zakharov, Igor S.; Novikov, Ivan A.; Kolosov, Peter; Chesnokova, Ekaterina; Volkova, Svetlana; Kasianov, Artem; Uroshlev, Leonid; Popova, Yekaterina; Boyle, Richard D.; Balaban, Pavel M.

    2017-01-01

    The vestibular system receives a permanent influence from gravity and reflexively controls equilibrium. If we assume gravity has remained constant during the species' evolution, will its sensory system adapt to abrupt loss of that force? We address this question in the land snail Helix lucorum exposed to 30 days of near weightlessness aboard the Bion-M1 satellite, and studied geotactic behavior of postflight snails, differential gene expressions in statocyst transcriptome, and electrophysiological responses of mechanoreceptors to applied tilts. Each approach revealed plastic changes in the snail's vestibular system assumed in response to spaceflight. Absence of light during the mission also affected statocyst physiology, as revealed by comparison to dark-conditioned control groups. Readaptation to normal tilt responses occurred at ~20 h following return to Earth. Despite the permanence of gravity, the snail responded in a compensatory manner to its loss and readapted once gravity was restored. PMID:29163058

  20. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling

    PubMed Central

    Ochsner, Scott A.; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian

    2016-01-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities. PMID:27409825

  1. Research Resource: A Reference Transcriptome for Constitutive Androstane Receptor and Pregnane X Receptor Xenobiotic Signaling.

    PubMed

    Ochsner, Scott A; Tsimelzon, Anna; Dong, Jianrong; Coarfa, Cristian; McKenna, Neil J

    2016-08-01

    The pregnane X receptor (PXR) (PXR/NR1I3) and constitutive androstane receptor (CAR) (CAR/NR1I2) members of the nuclear receptor (NR) superfamily of ligand-regulated transcription factors are well-characterized mediators of xenobiotic and endocrine-disrupting chemical signaling. The Nuclear Receptor Signaling Atlas maintains a growing library of transcriptomic datasets involving perturbations of NR signaling pathways, many of which involve perturbations relevant to PXR and CAR xenobiotic signaling. Here, we generated a reference transcriptome based on the frequency of differential expression of genes across 159 experiments compiled from 22 datasets involving perturbations of CAR and PXR signaling pathways. In addition to the anticipated overrepresentation in the reference transcriptome of genes encoding components of the xenobiotic stress response, the ranking of genes involved in carbohydrate metabolism and gonadotropin action sheds mechanistic light on the suspected role of xenobiotics in metabolic syndrome and reproductive disorders. Gene Set Enrichment Analysis showed that although acetaminophen, chlorpromazine, and phenobarbital impacted many similar gene sets, differences in direction of regulation were evident in a variety of processes. Strikingly, gene sets representing genes linked to Parkinson's, Huntington's, and Alzheimer's diseases were enriched in all 3 transcriptomes. The reference xenobiotic transcriptome will be supplemented with additional future datasets to provide the community with a continually updated reference transcriptomic dataset for CAR- and PXR-mediated xenobiotic signaling. Our study demonstrates how aggregating and annotating transcriptomic datasets, and making them available for routine data mining, facilitates research into the mechanisms by which xenobiotics and endocrine-disrupting chemicals subvert conventional NR signaling modalities.

  2. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum)

    PubMed Central

    2012-01-01

    Background Geminiviruses are a large and important family of plant viruses that infect a wide range of crops throughout the world. The Begomovirus genus contains species that are transmitted by whiteflies and are distributed worldwide causing disease on an array of horticultural crops. Symptom remission, in which newly developed leaves of systemically infected plants exhibit a reduction in symptom severity (recovery), has been observed on pepper (Capsicum annuum) plants infected with Pepper golden mosaic virus (PepGMV). Previous studies have shown that transcriptional and post-transcriptional gene silencing mechanisms are involved in the reduction of viral nucleic acid concentration in recovered tissue. In this study, we employed deep transcriptome sequencing methods to assess transcriptional variation in healthy (mock), symptomatic, and recovered pepper leaves following PepGMV infection. Results Differential expression analyses of the pepper leaf transcriptome from symptomatic and recovered stages revealed a total of 309 differentially expressed genes between healthy (mock) and symptomatic or recovered tissues. Computational prediction of differential expression was validated using quantitative reverse-transcription PCR confirming the robustness of our bioinformatic methods. Within the set of differentially expressed genes associated with the recovery process were genes involved in defense responses including pathogenesis-related proteins, reactive oxygen species, systemic acquired resistance, jasmonic acid biosynthesis, and ethylene signaling. No major differences were found when compared the differentially expressed genes in symptomatic and recovered tissues. On the other hand, a set of genes with novel roles in defense responses was identified including genes involved in histone modification. This latter result suggested that post-transcriptional and transcriptional gene silencing may be one of the major mechanisms involved in the recovery process. Genes orthologous to the C. annuum proteins involved in the pepper-PepGMV recovery response were identified in both Solanum lycopersicum and Solanum tuberosum suggesting conservation of components of the viral recovery response in the Solanaceae. Conclusion These data provide a valuable source of information for improving our understanding of the underlying molecular mechanisms by which pepper leaves become symptomless following infection with geminiviruses. The identification of orthologs for the majority of genes differentially expressed in recovered tissues in two major solanaceous crop species provides the basis for future comparative analyses of the viral recovery process across related taxa. PMID:23185982

  3. Transcriptome analysis of symptomatic and recovered leaves of geminivirus-infected pepper (Capsicum annuum).

    PubMed

    Góngora-Castillo, Elsa; Ibarra-Laclette, Enrique; Trejo-Saavedra, Diana L; Rivera-Bustamante, Rafael F

    2012-11-27

    Geminiviruses are a large and important family of plant viruses that infect a wide range of crops throughout the world. The Begomovirus genus contains species that are transmitted by whiteflies and are distributed worldwide causing disease on an array of horticultural crops. Symptom remission, in which newly developed leaves of systemically infected plants exhibit a reduction in symptom severity (recovery), has been observed on pepper (Capsicum annuum) plants infected with Pepper golden mosaic virus (PepGMV). Previous studies have shown that transcriptional and post-transcriptional gene silencing mechanisms are involved in the reduction of viral nucleic acid concentration in recovered tissue. In this study, we employed deep transcriptome sequencing methods to assess transcriptional variation in healthy (mock), symptomatic, and recovered pepper leaves following PepGMV infection. Differential expression analyses of the pepper leaf transcriptome from symptomatic and recovered stages revealed a total of 309 differentially expressed genes between healthy (mock) and symptomatic or recovered tissues. Computational prediction of differential expression was validated using quantitative reverse-transcription PCR confirming the robustness of our bioinformatic methods. Within the set of differentially expressed genes associated with the recovery process were genes involved in defense responses including pathogenesis-related proteins, reactive oxygen species, systemic acquired resistance, jasmonic acid biosynthesis, and ethylene signaling. No major differences were found when compared the differentially expressed genes in symptomatic and recovered tissues. On the other hand, a set of genes with novel roles in defense responses was identified including genes involved in histone modification. This latter result suggested that post-transcriptional and transcriptional gene silencing may be one of the major mechanisms involved in the recovery process. Genes orthologous to the C. annuum proteins involved in the pepper-PepGMV recovery response were identified in both Solanum lycopersicum and Solanum tuberosum suggesting conservation of components of the viral recovery response in the Solanaceae. These data provide a valuable source of information for improving our understanding of the underlying molecular mechanisms by which pepper leaves become symptomless following infection with geminiviruses. The identification of orthologs for the majority of genes differentially expressed in recovered tissues in two major solanaceous crop species provides the basis for future comparative analyses of the viral recovery process across related taxa.

  4. De novo Assembly and Analysis of the Chilean Pencil Catfish Trichomycterus areolatus Transcriptome

    PubMed Central

    Schulze, Thomas T.; Ali, Jonathan M.; Bartlett, Maggie L.; McFarland, Madalyn M.; Clement, Emalie J.; Won, Harim I.; Sanford, Austin G.; Monzingo, Elyssa B.; Martens, Matthew C.; Hemsley, Ryan M.; Kumar, Sidharta; Gouin, Nicolas; Kolok, Alan S.; Davis, Paul H.

    2016-01-01

    Trichomycterus areolatus is an endemic species of pencil catfish that inhabits the riffles and rapids of many freshwater ecosystems of Chile. Despite its unique adaptation to Chile's high gradient watersheds and therefore potential application in the investigation of ecosystem integrity and environmental contamination, relatively little is known regarding the molecular biology of this environmental sentinel. Here, we detail the assembly of the Trichomycterus areolatus transcriptome, a molecular resource for the study of this organism and its molecular response to the environment. RNA-Seq reads were obtained by next-generation sequencing with an Illumina® platform and processed using PRINSEQ. The transcriptome assembly was performed using TRINITY assembler. Transcriptome validation was performed by functional characterization with KOG, KEGG, and GO analyses. Additionally, differential expression analysis highlights sex-specific expression patterns, and a list of endocrine and oxidative stress related transcripts are included. PMID:27672404

  5. Transcriptome Wide Annotation of Eukaryotic RNase III Reactivity and Degradation Signals

    PubMed Central

    Gagnon, Jules; Lavoie, Mathieu; Catala, Mathieu; Malenfant, Francis; Elela, Sherif Abou

    2015-01-01

    Detection and validation of the RNA degradation signals controlling transcriptome stability are essential steps for understanding how cells regulate gene expression. Here we present complete genomic and biochemical annotations of the signals required for RNA degradation by the dsRNA specific ribonuclease III (Rnt1p) and examine its impact on transcriptome expression. Rnt1p cleavage signals are randomly distributed in the yeast genome, and encompass a wide variety of sequences, indicating that transcriptome stability is not determined by the recurrence of a fixed cleavage motif. Instead, RNA reactivity is defined by the sequence and structural context in which the cleavage sites are located. Reactive signals are often associated with transiently expressed genes, and their impact on RNA expression is linked to growth conditions. Together, the data suggest that Rnt1p reactivity is triggered by malleable RNA degradation signals that permit dynamic response to changes in growth conditions. PMID:25680180

  6. 454 pyrosequencing based transcriptome analysis of Zygaena filipendulae with focus on genes involved in biosynthesis of cyanogenic glucosides.

    PubMed

    Zagrobelny, Mika; Scheibye-Alsing, Karsten; Jensen, Niels Bjerg; Møller, Birger Lindberg; Gorodkin, Jan; Bak, Søren

    2009-12-02

    An essential driving component in the co-evolution of plants and insects is the ability to produce and handle bioactive compounds. Plants produce bioactive natural products for defense, but some insects detoxify and/or sequester the compounds, opening up for new niches with fewer competitors. To study the molecular mechanism behind the co-adaption in plant-insect interactions, we have investigated the interactions between Lotus corniculatus and Zygaena filipendulae. They both contain cyanogenic glucosides which liberate toxic hydrogen cyanide upon breakdown. Moths belonging to the Zygaena family are the only insects known, able to carry out both de novo biosynthesis and sequestration of the same cyanogenic glucosides as those from their feed plants. The biosynthetic pathway for cyanogenic glucoside biosynthesis in Z. filipendulae proceeds using the same intermediates as in the well known pathway from plants, but none of the enzymes responsible have been identified. A genomics strategy founded on 454 pyrosequencing of the Z. filipendulae transcriptome was undertaken to identify some of these enzymes in Z. filipendulae. Comparisons of the Z. filipendulae transcriptome with the sequenced genomes of Bombyx mori, Drosophila melanogaster, Tribolium castaneum, Apis mellifera and Anopheles gambiae indicate a high coverage of the Z. filipendulae transcriptome. 11% of the Z. filipendulae transcriptome sequences were assigned to Gene Ontology categories. Candidate genes for enzymes functioning in the biosynthesis of cyanogenic glucosides (cytochrome P450 and family 1 glycosyltransferases) were identified based on sequence length, number of copies and presence/absence of close homologs in D. melanogaster, B. mori and the cyanogenic butterfly Heliconius. Examination of biased codon usage, GC content and selection on gene candidates support the notion of cyanogenesis as an "old" trait within Ditrysia, as well as its origins being convergent between plants and insects. Pyrosequencing is an attractive approach to gain access to genes in the biosynthesis of bio-active natural products from insects and other organisms, for which the genome sequence is not known. Based on analysis of the Z. filipendulae transcriptome, promising gene candidates for biosynthesis of cyanogenic glucosides was identified, and the suitability of Z. filipendulae as a model system for cyanogenesis in insects is evident.

  7. Transcriptomic Changes Drive Physiological Responses to Progressive Drought Stress and Rehydration in Tomato

    PubMed Central

    Iovieno, Paolo; Punzo, Paola; Guida, Gianpiero; Mistretta, Carmela; Van Oosten, Michael J.; Nurcato, Roberta; Bostan, Hamed; Colantuono, Chiara; Costa, Antonello; Bagnaresi, Paolo; Chiusano, Maria L.; Albrizio, Rossella; Giorio, Pasquale; Batelli, Giorgia; Grillo, Stefania

    2016-01-01

    Tomato is a major crop in the Mediterranean basin, where the cultivation in the open field is often vulnerable to drought. In order to adapt and survive to naturally occurring cycles of drought stress and recovery, plants employ a coordinated array of physiological, biochemical, and molecular responses. Transcriptomic studies on tomato responses to drought and subsequent recovery are few in number. As the search for novel traits to improve the genetic tolerance to drought increases, a better understanding of these responses is required. To address this need we designed a study in which we induced two cycles of prolonged drought stress and a single recovery by rewatering in tomato. In order to dissect the complexity of plant responses to drought, we analyzed the physiological responses (stomatal conductance, CO2 assimilation, and chlorophyll fluorescence), abscisic acid (ABA), and proline contents. In addition to the physiological and metabolite assays, we generated transcriptomes for multiple points during the stress and recovery cycles. Cluster analysis of differentially expressed genes (DEGs) between the conditions has revealed potential novel components in stress response. The observed reduction in leaf gas exchanges and efficiency of the photosystem PSII was concomitant with a general down-regulation of genes belonging to the photosynthesis, light harvesting, and photosystem I and II category induced by drought stress. Gene ontology (GO) categories such as cell proliferation and cell cycle were also significantly enriched in the down-regulated fraction of genes upon drought stress, which may contribute to explain the observed growth reduction. Several histone variants were also repressed during drought stress, indicating that chromatin associated processes are also affected by drought. As expected, ABA accumulated after prolonged water deficit, driving the observed enrichment of stress related GOs in the up-regulated gene fractions, which included transcripts putatively involved in stomatal movements. This transcriptomic study has yielded promising candidate genes that merit further functional studies to confirm their involvement in drought tolerance and recovery. Together, our results contribute to a better understanding of the coordinated responses taking place under drought stress and recovery in adult plants of tomato. PMID:27066027

  8. Complex and extensive post-transcriptional regulation revealed by integrative proteomic and transcriptomic analysis of metabolite stress response in Clostridium acetobutylicum.

    PubMed

    Venkataramanan, Keerthi P; Min, Lie; Hou, Shuyu; Jones, Shawn W; Ralston, Matthew T; Lee, Kelvin H; Papoutsakis, E Terry

    2015-01-01

    Clostridium acetobutylicum is a model organism for both clostridial biology and solvent production. The organism is exposed to its own toxic metabolites butyrate and butanol, which trigger an adaptive stress response. Integrative analysis of proteomic and RNAseq data may provide novel insights into post-transcriptional regulation. The identified iTRAQ-based quantitative stress proteome is made up of 616 proteins with a 15 % genome coverage. The differentially expressed proteome correlated poorly with the corresponding differential RNAseq transcriptome. Up to 31 % of the differentially expressed proteins under stress displayed patterns opposite to those of the transcriptome, thus suggesting significant post-transcriptional regulation. The differential proteome of the translation machinery suggests that cells employ a different subset of ribosomal proteins under stress. Several highly upregulated proteins but with low mRNA levels possessed mRNAs with long 5'UTRs and strong RBS scores, thus supporting the argument that regulatory elements on the long 5'UTRs control their translation. For example, the oxidative stress response rubrerythrin was upregulated only at the protein level up to 40-fold without significant mRNA changes. We also identified many leaderless transcripts, several displaying different transcriptional start sites, thus suggesting mRNA-trimming mechanisms under stress. Downregulation of Rho and partner proteins pointed to changes in transcriptional elongation and termination under stress. The integrative proteomic-transcriptomic analysis demonstrated complex expression patterns of a large fraction of the proteome. Such patterns could not have been detected with one or the other omic analyses. Our analysis proposes the involvement of specific molecular mechanisms of post-transcriptional regulation to explain the observed complex stress response.

  9. Population-Level Transcriptomic Responses of the Southern Ocean Salp Salpa thompsoni to Environment Variability of the Western Antarctic Peninsula Region

    NASA Astrophysics Data System (ADS)

    Bucklin, A. C.; Batta Lona, P. G.; Maas, A. E.; O'Neill, R. J.; Wiebe, P. H.

    2015-12-01

    In response to the changing Antarctic climate, the Southern Ocean salp Salpa thompsoni has shown altered patterns of distribution and abundance that are anticipated to have profound impacts on pelagic food webs and ecosystem dynamics. The physiological and molecular processes that underlay ecological function and biogeographical distribution are key to understanding present-day dynamics and predicting future trajectories. This study examined transcriptome-wide patterns of gene expression in relation to biological and physical oceanographic conditions in coastal, shelf and offshore waters of the Western Antarctic Peninsula (WAP) region during austral spring and summer 2011. Based on field observations and collections, seasonal changes in the distribution and abundance of salps of different life stages were associated with differences in water mass structure of the WAP. Our observations are consistent with previous suggestions that bathymetry and currents in Bransfield Strait could generate a retentive cell for an overwintering population of S. thompsoni, which may generate the characteristic salp blooms found throughout the region later in summer. The statistical analysis of transcriptome-wide patterns of gene expression revealed differences among salps collected in different seasons and from different habitats (i.e., coastal versus offshore) in the WAP. Gene expression patterns also clustered by station in austral spring - but not summer - collections, suggesting stronger heterogeneity of environmental conditions. During the summer, differentially expressed genes covered a wider range of functions, including those associated with stress responses. Future research using novel molecular transcriptomic / genomic characterization of S. thompsoni will allow more complete understanding of individual-, population-, and species-level responses to environmental variability and prediction of future dynamics of Southern Ocean food webs and ecosystems.

  10. The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures.

    PubMed

    Chung, Oksung; Jin, Seondeok; Cho, Yun Sung; Lim, Jeongheui; Kim, Hyunho; Jho, Sungwoong; Kim, Hak-Min; Jun, JeHoon; Lee, HyeJin; Chon, Alvin; Ko, Junsu; Edwards, Jeremy; Weber, Jessica A; Han, Kyudong; O'Brien, Stephen J; Manica, Andrea; Bhak, Jong; Paek, Woon Kee

    2015-10-21

    The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.

  11. Simulated night shift work induces circadian misalignment of the human peripheral blood mononuclear cell transcriptome.

    PubMed

    Kervezee, Laura; Cuesta, Marc; Cermakian, Nicolas; Boivin, Diane B

    2018-05-22

    Misalignment of the endogenous circadian timing system leads to disruption of physiological rhythms and may contribute to the development of the deleterious health effects associated with night shift work. However, the molecular underpinnings remain to be elucidated. Here, we investigated the effect of a 4-day simulated night shift work protocol on the circadian regulation of the human transcriptome. Repeated blood samples were collected over two 24-hour measurement periods from eight healthy subjects under highly controlled laboratory conditions before and 4 days after a 10-hour delay of their habitual sleep period. RNA was extracted from peripheral blood mononuclear cells to obtain transcriptomic data. Cosinor analysis revealed a marked reduction of significantly rhythmic transcripts in the night shift condition compared with baseline at group and individual levels. Subsequent analysis using a mixed-effects model selection approach indicated that this decrease is mainly due to dampened rhythms rather than to a complete loss of rhythmicity: 73% of transcripts rhythmically expressed at baseline remained rhythmic during the night shift condition with a similar phase relative to habitual bedtimes, but with lower amplitudes. Functional analysis revealed that key biological processes are affected by the night shift protocol, most notably the natural killer cell-mediated immune response and Jun/AP1 and STAT pathways. These results show that 4 days of simulated night shifts leads to a loss in temporal coordination between the human circadian transcriptome and the external environment and impacts biological processes related to the adverse health effects associated to night shift work.

  12. Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO 2 Levels

    DOE PAGES

    Levering, Jennifer; Dupont, Christopher L.; Allen, Andrew E.; ...

    2017-02-14

    Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean’s primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom’s metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and sharedmore » metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism.« less

  13. Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO 2 Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levering, Jennifer; Dupont, Christopher L.; Allen, Andrew E.

    Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean’s primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom’s metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and sharedmore » metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P. tricornutum’s response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P. tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P. tricornutum’s metabolism.« less

  14. Comparative transcriptome analysis of Haematococcus pluvialis on astaxanthin biosynthesis in response to irradiation with red or blue LED wavelength.

    PubMed

    Lee, Changsu; Ahn, Joon-Woo; Kim, Jin-Baek; Kim, Jee Young; Choi, Yoon-E

    2018-06-18

    The unicellular green microalga Haematococcus pluvialis has the highest content of the natural antioxidant, astaxanthin. Previously, it was determined that astaxanthin accumulation in H. pluvialis could be induced by blue-wavelength irradiation; however, the molecular mechanism remains unknown. The present study aimed to compare the transcriptome of H. pluvialis, with respect to astaxanthin biosynthesis, under the monochromatic red (660 nm) or blue (450 nm) light-emitting diode (LED) irradiation. Among a total of 165,372 transcripts, we identified 67,703 unigenes, of which 2245 and 171 were identified as differentially expressed genes (DEGs) in response to blue and red irradiation, respectively. Interestingly, expressional changes of blue light receptor cryptochromes were detected in response to blue and/or red LED irradiation in H. pluvialis, which may directly and indirectly regulate astaxanthin biosynthesis. In accordance with this observation, expression of the BKT and CHY genes, which are part of the downstream section of the astaxanthin biosynthetic pathway, was significantly upregulated by blue LED irradiation compared with their expression under control white irradiation. Contrastingly, they were downregulated by red LED irradiation. Our transcriptome study provided molecular insights that highlighted the different of responses of H. pluvialis to red and blue irradiation, especially for astaxanthin biosynthesis.

  15. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity

    PubMed Central

    Bazakos, Christos; Manioudaki, Maria E.; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive. PMID:26576008

  16. 454 Pyrosequencing of Olive (Olea europaea L.) Transcriptome in Response to Salinity.

    PubMed

    Bazakos, Christos; Manioudaki, Maria E; Sarropoulou, Elena; Spano, Thodhoraq; Kalaitzis, Panagiotis

    2015-01-01

    Olive (Olea europaea L.) is one of the most important crops in the Mediterranean region. The expansion of cultivation in areas irrigated with low quality and saline water has negative effects on growth and productivity however the investigation of the molecular basis of salt tolerance in olive trees has been only recently initiated. To this end, we investigated the molecular response of cultivar Kalamon to salinity stress using next-generation sequencing technology to explore the transcriptome profile of olive leaves and roots and identify differentially expressed genes that are related to salt tolerance response. Out of 291,958 obtained trimmed reads, 28,270 unique transcripts were identified of which 35% are annotated, a percentage that is comparable to similar reports on non-model plants. Among the 1,624 clusters in roots that comprise more than one read, 24 were differentially expressed comprising 9 down- and 15 up-regulated genes. Respectively, inleaves, among the 2,642 clusters, 70 were identified as differentially expressed, with 14 down- and 56 up-regulated genes. Using next-generation sequencing technology we were able to identify salt-response-related transcripts. Furthermore we provide an annotated transcriptome of olive as well as expression data, which are both significant tools for further molecular studies in olive.

  17. A Transcriptome Atlas of Physcomitrella patens Provides Insights into the Evolution and Development of Land Plants.

    PubMed

    Ortiz-Ramírez, Carlos; Hernandez-Coronado, Marcela; Thamm, Anna; Catarino, Bruno; Wang, Mingyi; Dolan, Liam; Feijó, José A; Becker, Jörg D

    2016-02-01

    Identifying the genetic mechanisms that underpin the evolution of new organ and tissue systems is an aim of evolutionary developmental biology. Comparative functional genetic studies between angiosperms and bryophytes can define those genetic changes that were responsible for developmental innovations. Here, we report the generation of a transcriptome atlas covering most phases in the life cycle of the model bryophyte Physcomitrella patens, including detailed sporophyte developmental progression. We identified a comprehensive set of sporophyte-specific transcription factors, and found that many of these genes have homologs in angiosperms that function in developmental processes such as flowering and shoot branching. Deletion of the PpTCP5 transcription factor results in development of supernumerary sporangia attached to a single seta, suggesting that it negatively regulates branching in the moss sporophyte. Given that TCP genes repress branching in angiosperms, we suggest that this activity is ancient. Finally, comparison of P. patens and Arabidopsis thaliana transcriptomes led us to the identification of a conserved core of transcription factors expressed in tip-growing cells. We identified modifications in the expression patterns of these genes that could account for developmental differences between P. patens tip-growing cells and A. thaliana pollen tubes and root hairs. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  18. Nutrigenomics: the cutting edge and Asian perspectives.

    PubMed

    Kato, Hisanori

    2008-01-01

    One of the two major goals of nutrigenomics is to make full use of genomic information to reveal how genetic variations affect nutrients and other food factors and thereby realize tailor-made nutrition (nutrigenetics). The other major goal of nutrigenomics is to comprehensively understand the response of the body to diets and food factors through various 'omics' technologies such as transcriptomics, proteomics, and metabolomics. The most successfully exploited technology to date is transcriptome analysis, due mainly to its efficiency and high-throughput feature. This technology has already provided a substantial amount of data on, for instance, the novel function of food factors, the unknown mechanism of the effect of nutrients, and even safety issues of foods. The nutrigenomics database that we have created now holds the publication data of several hundred of such 'omics' studies. Furthermore, the transcriptomics approach is being applied to food safety issues. For ex-ample, the data we have obtained thus far suggest that this new technology will facilitate the safety evaluation of newly developed foods and will help clarify the mechanism of toxic effects resulting from the excessive intake of a nutrient. The 'omics' data accumulated by our group and others strongly support the promise of the systems biology approach to food and nutrition science.

  19. Comparative transcriptome analysis reveals insights into the streamlined genomes of haplosclerid demosponges

    PubMed Central

    Guzman, Christine; Conaco, Cecilia

    2016-01-01

    Sponges (Porifera) are one of the most ancestral metazoan groups. They are characterized by a simple body plan lacking the true tissues and organ systems found in other animals. Members of this phylum display a remarkable diversity of form and function and yet little is known about the composition and complexity of their genomes. In this study, we sequenced the transcriptomes of two marine haplosclerid sponges belonging to Demospongiae, the largest and most diverse class within phylum Porifera, and compared their gene content with members of other sponge classes. We recovered 44,693 and 50,067 transcripts expressed in adult tissues of Haliclona amboinensis and Haliclona tubifera, respectively. These transcripts translate into 20,280 peptides in H. amboinensis and 18,000 peptides in H. tubifera. Genes associated with important signaling and metabolic pathways, regulatory networks, as well as genes that may be important in the organismal stress response, were identified in the transcriptomes. Futhermore, lineage-specific innovations were identified that may be correlated with observed sponge characters and ecological adaptations. The core gene complement expressed within the tissues of adult haplosclerid demosponges may represent a streamlined and flexible genetic toolkit that underlies the ecological success and resilience of sponges to environmental stress. PMID:26738846

  20. Transcriptomic and Physiological Variations of Three Arabidopsis Ecotypes in Response to Salt Stress

    PubMed Central

    Wang, Yanping; Yang, Li; Zheng, Zhimin; Grumet, Rebecca; Loescher, Wayne; Zhu, Jian-Kang; Yang, Pingfang; Hu, Yuanlei; Chan, Zhulong

    2013-01-01

    Salt stress is one of the major abiotic stresses in agriculture worldwide. Analysis of natural genetic variation in Arabidopsis is an effective approach to characterize candidate salt responsive genes. Differences in salt tolerance of three Arabidopsis ecotypes were compared in this study based on their responses to salt treatments at two developmental stages: seed germination and later growth. The Sha ecotype had higher germination rates, longer roots and less accumulation of superoxide radical and hydrogen peroxide than the Ler and Col ecotypes after short term salt treatment. With long term salt treatment, Sha exhibited higher survival rates and lower electrolyte leakage. Transcriptome analysis revealed that many genes involved in cell wall, photosynthesis, and redox were mainly down-regulated by salinity effects, while transposable element genes, microRNA and biotic stress related genes were significantly changed in comparisons of Sha vs. Ler and Sha vs. Col. Several pathways involved in tricarboxylic acid cycle, hormone metabolism and development, and the Gene Ontology terms involved in response to stress and defense response were enriched after salt treatment, and between Sha and other two ecotypes. Collectively, these results suggest that the Sha ecotype is preconditioned to withstand abiotic stress. Further studies about detailed gene function are needed. These comparative transcriptomic and analytical results also provide insight into the complexity of salt stress tolerance mechanisms. PMID:23894403

  1. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit.

    PubMed

    Opitz, Nina; Marcon, Caroline; Paschold, Anja; Malik, Waqas Ahmed; Lithio, Andrew; Brandt, Ronny; Piepho, Hans-Peter; Nettleton, Dan; Hochholdinger, Frank

    2016-02-01

    Water deficit is the most important environmental constraint severely limiting global crop growth and productivity. This study investigated early transcriptome changes in maize (Zea mays L.) primary root tissues in response to moderate water deficit conditions by RNA-Sequencing. Differential gene expression analyses revealed a high degree of plasticity of the water deficit response. The activity status of genes (active/inactive) was determined by a Bayesian hierarchical model. In total, 70% of expressed genes were constitutively active in all tissues. In contrast, <3% (50 genes) of water deficit-responsive genes (1915) were consistently regulated in all tissues, while >75% (1501 genes) were specifically regulated in a single root tissue. Water deficit-responsive genes were most numerous in the cortex of the mature root zone and in the elongation zone. The most prominent functional categories among differentially expressed genes in all tissues were 'transcriptional regulation' and 'hormone metabolism', indicating global reprogramming of cellular metabolism as an adaptation to water deficit. Additionally, the most significant transcriptomic changes in the root tip were associated with cell wall reorganization, leading to continued root growth despite water deficit conditions. This study provides insight into tissue-specific water deficit responses and will be a resource for future genetic analyses and breeding strategies to develop more drought-tolerant maize cultivars. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  2. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection

    PubMed Central

    Sun, H.; Liu, P.; Nolan, L. K.; Lamont, S. J.

    2016-01-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. PMID:27466434

  3. Salt-Responsive Transcriptome Profiling of Suaeda glauca via RNA Sequencing

    PubMed Central

    Jin, Hangxia; Dong, Dekun; Yang, Qinghua; Zhu, Danhua

    2016-01-01

    Background Suaeda glauca, a succulent halophyte of the Chenopodiaceae family, is widely distributed in coastal areas of China. Suaeda glauca is highly resistant to salt and alkali stresses. In the present study, the salt-responsive transcriptome of Suaeda glauca was analyzed to identify genes involved in salt tolerance and study halophilic mechanisms in this halophyte. Results Illumina HiSeq 2500 was used to sequence cDNA libraries from salt-treated and control samples with three replicates each treatment. De novo assembly of the six transcriptomes identified 75,445 unigenes. A total of 23,901 (31.68%) unigenes were annotated. Compared with transcriptomes from the three salt-treated and three salt-free samples, 231 differentially expressed genes (DEGs) were detected (including 130 up-regulated genes and 101 down-regulated genes), and 195 unigenes were functionally annotated. Based on the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) classifications of the DEGs, more attention should be paid to transcripts associated with signal transduction, transporters, the cell wall and growth, defense metabolism and transcription factors involved in salt tolerance. Conclusions This report provides a genome-wide transcriptional analysis of a halophyte, Suaeda glauca, under salt stress. Further studies of the genetic basis of salt tolerance in halophytes are warranted. PMID:26930632

  4. Global Transcriptomic Changes Induced by Infection of Cucumber (Cucumis sativus L.) with Mild and Severe Variants of Hop Stunt Viroid.

    PubMed

    Xia, Changjian; Li, Shifang; Hou, Wanying; Fan, Zaifeng; Xiao, Hong; Lu, Meiguang; Sano, Teruo; Zhang, Zhixiang

    2017-01-01

    Fifteen years after transfer to hops, hop stunt viroid-grapevine (HSVd-g) was replaced by HSVd-hop (HSVd-h), a sequence variant that contains changes at five different positions. HSVd-g54 is a laboratory mutant derived from HSVd-g that differs from its progenitor by a single G to A substitution at position 54. While infection by HSVd-h induces only mild stunting in cucumber ( Cucumis sativus L.), HSVd-g54 induces much more severe symptoms in this indicator host. Comparison of transcriptome profiles of cucumber infected with HSVd-h or HSVd-g54 with those of mock-inoculated controls obtained by whole transcriptome shotgun sequencing revealed that many genes related to photosynthesis were down-regulated following infection. In contrast, genes encoding RNA-dependent RNA polymerase 1 ( CsRDR1 ), especially CsRDR1c1 and CsRDR1c2 , as well as those related to basal defense responses were up-regulated. Expression of genes associated with phytohormone signaling pathways were also altered, indicating that viroid infection initiates a complex array of changes in the host transcriptome. HSVd-g54 induced an earlier and stronger response than HSVd-h, and further examination of these differences will contribute to a better understanding of the mechanisms that determine viroid pathogenicity.

  5. Massively parallel digital transcriptional profiling of single cells

    PubMed Central

    Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.

    2017-01-01

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601

  6. Transcriptome responses to temperature, water availability and photoperiod are conserved among mature trees of two divergent Douglas-fir provenances from a coastal and an interior habitat.

    PubMed

    Hess, Moritz; Wildhagen, Henning; Junker, Laura Verena; Ensminger, Ingo

    2016-08-26

    Local adaptation and phenotypic plasticity are important components of plant responses to variations in environmental conditions. While local adaptation has been widely studied in trees, little is known about plasticity of gene expression in adult trees in response to ever changing environmental conditions in natural habitats. Here we investigate plasticity of gene expression in needle tissue between two Douglas-fir provenances represented by 25 adult trees using deep RNA sequencing (RNA-Seq). Using linear mixed models we investigated the effect of temperature, soil water availability and photoperiod on the abundance of 59189 detected transcripts. Expression of more than 80 % of all identified transcripts revealed a response to variations in environmental conditions in the field. GO term overrepresentation analysis revealed gene expression responses to temperature, soil water availability and photoperiod that are highly conserved among many plant taxa. However, expression differences between the two Douglas-fir provenances were rather small compared to the expression differences observed between individual trees. Although the effect of environment on global transcript expression was high, the observed genotype by environment (GxE) interaction of gene expression was surprisingly low, since only 21 of all detected transcripts showed a GxE interaction. The majority of the transcriptome responses in plant leaf tissue is driven by variations in environmental conditions. The small variation between individuals and populations suggests strong conservation of this response within Douglas-fir. Therefore we conclude that plastic transcriptome responses to variations in environmental conditions are only weakly affected by local adaptation in Douglas-fir.

  7. Comprehensive transcriptome analyses correlated with untargeted metabolome reveal differentially expressed pathways in response to cell wall alterations.

    PubMed

    Reem, Nathan T; Chen, Han-Yi; Hur, Manhoi; Zhao, Xuefeng; Wurtele, Eve Syrkin; Li, Xu; Li, Ling; Zabotina, Olga

    2018-03-01

    This research provides new insights into plant response to cell wall perturbations through correlation of transcriptome and metabolome datasets obtained from transgenic plants expressing cell wall-modifying enzymes. Plants respond to changes in their cell walls in order to protect themselves from pathogens and other stresses. Cell wall modifications in Arabidopsis thaliana have profound effects on gene expression and defense response, but the cell signaling mechanisms underlying these responses are not well understood. Three transgenic Arabidopsis lines, two with reduced cell wall acetylation (AnAXE and AnRAE) and one with reduced feruloylation (AnFAE), were used in this study to investigate the plant responses to cell wall modifications. RNA-Seq in combination with untargeted metabolome was employed to assess differential gene expression and metabolite abundance. RNA-Seq results were correlated with metabolite abundances to determine the pathways involved in response to cell wall modifications introduced in each line. The resulting pathway enrichments revealed the deacetylation events in AnAXE and AnRAE plants induced similar responses, notably, upregulation of aromatic amino acid biosynthesis and changes in regulation of primary metabolic pathways that supply substrates to specialized metabolism, particularly those related to defense responses. In contrast, genes and metabolites of lipid biosynthetic pathways and peroxidases involved in lignin polymerization were downregulated in AnFAE plants. These results elucidate how primary metabolism responds to extracellular stimuli. Combining the transcriptomics and metabolomics datasets increased the power of pathway prediction, and demonstrated the complexity of pathways involved in cell wall-mediated signaling.

  8. RNA-Seq-based transcriptome profiling of early nitrogen deficiency response in cucumber seedlings provides new insight into the putative nitrogen regulatory network.

    PubMed

    Zhao, Wenchao; Yang, Xueyong; Yu, Hongjun; Jiang, Weijie; Sun, Na; Liu, Xiaoran; Liu, Xiaolin; Zhang, Xiaomeng; Wang, Yan; Gu, Xingfang

    2015-03-01

    Nitrogen (N) is both an important macronutrient and a signal for plant growth and development. However, the early regulatory mechanism of plants in response to N starvation is not well understood, especially in cucumber, an economically important crop that normally consumes excessive N during production. In this study, the early time-course transcriptome response of cucumber leaves under N deficiency was monitored using RNA sequencing (RNA-Seq). More than 23,000 transcripts were examined in cucumber leaves, of which 364 genes were differentially expressed in response to N deficiency. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database, gene ontology (GO) and protein-protein interaction analysis, 64 signaling-related N-deficiency-responsive genes were identified. Furthermore, the potential regulatory mechanisms of anthocyanin accumulation, Chl decline and cell wall remodeling were assessed at the transcription level. Increased ascorbic acid synthesis was identified in cucumber seedlings and fruit under N-deficient conditions, and a new corresponding regulatory hypothesis has been proposed. A data cross-comparison between model plants and cucumber was made, and some common and specific N-deficient response mechanisms were found in the present study. Our study provides novel insights into the responses of cucumber to nitrogen starvation at the global transcriptome level, which are expected to be highly useful for dissecting the N response pathways in this major vegetable and for improving N fertilization practices. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Transcriptome and membrane fatty acid analyses reveal different strategies for responding to permeating and non-permeating solutes in the bacterium Sphingomonas wittichii

    PubMed Central

    2011-01-01

    Background Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. Results Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. Conclusions A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation. PMID:22082453

  10. Electron acceptor redox potential globally regulates transcriptomic profiling in Shewanella decolorationis S12

    NASA Astrophysics Data System (ADS)

    Lian, Yingli; Yang, Yonggang; Guo, Jun; Wang, Yan; Li, Xiaojing; Fang, Yun; Gan, Lixia; Xu, Meiying

    2016-08-01

    Electron acceptor redox potential (EARP) was presumed to be a determining factor for microbial metabolism in many natural and engineered processes. However, little is known about the potentially global effects of EARP on bacteria. In this study, we compared the physiological and transcriptomic properties of Shewanella decolorationis S12 respiring with different EARPs in microbial electrochemical systems to avoid the effects caused by the other physicochemical properties of real electron acceptor. Results showed that the metabolic activities of strain S12 were nonlinear responses to EARP. The tricarboxylic acid cycle for central carbon metabolism was down-regulated while glyoxylate shunt was up-regulated at 0.8 V compared to 0.2 and -0.2 V, which suggested that EARP is an important but not the only determinant for metabolic pathways of strain S12. Moreover, few cytochrome c genes were differentially expressed at different EARPs. The energy intensive flagella assembly and assimilatory sulfur metabolism pathways were significantly enriched at 0.8 V, which suggested strain S12 had stronger electrokinesis behavior and oxidative stress-response at high EARP. This study provides the first global information of EARP regulations on microbial metabolism, which will be helpful for understanding microorganism respiration.

  11. Proteomics of drug resistance in Candida glabrata biofilms.

    PubMed

    Seneviratne, C Jayampath; Wang, Yu; Jin, Lijian; Abiko, Y; Samaranayake, Lakshman P

    2010-04-01

    Candida glabrata is a fungal pathogen that causes a variety of mucosal and systemic infections among compromised patient populations with higher mortality rates. Previous studies have shown that biofilm mode of the growth of the fungus is highly resistant to antifungal agents compared with the free-floating or planktonic mode of growth. Therefore, in the present study, we used 2-D DIGE to evaluate the differential proteomic profiles of C. glabrata under planktonic and biofilm modes of growth. Candida glabrata biofilms were developed on polystyrene surfaces and age-matched planktonic cultures were obtained in parallel. Initially, biofilm architecture, viability, and antifungal susceptibility were evaluated. Differentially expressed proteins more than 1.5-fold in DIGE analysis were subjected to MS/MS. The transcriptomic regulation of these biomarkers was evaluated by quantitative real-time PCR. Candida glabrata biofilms were highly resistant to the antifungals and biocides compared with the planktonic mode of growth. Candida glabrata biofilm proteome when compared with its planktonic proteome showed upregulation of stress response proteins, while glycolysis enzymes were downregulated. Similar trend could be observed at transcriptomic level. In conclusion, C. glabrata biofilms possess higher amount of stress response proteins, which may potentially contribute to the higher antifungal resistance seen in C. glabrata biofilms.

  12. Comparative Transcriptomics Highlights the Role of the Activator Protein 1 Transcription Factor in the Host Response to Ebolavirus

    PubMed Central

    Todd, Shawn; Boyd, Victoria; Tachedjian, Mary; Klein, Reuben; Shiell, Brian; Dearnley, Megan; McAuley, Alexander J.; Woon, Amanda P.; Purcell, Anthony W.; Marsh, Glenn A.; Baker, Michelle L.

    2017-01-01

    ABSTRACT Ebolavirus and Marburgvirus comprise two genera of negative-sense single-stranded RNA viruses that cause severe hemorrhagic fevers in humans. Despite considerable research efforts, the molecular events following Ebola virus (EBOV) infection are poorly understood. With the view of identifying host factors that underpin EBOV pathogenesis, we compared the transcriptomes of EBOV-infected human, pig, and bat kidney cells using a transcriptome sequencing (RNA-seq) approach. Despite a significant difference in viral transcription/replication between the cell lines, all cells responded to EBOV infection through a robust induction of extracellular growth factors. Furthermore, a significant upregulation of activator protein 1 (AP1) transcription factor complex members FOS and JUN was observed in permissive cell lines. Functional studies focusing on human cells showed that EBOV infection induces protein expression, phosphorylation, and nuclear accumulation of JUN and, to a lesser degree, FOS. Using a luciferase-based reporter, we show that EBOV infection induces AP1 transactivation activity within human cells at 48 and 72 h postinfection. Finally, we show that JUN knockdown decreases the expression of EBOV-induced host gene expression. Taken together, our study highlights the role of AP1 in promoting the host gene expression profile that defines EBOV pathogenesis. IMPORTANCE Many questions remain about the molecular events that underpin filovirus pathophysiology. The rational design of new intervention strategies, such as postexposure therapeutics, will be significantly enhanced through an in-depth understanding of these molecular events. We believe that new insights into the molecular pathogenesis of EBOV may be possible by examining the transcriptomic response of taxonomically diverse cell lines (derived from human, pig, and bat). We first identified the responsive pathways using an RNA-seq-based transcriptomics approach. Further functional and computational analysis focusing on human cells highlighted an important role for the AP1 transcription factor in mediating the transcriptional response to EBOV infection. Our study sheds new light on how host transcription factors respond to and promote the transcriptional landscape that follows viral infection. PMID:28931675

  13. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray.

    PubMed

    Pardo, Belén G; Álvarez-Dios, José Antonio; Cao, Asunción; Ramilo, Andrea; Gómez-Tato, Antonio; Planas, Josep V; Villalba, Antonio; Martínez, Paulino

    2016-12-01

    The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis

    PubMed Central

    Ayllón, Nieves; Villar, Margarita; Galindo, Ruth C.; Kocan, Katherine M.; Šíma, Radek; López, Juan A.; Vázquez, Jesús; Alberdi, Pilar; Cabezas-Cruz, Alejandro; Kopáček, Petr; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks. PMID:25815810

  15. Comparative Transcriptome Profiling of an SV40-Transformed Human Fibroblast (MRC5CVI) and Its Untransformed Counterpart (MRC-5) in Response to UVB Irradiation

    PubMed Central

    Chang, Cheng-Wei; Chen, Chaang-Ray; Huang, Chao-Ying; Shu, Wun-Yi; Chiang, Chi-Shiun; Hong, Ji-Hong; Hsu, Ian C.

    2013-01-01

    Simian virus 40 (SV40) transforms cells through the suppression of tumor-suppressive responses by large T and small t antigens; studies on the effects of these two oncoproteins have greatly improved our knowledge of tumorigenesis. Large T antigen promotes cellular transformation by binding and inactivating p53 and pRb tumor suppressor proteins. Previous studies have shown that not all of the tumor-suppressive responses were inactivated in SV40-transformed cells; however, the underlying cause is not fully studied. In this study, we investigated the UVB-responsive transcriptome of an SV40-transformed fibroblast (MRC5CVI) and that of its untransformed counterpart (MRC-5). We found that, in response to UVB irradiation, MRC-5 and MRC5CVI commonly up-regulated the expression of oxidative phosphorylation genes. MRC-5 up-regulated the expressions of chromosome condensation, DNA repair, cell cycle arrest, and apoptotic genes, but MRC5CVI did not. Further cell death assays indicated that MRC5CVI was more sensitive than MRC-5 to UVB-induced cell death with increased caspase-3 activation; combining with the transcriptomic results suggested that MRC5CVI may undergo UVB-induced cell death through mechanisms other than transcriptional regulation. Our study provides a further understanding of the effects of SV40 transformation on cellular stress responses, and emphasizes the value of SV40-transformed cells in the researches of sensitizing neoplastic cells to radiations. PMID:24019915

  16. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration.

    PubMed

    Petersen, Hendrik O; Höger, Stefanie K; Looso, Mario; Lengfeld, Tobias; Kuhn, Anne; Warnken, Uwe; Nishimiya-Fujisawa, Chiemi; Schnölzer, Martina; Krüger, Marcus; Özbek, Suat; Simakov, Oleg; Holstein, Thomas W

    2015-08-01

    The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  17. Transcriptome characterisation of Pinus tabuliformis and evolution of genes in the Pinus phylogeny

    PubMed Central

    2013-01-01

    Background The Chinese pine (Pinus tabuliformis) is an indigenous conifer species in northern China but is relatively underdeveloped as a genomic resource; thus, limiting gene discovery and breeding. Large-scale transcriptome data were obtained using a next-generation sequencing platform to compensate for the lack of P. tabuliformis genomic information. Results The increasing amount of transcriptome data on Pinus provides an excellent resource for multi-gene phylogenetic analysis and studies on how conserved genes and functions are maintained in the face of species divergence. The first P. tabuliformis transcriptome from a normalised cDNA library of multiple tissues and individuals was sequenced in a full 454 GS-FLX run, producing 911,302 sequencing reads. The high quality overlapping expressed sequence tags (ESTs) were assembled into 46,584 putative transcripts, and more than 700 SSRs and 92,000 SNPs/InDels were characterised. Comparative analysis of the transcriptome of six conifer species yielded 191 orthologues, from which we inferred a phylogenetic tree, evolutionary patterns and calculated rates of gene diversion. We also identified 938 fast evolving sequences that may be useful for identifying genes that perhaps evolved in response to positive selection and might be responsible for speciation in the Pinus lineage. Conclusions A large collection of high-quality ESTs was obtained, de novo assembled and characterised, which represents a dramatic expansion of the current transcript catalogues of P. tabuliformis and which will gradually be applied in breeding programs of P. tabuliformis. Furthermore, these data will facilitate future studies of the comparative genomics of P. tabuliformis and other related species. PMID:23597112

  18. Transcriptome-Based Characterization of Interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in Lactose-Grown Chemostat Cocultures

    PubMed Central

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J. H.; Luttik, Marijke A. H.; Pronk, Jack T.; Smid, Eddy J.; Bron, Peter A.

    2013-01-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations. PMID:23872557

  19. Transcriptome-based characterization of interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus in lactose-grown chemostat cocultures.

    PubMed

    Mendes, Filipa; Sieuwerts, Sander; de Hulster, Erik; Almering, Marinka J H; Luttik, Marijke A H; Pronk, Jack T; Smid, Eddy J; Bron, Peter A; Daran-Lapujade, Pascale

    2013-10-01

    Mixed populations of Saccharomyces cerevisiae yeasts and lactic acid bacteria occur in many dairy, food, and beverage fermentations, but knowledge about their interactions is incomplete. In the present study, interactions between Saccharomyces cerevisiae and Lactobacillus delbrueckii subsp. bulgaricus, two microorganisms that co-occur in kefir fermentations, were studied during anaerobic growth on lactose. By combining physiological and transcriptome analysis of the two strains in the cocultures, five mechanisms of interaction were identified. (i) Lb. delbrueckii subsp. bulgaricus hydrolyzes lactose, which cannot be metabolized by S. cerevisiae, to galactose and glucose. Subsequently, galactose, which cannot be metabolized by Lb. delbrueckii subsp. bulgaricus, is excreted and provides a carbon source for yeast. (ii) In pure cultures, Lb. delbrueckii subsp. bulgaricus grows only in the presence of increased CO2 concentrations. In anaerobic mixed cultures, the yeast provides this CO2 via alcoholic fermentation. (iii) Analysis of amino acid consumption from the defined medium indicated that S. cerevisiae supplied alanine to the bacterium. (iv) A mild but significant low-iron response in the yeast transcriptome, identified by DNA microarray analysis, was consistent with the chelation of iron by the lactate produced by Lb. delbrueckii subsp. bulgaricus. (v) Transcriptome analysis of Lb. delbrueckii subsp. bulgaricus in mixed cultures showed an overrepresentation of transcripts involved in lipid metabolism, suggesting either a competition of the two microorganisms for fatty acids or a response to the ethanol produced by S. cerevisiae. This study demonstrates that chemostat-based transcriptome analysis is a powerful tool to investigate microbial interactions in mixed populations.

  20. Surviving in a toxic world: transcriptomics and gene expression profiling in response to environmental pollution in the critically endangered European eel

    PubMed Central

    2012-01-01

    Background Genomic and transcriptomic approaches have the potential for unveiling the genome-wide response to environmental perturbations. The abundance of the catadromous European eel (Anguilla anguilla) stock has been declining since the 1980s probably due to a combination of anthropogenic and climatic factors. In this paper, we explore the transcriptomic dynamics between individuals from high (river Tiber, Italy) and low pollution (lake Bolsena, Italy) environments, which were measured for 36 PCBs, several organochlorine pesticides and brominated flame retardants and nine metals. Results To this end, we first (i) updated the European eel transcriptome using deep sequencing data with a total of 640,040 reads assembled into 44,896 contigs (Eeelbase release 2.0), and (ii) developed a transcriptomic platform for global gene expression profiling in the critically endangered European eel of about 15,000 annotated contigs, which was applied to detect differentially expressed genes between polluted sites. Several detoxification genes related to metabolism of pollutants were upregulated in the highly polluted site, including genes that take part in phase I of the xenobiotic metabolism (CYP3A), phase II (glutathione-S-transferase) and oxidative stress (glutathione peroxidase). In addition, key genes in the mitochondrial respiratory chain and oxidative phosphorylation were down-regulated at the Tiber site relative to the Bolsena site. Conclusions Together with the induced high expression of detoxification genes, the suggested lowered expression of genes supposedly involved in metabolism suggests that pollution may also be associated with decreased respiratory and energy production. PMID:23009661

  1. Nature and nurture: environmental influences on a genetic rat model of depression

    PubMed Central

    Mehta-Raghavan, N S; Wert, S L; Morley, C; Graf, E N; Redei, E E

    2016-01-01

    In this study, we sought to learn whether adverse events such as chronic restraint stress (CRS), or ‘nurture' in the form of environmental enrichment (EE), could modify depression-like behavior and blood biomarker transcript levels in a genetic rat model of depression. The Wistar Kyoto More Immobile (WMI) is a genetic model of depression that aided in the identification of blood transcriptomic markers, which successfully distinguished adolescent and adult subjects with major depressive disorders from their matched no-disorder controls. Here, we followed the effects of CRS and EE in adult male WMIs and their genetically similar control strain, the Wistar Kyoto Less Immobile (WLI), that does not show depression-like behavior, by measuring the levels of these transcripts in the blood and hippocampus. In WLIs, increased depression-like behavior and transcriptomic changes were present in response to CRS, but in WMIs no behavioral or additive transcriptomic changes occurred. Environmental enrichment decreased both the inherent depression-like behavior in the WMIs and the behavioral difference between WMIs and WLIs, but did not reverse basal transcript level differences between the strains. The inverse behavioral change induced by CRS and EE in the WLIs did not result in parallel inverse expression changes of the transcriptomic markers, suggesting that these behavioral responses to the environment work via separate molecular pathways. In contrast, ‘trait' transcriptomic markers with expression differences inherent and unchanging between the strains regardless of the environment suggest that in our model, environmental and genetic etiologies of depression work through independent molecular mechanisms. PMID:27023176

  2. Transcriptome Analysis of Scrippsiella trochoidea CCMP 3099 Reveals Physiological Changes Related to Nitrate Depletion

    PubMed Central

    Cooper, Joshua T.; Sinclair, Geoffrey A.; Wawrik, Boris

    2016-01-01

    Dinoflagellates are a major component of marine phytoplankton and many species are recognized for their ability to produce harmful algal blooms (HABs). Scrippsiella trochoidea is a non-toxic, marine dinoflagellate that can be found in both cold and tropic waters where it is known to produce “red tide” events. Little is known about the genomic makeup of S. trochoidea and a transcriptome study was conducted to shed light on the biochemical and physiological adaptations related to nutrient depletion. Cultures were grown under N and P limiting conditions and transcriptomes were generated via RNAseq technology. De novo assembly reconstructed 107,415 putative transcripts of which only 41% could be annotated. No significant transcriptomic response was observed in response to initial P depletion, however, a strong transcriptional response to N depletion was detected. Among the down-regulated pathways were those for glutamine/glutamate metabolism as well as urea and nitrate/nitrite transporters. Transcripts for ammonia transporters displayed both up- and down-regulation, perhaps related to a shift to higher affinity transporters. Genes for the utilization of DON compounds were up-regulated. These included transcripts for amino acids transporters, polyamine oxidase, and extracellular proteinase and peptidases. N depletion also triggered down regulation of transcripts related to the production of Photosystems I & II and related proteins. These data are consistent with a metabolic strategy that conserves N while maximizing sustained metabolism by emphasizing the relative contribution of organic N sources. Surprisingly, the transcriptome also contained transcripts potentially related to secondary metabolite production, including a homolog to the Short Isoform Saxitoxin gene (sxtA) from Alexandrium fundyense, which was significantly up-regulated under N-depletion. A total of 113 unique hits to Sxt genes, covering 17 of the 34 genes found in C. raciborskii were detected, indicating that S. trochoidea has previously unrecognized potential for the production of secondary metabolites with potential toxicity. PMID:27242681

  3. The immune gene repertoire of an important viral reservoir, the Australian black flying fox

    PubMed Central

    2012-01-01

    Background Bats are the natural reservoir host for a range of emerging and re-emerging viruses, including SARS-like coronaviruses, Ebola viruses, henipaviruses and Rabies viruses. However, the mechanisms responsible for the control of viral replication in bats are not understood and there is little information available on any aspect of antiviral immunity in bats. Massively parallel sequencing of the bat transcriptome provides the opportunity for rapid gene discovery. Although the genomes of one megabat and one microbat have now been sequenced to low coverage, no transcriptomic datasets have been reported from any bat species. In this study, we describe the immune transcriptome of the Australian flying fox, Pteropus alecto, providing an important resource for identification of genes involved in a range of activities including antiviral immunity. Results Towards understanding the adaptations that have allowed bats to coexist with viruses, we have de novo assembled transcriptome sequence from immune tissues and stimulated cells from P. alecto. We identified about 18,600 genes involved in a broad range of activities with the most highly expressed genes involved in cell growth and maintenance, enzyme activity, cellular components and metabolism and energy pathways. 3.5% of the bat transcribed genes corresponded to immune genes and a total of about 500 immune genes were identified, providing an overview of both innate and adaptive immunity. A small proportion of transcripts found no match with annotated sequences in any of the public databases and may represent bat-specific transcripts. Conclusions This study represents the first reported bat transcriptome dataset and provides a survey of expressed bat genes that complement existing bat genomic data. In addition, these data provide insight into genes relevant to the antiviral responses of bats, and form a basis for examining the roles of these molecules in immune response to viral infection. PMID:22716473

  4. Arsenomics: omics of arsenic metabolism in plants

    PubMed Central

    Tripathi, Rudra Deo; Tripathi, Preeti; Dwivedi, Sanjay; Dubey, Sonali; Chatterjee, Sandipan; Chakrabarty, Debasis; Trivedi, Prabodh K.

    2012-01-01

    Arsenic (As) contamination of drinking water and groundwater used for irrigation can lead to contamination of the food chain and poses serious health risk to people worldwide. To reduce As intake through the consumption of contaminated food, identification of the mechanisms for As accumulation and detoxification in plant is a prerequisite to develop efficient phytoremediation methods and safer crops with reduced As levels. Transcriptome, proteome, and metabolome analysis of any organism reflects the total biological activities at any given time which are responsible for the adaptation of the organism to the surrounding environmental conditions. As these approaches are very important in analyzing plant As transport and accumulation, we termed “Arsenomics” as approach which deals transcriptome, proteome, and metabolome alterations during As exposure. Although, various studies have been performed to understand modulation in transcriptome in response to As, many important questions need to be addressed regarding the translated proteins of plants at proteomic and metabolomic level, resulting in various ecophysiological responses. In this review, the comprehensive knowledge generated in this area has been compiled and analyzed. There is a need to strengthen Arsenomics which will lead to build up tools to develop As-free plants for safe consumption. PMID:22934029

  5. Physiological and Transcriptomic Responses of Chinese Cabbage (Brassica rapa L. ssp. Pekinensis) to Salt Stress

    PubMed Central

    Gao, Jianwei

    2017-01-01

    Salt stress is one of the major abiotic stresses that severely impact plant growth and development. In this study, we investigated the physiological and transcriptomic responses of Chinese cabbage “Qingmaye” to salt stress, a main variety in North China. Our results showed that the growth and photosynthesis of Chinese cabbage were significantly inhibited by salt treatment. However, as a glycophyte, Chinese cabbage could cope with high salinity; it could complete an entire life cycle at 100 mM NaCl. The high salt tolerance of Chinese cabbage was achieved by accumulating osmoprotectants and by maintaining higher activity of antioxidant enzymes. Transcriptomic responses were analyzed using the digital gene expression profiling (DGE) technique after 12 h of treatment by 200 mM NaCl. A total of 1235 differentially expressed genes (DEGs) including 740 up- and 495 down-regulated genes were identified. Functional annotation analyses showed that the DEGs were related to signal transduction, osmolyte synthesis, transcription factors, and antioxidant proteins. Taken together, this study contributes to our understanding of the mechanism of salt tolerance in Chinese cabbage and provides valuable information for further improvement of salt tolerance in Chinese cabbage breeding programs. PMID:28895882

  6. Effects of hibernation on bone marrow transcriptome in thirteen-lined ground squirrels.

    PubMed

    Cooper, Scott T; Sell, Shawn S; Fahrenkrog, Molly; Wilkinson, Kory; Howard, David R; Bergen, Hannah; Cruz, Estefania; Cash, Steve E; Andrews, Matthew T; Hampton, Marshall

    2016-07-01

    Mammalian hibernators adapt to prolonged periods of immobility, hypometabolism, hypothermia, and oxidative stress, each capable of reducing bone marrow activity. In this study bone marrow transcriptomes were compared among thirteen-lined ground squirrels collected in July, winter torpor, and winter interbout arousal (IBA). The results were consistent with a suppression of acquired immune responses, and a shift to innate immune responses during hibernation through higher complement expression. Consistent with the increase in adipocytes found in bone marrow of hibernators, expression of genes associated with white adipose tissue are higher during hibernation. Genes that should strengthen the bone by increasing extracellular matrix were higher during hibernation, especially the collagen genes. Finally, expression of heat shock proteins were lower, and cold-response genes were higher, during hibernation. No differential expression of hematopoietic genes involved in erythrocyte or megakaryocyte production was observed. This global view of the changes in the bone marrow transcriptome over both short term (torpor vs. IBA) and long term (torpor vs. July) hypothermia can explain several observations made about circulating blood cells and the structure and strength of the bone during hibernation. Copyright © 2016 the American Physiological Society.

  7. Transcriptome immunomodulation of in-feed additives in Atlantic salmon Salmo salar infested with sea lice Caligus rogercresseyi.

    PubMed

    Núñez-Acuña, Gustavo; Gonçalves, Ana Teresa; Valenzuela-Muñoz, Valentina; Pino-Marambio, Jorge; Wadsworth, Simon; Gallardo-Escárate, Cristian

    2015-11-01

    One of the most significant threats to the Chilean salmon aquaculture industry is the ectoparasitic sea louse Caligus rogercresseyi. To cope with sea lice infestations, functional diets have become an important component in strengthening the host immune response. The aim of this study was to evaluate molecular mechanisms activated through immunostimulation by in-feed plant-derived additives in Atlantic salmon infected with sea lice. Herein, a transcriptome-wide sequencing analysis was performed from skin and head kidney tissues, evidencing that the immune response genes were the most variable after the challenge, especially in the head kidney, while other genes involved in metabolism were highly expressed individuals fed with the immunostimulants. Interestingly, defensive enzymes such as Cytochrome p450 and serpins were down-regulated in infested individuals, especially in skin tissue. Additionally, MHC-I and MHC-II genes were differentially expressed after the incorporation of the in-feed additives, giving some cues about the protection mechanisms of plant-derived compound as immunostimulants for infested salmons. This is the first published study that evaluates the transcriptomic response of sea lice-infested Atlantic salmon fed with in-feed additives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Midgut transcriptome response to a Cry toxin in the diamondback moth, Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Lei, Yanyuan; Zhu, Xun; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Guo, Zhaojiang; Xu, Baoyun; Li, Xianchun; Zhou, Xuguo; Zhang, Youjun

    2014-01-01

    To investigate the response of Plutella xylostella transcriptome in defending against a Bt toxin, high-throughput RNA-sequencing was carried out to examine Cry1Ac-susceptible and -resistant strains. The comparative analysis indentified over 2900 differentially expressed unigenes (DEUs) between these two strains. Gene Ontology analysis placed these unigenes primarily into cell, cell part, organelle, binding, catalytic, cellular process, metabolic process, and response to stimulus categories. Based on pathway analyses, DEUs were enriched in oxidoreductase activity and membrane lipid metabolic processes, and they were also significantly enriched in pathways related to the metabolic and biosynthesis of secondary metabolites. Most of the unigenes involved in the metabolic pathway were up-regulated in resistant strains. Within the ABC transporter pathway, majority of the down-regulated unigenes belong to ABCC2 and ABCC10, respectively, while up-regulated unigenes were mainly categorized as ABCG2. Furthermore, two aminopeptidases, and four cadherins encoding genes were significantly elevated as well. This study provides a transcriptome foundation for the identification and functional characterization of genes involved in the Bt resistance in an agriculturally important insect pest, P. xylostella. © 2013 Elsevier B.V. All rights reserved.

  9. The Proteomic Response of Arabidopsis thaliana to Cadmium Sulfide Quantum Dots, and Its Correlation with the Transcriptomic Response

    PubMed Central

    Marmiroli, Marta; Imperiale, Davide; Pagano, Luca; Villani, Marco; Zappettini, Andrea; Marmiroli, Nelson

    2015-01-01

    A fuller understanding of the interaction between plants and engineered nanomaterials is of topical relevance because the latter are beginning to find applications in agriculture and the food industry. There is a growing need to establish objective safety criteria for their use. The recognition of two independent Arabidopsis thaliana mutants displaying a greater level of tolerance than the wild type plant to exposure to cadmium sulfide quantum dots (CdS QDs) has offered the opportunity to characterize the tolerance response at the physiological, transcriptomic, and proteomic levels. Here, a proteomics-based comparison confirmed the conclusions drawn from an earlier transcriptomic analysis that the two mutants responded to CdS QD exposure differently both to the wild type and to each other. Just over half of the proteomic changes mirrored documented changes at the level of gene transcription, but a substantial number of transcript/gene product pairs were altered in the opposite direction. An interpretation of the discrepancies is given, along with some considerations regarding the use and significance of -omics when monitoring the potential toxicity of ENMs for health and environment. PMID:26732871

  10. De Novo Transcriptome of the Hemimetabolous German Cockroach (Blattella germanica)

    PubMed Central

    Zhou, Xiaojie; Qian, Kun; Tong, Ying; Zhu, Junwei Jerry; Qiu, Xinghui; Zeng, Xiaopeng

    2014-01-01

    Background The German cockroach, Blattella germanica, is an important insect pest that transmits various pathogens mechanically and causes severe allergic diseases. This insect has long served as a model system for studies of insect biology, physiology and ecology. However, the lack of genome or transcriptome information heavily hinder our further understanding about the German cockroach in every aspect at a molecular level and on a genome-wide scale. To explore the transcriptome and identify unique sequences of interest, we subjected the B. germanica transcriptome to massively parallel pyrosequencing and generated the first reference transcriptome for B. germanica. Methodology/Principal Findings A total of 1,365,609 raw reads with an average length of 529 bp were generated via pyrosequencing the mixed cDNA library from different life stages of German cockroach including maturing oothecae, nymphs, adult females and males. The raw reads were de novo assembled to 48,800 contigs and 3,961 singletons with high-quality unique sequences. These sequences were annotated and classified functionally in terms of BLAST, GO and KEGG, and the genes putatively coding detoxification enzyme systems, insecticide targets, key components in systematic RNA interference, immunity and chemoreception pathways were identified. A total of 3,601 SSRs (Simple Sequence Repeats) loci were also predicted. Conclusions/Significance The whole transcriptome pyrosequencing data from this study provides a usable genetic resource for future identification of potential functional genes involved in various biological processes. PMID:25265537

  11. Gingival transcriptome patterns during induction and resolution of experimental gingivitis in humans.

    PubMed

    Offenbacher, Steven; Barros, Silvana P; Paquette, David W; Winston, J Leslie; Biesbrock, Aaron R; Thomason, Ryan G; Gibb, Roger D; Fulmer, Andy W; Tiesman, Jay P; Juhlin, Kenton D; Wang, Shuo L; Reichling, Tim D; Chen, Ker-Sang; Ho, Begonia

    2009-12-01

    To our knowledge, changes in the patterns of whole-transcriptome gene expression that occur during the induction and resolution of experimental gingivitis in humans were not previously explored using bioinformatic tools. Gingival biopsy samples collected from 14 subjects during a 28-day stent-induced experimental gingivitis model, followed by treatment, and resolution at days 28 through 35 were analyzed using gene-expression arrays. Biopsy samples were collected at different sites within each subject at baseline (day 0), at the peak of gingivitis (day 28), and at resolution (day 35) and processed using whole-transcriptome gene-expression arrays. Gene-expression data were analyzed to identify biologic themes and pathways associated with changes in gene-expression profiles that occur during the induction and resolution of experimental gingivitis using bioinformatic tools. During disease induction and resolution, the dominant expression pathway was the immune response, with 131 immune response genes significantly up- or downregulated during induction, during resolution, or during both at P <0.05. During induction, there was significant transient increase in the expression of inflammatory and oxidative stress mediators, including interleukin (IL)-1 alpha (IL1A), IL-1 beta (IL1B), IL8, RANTES, colony stimulating factor 3 (CSF3), and superoxide dismutase 2 (SOD2), and a decreased expression of IP10, interferon inducible T-cell alpha chemoattractant (ITAC), matrix metalloproteinase 10 (MMP10), and beta 4 defensin (DEFB4). These genes reversed expression patterns upon resolution in parallel with the reversal of gingival inflammation. A relatively small subset (11.9%) of the immune response genes analyzed by array was transiently activated in response to biofilm overgrowth, suggesting a degree of specificity in the transcriptome-expression response. The fact that this same subset demonstrates a reversal in expression patterns during clinical resolution implicates these genes as being critical for maintaining tissue homeostasis at the biofilm-gingival interface. In addition to the immune response pathway as the dominant response theme, new candidate genes and pathways were identified as being selectively modulated in experimental gingivitis, including neural processes, epithelial defenses, angiogenesis, and wound healing.

  12. Influenza-Omics and the Host Response: Recent Advances and Future Prospects

    PubMed Central

    Powell, Joshua D.; Waters, Katrina M.

    2017-01-01

    Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. The various-omics infection systems that include but are not limited to ferrets, mice, pigs, and even the controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infection outcomes. PMID:28604586

  13. Influenza-Omics and the Host Response: Recent Advances and Future Prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Joshua D.; Waters, Katrina M.

    Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less

  14. Influenza-Omics and the Host Response: Recent Advances and Future Prospects

    DOE PAGES

    Powell, Joshua D.; Waters, Katrina M.

    2017-06-10

    Influenza A viruses (IAV) continually evolve and have the capacity to cause global pandemics. Because IAV represents an ongoing threat, identifying novel therapies and host innate immune factors that contribute to IAV pathogenesis is of considerable interest. This review summarizes the relevant literature as it relates to global host responses to influenza infection at both the proteome and transcriptome level. Here, the various –omics infection systems that include but are not limited to ferrets, mice, pigs and even controlled infection of humans are reviewed. Discussion focuses on recent advances, remaining challenges, and knowledge gaps as it relates to influenza-omics infectionmore » outcomes.« less

  15. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent.

    PubMed

    Zamboni, Anita; Zanin, Laura; Tomasi, Nicola; Avesani, Linda; Pinton, Roberto; Varanini, Zeno; Cesco, Stefano

    2016-01-07

    It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The use by roots of these three natural Fe sources (Fe-citrate, Fe-PS and Fe complexed to water-extractable humic substances, Fe-WEHS) have been already studied at physiological level but the knowledge about the transcriptomic aspects is still lacking. The (59)Fe concentration recorded after 24 h in tissues of tomato Fe-deficient plants supplied with (59)Fe complexed to WEHS reached values about 2 times higher than those measured in response to the supply with Fe-citrate and Fe-PS. However, after 1 h no differences among the three Fe-chelates were observed considering the (59)Fe concentration and the root Fe(III) reduction activity. A large-scale transcriptional analysis of root tissue after 1 h of Fe supply showed that Fe-WEHS modulated only two transcripts leaving the transcriptome substantially identical to Fe-deficient plants. On the other hand, Fe-citrate and Fe-PS affected 728 and 408 transcripts, respectively, having 289 a similar transcriptional behaviour in response to both Fe sources. The root transcriptional response to the Fe supply depends on the nature of chelating agents (WEHS, citrate and PS). The supply of Fe-citrate and Fe-PS showed not only a fast back regulation of molecular mechanisms modulated by Fe deficiency but also specific responses due to the uptake of the chelating molecule. Plants fed with Fe-WEHS did not show relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation.

  16. Transcriptome profiling of two olive cultivars in response to infection by the CoDiRO strain of Xylella fastidiosa subsp. pauca.

    PubMed

    Giampetruzzi, Annalisa; Morelli, Massimiliano; Saponari, Maria; Loconsole, Giuliana; Chiumenti, Michela; Boscia, Donato; Savino, Vito N; Martelli, Giovanni P; Saldarelli, Pasquale

    2016-06-27

    The recent Xylella fastidiosa subsp. pauca (Xfp) outbreak in olive (Olea europaea) groves in southern Italy is causing a destructive disease denoted Olive Quick Decline Syndrome (OQDS). Field observations disclosed that Xfp-infected plants of cv. Leccino show much milder symptoms, than the more widely grown and highly susceptible cv. Ogliarola salentina. To determine whether these field observations underlie a tolerant condition of cv. Leccino, which could be exploited for lessening the economic impact of the disease on the local olive industry, transcriptional changes occurring in plants of the two cultivars affected by Xfp were investigated. A global quantitative transcriptome profiling comparing susceptible (Ogliarola salentina) and tolerant (Leccino) olive cultivars, infected or not by Xfp, was done on messenger RNA (mRNAs) extracted from xylem tissues. The study revealed that 659 and 447 genes were differentially regulated in cvs Leccino and Ogliarola upon Xfp infection, respectively, whereas 512 genes were altered when the transcriptome of both infected cultivars was compared. Analysis of these differentially expressed genes (DEGs) shows that the presence of Xfp is perceived by the plants of both cultivars, in which it triggers a differential response strongly involving the cell wall. Up-regulation of genes encoding receptor-like kinases (RLK) and receptor-like proteins (RLP) is the predominant response of cv. Leccino, which is missing in cv. Ogliarola salentina. Moreover, both cultivars react with a strong re-modelling of cell wall proteins. These data suggest that Xfp elicits a different transcriptome response in the two cultivars, which determines a lower pathogen concentration in cv. Leccino and indicates that this cultivar may harbor genetic constituents and/or regulatory elements which counteract Xfp infection. Collectively these findings suggest that cv. Leccino is endowed with an intrinsic tolerance to Xfp, which makes it eligible for further studies aiming at investigating molecular basis and pathways modulating its different defense response.

  17. Preliminary profiling of blood transcriptome in a rat model of hemorrhagic shock.

    PubMed

    Braga, D; Barcella, M; D'Avila, F; Lupoli, S; Tagliaferri, F; Santamaria, M H; DeLano, F A; Baselli, G; Schmid-Schönbein, G W; Kistler, E B; Aletti, F; Barlassina, C

    2017-08-01

    Hemorrhagic shock is a leading cause of morbidity and mortality worldwide. Significant blood loss may lead to decreased blood pressure and inadequate tissue perfusion with resultant organ failure and death, even after replacement of lost blood volume. One reason for this high acuity is that the fundamental mechanisms of shock are poorly understood. Proteomic and metabolomic approaches have been used to investigate the molecular events occurring in hemorrhagic shock but, to our knowledge, a systematic analysis of the transcriptomic profile is missing. Therefore, a pilot analysis using paired-end RNA sequencing was used to identify changes that occur in the blood transcriptome of rats subjected to hemorrhagic shock after blood reinfusion. Hemorrhagic shock was induced using a Wigger's shock model. The transcriptome of whole blood from shocked animals shows modulation of genes related to inflammation and immune response (Tlr13, Il1b, Ccl6, Lgals3), antioxidant functions (Mt2A, Mt1), tissue injury and repair pathways (Gpnmb, Trim72) and lipid mediators (Alox5ap, Ltb4r, Ptger2) compared with control animals. These findings are congruent with results obtained in hemorrhagic shock analysis by other authors using metabolomics and proteomics. The analysis of blood transcriptome may be a valuable tool to understand the biological changes occurring in hemorrhagic shock and a promising approach for the identification of novel biomarkers and therapeutic targets. Impact statement This study provides the first pilot analysis of the changes occurring in transcriptome expression of whole blood in hemorrhagic shock (HS) rats. We showed that the analysis of blood transcriptome is a useful approach to investigate pathways and functional alterations in this disease condition. This pilot study encourages the possible application of transcriptome analysis in the clinical setting, for the molecular profiling of whole blood in HS patients.

  18. Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots.

    PubMed

    Aubry-Hivet, D; Nziengui, H; Rapp, K; Oliveira, O; Paponov, I A; Li, Y; Hauslage, J; Vagt, N; Braun, M; Ditengou, F A; Dovzhenko, A; Palme, K

    2014-01-01

    Plant roots are among most intensively studied biological systems in gravity research. Altered gravity induces asymmetric cell growth leading to root bending. Differential distribution of the phytohormone auxin underlies root responses to gravity, being coordinated by auxin efflux transporters from the PIN family. The objective of this study was to compare early transcriptomic changes in roots of Arabidopsis thaliana wild type, and pin2 and pin3 mutants under parabolic flight conditions and to correlate these changes to auxin distribution. Parabolic flights allow comparison of transient 1-g, hypergravity and microgravity effects in living organisms in parallel. We found common and mutation-related genes differentially expressed in response to transient microgravity phases. Gene ontology analysis of common genes revealed lipid metabolism, response to stress factors and light categories as primarily involved in response to transient microgravity phases, suggesting that fundamental reorganisation of metabolic pathways functions upstream of a further signal mediating hormonal network. Gene expression changes in roots lacking the columella-located PIN3 were stronger than in those deprived of the epidermis and cortex cell-specific PIN2. Moreover, repetitive exposure to microgravity/hypergravity and gravity/hypergravity flight phases induced an up-regulation of auxin responsive genes in wild type and pin2 roots, but not in pin3 roots, suggesting a critical function of PIN3 in mediating auxin fluxes in response to transient microgravity phases. Our study provides important insights towards understanding signal transduction processes in transient microgravity conditions by combining for the first time the parabolic flight platform with the transcriptome analysis of different genetic mutants in the model plant, Arabidopsis. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  19. Transcriptomics of coping strategies in free-swimming Lepeophtheirus salmonis (Copepoda) larvae responding to abiotic stress.

    PubMed

    Sutherland, Ben J G; Jantzen, Stuart G; Yasuike, Motoshige; Sanderson, Dan S; Koop, Ben F; Jones, Simon R M

    2012-12-01

    The salmon louse Lepeophtheirus salmonis is a marine ectoparasite of wild and farmed salmon in the Northern Hemisphere. Infections of farmed salmon are of economic and ecological concern. Nauplius and copepodid salmon lice larvae are free-swimming and disperse in the water column until they encounter a host. In this study, we characterized the sublethal stress responses of L. salmonis copepodid larvae by applying a 38K oligonucleotide microarray to profile transcriptomes following 24 h exposures to suboptimal salinity (30-10 parts per thousand (‰)) or temperature (16-4 °C) environments. Hyposalinity exposure resulted in large-scale gene expression changes relative to those elicited by a thermal gradient. Subsequently, transcriptome responses to a more finely resolved salinity gradient between 30 ‰ and 25 ‰ were profiled. Minimal changes occurred at 29 ‰ or 28 ‰, a threshold of response was identified at 27 ‰, and the largest response was at 25 ‰. Differentially expressed genes were clustered by pattern of expression, and clusters were characterized by functional enrichment analysis. Results indicate larval copepods adopt two distinct coping strategies in response to short-term hyposaline stress: a primary response using molecular chaperones and catabolic processes at 27 ‰; and a secondary response up-regulating ion pumps, transporters, a different suite of chaperones and apoptosis-related transcripts at 26 ‰ and 25 ‰. The results further our understanding of the tolerances of L. salmonis copepodids to salinity and temperature gradients and may assist in the development of salmon louse management strategies. © 2012 Blackwell Publishing Ltd.

  20. BRIC-21: Global Transcriptome Profiling to Identify Cellular Stress Mechanisms Responsible for Spaceflight-Induced Antibiotic Resistance

    NASA Technical Reports Server (NTRS)

    Nicholson, Wayne L.; Fajardo-Cavazos, Patricia

    2015-01-01

    Comparisons of spaceflight stress responses in Bacillus subtilis spores and Staphylococcus epidermidis cells to ground-based controls will be conducted to uncover alterations in their antibiotic susceptibility.

  1. Transcriptomic and metabolomic analysis of copper stress acclimation in Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae

    PubMed Central

    2014-01-01

    Background Brown algae are sessile macro-organisms of great ecological relevance in coastal ecosystems. They evolved independently from land plants and other multicellular lineages, and therefore hold several original ontogenic and metabolic features. Most brown algae grow along the coastal zone where they face frequent environmental changes, including exposure to toxic levels of heavy metals such as copper (Cu). Results We carried out large-scale transcriptomic and metabolomic analyses to decipher the short-term acclimation of the brown algal model E. siliculosus to Cu stress, and compared these data to results known for other abiotic stressors. This comparison demonstrates that Cu induces oxidative stress in E. siliculosus as illustrated by the transcriptomic overlap between Cu and H2O2 treatments. The common response to Cu and H2O2 consisted in the activation of the oxylipin and the repression of inositol signaling pathways, together with the regulation of genes coding for several transcription-associated proteins. Concomitantly, Cu stress specifically activated a set of genes coding for orthologs of ABC transporters, a P1B-type ATPase, ROS detoxification systems such as a vanadium-dependent bromoperoxidase, and induced an increase of free fatty acid contents. Finally we observed, as a common abiotic stress mechanism, the activation of autophagic processes on one hand and the repression of genes involved in nitrogen assimilation on the other hand. Conclusions Comparisons with data from green plants indicate that some processes involved in Cu and oxidative stress response are conserved across these two distant lineages. At the same time the high number of yet uncharacterized brown alga-specific genes induced in response to copper stress underlines the potential to discover new components and molecular interactions unique to these organisms. Of particular interest for future research is the potential cross-talk between reactive oxygen species (ROS)-, myo-inositol-, and oxylipin signaling. PMID:24885189

  2. Histological and transcriptomic responses of two immune organs, the spleen and head kidney, in Nile tilapia (Oreochromis niloticus) to long-term hypersaline stress.

    PubMed

    Xu, Chang; Li, Erchao; Suo, Yantong; Su, Yujie; Lu, Minghui; Zhao, Qun; Qin, Jian G; Chen, Liqiao

    2018-05-01

    Hyperosmotic stress can adversely affect fish immunity, but little is known about the histological and transcriptomic responses of immune organs in fish in a hyperosmotic environment. This study evaluated the effects of long-term hypersaline conditions (16‰) on the growth, histology and transcriptomics of the two main immune organs, the spleen and head kidney, in Nile tilapia Oreochromis niloticus relative to those reared in freshwater for eight weeks. No differences in weight gain and specific growth rate were found between fish reared under these two salinities. Hyperosmotic stress induced a congestive or enlarged spleen. Platelet- and coagulation-related gene expression was significantly decreased in tilapia at 16‰. The red cell distribution width and value of the mean corpuscular hemoglobin were significantly greater in fish at 16‰ salinity than in control fish in freshwater. A large volume of melano-macrophages in the spleen and pigment deposition in both the spleen and head kidney were observed in the histological sections in fish at 16‰ salinity. Transmission electron microscopic results showed abnormal macrophages with deposition granules in the spleen and head kidney and more neutrophils in the head kidney of fish at 16‰ than in control fish. In total, 772 and 502 genes were annotated for significantly different expression in the spleen and head kidney, respectively, and corresponded to five and one significantly changed immune system pathways, respectively. The complement pathway in the spleen was significantly down-regulated at 16‰. This study indicates that long-term exposure of Nile tilapia to a hyperosmotic environment can induce splenomegaly, reduce coagulation function, enhance phagocytic activity and down-regulate the complement pathway in the spleen. The spleen is a more sensitive organ for immune responses to chronic ambient salinity stress than the head kidney in Nile tilapia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Time-Course Transcriptome Analysis Reveals Resistance Genes of Panax ginseng Induced by Cylindrocarpon destructans Infection Using RNA-Seq.

    PubMed

    Gao, Yuan; He, Xiaoli; Wu, Bin; Long, Qiliang; Shao, Tianwei; Wang, Zi; Wei, Jianhe; Li, Yong; Ding, Wanlong

    2016-01-01

    Panax ginseng C. A. Meyer is a highly valued medicinal plant. Cylindrocarpon destructans is a destructive pathogen that causes root rot and significantly reduces the quality and yield of P. ginseng. However, an efficient method to control root rot remains unavailable because of insufficient understanding of the molecular mechanism underlying C. destructans-P. ginseng interaction. In this study, C. destructans-induced transcriptomes at different time points were investigated using RNA sequencing (RNA-Seq). De novo assembly produced 73,335 unigenes for the P. ginseng transcriptome after C. destructans infection, in which 3,839 unigenes were up-regulated. Notably, the abundance of the up-regulated unigenes sharply increased at 0.5 d postinoculation to provide effector-triggered immunity. In total, 24 of 26 randomly selected unigenes can be validated using quantitative reverse transcription (qRT)-PCR. Gene ontology enrichment analysis of these unigenes showed that "defense response to fungus", "defense response" and "response to stress" were enriched. In addition, differentially expressed transcription factors involved in the hormone signaling pathways after C. destructans infection were identified. Finally, differentially expressed unigenes involved in reactive oxygen species and ginsenoside biosynthetic pathway during C. destructans infection were indentified. To our knowledge, this study is the first to report on the dynamic transcriptome triggered by C. destructans. These results improve our understanding of disease resistance in P. ginseng and provide a useful resource for quick detection of induced markers in P. ginseng before the comprehensive outbreak of this disease caused by C. destructans.

  4. Nasopharyngeal Microbiota, Host Transcriptome, and Disease Severity in Children with Respiratory Syncytial Virus Infection.

    PubMed

    de Steenhuijsen Piters, Wouter A A; Heinonen, Santtu; Hasrat, Raiza; Bunsow, Eleonora; Smith, Bennett; Suarez-Arrabal, Maria-Carmen; Chaussabel, Damien; Cohen, Daniel M; Sanders, Elisabeth A M; Ramilo, Octavio; Bogaert, Debby; Mejias, Asuncion

    2016-11-01

    Respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infections and hospitalizations in infants worldwide. Known risk factors, however, incompletely explain the variability of RSV disease severity, especially among healthy children. We postulate that the severity of RSV infection is influenced by modulation of the host immune response by the local bacterial ecosystem. To assess whether specific nasopharyngeal microbiota (clusters) are associated with distinct host transcriptome profiles and disease severity in children less than 2 years of age with RSV infection. We characterized the nasopharyngeal microbiota profiles of young children with mild and severe RSV disease and healthy children by 16S-rRNA sequencing. In parallel, using multivariable models, we analyzed whole-blood transcriptome profiles to study the relationship between microbial community composition, the RSV-induced host transcriptional response, and clinical disease severity. We identified five nasopharyngeal microbiota clusters characterized by enrichment of either Haemophilus influenzae, Streptococcus, Corynebacterium, Moraxella, or Staphylococcus aureus. RSV infection and RSV hospitalization were positively associated with H. influenzae and Streptococcus and negatively associated with S. aureus abundance, independent of age. Children with RSV showed overexpression of IFN-related genes, independent of the microbiota cluster. In addition, transcriptome profiles of children with RSV infection and H. influenzae- and Streptococcus-dominated microbiota were characterized by greater overexpression of genes linked to Toll-like receptor and by neutrophil and macrophage activation and signaling. Our data suggest that interactions between RSV and nasopharyngeal microbiota might modulate the host immune response, potentially affecting clinical disease severity.

  5. Transcriptome and proteome analysis of Eucalyptus infected with Calonectria pseudoreteaudii.

    PubMed

    Chen, Quanzhu; Guo, Wenshuo; Feng, Lizhen; Ye, Xiaozhen; Xie, Wanfeng; Huang, Xiuping; Liu, Jinyan

    2015-02-06

    Cylindrocladium leaf blight is one of the most severe diseases in Eucalyptus plantations and nurseries. There are Eucalyptus cultivars with resistance to the disease. However, little is known about the defense mechanism of resistant cultivars. Here, we investigated the transcriptome and proteome of Eucalyptus leaves (E. urophylla×E. tereticornis M1), infected or not with Calonectria pseudoreteaudii. A total of 8585 differentially expressed genes (|log2 ratio| ≥1, FDR ≤0.001) at 12 and 24hours post-inoculation were detected using RNA-seq. Transcriptional changes for five genes were further confirmed by qRT-PCR. A total of 3680 proteins at the two time points were identified using iTRAQ technique.The combined transcriptome and proteome analysis revealed that the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway (jasmonic acid and sugar) were activated. The data also showed that some proteins (WRKY33 and PR proteins) which have been reported to involve in plant defense response were up-regulated. However, photosynthesis, nucleic acid metabolism and protein metabolism were impaired by the infection of C. pseudoreteaudii. This work will facilitate the identification of defense related genes and provide insights into Eucalyptus defense responses to Cylindrocladium leaf blight. In this study, a total of 130 proteins and genes involved in the shikimate/phenylpropanoid pathway, terpenoid biosynthesis, signalling pathway, cell transport, carbohydrate and energy metabolism, nucleic acid metabolism and protein metabolism in Eucalyptus leaves after infected with C. pseudoreteaudii were identified. This is the first report of a comprehensive transcriptomic and proteomic analysis of Eucalyptus in response to Calonectria sp. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Analysis of the Transcriptomes Downstream of Eyeless and the Hedgehog, Decapentaplegic and Notch Signaling Pathways in Drosophila melanogaster

    PubMed Central

    Nfonsam, Landry E.; Cano, Carlos; Mudge, Joann; Schilkey, Faye D.; Curtiss, Jennifer

    2012-01-01

    Tissue-specific transcription factors are thought to cooperate with signaling pathways to promote patterned tissue specification, in part by co-regulating transcription. The Drosophila melanogaster Pax6 homolog Eyeless forms a complex, incompletely understood regulatory network with the Hedgehog, Decapentaplegic and Notch signaling pathways to control eye-specific gene expression. We report a combinatorial approach, including mRNAseq and microarray analyses, to identify targets co-regulated by Eyeless and Hedgehog, Decapentaplegic or Notch. Multiple analyses suggest that the transcriptomes resulting from co-misexpression of Eyeless+signaling factors provide a more complete picture of eye development compared to previous efforts involving Eyeless alone: (1) Principal components analysis and two-way hierarchical clustering revealed that the Eyeless+signaling factor transcriptomes are closer to the eye control transcriptome than when Eyeless is misexpressed alone; (2) more genes are upregulated at least three-fold in response to Eyeless+signaling factors compared to Eyeless alone; (3) based on gene ontology analysis, the genes upregulated in response to Eyeless+signaling factors had a greater diversity of functions compared to Eyeless alone. Through a secondary screen that utilized RNA interference, we show that the predicted gene CG4721 has a role in eye development. CG4721 encodes a neprilysin family metalloprotease that is highly up-regulated in response to Eyeless+Notch, confirming the validity of our approach. Given the similarity between D. melanogaster and vertebrate eye development, the large number of novel genes identified as potential targets of Ey+signaling factors will provide novel insights to our understanding of eye development in D. melanogaster and humans. PMID:22952997

  7. Proteomic contributions to our understanding of vaccine and immune responses

    PubMed Central

    Galassie, Allison C.; Link, Andrew J.

    2015-01-01

    Vaccines are one of the greatest public health successes; yet, due to the empirical nature of vaccine design, we have an incomplete understanding of how the genes and proteins induced by vaccines contribute to the development of both protective innate and adaptive immune responses. While the advent of genomics has enabled new vaccine development and facilitated understanding of the immune response, proteomics identifies potentially new vaccine antigens with increasing speed and sensitivity. In addition, as proteomics is complementary to transcriptomic approaches, a combination of both approaches provides a more comprehensive view of the immune response after vaccination via systems vaccinology. This review details the advances that proteomic strategies have made in vaccine development and reviews how proteomics contributes to the development of a more complete understanding of human vaccines and immune responses. PMID:26172619

  8. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal “Shock” Reveal Generic and Specific Metal Responses

    PubMed Central

    Wheaton, Garrett H.; Mukherjee, Arpan

    2016-01-01

    ABSTRACT The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by “shocking” M. sedula with representative metals (Co2+, Cu2+, Ni2+, UO22+, Zn2+) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu2+ (259 ORFs, 106 Cu2+-specific ORFs) and Zn2+ (262 ORFs, 131 Zn2+-specific ORFs) triggered the largest responses, followed by UO22+ (187 ORFs, 91 UO22+-specific ORFs), Ni2+ (93 ORFs, 25 Ni2+-specific ORFs), and Co2+ (61 ORFs, 1 Co2+-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu2+ (6-fold) but also in response to UO22+ (4-fold) and Zn2+ (9-fold). Cu2+ challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu2+ resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics. PMID:27208114

  9. Transcriptome analysis of Vibrio parahaemolyticus in type III secretion system 1 inducing conditions

    PubMed Central

    Nydam, Seth D.; Shah, Devendra H.; Call, Douglas R.

    2014-01-01

    Vibrio parahaemolyticus is an emerging bacterial pathogen capable of causing inflammatory gastroenteritis, wound infections, and septicemia. As a food-borne illness, infection is most frequently associated with the consumption of raw or undercooked seafood, particularly shellfish. It is the primary cause of Vibrio-associated food-borne illness in the United States and the leading cause of food-borne illness in Japan. The larger of its two chromosomes harbors a set of genes encoding type III section system 1 (T3SS1), a virulence factor present in all V. parahaemolyticus strains that is similar to the Yersinia ysc T3SS. T3SS1 translocates effector proteins into eukaryotic cells where they induce changes to cellular physiology and modulate host-pathogen interactions. T3SS1 is also responsible for cytotoxicity toward several different cultured cell lines as well as mortality in a mouse model. Herein we used RNA-seq to obtain global transcriptome patterns of V. parahaemolyticus under conditions that either induce [growth in Dulbecco's Modified Eagle Medium (DMEM) media, in trans expression of transcriptional regulator exsA] or repress T3SS1 expression (growth in LB-S media, in trans exsD expression) and during infection of HeLa cells over time. Comparative transcriptomic analysis demonstrated notable differences in the expression patterns under inducing conditions and was also used to generate an expression profile of V. parahaemolyticus during infection of HeLa cells. In addition, we identified several new genes that are associated with T3SS1 expression and may warrant further study. PMID:24478989

  10. Integration of transcriptomic and metabolic data reveals hub transcription factors involved in drought stress response in sunflower (Helianthus annuus L.).

    PubMed

    Moschen, Sebastián; Di Rienzo, Julio A; Higgins, Janet; Tohge, Takayuki; Watanabe, Mutsumi; González, Sergio; Rivarola, Máximo; García-García, Francisco; Dopazo, Joaquin; Hopp, H Esteban; Hoefgen, Rainer; Fernie, Alisdair R; Paniego, Norma; Fernández, Paula; Heinz, Ruth A

    2017-07-01

    By integration of transcriptional and metabolic profiles we identified pathways and hubs transcription factors regulated during drought conditions in sunflower, useful for applications in molecular and/or biotechnological breeding. Drought is one of the most important environmental stresses that effects crop productivity in many agricultural regions. Sunflower is tolerant to drought conditions but the mechanisms involved in this tolerance remain unclear at the molecular level. The aim of this study was to characterize and integrate transcriptional and metabolic pathways related to drought stress in sunflower plants, by using a system biology approach. Our results showed a delay in plant senescence with an increase in the expression level of photosynthesis related genes as well as higher levels of sugars, osmoprotectant amino acids and ionic nutrients under drought conditions. In addition, we identified transcription factors that were upregulated during drought conditions and that may act as hubs in the transcriptional network. Many of these transcription factors belong to families implicated in the drought response in model species. The integration of transcriptomic and metabolomic data in this study, together with physiological measurements, has improved our understanding of the biological responses during droughts and contributes to elucidate the molecular mechanisms involved under this environmental condition. These findings will provide useful biotechnological tools to improve stress tolerance while maintaining crop yield under restricted water availability.

  11. Mapping of oxidative stress responses of human tumor cells following photodynamic therapy using hexaminolevulinate

    PubMed Central

    Cekaite, Lina; Peng, Qian; Reiner, Andrew; Shahzidi, Susan; Tveito, Siri; Furre, Ingegerd E; Hovig, Eivind

    2007-01-01

    Background Photodynamic therapy (PDT) involves systemic or topical administration of a lesion-localizing photosensitizer or its precursor, followed by irradiation of visible light to cause singlet oxygen-induced damage to the affected tissue. A number of mechanisms seem to be involved in the protective responses to PDT, including activation of transcription factors, heat shock proteins, antioxidant enzymes and apoptotic pathways. Results In this study, we address the effects of a destructive/lethal hexaminolevulinate (HAL) mediated PDT dose on the transcriptome by using transcriptional exon evidence oligo microarrays. Here, we confirm deviations in the steady state expression levels of previously identified early defence response genes and extend this to include unreported PDT inducible gene groups, most notably the metallothioneins and histones. HAL-PDT mediated stress also altered expression of genes encoded by mitochondrial DNA (mtDNA). Further, we report PDT stress induced alternative splicing. Specifically, the ATF3 alternative isoform (deltaZip2) was up-regulated, while the full-length variant was not changed by the treatment. Results were independently verified by two different technological microarray platforms. Good microarray, RT-PCR and Western immunoblotting correlation for selected genes support these findings. Conclusion Here, we report new insights into how destructive/lethal PDT alters the transcriptome not only at the transcriptional level but also at post-transcriptional level via alternative splicing. PMID:17692132

  12. An integrative analysis of tissue-specific transcriptomic and metabolomic responses to short-term dietary methionine restriction in mice

    PubMed Central

    Ghosh, Sujoy; Forney, Laura A.; Wanders, Desiree; Stone, Kirsten P.

    2017-01-01

    Dietary methionine restriction (MR) produces a coordinated series of transcriptional responses in peripheral tissues that limit fat accretion, remodel lipid metabolism in liver and adipose tissue, and improve overall insulin sensitivity. Hepatic sensing of reduced methionine leads to induction and release of fibroblast growth factor 21 (FGF21), which acts centrally to increase sympathetic tone and activate thermogenesis in adipose tissue. FGF21 also has direct effects in adipose to enhance glucose uptake and oxidation. However, an understanding of how the liver senses and translates reduced dietary methionine into these transcriptional programs remains elusive. A comprehensive systems biology approach integrating transcriptomic and metabolomic readouts in MR-treated mice confirmed that three interconnected mechanisms (fatty acid transport and oxidation, tricarboxylic acid cycle, and oxidative phosphorylation) were activated in MR-treated inguinal adipose tissue. In contrast, the effects of MR in liver involved up-regulation of anti-oxidant responses driven by the nuclear factor, erythroid 2 like 2 transcription factor, NFE2L2. Metabolomic analysis provided evidence for redox imbalance, stemming from large reductions in the master anti-oxidant molecule glutathione coupled with disproportionate increases in ophthalmate and its precursors, glutamate and 2-aminobutyrate. Thus, cysteine and its downstream product, glutathione, emerge as key early hepatic signaling molecules linking dietary MR to its metabolic phenotype. PMID:28520765

  13. Variation analysis of transcriptome changes reveals cochlear genes and their associated functions in cochlear susceptibility to acoustic overstimulation.

    PubMed

    Yang, Shuzhi; Cai, Qunfeng; Bard, Jonathan; Jamison, Jennifer; Wang, Jianmin; Yang, Weiping; Hu, Bo Hua

    2015-12-01

    Individual variation in the susceptibility of the auditory system to acoustic overstimulation has been well-documented at both the functional and structural levels. However, the molecular mechanism responsible for this variation is unclear. The current investigation was designed to examine the variation patterns of cochlear gene expression using RNA-seq data and to identify the genes with expression variation that increased following acoustic trauma. This study revealed that the constitutive expressions of cochlear genes displayed diverse levels of gene-specific variation. These variation patterns were altered by acoustic trauma; approximately one-third of the examined genes displayed marked increases in their expression variation. Bioinformatics analyses revealed that the genes that exhibited increased variation were functionally related to cell death, biomolecule metabolism, and membrane function. In contrast, the stable genes were primarily related to basic cellular processes, including protein and macromolecular syntheses and transport. There was no functional overlap between the stable and variable genes. Importantly, we demonstrated that glutamate metabolism is related to the variation in the functional response of the cochlea to acoustic overstimulation. Taken together, the results indicate that our analyses of the individual variations in transcriptome changes of cochlear genes provide important information for the identification of genes that potentially contribute to the generation of individual variation in cochlear responses to acoustic overstimulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Systems responses of rats to mequindox revealed by metabolic and transcriptomic profiling.

    PubMed

    Zhao, Xiu-Ju; Hao, Fuhua; Huang, Chongyang; Rantalainen, Mattias; Lei, Hehua; Tang, Huiru; Wang, Yulan

    2012-09-07

    Mequindox is used as an antibiotic drug in livestock; however, its toxicity remains largely unclear. Previously, we investigated metabolic responses of mice to mequindox exposure. In order to evaluate dependences of animal species in response to mequindox insult, we present the metabolic consequences of mequindox exposure in a rat model, by employing the combination of metabonomics and transcriptomics. Metabolic profiling of urine revealed that metabolic recovery is achieved for rats exposed to a low or moderate dose of mequindox, whereas high levels of mequindox exposure trigger liver dysfunction, causing no such recovery. We found that mequindox exposure causes suppression of the tricarboxylic acid cycle and stimulation of glycolysis, which is in contrast to a mouse model previously investigated. In addition, mequindox dosage induces promotion of β-oxidation of fatty acids, which was confirmed by elevated expressions of acox1, hsd17b2, and cpt1a in liver. Furthermore, altered levels of N-methylnicotinate, 1-methylnicotinamide, and glutathione disulfide highlighted the promotion of vitamin B3 antioxidative cycle in rats exposed to mequindox. Moreover, mequindox exposure altered levels of gut microbiotal related co-metabolites, suggesting a perturbation of the gut microflora of the host. Our work provides a comprehensive view of the toxicological effects of mequindox, which is important in the usage of mequindox in animal and human food safety.

  15. Strain-Dependent Transcriptome Signatures for Robustness in Lactococcus lactis

    PubMed Central

    Dijkstra, Annereinou R.; Alkema, Wynand; Starrenburg, Marjo J. C.; van Hijum, Sacha A. F. T.; Bron, Peter A.

    2016-01-01

    Recently, we demonstrated that fermentation conditions have a strong impact on subsequent survival of Lactococcus lactis strain MG1363 during heat and oxidative stress, two important parameters during spray drying. Moreover, employment of a transcriptome-phenotype matching approach revealed groups of genes associated with robustness towards heat and/or oxidative stress. To investigate if other strains have similar or distinct transcriptome signatures for robustness, we applied an identical transcriptome-robustness phenotype matching approach on the L. lactis strains IL1403, KF147 and SK11, which have previously been demonstrated to display highly diverse robustness phenotypes. These strains were subjected to an identical fermentation regime as was performed earlier for strain MG1363 and consisted of twelve conditions, varying in the level of salt and/or oxygen, as well as fermentation temperature and pH. In the exponential phase of growth, cells were harvested for transcriptome analysis and assessment of heat and oxidative stress survival phenotypes. The variation in fermentation conditions resulted in differences in heat and oxidative stress survival of up to five 10-log units. Effects of the fermentation conditions on stress survival of the L. lactis strains were typically strain-dependent, although the fermentation conditions had mainly similar effects on the growth characteristics of the different strains. By association of the transcriptomes and robustness phenotypes highly strain-specific transcriptome signatures for robustness towards heat and oxidative stress were identified, indicating that multiple mechanisms exist to increase robustness and, as a consequence, robustness of each strain requires individual optimization. However, a relatively small overlap in the transcriptome responses of the strains was also identified and this generic transcriptome signature included genes previously associated with stress (ctsR and lplL) and novel genes, including nanE and genes encoding transport proteins. The transcript levels of these genes can function as indicators of robustness and could aid in selection of fermentation parameters, potentially resulting in more optimal robustness during spray drying. PMID:27973578

  16. De Novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki x Broussonetia papyifera).

    PubMed

    Xianjun, Peng; Linhong, Teng; Xiaoman, Wang; Yucheng, Wang; Shihua, Shen

    2014-01-01

    The paper mulberry is one of the multifunctional tree species in agroforestry systems and is also commonly utilized in traditional medicine in China and other Asian countries. However, little is known about its molecular genetics, which hinders research on and exploitation of this valuable resource. To discern the correlation between gene expression and the essential properties of the paper mulberry, we performed a transcriptomics analysis, assembling a total of 37,725 unigenes from 54,638,676 reads generated by RNA-seq. Among these, 22,692 unigenes showed greater than 60% similarity with genes from other species. The lengths of 13,566 annotated unigenes were longer than 1,000 bp. Functional clustering analysis with COG (Cluster of Orthologous Groups) revealed that 17,184 unigenes are primarily involved in transcription, translation, signal transduction, carbohydrate metabolism, secondary metabolism, and energy metabolism. GO (Gene Ontology) annotation suggests enrichment of genes encoding antioxidant activity, transporter activity, biosynthesis, metabolism and stress response, with a total of 30,659 unigenes falling in these categories. KEGG (Kyoto Encyclopedia of Genes and Genomes) metabolic pathway analysis showed that 7,199 unigenes are associated with 119 metabolic pathways. In addition to the basic metabolism, these genes are enriched for plant pathogen interaction, flavonoid metabolism and other secondary metabolic processes. Furthermore, differences in the transcriptomes of leaf, stem and root tissues were analyzed and 7,233 specifically expressed unigenes were identified. This global expression analysis provided novel insights about the molecular mechanisms of the biosynthesis of flavonoid, lignin and cellulose, as well as on the response to biotic and abiotic stresses including the remediation of contaminated soil by the paper mulberry.

  17. The Quest for Molecular Regulation Underlying Unisexual Flower Development

    PubMed Central

    Sobral, Rómulo; Silva, Helena G.; Morais-Cecílio, Leonor; Costa, Maria M. R.

    2016-01-01

    The understanding of the molecular mechanisms responsible for the making of a unisexual flower has been a long-standing quest in plant biology. Plants with male and female flowers can be divided mainly into two categories: dioecious and monoecious, and both sexual systems co-exist in nature in ca of 10% of the angiosperms. The establishment of male and female traits has been extensively described in a hermaphroditic flower and requires the interplay of networks, directly and indirectly related to the floral organ identity genes including hormonal regulators, transcription factors, microRNAs, and chromatin-modifying proteins. Recent transcriptomic studies have been uncovering the molecular processes underlying the establishment of unisexual flowers and there are many parallelisms between monoecious, dioecious, and hermaphroditic individuals. Here, we review the paper entitled “Comparative transcriptomic analysis of male and female flowers of monoecious Quercus suber” published in 2014 in the Frontiers of Plant Science (volume 5 |Article 599) and discussed it in the context of recent studies with other dioecious and monoecious plants that utilized high-throughput platforms to obtain transcriptomic profiles of male and female unisexual flowers. In some unisexual flowers, the developmental programs that control organ initiation fail and male or female organs do not form, whereas in other species, organ initiation and development occur but they abort or arrest during different species-specific stages of differentiation. Therefore, a direct comparison of the pathways responsible for the establishment of unisexual flowers in different species are likely to reveal conserved modules of gene regulatory hubs involved in stamen or carpel development, as well as differences that reflect the different stages of development in which male and/or female organ arrest or loss-of-function occurs. PMID:26925078

  18. Understanding and Controlling Sialylation in a CHO Fc-Fusion Process

    PubMed Central

    Lewis, Amanda M.; Croughan, William D.; Aranibar, Nelly; Lee, Alison G.; Warrack, Bethanne; Abu-Absi, Nicholas R.; Patel, Rutva; Drew, Barry; Borys, Michael C.; Reily, Michael D.; Li, Zheng Jian

    2016-01-01

    A Chinese hamster ovary (CHO) bioprocess, where the product is a sialylated Fc-fusion protein, was operated at pilot and manufacturing scale and significant variation of sialylation level was observed. In order to more tightly control glycosylation profiles, we sought to identify the cause of variability. Untargeted metabolomics and transcriptomics methods were applied to select samples from the large scale runs. Lower sialylation was correlated with elevated mannose levels, a shift in glucose metabolism, and increased oxidative stress response. Using a 5-L scale model operated with a reduced dissolved oxygen set point, we were able to reproduce the phenotypic profiles observed at manufacturing scale including lower sialylation, higher lactate and lower ammonia levels. Targeted transcriptomics and metabolomics confirmed that reduced oxygen levels resulted in increased mannose levels, a shift towards glycolysis, and increased oxidative stress response similar to the manufacturing scale. Finally, we propose a biological mechanism linking large scale operation and sialylation variation. Oxidative stress results from gas transfer limitations at large scale and the presence of oxygen dead-zones inducing upregulation of glycolysis and mannose biosynthesis, and downregulation of hexosamine biosynthesis and acetyl-CoA formation. The lower flux through the hexosamine pathway and reduced intracellular pools of acetyl-CoA led to reduced formation of N-acetylglucosamine and N-acetylneuraminic acid, both key building blocks of N-glycan structures. This study reports for the first time a link between oxidative stress and mammalian protein sialyation. In this study, process, analytical, metabolomic, and transcriptomic data at manufacturing, pilot, and laboratory scales were taken together to develop a systems level understanding of the process and identify oxygen limitation as the root cause of glycosylation variability. PMID:27310468

  19. De novo transcriptome assembly and differential gene expression analysis of the calanoid copepod Acartia tonsa exposed to nickel nanoparticles.

    PubMed

    Zhou, Chao; Carotenuto, Ylenia; Vitiello, Valentina; Wu, Changwen; Zhang, Jianshe; Buttino, Isabella

    2018-06-14

    The calanoid copepod Acartia tonsa is a reference species in standardized ecotoxicology bioassay. Despite this interest, there is a lack of knowledge on molecular responses of A. tonsa to contaminants. We generated a de novo assembled transcriptome of A. tonsa exposed 4 days to 8.5 and 17 mg/L nickel nanoparticles (NiNPs), which have been shown to reduce egg hatching success and larval survival but had no effects on the adults. Aims of our study were to 1) improve the knowledge on the molecular responses of A. tonsa copepod and 2) increase the genomic resources of this copepod for further identification of potential biomarkers of NP exposure. The de novo assembled transcriptome of A. tonsa consisted of 53,619 unigenes, which were further annotated to nr, GO, KOG and KEGG databases. In particular, most unigenes were assigned to Metabolic and Cellular processes (34-45%) GO terms, and to Human disease (28%) and Organismal systems (23%) KEGG categories. Comparison among treatments showed that 373 unigenes were differentially expressed in A. tonsa exposed to NiNPs at 8.5 and 17 mg/L, with respect to control. Most of these genes were downregulated and took part in ribosome biogenesis, translation and protein turnover, thus suggesting that NiNPs could affect the copepod ribosome synthesis machinery and functioning. Overall, our study highlights the potential of toxicogenomic approach in gaining more mechanistic and functional information about the mode of action of emerging compounds on marine organisms, for biomarker discovering in crustaceans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Early Transcriptomic Changes in the Ileal Pouch Provide Insight into the Molecular Pathogenesis of Pouchitis and Ulcerative Colitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Yong; Dalal, Sushila; Antonopoulos, Dionysios

    Background: Ulcerative colitis (UC) only involves the colonic mucosa. Yet, nearly 50% of patients with UC who undergo total proctocolectomy with ileal pouch anal anastomosis develop UC-like inflammation of the ileal pouch (pouchitis). By contrast, patients with familial adenomatous polyposis (FAP) with ileal pouch anal anastomosis develop pouchitis far less frequently. We hypothesized that pathogenic events associated with the development of UC are recapitulated by colonic-metaplastic transcriptomic reprogramming of the UC pouch. Methods: We prospectively sampled pouch and prepouch ileum mucosal biopsies in patients with UC with ileal pouch anal anastomosis 4, 8, and 12 months after their pouch wasmore » in continuity. Mucosal samples were also obtained from patients with FAP. Transcriptional profiles of the UC and FAP pouch and prepouch ileum were investigated via RNA sequencing and compared with data from a previously published microarray study. Results: Unlike patients with FAP, subjects with UC exhibited a large set of differentially expressed genes between the pouch and prepouch ileum as early as 4 months after pouch functionalization. Functional pathway analysis of differentially expressed genes in the UC pouch revealed an enhanced state of immune/inflammatory response and extracellular matrix remodeling. Moreover, >70% of differentially expressed genes mapped to published inflammatory bowel diseases microarray data sets displayed directional changes consistent with active UC but not with Crohn's disease. Conclusions: The UC pouch, well before histologic inflammation, already displays a systems-level gain of colon-associated genes and loss of ileum-associated genes. Patients with UC exhibit a unique transcriptomic response to ileal pouch creation that can be observed well before disease and may in part explain their susceptibility to the development of pouchitis.« less

  1. De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus.

    PubMed

    Moskalev, Alexey А; Kudryavtseva, Anna V; Graphodatsky, Alexander S; Beklemisheva, Violetta R; Serdyukova, Natalya A; Krutovsky, Konstantin V; Sharov, Vadim V; Kulakovskiy, Ivan V; Lando, Andrey S; Kasianov, Artem S; Kuzmin, Dmitry A; Putintseva, Yuliya A; Feranchuk, Sergey I; Shaposhnikov, Mikhail V; Fraifeld, Vadim E; Toren, Dmitri; Snezhkina, Anastasia V; Sitnik, Vasily V

    2017-12-28

    Gray whale, Eschrichtius robustus (E. robustus), is a single member of the family Eschrichtiidae, which is considered to be the most primitive in the class Cetacea. Gray whale is often described as a "living fossil". It is adapted to extreme marine conditions and has a high life expectancy (77 years). The assembly of a gray whale genome and transcriptome will allow to carry out further studies of whale evolution, longevity, and resistance to extreme environment. In this work, we report the first de novo assembly and primary analysis of the E. robustus genome and transcriptome based on kidney and liver samples. The presented draft genome assembly is complete by 55% in terms of a total genome length, but only by 24% in terms of the BUSCO complete gene groups, although 10,895 genes were identified. Transcriptome annotation and comparison with other whale species revealed robust expression of DNA repair and hypoxia-response genes, which is expected for whales. This preliminary study of the gray whale genome and transcriptome provides new data to better understand the whale evolution and the mechanisms of their adaptation to the hypoxic conditions.

  2. Local adaptation of Gymnocypris przewalskii (Cyprinidae) on the Tibetan Plateau

    PubMed Central

    Zhang, Renyi; Ludwig, Arne; Zhang, Cunfang; Tong, Chao; Li, Guogang; Tang, Yongtao; Peng, Zuogang; Zhao, Kai

    2015-01-01

    Divergent selection among environments affects species distributions and can lead to speciation. In this article, we investigated the transcriptomes of two ecotypes of scaleless carp (Gymnocypris przewalskii przewalskii and G. p. ganzihonensis) from the Tibetan Plateau. We used a transcriptome sequencing approach to screen approximately 250,000 expressed sequence tags (ESTs) from the gill and kidney tissues of twelve individuals from the Ganzi River and Lake Qinghai to understand how this freshwater fish has adapted to an ecological niche shift from saline to freshwater. We identified 9,429 loci in the gill transcriptome and 12,034 loci in the kidney transcriptome with significant differences in their expression, of which 242 protein-coding genes exhibited strong positive selection (Ka/Ks > 1). Many of the genes are involved in ion channel functions (e.g., Ca2+-binding proteins), immune responses (e.g., nephrosin) or cellular water absorption functions (e.g., aquaporins). These results have potentially broad importance in understanding shifts from saline to freshwater habitats. Furthermore, this study provides the first transcriptome of G. przewalskii, which will facilitate future ecological genomics studies and aid in the identification of genes underlying adaptation and incipient ecological speciation. PMID:25944748

  3. Host Transcriptional Response to Ebola Virus Infection

    PubMed Central

    Speranza, Emily; Connor, John H

    2017-01-01

    Ebola virus disease (EVD) is a serious illness that causes severe disease in humans and non-human primates (NHPs) and has mortality rates up to 90%. EVD is caused by the Ebolavirus and currently there are no licensed therapeutics or vaccines to treat EVD. Due to its high mortality rates and potential as a bioterrorist weapon, a better understanding of the disease is of high priority. Multiparametric analysis techniques allow for a more complete understanding of a disease and the host response. Analysis of RNA species present in a sample can lead to a greater understanding of activation or suppression of different states of the immune response. Transcriptomic analyses such as microarrays and RNA-Sequencing (RNA-Seq) have been important tools to better understand the global gene expression response to EVD. In this review, we outline the current knowledge gained by transcriptomic analysis of EVD. PMID:28930167

  4. Haemophilus ducreyi Seeks Alternative Carbon Sources and Adapts to Nutrient Stress and Anaerobiosis during Experimental Infection of Human Volunteers.

    PubMed

    Gangaiah, Dharanesh; Zhang, Xinjun; Baker, Beth; Fortney, Kate R; Gao, Hongyu; Holley, Concerta L; Munson, Robert S; Liu, Yunlong; Spinola, Stanley M

    2016-05-01

    Haemophilus ducreyi causes the sexually transmitted disease chancroid in adults and cutaneous ulcers in children. In humans, H. ducreyi resides in an abscess and must adapt to a variety of stresses. Previous studies (D. Gangaiah, M. Labandeira-Rey, X. Zhang, K. R. Fortney, S. Ellinger, B. Zwickl, B. Baker, Y. Liu, D. M. Janowicz, B. P. Katz, C. A. Brautigam, R. S. Munson, Jr., E. J. Hansen, and S. M. Spinola, mBio 5:e01081-13, 2014, http://dx.doi.org/10.1128/mBio.01081-13) suggested that H. ducreyi encounters growth conditions in human lesions resembling those found in stationary phase. However, how H. ducreyi transcriptionally responds to stress during human infection is unknown. Here, we determined the H. ducreyi transcriptome in biopsy specimens of human lesions and compared it to the transcriptomes of bacteria grown to mid-log, transition, and stationary phases. Multidimensional scaling showed that the in vivo transcriptome is distinct from those of in vitro growth. Compared to the inoculum (mid-log-phase bacteria), H. ducreyi harvested from pustules differentially expressed ∼93 genes, of which 62 were upregulated. The upregulated genes encode homologs of proteins involved in nutrient transport, alternative carbon pathways (l-ascorbate utilization and metabolism), growth arrest response, heat shock response, DNA recombination, and anaerobiosis. H. ducreyi upregulated few genes (hgbA, flp-tad, and lspB-lspA2) encoding virulence determinants required for human infection. Most genes regulated by CpxRA, RpoE, Hfq, (p)ppGpp, and DksA, which control the expression of virulence determinants and adaptation to a variety of stresses, were not differentially expressed in vivo, suggesting that these systems are cycling on and off during infection. Taken together, these data suggest that the in vivo transcriptome is distinct from those of in vitro growth and that adaptation to nutrient stress and anaerobiosis is crucial for H. ducreyi survival in humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Integration of deep transcriptome and proteome analyses reveals the components of alkaloid metabolism in opium poppy cell cultures

    PubMed Central

    2010-01-01

    Background Papaver somniferum (opium poppy) is the source for several pharmaceutical benzylisoquinoline alkaloids including morphine, the codeine and sanguinarine. In response to treatment with a fungal elicitor, the biosynthesis and accumulation of sanguinarine is induced along with other plant defense responses in opium poppy cell cultures. The transcriptional induction of alkaloid metabolism in cultured cells provides an opportunity to identify components of this process via the integration of deep transcriptome and proteome databases generated using next-generation technologies. Results A cDNA library was prepared for opium poppy cell cultures treated with a fungal elicitor for 10 h. Using 454 GS-FLX Titanium pyrosequencing, 427,369 expressed sequence tags (ESTs) with an average length of 462 bp were generated. Assembly of these sequences yielded 93,723 unigenes, of which 23,753 were assigned Gene Ontology annotations. Transcripts encoding all known sanguinarine biosynthetic enzymes were identified in the EST database, 5 of which were represented among the 50 most abundant transcripts. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) of total protein extracts from cell cultures treated with a fungal elicitor for 50 h facilitated the identification of 1,004 proteins. Proteins were fractionated by one-dimensional SDS-PAGE and digested with trypsin prior to LC-MS/MS analysis. Query of an opium poppy-specific EST database substantially enhanced peptide identification. Eight out of 10 known sanguinarine biosynthetic enzymes and many relevant primary metabolic enzymes were represented in the peptide database. Conclusions The integration of deep transcriptome and proteome analyses provides an effective platform to catalogue the components of secondary metabolism, and to identify genes encoding uncharacterized enzymes. The establishment of corresponding transcript and protein databases generated by next-generation technologies in a system with a well-defined metabolite profile facilitates an improved linkage between genes, enzymes, and pathway components. The proteome database represents the most relevant alkaloid-producing enzymes, compared with the much deeper and more complete transcriptome library. The transcript database contained full-length mRNAs encoding most alkaloid biosynthetic enzymes, which is a key requirement for the functional characterization of novel gene candidates. PMID:21083930

  6. Dynamics of Streptococcus mutans Transcriptome in Response to Starch and Sucrose during Biofilm Development

    PubMed Central

    Klein, Marlise I.; DeBaz, Lena; Agidi, Senyo; Lee, Herbert; Xie, Gary; Lin, Amy H.-M.; Hamaker, Bruce R.; Lemos, José A.; Koo, Hyun

    2010-01-01

    The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV) for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v) or in combination with starch (0.5 to 1% w/v). Overall, the presence of sucrose and starch (suc+st) influenced the dynamics of S. mutans transcriptome (vs. sucrose alone), which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose), two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms). Interestingly, lytT (bacteria autolysis) was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch hydrolysates and intracellular polysaccharide storage. Our data show complex remodeling of S. mutans-transcriptome in response to changing environmental conditions in situ, which could modulate the dynamics of biofilm development and pathogenicity. PMID:20976057

  7. Thymus transcriptome reveals novel pathways in response to avian pathogenic Escherichia coli infection.

    PubMed

    Sun, H; Liu, P; Nolan, L K; Lamont, S J

    2016-12-01

    Avian pathogenic Escherichia coli (APEC) can cause significant morbidity in chickens. The thymus provides the essential environment for T cell development; however, the thymus transcriptome has not been examined for gene expression in response to APEC infection. An improved understanding of the host genomic response to APEC infection could inform future breeding programs for disease resistance and APEC control. We therefore analyzed the transcriptome of the thymus of birds challenged with APEC, contrasting susceptible and resistant phenotypes. Thousands of genes were differentially expressed in birds of the 5-day post infection (dpi) challenged-susceptible group vs. 5 dpi non-challenged, in 5 dpi challenged-susceptible vs. 5 dpi challenged-resistant birds, as well as in 5 dpi vs. one dpi challenged-susceptible birds. The Toll-like receptor signaling pathway was the major innate immune response for birds to respond to APEC infection. Moreover, lysosome and cell adhesion molecules pathways were common mechanisms for chicken response to APEC infection. The T-cell receptor signaling pathway, cell cycle, and p53 signaling pathways were significantly activated in resistant birds to resist APEC infection. These results provide a comprehensive assessment of global gene networks and biological functionalities of differentially expressed genes in the thymus under APEC infection. These findings provide novel insights into key molecular genetic mechanisms that differentiate host resistance from susceptibility in this primary lymphoid tissue, the thymus. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.

  8. Examination of Triacylglycerol Biosynthetic Pathways via De Novo Transcriptomic and Proteomic Analyses in an Unsequenced Microalga

    PubMed Central

    Guarnieri, Michael T.; Nag, Ambarish; Smolinski, Sharon L.; Darzins, Al; Seibert, Michael; Pienkos, Philip T.

    2011-01-01

    Biofuels derived from algal lipids represent an opportunity to dramatically impact the global energy demand for transportation fuels. Systems biology analyses of oleaginous algae could greatly accelerate the commercialization of algal-derived biofuels by elucidating the key components involved in lipid productivity and leading to the initiation of hypothesis-driven strain-improvement strategies. However, higher-level systems biology analyses, such as transcriptomics and proteomics, are highly dependent upon available genomic sequence data, and the lack of these data has hindered the pursuit of such analyses for many oleaginous microalgae. In order to examine the triacylglycerol biosynthetic pathway in the unsequenced oleaginous microalga, Chlorella vulgaris, we have established a strategy with which to bypass the necessity for genomic sequence information by using the transcriptome as a guide. Our results indicate an upregulation of both fatty acid and triacylglycerol biosynthetic machinery under oil-accumulating conditions, and demonstrate the utility of a de novo assembled transcriptome as a search model for proteomic analysis of an unsequenced microalga. PMID:22043295

  9. The impact of oil spill to lung health – insights from an RNA-seq study of human airway epithelial cells

    PubMed Central

    Liu, Yao-Zhong; Roy-Engel, Astrid M; Baddoo, Melody C; Flemington, Erik K; Wang, Guangdi; Wang, He

    2015-01-01

    The Deepwater Horizon oil spill (BP oil spill) in the Gulf of Mexico was a unique disaster event, where a huge amount of oil spilled from the sea bed and a large volume of dispersants were applied to clean the spill. The operation lasted for almost three months and involved >50,000 workers. The potential health hazards to these workers may be significant as previous research suggested an association of persistent respiratory symptoms with exposure to oil and oil dispersants. To reveal the potential effects of oil and oil dispersants on the respiratory system at the molecular level, we evaluated the transcriptomic profile of human airway epithelial cells grown under treatment of crude oil, the dispersants Corexit 9500 and Corexit 9527 and oil-dispersant mixtures. We identified a very strong effect of Corexit 9500 treatment, with 84 genes (response genes) differentially expressed in treatment vs. control samples. We discovered an interactive effect of oil-dispersant mixtures; while no response gene was found for Corexit 9527 treatment alone, cells treated with Corexit 9527 + oil mixture showed an increased number of response genes (46 response genes), suggesting a synergic effect of 9527 with oil on airway epithelial cells. Through GO (gene ontology) functional term and pathway-based analysis, we identified upregulation of gene sets involved in angiogenesis and immune responses and downregulation of gene sets involved in cell junctions and steroid synthesis as the prevailing transcriptomic signatures in the cells treated with Corexit 9500, oil or Corexit 9500 + oil mixture. Interestingly, these key molecular signatures coincide with important pathological features observed in common lung diseases, such as asthma, cystic fibrosis and chronic obstructive pulmonary disease. Our study provides mechanistic insights into the detrimental effects of oil and oil dispersants to the respiratory system and suggests significant health impacts of the recent BP oil spill to those people involved in the cleaning operation. PMID:26692141

  10. Molecular signatures in Arabidopsis thaliana in response to insect attack and bacterial infection.

    PubMed

    Barah, Pankaj; Winge, Per; Kusnierczyk, Anna; Tran, Diem Hong; Bones, Atle M

    2013-01-01

    Under the threat of global climatic change and food shortages, it is essential to take the initiative to obtain a comprehensive understanding of common and specific defence mechanisms existing in plant systems for protection against different types of biotic invaders. We have implemented an integrated approach to analyse the overall transcriptomic reprogramming and systems-level defence responses in the model plant species Arabidopsis thaliana (A. thaliana henceforth) during insect Brevicoryne brassicae (B. brassicae henceforth) and bacterial Pseudomonas syringae pv. tomato strain DC3000 (P. syringae henceforth) attacks. The main aim of this study was to identify the attacker-specific and general defence response signatures in A. thaliana when attacked by phloem-feeding aphids or pathogenic bacteria. The obtained annotated networks of differentially expressed transcripts indicated that members of transcription factor families, such as WRKY, MYB, ERF, BHLH and bZIP, could be crucial for stress-specific defence regulation in Arabidopsis during aphid and P. syringae attack. The defence response pathways, signalling pathways and metabolic processes associated with aphid attack and P. syringae infection partially overlapped. Components of several important biosynthesis and signalling pathways, such as salicylic acid (SA), jasmonic acid (JA), ethylene (ET) and glucosinolates, were differentially affected during the two the treatments. Several stress-regulated transcription factors were known to be associated with stress-inducible microRNAs. The differentially regulated gene sets included many signature transcription factors, and our co-expression analysis showed that they were also strongly co-expressed during 69 other biotic stress experiments. Defence responses and functional networks that were unique and specific to aphid or P. syringae stresses were identified. Furthermore, our analysis revealed a probable link between biotic stress and microRNAs in Arabidopsis and, thus gives indicates a new direction for conducting large-scale targeted experiments to explore the detailed regulatory links between them. The presented results provide a comparative understanding of Arabidopsis - B. brassicae and Arabidopsis - P. syringae interactions at the transcriptomic level.

  11. A comparison of physiological and transcriptome responses to water deprivation and salt loading in the rat supraoptic nucleus

    PubMed Central

    Greenwood, Michael P.; Mecawi, Andre S.; Hoe, See Ziau; Mustafa, Mohd Rais; Johnson, Kory R.; Al-Mahmoud, Ghada A.; Elias, Lucila L. K.; Paton, Julian F. R.; Antunes-Rodrigues, Jose; Gainer, Harold; Murphy, David

    2015-01-01

    Salt loading (SL) and water deprivation (WD) are experimental challenges that are often used to study the osmotic circuitry of the brain. Central to this circuit is the supraoptic nucleus (SON) of the hypothalamus, which is responsible for the biosynthesis of the hormones, arginine vasopressin (AVP) and oxytocin (OXT), and their transport to terminals that reside in the posterior lobe of the pituitary. On osmotic challenge evoked by a change in blood volume or osmolality, the SON undergoes a function-related plasticity that creates an environment that allows for an appropriate hormone response. Here, we have described the impact of SL and WD compared with euhydrated (EU) controls in terms of drinking and eating behavior, body weight, and recorded physiological data including circulating hormone data and plasma and urine osmolality. We have also used microarrays to profile the transcriptome of the SON following SL and remined data from the SON that describes the transcriptome response to WD. From a list of 2,783 commonly regulated transcripts, we selected 20 genes for validation by qPCR. All of the 9 genes that have already been described as expressed or regulated in the SON by osmotic stimuli were confirmed in our models. Of the 11 novel genes, 5 were successfully validated while 6 were false discoveries. PMID:25632023

  12. Transcriptome-Wide Identification of Reference Genes for Expression Analysis of Soybean Responses to Drought Stress along the Day.

    PubMed

    Marcolino-Gomes, Juliana; Rodrigues, Fabiana Aparecida; Fuganti-Pagliarini, Renata; Nakayama, Thiago Jonas; Ribeiro Reis, Rafaela; Bouças Farias, Jose Renato; Harmon, Frank G; Correa Molinari, Hugo Bruno; Correa Molinari, Mayla Daiane; Nepomuceno, Alexandre

    2015-01-01

    The soybean transcriptome displays strong variation along the day in optimal growth conditions and also in response to adverse circumstances, like drought stress. However, no study conducted to date has presented suitable reference genes, with stable expression along the day, for relative gene expression quantification in combined studies on drought stress and diurnal oscillations. Recently, water deficit responses have been associated with circadian clock oscillations at the transcription level, revealing the existence of hitherto unknown processes and increasing the demand for studies on plant responses to drought stress and its oscillation during the day. We performed data mining from a transcriptome-wide background using microarrays and RNA-seq databases to select an unpublished set of candidate reference genes, specifically chosen for the normalization of gene expression in studies on soybean under both drought stress and diurnal oscillations. Experimental validation and stability analysis in soybean plants submitted to drought stress and sampled during a 24 h timecourse showed that four of these newer reference genes (FYVE, NUDIX, Golgin-84 and CYST) indeed exhibited greater expression stability than the conventionally used housekeeping genes (ELF1-β and β-actin) under these conditions. We also demonstrated the effect of using reference candidate genes with different stability values to normalize the relative expression data from a drought-inducible soybean gene (DREB5) evaluated in different periods of the day.

  13. The transcriptome of Legionella pneumophila-infected human monocyte-derived macrophages.

    PubMed

    Price, Christopher T D; Abu Kwaik, Yousef

    2014-01-01

    Legionella pneumophila is an intracellular bacterial pathogen that invades and replicates within alveolar macrophages through injection of ∼ 300 effector proteins by its Dot/Icm type IV translocation apparatus. The bona fide F-box protein, AnkB, is a nutritional virulence effector that triggers macrophages to generate a surplus of amino acids, which is essential for intravacuolar proliferation. Therefore, the ankB mutant represents a novel genetic tool to determine the transcriptional response of human monocyte-derived macrophages (hMDMs) to actively replicating L. pneumophila. Here, we utilized total human gene microarrays to determine the global transcriptional response of hMDMs to infection by wild type or the ankB mutant of L. pneumophila. The transcriptomes of hMDMs infected with either actively proliferating wild type or non-replicative ankB mutant bacteria were remarkably similar. The transcriptome of infected hMDMs was predominated by up-regulation of inflammatory pathways (IL-10 anti-inflammatory, interferon signaling and amphoterin signaling), anti-apoptosis, and down-regulation of protein synthesis pathways. In addition, L. pneumophila modulated diverse metabolic pathways, particularly those associated with bio-active lipid metabolism, and SLC amino acid transporters expression. Taken together, the hMDM transcriptional response to L. pneumophila is independent of intra-vacuolar replication of the bacteria and primarily involves modulation of the immune response and metabolic as well as nutritional pathways.

  14. Comparative transcriptomics and proteomics analysis of citrus fruit, to improve understanding of the effect of low temperature on maintaining fruit quality during lengthy post-harvest storage

    PubMed Central

    Yun, Ze; Jin, Shuai; Ding, Yuduan; Wang, Zhuang; Gao, Huijun; Pan, Zhiyong; Xu, Juan; Cheng, Yunjiang; Deng, Xiuxin

    2012-01-01

    Fruit quality is a very complex trait that is affected by both genetic and non-genetic factors. Generally, low temperature (LT) is used to delay fruit senescence and maintain fruit quality during post-harvest storage but the molecular mechanisms involved are poorly understood. Hirado Buntan Pummelo (HBP; Citrus grandis × C. paradis) fruit were chosen to explore the mechanisms that maintain citrus fruit quality during lengthy LT storage using transcriptome and proteome studies based on digital gene expression (DGE) profiling and two-dimensional gel electrophoresis (2-DE), respectively. Results showed that LT up-regulated stress-responsive genes, arrested signal transduction, and inhibited primary metabolism, secondary metabolism and the transportation of metabolites. Calcineurin B-like protein (CBL)–CBL-interacting protein kinase complexes might be involved in the signal transduction of LT stress, and fruit quality is likely to be regulated by sugar-mediated auxin and abscisic acid (ABA) signalling. Furthermore, ABA was specific to the regulation of citrus fruit senescence and was not involved in the LT stress response. In addition, the accumulation of limonin, nomilin, methanol, and aldehyde, together with the up-regulated heat shock proteins, COR15, and cold response-related genes, provided a comprehensive proteomics and transcriptomics view on the coordination of fruit LT stress responses. PMID:22323274

  15. Genome-wide transcriptomic analysis of BR-deficient Micro-Tom reveals correlations between drought stress tolerance and brassinosteroid signaling in tomato.

    PubMed

    Lee, Jinsu; Shim, Donghwan; Moon, Suyun; Kim, Hyemin; Bae, Wonsil; Kim, Kyunghwan; Kim, Yang-Hoon; Rhee, Sung-Keun; Hong, Chang Pyo; Hong, Suk-Young; Lee, Ye-Jin; Sung, Jwakyung; Ryu, Hojin

    2018-06-01

    Brassinosteroids (BRs) are plant steroid hormones that play crucial roles in a range of growth and developmental processes. Although BR signal transduction and biosynthetic pathways have been well characterized in model plants, their biological roles in an important crop, tomato (Solanum lycopersicum), remain unknown. Here, cultivated tomato (WT) and a BR synthesis mutant, Micro-Tom (MT), were compared using physiological and transcriptomic approaches. The cultivated tomato showed higher tolerance to drought and osmotic stresses than the MT tomato. However, BR-defective phenotypes of MT, including plant growth and stomatal closure defects, were completely recovered by application of exogenous BR or complementation with a SlDWARF gene. Using genome-wide transcriptome analysis, 619 significantly differentially expressed genes (DEGs) were identified between WT and MT plants. Several DEGs were linked to known signaling networks, including those related to biotic/abiotic stress responses, lignification, cell wall development, and hormone responses. Consistent with the higher susceptibility of MT to drought stress, several gene sets involved in responses to drought and osmotic stress were differentially regulated between the WT and MT tomato plants. Our data suggest that BR signaling pathways are involved in mediating the response to abiotic stress via fine-tuning of abiotic stress-related gene networks in tomato plants. Copyright © 2018. Published by Elsevier Masson SAS.

  16. Transcriptome assembly and expression profiling of molecular responses to cadmium toxicity in hepatopancreas of the freshwater crab Sinopotamon henanense

    NASA Astrophysics Data System (ADS)

    Sun, Min; Ting Li, Yi; Liu, Yang; Chin Lee, Shao; Wang, Lan

    2016-01-01

    Cadmium (Cd) pollution is a serious global problem, which causes irreversible toxic effects on animals. Freshwater crab, Sinopotamon henanense, is a useful environmental indicator since it is widely distributed in benthic habitats whereby it tends to accumulate Cd and other toxicants. However, its molecular responses to Cd toxicity remain unclear. In this study, we performed transcriptome sequencing and gene expression analyses of its hepatopancreas with and without Cd treatments. A total of 7.78 G clean reads were obtained from the pooled samples, and 68,648 unigenes with an average size of 622 bp were assembled, in which 5,436 were metabolism-associated and 2,728 were stimulus response-associated that include 380 immunity-related unigenes. Expression profile analysis demonstrated that most genes involved in macromolecular metabolism, oxidative phosphorylation, detoxification and anti-oxidant defense were up-regulated by Cd exposure, whereas immunity-related genes were down-regulated, except the genes involved in phagocytosis were up-regulated. The current data indicate that Cd exposure alters gene expressions in a concentration-dependent manner. Therefore, our results provide the first comprehensive S.henanense transcriptome dataset, which is useful for biological and ecotoxicological studies on this crab and its related species at molecular level, and some key Cd-responsive genes may provide candidate biomarkers for monitoring aquatic pollution by heavy metals.

  17. Modified Vaccinia Virus Ankara Vector Induces Specific Cellular and Humoral Responses in the Female Reproductive Tract, the Main HIV Portal of Entry.

    PubMed

    Marlin, Romain; Nugeyre, Marie-Thérèse; Tchitchek, Nicolas; Parenti, Matteo; Hocini, Hakim; Benjelloun, Fahd; Cannou, Claude; Dereuddre-Bosquet, Nathalie; Levy, Yves; Barré-Sinoussi, Françoise; Scarlatti, Gabriella; Le Grand, Roger; Menu, Elisabeth

    2017-09-01

    The female reproductive tract (FRT) is one of the major mucosal invasion sites for HIV-1. This site has been neglected in previous HIV-1 vaccine studies. Immune responses in the FRT after systemic vaccination remain to be characterized. Using a modified vaccinia virus Ankara (MVA) as a vaccine model, we characterized specific immune responses in all compartments of the FRT of nonhuman primates after systemic vaccination. Memory T cells were preferentially found in the lower tract (vagina and cervix), whereas APCs and innate lymphoid cells were mainly located in the upper tract (uterus and fallopian tubes). This compartmentalization of immune cells in the FRT was supported by transcriptomic analyses and a correlation network. Polyfunctional MVA-specific CD8 + T cells were detected in the blood, lymph nodes, vagina, cervix, uterus, and fallopian tubes. Anti-MVA IgG and IgA were detected in cervicovaginal fluid after a second vaccine dose. Thus, systemic vaccination with an MVA vector elicits cellular and Ab responses in the FRT. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia

    PubMed Central

    Damron, F. Heath; Oglesby-Sherrouse, Amanda G.; Wilks, Angela; Barbier, Mariette

    2016-01-01

    Determining bacterial gene expression during infection is fundamental to understand pathogenesis. In this study, we used dual RNA-seq to simultaneously measure P. aeruginosa and the murine host’s gene expression and response to respiratory infection. Bacterial genes encoding products involved in metabolism and virulence were differentially expressed during infection and the type III and VI secretion systems were highly expressed in vivo. Strikingly, heme acquisition, ferric-enterobactin transport, and pyoverdine biosynthesis genes were found to be significantly up-regulated during infection. In the mouse, we profiled the acute immune response to P. aeruginosa and identified the pro-inflammatory cytokines involved in acute response to the bacterium in the lung. Additionally, we also identified numerous host iron sequestration systems upregulated during infection. Overall, this work sheds light on how P. aeruginosa triggers a pro-inflammatory response and competes for iron with the host during infection, as iron is one of the central elements for which both pathogen and host fight during acute pneumonia. PMID:27982111

  19. Blood transcriptomics of captive forest musk deer (Moschus berezovskii) and possible associations with the immune response to abscesses.

    PubMed

    Sun, Xiaoning; Cai, Ruibo; Jin, Xuelin; Shafer, Aaron B A; Hu, Xiaolong; Yang, Shuang; Li, Yimeng; Qi, Lei; Liu, Shuqiang; Hu, Defu

    2018-01-12

    Forest musk deer (Moschus berezovskii; FMD) are both economically valuable and highly endangered. A problem for FMD captive breeding programs has been the susceptibility of FMD to abscesses. To investigate the mechanisms of abscess development in FMD, the blood transcriptomes of three purulent and three healthy individuals were generated. A total of ~39.68 Gb bases were generated using Illumina HiSeq 4000 sequencing technology and 77,752 unigenes were identified after assembling. All the unigenes were annotated, with 63,531 (81.71%) mapping to at least one database. Based on these functional annotations, 45,798 coding sequences (CDS) were detected, along with 12,697 simple sequence repeats (SSRs) and 65,536 single nucleotide polymorphisms (SNPs). A total of 113 unigenes were found to be differentially expressed between healthy and purulent individuals. Functional annotation indicated that most of these differentially expressed genes were involved in the regulation of immune system processes, particularly those associated with parasitic and bacterial infection pathways.

  20. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals

    PubMed Central

    Atanassov, Ilian; Kuznetsova, Irina; Hinze, Yvonne; Mourier, Arnaud; Filipovska, Aleksandra

    2017-01-01

    Dysfunction of the oxidative phosphorylation (OXPHOS) system is a major cause of human disease and the cellular consequences are highly complex. Here, we present comparative analyses of mitochondrial proteomes, cellular transcriptomes and targeted metabolomics of five knockout mouse strains deficient in essential factors required for mitochondrial DNA gene expression, leading to OXPHOS dysfunction. Moreover, we describe sequential protein changes during post-natal development and progressive OXPHOS dysfunction in time course analyses in control mice and a middle lifespan knockout, respectively. Very unexpectedly, we identify a new response pathway to OXPHOS dysfunction in which the intra-mitochondrial synthesis of coenzyme Q (ubiquinone, Q) and Q levels are profoundly decreased, pointing towards novel possibilities for therapy. Our extensive omics analyses provide a high-quality resource of altered gene expression patterns under severe OXPHOS deficiency comparing several mouse models, that will deepen our understanding, open avenues for research and provide an important reference for diagnosis and treatment. PMID:29132502

  1. The duck genome and transcriptome provide insight into an avian influenza virus reservoir species

    PubMed Central

    Chen, Hualan; Zhang, Yong; Qian, Wubin; Kim, Heebal; Gan, Shangquan; Zhao, Yiqiang; Li, Jianwen; Yi, Kang; Feng, Huapeng; Zhu, Pengyang; Li, Bo; Liu, Qiuyue; Fairley, Suan; Magor, Katharine E; Du, Zhenlin; Hu, Xiaoxiang; Goodman, Laurie; Tafer, Hakim; Vignal, Alain; Lee, Taeheon; Kim, Kyu-Won; Sheng, Zheya; An, Yang; Searle, Steve; Herrero, Javier; Groenen, Martien A M; Crooijmans, Richard P M A; Faraut, Thomas; Cai, Qingle; Webster, Robert G; Aldridge, Jerry R; Warren, Wesley C; Bartschat, Sebastian; Kehr, Stephanie; Marz, Manja; Stadler, Peter F; Smith, Jacqueline; Kraus, Robert H S; Zhao, Yaofeng; Ren, Liming; Fei, Jing; Morisson, Mireille; Kaiser, Pete; Griffin, Darren K; Rao, Man; Pitel, Frederique; Wang, Jun; Li, Ning

    2014-01-01

    The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck’s defense mechanisms against influenza infection have been optimized through the diversification of its β-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses. PMID:23749191

  2. Novel transcriptome assembly and comparative toxicity pathway analysis in mahi-mahi (Coryphaena hippurus) embryos and larvae exposed to Deepwater Horizon oil

    NASA Astrophysics Data System (ADS)

    Xu, Elvis Genbo; Mager, Edward M.; Grosell, Martin; Hazard, E. Starr; Hardiman, Gary; Schlenk, Daniel

    2017-03-01

    The impacts of Deepwater Horizon (DWH) oil on morphology and function during embryonic development have been documented for a number of fish species, including the economically and ecologically important pelagic species, mahi-mahi (Coryphaena hippurus). However, further investigations on molecular events and pathways responsible for developmental toxicity have been largely restricted due to the limited molecular data available for this species. We sought to establish the de novo transcriptomic database from the embryos and larvae of mahi-mahi exposed to water accommodated fractions (HEWAFs) of two DWH oil types (weathered and source oil), in an effort to advance our understanding of the molecular aspects involved during specific toxicity responses. By high throughput sequencing (HTS), we obtained the first de novo transcriptome of mahi-mahi, with 60,842 assembled transcripts and 30,518 BLAST hits. Among them, 2,345 genes were significantly regulated in 96hpf larvae after exposure to weathered oil. With comparative analysis to a reference-transcriptome-guided approach on gene ontology and tox-pathways, we confirmed the novel approach effective for exploring tox-pathways in non-model species, and also identified a list of co-expressed genes as potential biomarkers which will provide information for the construction of an Adverse Outcome Pathway which could be useful in Ecological Risk Assessments.

  3. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1.

    PubMed

    Arczewska, Katarzyna D; Tomazella, Gisele G; Lindvall, Jessica M; Kassahun, Henok; Maglioni, Silvia; Torgovnick, Alessandro; Henriksson, Johan; Matilainen, Olli; Marquis, Bryce J; Nelson, Bryant C; Jaruga, Pawel; Babaie, Eshrat; Holmberg, Carina I; Bürglin, Thomas R; Ventura, Natascia; Thiede, Bernd; Nilsen, Hilde

    2013-05-01

    Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.

  4. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus

    PubMed Central

    Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures. PMID:29131867

  5. Differential transcriptome analysis reveals genes related to cold tolerance in seabuckthorn carpenter moth, Eogystia hippophaecolus.

    PubMed

    Cui, Mingming; Hu, Ping; Wang, Tao; Tao, Jing; Zong, Shixiang

    2017-01-01

    Seabuckthorn carpenter moth, Eogystia hippophaecolus (Lepidoptera: Cossidae), is an important pest of sea buckthorn (Hippophae rhamnoides), which is a shrub that has significant ecological and economic value in China. E. hippophaecolus is highly cold tolerant, but limited studies have been conducted to elucidate the molecular mechanisms underlying its cold resistance. Here we sequenced the E. hippophaecolus transcriptome using RNA-Seq technology and performed de novo assembly from the short paired-end reads. We investigated the larval response to cold stress by comparing gene expression profiles between treatments. We obtained 118,034 unigenes, of which 22,161 were annotated with gene descriptions, conserved domains, gene ontology terms, and metabolic pathways. These resulted in 57 GO terms and 193 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. By comparing transcriptome profiles for differential gene expression, we identified many differentially expressed proteins and genes, including heat shock proteins and cuticular proteins which have previously been reported to be involved in cold resistance of insects. This study provides a global transcriptome analysis and an assessment of differential gene expression in E. hippophaecolus under cold stress. We found seven differential expressed genes in common between developmental stages, which were verified with qPCR. Our findings facilitate future genomic studies aimed at improving our understanding of the molecular mechanisms underlying the response of insects to low temperatures.

  6. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection

    PubMed Central

    2018-01-01

    ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405

  7. Transcriptome Dynamics during Maize Endosperm Development

    PubMed Central

    Feng, Jiaojiao; Xu, Shutu; Wang, Lei; Li, Feifei; Li, Yibo; Zhang, Renhe; Zhang, Xinghua; Xue, Jiquan; Guo, Dongwei

    2016-01-01

    The endosperm is a major organ of the seed that plays vital roles in determining seed weight and quality. However, genome-wide transcriptome patterns throughout maize endosperm development have not been comprehensively investigated to date. Accordingly, we performed a high-throughput RNA sequencing (RNA-seq) analysis of the maize endosperm transcriptome at 5, 10, 15 and 20 days after pollination (DAP). We found that more than 11,000 protein-coding genes underwent alternative splicing (AS) events during the four developmental stages studied. These genes were mainly involved in intracellular protein transport, signal transmission, cellular carbohydrate metabolism, cellular lipid metabolism, lipid biosynthesis, protein modification, histone modification, cellular amino acid metabolism, and DNA repair. Additionally, 7,633 genes, including 473 transcription factors (TFs), were differentially expressed among the four developmental stages. The differentially expressed TFs were from 50 families, including the bZIP, WRKY, GeBP and ARF families. Further analysis of the stage-specific TFs showed that binding, nucleus and ligand-dependent nuclear receptor activities might be important at 5 DAP, that immune responses, signalling, binding and lumen development are involved at 10 DAP, that protein metabolic processes and the cytoplasm might be important at 15 DAP, and that the responses to various stimuli are different at 20 DAP compared with the other developmental stages. This RNA-seq analysis provides novel, comprehensive insights into the transcriptome dynamics during early endosperm development in maize. PMID:27695101

  8. Bovine Mammary Nutrigenomics and Changes in the Milk Composition due to Rapeseed or Sunflower Oil Supplementation of High-Forage or High-Concentrate Diets.

    PubMed

    Leroux, Christine; Bernard, Laurence; Faulconnier, Yannick; Rouel, Jacques; de la Foye, Anne; Domagalski, Jordann; Chilliard, Yves

    2016-01-01

    Fatty acid (FA) composition plays a crucial role in milk nutritional quality. Despite the known nutritional regulation of ruminant milk composition, the overall mammary mechanisms underlying this regulation are far from being understood. The aim of our study was to determine nutritional regulation of mammary transcriptomes in relation to the cow milk composition. Twelve cows received diets differing in the forage-to-concentrate ratio [high forage (HF) and low forage (LF)] supplemented or not with lipids [HF with whole intact rapeseeds (RS) and LF sunflower oil (SO)] in a 4 × 4 Latin square design. Milk production and FA composition were determined. The gene expression profile was studied using RT-qPCR and a bovine microarray. Our results showed a higher amplitude of milk composition and mammary transcriptome responses to lipid supplementation with the LF-SO compared with the LF diet than with the HF-RS compared with the HF diet. Forty-nine differentially expressed genes, including genes involved in lipid metabolism, were identified with LF-SO versus LF, whereas RS supplementation to the HF diet did not affect the mammary transcriptome. This study highlights different responses to lipid supplementation of milk production and composition and mammary transcriptomes depending on the nature of lipid supplementation and the percentage of dietary concentrate. © 2016 S. Karger AG, Basel.

  9. De novo transcriptome of Ischnura elegans provides insights into sensory biology, colour and vision genes.

    PubMed

    Chauhan, Pallavi; Hansson, Bengt; Kraaijeveld, Ken; de Knijff, Peter; Svensson, Erik I; Wellenreuther, Maren

    2014-09-22

    There is growing interest in odonates (damselflies and dragonflies) as model organisms in ecology and evolutionary biology but the development of genomic resources has been slow. So far only one draft genome (Ladona fulva) and one transcriptome assembly (Enallagma hageni) have been published. Odonates have some of the most advanced visual systems among insects and several species are colour polymorphic, and genomic and transcriptomic data would allow studying the genomic architecture of these interesting traits and make detailed comparative studies between related species possible. Here, we present a comprehensive de novo transcriptome assembly for the blue-tailed damselfly Ischnura elegans (Odonata: Coenagrionidae) built from short-read RNA-seq data. The transcriptome analysis in this paper provides a first step towards identifying genes and pathways underlying the visual and colour systems in this insect group. Illumina RNA sequencing performed on tissues from the head, thorax and abdomen generated 428,744,100 paired-ends reads amounting to 110 Gb of sequence data, which was assembled de novo with Trinity. A transcriptome was produced after filtering and quality checking yielding a final set of 60,232 high quality transcripts for analysis. CEGMA software identified 247 out of 248 ultra-conserved core proteins as 'complete' in the transcriptome assembly, yielding a completeness of 99.6%. BLASTX and InterProScan annotated 55% of the assembled transcripts and showed that the three tissue types differed both qualitatively and quantitatively in I. elegans. Differential expression identified 8,625 transcripts to be differentially expressed in head, thorax and abdomen. Targeted analyses of vision and colour functional pathways identified the presence of four different opsin types and three pigmentation pathways. We also identified transcripts involved in temperature sensitivity, thermoregulation and olfaction. All these traits and their associated transcripts are of considerable ecological and evolutionary interest for this and other insect orders. Our work presents a comprehensive transcriptome resource for the ancient insect order Odonata and provides insight into their biology and physiology. The transcriptomic resource can provide a foundation for future investigations into this diverse group, including the evolution of colour, vision, olfaction and thermal adaptation.

  10. De novo RNA-Seq based transcriptome analysis of Papiliotrema laurentii strain RY1 under nitrogen starvation.

    PubMed

    Sarkar, Soumyadev; Chakravorty, Somnath; Mukherjee, Avishek; Bhattacharya, Debanjana; Bhattacharya, Semantee; Gachhui, Ratan

    2018-03-01

    Nitrogen is a key nutrient for all cell forms. Most organisms respond to nitrogen scarcity by slowing down their growth rate. On the contrary, our previous studies have shown that Papiliotrema laurentii strain RY1 has a robust growth under nitrogen starvation. To understand the global regulation that leads to such an extraordinary response, we undertook a de novo approach for transcriptome analysis of the yeast. Close to 33 million sequence reads of high quality for nitrogen limited and enriched condition were generated using Illumina NextSeq500. Trinity analysis and clustered transcripts annotation of the reads produced 17,611 unigenes, out of which 14,157 could be annotated. Gene Ontology term analysis generated 44.92% cellular component terms, 39.81% molecular function terms and 15.24% biological process terms. The most over represented pathways in general were translation, carbohydrate metabolism, amino acid metabolism, general metabolism, folding, sorting, degradation followed by transport and catabolism, nucleotide metabolism, replication and repair, transcription and lipid metabolism. A total of 4256 Single Sequence Repeats were identified. Differential gene expression analysis detected 996 P-significant transcripts to reveal transmembrane transport, lipid homeostasis, fatty acid catabolism and translation as the enriched terms which could be essential for Papiliotrema laurentii strain RY1 to adapt during nitrogen deprivation. Transcriptome data was validated by quantitative real-time PCR analysis of twelve transcripts. To the best of our knowledge, this is the first report of Papiliotrema laurentii strain RY1 transcriptome which would play a pivotal role in understanding the biochemistry of the yeast under acute nitrogen stress and this study would be encouraging to initiate extensive investigations into this Papiliotrema system. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  12. Unravel lipid accumulation mechanism in oleaginous yeast through single cell systems biology study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoliang; Ding, Shiyou

    Searching for alternative and clean energy is one of the most important tasks today. Our research aimed at finding the best living condition for certain types of oleaginous yeasts for efficient lipid production. We found that R. glutinis yeast cells has great variability in lipid production among cells while Y. lipolytica cells has similar oil production ability. We found some individual cells shows much higher level of oil production. In order to further study these cases, we employed a label-free chemical sensitive microscopy method call stimulated Raman scattering (SRS). With SRS, we could measure the lipid content in each cell.more » We combined SRS microscopy with microfluidic device so that we can isolate cells with high fat content. We also developed SRS imaging technique that has higher imaging speed, which is highly desirable for high throughput cell screening and sorting. Since these cells has similar genome, it must be the transcriptome caused their difference in oil production. We developed a single cell transcriptome sequencing method to study which genes are responsible for elevated oil production. These methods that are developed for this project can easily be applied for many other areas of research. For example, the single transcriptome can be used to study the transcriptomes of other cell types. The high-speed SRS microscopy techniques can be used to speed up chemical imaging for lablefree histology or imaging distribution of chemicals in tissues of live mice or in humans. The developed microfluidic platform can be used to sort other type of cells, e.g., white blood cells for diagnosis of cancer or other blood diseases.« less

  13. Transcriptome analysis of Ruditapes philippinarum hepatopancreas provides insights into immune signaling pathways under Vibrio anguillarum infection.

    PubMed

    Ren, Yipeng; Xue, Junli; Yang, Huanhuan; Pan, Baoping; Bu, Wenjun

    2017-05-01

    The Manila clam, Ruditapes philippinarum, is one of the most economically important aquatic clams that are harvested on a large scale by the mariculture industry in China. However, increasing reports of bacterial pathogenic diseases have had a negative effect on the aquaculture industry of R. philippinarum. In the present study, the two transcriptome libraries of untreated (termed H) and challenged Vibrio anguillarum (termed HV) hepatopancreas were constructed and sequenced from Manila clam using an Illumina-based paired-end sequencing platform. In total, 75,302,886 and 66,578,976 high-quality clean reads were assembled from 101,080,746 and 99,673,538 raw data points from the two transcriptome libraries described above, respectively. Furthermore, 156,116 unigenes were generated from 210,685 transcripts, with an N50 length of 1125 bp, and from the annotated SwissProt, NR, NT, KO, GO, KOG and KEGG databases. Moreover, a total of 4071 differentially expressed unigenes (HV vs H) were detected, including 903 up-regulated and 3168 down-regulated genes. Among these differentially expressed unigenes, 226 unigenes were annotated using KEGG annotation in 16 immune-related signaling pathways, including Toll-like receptor, NF-kappa B, MAPK, NOD-like receptor, RIG-I-like receptor, and the TNF and chemokine signaling pathways. Finally, 20,341 simple sequence repeats (SSRs) and 214,430 potential single nucleotide polymorphisms (SNPs) were detected from the H and HV transcriptome libraries. In conclusion, these studies identified many candidate immune-related genes and signaling pathways and conducted a comparative analysis of the differentially expressed unigenes from Manila clam hepatopancreas in response to V. anguillarum stimulation. These data laid the foundation for studying the innate immune systems and defense mechanisms in R. philippinarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Leveraging CyVerse Resources for De Novo Comparative Transcriptomics of Underserved (Non-model) Organisms

    PubMed Central

    Joyce, Blake L.; Haug-Baltzell, Asher K.; Hulvey, Jonathan P.; McCarthy, Fiona; Devisetty, Upendra Kumar; Lyons, Eric

    2017-01-01

    This workflow allows novice researchers to leverage advanced computational resources such as cloud computing to carry out pairwise comparative transcriptomics. It also serves as a primer for biologists to develop data scientist computational skills, e.g. executing bash commands, visualization and management of large data sets. All command line code and further explanations of each command or step can be found on the wiki (https://wiki.cyverse.org/wiki/x/dgGtAQ). The Discovery Environment and Atmosphere platforms are connected together through the CyVerse Data Store. As such, once the initial raw sequencing data has been uploaded there is no more need to transfer large data files over an Internet connection, minimizing the amount of time needed to conduct analyses. This protocol is designed to analyze only two experimental treatments or conditions. Differential gene expression analysis is conducted through pairwise comparisons, and will not be suitable to test multiple factors. This workflow is also designed to be manual rather than automated. Each step must be executed and investigated by the user, yielding a better understanding of data and analytical outputs, and therefore better results for the user. Once complete, this protocol will yield de novo assembled transcriptome(s) for underserved (non-model) organisms without the need to map to previously assembled reference genomes (which are usually not available in underserved organism). These de novo transcriptomes are further used in pairwise differential gene expression analysis to investigate genes differing between two experimental conditions. Differentially expressed genes are then functionally annotated to understand the genetic response organisms have to experimental conditions. In total, the data derived from this protocol is used to test hypotheses about biological responses of underserved organisms. PMID:28518075

  15. Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity

    PubMed Central

    Page, Rachel A.; Sukala, William R.; Giri, Mamta; Ghimbovschi, Svetlana D.; Hayat, Irum; Cheema, Birinder S.; Lys, Isabelle; Leikis, Murray; Sheard, Phillip W.; Wakefield, St. John; Breier, Bernhard; Hathout, Yetrib; Brown, Kristy; Marathi, Ramya; Orkunoglu-Suer, Funda E.; Devaney, Joseph M.; Leiken, Benjamin; Many, Gina; Krebs, Jeremy; Hopkins, Will G.; Hoffman, Eric P.

    2014-01-01

    Epigenomic regulation of the transcriptome by DNA methylation and posttranscriptional gene silencing by miRNAs are potential environmental modulators of skeletal muscle plasticity to chronic exercise in healthy and diseased populations. We utilized transcriptome networks to connect exercise-induced differential methylation and miRNA with functional skeletal muscle plasticity. Biopsies of the vastus lateralis were collected from middle-aged Polynesian men and women with morbid obesity (44 kg/m2 ± 10) and Type 2 diabetes before and following 16 wk of resistance (n = 9) or endurance training (n = 8). Longitudinal transcriptome, methylome, and microRNA (miRNA) responses were obtained via microarray, filtered by novel effect-size based false discovery rate probe selection preceding bioinformatic interrogation. Metabolic and microvascular transcriptome topology dominated the network landscape following endurance exercise. Lipid and glucose metabolism modules were connected to: microRNA (miR)-29a; promoter region hypomethylation of nuclear receptor factor (NRF1) and fatty acid transporter (SLC27A4), and hypermethylation of fatty acid synthase, and to exon hypomethylation of 6-phosphofructo-2-kinase and Ser/Thr protein kinase. Directional change in the endurance networks was validated by lower intramyocellular lipid, increased capillarity, GLUT4, hexokinase, and mitochondrial enzyme activity and proteome. Resistance training also lowered lipid and increased enzyme activity and caused GLUT4 promoter hypomethylation; however, training was inconsequential to GLUT4, capillarity, and metabolic transcriptome. miR-195 connected to negative regulation of vascular development. To conclude, integrated molecular network modelling revealed differential DNA methylation and miRNA expression changes occur in skeletal muscle in response to chronic exercise training that are most pronounced with endurance training and topographically associated with functional metabolic and microvascular plasticity relevant to diabetes rehabilitation. PMID:25138607

  16. Global Transcriptional Analysis Reveals the Complex Relationship between Tea Quality, Leaf Senescence and the Responses to Cold-Drought Combined Stress in Camellia sinensis

    PubMed Central

    Zheng, Chao; Wang, Yu; Ding, Zhaotang; Zhao, Lei

    2016-01-01

    In field conditions, especially in arid and semi-arid areas, tea plants are often simultaneously exposed to various abiotic stresses such as cold and drought, which have profound effects on leaf senescence process and tea quality. However, most studies of gene expression in stress responses focus on a single inciting agent, and the confounding effect of multiple stresses on crop quality and leaf senescence remain unearthed. Here, global transcriptome profiles of tea leaves under separately cold and drought stress were compared with their combination using RNA-Seq technology. This revealed that tea plants shared a large overlap in unigenes displayed “similar” (26%) expression pattern and avoid antagonistic responses (lowest level of “prioritized” mode: 0%) to exhibit very congruent responses to co-occurring cold and drought stress; 31.5% differential expressed genes and 38% of the transcriptome changes in response to combined stresses were unpredictable from cold or drought single-case studies. We also identified 319 candidate genes for enhancing plant resistance to combined stress. We then investigated the combined effect of cold and drought on tea quality and leaf senescence. Our results showed that drought-induced leaf senescence were severely delayed by (i) modulation of a number of senescence-associated genes and cold responsive genes, (ii) enhancement of antioxidant capacity, (iii) attenuation of lipid degradation, (iv) maintenance of cell wall and photosynthetic system, (v) alteration of senescence-induced sugar effect/sensitivity, as well as (vi) regulation of secondary metabolism pathways that significantly influence the quality of tea during combined stress. Therefore, care should be taken when utilizing a set of stresses to try and maximize leaf longevity and tea quality. PMID:28018394

  17. Identification of the acclimation genes in transcriptomic responses to heat stress of White Pekin duck.

    PubMed

    Kim, Jun-Mo; Lim, Kyu-Sang; Byun, Mijeong; Lee, Kyung-Tai; Yang, Young-Rok; Park, Mina; Lim, Dajeong; Chai, Han-Ha; Bang, Han-Tae; Hwangbo, Jong; Choi, Yang-Ho; Cho, Yong-Min; Park, Jong-Eun

    2017-11-01

    White Pekin duck is an important meat resource in the livestock industries. However, the temperature increase due to global warming has become a serious environmental factor in duck production, because of hyperthermia. Therefore, identifying the gene regulations and understanding the molecular mechanism for adaptation to the warmer environment will provide insightful information on the acclimation system of ducks. This study examined transcriptomic responses to heat stress treatments (3 and 6 h at 35 °C) and control (C, 25 °C) using RNA-sequencing analysis of genes from the breast muscle tissue. Based on three distinct differentially expressed gene (DEG) sets (3H/C, 6H/C, and 6H/3H), the expression patterns of significant DEGs (absolute log2 > 1.0 and false discovery rate < 0.05) were clustered into three responsive gene groups divided into upregulated and downregulated genes. Next, we analyzed the clusters that showed relatively higher expression levels in 3H/C and lower levels in 6H/C with much lower or opposite levels in 6H/3H; we referred to these clusters as the adaptable responsive gene group. These genes were significantly enriched in the ErbB signaling pathway, neuroactive ligand-receptor interaction and type II diabetes mellitus in the KEGG pathways (P < 0.01). From the functional enrichment analysis and significantly regulated genes observed in the enriched pathways, we think that the adaptable responsive genes are responsible for the acclimation mechanism of ducks and suggest that the regulation of phosphoinositide 3-kinase genes including PIK3R6, PIK3R5, and PIK3C2B has an important relationship with the mechanisms of adaptation to heat stress in ducks.

  18. Root transcriptomes of two acidic soil adapted Indica rice genotypes suggest diverse and complex mechanism of low phosphorus tolerance.

    PubMed

    Tyagi, Wricha; Rai, Mayank

    2017-03-01

    Low phosphorus (P) tolerance in rice is a biologically and agronomically important character. Low P tolerant Indica-type rice genotypes, Sahbhagi Dhan (SD) and Chakhao Poreiton (CP), are adapted to acidic soils and show variable response to low P levels. Using RNAseq approach, transcriptome data was generated from roots of SD and CP after 15 days of low P treatment to understand differences and similarities at molecular level. In response to low P, number of genes up-regulated (1318) was more when compared with down-regulated genes (761). Eight hundred twenty-one genes found to be significantly regulated between SD and CP in response to low P. De novo assembly using plant database led to further identification of 1535 novel transcripts. Functional annotation of significantly expressed genes suggests two distinct methods of low P tolerance. While root system architecture in SD works through serine-threonine kinase PSTOL1, suberin-mediated cell wall modification seems to be key in CP. The transcription data indicated that CP relies more on releasing its internally bound Pi and coping with low P levels by transcriptional and translational modifications and using dehydration response-based signals. Role of P transporters seems to be vital in response to low P in CP while sugar- and auxin-mediated pathway seems to be preferred in SD. At least six small RNA clusters overlap with transcripts highly expressed under low P, suggesting role of RNA super clusters in nutrient response in plants. These results help us to understand and thereby devise better strategy to enhance low P tolerance in Indica-type rice.

  19. Analysis of experience-regulated transcriptome and imprintome during critical periods of mouse visual system development reveals spatiotemporal dynamics.

    PubMed

    Hsu, Chi-Lin; Chou, Chih-Hsuan; Huang, Shih-Chuan; Lin, Chia-Yi; Lin, Meng-Ying; Tung, Chun-Che; Lin, Chun-Yen; Lai, Ivan Pochou; Zou, Yan-Fang; Youngson, Neil A; Lin, Shau-Ping; Yang, Chang-Hao; Chen, Shih-Kuo; Gau, Susan Shur-Fen; Huang, Hsien-Sung

    2018-03-15

    Visual system development is light-experience dependent, which strongly implicates epigenetic mechanisms in light-regulated maturation. Among many epigenetic processes, genomic imprinting is an epigenetic mechanism through which monoallelic gene expression occurs in a parent-of-origin-specific manner. It is unknown if genomic imprinting contributes to visual system development. We profiled the transcriptome and imprintome during critical periods of mouse visual system development under normal- and dark-rearing conditions using B6/CAST F1 hybrid mice. We identified experience-regulated, isoform-specific and brain-region-specific imprinted genes. We also found imprinted microRNAs were predominantly clustered into the Dlk1-Dio3 imprinted locus with light experience affecting some imprinted miRNA expression. Our findings provide the first comprehensive analysis of light-experience regulation of the transcriptome and imprintome during critical periods of visual system development. Our results may contribute to therapeutic strategies for visual impairments and circadian rhythm disorders resulting from a dysfunctional imprintome.

  20. Draft De Novo Transcriptome of the Rat Kangaroo Potorous tridactylus as a Tool for Cell Biology

    PubMed Central

    Udy, Dylan B.; Voorhies, Mark; Chan, Patricia P.; Lowe, Todd M.; Dumont, Sophie

    2015-01-01

    The rat kangaroo (long-nosed potoroo, Potorous tridactylus) is a marsupial native to Australia. Cultured rat kangaroo kidney epithelial cells (PtK) are commonly used to study cell biological processes. These mammalian cells are large, adherent, and flat, and contain large and few chromosomes—and are thus ideal for imaging intra-cellular dynamics such as those of mitosis. Despite this, neither the rat kangaroo genome nor transcriptome have been sequenced, creating a challenge for probing the molecular basis of these cellular dynamics. Here, we present the sequencing, assembly and annotation of the draft rat kangaroo de novo transcriptome. We sequenced 679 million reads that mapped to 347,323 Trinity transcripts and 20,079 Unigenes. We present statistics emerging from transcriptome-wide analyses, and analyses suggesting that the transcriptome covers full-length sequences of most genes, many with multiple isoforms. We also validate our findings with a proof-of-concept gene knockdown experiment. We expect that this high quality transcriptome will make rat kangaroo cells a more tractable system for linking molecular-scale function and cellular-scale dynamics. PMID:26252667

  1. Draft De Novo Transcriptome of the Rat Kangaroo Potorous tridactylus as a Tool for Cell Biology.

    PubMed

    Udy, Dylan B; Voorhies, Mark; Chan, Patricia P; Lowe, Todd M; Dumont, Sophie

    2015-01-01

    The rat kangaroo (long-nosed potoroo, Potorous tridactylus) is a marsupial native to Australia. Cultured rat kangaroo kidney epithelial cells (PtK) are commonly used to study cell biological processes. These mammalian cells are large, adherent, and flat, and contain large and few chromosomes-and are thus ideal for imaging intra-cellular dynamics such as those of mitosis. Despite this, neither the rat kangaroo genome nor transcriptome have been sequenced, creating a challenge for probing the molecular basis of these cellular dynamics. Here, we present the sequencing, assembly and annotation of the draft rat kangaroo de novo transcriptome. We sequenced 679 million reads that mapped to 347,323 Trinity transcripts and 20,079 Unigenes. We present statistics emerging from transcriptome-wide analyses, and analyses suggesting that the transcriptome covers full-length sequences of most genes, many with multiple isoforms. We also validate our findings with a proof-of-concept gene knockdown experiment. We expect that this high quality transcriptome will make rat kangaroo cells a more tractable system for linking molecular-scale function and cellular-scale dynamics.

  2. Perspectives on Systems Modeling of Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Sen, Partho; Kemppainen, Esko; Orešič, Matej

    2018-01-01

    Human peripheral blood mononuclear cells (PBMCs) are the key drivers of the immune responses. These cells undergo activation, proliferation and differentiation into various subsets. During these processes they initiate metabolic reprogramming, which is coordinated by specific gene and protein activities. PBMCs as a model system have been widely used to study metabolic and autoimmune diseases. Herein we review various omics and systems-based approaches such as transcriptomics, epigenomics, proteomics, and metabolomics as applied to PBMCs, particularly T helper subsets, that unveiled disease markers and the underlying mechanisms. We also discuss and emphasize several aspects of T cell metabolic modeling in healthy and disease states using genome-scale metabolic models. PMID:29376056

  3. Monitoring Transcriptomic Changes in Soil-Grown Roots and Shoots of Arabidopsis thaliana Subjected to a Progressive Drought Stress.

    PubMed

    Bashir, Khurram; Rasheed, Sultana; Matsui, Akihiro; Iida, Kei; Tanaka, Maho; Seki, Motoaki

    2018-01-01

    Numerous experiments have been performed in Arabidopsis to monitor changes in gene expression that occur in response to a variety of abiotic and biotic stresses, different growth conditions, and at various developmental stages. In addition, gene expression patterns have also been characterized among wild-type and mutant genotypes. Despite these numerous reports, transcriptional changes occurring in roots of soil-grown plants subjected to a progressive drought stress have remained undocumented. To fill this gap, we established a system that allows one to establish water-deficit conditions and to collect root and shoot samples with minimal damage to the root system. Arabidopsis plants are grown in a ceramic-based granular soil and subjected to progressive drought stress by withholding water. Root and shoot samples were collected separately, RNA was purified, and a microarray analysis of drought-stressed roots and shoots was performed at 0, 1, 3, 5, 7, and 9 days after the onset of drought stress treatment. Here, we describe the detailed protocol used to analyze the transcriptomic changes occurring in roots and shoots of soil-grown Arabidopsis subjected to a progressive drought stress.

  4. High Throughput Transcriptomics @ USEPA (Toxicology Forum)

    EPA Science Inventory

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest...

  5. Poly-Omic Prediction of Complex Traits: OmicKriging

    PubMed Central

    Wheeler, Heather E.; Aquino-Michaels, Keston; Gamazon, Eric R.; Trubetskoy, Vassily V.; Dolan, M. Eileen; Huang, R. Stephanie; Cox, Nancy J.; Im, Hae Kyung

    2014-01-01

    High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a broad spectrum of complex traits, the combined predictive power of these associations for any given trait is generally too low to be of clinical relevance. We propose a novel systems approach to complex trait prediction, which leverages and integrates similarity in genetic, transcriptomic, or other omics-level data. We translate the omic similarity into phenotypic similarity using a method called Kriging, commonly used in geostatistics and machine learning. Our method called OmicKriging emphasizes the use of a wide variety of systems-level data, such as those increasingly made available by comprehensive surveys of the genome, transcriptome, and epigenome, for complex trait prediction. Furthermore, our OmicKriging framework allows easy integration of prior information on the function of subsets of omics-level data from heterogeneous sources without the sometimes heavy computational burden of Bayesian approaches. Using seven disease datasets from the Wellcome Trust Case Control Consortium (WTCCC), we show that OmicKriging allows simple integration of sparse and highly polygenic components yielding comparable performance at a fraction of the computing time of a recently published Bayesian sparse linear mixed model method. Using a cellular growth phenotype, we show that integrating mRNA and microRNA expression data substantially increases performance over either dataset alone. Using clinical statin response, we show improved prediction over existing methods. PMID:24799323

  6. Transcriptional pathway and de novo network-based approaches to effects-based monitoring in the Great Lakes

    EPA Science Inventory

    Transcriptomics provides unique solutions for understanding the impact of complex mixtures and their components on aquatic systems. Here we describe the application of transcriptomics analysis of in situ fathead minnow exposures for assessing biological impacts of wastewater trea...

  7. Seminal plasma induces global transcriptomic changes associated with cell migration, proliferation and viability in endometrial epithelial cells and stromal fibroblasts.

    PubMed

    Chen, Joseph C; Johnson, Brittni A; Erikson, David W; Piltonen, Terhi T; Barragan, Fatima; Chu, Simon; Kohgadai, Nargis; Irwin, Juan C; Greene, Warner C; Giudice, Linda C; Roan, Nadia R

    2014-06-01

    How does seminal plasma (SP) affect the transcriptome of human primary endometrial epithelial cells (eEC) and stromal fibroblasts (eSF)? Exposure of eEC and eSF to SP in vitro increases expression of genes and secreted proteins associated with cellular migration, proliferation, viability and inhibition of cell death. Studies in both humans and animals suggest that SP can access and induce physiological changes in the upper female reproductive tract (FRT), which may participate in promoting reproductive success. This is a cross sectional study involving control samples versus treatment. SP (pooled from twenty donors) was first tested for dose- and time-dependent cytotoxic effects on eEC and eSF (n = 4). As exposure of eEC or eSF to 1% SP for 6 h proved to be non-toxic, a second set of eEC/eSF samples (n = 4) was treated under these conditions for transcriptome, protein and functional analysis. With a third set of samples (n = 3), we further compared the transcriptional response of the cells to SP versus fresh semen. eEC and eSF were isolated from endometrial biopsies from women of reproductive age undergoing benign gynecologic procedures and maintained in vitro. RNA was isolated and processed for microarray studies to analyze global transcriptomic changes. Secreted factors in conditioned media from SP-treated cells were analyzed by Luminex and for the ability to stimulate migration of CD14+ monocytes and CD4+ T cells. Pathway identifications were determined using the Z-scoring system in Ingenuity Pathways Analysis (Z scores ≥|1.5|). SP induced transcriptomic changes (P < 0.05) associated with promoting leukocyte and endothelial cell recruitment, and proliferation of eEC and eSF. Cell viability pathways were induced, while those associated with cell death were suppressed (P < 0.05). SP and fresh semen induced similar sets of pathways, suggesting that SP can model the signaling effects of semen in the endometrium. SP also induced secretion of pro-inflammatory and pro-chemotactic cytokines, as well as pro-angiogenic and proliferative growth factors (P < 0.05) in both eEC and eSF. Finally, functional assays revealed that conditioned media from SP-treated eEC and eSF significantly increased (P < 0.05) chemotaxis of CD14+ monocytes and CD4+ T cells. This study is limited to in vitro analyses of the effects of SP on endometrial cells. In addition, the measured response to SP was conducted in the absence of the ovarian hormones estradiol and progesterone, as well as epithelial-stromal paracrine signaling. While this study focused on establishing the baseline cellular response of endometrial cells to SP, future work should assess how hormone signaling in the presence of appropriate paracrine interactions affects SP-induced genes in these cells. The results of this study support previous findings that SP and semen contain bioactive factors capable of eliciting chemotactic responses in the uterus, which can lead to recruitment of leukocytes to the endometrium. Future directions will explore if similar changes in gene expression do indeed occur after coitus in vivo, and how the signaling cascades initiated by SP in the endometrium can affect reproductive success, female reproductive health and susceptibility to sexually transmitted diseases. The gene list provided by the transcriptome analysis reported here should prove a valuable resource for understanding the response of the upper FRT to SP exposure. This project was supported by NIH AI083050-04 (W.C.G./L.C.G.); NIH U54HD 055764 (L.C.G.); NIH 1F32HD074423-02 (J.C.C.); DOD W81XWH-11-1-0562 (W.C.G.); NIH 5K12-DK083021-04, NIH 1K99AI104262-01A1, The UCSF Hellman Award (N.R.R.). The authors have nothing to disclose.

  8. Multi-Omics Profiling of Phytoplankton Community Metabolism: Linking Meta-Transcriptomics and Metabolomics to Elucidate Phytoplankton Physiology in a Model Coastal System

    NASA Astrophysics Data System (ADS)

    Kujawinski, E. B.; Longnecker, K.; Alexander, H.; Dyhrman, S.; Jenkins, B. D.; Rynearson, T. A.

    2016-02-01

    Phytoplankton blooms in coastal areas contribute a large fraction of primary production to the global oceans. Despite their central importance, there are fundamental unknowns in phytoplankton community metabolism, which limit the development of a more complete understanding of the carbon cycle. Within this complex setting, the tools of systems biology hold immense potential for profiling community metabolism and exploring links to the carbon cycle, but have rarely been applied together in this context. Here we focus on phytoplankton community samples collected from a model coastal system over a three-week period. At each sampling point, we combined two assessments of metabolic function: the meta-transcriptome, or the genes that are expressed by all organisms at each sampling point, and the metabolome, or the intracellular molecules produced during the community's metabolism. These datasets are inherently complementary, with gene expression likely to vary in concert with the concentrations of metabolic intermediates. Indeed, preliminary data show coherence in transcripts and metabolites associated with nutrient stress response and with fixed carbon oxidation. To date, these datasets are rarely integrated across their full complexity but together they provide unequivocal evidence of specific metabolic pathways by individual phytoplankton taxa, allowing a more comprehensive systems view of this dynamic environment. Future application of multi-omic profiling will facilitate a more complete understanding of metabolic reactions at the foundation of the carbon cycle.

  9. Regulation of behaviorally associated gene networks in worker honey bee ovaries

    PubMed Central

    Wang, Ying; Kocher, Sarah D.; Linksvayer, Timothy A.; Grozinger, Christina M.; Page, Robert E.; Amdam, Gro V.

    2012-01-01

    SUMMARY Several lines of evidence support genetic links between ovary size and division of labor in worker honey bees. However, it is largely unknown how ovaries influence behavior. To address this question, we first performed transcriptional profiling on worker ovaries from two genotypes that differ in social behavior and ovary size. Then, we contrasted the differentially expressed ovarian genes with six sets of available brain transcriptomes. Finally, we probed behavior-related candidate gene networks in wild-type ovaries of different sizes. We found differential expression in 2151 ovarian transcripts in these artificially selected honey bee strains, corresponding to approximately 20.3% of the predicted gene set of honey bees. Differences in gene expression overlapped significantly with changes in the brain transcriptomes. Differentially expressed genes were associated with neural signal transmission (tyramine receptor, TYR) and ecdysteroid signaling; two independently tested nuclear hormone receptors (HR46 and ftz-f1) were also significantly correlated with ovary size in wild-type bees. We suggest that the correspondence between ovary and brain transcriptomes identified here indicates systemic regulatory networks among hormones (juvenile hormone and ecdysteroids), pheromones (queen mandibular pheromone), reproductive organs and nervous tissues in worker honey bees. Furthermore, robust correlations between ovary size and neuraland endocrine response genes are consistent with the hypothesized roles of the ovaries in honey bee behavioral regulation. PMID:22162860

  10. Comparative analysis of the blood transcriptomes between wolves and dogs.

    PubMed

    Yang, X; Zhang, H; Shang, J; Liu, G; Xia, T; Zhao, C; Sun, G; Dou, H

    2018-06-28

    Dogs were domesticated by human and originated from wolves. Their evolutionary relationships have attracted much scientific interest due to their genetic affinity but different habitats. To identify the differences between dogs and wolves associated with domestication, we analysed the blood transcriptomes of wolves and dogs by RNA-Seq. We obtained a total of 30.87 Gb of raw reads from two dogs and three wolves using RNA-Seq technology. Comparisons of the wolf and dog transcriptomes revealed 524 genes differentially expressed genes between them. We found that some genes related to immune function (DCK, ICAM4, GAPDH and BSG) and aerobic capacity (HBA1, HBA2 and HBB) were more highly expressed in the wolf. Six differentially expressed genes related to the innate immune response (CCL23, TRIM10, DUSP10, RAB27A, CLEC5A and GCH1) were found in the wolf by a Gene Ontology enrichment analysis. Immune system development was also enriched only in the wolf group. The ALAS2, HMBS and FECH genes, shown to be enriched by the Kyoto Encyclopedia of Genes and Genomes analysis, were associated with the higher aerobic capacity and hypoxia endurance of the wolf. The results suggest that the wolf might have greater resistance to pathogens, hypoxia endurance and aerobic capacity than dogs do. © 2018 Stichting International Foundation for Animal Genetics.

  11. Phosphoproteome and transcriptome analyses of ErbB ligand-stimulated MCF-7 cells.

    PubMed

    Nagashima, Takeshi; Oyama, Masaaki; Kozuka-Hata, Hiroko; Yumoto, Noriko; Sakaki, Yoshiyuki; Hatakeyama, Mariko

    2008-01-01

    Cellular signal transduction pathways and gene expression are tightly regulated to accommodate changes in response to physiological environments. In the current study, molecules were identified that are activated as a result of intracellular signaling and immediately expressed as mRNA in MCF-7 breast cancer cells shortly after stimulation of ErbB receptor ligands, epidermal growth factor (EGF) or heregulin (HRG). For the identification of tyrosine-phosphorylated proteins and expressed genes, a SILAC (stable isotopic labeling using amino acids in cell culture) method and Affymetrix gene expression array system, respectively, were used. Unexpectedly, the overlapping of genes appeared in two experimental datasets was very low for HRG (43 hits in the proteome data, 1,655 in the transcriptome data, and 5 hits common to both datasets), while no overlapping gene was detected for EGF (15 hits in the proteome data, 211 hits in the transcriptome data, and no hits common to both datasets). The HRG overlapping genes included ERBB2, NEDD9, MAPK3, JUP and EPHA2. Biological pathway analysis indicated that HRG-stimulated molecular activation is significantly related to cancer pathways including bladder cancer, chronic myeloid leukemia and pancreatic cancer (p < 0.05). The proteome datasets of EGF and HRG contain molecules that are related to Axon guidance, ErbB signaling and VEGF signaling at a high rate.

  12. Sexual dimorphic floral development in dioecious plants revealed by transcriptome, phytohormone, and DNA methylation analysis in Populus tomentosa.

    PubMed

    Song, Yuepeng; Ma, Kaifeng; Ci, Dong; Chen, Qingqing; Tian, Jiaxing; Zhang, Deqiang

    2013-12-01

    Dioecious plants have evolved sex-specific floral development mechanisms. However, the precise gene expression patterns in dioecious plant flower development remain unclear. Here, we used andromonoecious poplar, an exceptional model system, to eliminate the confounding effects of genetic background of dioecious plants. Comparative transcriptome and physiological analysis allowed us to characterize sex-specific development of female and male flowers. Transcriptome analysis identified genes significantly differentially expressed between the sexes, including genes related to floral development, phytohormone synthesis and metabolism, and DNA methylation. Correlation analysis revealed a significant correlation between phytohormone signaling and gene expression, identifying specific phytohormone-responsive genes and their cis-regulatory elements. Two genes related to DNA methylation, METHYLTRANSFERASE1 (MET1) and DECREASED DNA METHYLATION 1 (DDM1), which are located in the sex determination region of Chromosome XIX, have differential expression between female and male flowers. A time-course analysis revealed that MET1 and DDM1 expression may produce different DNA methylation levels in female and male flowers. Understanding the interactions of phytohormone signaling, DNA methylation and target gene expression should lead to a better understanding of sexual differences in floral development. Thus, this study identifies a set of candidate genes for further studies of poplar sexual dimorphism and relates sex-specific floral development to physiological and epigenetic changes.

  13. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: Application to acetaminophen injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prot, Jean-Matthieu; Bunescu, Andrei; Elena-Herrmann, Bénédicte

    2012-03-15

    We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treatedmore » biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology. -- Highlights: ► We cultivated liver cells in microfluidic biochips ► We integrated transcriptomic, proteomic and metabolomics profiles ► Pathways reconstructions were proposed in control and acetaminophen treated cultures ► Biomarkers were identified ► Comparisons with in vivo studies were proposed.« less

  14. Metabolism of Fructooligosaccharides in Lactobacillus plantarum ST-III via Differential Gene Transcription and Alteration of Cell Membrane Fluidity

    PubMed Central

    Chen, Chen; Zhao, Guozhong

    2015-01-01

    Although fructooligosaccharides (FOS) can selectively stimulate the growth and activity of probiotics and beneficially modulate the balance of intestinal microbiota, knowledge of the molecular mechanism for FOS metabolism by probiotics is still limited. Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth of Lactobacillus plantarum ST-III using FOS or glucose as the sole carbon source. A total of 363 genes were differentially transcribed; in particular, two gene clusters were induced by FOS. Gene inactivation revealed that both of the clusters participated in the metabolism of FOS, which were transported across the membrane by two phosphotransferase systems (PTSs) and were subsequently hydrolyzed by a β-fructofuranosidase (SacA) in the cytoplasm. Combining the measurements of the transcriptome- and membrane-related features, we discovered that the genes involved in the biosynthesis of fatty acids (FAs) were repressed in cells grown on FOS; as a result, the FA profiles were altered by shortening of the carbon chains, after which membrane fluidity increased in response to FOS transport and utilization. Furthermore, incremental production of acetate was observed in both the transcriptomic and the metabolic experiments. Our results provided new insights into gene transcription, the production of metabolites, and membrane alterations that could explain FOS metabolism in L. plantarum. PMID:26319882

  15. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages

    PubMed Central

    Lauterstein, Dana E.; Tijerina, Pamella B.; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S.; Gordon, Terry; Klein, Catherine B.; Zelikoff, Judith T.

    2016-01-01

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13–16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4–6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology. PMID:27077873

  16. Frontal Cortex Transcriptome Analysis of Mice Exposed to Electronic Cigarettes During Early Life Stages.

    PubMed

    Lauterstein, Dana E; Tijerina, Pamella B; Corbett, Kevin; Akgol Oksuz, Betul; Shen, Steven S; Gordon, Terry; Klein, Catherine B; Zelikoff, Judith T

    2016-04-12

    Electronic cigarettes (e-cigarettes), battery-powered devices containing nicotine, glycerin, propylene glycol, flavorings, and other substances, are increasing in popularity. They pose a potential threat to the developing brain, as nicotine is a known neurotoxicant. We hypothesized that exposure to e-cigarettes during early life stages induce changes in central nervous system (CNS) transcriptome associated with adverse neurobiological outcomes and long-term disease states. To test the hypothesis, pregnant C57BL/6 mice were exposed daily (via whole body inhalation) throughout gestation (3 h/day; 5 days/week) to aerosols produced from e-cigarettes either with nicotine (13-16 mg/mL) or without nicotine; following birth, pups and dams were exposed together to e-cigarette aerosols throughout lactation beginning at postnatal day (PND) 4-6 and using the same exposure conditions employed during gestational exposure. Following exposure, frontal cortex recovered from ~one-month-old male and female offspring were excised and analyzed for gene expression by RNA Sequencing (RNA-Seq). Comparisons between the treatment groups revealed that e-cigarette constituents other than nicotine might be partly responsible for the observed biological effects. Transcriptome alterations in both offspring sexes and treatment groups were all significantly associated with downstream adverse neurobiological outcomes. Results from this study demonstrate that e-cigarette exposure during early life alters CNS development potentially leading to chronic neuropathology.

  17. Transcriptome analysis of intraspecific competition in Arabidopsis thaliana reveals organ-specific signatures related to nutrient acquisition and general stress response pathways

    PubMed Central

    2012-01-01

    Background Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. Results Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. Conclusions This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses. PMID:23194435

  18. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides)

    PubMed Central

    Annis, Mandy L.; Brumbaugh, William G.; Chasar, Lia C.; Denslow, Nancy D.; Tillitt, Donald E.

    2014-01-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates. PMID:24694518

  19. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides).

    PubMed

    Richter, Catherine A; Martyniuk, Christopher J; Annis, Mandy L; Brumbaugh, William G; Chasar, Lia C; Denslow, Nancy D; Tillitt, Donald E

    2014-07-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates. Published by Elsevier Inc.

  20. Methylmercury-induced changes in gene transcription associated with neuroendocrine disruption in largemouth bass (Micropterus salmoides)

    USGS Publications Warehouse

    Richter, Catherine A.; Martyniuk, Christopher J.; Annis, Mandy L.; Brumbaugh, William G.; Chasar, Lia C.; Denslow, Nancy D.; Tillitt, Donald E.

    2014-01-01

    Methyl-mercury (MeHg) is a potent neuroendocrine disruptor that impairs reproductive processes in fish. The objectives of this study were to (1) characterize transcriptomic changes induced by MeHg exposure in the female largemouth bass (LMB) hypothalamus under controlled laboratory conditions, (2) investigate the health and reproductive impacts of MeHg exposure on male and female largemouth bass (LMB) in the natural environment, and (3) identify MeHg-associated gene expression patterns in whole brain of female LMB from MeHg-contaminated habitats. The laboratory experiment was a single injection of 2.5 μg MeHg/g body weight for 96 h exposure. The field survey compared river systems in Florida, USA with comparably lower concentrations of MeHg (Wekiva, Santa Fe, and St. Johns Rivers) in fish and one river system with LMB that contained elevated concentrations of MeHg (St. Marys River). Microarray analysis was used to quantify transcriptomic responses to MeHg exposure. Although fish at the high-MeHg site did not show overt health or reproductive impairment, there were MeHg-responsive genes and pathways identified in the laboratory study that were also altered in fish from the high-MeHg site relative to fish at the low-MeHg sites. Gene network analysis suggested that MeHg regulated the expression targets of neuropeptide receptor and steroid signaling, as well as structural components of the cell. Disease-associated gene networks related to MeHg exposure, based upon expression data, included cerebellum ataxia, movement disorders, and hypercalcemia. Gene responses in the CNS are consistent with the documented neurotoxicological and neuroendocrine disrupting effects of MeHg in vertebrates.

  1. Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression.

    PubMed

    Borirak, Orawan; Rolfe, Matthew D; de Koning, Leo J; Hoefsloot, Huub C J; Bekker, Martijn; Dekker, Henk L; Roseboom, Winfried; Green, Jeffrey; de Koster, Chris G; Hellingwerf, Klaas J

    2015-10-01

    Time-series transcript- and protein-profiles were measured upon initiation of carbon catabolite repression in Escherichia coli, in order to investigate the extent of post-transcriptional control in this prototypical response. A glucose-limited chemostat culture was used as the CCR-free reference condition. Stopping the pump and simultaneously adding a pulse of glucose, that saturated the cells for at least 1h, was used to initiate the glucose response. Samples were collected and subjected to quantitative time-series analysis of both the transcriptome (using microarray analysis) and the proteome (through a combination of 15N-metabolic labeling and mass spectrometry). Changes in the transcriptome and corresponding proteome were analyzed using statistical procedures designed specifically for time-series data. By comparison of the two sets of data, a total of 96 genes were identified that are post-transcriptionally regulated. This gene list provides candidates for future in-depth investigation of the molecular mechanisms involved in post-transcriptional regulation during carbon catabolite repression in E. coli, like the involvement of small RNAs. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Omics and Environmental Science Genomic Approaches With Natural Fish Populations From Polluted Environments

    PubMed Central

    Bozinovic, Goran; Oleksiak, Marjorie F.

    2010-01-01

    Transcriptomics and population genomics are two complementary genomic approaches that can be used to gain insight into pollutant effects in natural populations. Transcriptomics identify altered gene expression pathways while population genomics approaches more directly target the causative genomic polymorphisms. Neither approach is restricted to a pre-determined set of genes or loci. Instead, both approaches allow a broad overview of genomic processes. Transcriptomics and population genomic approaches have been used to explore genomic responses in populations of fish from polluted environments and have identified sets of candidate genes and loci that appear biologically important in response to pollution. Often differences in gene expression or loci between polluted and reference populations are not conserved among polluted populations suggesting a biological complexity that we do not yet fully understand. As genomic approaches become less expensive with the advent of new sequencing and genotyping technologies, they will be more widely used in complimentary studies. However, while these genomic approaches are immensely powerful for identifying candidate gene and loci, the challenge of determining biological mechanisms that link genotypes and phenotypes remains. PMID:21072843

  3. Comparative transcriptomics of early dipteran development

    PubMed Central

    2013-01-01

    Background Modern sequencing technologies have massively increased the amount of data available for comparative genomics. Whole-transcriptome shotgun sequencing (RNA-seq) provides a powerful basis for comparative studies. In particular, this approach holds great promise for emerging model species in fields such as evolutionary developmental biology (evo-devo). Results We have sequenced early embryonic transcriptomes of two non-drosophilid dipteran species: the moth midge Clogmia albipunctata, and the scuttle fly Megaselia abdita. Our analysis includes a third, published, transcriptome for the hoverfly Episyrphus balteatus. These emerging models for comparative developmental studies close an important phylogenetic gap between Drosophila melanogaster and other insect model systems. In this paper, we provide a comparative analysis of early embryonic transcriptomes across species, and use our data for a phylogenomic re-evaluation of dipteran phylogenetic relationships. Conclusions We show how comparative transcriptomics can be used to create useful resources for evo-devo, and to investigate phylogenetic relationships. Our results demonstrate that de novo assembly of short (Illumina) reads yields high-quality, high-coverage transcriptomic data sets. We use these data to investigate deep dipteran phylogenetic relationships. Our results, based on a concatenation of 160 orthologous genes, provide support for the traditional view of Clogmia being the sister group of Brachycera (Megaselia, Episyrphus, Drosophila), rather than that of Culicomorpha (which includes mosquitoes and blackflies). PMID:23432914

  4. Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization [Transcriptomic analysis of the marine oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization

    DOE PAGES

    Kothari, Ankita; Charrier, Marimikel; Wu, Yu -Wei; ...

    2016-09-22

    The hydrocarbonoclastic bacterium Acinetobacter venetianus RAG-1 has attracted substantial attention due to its powerful oil-degrading capabilities and its potential to play an important ecological role in the cleanup of alkanes. In this study, we compare the transcriptome of the strain RAG-1 grown in dodecane, the corresponding alkanol (dodecanol), and sodium acetate for the characterization of genes involved in dodecane uptake and utilization. Comparison of the transcriptional responses of RAG-1 grown on dodecane led to the identification of 1074 genes that were differentially expressed relative to sodium acetate. Of these, 622 genes were upregulated when grown in dodecane. The highly upregulatedmore » genes were involved in alkane catabolism, along with stress response. Our data suggest AlkMb to be primarily involved in dodecane oxidation. Transcriptional response of RAG-1 grown on dodecane relative to dodecanol also led to the identification of permease, outer membrane protein and thin fimbriae coding genes potentially involved in dodecane uptake. As a result, this study provides the first model for key genes involved in alkane uptake and metabolism in A. venetianus RAG-1.« less

  5. Transcriptome response signatures associated with the overexpression of a mitochondrial uncoupling protein (AtUCP1) in tobacco.

    PubMed

    Laitz, Alessandra Vasconcellos Nunes; Acencio, Marcio Luis; Budzinski, Ilara G F; Labate, Mônica T V; Lemke, Ney; Ribolla, Paulo Eduardo Martins; Maia, Ivan G

    2015-01-01

    Mitochondrial inner membrane uncoupling proteins (UCP) dissipate the proton electrochemical gradient established by the respiratory chain, thus affecting the yield of ATP synthesis. UCP overexpression in plants has been correlated with oxidative stress tolerance, improved photosynthetic efficiency and increased mitochondrial biogenesis. This study reports the main transcriptomic responses associated with the overexpression of an UCP (AtUCP1) in tobacco seedlings. Compared to wild-type (WT), AtUCP1 transgenic seedlings showed unaltered ATP levels and higher accumulation of serine. By using RNA-sequencing, a total of 816 differentially expressed genes between the investigated overexpressor lines and the untransformed WT control were identified. Among them, 239 were up-regulated and 577 were down-regulated. As a general response to AtUCP1 overexpression, noticeable changes in the expression of genes involved in energy metabolism and redox homeostasis were detected. A substantial set of differentially expressed genes code for products targeted to the chloroplast and mainly involved in photosynthesis. The overall results demonstrate that the alterations in mitochondrial function provoked by AtUCP1 overexpression require important transcriptomic adjustments to maintain cell homeostasis. Moreover, the occurrence of an important cross-talk between chloroplast and mitochondria, which culminates in the transcriptional regulation of several genes involved in different pathways, was evidenced.

  6. Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization.

    PubMed

    Fasano, Carlo; Diretto, Gianfranco; Aversano, Riccardo; D'Agostino, Nunzio; Di Matteo, Antonio; Frusciante, Luigi; Giuliano, Giovanni; Carputo, Domenico

    2016-06-01

    Polyploids are generally classified as autopolyploids, derived from a single species, and allopolyploids, arising from interspecific hybridization. The former represent ideal materials with which to study the consequences of genome doubling and ascertain whether there are molecular and functional rules operating following polyploidization events. To investigate whether the effects of autopolyploidization are common to different species, or if species-specific or stochastic events are prevalent, we performed a comprehensive transcriptomic and metabolomic characterization of diploids and autotetraploids of Solanum commersonii and Solanum bulbocastanum. Autopolyploidization remodelled the transcriptome and the metabolome of both species. In S. commersonii, differentially expressed genes (DEGs) were highly enriched in pericentromeric regions. Most changes were stochastic, suggesting a strong genotypic response. However, a set of robustly regulated transcripts and metabolites was also detected, including purine bases and nucleosides, which are likely to underlie a common response to polyploidization. We hypothesize that autopolyploidization results in nucleotide pool imbalance, which in turn triggers a genomic shock responsible for the stochastic events observed. The more extensive genomic stress and the higher number of stochastic events observed in S. commersonii with respect to S. bulbocastanum could be the result of the higher nucleoside depletion observed in this species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. De novo transcriptome assembly and analysis of differential gene expression in response to drought in European beech

    PubMed Central

    Seifert, Sarah; Lübbe, Torben; Leuschner, Christoph; Finkeldey, Reiner

    2017-01-01

    Despite the ecological and economic importance of European beech (Fagus sylvatica L.) genomic resources of this species are still limited. This hampers an understanding of the molecular basis of adaptation to stress. Since beech will most likely be threatened by the consequences of climate change, an understanding of adaptive processes to climate change-related drought stress is of major importance. Here, we used RNA-seq to provide the first drought stress-related transcriptome of beech. In a drought stress trial with beech saplings, 50 samples were taken for RNA extraction at five points in time during a soil desiccation experiment. De novo transcriptome assembly and analysis of differential gene expression revealed 44,335 contigs, and 662 differentially expressed genes between the stress and normally watered control group. Gene expression was specific to the different time points, and only five genes were significantly differentially expressed between the stress and control group on all five sampling days. GO term enrichment showed that mostly genes involved in lipid- and homeostasis-related processes were upregulated, whereas genes involved in oxidative stress response were downregulated in the stressed seedlings. This study gives first insights into the genomic drought stress response of European beech, and provides new genetic resources for adaptation research in this species. PMID:28873454

  8. Transcriptomic analysis of the highly efficient oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization [Transcriptomic analysis of the marine oil-degrading bacterium Acinetobacter venetianus RAG-1 reveals genes important in dodecane uptake and utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kothari, Ankita; Charrier, Marimikel; Wu, Yu -Wei

    The hydrocarbonoclastic bacterium Acinetobacter venetianus RAG-1 has attracted substantial attention due to its powerful oil-degrading capabilities and its potential to play an important ecological role in the cleanup of alkanes. In this study, we compare the transcriptome of the strain RAG-1 grown in dodecane, the corresponding alkanol (dodecanol), and sodium acetate for the characterization of genes involved in dodecane uptake and utilization. Comparison of the transcriptional responses of RAG-1 grown on dodecane led to the identification of 1074 genes that were differentially expressed relative to sodium acetate. Of these, 622 genes were upregulated when grown in dodecane. The highly upregulatedmore » genes were involved in alkane catabolism, along with stress response. Our data suggest AlkMb to be primarily involved in dodecane oxidation. Transcriptional response of RAG-1 grown on dodecane relative to dodecanol also led to the identification of permease, outer membrane protein and thin fimbriae coding genes potentially involved in dodecane uptake. As a result, this study provides the first model for key genes involved in alkane uptake and metabolism in A. venetianus RAG-1.« less

  9. High-resolution transcript profiling reveals shoot abscission process of spruce dwarf mistletoe Arceuthobium sichuanense in response to ethephon

    PubMed Central

    Wang, Yonglin; Xiong, Dianguang; Jiang, Ning; Li, Xuewu; Yang, Qiqing; Tian, Chengming

    2016-01-01

    Arceuthobium (dwarf mistletoes) are hemiparasites that may cause great damage to infected trees belonging to Pinaceae and Cupressaceae. Currently, dwarf mistletoe control involves the use of the ethylene-producing product ethephon (ETH), which acts by inducing dwarf mistletoe shoot abscission. However, the process by which ETH functions is mostly unknown. Therefore, the transcriptome of the ETH-exposed plants was compared to non-exposed controls to identify genes associated with the response to ethephon. In this study, the reference transcriptome was contained 120,316 annotated unigenes, with a total of 21,764 ETH-responsive differentially expressed unigenes were identified. These ETH-associated genes clustered into 20 distinctly expressed pattern groups, providing a view of molecular events with good spatial and temporal resolution. As expected, the greatest number of unigenes with changed expression were observed at the onset of abscission, suggesting induction by ethylene. ETH also affected genes associated with shoot abscission processes including hormone biosynthesis and signaling, cell wall hydrolysis and modification, lipid transference, and more. The comprehensive transcriptome data set provides a wealth of genomic resources for dwarf mistletoe communities and contributes to a better understanding of the molecular regulatory mechanism of ethylene-caused shoots abscission. PMID:27941945

  10. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  11. Transcriptomic comparison between Brassica oleracea and rice (Oryza sativa) reveals diverse modulations on cell death in response to Sclerotinia sclerotiorum.

    PubMed

    Mei, Jiaqin; Ding, Yijuan; Li, Yuehua; Tong, Chaobo; Du, Hai; Yu, Yang; Wan, Huafan; Xiong, Qing; Yu, Jingyin; Liu, Shengyi; Li, Jiana; Qian, Wei

    2016-09-20

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is a devastating disease of Brassica crops, but not in rice. The leaves of a rice line, a partial resistant (R) and a susceptible (S) Brassica oleracea pool that bulked from a resistance-segregating F2 population were employed for transcriptome sequencing before and after inoculation by S. sclerotiorum for 6 and 12 h. Distinct transcriptome profiles were revealed between B. oleracea and rice in response to S. sclerotiorum. Enrichment analyses of GO and KEGG indicated an enhancement of antioxidant activity in the R B. oleracea and rice, and histochemical staining exhibited obvious lighter reactive oxygen species (ROS) accumulation and cell death in rice and the R B. oleracea as compared to that in the S B. oleracea. Significant enhancement of Ca(2+) signalling, a positive regulator of ROS and cell death, were detected in S B. oleracea after inoculation, while it was significantly repressed in the R B. oleracea group. Obvious difference was detected between two B. oleracea groups for WRKY transcription factors, particularly for those regulating cell death. These findings suggest diverse modulations on cell death in host in response to S. sclerotiorum. Our study provides useful insight into the resistant mechanism to S. sclerotiorum.

  12. Suboptimal evolutionary novel environments promote singular altered gravity responses of transcriptome during Drosophila metamorphosis

    PubMed Central

    2013-01-01

    Background Previous experiments have shown that the reduced gravity aboard the International Space Station (ISS) causes important alterations in Drosophila gene expression. These changes were shown to be intimately linked to environmental space-flight related constraints. Results Here, we use an array of different techniques for ground-based simulation of microgravity effects to assess the effect of suboptimal environmental conditions on the gene expression of Drosophila in reduced gravity. A global and integrative analysis, using “gene expression dynamics inspector” (GEDI) self-organizing maps, reveals different degrees in the responses of the transcriptome when using different environmental conditions or microgravity/hypergravity simulation devices. Although the genes that are affected are different in each simulation technique, we find that the same gene ontology groups, including at least one large multigene family related with behavior, stress response or organogenesis, are over represented in each case. Conclusions These results suggest that the transcriptome as a whole can be finely tuned to gravity force. In optimum environmental conditions, the alteration of gravity has only mild effects on gene expression but when environmental conditions are far from optimal, the gene expression must be tuned greatly and effects become more robust, probably linked to the lack of experience of organisms exposed to evolutionary novel environments such as a gravitational free one. PMID:23806134

  13. Global Analysis of Salmonella Alternative Sigma Factor E on Protein Translation

    DOE PAGES

    Li, Jie; Nakayasu, Ernesto S.; Overall, Christopher C.; ...

    2015-02-16

    The alternative sigma factor E (σ E) is critical for response to extracytoplasmic stress in Salmonella. Extensive studies have been conducted on σ E-regulated gene expression, particularly at the transcriptional level. Increasing evidence suggests however that σ E may indirectly participate in post-transcriptional regulation. Here in this study, we conducted sample-matched global proteomic and transcriptomic analyses to determine the level of regulation mediated by σ E in Salmonella. We analysed samples from wild type and isogenic rpoE mutant Salmonella cultivated in three different conditions; nutrient-rich and conditions that mimic early and late intracellular infection. We found that 30% of themore » observed proteome was regulated by σ E combining all three conditions. In different growth conditions, σ E affected the expression of a broad spectrum of Salmonella proteins required for miscellaneous functions. Those involved in transport and binding, protein synthesis, and stress response were particularly highlighted. By comparing transcriptomic and proteomic data, we identified genes post-transcriptionally regulated by σ E and found that post-transcriptional regulation was responsible for a majority of changes observed in the σ E-regulated proteome. Further, comparison of transcriptomic and proteomic data from hfq mutant of Salmonella demonstrated that σ E–mediated post-transcriptional regulation was partially dependent on the RNA-binding protein Hfq.« less

  14. Network analysis of oyster transcriptome revealed a cascade of cellular responses during recovery after heat shock.

    PubMed

    Zhang, Lingling; Hou, Rui; Su, Hailin; Hu, Xiaoli; Wang, Shi; Bao, Zhenmin

    2012-01-01

    Oysters, as a major group of marine bivalves, can tolerate a wide range of natural and anthropogenic stressors including heat stress. Recent studies have shown that oysters pretreated with heat shock can result in induced heat tolerance. A systematic study of cellular recovery from heat shock may provide insights into the mechanism of acquired thermal tolerance. In this study, we performed the first network analysis of oyster transcriptome by reanalyzing microarray data from a previous study. Network analysis revealed a cascade of cellular responses during oyster recovery after heat shock and identified responsive gene modules and key genes. Our study demonstrates the power of network analysis in a non-model organism with poor gene annotations, which can lead to new discoveries that go beyond the focus on individual genes.

  15. De Novo Assembly and Analysis of Tartary Buckwheat (Fagopyrum tataricum Garetn.) Transcriptome Discloses Key Regulators Involved in Salt-Stress Response

    PubMed Central

    Wu, Qi; Bai, Xue; Zhao, Wei; Xiang, Dabing; Wan, Yan; Yan, Jun; Zou, Liang; Zhao, Gang

    2017-01-01

    Soil salinization has been a tremendous obstacle for agriculture production. The regulatory networks underlying salinity adaption in model plants have been extensively explored. However, limited understanding of the salt response mechanisms has hindered the planting and production in Fagopyrum tataricum, an economic and health-beneficial plant mainly distributing in southwest China. In this study, we performed physiological analysis and found that salt stress of 200 mM NaCl solution significantly affected the relative water content (RWC), electrolyte leakage (EL), malondialdehyde (MDA) content, peroxidase (POD) and superoxide dismutase (SOD) activities in tartary buckwheat seedlings. Further, we conducted transcriptome comparison between control and salt treatment to identify potential regulatory components involved in F. tataricum salt responses. A total of 53.15 million clean reads from control and salt-treated libraries were produced via an Illumina sequencing approach. Then we de novo assembled these reads into a transcriptome dataset containing 57,921 unigenes with N50 length of 1400 bp and total length of 44.5 Mb. A total of 36,688 unigenes could find matches in public databases. GO, KEGG and KOG classification suggested the enrichment of these unigenes in 56 sub-categories, 25 KOG, and 273 pathways, respectively. Comparison of the transcriptome expression patterns between control and salt treatment unveiled 455 differentially expressed genes (DEGs). Further, we found the genes encoding for protein kinases, phosphatases, heat shock proteins (HSPs), ATP-binding cassette (ABC) transporters, glutathione S-transferases (GSTs), abiotic-related transcription factors and circadian clock might be relevant to the salinity adaption of this species. Thus, this study offers an insight into salt tolerance mechanisms, and will serve as useful genetic information for tolerant elite breeding programs in future. PMID:28972562

  16. Hepatic transcriptome analysis and identification of differentially expressed genes response to dietary oxidized fish oil in loach Misgurnus anguillicaudatus.

    PubMed

    Zhang, Yin; Li, Yang; Liang, Xiao; Cao, Xiaojuan; Huang, Longfei; Yan, Jie; Wei, Yanxing; Gao, Jian

    2017-01-01

    RNA sequencing and short-read assembly were utilized to produce a transcriptome of livers from loaches (Misgurnus anguillicaudatus) fed with three different diets respectively containing fresh fish oil (FO group), medium oxidized fish oil (MO group) and high oxidized fish oil (HO group). A total of 60,663 unigenes were obtained in this study, with mean length 848.74 bp. 50,814, 49,584 and 49,814 unigenes were respectively obtained from FO, MO and HO groups. There were 2,343 differentially expressed genes between FO and MO, with 855 down- and 1,488 up-regulated genes in the MO group. 2,813 genes were differentially expressed between FO and HO, including 1,256 down- and 1,552 up-regulated genes in the HO group. 2,075 differentially expressed genes were found in the comparison of MO and HO, including 1,074 up- and 1,001 down-regulated genes in the MO group. Some differentially expressed genes, such as fatty acid transport protein (fatp), fatty acid binding protein (fabp), apolipoprotein (apo), peroxisome proliferator activated receptor-gamma (ppar-γ), acetyl-CoA synthetase (acs) and arachidonate 5-lipoxygenase (alox5), were involved in lipid metabolism, suggesting these genes in the loach were responsive to dietary oxidized fish oil. Results of transcriptome profilings here were validated using quantitative real time PCR in fourteen randomly selected unigenes. The present study provides insights into hepatic transcriptome profile of the loach, which is a valuable resource for studies of loach genomics. More importantly, this study identifies some important genes responsible for dietary oxidized fish oil, which will benefit researches of lipid metabolism in fish.

  17. A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons.

    PubMed

    Labib, Sarah; Williams, Andrew; Kuo, Byron; Yauk, Carole L; White, Paul A; Halappanavar, Sabina

    2017-07-01

    The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose-response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose-response curves for each PAH mixture. The predicted and observed pathway dose-response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.

  18. De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress.

    PubMed

    Zeng, Tao; Zhang, Liping; Li, Jinjun; Wang, Deqian; Tian, Yong; Lu, Lizhi

    2015-05-01

    High temperature is a major abiotic stress limiting animal growth and productivity worldwide. The Muscovy duck (Cairina moschata), sometimes called the Barbary drake, is a type of duck with a fairly unusual domestication history. In Southeast Asia, duck meat is one of the top meats consumed, and as such, the production of the meat is an important topic of research. The transcriptomic and genomic data presently available are insufficient to understanding the molecular mechanism underlying the heat tolerance of Muscovy ducks. Thus, transcriptome and expression profiling data for this species are required as important resource for identifying genes and developing molecular marker. In this study, de novo transcriptome assembly and gene expression analysis using Illumina sequencing technology were performed. More than 225 million clean reads were generated and assembled into 36,903 unique transcripts with an average length of 1,135 bp. A total of 21,221 (57.50 %) unigenes were annotated. Gene Ontology (GO) analysis of the annotated unigenes revealed that the majority of sequenced genes were associated with transcription, signal transduction, and apoptosis. We also performed gene expression profiling analysis upon heat treatment in Muscovy ducks and identified 470 heat-response unique transcripts. GO term enrichment showed that protein folding and chaperone binding were significant enrichment, whereas KEGG pathway analyses showed that Ras and MAPKs were activated after heat stress in Muscovy ducks. Our research enriched sequences information of Muscovy duck, provided novel insights into responses to heat stress in these ducks, and serve as candidate genes or markers that can be used to guide future efforts to breed heat-tolerant duck strains.

  19. Transcriptomics of the Vaccine Immune Response: Priming With Adjuvant Modulates Recall Innate Responses After Boosting.

    PubMed

    Santoro, Francesco; Pettini, Elena; Kazmin, Dmitri; Ciabattini, Annalisa; Fiorino, Fabio; Gilfillan, Gregor D; Evenroed, Ida M; Andersen, Peter; Pozzi, Gianni; Medaglini, Donata

    2018-01-01

    Transcriptomic profiling of the immune response induced by vaccine adjuvants is of critical importance for the rational design of vaccination strategies. In this study, transcriptomics was employed to profile the effect of the vaccine adjuvant used for priming on the immune response following re-exposure to the vaccine antigen alone. Mice were primed with the chimeric vaccine antigen H56 of Mycobacterium tuberculosis administered alone or with the CAF01 adjuvant and boosted with the antigen alone. mRNA sequencing was performed on blood samples collected 1, 2, and 7 days after priming and after boosting. Gene expression analysis at day 2 after priming showed that the CAF01 adjuvanted vaccine induced a stronger upregulation of the innate immunity modules compared with the unadjuvanted formulation. The immunostimulant effect of the CAF01 adjuvant, used in the primary immunization, was clearly seen after a booster immunization with a low dose of antigen alone. One day after boost, we observed a strong upregulation of multiple genes in blood of mice primed with H56 + CAF01 compared with mice primed with the H56 alone. In particular, blood transcription modules related to innate immune response, such as monocyte and neutrophil recruitment, activation of antigen-presenting cells, and interferon response were activated. Seven days after boost, differential expression of innate response genes faded while a moderate differential expression of T cell activation modules was appreciable. Indeed, immunological analysis showed a higher frequency of H56-specific CD4+ T cells and germinal center B cells in draining lymph nodes, a strong H56-specific humoral response and a higher frequency of antibody-secreting cells in spleen of mice primed with H56 + CAF01. Taken together, these data indicate that the adjuvant used for priming strongly reprograms the immune response that, upon boosting, results in a stronger recall innate response essential for shaping the downstream adaptive response.

  20. Using phylogenetically-informed annotation (PIA) to search for light-interacting genes in transcriptomes from non-model organisms.

    PubMed

    Speiser, Daniel I; Pankey, M Sabrina; Zaharoff, Alexander K; Battelle, Barbara A; Bracken-Grissom, Heather D; Breinholt, Jesse W; Bybee, Seth M; Cronin, Thomas W; Garm, Anders; Lindgren, Annie R; Patel, Nipam H; Porter, Megan L; Protas, Meredith E; Rivera, Ajna S; Serb, Jeanne M; Zigler, Kirk S; Crandall, Keith A; Oakley, Todd H

    2014-11-19

    Tools for high throughput sequencing and de novo assembly make the analysis of transcriptomes (i.e. the suite of genes expressed in a tissue) feasible for almost any organism. Yet a challenge for biologists is that it can be difficult to assign identities to gene sequences, especially from non-model organisms. Phylogenetic analyses are one useful method for assigning identities to these sequences, but such methods tend to be time-consuming because of the need to re-calculate trees for every gene of interest and each time a new data set is analyzed. In response, we employed existing tools for phylogenetic analysis to produce a computationally efficient, tree-based approach for annotating transcriptomes or new genomes that we term Phylogenetically-Informed Annotation (PIA), which places uncharacterized genes into pre-calculated phylogenies of gene families. We generated maximum likelihood trees for 109 genes from a Light Interaction Toolkit (LIT), a collection of genes that underlie the function or development of light-interacting structures in metazoans. To do so, we searched protein sequences predicted from 29 fully-sequenced genomes and built trees using tools for phylogenetic analysis in the Osiris package of Galaxy (an open-source workflow management system). Next, to rapidly annotate transcriptomes from organisms that lack sequenced genomes, we repurposed a maximum likelihood-based Evolutionary Placement Algorithm (implemented in RAxML) to place sequences of potential LIT genes on to our pre-calculated gene trees. Finally, we implemented PIA in Galaxy and used it to search for LIT genes in 28 newly-sequenced transcriptomes from the light-interacting tissues of a range of cephalopod mollusks, arthropods, and cubozoan cnidarians. Our new trees for LIT genes are available on the Bitbucket public repository ( http://bitbucket.org/osiris_phylogenetics/pia/ ) and we demonstrate PIA on a publicly-accessible web server ( http://galaxy-dev.cnsi.ucsb.edu/pia/ ). Our new trees for LIT genes will be a valuable resource for researchers studying the evolution of eyes or other light-interacting structures. We also introduce PIA, a high throughput method for using phylogenetic relationships to identify LIT genes in transcriptomes from non-model organisms. With simple modifications, our methods may be used to search for different sets of genes or to annotate data sets from taxa outside of Metazoa.

Top